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ABSTRACT

The excellent text-to-image synthesis capability of diffusion
models has driven progress in synthesizing coherent visual
stories. The current state-of-the-art method combines the fea-
tures of historical captions, historical frames, and the current
captions as conditions for generating the current frame. How-
ever, this method treats each historical frame and caption as
the same contribution. It connects them in order with equal
weights, ignoring that not all historical conditions are asso-
ciated with the generation of the current frame. To address
this issue, we propose Causal-Story. This model incorporates
a local causal attention mechanism that considers the causal
relationship between previous captions, frames, and current
captions. By assigning weights based on this relationship,
Causal-Story generates the current frame, thereby improving
the global consistency of story generation. We evaluated our
model on the PororoSV and FlintstonesSV datasets and ob-
tained state-of-the-art FID scores, and the generated frames
also demonstrate better storytelling in visuals.

Index Terms— Training, Image synthesis, Diffusion
model, Story visualization, Multi-modalities

1. INTRODUCTION

Generating coherent visual narratives from natural language
descriptions is a challenging task. It has far-reaching appli-
cations in fields such as story visualization, action prediction,
and anime storyboard creation.

Story visualization[1] and story continuing[2] present a
formidable challenge, necessitating the integration of con-
textual textual characteristics and historical frame details to
yield convincing and coherent storylines with apt scene back-
grounds and visual elements. In coherent story synthesis,
many parts are not covered by the caption of the current
frame, such as objects, characters, actions, or backgrounds.
This information may be contained in the description of sev-
eral previous frames or included in the image features of the
previous frames. For example, “Loppy notice something.
The woods are covered with snow.” is the caption of the first
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#1 Loopy and Eddy are laughing at him. 

They are in Poby's house. 

#5 Pororo moves on, leaving Poby behind, 

while Poby got upset. They are in Poby's 

place.

# 2 Pororo makes a cool move with the 

basketball. Loopy and Eddy, witnessing 

this, are impressed by Pororo's basketball 

skill. They are in Poby's house.

#3 Pororo is apologizing to Poby. Both of 

them are in Poby's house.

#4 Poby is saying to Pororo that it is okay. 

They are in Poby's house.

Previous Captions

Current Caption

Previous

Frames

Current

Frame

Fig. 1. An example of a story in PororoSV with five frames
and captions. The green number indicates a dependency re-
lationship between the previous frame and the current frame
to be generated, while the red number indicates that it is not
related to the generation of the current frame.

frame. Moreover, “Loppy explains what happened to Pororo’s
Flower” is the caption of the second frame. Even though the
environment is not described in the second caption, we know
that the background of the second frame should include the
woods covered with snow from the caption of the first frame.

Previous work [3, 1, 4, 5, 6, 7, 8] mainly relied on
Generative Adversarial Networks(GANs)[9], autoregressive
models[10], and used contextual text encoders to improve
consistency. However, these methods still need to improve
in generating image quality and consistency. Maharana et
al.[2] propose a new task setup for story continuation, us-
ing the first image as a condition. They fine-tune the large
model DALL-E [11] for the story visualization, which they
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call StoryDALL-E.
AR-LDM[12] is a visual story generation model that

builds upon the foundation of [13] by incorporating Stable
Diffusion[14], which has enabled it to achieve the state-of-
the-art FID score on benchmark datasets. Within the latent
space, AR-LDM encodes the previous text-image context as
a series of additional conditions[15], in accordance with the
chain rule. The UNet[16] decoder processes these additional
conditions to produce the corresponding image. One limita-
tion of this approach is that it flattens all previous text-image
pairs of the same story as conditioning memories, neglecting
the fact that not all characters and scenes in the narrative are
linearly connected.

Fig.1 illustrates that the generation of the fifth frame is
predominantly influenced by the captions of the third and
fourth frames, with no discernible correlation to the caption
of the first frame. In contrast, the features extracted from
the first frame may potentially impede the accurate gener-
ation of the fifth frame. We can measure their connection
by the causal relationship between the corresponding textual
captions of each frame.

We improved the model’s attention mechanism, training,
and sampling speed based on AR-LDM[12]. Specifically, we
make the following contributions:

1. We designed a local causal attention mask combined
with latent diffusion to improve the model’s judgment
of contextual causal relationships.

2. We propose a lightweight adapter for efficient param-
eter tuning, which effectively reduces the training bur-
den while ensuring training effectiveness.

3. Quantitatively, we have achieved very competitive re-
sults on the PororoSV and FlintstonesSV test sets.
Moreover, the training and inference speed has been
improved under the same parameter.

2. METHOD

In this section, we first formulate the probabilistic model of
latent forward and reverse diffusion processes for consecutive
story generation from text descriptions in2.1. We then elabo-
rate on the principles and mathematical expressions of causal
attention mechanisms in 2.2. Finally, we introduce an adapter
for efficient parameter tuning and the process of model train-
ing and inference in 2.3 and 2.4. Fig.2 illustrates the entire
architecture.

2.1. Diffusion Processes

The denoising diffusion probability model [17] consists of a
forward process and a reverse process. The forward diffusion
process converts the original highly structured and semanti-
cally related key point distribution into a Gaussian noise dis-
tribution. In the reverse process, the diffusion model learns

the required data samples from noise through the UNet[16]
structure. The latent space diffusion model[14] utilizes a pre-
trained autoencoder (including an encoder E and a decoder D
) to perform the forward and reverse processes of the denois-
ing diffusion probability model in the latent space.

The forward diffusion process converts the original highly
structured and semantically relevant key points distribution
into a Gaussian noise distribution. In particular, x in this pa-
per denotes latent representations instead of pixels.

The reverse process of diffusion models is learning the de-
sired data samples from the noise through a UNet[16] struc-
ture. In the reverse process, we sample from a Gaussian noise
distribution p(xt). In latent space, the text description is en-
coded into a latent variable z, and θ are the parameters of the
denoising process. The reverse diffusion process can be writ-
ten as follows:

pθ (xt−1 | xt, z) = N (xt−1 | µθ (xt, t, z) , βtI) (1)

where pθ (xt−1 | xt, z) represents the reverse transitional
probability of key points from one step to the previous step,
µθ (xt, t, z) is the target we want to estimate by a neural net-
work. t is the timestep indicating where the denoising process
has been conducted, which is encoded as a vector based on
the cosine schedule[18].

2.2. Local Causal Attention Mask (LCAM)

To generate consecutive frames similar to stories, we not only
need to consider the characteristics of the current caption but
also the images generated in the previous frame and their cor-
responding captions. The key to designing a powerful story
synthesis model is to enable it to understand the causal re-
lationship between historical captions, frames, and the cur-
rent caption. We propose a local causal attention mechanism
in the model, which enables the model to combine previous
captions and frames better to generate the current frame while
eliminating confusion effects through a local causal attention
mask(LCAM).

The AR-LDM[12] utilizes an N-to-N self-attention mod-
ule to uniformly flatten all historical captions and frames into
conditional memory using a chain rule, thereby improving the
coherence of story generation. However, in the process of
story visualization, not all previous frames and captions are
related to the generation of the current frame, and longer his-
torical captions often interfere with each other, ultimately re-
ducing the quality of the current frame generation. According
to this conjecture, longer token captions tend to disturb each
other because of the confused attention across frames. To al-
leviate this problem, we propose introducing a local causal
masking mechanism so that the learned causal attention mod-
ule can better adapt to the cases involved in coherent story
synthesis with long and complex captions.

We define L as the length of certain story, let C =
[c1, c2..., cL] represent the captions of frames, and F =
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Fig. 2. Model architecture of Causal-Story. Our model is inspired by [12]. The solid line box represents the overall structure
of the denoising U-Net section of stable diffusion model, while the dashed line box introduces the specific composition of key
modules. The green dashed box displays the location of the local causal attention module and adapter, while the gray dashed
box displays the details of the local causal attention module.

[f1, f2, ..., fL] indicate the frames to be generated. Each cap-
tion ct is corresponding to a frame ft ∈ RC×H×W , which
t ∈ (1, L). The encoded features that combine both text
and image modalities from previous captions and generated
frames can be defined as m<t

m<t =

t−1∑
n=1

BLIP (cn, fn) (2)

where BLIP[19] is pre-trained using vision-language un-
derstanding and generation tasks with large-scale, filtered,
and clean web data. We adopt the causal attention mask strat-
egy to achieve this, the attention CAt of an input feature mt

is calculated via

CAt = Attention (Qt,Kt,Vt) = softmax
(

QtK
⊤
t√

d
+M

)
Vt (3)

where Qt,Kt,Vt are linearly projected features from m<t,
d denotes the head dimension, and M is a lower triangular
matrix ( if i > j, Mi,j = 0 else Mi,j = −∞) during training.

For coherent story synthesis during inference, the mask
is modified to ensure the present token is only affected by
the previous tokens with size LM . We can consider LM as
the size of maximum temporal receptive field. With the help
of the causal attention mask, the self-attention layers can be
aware of different lengths of tokens, making the causal re-
ceptive field adjustable. It can thus effectively mitigate the
quality degradation and temporal inconsistency problem for
coherent story synthesis.

Moreover, the proposal of the causal attention mask not
only improves the cross-frame coherence and the quality of
image generation in the continuation and visualization tasks
of story visualization but also allows the model to ignore pre-
vious parts unrelated to the current frame generation, thereby
improving training speed. Specifically, we compared it with
AR-LDM in Experiments 3.2.

2.3. Parameter-Efficient Tuning Utilizing Adapter

Training Causal-Story from scratch can often be expensive
in terms of time and computational resources. To overcome
this, we propose an adapter, which is a lightweight module
that can fine-tune a pre-trained model with less data. Rather
than learning new generative abilities, the module learns the
mapping from control information to internal knowledge in
Causal-Story. This approach can help achieve efficient pa-
rameter tuning without the need for full training.

2.4. Training Processes

In the training process, we maximize the log-likelihood[20]
of the model prediction distribution under the actual data dis-
tribution to obtain µθ. The training loss can be expressed as
the cross entropy of pθ(x0) optimized under x0 ∼ q (x0).

L = Eq(x0) [− log pθ (x0)] (4)

We can use variational lower bound to approximate the in-
tractable marginal likelihood

Eq(x0) [− log pθ (x0)] ≤ Eq(x0:T )

[
− log pθ(x0:T ,z)

q(x1:T ,z|x0)

]
(5)

The objective of this process is similar to DDPM[17] except
for including text embedding z. The simplified training loss
can be written as a denoising objective:

L = Ex0,ϵ∼N (0,1),t

[
∥ϵ− ϵθ (xt, t)∥2

]
(6)

where ϵ is the noise sampled from standard Gaussian distri-
bution, ϵθ (xt, t) is the output of the noise prediction model.

During inference, [21] presents classifier-free guidance to
obtain more relevant generation results while decreasing sam-
ple diversity in diffusion models:

ϵ̂ = w · ϵθ (xt, φ, t)− (w − 1) · ϵθ (xt, t) (7)

where w is the guidance scale, φ denotes the condition.
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Loopy and Poby is in Pororo's wooden house. Loopy is asking Poby what did Poby do.

Poby is scratching the back of his head using his right hand and waving his left hand at the 

sametime. Poby is saying that Poby did nothing.

Pororo and eddy are sitting near the blocks. Pororo is mumbling.

Poby and Eddy are sitting near the blocks. Pororo is notifying that it is Poby's turn to build 

theblocks. Pororo and Eddy smile with gesfures.

Poby is sitting in Pororo's wooden house, Poby stops scratching his head and answering to 

Pororo.
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Fig. 3. Example of generated images from previous model
StoryDALL-E, AR-LDM and our model

3. EXPERIMENTS

In section 3.1, we introduced the dataset and our experimen-
tal setup. Subsequently, we conducted a comparison of our
model and the state-of-the-art technique, considering multiple
aspects. In section 3.2, we performed ablation experiments to
evaluate the individual advantages of each proposed architec-
ture component.

3.1. Comparison with the State of the Arts

Our study involved conducting experiments on two tasks:
story visualization and story continuation. Story visualiza-
tion involves generating a sequence of images that corre-
sponds to a sequence of captions forming a narrative. On
the other hand, story continuation is a variant of story visu-
alization that involves using an initial ground truth image as
input.PororoSV[1] and FlintstonesSV[22] Dataset is used in
our experiments.

We evaluated the performance of Causal-Story in terms of
story visualization and continuation. FID score is a measure
of the distance between the distributions of real and generated
images. A lower FID score indicates higher synthesis quality.
As depicted in Table 1, Causal-Story achieved a series of new
state-of-the-art FID scores on PororoSV and FlintstonesSV
datasets.

In addition, we show an example on the PororoSV dataset
in Fig. 3. We can observe that our model is able to maintain
text-image alignment and consistency across images. Com-
pared to StoryDALL-E, our model and AR-LDM have signif-
icantly improved the quality of generated images. Compared

Table 1. Results on the test sets of PororoSV and Flint-
stonesSV datasets from various models.

Task Story Visualization Story Continuation

Model PororoSv PororoSv FlintstonesSV
StoryGAN[1] 158.06 - -
CP-CSV[23] 149.29 - -

DUCO-StoryGAN[6] 96.51 - -
VLC-StoryGAN[4] 84.96 - -

StoryGANc[2] - 74.63 90.29
VP-CSV[3] 56.08 - -

StoryDALL·E [2] 65.61 25.9 26.49
AR-LDM [12] 16.89 17.40 19.38

Causal-Story(ours) 16.28 16.98 19.03

to AR-LDM, our model can better understand text’s seman-
tic information and logical relationships. For the first frame
generation, AR-LDM mistakenly understood the “Pororo’s
house” in the caption. In the generation of the fourth frame,
AR-LDM ignored the character “Poby” mentioned in the cap-
tion. For the generation of the fifth frame, AR-LDM focused
on the exterior image of the “Pororo’s wooden house” while
ignoring the core semantics of captions.

3.2. Ablation Studies

In order to analyze the proposed local causal attention and the
adapter mechanism, we conducted two ablation studies in this
section. Table 1 shows that our model with local causal at-
tention can achieve better FID scores compared to AR-LDM.
Meanwhile, according to Fig.3, Causal-Story can better learn
causal relationships between contexts and is not affected by
irrelevant captions. Furthermore, Table 2 showcases the im-
provement in model training and sampling speed with the in-
clusion of the adapter.

Table 2. Comparison of Training and Sampling Speeds
Train(50 epochs) Sample

AR-LDM 71h 43m 54s 59h 04m 32s
Causal-Story 65h 31m 38s 58h 27m 21s

4. CONCLUSION

Our work applies latent diffusion models to generate coher-
ent images based on textual descriptions. We have designed
a local causal attention module that allows the model to learn
the causal logical connections between the previous and cur-
rent frames and captions. We evaluated FID Score on the
PororoSV and FlintstonesSV datasets. Researching the vi-
sualization results, the coherent story visualization generated
by Causal-Story performs well in terms of coherence and im-
age quality. We also found that our method can perform faster
training and sampling compared to previous methods with the
same number of parameters.
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