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. ABSTRACT

Objective: Exploring applications of automatic speech
recognition and text-to-speech technologies in hearing assess-
ment and evaluations of hearing aids.

Design: Research protocol was registered at the INPLASY
database and was performed following the PRISMA scoping
review guidelines. A search in ten databases was conducted in
January 2023 and updated in June 2024.

Study sample: Studies that used automatic speech recog-
nition or text-to-speech to assess measures of hearing ability
(e.g. speech reception threshold), or to configure hearing aids
were retrieved. Of the 2942 records found, 28 met the inclusion
criteria.

Results: The results indicated that text-to-speech could
effectively replace recorded stimuli in speech intelligibility
tests, requiring less effort for experimenters, without nega-
tively impacting outcomes (n=5). Automatic speech recogni-
tion captured verbal responses accurately, allowing for reliable
speech reception threshold measurements without human su-
pervision (n=7). Moreover, automatic speech recognition was
employed to simulate participants’ hearing, with high corre-
lations between simulated and empirical data (n=14). Finally,
automatic speech recognition was used to optimise hearing
aid configurations, leading to higher speech intelligibility for
wearers compared to the original configuration (n=3).

Conclusions: There is the potential for automatic speech
recognition and text-to-speech systems to enhance accessibility
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of, and efficiency in, hearing assessments, offering unsuper-
vised testing options, and facilitating hearing aid personalisa-
tion.
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I1l. INTRODUCTION

According to the World Health Organisation [1], 1.5 billion
individuals have hearing loss, with 430 million requiring inter-
vention, the most common of which is the provision of hearing
aids [2]. It is estimated that by 2050, this number will increase
to 2.5 billion with 700 million people requiring intervention.
Hearing loss can significantly impact an individual’s ability to
communicate with ease, leading to stress, anxiety, isolation,
depression, and a decline in quality of life. In addition, hearing
loss is associated with a variety of long-term health conditions,
including dementia [3].

Hearing assessments are typically performed in hospitals
and clinics with specialised equipment and professionally
qualified staff. However, these are not always available e.g., in
developing countries [4]. Even in developed nations, access to
these facilities can prove challenging especially in rural areas,
and for elderly or infirm individuals [5]. Additionally, in a
place where good quality services are readily available, a crisis
such as the COVID-19 pandemic can change the situation and
make it challenging for people to seek help [6], [7].

In healthcare systems where hearing assessments are avail-
able, there can be long waiting times associated with the
prescription and fitting of hearing aids. This problem is com-
pounded by the fact that an individual might need to visit the
audiologist multiple times to obtain a properly prescribed and
fitted hearing aid. Multiple fitting sessions can cause learning
effects and fatigue, which obscure the results and make it
hard to achieve the best configuration for the patient [8], [9].
Research shows that most people don’t come forward to be
assessed for hearing aids. Additionally, about half of hearing
aid users do not wear them often [10] and poorly fit hearing
aid is one of the factors contributing to this problem [11].

One way to address these issues is to develop methods
that make hearing and hearing aid assessments easier. Recent
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TABLE |
DEFINITION OF TERMS USED IN THIS DOCUMENT

Term Definitions

Automatic | ASR is a technology that converts spoken language into text or

Speech into a representation that helps other machine learning models

Recognition | to make sense of it (e.g. a feature embedding vector).

(ASR)

Text-To- TTS generates a speech signal from the text. In this system,

Speech the input is the words, and the output is the audio representing

(TTS) the input words.

Adaptive This is a test of hearing disability that presents speech stimuli

speech-in- | in the presence of background noise and aims to measure the

noise  Test | highest level of noise (or lowest level of speech) before the

(SIN) speech becomes unintelligible to the participant. In a clinical
setting, participants listen to the stimuli and are asked to
repeat the words that they were able to understand. A human
supervisor then evaluates their response to determine how
much of the sentence the participant understood [20].

Signal ~ to | SNR is a measure of the intensity of a signal relative to the

Noise Ratio | intensity of background noise and is measured in decibels

(SNR) (dB).

Speech SRT is the SNR at which an individual can understand and re-

Reception | peat back spoken words or sentences at criterion performance

Threshold | e.g., 50% correct. A lower SRT indicates a better performance.

(SRT)

Bias The systematic difference between the measurements obtained
from a model and the reference values. (e.g., a hearing test
with a bias of +0.5 means that the measured SRT is on average
0.5 higher than the SRT of a clinical test).

progress has been made on this topic [12] and there is evidence
that these methods can produce accurate outcomes without
human supervision [13].

Advances in machine learning (ML) have enabled intelli-
gent systems to replace humans in various industries. The
healthcare industry has also been significantly impacted by
the widespread usage of ML [14]. Audiology is no exception,
and there have been attempts to leverage ML techniques in
various stages of hearing assessment, including:

e Models that can predict optimal stimuli to make the
hearing test faster and more accurate [15].

« Classifiers that can detect the type and degree of hearing
loss from clinical hearing tests (pure tone audiograms)
[16].

o Analysing EEG response signals to acoustic stimuli to
detect if the person heard the stimuli [17].

o Self-administered speech intelligibility tests using auto-
matic speech recognition (ASR) or text-to-speech tech-
niques (TTS) [18], [19].

The use of ASR and TTS (see Table I for definitions)
can make hearing tests more accessible. For example, ASR
can record a person’s response to auditory stimuli easily and
naturally, which is particularly important for some people who
have difficulties using a graphical user interface. Furthermore,
using a reliable ASR system might reduce mishearing, miscat-
egorising and other possible human errors. Additionally, TTS
enables a flexible generation of natural stimuli (speech) in a
controlled manner, which may be both more engaging and eco-
logically valid than pure tones or other artificial sounds. In the
long term, ASR and TTS have the potential to create speech
intelligibility tests that mimic a natural conversation, which
can be conducted remotely without any specialist equipment.

A. Gap in knowledge

Previous reviews on remote and self-supervised hearing
tests have focused on the general use of ML and automated
hearing evaluation. Wasmann et al. [21] reviewed automated
assessments of hearing but no studies that used ASR or TTS
were investigated in their study. Osman [17] conducted a
review on the use of ML for the detection of hearing loss,
but the scope was limited to detecting hearing loss based
on the classification of the auditory brainstem response (an
electrophysiological measure of hearing). Almufarrij et al. [13]
reviewed remote and self-supervised hearing test tools without
focusing on the use of ML.

These studies were not specific to ASR and TTS and did
not include all the papers that used these two technologies.
There is a need for a scoping review of studies that specifically
used ASR or TTS models for hearing tests. Therefore, the
aim of this scoping review was to summarise and organise the
existing work in this area to provide an overview of the latest
advancements in the use of ASR and TTS for the assessment
of both hearing and hearing aid fitting. Doing so will identify
gaps in previous literature, which will facilitate future research
in this domain.

V. METHOD

The protocol (inplasy.com/inplasy-2023-1-0029) was sub-
mitted to the International Platform of Registered Systematic
Review and Meta-Analysis Protocols [22] and the review
was carried out in accordance with PRISMA scoping review
guidelines [23].

A. Eligibility Criteria

This review considered studies that employed ASR or TTS
in any aspect of hearing assessment and hearing aid fitting,
regardless of whether the methods were conducted remotely or
in a controlled setting. The review included theses, conference
papers, peer-reviewed papers, book chapters, and preprints.
See Table II for the complete inclusion and exclusion criteria.

B. Information Sources

Relevant studies were identified through a systematic lit-
erature search that was conducted in January of 2023 and
later updated in June of 2024 in the following electronic
databases and preprint servers: PubMed, ScienceDirect, Em-
base, Emcare, Academic Search Premier, IEEE, Acoustical
Society of America, Springer, Web of Science, medRxiv, and
arXiv. Additionally, studies that were published as conference
proceedings and were not indexed on these databases and were
known to authors were also added. The identified studies’
citations and references were searched for other relevant
studies. No restriction on the publication date was imposed.

C. Search Strategy

The search strategy was developed in collaboration with
a medical information specialist. The search terms contained
related keywords and Medical Subject Headings and were
customised for each database. The full search strategy is
available in the supplementary material.
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TABLE I
INCLUSION AND EXCLUSION CRITERIA

TTS used to convert text to acoustic test stimuli.

ASR used to capture participants’ verbal responses.

ASR used to optimize hearing aid electroacoustic configurations or other
hearing devices.

ASR used to analyse the auditory stimulus as in a speech intelligibility
test procedure i.e., an ASR system adds information about the partici-
pant’s perception and likely response.

Inclusion

Studies that predicted speech intelligibility in individuals with normal
hearing.

Studies that used ASR for signal processing to alter the output of a
hearing aid without patient data from ASR i.e., studies that use ASR
without using new or existing individual data (such as hearing thresholds)
for personalisation.

Exclusion

Studies that used ASR to predict speech intelligibility as a function of
background noise without giving instructions on how this can be used
to set the parameters of a hearing aid.

Studies that simulated hearing loss to be applied to normal hearing
participants. i.e., studies that distort the signal and present it to people
with normal hearing.

Studies using ASR models trained and tested on the same sets of stimuli.

Publications not written in English.

D. Data Management

Identified studies were exported to the Zotero reference
management software to check for any duplicate that might
have been missed by the information scientist and to find any
retracted studies. The remaining records were exported to an
Excel spreadsheet for eligibility checking.

E. Selecting Relevant Records

Initially, The search strategy retrieved 2942 studies and after
preliminary screening 1826 of them were selected. Then, two
authors (MF and JS) independently read the titles (selecting
151) and abstracts (selecting 49) of the remaining papers. If
there was disagreement or uncertainty about inclusion based
on the title and abstract, those studies were assigned to two
authors (MF and one other author) for a full-text reading
and checking against the inclusion and exclusion criteria.
Any disagreement between the two authors was resolved by
discussion, and if the disagreement was not resolved, a third
author was consulted for a final decision. There was a total of
39 disagreements: 21 (53%) when reading the title, 13 (33%)
when reading the abstract and 5 (12%) when reading the whole
document. Additionally, 11 conference proceedings were also
added. The full details of the selection process are shown in
Fig. 1.

F. Data Extraction Process

A data extraction table was designed to extract information
from each study in a systematic manner. The primary author
(MF) performed the data extraction, while four of the remain-
ing authors individually examined and confirmed the findings
on 16% of the studies.

V. RESULTS

Overall, 28 studies were selected that met the inclusion
criteria. These studies were divided into four categories based
on their objective and how they used ASR and TTS.

Found record in all databases - Other sources
N=2942 ' N=11
E v i
é Automatic duplicates removing E
= Remaining =1826 H
Q '
= ¢ H
Preliminary screening N Dtﬁ));icchal?eesdi g
L —> =
Remaining =1814 : Retracted = 4
H Excluded:
Checking the title . | Notenglish=5
Remaining = 151 ! "] Correction =2
' Irrelevant = 1656
E v 5
8 Checking the abstract 5 N Excluded:
A Remaining = 49 v 7] Trrelevant = 102
Checking the full text ' Excluded:
Remaining = 17 V7| Irrelevant = 32
=) < E Group 1: 5 Studies
Q - .
o . Group 2: 7 Studies
= - 3
2 Records included =28 | Group 3: 14 Studies
= Group 4: 3 Studies

Fig. 1. Article selection process. Based on how ASR and TTS were
used, the studies were categorised into four groups (Group 1: TTS for
generating the acoustic stimuli, Group 2: ASR for capturing the verbal
response, Group 3: ASR for estimating speech test performance), Group
4: ASR for configuration of hearing aid parameters. Two studies were
assigned to both Group 1 and Group 2.

)
Convert to speech
TTS N,
A . !
Patient Response

( h
§ Stimulus (_Next Stirpulus Evaluate
@ or Terminate PN

Fig. 2. Diagram showing how TTS is used in speech intelligibility tests.
A synthetic stimulus is presented and the participant is asked to repeat
the stimulus they hear. This procedure is repeated until the predefined
stop condition is satisfied.

A. TTS for generating the acoustic stimuli to be used in
speech intelligibility tests

The five (17%) studies in this category replaced the pre-
recorded stimuli with sounds synthesised with TTS, which
were then used to evaluate the participant’s hearing [24], [25],
[26], [18], [27]. Their main goal was to reduce the time and
effort needed to generate a new dataset of test stimuli. The
overall flow of speech intelligibility tests with a TTS system
is presented in Fig. 2 and the extracted data is provided in
Table I of the supplementary material.

The first research [24] on TTS for stimuli generation was
published in 1990. The researchers used the DECtalk program
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[28] to synthesise vowels which were then randomly combined
to generate word stimuli. They tested their method on 30 par-
ticipants with normal hearing and 15 participants with hearing
loss and reported that 100% of the synthesised stimuli were
recognised by the participants. However, they only mentioned
achieving a reasonable level of speech recognition accuracy
when the synthesised stimuli were distorted. They did not
provide specific numerical results about the level of distortion
and the accuracy of speech recognition. The authors concluded
that due to high accuracy and the ability to freely alter the
parameters of synthesised stimuli, their model has the potential
to improve the speech intelligibility test procedures.

Advances in machine learning significantly improved the
quality of TTS systems, enabling them to generate sentences
with human-like voices in real-time. This advance in TTS
technology has resulted in more researchers using it for speech
intelligibility tests. Nuesse et al. [25] used a commercial TTS
system developed by the Acapela group [29] that used a non-
uniform unit selection [30] for synthesising the German matrix
sentence (OLSA) dataset [31]. The OLSA dataset is a set of
5-word sentences with a predefined grammatical structure, and
for each word in a sentence, there are 10 possible options. The
stimuli are generated by combining different words. To test
their method, the authors evaluated the SRT of 48 participants
with normal hearing in a soundproof booth using the 150
sentences from the OLSA dataset [31]. They reported that
their method achieved an SRT of +0.5 dB relative to the same
test with recorded stimuli, which can be considered negligible.
Furthermore, the psychometric functions (showing the rela-
tionship between the SNR and correct response percentage)
were similar for the two methods. However, the researchers
did not examine the effect of synthetic stimuli on participants
with hearing problems. They concluded that using synthetic
stimuli reduces the cost and time of generating the test without
compromising the accuracy.

Ibelings et al. [18] used a new TTS system from the Acapela
group [29] to synthesise another German dataset (G6Sa [32]),
generating 200 sentences with male and female speakers.
These sentences were used to evaluate the 25 individuals with
normal hearing at home via the Internet. The results indicated
a lower SRT of 1.2 dB when using synthetic stimuli compared
to natural stimuli, but this was no greater than the differences
between different natural speakers. Consequently, the authors
reported that the use of synthetic stimuli does not impact the
test performance negatively, and it reduces the time and effort
required to generate the stimuli.

Ooster et al. [26] designed a remote and automated speech
intelligibility test that could be administrated in participants’
homes using both TTS and ASR. This study used the same
synthesised stimuli as Nuesse et al. [25] and a pretrained ASR
system from Amazon. To evaluate the method, OLSA [31]
was used in various simulated sound fields (e.g., living room,
classroom, and concert hall) on 46 participants with hearing
losses from 25 to 60 decibel hearing level (dB HL). The
SRT calculated with their model had a bias from 0.7 dB for
moderately hearing impaired to 2.2 dB for young people with
normal hearing compared to the clinical SRT. The intrasubject
standard deviations for participants with normal hearing and

hearing loss were 0.63 and 1.01 dB, respectively. Based on
these results the authors claimed that their proposed method
was valid for a self-supervised hearing test at home.

Polspoel et al. [27] used Google Cloud API to synthesise
English and Dutch triplet digits (0-9). To evaluate their system,
they recruited 28 participants with normal hearing and 20
participants with hearing loss (47 + 19 dB HL). Their proposed
method had a high Pearson correlation with the reference test
for both English (0.95) and Dutch (0.91) digits. Additionally,
they also report test-retest reliability close to their reference
test for both English (1.7 dB) and Dutch (0.6 dB) digits. With
these results, they showed that the TTS system is capable
of creating multi-lingual digits-in-noise tests with much less
effort compared to traditional methods of generating stimuli.

Except for the first study by Kosai et al. [24], all studies used
off-the-shelf proprietary TTS engines capable of generating
human-like voices. The results showed a higher SRT than for
the traditional method for participants with hearing loss than
for normal hearing. However, Nuesse et al. [25] and Ibelings et
al. [18] only used participants with normal hearing to evaluate
their model; therefore, it was not clear how well their system
worked with participants with hearing loss.

Additionally, examined studies [18], [25], [27] synthesised
a relatively small and finite number of sentences and manually
examined each generated sentence. However, they did not
explore the capabilities of TTS for generating stimuli in real-
time and whether the TTS could reliably generate high-quality
stimuli during the test session or not. If studies were conducted
on this topic, audiologists could generate new stimuli for each
testing session and reduce the learning effects that are inherent
to the speech intelligibility tests with limited vocabulary [33],
[34].

B. ASR for capturing the verbal response of the
participant

The seven (25%) studies in this category replaced the human
supervisor with an ASR system, which was then used to auto-
matically assess participants’ responses [35], [36], [37], [26],
[38], [19], [39]. The main goal of these studies was to create
a speech intelligibility test that could be done without human
supervision or even remotely in the participants’ homes. The
overall flow of the test using an ASR system is presented in
Fig. 3 and the extraction table is provided in Table II of the
supplementary materials.

In 2015, Meyer et al. [35] built an ASR system with
a Hidden Markov Model (HMM) [40] and Mel-frequency
cepstrum coefficientstMFCC) [41] trained on a dataset of 23.2
hours of speech. To assess their method, they used the OLSA
dataset [31] with their ASR system to calculate the SRT and,
compared their result with SRTs obtained in a clinical setting.
The exact numbers were not reported and it was only stated
that if the participant did not use words that were new to
the ASR system (out-of-vocabulary (OOV)), the system could
achieve a test-retest standard deviation of 0.5 dB. However,
the limitation of using no OOV means that the system is not
usable in complex and realistic test settings.

Ooster et al.’s next work [36] built upon their own previous
study [35]. They improved the training dataset of the ASR
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Fig. 3. Diagram showing how speech intelligibility tests with ASR works.
In this diagram, the ASR transcribe the participant’s response and the
evaluation of the response is done with the transcribed text.

by introducing 18 hours of OOV words and trained an ASR
system using the new dataset. To evaluate their method, they
used 20 listeners with normal hearing and 7 listeners with
hearing loss in a soundproof booth with the OLSA dataset
[31]. They reported an SRT bias of +0.5 dB for participants
with normal hearing and 0.8 dB for participants with hearing
loss and the test-retest standard deviation was 0.5 dB and 0.9
dB, respectively. Based on these results, they concluded that
the ASR system provides a reliable measurement of SRT for
participants with hearing loss and participants with normal
hearing.

Ooster et al. [26] proposed another automatic test that
used both ASR and TTS. This study was described in the
previous section. They used a commercial ASR system from
Amazon. They tested the proposed method on 46 participants
with different levels of hearing loss and, as described above,
concluded that the discrepancies from a conventional test were
small.

The most recent study by Ooster et al. [19] aimed to enhance
the accuracy of the ASR system by using a new time-delay
neural network [42] with MFCCs [41] and an HMM [40]. This
reduced the percentage of unrecognised words from 4.76% to
0.6%. The ASR system was trained on 23 hours of data from
Meyer et al. [35] and another dataset with 18 hours of speech
[43], [44]. To evaluate the system, 20 listeners with normal
hearing, 39 listeners with hearing loss and 14 listeners with
cochlear implants were tested in a soundproof booth using the
OLSA dataset [31]. The results indicated that compared to
the traditional method there was a bias of 1.4 dB for 95% of
participants with normal hearing and unaided hearing impaired
(i.e., without using their hearing aid) and a bias of 2.1 dB for
participants with cochlear implants.

Another study that tried to improve the ASR architecture
was undertaken by Nisar et al. [37]. They proposed an adaptive
way of giving weights to MFCC features based on the input
sound spectrum, leading to enhanced accuracy in the ASR
system. They trained the ASR system on a dataset of 3600
utterances and used a dataset of 72 English spondee words
(words with two equally stressed syllables. e.g., baseball) for

the test. The testing involved 60 participants with various
levels of hearing loss and was conducted in a soundproof
booth. They did not report the exact SRT bias of their system
and only mentioned that it was less than 4.4 dB, which was
high compared to other studies. However, the system was able
to detect the category of hearing loss (e.g., mild, moderate, and
severe) with 96.6% accuracy.

During the COVID-19 pandemic, Bruns et al. [38] devel-
oped a fully remote speech intelligibility test. To implement
the ASR system, they adopted the model proposed by Peddinti
et al. [42], which used a deep neural network with MFCC
feature extractor [41] and trained the model on 1000 hours
of an in-house German speech dataset. They recruited 16
participants with normal hearing and used the OLSA dataset
[31] to test their hearing from their homes in a quiet room.
The achieved SRT was 1 dB higher than the clinical SRT for
all the participants and they reported a Pearson correlation of
0.93 with the human lead test. This is the only study that
used the Internet. The authors concluded that remote testing
of hearing with the use of ASR is a valid alternative to the
traditional method.

ASR has also been added to the digits-in-noise test. Araiza-
Illan et al. [39] proposed a self-supervised digits-in-noise test
using an ASR system trained on 1000 hours of Dutch speech
[45]. They initially recruited 30 participants with normal
hearing to test their ASR in a quiet room and reported a word
error rate of 5%. They then selected 6 participants with zero
ASR error rates and used bootstrapping to model the effect
of the ASR error on the final SRT measurement and reported
that if the number of ASR decoding errors was less than 4,
their system did not produce more variation than a clinical test
(<0.7 dB).

One study [26] used commercial ASRs, while others (85%)
trained their model using HMM [40] and MFCCs [41] based
model. Nisar et al. [37] proposed a new method to calculate
MEFCCs, however, they did not provide any metric on its
performance to show how much it improved the baseline.

Five studies (71%) used the OLSA [31] as the test stimuli
and reported SRT bias of approximately 1 dB. However, Meyer
et al. [35] did not compare their method with the clinical SRT.
Nisar et al. [37] used an English dataset, and had a system with
a high bias (<4.4 dB) compared to the other method.

Regarding the test environment, four studies (57%) con-
ducted the tests in a soundproof room to minimise the effect
of surrounding noise on the SRT, while one (14%) of them
investigated the effect of different environments and noises on
the test. Two studies (28%) conducted the test in a quiet room
with one of them being conducted remotely over the Internet.
And Only one study did not report the test environment (14%).

C. ASR for estimating speech test performance

The 14 (50%) studies in this category predicted speech intel-
ligibility [46], [47], [48], [49], [50], [51], [52], [53], [54], [55],
[56], [57], [58], [59]. They used ASR to simulate a person with
hearing loss, and the simulation must reach the same result as
the participant it replaced. Their goal was to analyse the effects
of different stimuli and test environments and gain insight
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Fig. 4. Diagram showing how ASR is used to simulate speech

intelligibility tests. In this system, an ASR and a hearing loss simulator
replace a person with hearing loss, and it should achieve a result close
to the person it is modelling.

into various situations that can affect speech intelligibility. The
overall flow of simulating speech intelligibility tests with ASR
is presented in Fig.4 and the extraction table is provided in
Tables III, IV and V of the supplementary materials.

Fontan et al. [46] trained the ASR model using SPHINX-
3 [60] on 31 hours of French radio broadcast recordings
[61]. They evaluated the ASR system on three types of
inputs; pseudoword [62] (87.4% accuracy), words [63] (98.3%
accuracy) and sentences [64] (90.8% accuracy). The aim of
this study was to predict the word identification scores of
older adults with hearing loss by using stimuli with various
levels of linguistic complexity. They tested their model with
24 participants with hearing loss in a soundproof room using
the hearing loss simulator proposed in [65] and reported a
correlation of 0.81 for pseudowords, 0.77 for words and 0.71
for sentences between the proposed model and empirical data.
Based on these results, the researchers claimed that there is
a strong correlation between human and machine results in
all three types of stimuli but the pseudowords showed the
strongest correlation.

Another study that trained their own ASR was done by
RoBbach et al. [47]. They trained a deep learning-based ASR
system based on the architecture proposed by [66] on 10 hours
of speech from 20 speakers in the shape of the OLSA dataset
[31]. The trained model was then used to simulate the SRT
measurement procedure. The stimuli for testing were from the
OLSA dataset with speech and noise-like maskers generated
from [67]. The hearing loss simulation was done by replacing
the spectral components below the individual hearing threshold
with Gaussian noise at the same level as the individual’s
hearing threshold. To test their method, they recruited 8
participants with normal hearing and 20 participants with
hearing loss to do the speech-in-noise test and reported that
their method had an SRT bias of 1.6 dB for participants with
normal hearing and 1.4 for participants with hearing loss.

Brochier et al. [48] focused on participants with cochlear
implants. They developed an ASR model with a fully com-
putational front-end to simulate cochlear implant perception
and to predict phoneme recognition of cochlear implant users.
They compared the predictions of their model to data from

35 participants with cochlear implants from [68], [69] and
reported a significant correlation for the prediction of conso-
nants (R=0.65) but not for vowels (R=0.38). Predicted SRTs
were within 1 dB of those of the cochlear implant users and
confusion matrices showed large agreement.

A further set of methods was developed in response to the
Clarity Prediction Challenges (CPC) [70], [71]. These aimed
to facilitate the development of systems that could estimate
the speech intelligibility score of a person with hearing loss
from speech stimuli. In this challenge, stimuli in the form
of 7 to 10 word-long sentences in noisy environments were
simulated with head-related transfer functions (representing
hearing loss) and processed by ten hearing aid algorithms. The
stimuli were then presented to the listeners, who were asked to
repeat what they had heard. Challenge participants were asked
to predict how many of the words were recognised with each
specific hearing loss condition. CPC1 produced a dataset of
7233 responses from 27 listeners (hearing loss 15 to <80 dB),
whereas CPC2 produced a dataset of 10062 responses from
18 listeners (<35 dB and >80 dB) while using more diverse
and complex noises and head movements.

The submitted system could be intrusive or non-intrusive.
The intrusive system had access to both the enhanced audio
and the reference audio with its transcription, while the non-
intrusive system had only access to the enhanced signal. Both
intrusive and non-intrusive systems could use the input speech
alongside metadata (see [70] for the full list) that showed
listener and room characteristics. The extraction table includes
the best model of each submitted paper (CPC1: N=6, CPC2:
N=5) and is provided in Tables IV and V of the supplementary
materials.

In CPCl1, intrusive systems, on average, performed better as
they had access to the clean reference data [49], [50], [53]. The
winner of the CPC1 [72] was an intrusive system, but they did
not use ASR. The best ASR based system [49] used an ASR
model to create a representation for both the reference speech
and the one enhanced by the hearing aid. They compared the
two created representations with each other to calculate speech
intelligibility and achieve a correlation of 0.76 on the open
dataset.

In CPC2, Huckvale et al. extended their previous model [72]
by using Wav2Vec [73] and fine-tuning it on the Cambridge
read news dataset [74], achieving a correlation score of 0.78.
Tu et al. [58] also extended on previous entries to CPC1 [49],
[51]. Both models used pre-trained transformer-based ASR.
The intrusive model compared the features generated by the
ASR for the clean reference and target speech (correlation
score = 0.77), while the non-intrusive system estimated the
uncertainty of the ASR system (correlation score = 0.72).

The winner [55] of this challenge was a non-intrusive
system that used pre-trained WavLM [75] and Whisper [76]
models to extract features from speech signal. Extracted
features are then mapped to the speech intelligibility score
using transformer models. With this system, they managed to
achieve a correlation score of 0.78. One common approach in
CPC2 was the use of foundation models like Whisper [76]
to extract features from the input speech and use another
machine learning algorithm to map the extracted features to
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Fig. 5.  Diagram showing how ASR is used to fit a hearing aid.

In this diagram, an ASR is used to evaluate a particular hearing aid
configuration and change the parameters to achieve the best results.

intelligibility score ( [57], [59]).

This group consists of studies that used ASR to investigate
the effects of various stimuli and situations by simulating
the speech-in-noise test. Among these studies, only one study
(7%) [48] focused on participants with cochlear implants. This
lack of research in this category indicates that there needs to
be more research on participants with cochlear implants to
better investigate the potential of ASR for them.

An important point to consider is that the model proposed
by RoBbach et al. [47] used different stimuli for training and
testing but the same noise is used, hence, it is unclear how the
model will perform in the presence of unseen noise.

Models submitted to the clarity challenge all had the same
dataset which made the comparison easier. There was a trend
of using pre-trained ASR models to extract features from
input speech and this is much more prominent in the second
challenge where a non-intrusive model with a pre-trained
model outperformed the intrusive systems.

D. ASR for configuration of hearing aid parameters

The three studies (10%) in this category consisted of re-
search that uses ASR to find an optimum configuration for
hearing aids [77], [78], [79]. They evaluated the intelligibility
of hearing aid outputs by measuring how well the ASR
can understand the altered signal and aimed to achieve the
maximum score by optimising different hearing aid parameters
(e.g., insertion gains). The overall architecture of the studies
that used ASR for fitting hearing aids is presented in Fig.
5 and the extraction table is provided in Table VI of the
supplementary materials.

Fontan et al. [77] used the SPHINX-3 [60] ASR system and
trained it on 31 hours of French radio broadcast recordings
[61]. Their objective was to determine the insertion gains
of a hearing aid in a way that would maximise the per-
formance of the ASR system. To achieve this, they took a
hearing aid that was fitted based on CAM2 [80], a validated
generic prescription method, and tested 625 predetermined
gain functions to identify the optimal insertion gains. For

evaluation, the researchers used 60 disyllabic nouns [63] and
40 sentences from the French hearing in noise test [64] as
stimuli and tested this method on 24 participants with hearing
loss in a soundproof booth. They reported that the ASR-based
configuration resulted in a higher mean intelligibility score
than the CAM2 configuration (98.2% compared to 96.5%).
However, given the small magnitude of this increase and both
values close to the maximum, it is not clear that this has a
clinically significant impact. They also asked the participant to
score their comfort level for both configurations and reported
a higher comfort score when the hearing aid was set up based
on the ASR (8.4 compared to 7 out of 10). This increase in
comfort level might be due to the fact that the method sets
less amplification for higher frequencies, which leads to higher
pleasantness [81].

Gongalves Braz et al. [78] expanded Fontan’s work by using
genetic algorithms [82] and expanding the search space (set of
all possible values) for fitting parameters. The authors aimed
to optimise two parameters: insertion gains and compression
threshold. The insertion gains were optimised across five
frequencies with a step size of 0.1 dB and in the range of
+10 dB to the prescribed insertion gains. The search for
compression threshold was done between 20 dB SPL to 50
dB SPL with a step size of 1 dB. Regarding the ASR system,
the authors used the Julius 4.4.2 system [83] and trained it on
100 hours of French radio broadcasting recordings [61], [84].
To evaluate the model, they used 60 disyllabic nouns [63] and
fitted the simulated hearing aid based on the audiograms of
12 people with hearing loss. With the proposed configuration,
the ASR system achieved an intelligibility score of 98%,
surpassing the 88% achieved when listening to the output
of hearing aids configuring based on CAM2 [80]. To check
the consistency of the system, they repeated the procedure 12
times for each audiogram and achieved a correlation of >0.95
between each audiogram’s results.

The final study [79] was a continuation of their previous
research [78] and used their proposed model to find the best at-
tack and release time constants, which determine how quickly
a hearing aid adjusts its amplification as a function of input
level. The search space for attack time spanned from 100 to
500 ms and for the release time, it extended from 300 to 2000
ms with a step size of 10 ms. To evaluate the effectiveness of
the optimisation of the time constants, they used the same 12
audiograms as the earlier study [78]. While they reported an
increase in the ASR intelligibility score compared to CAM?2
[80] fitted hearing aid (92% compared to 88%), the results
showed no improvement from the configuration obtained from
[78]. As for consistency, they ran the experiment twice for
each participant and reported there was no statistical difference
between the results of the two experiments.

Models that optimise hearing aids have two main compo-
nents, the first is the hearing aid simulator, which the studies
want to find the best configuration for, and the hearing loss
simulator. The hearing loss simulator’s job is to degrade the
signal to replicate a person with hearing loss. All the papers
in this group used the same hearing loss simulator [65] which
can simulate the loss of audibility and recruitment in a person.

Studies in this category were all conducted by the same
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group, which incrementally complement each other to cover
all major settings of hearing aids (insertion gains, compression
threshold, and time constants). They all used French radio
broadcasting to train the ASR model. While one (33%) of the
studies investigated the comfort level of human participants,
the other two (67%) only reported the score of the ASR system
when the hearing aid’s output was fed to it.

Furthermore, one (33%) of the studies used a predefined set
of parameters, however, two (67%) of them use evolutionary
algorithms [85] to find the optimal values faster and by doing
so, they were able to expand their search space.

VI. DISCUSSION

This scoping review identified studies that used ASR and
TTS technologies for assessments of both hearing and hearing
aid fitting, and grouped them into four categories, based on
how they used these technologies. There has been less research
on creating synthetic speech or for the automatic configuration
of hearing aids compared to simulated SRT measurement and
ASR operated tests.

The dominant language with the exception of the Clarity
challenge was German, with a few studies in French. there
is a lack of diversity in using other languages and speech
intelligibility tests datasets. Additionally, there is a lack of
diversity in the researchers themselves. For example, in the
“ASR for configuration of hearing aid parameters” group, all
three studies were conducted by the same group. Similarly in
the “ASR for capturing the verbal response of the participant”
category, five out of the eight studies were conducted by the
same research group. Consequently, the studies in each group
are very similar to each other and there is a need for more
researchers to evaluate these topics independently and to bring
forth new ideas and innovations to this domain.

A. TTS for generating the acoustic stimuli to be used in
speech intelligibility tests

TTS can be used for generating stimuli for speech intel-
ligibility tests. The studies in this category investigated the
effect of using machine generated stimuli instead of using
prerecorded speech. The current studies are mostly on German
datasets with a limited vocabulary (OLSA) and one study
synthesised English and Dutch digits [27]. However, there is
no proof to date that the approach generalises to a variety
of factors like the voice gender, the used dataset, and the
language of the stimuli. Thus, there is a need for more
research to explore methods for creating TTS models that
can create synthetic speech in other languages and other
speech intelligibility tests datasets and evaluate them in speech
intelligibility tests and for participants with hearing loss.

The SRT bias for participants with hearing loss tends to be
different from participants with normal hearing when using
TTS or ASR. Thus, the effect of TTS should be investigated
on both types of listeners.

Compared to other speech intelligibility tests (digit-in-noise
and word-in-noise), the sentence-in-noise test has a more
diverse vocabulary and uses stimuli with a more complex
structure and is closer to natural speech. However, the choices

of words are still limited and reusing this limited vocabulary in
multiple test sessions leads to learning effects [33]. We believe
that a better way of employing the TTS system is to generate
new and meaningful stimuli with different words for every
test, thereby preventing any learning effect. In this method,
since the stimuli are generated at the test time, pre-recorded
stimuli are no longer useful since we do not know the stimuli
beforehand. However, no research has been conducted to date
that uses TTS in a more flexible manner than generating a
predefined set of sentences.

Using TTS to create new stimuli has its own challenges.
The first problem is to have an algorithm to select stimuli
with proper words and sentences that are suitable for speech
intelligibility tests. Having a limited number of words makes
it easier to create a high-quality TTS system. However, when
the stimuli are generated by an algorithm for an unknown
sentence structure, and the vocabulary is unlimited, it becomes
challenging to prove that a TTS system produces all stimuli
correctly.

B. ASR for capturing the verbal response of the
participant

The studies in this category investigated the effectiveness
of using ASR for evaluating participants’ responses during
a hearing test. Test-retest reliability measures the method’s
consistency by comparing the measured SRT of the same
person across multiple experiments. This was around 0.5 dB
in normal hearing [86] and 0.9 dB in hearing impaired [87]
for a clinical test. Three of the reviewed studies reported this
metric and their results were in the acceptable range. However,
other studies did not report this metric which makes it hard to
evaluate their consistency.

One of the main advantages of using ASR instead of
a human supervisor is that people can test their hearing
without supervision. However, only two studies conducted
their testing in a normal environment. To achieve the goal of
an unsupervised speech intelligibility test, more studies need
to focus on conducting the test in” everyday” locations like
the home of the participants and investigate ways to improve
the performance of their system in such environments.

Creating an ASR that can discriminate a limited number
of words (e.g., the OLSA dataset) in a quiet and controlled
environment is relatively easy. However, creating an ASR
that achieves high accuracy in an uncontrolled environment
is challenging. High accuracy is necessary because otherwise
it cannot be distinguished if a wrong response was due to the
participant giving a wrong response or the ASR system not
recognising a correct response of the participant. The system
needs to consider various acoustic environments, background
noise, and uncalibrated devices. Adding this to our suggestion
of using TTS for creating a new stimulus for each test session
means that the ASR will have a harder job, as it needs to
accurately recognise a much more diverse set of vocabulary.
While this is a challenging task, we believe that more research
and effort into this topic can lead to a fully automated and
reliable test that can be done without visiting a clinic.

Some important questions were beyond the scope of the
studies in the current review. however, they are worth inves-
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tigating in future studies. These include doing a comparison
of fitted hearing aids based on ASR or human SRT measure-
ments. Doing so can better show the applicability of an ASR-
based test, as opposed to only comparing the SRTs. Secondly,
Using the results of hearing measurements done by multiple
trained audiologists instead of one, yields a more accurate
ground truth and a better comparison of the SRT measured
by ASR and an audiologist.

C. ASR for estimating speech test performance

The studies in this category used ASR to investigate the
effects of various stimuli and listening environments by simu-
lating a measure of speech intelligibility. The first study on this
subject was done by Fontan et al. [46] using French stimuli
of varying linguistic complexity to predict word identification
scores. Brochier et al. [48] was the only study that focused on
people with cochlear implants and There is a clear need for
more research on this approach for cochlear implants.

The clarity challenge introduced two datasets for this task.
Using a standard dataset not only makes comparison of
different submitted models possible but is also beneficial for
comparison of future models as other researchers can run
their system on the clarity challenge dataset and compare their
results with other systems that used the same dataset.

This challenge had two non-intrusive and intrusive modes,
however, while in the first challenge intrusive models outper-
formed non-intrusive systems, Large foundation ASR models
like Whisper [76] model had a big impact on the second
challenge and enabled non-intrusive models to outperform the
intrusive ones.

One point to consider about the studies submitted to both
clarity challenges is that only a few of them were published
in peer-reviewed journals ( [88], [89], [90]) and the rest were
published as pre-print or conference proceeding with some
of them providing limited information regarding their used
method.

Unlike other groups, studies in this section did not report the
test-retest reliability of their proposed method. This is because,
with the same input, the ASR will always perform the same
and generate the same output, thus, the test-retest reliability
of these models is perfect.

D. ASR for configuration of hearing aid parameters

The final category investigated if ASR can be used to
quickly and automatically compare different hearing aid set-
tings and find the most suitable configurations for the person
that yields the highest speech intelligibility.

French disyllabic nouns were used in all three studies.
Fontan et al. [77] also used a French speech-in-noise test [64].
The limited diversity of datasets stems from all three studies
having been done by the same group. In their first study, they
compared participants’ comfort levels while using hearing aids
fitted based on ASR and the CAM2 method, but unfortunately,
they did not report the comfort level in their other two studies.

Furthermore, the researchers compared ASR scores for
speech generated by hearing aids set up using the prescription
formula of CAM2 and set up using their own ASR algorithm.

Based on the results they concluded that their proposed system
reaches a better configured hearing aid. However, this is
not surprising since, during their own method to set up the
hearing aid, they start with the CAM2 setting and choose
the parameters to maximise the ASR score. Although a clear
potential was demonstrated, it is necessary to evaluate the
settings with human participants rather than an evaluation
metric that is highly similar to the metric that was used for
the optimisation.

An unexplored area in this topic is the involvement of the
patient by simulating the hearing aid with different configura-
tions and letting the person see how different configurations
would change the possible output of the hearing aid. By doing
this, the patient can see the benefit of a hearing aid before
ever fitting one, and they can test different configurations from
their home. However, automatically presenting good candidate
fittings of hearing aids is challenging. One approach was done
by Nielsen et al. [91] using active learning, and this may be
improved by including ASR based suggestions. Al, TTS and
ASR systems can be helpful to mitigate these problems. TTS
can be used to accurately simulate different types of sentences
and stimuli. ASR can be used to test the person’s hearing
after altering the hearing aid configuration and optimisation
algorithms can assist in finding the best configurations without
requiring a complex setting of parameters as an audiologist
would do.

VIl. CONCLUSION

ASR and TTS have been used for several purposes in speech
intelligibility testing and to set up hearing devices. Both ASR
and TTS have the potential to be used in hearing assessment
and hearing aid fitting, improving accuracy, and decreasing
the reliance on human experts. Research priorities include
creating remote and unsupervised speech intelligibility tests,
creating more natural stimuli using TTS, and creating hearing
aid simulators usable by the hearing aid users themselves.
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classroom, and concert
hall.

2 INTERNATIONAL JOURNAL OF AUDIOLOGY
TABLE |
THIS TABLE SUMMARISES THE PAPERS THAT USE TTS IN THEIR METHOD
(Kosai, 1990) [1] (Nuesse, 2019) [2] (Ooster, 2020) [3] (Ibelings, 2022) [4] (Polspoel, 2024) [5]
Participants’ hearing | 30 NH, 15 HI 48 NH 46 HI from <25 to 60 dB | 25 NH NH: 28, HI: 20
level HL
Test environment Unknown Soundproof booth Simulated living room, | Home of participants Soundproof booth

ML Model’s features

DECtalk [6]

Acapela [7]

ASR: ASR from Ama-
zon
TTS: Acapela [7]

Acapela cloud [7]

Google could API

ML Model’s metrics Unknown Unknown Insertion Error: 1.9% Unknown unknown
Deletion Error: 6.1%
Method bias Unknown Same Slope SRT bias from 0.7 dB | 1.2 dB lower SRT com- | R= 0.95 (English), R=
0.5 dB higher SRT for HI to 2.2 dB for NH. | pared to natural stimuli. | 0.91 (Dutch)
Stimuli dataset Unknown OLSA [8] OLSA [8] GoSa [9] Triplet digits
Training Data Unknown Unknown Unknown Unknown Unknown
Test-Retest reliability | Unknown Unknown Intrasubject standard de- | Unknown 0.6 (Dutch), 1.7 (En-
of proposed method viation of 0.63 dB for glish)
NH and 1.01 dB for HI
(Gold standard clinical
test is 0.5 dB and 0.9
dB, respectively test).
Noise Generation algo- | Low pass filter with | Superimposing from the | Superimposing from the | Superimposing from the | Speech shape noise

rithm

3350, 2240, 1800, 1400,
1120, 900, 710, 560 and
450Hz cut-off frequen-
cies.

test dataset.

test dataset.

test dataset.

Masking Noise Level | Unknown Noise at 65 dB SPL and | Constant 65 dB SPL SNR of -4, -6 and -8 dB | Overall presentation at a
changing stimuli level to comfortable level.
get SNR of -11, -8.5 and
-6.

Stimuli level Unknown Adaptive Adaptive Adaptive Overall presentation at a

comfortable level.

Conclusion

An early attempt to use
TTS for speech intelligi-
bility tests. With TTS it
is possible to freely al-
ter the parameters of the
stimuli. 100% articula-
tion on undistorted syn-
thesised vowels.

Using TTS can make
the development of tests
faster. Synthetic stim-
uli are able to gener-
ate comparable results to
human-generated stim-
uli.

Used TTS to generate
stimuli and ASR to cap-
ture the patient response.

Used TTS to generate
stimuli for finding the
SRT and showed it can
achieve comparable re-
sults to natural speech
while reducing the com-
plexity of generating a
new dataset.

Provided a tool for
doing the DIN test
with synthetic speech
and ASR system. And
reported high correlation
with reference test.

NH: Normal Hearing, HI: Hearing Impaired, dB HL: Decibels at Hearing level, dB SPL: Decibels at Sound Pressure Level, DIN:

Digits-in-Noise
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TABLE Il
THIS TABLE SUMMARISES THE PAPERS THAT USE ASR TO CAPTURE PARTICIPANTS’ VERBAL RESPONSES.

(Meyer, 2015) | (Ooster, 2018) | (Nisar, 2019) [12] | (Ooster, 2020) [3] | (Bruns, 2022) | (Ooster, 2023) | (Araiza-Illan,
[10] [11] [13] [14] 2024) [15]
Participants’ Unknown 20 NH, 7 HI from | 60 from 0 to +90 | 46 from <25 to| 16 NH 20 NH, 39 HI, 14 | NH: 6
hearing level 26 to 42 dB HL |dB HL 60 dB HL CI
Test Unknown Soundproof booth | Soundproof booth | Room with | Quiet office room | Soundproof booth | Quiet room
environment simulated and via VOIP.
acoustics of
living room,
classroom,
concert hall.
ML Model’s fea- | HMM [16] DNN-HMM [18] | HMM [16] ASR: From Ama- | MFCCs [19] Time delay neural | Kaldi-NL
tures MFCCs [17] MFCCs [17] Weighted MFCCs | zon network [20]
TTS: Acapela [7] GMM-HMM [16]
MFCCs [19]
ML Model’s | WER: No new | Insertion  Error | Unknown Insertion  Error | WER 2.83% Insertion  Error | WER 5%
metrics words: 0.66%, | 2.9% Deletion 1.9% 3%
with new words: | Error 0.9% Deletion  Error Deletion  Error
22.7% 6.1% 0.6%
Method’ bias Unknown NH: 0.5 dB SRT Bias of <4.4 | On average 1.40 | Correlation of r = | NH and unaided | <0.7 dB with 4
HI: 0.8 dB dB. dB. 0.93. HI: 1.38 dB bias. | errors)
Accuracy of | 0.23 dB|[SRT is 1 dB |Aided HI and CI
96.67% for | difference in | higher with the | listeners: 2.05 dB
detecting HL. intrasubject proposed method | bias.
standard
deviation
between
reference and
ASR based test
Stimuli dataset | OLSA [8] OLSA [8] 72 English | OLSA [8] OLSA [8] OLSA [8] Triplet digits (0-
spondee 9) [21])
Training Data 27170 utterance | Same as [10]. 3600 utterances N/A 1000 hours Ger- | Same as [10]. 1000h of Dutch
(23.2 hours) 18 hours of OOV man speech (8000 | 18  hours  of | speech [24]
10 males, 10 | words hours after noise | speech from 40
females adding and aug- | speakers [22]
mentation) [23].
Test-Retest reli- | 0.5 dB for the test | NH: 0.5 dB Unknown Intrasubject stan- | Unknown Unknown Unknown
ability of pro- | without OOV. HI: 0.9 dB dard deviation of
posed method 0.63 dB for NH
and 1.01 dB for
HI (This is 0.5 dB
and 0.9 dB for the
clinical test).
Noise Unknown Unknown Unknown Superimposing Superimposing Superimposing Speech shape
Generation from test dataset | the speech | the speech | noise
algorithm material material
Masking Noise | Unknown 65 dB SPL Unknown Constant 65 dB | Start from 0 dB | fixed at 65 dB fixed at 65 dB
Level SPL
Conclusion ASR is good | Reliable SRT | Altered MFCCs | Used TTS to gen- | Used ASR to de- | Improved the | Used ASR
for capturing the | measurement can | to increase the | erate the stimuli | tect SRT of pa- | baseline ASR | for self-
response ~ when | be obtained with | ASR accuracy for | and ASR to cap- | tients over the In- | system by using | supervised DIN
there are no OOV | the ASR system. | detecting SRT. ture the patient | ternet. state-of-the-art and evaluated
words, but not response. models. using bootstring
when there are simulation.
OOVs.

NH: Normal Hearing, HI: Hearing Impaired, CI: Cochlear Implant, dB HL: Decibels at Hearing Level, dB SPL: Decibels at Sound Pressure Level,
MFCC: Mel-Frequency Cepstrum Coefficients, HMM: Hidden Markov Model, GMM: Gaussian mixture model, OOV: Out-Of-Vocabulary, WER: Word
Error Rate, DIN: Digits-in-Noise
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TABLE IlI
THIS TABLE SUMMARISES THE PAPERS THAT USE ASR TO SIMULATE THE HEARING TEST PROCEDURE.

(Fontan, 2020) [25]

(RoBbach ,2022) [26]

(Brochier , 2022) [27]

Participants’ hearing levels 24 HI with >20 dB difference in low | 8 NH, 20 HI with mild to moderate | CI users
and high frequency sensitivity. HL
Test environment Soundproof room Unknown N/A
ML Model’s features SPHINX-3 [28] Model in [18] DNN with GRU [29]
MFCCs [19] HMM [16] HMM [16]
HMM [16] MFCCs [17]
ML Model’s metrics Logatoms: 87.4% Unknown Phoneme frame error rate and confu-

‘Words: 98.3%
Sentences: 90.8%

sion

Method bias

Correlation between ASR and human:
Logatoms: 0.81

Words: 0.77

Sentences: 0.71

SRT bias of baseline and proposed
model:

NH: 1.6 dB (p<0.01)

HI: 1.4 dB (p<0.001)

MSE between ASR and CI users:
0.48% for Vowels, 0.28% for conso-
nants.

High correlation for consonants ( R
= 0.65 ) but not for vowels (R =
0.38). Predicted SRTs within 1 dB of
published studies with CI users.

Stimuli dataset

68 logatoms [30].
60 nouns [31].
40 sentences [32].

OLSA [8]

McKay [33]
Munson [34]
Friesen [35]
Schvartz-Leyzac [36]

Training Data

31 hours of French radio recording
(371

10 hours of OLSA-like speech from
20 speakers with added noise from -
10 to 20 dB SNR.

TIMIT [38]

Noise Generation algorithm

None

Speech and noise like masker.

20-talker babble

Masking Noise Level

Speech presented at a soft level of 50
dB SPL

SNR of -30 dB to 10 dB

Quiet and adaptive

Conclusion

Predict the SI of HI, using stimuli
with different complexity.

Reported strong correlation between
the SI measured by humans and ASR.

Used DNN to create an ASR system
to detect SRT of NH and HI with the
presence of different types of masker
noise. It should be noted that they
used the same noise in both training
and testing

CI users phoneme perception predic-
tion.

Good accuracy for consonants, but not
for vowels.

NH: Normal Hearing, HI: Hearing Impaired, CI: Cochlear Implant, dB SPL: Decibels at Sound Pressure Level, MFCC: Mel-Frequency Cepstrum
Coefficients, HMM: Hidden Markov model, DNN: Deep Neural Network, GRU: Gated recurrent unit, SI: Speech Intelligibility, MSE: Mean Square Error.




FATEHIFAR et al.: APPLICATIONS OF AUTOMATIC SPEECH RECOGNITION AND TEXT-TO-SPEECH IN HEARING AND HEARING AID ASSESSMENT

TABLE IV
THIS TABLE SUMMARISES PAPERS IN THE FIRST CLARITY CHALLENGE
Paper ML Model’s features | Method’ bias (Correla- | Intrusive Training Data Conclusion
tion)
(Tu, 2022) [39] Transformer [40] 0.76 Yes LibriSpeech [41] Measured SI by com-
CNN CPClI [42] paring the hidden rep-
resentation of generated
sound with the refer-
ence.
(Tu, 2022) [43] Transformer [40] 0.73 No LibriSpeech [41] Used deep ensemble
CPC1 [42] [45] to measure the
CEC1 [44] uncertainty of  the
ASR  model as a
representation of SI.
(Mawalim, 2022) [46] Time delay neural net- | 0.67 Yes LibriSpeech [41] Used ASR to determine
works [20] CPC1 [42] the difficulty of under-
standing the presented
speech.
(Zezario, 2022) [47] MOSA-Net [48] 0.65 No CPCl1 [42] Trained a multi-branch
WavLM [49] speech intelligibility
prediction to convert
features extracted by
WavLM to SI score.
(Kamo, 2022) [50] CNN 0.60 Yes LibriSpeech [41] Ensemble of 10 neural
Conformer [51] CPC1 [42] network models. Used
Conformer model to
fuse different extracted
features.
(RoBbach, 2022) [52] LEAP [53] 0.54 No CPCI1 [42] Adopted LEAP [53] for

Time delay neural net-
works [20]

MFCCs [17]

HMM [16]

8k hours of in-house
German dataset.

people with hearing loss.
And created a mapping
from the model output to
the SI score.

SI: Speech Intelligibility,
tional Neural Network

MFCC: Mel-Frequency Cepstrum Coefficients, HMM: Hidden Markov model, CNN: Convolu-

TABLE V
THIS TABLE SUMMARISES PAPERS IN THE SECOND CLARITY CHALLENGE

Paper

ML Model’s features

Method’ bias (Correla-
tion)

Intrusive

Training Data

Conclusion

(Cuervo, 2023) [54]

Whisper [55]
WavLM [49]
Transformers [40]

0.78

No

CPC2 [56]

Used pretrained
foundation models
to  extract features
from speech and used
transformers to combine
extracted features.

large

(Huckvale, 2023) [57]

Wav2Vec [58]

0.78

Yes

CPC2 [56] Cambridge
Read News [59]

Combined speech fea-
tures with the metadata
provided in the chal-
lenge using a neural net-
work model.

(Mogridge, 2023) [60]

Whisper [55]
Bi-LSTM [61]

0.77

No

CPC2 [56]

Used Whisper as an au-
dio feature extractor and
then an ensemble of two
Bi-LSTM models [61]
for making the predic-
tion.

(Tu, 2023) [62]

Transformers [40]

0.77

Intrusive and  Non-

intrusive

Simulated noisy Lib-
riSpeech [41]

Proposed a non-intrusive
system that converts en-
tropy to SI and an in-
trusive system that com-
pares the generated fea-
tures of reference and
enhanced signal.

(Zezario, 2023) [48]

Whisper [55]
CNN
Bi-LSTM [61]
Attention

0.76

CPC2 [56]

Used Whisper to extract
features from speech
and used a neural
network to  convert
features to SI.

SI: Speech Intelligibility,

Bi-LSTM: Bidirectional Long Short-term Memory, CNN: Convolutional Neural Network
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TABLE VI
THIS TABLE SUMMARISES THE PAPERS THAT USE ASR TO CONFIGURE HEARING AIDS.

(Fontan, 2020) [63]

(Gongalves, 2022) [64]

(Fontan, 2022) [65]

Participants’ hearing level

24 HI with HL <75 dB HL

12 HI

12 HI

Test environments

Soundproof room

Unknown

Unknown

ML Model’s features

SPHINX-3 [28]

ASR engine Julius 4.4.2 [66]

ASR engine Julius 4.4.2 [66]

MFCCs [19] GMM GMM
HMM [16] HMM [16] HMM [16]
ML Model’s metrics Logatoms: 87.4%, Words: 98.3%, | Unknown Unknown

Sentences: 90.8%

Method’ bias

ASR based configuration had a higher
intelligibility compared to CAM2
with p<0.001 and p=0.002 for words
and sentences. (98.25% compared to
96.5%).

ASR based configuration had a higher
speech pleasantness compared to
CAM2 with p<0.001 and p=0.002 for
words and sentences. ( 8.4 compared
to 7 out of 10).

98% ASR intangibility score for ASR
configured HA compared to 88% for
CAM2 (P=0.002).

92% ASR intangibility score for ASR
configured HA compared to 88% for
CAM2.

No improvement over [64].

Stimuli dataset

60 disyllabic nouns [31]. 40 sentences
from French hearing in noise test [32].

French disyllabic nouns [31].

French disyllabic nouns [31].

Training Data

31 hours of French radio broadcast
recording [37].

ESTER [67] and ESTER2 [37] ("100
hours French radio recording").

ESTER [67] and ESTER2 [37] ("100
hours French radio recording").

Test-Retest reliability of proposed | Unknown Pearson correlation of >0.95 for 12 | P-value=0.1 Based on two repetitions

method repetitions which shows a low test- | (i.e., no significant difference exists)
retest standard deviation.

Stimuli level 60 dB SPL 65 and 85 dB SPL 65 and 85 dB SPL

Configuration search algorithm

625 predetermined gain functions.

Three genetic algorithms [68]

The best search algorithm of [64].

Searched parameters

Insertion Gain

Insertion gains in five frequencies
(step size of 0.1 dB and + 10 dB to
the prescribed insertion gain).

Compression threshold (step size of 1
dB, range between 20 to 50 dB SPL).

Attack (100 to 500 ms) and release
(300 to 2000 ms) time with 10 ms
step size.

Conclusion

Used ASR to evaluate different con-
figurations of HA and find a better
optimisation for the prescribed HA.

Increased the search space for the
insertion gain by using genetic algo-
rithms.

Extended the work of [64] and opti-
mised attach and release time of their
HA prescription.

NH: Normal Hearing, HI: Hearing Impaired, dB HL: Decibels at Hearing Level, dB SPL: Decibels at Sound Pressure Level, MFCC: Mel-Frequency

Cepstrum Coefficients, HMM: Hidden Markov Model, DNN: Deep Neural Network, GMM: Gaussian mixture model
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