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Brain activity is characterized by brainwide spatiotemporal patterns that emerge from synapse-mediated
interactions between individual neurons. Calcium imaging provides access to in vivo recordings of whole-
brain activity at single-neuron resolution and, therefore, allows the study of how large-scale brain dynamics
emerge from local activity. In this study, we use a statistical mechanics approach—the pairwise maximum
entropy model—to infer microscopic network features from collective patterns of activity in the larval
zebrafish brain and relate these features to the emergence of observed whole-brain dynamics. Our findings
indicate that the pairwise interactions between neural populations and their intrinsic activity states are
sufficient to explain observed whole-brain dynamics. In fact, the pairwise relationships between neuronal
populations estimated with the maximum entropy model strongly correspond to observed structural
connectivity patterns. Model simulations also demonstrated how tuning pairwise neuronal interactions
drives transitions between observed physiological regimes and pathologically hyperexcitable whole-brain
regimes. Finally, we use virtual resection to identify the brain structures that are important for maintaining
the brain in a physiological dynamic regime. Together, our results indicate that whole-brain activity
emerges from a complex dynamical system that transitions between basins of attraction whose strength and
topology depend on the connectivity between brain areas.
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I. INTRODUCTION

Macroscopic dynamics emerge out of interactions
between system components at the microscale. In the
brain, neuronal action potentials are caused by the interplay

between ionic conductances and membrane channel pro-
teins [1], while neuronal network dynamics emerge from
the synaptic connections formed between constituent neu-
rons and their intrinsic activity [2]. At the largest scales,
fluctuations in whole-brain dynamics might be driven by a
diversity ofmolecular and neuronal behaviors at fine-grained
scales. However, as in many physical systems, much of this
microscale complexity will have a negligible influence over
the macroscale properties of the system and, therefore, may
be ignored when considering macroscopic brain dynamics.
Investigating which microscale properties constrain macro-
scale brain dynamics is fundamental to understanding brain
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function, as macroscopic network dynamics are strongly
linked to behavior and cognition [3–6].
To bridge the gap between the microscale and macro-

scale, we require models that can reproduce observed
microscopic details while making minimal assumptions
about the rest of the system. In other words, we require
the maximum entropy model (MEM) consistent with the
observed microscopic properties [7]. Here, we seek to
understand whether collective patterns of neural activity
can be viewed as emerging from the network of pairwise
correlations between neuronal populations. To answer this
question, we employ the pairwise MEM, which is tuned to
match the observed average activities and pairwise corre-
lations in neural activity, but remains explicitly agnostic
to higher-order relationships [8]. From these microscopic
details, the resulting model predicts the distribution over
macroscopic states of collective neural activity. In this way,
the pairwise MEM allows us to understand whether and to
what extent macroscopic properties can arise from simple
pairwise relationships at the microscale. Furthermore, once
a pairwise MEM has been constructed, it can be used to
make direct analogies to statistical physics, by constructing
an energy landscape that defines the attractor states of the
collective neural dynamics [9].
Several studies have demonstrated the utility of maxi-

mum entropy approaches in explaining brain activity in
small neuronal populations, recorded from salamander
retina [8,10], rat prefrontal cortex [11], and cat parietal
cortex [12]. However, it remains unclear whether such
minimal-assumption approaches may also be applied to
entire brain network dynamics. Recent advancements in
human whole-brain neuroimaging and large-scale compu-
tational models have identified key relationships between
microscale and macroscale dynamics in the brain—
indicating roles for local inhibition in shaping macroscopic
functional connectivity [13], neurotransmitter dynamics in
driving emergent whole-brain states [14], and neuronal
population parameter shifts in causing pathological macro-
scopic brain states during seizures [15,16]. However, data
derived from such whole-brain imaging approaches are
typically recorded at poor spatial resolutions, such that
neuronal activity is coarse grained into units consisting
of millions of neurons, and such recordings are insensitive
to the heterogeneity of microscale activity [17]. Therefore,
to accurately test whether MEM is a valid model of
macroscopic brain dynamics, we require techniques that
enable whole-brain recordings with microscopic resolution.
Here, we take advantage of the larval zebrafish, which
has an optically accessible nervous system enabling the
recording of single-neuron activity across the entire brain
[18], making it ideal for the interrogation of multiscale
brain dynamics [19]. Interestingly, microscale neuronal
connectivity has been shown to regulate global brain
states [20,21], and when dysregulated, can drive macro-
scopic brain dysfunction [22]. Therefore, probing

microscale-macroscale relationships through MEMs using
the larval zebrafish can provide mechanistic insight into the
origins of brainwide dynamics in health and disease.
Here, we estimate the pairwise interactions between

neural populations at different scales to understand the
role of microscopic neuronal dynamics in shaping func-
tional and pathological macroscopic brain states. To do this,
we studied resting state whole brain dynamics recorded
from 11 zebrafish larvae (≈84 minutes of concatenated
time series) [23]. We used spatial and functional clustering
to identify functional populations of neurons at different
scales whose pairwise interactions best explained macro-
scopic brain activity. Our results demonstrate that sponta-
neous patterns of whole brain activity at larger scales
(i.e., 12 regions) can be modeled as a stochastic process
dictated only by cluster activation propensity and inter-
cluster connectivity patterns. Moreover, we show that the
estimated pairwise (i.e., second-order) model parameters
echo the structural connectivity that has been reported
between macroscopic brain areas. By reconstructing the
basins of attraction between different states in the model,
we can explain the state transition patterns observed in
macroscopic brain data, thus demonstrating how low-order
interactions between coarse clusters drive macroscopic
brain dynamics. Finally, we present a numerical simulation
to demonstrate that tuning the temperature parameter of
the model drives the dynamics from a critical to a hyper-
synchronous regime, resembling the transition to patho-
logical hypersynchronous activity seen, for example, in
epileptic seizures, thus predicting emergent brain dysfunc-
tion from pairwise coupling changes at lower scales. Our
results suggest that a simple brain model based on the
probabilistic interactions between regions governed by the
strength of the connectivity patterns can mechanistically
explain and predict emergent functional and pathological
activity across the whole brain.

II. RESULTS

A. Dimensionality reduction and functional
neuronal clusters

Dimensionality reduction on high-dimensional neuro-
imaging datasets is commonly performed before
fitting to a pairwise maximum entropy model for
several reasons (see, e.g., Refs. [8,24,25]). First, fitting
MEMs to high-dimensional datasets can be computa-
tionally expensive, making dimensionality reduction a
necessary first step. Second, dimensionality reduction
helps to identify and preserve the most relevant features
in the dataset, uncovering patterns and relationships in
the data that might not be immediately apparent in
high-dimensional spaces. In this way, dimensionality
reduction can provide insights into the relevant scales
in the system’s dynamics, leading to more interpretable
models and results.
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We identify the neurons that are functionally correlated
and, therefore, may belong to a cluster via a two-step
process. First, we realign all brains to the larval zebrafish
Z-brain template atlas [26] and concatenate neurons from
all larvae in three-dimensional space. Next, we used
k-means clustering to identify 1000 anatomical regions
of interest (ROIs) based on neurons’ spatial proximity
[Fig. 1(a)]. Second, we used the covariance matrix of
anatomical ROIs’ average calcium traces to identify the
hierarchical functional clusters at different resolutions. We
present the identified large-scale functional clusters for
N ¼ 12 in Fig. 1(d) and the number of cells per cluster
distributions in Fig. 1 of Supplemental Material (SM) [27].
Additional clustering analyses reveal an optimal number of
clusters at N ¼ 2 and no clear optimal number at higher
resolutions (for more details, see SM Fig. 2).

B. Pairwise MEM interaction weights echo the
underlying structural connectivity

As outlined above, pairwise MEM is defined solely by
the average activities of different brain regions and their
functional correlations. From these microscopic details, the
pairwise MEM then makes the maximally unbiased pre-
dictions for the probabilities of collective states of activity
of the entire system without any additional constraints.
Specifically, we treat the activity of each region as a binary
variable, either “on” (σi ¼ þ1) or “off” (σi ¼ −1), such
that the collective activity of all regions is defined by the
vector σ. We seek the distribution PðσÞ over collective
activity patterns that is consistent with the observed
individual activation rates hσii and the pairwise correlations
hσiσji, but otherwise has maximum entropy. This is the
pairwise MEM:

FIG. 1. Coarse-grained functional clustering of individual neurons recorded across the zebrafish brain. (a) Workflow illustration: (top)
neuron positions across multiple fish are coregistered to standard space, (middle) neurons are allocated to 1000 k-means clusters based
on xyz-cell position in standard space, (bottom) spatial clusters of neurons are assigned a smaller number of functional clusters based on
clustering of their covariance. (b) Horizontal sections through the zebrafish brain in the standard atlas space. (c) Spatial cluster
assignments of individual neurons. (d) Functional cluster assignment of individual neurons. (e) AUC values for detection of structural
edges based on Jij matrix estimated based on clusters of different sizes and at different binarization thresholds of average cluster
activations. The white asterisk marker shows the highest AUC value. (f) ROC for detecting structural edges (i.e., fiber count between
clusters) for different structural edge thresholds [defined in relation to the standard deviation (STD) of all edges].
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PðσÞ ¼ 1
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where Z is the normalizing partition function, and the
parameters hi and Jij represent the activation biases of
individual regions and the pairwise couplings between
regions, respectively (see Sec. IV for more details).
Importantly, the parameters hi and Jij are tuned such that
the model matches the microscopic statistics hσii and
hσiσji observed in the real system.
We hypothesize that the estimated Jij, which captures the

functional interactions between regions in the model,
would show high similarity to the anatomical axonal
(i.e., fiber count) connectivity between regions. As antici-
pated, a significant correlation was discovered between the
estimated Jij values and the strengths of structural con-
nections (see SM Fig. 3 [27]). Likewise, the strength of the
estimated functional interactions Jij could reliably predict
the presence of anatomical connectivity (i.e., binarized
structural connectivity) between clusters, as indicated by
high area under the curve (AUC) values of the receiver
operating characteristic (ROC) curves [Fig. 1(e)]. We
utilize the AUC of the ROC as a measure for the
performance of binary classification of structural connec-
tivity edges as present or absent based on Jij edge weights
across a range of binarization thresholds. Here, we show
the binarization threshold (30% of maximum fiber count
between clusters) that leads to the highest AUC values. We
present similar results with different binarization thresholds
in SM Fig. 4.
We can leverage this relationship between the inferred

functional interactions Jij and ground-truth structural con-
nectivity to find the topological scale (i.e., clustering
resolution) that maximizes this structure-function coupling.
Although the small number of clusters (e.g., 5–7) yields
the highest similarity between the structural connectivity
and Jij matrices, several clusters are spatially disjointed
and scattered in both the anterior and posterior regions of
the brain [see SM Fig. 3(e) [27] ]. The next topological
scale with high correlations (SM Fig. 3) and AUC values
[Fig. 1(e)] is at N ¼ 12 clusters (at the on state threshold
of z ¼ 1 for z-scored cluster activation time series), which
will be used for the remainder of the analyses presented
here. We also found converging results (see SM Figs. 3
and 5) for larger numbers of clusters (N > 15) with the
MEM estimated using the pseudo-likelihood maximization
method (see Sec. IV for more details).
In contrast to clustering with fewer but more distributed

individual clusters, the N ¼ 12 resolution does not exhibit
anterior or posterior scattered clusters. Instead, the identi-
fied clusters are local and largely contiguous, as demon-
strated in SM Fig. 3(e) [27]. Based on our hypothesis that
the long-distance functional relationships between neuronal
populations rely on the underlying anatomical connections

between regions, we investigate the system’s behavior at
N ¼ 12 clusters [as depicted in Fig. 1(d)]. This topological
scale maximizes the structure-function coupling and results
in clusters characterized by local, contiguous populations
scattered across the brain.

C. Pairwise MEM accurately predicts the probabilities
of large-scale activation patterns

We hypothesize that the spontaneous activity of large-
scale networks can be described as a stochastic process
constrained by the activation rates of individual neuronal
clusters and the strength of the functional connectivity
between them. To test this hypothesis, we fit the pairwise
MEM to the binarized patterns of collective cluster activity.
See Sec. IV for details regarding the pairwise MEM model
and parameter estimation. Our results demonstrate that the
pairwise MEM accurately predicts the probabilities of
commonly observed states [Fig. 2(a)]. Prediction accuracy
is overall lower for states with low probability but is robust
against inherent noise in the data [Figs. 2(b)–2(d)]. To
model whole-brain state transitions with data that are
feasible to record empirically, there is a trade-off:
Recording length limits the amount of time the brain is
captured, particularly in rare states, resulting in noisier

FIG. 2. MEM predicts whole-brain activation patterns. (a) Pair-
wise MEM-estimated and empirical probability of all states.
Colors represent the number of active clusters. (b)–(d) Robustness
of fit against noise within the data. Full datasets are randomly
split into equally sized samples A and B. Correlation of sample A
and B estimates of (b) Jij (linear fit, p value ≈ 0, R2 ¼ 0.95),
(c) h (linear fit p value ¼ 6.4 × 10−6, R2 ¼ 0.81), and (d) the
probabilities of all states (linear fit, p value ≈ 0, R2 ¼ 0.93) are
shown. Shaded areas show the confidence interval of the linear fit
of the between-split correlation, which does not deviate signifi-
cantly from the identity line.
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estimates of state transition probabilities for high-
dimensional state spaces.
We observe that the pairwise MEM offers a statistically

supported model of observed activity, as it accounts
for ≈84% of the multi-information that the first-order
(i.e., independent) model does not capture. In SM Fig. 6,
we show the goodness of fit of the model monotonically
decreases by increasing the number of clusters [27].
Increasing the activation binarization threshold similarly
lowers the goodness of fit at the smaller number of clusters.
However, this relationship gradually reverses toward larger
numbers of clusters (N > 13). In Sec. IV, we discuss the
model’s goodness of fit in detail. Together, these results
suggest that the pairwise MEM accurately describes the
probability of the spontaneous large-scale activation pat-
terns in the zebrafish brain.

D. Stochastic transitions between attractor basins
of neural states

Next, we set out to understand the constraints that define
transitions between macroscopic brain states, particularly
to understand if such transitions may be driven by a
stochastic process over the energy landscape as defined
by the MEM. Now that we have confirmed that the pairwise
MEM accurately describes the large-scale neural patterns,
we can use the model to explore the energy landscape over
neural states. We first identified the attractor states of
the estimated model by constructing a multidimensional
mesh of all states, which we refer to as the energy
landscape. In this landscape, neighboring activation states
differ only in the activity of a single cluster. We exhaus-
tively searched the energy landscape using a steep search
algorithm to identify the states that are local maxima of
the probability distribution (i.e., local minima of the
energy landscape). The local minima were defined as states
with higher probabilities than their neighboring states. To
identify the states that belong to the basin of each local
minimum, we found all neighboring states that transition
on a downward gradient toward the minimum [Figs. 3(a)
and 3(b); see Sec. IV].
In Fig. 3(c), we show the identified local minima for the

N ¼ 12 functional clusters and the empirical transition
frequency between their basins. Figure 3(c) shows the
transition frequency (i.e., the number of observed transi-
tions between basins) and Fig. 3(d) shows the transition
probabilities in and out of each basin (i.e., the number of
observed transitions from each basin into (out of) basin X
divided by the total number of transitions into (out of) basin
X). Figures 3(c) and 3(d) highlight the asymmetrical nature
of the empirical basin transitions. Our results also show an
exponential relationship between the size (the number
of basin states) and the dwell time of local minima
basins [Fig. 3(f)]. Note that the exponential fit in SM
Fig. 7 clearly demonstrates that the dwell of the larger
basins is exponentially higher than the small and less

probable basins [27]. These results demonstrate the sig-
nificant influence of high-probability local minima with
large basins of attraction. To determine if a stochastic
process can explain the patterns of state transitions over
the estimated energy landscape, we performed a random
walk process using the Markov chain Monte Carlo
(MCMC) algorithm (see Sec. IV). The results of the
MCMC simulations showed that in large-scale clusters,

FIG. 3. Attractor basins shape the energy landscape of whole-
brain activation patterns. (a) Cartoon representation of high-
dimensional energy landscape in which attractor states are
defined as local minima, with surrounding basins consisting of
brain states with transitions tending toward the attractor state.
(b) Representative attractor state (B) consisting of on-off patterns
across neuron clusters. (c) Empirically observed transition fre-
quencies between 11 attractor states (A–K) identified for N ¼ 12
clusters, with heterogeneous and asymmetric observed transition
frequencies, with most frequent transitions from and to the “all-
off” state A; thicker lines indicate a higher absolute number of
transitions observed. (d) Empirical transition probabilities be-
tween the 11 attractor states in (c); thicker lines indicate higher
transition probabilities from any one state, with the sum of all
outgoing arrows being equal to 1. (e) Basin size for 11 attractor
states. (f) Relationship between observed dwell times and the
basin size of each attractor state. (g) Relationship between
empirically observed transition frequencies and MCMC pre-
dicted transition frequencies based on the energy landscape.
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the frequency of transitions between the basins of the local
minima closely matched the empirical transition frequen-
cies [Fig. 3(g)]. This relationship was statistically signifi-
cant, with a linear regression p value of 4.6 × 10−70 and an
R2 value of 0.91. This indicates that macroscopic state
transitions are constrained by the topology of the energy
landscape, defined by the relative probabilities of neigh-
boring brain states.
To better understand how the topology of the energy

landscape contributes to the observed state transitions, we
also examined features of the attractor states and their
basins, such as the energy barrier between the local minima
and the basin’s size. Specifically, we first constructed the
disconnectivity graph that reveals the relationships between
the local minima across different energy levels (see SM
Fig. 8 [27]). The energy barrier between two local minima
is the difference between the local minima and saddle
states’ energy (i.e., the lowest energy level connecting two
local minima). Our results demonstrate that the energy
barriers between minima show a weak relationship with the
frequency of transitions between local minima basins, but
the linear fit is poor, and the overall correlation is low (see
SM Fig. 9).

E. Seizurelike transitions from disorder to order

Next, we utilized the MEM to study transitions between
physiological and pathological whole-brain states. For
example, epileptic seizures are characterized by paroxys-
mal transitions of macroscopic brain dynamics into an
abnormal dynamical regime [28]. These transitions are a
common feature of brain pathophysiology across species
[29,30], and represent a huge burden for patients [31]. To
study transitions between distinct dynamical states, such as
physiological brain activity and hypersynchronous activity
seen during epileptic seizures, we took advantage of the
characteristic phase transition in the pairwise MEM that
occurs between large-scale ordered and disordered states.
Such phase transitions are best described by the Ising
model, which is mathematically identical to the pairwise
MEM. This model was developed in statistical mechanics
to explain the transition between ferromagnetic and para-
magnetic states in magnetic materials by modeling the
interaction of atomic spins. Here, parallel spins have lower
energy than antiparallel spins, driving the tendency for
atoms to share the same spin, giving rise to large-scale
order and ferromagnetism. However, if the temperature in
the system is increased above the critical temperature Tc,
thermal fluctuations disrupt the neighboring spin correla-
tions, causing a disordered mixture of parallel and anti-
parallel spins, the paramagnetic phase. This sudden shift
from ferromagnetic to paramagnetic behavior with only
small changes around Tc is known as a phase transition.
Changes in the temperature parameter represent a global

manipulation of MEM behavior by influencing both Jij and
hi values, resulting in changes to the dynamics of the

system in relation to its phase transition. This has been
exploited in a number of previous studies, where changes in
the T parameter are employed to recapitulate dynamics
ranging from single neuron firing in the human brain to
social behavior across a group [32–41]. While the T
parameter does not identifiably map onto specific biologi-
cal aspects of synaptic function in our model organism,
changes in T can drive the system into and out of
seizurelike states similar to those observed with experi-
mental manipulations through, e.g., drugs that change
inhibitory synaptic coupling [Fig. 4(a)]. To validate this
assumption, we fitted a MEM to an unrelated dataset of
drug-induced seizures in the larval zebrafish brain [16] to
estimate the temperature parameter that best captures the
shift in brain dynamics from normal function to seizures
(see SM Fig. 10 [27]). Inducing this estimated temperature
shift as a single perturbation to the system generates
dynamics similar to those empirically observed, as dem-
onstrated in more detail in the SM [Figs. 10(b) and 10(c)].
This suggests that the temperature parameter is well suited
to capture key changes in brain dynamics during epileptic
seizures.
Here, we leverage the same principles to model tran-

sitions from physiological to pathological macroscopic
brain dynamics and to probe the microscopic interactions
from which they arise. Seizure transitions can be induced
by globally increasing the excitability of brain networks,
for example, through drugs blocking the inhibitory neuro-
transmitter GABA or enhancing excitatory transmission
through glutamate [42,43]. In the more abstract formu-
lation of pairwise MEM, we represent changes in effective
synaptic connectivity through changes in the temperature
parameter. In the pairwise MEM [Eq. (1)], the temperature
is usually set to T ¼ 1. However, by dividing the exponent
in Eq. (1) by T (see Sec. IV), the Ising model can simulate
and predict the effects of changing temperature on the
large-scale behavior of the system. Here, we modeled a
global increase in excitability by a decrease in the
temperature of the MEM [Fig. 4(b)]. Mathematically, as
the temperature increases, the probability distribution
becomes more spread out, allowing for a broader range
of energy states to be occupied. This increased spread in
energy states corresponds to increased randomness in the
system. By performing MCMC simulations under varying
values of T (binarization threshold z ¼ 0; see SM Fig. 11
for z ¼ 1 [27]), we demonstrate that reducing the system’s
temperature leads to a transition in the global order of the
neural activity [Fig. 4(b)]. Namely, the system transitions
from disordered activation patterns (i.e., zero mean acti-
vation) at higher temperatures (T > 1) to highly ordered,
hypersynchronous seizurelike states, marked by periods
of brainwide activation followed by brainwide inactivity
analogous to a postseizure state [44] [e.g., Fig. 4(b),
T ¼ 0.4]. This demonstrates that the empirically derived
MEM may be used to model pathological whole-brain

ROSCH, BURROWS, LYNN, and ASHOURVAN PHYS. REV. X 14, 031050 (2024)

031050-6



state transitions. It is important to note that the binariza-
tion method can significantly change the qualitative
behavior of the system. Figure 12(a) in SM shows how
the (−1 and 1) state definition does not result in bistability
at higher temperatures, and our choice of (0 and 1) in this
paper is influenced by this known phenomenon of pair-
wise MEM [45]. Next, we aimed to perturb empirically
derived MEM parameters to ascertain the contribution of

observed biological features in driving physiological-
pathological state transitions.

F. Regional contribution to critical dynamics

Since the intrinsic connectivity of brain structures is
heterogeneous, each region shapes global dynamics differ-
ently. For instance, one could hypothesize that densely

FIG. 4. Seizurelike transitions of global activity in the pairwise MEM. (a) Top: example time series of regionally averaged calcium
imaging during chemically induced seizures and baseline recordings; bottom: binarized empirically observed state transitions across 10
anatomically defined regions (see SM Fig. 10 for more details [27]). (b) Top: number of regions in the simulated states that are in an “on”
or active state, simulated using MCMC algorithm; bottom: the simulated state transitions at five different sample temperatures. Pink
indicates clusters in the “on” state, gray indicates clusters in the “off” state. (c),(d) The susceptibility (c) and the specific heat (d) curves
before (black) and after (color coded for each cluster) virtual resection. The insets show the change in the peak of the curves following
the resections. (e) Full width at half maximum (FWHM) values of the specific heat curves. (f) Postresection change in the critical
temperature Tc and the strength of the clusters’ functional connections (i.e., the sum of Jij rows). (g) Individual functional clusters,
projected across all z layers onto an xy zebrafish brain outline. (h) Postresection values of specific heat maximum mapped onto
individual neuron positions, plotted for a single z layer.
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connected brain regions with widely distributed connec-
tions play an important role in maintaining the system’s
dynamics poised between order and disorder, a regime
known as criticality. Interestingly, the critical regime may
be a favorable regime for brain dynamics [46,47], and brain
pathology might emerge as a loss of criticality [48].
Therefore, studying how different brain structures regulate
transitions about the critical regime can help us understand
how neuronal populations drive optimal and pathological
whole-brain regimes. The organizational role of different
brain regions can be examined empirically or in silico by
removing or ablating single regions and their connections,
and assessing changes in the macroscopic behavior of the
system. Here, we examine how removing individual
regions affects the transition between order and disorder
in the MEM. This approach allows us to quantify differ-
ential distributions of individual brain nodes to whole-brain
dynamics. While there are other important, quantifiable
network measures that may identify similar nodes as being
important [16,49], we focus on the simulation-based virtual
resections here specifically as current network-based
interventions—such as respective epilepsy surgery—could
be conceptualized in a similar framework.
To investigate the transition between order and disorder,

we study the specific heat of the system, which measures
the change in the average energy due to a slight change in
temperature (see Sec. IV). The temperature associated with
the peak specific heat [Fig. 4(d)] can be used to identify the
critical temperature Tc of a given system. When a region is
removed from the model, it no longer influences the rest
of the system. This can significantly affect specific heat
[Fig. 4(d)], depending on the nature of the interactions with
the removed region. For instance, if the interactions with
the removed region are strong, removing them effectively
reduces global connectivity, which is equivalent to an
apparent increase in the temperature of the system, shifting
the specific heat curve to the left [Fig. 4(d)]—resulting in
critical transitions being achieved at lower temperatures.
Figure 4(d) shows changes in the specific heat curves (and,
in turn, the critical temperature Tc) induced by removing
different regions. A decrease in the full width at half
maximum (FWHM) of the specific heat curve would
correspond to a sharpening of the specific heat curves
after resection [Fig. 4(e)]. This is seen only when removing
cluster 7, suggesting that this intervention makes the
transition sharper, with a smaller temperature window
for critical behavior. Cluster 7 corresponds to the dien-
cephalon, which contains the thalamus and hypothalamus,
among other regions, with known roles for homeostatic
regulation and sensorimotor integration. This finding indi-
cates that the connectivity of the diencephalon supports a
broad range of network states that reside in the vicinity of
the critical regime. The above-mentioned choice of remov-
ing the Jij elements to model the postrespective behavior of
the system is motivated by our results that Jij captures the

underlying structural connectivity, and we aimed to avoid
for regional resection to affect other pairwise structural
relationships. As seen in SMFig. 13, an alternative approach
of ignoring a single region (for example, the highly con-
nected cluster 7) and refitting the model results in an
artificial increase in a large number of Jij elements [27].
Interestingly, our results show that the specific heat

decreases and peaks at lower temperatures for all resections
compared with the full system. Therefore, the connections
provided by each region tend to push the system closer to
criticality compared to a system lacking this region, but
with all other parameters being equal (e.g., the same
connection weights between all other regions). However,
if the interactions with the removed region are weak (e.g.,
clusters 1 and 3), removing them might only have a
negligible effect on the system, resulting in a minor change
in the specific heat. In fact, we observed a close relationship
between the overall strength of a cluster’s functional
interactions and its postresection effect on the critical
temperature [Fig. 4(f)]. In SM Fig. 12, we provided the
resection results for the (−1 and 1) state definition [27].
Note that although there are some differences in the Δ Tc
and Δ specific heat, overall, the results are qualitatively
similar and highlight the same regions having the most
impact following the resection.
Removing a region from the model can also affect other

system properties, such as magnetization and susceptibility.
The susceptibility measures the change in the net mag-
netization (i.e., average activation across all regions) due to
small changes in the external field hi, which roughly
corresponds to regional excitability or activation propensity
(see Sec. IV). Susceptibility quantifies how much network
states change in response to external perturbations, which
in a brain may be related not only to the dynamic properties
but also to information transfer [50]. Therefore, network
alterations that significantly impact the susceptibility of a
brain network at a given temperature may significantly alter
the information processing properties. The postresection
susceptibility measures echo the specific heat results
[Fig. 4(c)] and identify similar region-specific effects.
Finally, we also explored the effect of increasing the cluster
activation binarization threshold on the above-mentioned
results. Figure 14 of SM shows that the resection of some of
the similar clusters, such as cluster 7, also results in the
biggest change in the susceptibility and specific heat curves
at higher binarization thresholds (e.g., z ¼ 1) [27].
Susceptibility and specific heat capture key relationships
between macroscopic network dynamics and stochasticity
in the system parametrized by the temperature. Here, we
use these measures to summarize the differences in
dynamic behaviors induced by modifications of the net-
work structure through the simulated virtual resections.
Some of these quantifiable features may be related to
functional properties of the resultant brain networks
[50,51], which in the future may be used to establish
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testable hypotheses regarding brain dysfunction from
simulations based on empirically derived MEMs as pre-
sented here. Taken together, these findings suggest regional
specificity in regulating whole-brain critical dynamics, with
hublike regions exhibiting particularly strong control over
the critical regime.

III. DISCUSSION

A. Capturing whole-brain dynamics
in the larval zebrafish brain through minimal

models of pairwise interactions

Neuronal systems display complex population dynamics
that unfold as observable patterns of whole-brain activity.
Whether these patterns emerge from simple pairwise
interactions between brain regions remains a central open
question. The pairwise MEM approach presented here
accounts for the observed covariance (i.e., functional
connectivity) between regions but remains explicitly agnos-
tic to all higher-order interactions. The MEM includes two
key terms: intrinsic neuronal activity (hi) and pairwise
interactions (Jij). Here, we show that the probabilities of
collective brain states can be described by pairwise MEM,
indicating that macroscopic features of neural activity can
arise from fine-scale interactions.
Tested in an empirical dataset with single-neuron reso-

lution, previous work in zebrafish had already demon-
strated that simple pairwise interactions between neuronal
ensembles could reproduce statistical characteristics of
whole-brain dynamics [20]. In the dataset presented
here, we aimed to predict the probabilities of specific
whole-brain states at coarse-grained scales. In finer-scale,
higher-dimensional data, the pairwise MEM fails to fit the
neuronal data accurately in our experiment and previous
reports [10,52]. This suggests that while microscopic
dynamics of individual neurons are difficult to predict
with sufficient accuracy at the whole-brain scale, their
coarse-grained activity can be characterized by the inter-
actions between neuronal populations or brain areas.
Including higher-order correlation to MEM models of

brain dynamics can yield overall improved model fits
[53,54], compared to the model presented here, and are
less easy to interpret against complementary measures of
pairwise neuronal connectivity. Some of the higher-order
interactions may represent specific synaptic and extra-
synaptic coupling mechanisms that are not well described
by pairwise interactions or capture nonlinear features of
regional interactions that are otherwise not well described
by the pairwise MEM model. However, with increasing
model parameters, the models may perform better on a
given dataset but may reduce in generaliability—i.e., they
may be overfitting. Here, we chose to focus on pairwise
interactions to test generalizability across datasets in
evaluating the relationship between the Jij matrix and
structural connectivity. Such a mapping between structural

connectivity and functional recordings becomes more
challenging at higher orders of interactions.
In addition to modeling the probabilities of individual

states, we also wanted to test whether the MEM can further
characterize dynamics such as the transition between brain
states. For this, we simulated brain activity sequences as a
random walk on the energy landscape between neighboring
brain states, as defined by the pairwise MEM. This
simulation predicts the dwell time in individual attractor
basins, as well as the frequency and probability of
transitions between basins, with high accuracy. This finding
suggests that resting state macroscopic brain state transi-
tions are a natural consequence of the energy landscape
over the states induced by the maximum entropy principle.
The optimum scale of coarse graining that allows for

both accurate predictions of brain state probabilities and
for the models to map onto known structural connectivity
patterns likely depends on the exact nature of the data.
MEM approaches have demonstrated excellent fits to
dynamics ranging from spiking behavior in neuronal
populations [55] to whole-brain functional MRI patterns
in the human brain [24]. The applicability of MEM
approaches across such diverse scales suggests that pair-
wise interactions underlie dynamics at multiple scales and
that the optimum scale for a given dataset can be identified
empirically through clustering or coarse graining.
While zebrafish larval imaging allows for unprecedented

insight into whole-brain dynamics, these are not fully
resolved at the microscale. Specifically, there is no one-
to-one mapping between neuronal firing rates and calcium
traces [56,57], and limitations of the methods may impair
recordings from certain brain regions or cell populations.
At the coarse-graining scale represented in our analyses,
these issues are less likely to significantly impact findings,
but in analyses aimed at single-cell resolution, these may
limit biological interpretation of the findings at the scale of
individual neuronal firing.
There is a tension here in our understanding of brain

dynamics: Simple models can comprehensively describe
large-scale brain activity patterns, yet neuronal assemblies
encode temporally and spatially precise information in
ways that can be modulated through the activity of only a
few isolated neurons [58]. Identifying how large-scale
patterns of whole-brain dynamics, as described here, shape
information processing and neuronal responses at the
microscale is a current research area of much interest,
and simple organisms whose neuronal activity can be
mapped across scales play an important role in further
exploring this relationship [59,60].

B. Macroscale pairwise interactions reveal
underlying structural connectivity

Neuronal activity and pairwise synaptic connectivity can
be measured in the larval zebrafish brain at single-cell
resolution, allowing unprecedented access to functional and
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structural connectivity at brainwide scales [23,61]. The
analysis presented here adds to existing evidence indicating
a strong correlation between structural measures of the
strength of physical synaptic interactions and functional
(i.e., model-derived) estimates of effective interactions.
This structure-function coupling has been reported across
diverse neuronal data recording modalities [24,25,62],
including calcium imaging in the larval zebrafish [20].
In our analysis, pairwise interactions between clusters of
neurons quantified in the Jij matrix closely resemble the
strength of pairwise interactions between regions as mea-
sured by axon count (i.e., the structural connectivity). This
effect is robust when modeling neuronal clusters spanning
orders of magnitude in size.
However, the model-based estimates of pairwise inter-

actions do not capture underlying structural connectivity
equally well across all parameter choices. Indeed, there
appears to be a characteristic scale, in terms of the number
of neural clusters, at which the effective MEM interactions
Jij performed best at identifying above-threshold structural
connections between brain regions: At the relatively coarse
scale of 12 clusters consisting of an average of 1623ð�392Þ
to 17740ð�3122Þ neurons each, the majority of large
between-region structural connections could be identified
from the MEM interactions Jij. There is, therefore, an
apparently closer structure-function coupling at coarser
scales of the analysis than at the neuronal level. This might
indicate that averaging over some microscale heterogeneity
at the neuronal level results in a mean-field approximation
of the structural connectivity, which constrains the coarse-
grained activity patterns accordingly.
Biologically, the majority of neuronal interactions are

mediated through direct neuron-to-neuron directed signal-
ing at the synapse [63]. However, other types of coupling—
including ephaptic transmission, extracellular fields,
metabolic regulation [64,65], and more complex patterns
of synaptic connections between three or more neurons—
may deviate from a simple pairwise model. Many of the
neuronal interactions that are not mediated through typical
pairwise synaptic coupling are highly local, affecting
mostly neighboring neurons rather than mediating fast,
between-region interactions [66]. Thus, coarse graining
single-cell data to functional clusters may separate pairwise
synaptic coupling that governs between-region connectiv-
ity from higher-order interactions that are subsumed in the
within-cluster average. Furthermore, while single-neuron
dynamics are highly nonlinear [67], coarse-grained brain
dynamics are well approximated by linear models [68]
suggesting that coarse graining may improve model per-
formance for models based on linearity assumptions.

C. States of global hypersynchrony can emerge
without coupling changes

Complex biological systems like the brain characteristi-
cally show emergent patterns of behavior that are shaped by

the function and dysfunction of its constituent parts.
Abstract physical models like the one presented here have
been useful in defining minimal sets of constraints under
which neuronal population activity patterns may emerge in
the zebrafish brain under specific conditions [69,70]. Such
emergent patterns can arise during physiological brain
function, e.g., during the transition between wakefulness
and slow wave sleep [71,72], or during epileptic seizures.
Epileptic seizures are characterized by hypersynchronous
neuronal firing that arises from a wide range of possible
neuronal or synaptic dysfunction [73]. Seizurelike patterns
have been demonstrated to emerge even in minimal Ising
models under certain conditions [74,75], and there is a
growing interest in how phenomenological descriptions of
seizure patterns may aid the understanding of which
pathophysiological mechanisms may be crucial in their
etiology [29]. Rapid physiological and pathological tran-
sitions between asynchronous and hypersynchronous brain
states occur without significant structural changes in
synaptic coupling and from apparently gradual transitions
in physiological parameters. We, therefore, aimed to test
with our modeling approach whether hypersynchronous
patterns can arise from gradual modulations of existing
between-region coupling parameters.
Using the MEM model, we can show that modulation

of intrinsic excitability (modeled here as a temperature
parameter T), without changes in between-node coupling
(i.e., without changes in the Jij matrix), can lead to a
sudden transition between asynchronous and hypersyn-
chronous states. Specifically, increasing the temperature in
the model flattens the probability distribution, effectively
reducing the influence of pairwise structure that favors
low energy states and increasing the randomness in the
activity patterns. These findings build on similar modeling
of sleep-wake transitions in human brain data [76].
Biological systems may demonstrate similar transitions
through diffusely distributed modulatory neurotransmis-
sion (e.g., through neuromodulators such as acetylcholine
and noradrenaline that play a significant role in sleep-wake
transitions).
Notably, the simulated activity patterns in the MEM-

derived model of zebrafish brain’s spontaneous activity do
not show a gradual transition from asynchronous to hyper-
synchronous activity but rather show a sudden transition
with the gradual change in the T parameter resulting in
significant changes of whole-brain activity patterns around
the transition region. In systems poised at the boundary
between these regimes, one would expect the system
behavior to be very sensitive to even small changes in
the T parameter. In fact, these findings provide evidence
of state transition dynamics during drug-induced seizures
in larval zebrafish, which demonstrate that over short
timescales, the dynamics can transition from critical to a
chaotic, supercritical regime [22]. Epileptic seizures are
classically considered to represent hypersynchronous
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activity with population-level neurophysiological signa-
tures suggestive of excessively ordered activity that is
synchronized across multiple brain regions. However, with
the advent of large-scale calcium imaging, this view has
been challenged, with many findings suggesting highly
variable or even chaotic patterns at the scale of single
neurons to occur during epileptic seizures [22,77,78].
Future work will have to address the appropriate scale
at which abnormal brain dynamics are best captured in
epileptic seizures in order to allow for the prediction of the
efficacy of different scale interventions.

D. Alterations affect the response to perturbation

Studying phase transitions and critical phenomena
in regular lattices has led to key insights in statistical
physics [79,80]. However, biological networks like the
brain have connectivity patterns that are unlike lattices.
These complex networks exhibit nonuniform connectivity
patterns, such as power-law degree distributions in scale-
free networks [81]. As a result, phase transitions and critical
phenomena in complex networks are significantly different
from those in regular lattices. The Ising model, in particu-
lar, exhibits anomalous phase transitions in complex scale-
free [79,82–85], modular [86–88], and core-periphery
networks [89].
For instance, unlike the first-order phase transitions of

lattice structures, random scale-free networks display a
second-order phase transition. In addition, the critical tem-
perature for the onset of ferromagnetic ordering depends on
the network’s degree distribution, which determines the
universality class of the phase transition [79]. Moreover,
modular structures in complex networks can give rise to
metastable phases in both the equilibrium and nonequili-
brium regimes, marked by the coherent alignment of
intracommunity spins and misaligned intercommunity
spins [86–88].
Consequently, modifying brain networks can have non-

trivial effects on overall dynamics. For example, removing
a single region from the zebrafish brain network can
drastically affect global dynamics. There is some previous
evidence that inferences on global network dynamic out-
comes can be drawn on virtual resection simulations.
For instance, densely connected regions tend to have an
outsized influence and their removal results in significant
changes in large-scale dynamics of the system as a whole
[90–92]. Moreover, resection analyses are starting to play a
role in cognitive models, allowing hypothesis generation
for processes such as language, attention, and memory [93].
Our methodological choice of removing Jij elements to
model a postresection system is motivated by our obser-
vation that Jij captures the underlying structural connec-
tivity between regions, and removing a single region should
not change the structural connectivity, and consequently,
Jij elements between remaining regions. Nevertheless,
future empirical work should verify our assumptions by

inferring and comparing the model parameters preablation
and postablation of a brain structure.
Similarly, resection analysis can also be used to study the

robustness and vulnerability of networks to perturbations
[94]. Here, we examined the transition between dynamic
regimes of the system toward globally hypersynchronous
states as a proxy for evaluating the resilience of an altered
system to pathological dynamics as seen, for example,
during epileptic seizures. Specifically, evaluating post
virtual resection networks for changes in sensitivity to
perturbation through specific heat and susceptibility mea-
sures reveals node-specific changes to whole-network
sensitivity to small perturbations following the removal
of single network nodes. In our model and previous
findings these node-specific effects seem to be mediated
through the nodes’ particular connectivity patterns [95,96].
It is critical to note that although the major functional hubs
are similarly identified in the alternative ð−1 1Þ state
definition, the choice of (0,1) in our work is based on
the superficial similarity of the qualitative bistable behavior
of the system at higher temperatures. Therefore, future
empirical work should verify our methodological choice
and demonstrate which state definitions result in more
accurate predictions of the postrespective system changes.
These findings highlight the importance of functional

hub brain regions in maintaining the overall function and
resilience of the zebrafish brain network. The approach
taken here allows us to demonstrate that the virtual
resection of functional clusters involving the optic tectum
has the largest impact on overall resultant network dynam-
ics, mirroring its essential role in guiding zebrafish larval
behavior. Previous studies have identified overlapping
regions as central hubs maintaining resting state dynamics,
with rich, effective connectivity to most other brain regions
[16]. Similar regions—that is, nodes involving the midbrain
and tectum—have already been implicated in epileptic
seizure generation through recordings of seizure activity in
zebrafish [16,49]. In future work, we are hoping to verify
our theoretical findings here with targeted experiments
altering network topology in the larval zebrafish brain. Our
framework now provides a modeling approach to infer
network structure and behavior from dynamic observations
of complex systems. Similar approaches in the future
may inform the development of targeted interventions in
complex networks, such as surgery or regional neuro-
modulations for neurological and psychiatric disorders,
such as epilepsy [90,97,98], or disorders of consciousness
[40,99,100]. In addition, our study demonstrates the use-
fulness of resection analysis in studying the functional
connectivity of complex networks, capable of providing
valuable and empirically verifiable predictions. These
results offer a phenomenological description of large-scale
epileptic seizures in a hugely simplified model in which
neurons have binary states and limited interaction. The
pathophysiology of epileptic seizures, even in simple
model organisms like the zebrafish, is likely to involve
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more complex alterations of normal brain function that are
not captured in the level of abstraction provided by the
current model. However, the simplified model presented
already recapitulates key aspects of seizurelike dynamics
and allows us to interrogate contributions of individual
brain regions and, through the virtual resection approach,
generate hypotheses for future empirical testing.

IV. MATERIALS AND METHODS

A. Datasets

In order to capture whole-brain activity at cellular
resolution in a vertebrate brain, we used resting state
whole-brain calcium imaging datasets recorded in larval
zebrafish at day six postfertilization using light sheet
imaging. Dataset acquisition is explained in detail in
Ref. [101] and was accessed through the public repository
[102]. Briefly, images were recorded using a light sheet
microscope at two volumes/second in transgenic larval
zebrafish expressing the genetically encoded calcium indi-
cator GCAMP6f pan-neuronally within the cell nucleus.
This approach allowed automatic cell detection [103],
resulting in approximately 80 000 individual neuron cal-
cium fluorescence traces per fish. For the analysis, we used
resting state segments, recording spontaneous activity under
homogeneous background illumination conditions without
changes in visual stimuli for approximately 5–8 minutes
recorded for 11 individual larvae. Individual zebrafish brains
were registered to an atlas template [104], and standardized
atlas-based locations are used for subsequent analyses.

B. Pairwise maximum entropy model

To bridge the gap betweenmicroscopic details andmacro-
scopic predictions about the likelihood of different neural
states, we employ a pairwise maximum entropy model. By
maximizing the entropy of the distribution over activity
states, we arrive at a prediction that is optimally unbiased,
given a set of microscopic details about the system. Here, we
constrain the average activities and pairwise correlations
between different brain regions, thus yielding the pairwise
MEM. To fit the pairwise MEM, we calibrate the external
fields hi and functional interactions Jij such that the model
matches the activation and coactivation rates observed in the
real system. From thesemicroscopic constraints, the pairwise
MEM makes large-scale predictions about the large-scale
zebrafish brain dynamics.
We applied dimensionality reduction to all fish datasets

using k-means clustering based on cell position. This process
resulted in the identification of 1000 clusters of neurons,
determined by their spatial proximity. Subsequently, these
spatial clusters were grouped into a smaller number of
functional clusters (ranging from 8–16, 32, 64, and 128)
by analyzing them based on their covariance. The covariance
between clusters was calculated from the average calcium
traces of all neurons within each cluster.

We analyzed 83 minutes of recordings from 11 zebra-
fish larvae. At each time point t, the activation state
of the system is defined by the binary vector σt ¼
½σt1; σt2;…; σtN �, where σti is the binarized average calcium
trace of cluster i at time t and N is the total number of
clusters. Specifically, σti ¼ 1 (−1) for activation above
(below) the z-scored average calcium time series at
various thresholds (Z ¼ 0, 0.5, 1, 1.5, 2). Calcium
fluorescence is a continuous measure of neuronal activity,
which is indirectly linked to neuronal firing rate and, at the
population level, is highly correlated with local field
potentials [105]. To model whole brain state transitions
with data that are feasible to record empirically, there is a
trade-off: Recording length limits the amount of time the
brain is captured, particularly in rare states, resulting in
noisier estimates of state transition probabilities for high-
dimensional state spaces. Based on previous work [24],
we elected to reduce the dimensionality of the data and
resultant states and binarize the time series as described
below. To obtain the empirical activation rate of cluster i,
we calculated the average of σti over all time slices. This is
represented as hσii ¼ ð1=TÞPτ

t¼1 σ
t
i, where τ is the

number of time slices. Similarly, the empirical correlation
between cluster i and j, denoted as hσiσji, is defined as the
average of the product of σti and σtj over all time slices,
which is calculated as ð1=τÞPτ

t¼1 σ
t
iσ

t
j.

The pairwise MEM is constrained such that the model
averages hσiim and hσiσjim match the empirical values of
hσii and hσiσji. The probability distribution over states that
satisfies these constraints and maximizes the entropy is the
Boltzmann distribution [7]:

PðσÞ ¼ 1

Z
e−EðσÞ; ð2Þ

where Z is the normalizing partition function, given by

Z ¼
X
σ

e−EðσÞ; ð3Þ

and EðσÞ is the energy of this state, given by

EðσÞ ¼ −
XN
i¼1

hiσi −
1

2

XN
i;j¼1

Jijσiσj: ð4Þ

The parameters hi represent the bias toward activation and
Jij represent the functional interaction between clusters i
and j. To fit the pairwise MEM, one adjusts the parameters
hi and Jij using a gradient descent algorithm [106] until
the empirical averages hσii and hσiσji match the model
averages.
The aforementioned methods are computationally expen-

sive when the dimensionality is higher than N ¼ 15.
To overcome this hurdle, for higher dimensions, we used
a pseudo-likelihood maximization algorithm instead of the
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likelihood maximization approach. The MATLAB scripts
provided by Ref. [107] were used to estimate the model
parameters for dimensions larger than N ¼ 15. In the
pseudo-likelihoodmaximization scheme, the goal is to solve
the following equation:

ðh; JÞ ¼ argmax
h;J

Lðh; JÞ; ð5Þ

where the pseudo-likelihood function Lðh; JÞ is defined as

Lðh; JÞ ≈
Ytmax

t¼1

YN
i¼1

P̃ðσiðtÞjh; J; σ=iðtÞÞ; ð6Þ

where P̃ represents the Boltzmann distribution for a single
spin (i.e., cluster) σi given that the other σj (j ≠ i) values
are fixed to σ=iðtÞ≡ ½σ1ðtÞ;…; σi−1ðtÞ; σiþ1ðtÞ;…; σNðtÞ�.
Therefore, P̃ is given by

P̃ðσiðtÞjh; J; σ=iðtÞÞÞ ¼
eðhiσiþ

P
N
j¼1

JijσiσjðtÞÞÞ
P

σ0i¼1;0e
ðhiσ0iþ

P
N
j¼1

Jijσ0iσjðtÞÞÞ ; ð7Þ

The above method uses a mean-field approximation
that disregards the influence of one variable on another.
However, the estimator obtained by maximizing the
pseudo-likelihood converges to the maximum-likelihood
estimator as the number of time steps tmax increases, as per
Ref. [108]. To estimate the model’s parameters, h and J, we
use a gradient descent scheme, which updates the param-
eters by comparing the empirical mean and correlation
values to the mean and correlation values predicted by the
model. The update equations are as follows:

hnewi − holdi ¼ ϵðhσiiempirical − hσiiP̃Þ ð8Þ

and

Jnewij − Joldij ¼ ϵðhσiσjiempirical − hσiσjiP̃Þ; ð9Þ

where the superscripts new and old represent the param-
eters after and before a single updating step, respectively,
ϵ > 0 is the learning rate, and hσiiP̃ and hσiσjiP̃ are the
mean and correlation with respect to distribution P̃ [Eq. (5)]
and are given by

hσiiP̃ ¼ 1

tmax

Xtmax

t¼1

tanh

�
hi þ

XN
j0¼1

Jij0σj0 ðtÞ
�

ð10Þ

and

hσiσjiP̃ ¼ 1

tmax

Xtmax

t¼1

σjðtÞ tanh
�
hi þ

XN
j0¼1

Jij0σj0 ðtÞ
�
; ð11Þ

respectively. For more details regarding the likelihood and
pseudo-likelihood maximization algorithms and scripts,
see Ref. [107].

C. Dimensionality reduction
and structure-function coupling

The correlation between structural and functional con-
nectivity is a defining characteristic of brain networks in
humans [93,109] and other species (e.g., mice [110], rats
[111], and monkeys [112]). Recent studies have provided
further evidence of structural and functional similarity in
the zebrafish brain [20]. In light of these observations, we
aimed to reduce the dimensionality of the functional dataset
by selecting a resolution of functional parcellations that
maximizes the similarity between the estimated Jij and the
structural connectivity matrix (total tract count between
large-scale clusters). Our findings reveal the high similarity
between structural and functional matrices across 8–16, 32,
64, and 128 scales. However, the highest similarity, as
measured by the correlation between the two matrix
modalities and the AUC for the detection of binarized
structural connections between regions from Jij weights,
was consistently identified at N ¼ 12 regions and func-
tional binarization threshold of 1% and 30% of the
maximum weight of the structural connectivity matrix
(see SM Fig. 4 [27]).

D. Evaluating the accuracy of the pairwise MEM

We used information-theoretic approaches to evaluate
the fit of our model. A pairwise maximum entropy model
better fits observed dynamics than a first-order (indepen-
dent) model since it considers not only regional activations
but also pairwise correlations between regional time series.
These additional considerations lead to a lower uncertainty
or entropy in the second-order model than in the first-order
model. Intuitively, increasing the order of the model will
monotonically decrease the entropy closer to the true
entropy, which can be measured empirically. We can
measure this entropy difference using the multi-informa-
tion, IN ¼ S1 − SN , given by the difference between the
first-order model entropy S1 and the empirical entropy
of the data SN . In the context of our study, the multi-
information measures the total amount of correlation in
brain signals independent of higher-order correlations. To
evaluate the performance of the pairwise MEM, we asked
whether the reduction in entropy following the incorpo-
ration of pairwise interactions in the model, I2 ¼ S1 − S2,
captured the majority of the total multi-information. In
other words, we quantified the performance of the pairwise
MEM as the fraction of the multi-information captured
by the second-order model, r ¼ I2=IN , where r can range
between 0 and 1. Our results showed that pairwise
interactions accounted for a large portion of the multi-
information, approximately 84%.
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E. Identifying local minima and basins
of the energy landscape

We defined the energy landscape by the network of
cluster activation states and their energy values. In this
landscape, the neighboring states are only one hamming
distance apart, meaning that adjacent states are identical up
to the activity of one brain region [113]. To identify the
local minima or attractor states, using a steep search
algorithm, we exhaustively searched the entire landscape
to find the states with energies lower than all their adjacent
states. Next, to find the states that belong to the basin of
each local minima, we first start at a given state σ and
iteratively move to a neighboring state σ0 if Eðσ0Þ < EðσÞ.
We continue tracing this path until we reach a local
minimum where no neighboring states have lower energy
(similar to Refs. [24,106]). We consider the basin size of
this local minimum to be the ratio between the number of
basin states to the total number of possible states.
We were particularly interested in identifying the

obstacles that impede the transition between the different
basins of attraction. To investigate these transitions, we
employed a method that involved removing the highest
energy state from the energy landscape, along with the
edges linking it to its neighboring states. We then deter-
mined whether each pair of local minima was still con-
nected by a path in the reduced landscape. We repeated this
process until we discovered the state whose removal causes
one or more local minima to be disconnected within the
landscape (i.e., the saddle states). We repeated this process
until we arrived at a reduced landscape where all the local
minima were disconnected, and we could identify all the
saddle states. The disconnectivity graph in SM Fig. 8 was
created using the identified energy values of the identified
local minima and saddle states [27].
We calculated the asymmetric energy barrier [114]

between each pair of local minima by taking the difference
between the energy of the saddle state and the energies of the
two minima. We then defined the symmetric energy barrier
between two local minima as the minimum between the two
asymmetric energy barriers. If the energy barrier between
two local minima is high, thenwe hypothesize that the rate of
transition between them is low, at least in one direction [24].
However, our results did not show a strong relationship
between estimated energy barriers (symmetric and asym-
metric) between local minima states and the empirical basin
transition probabilities (see SM Fig. 9 [27]). The energy
barrier is calculated based on two states: the localminima and
the saddle state. However, we used this measure as a proxy
for the transition probability between states belonging to
different basins. We believe this approximation fails to
capture other important factors, such as the shape of the
basin (e.g., how steep thegradient is toward the localminima)
or the smoothness or roughness of the basins. Consequently,
the energy barrier does not accurately capture the basin
transition probabilities.

F. Simulating state transitions

To better understand the spontaneous patterns of acti-
vations and state transitions, we simulated the large-scale
dynamics as a random walk process over the estimated
energy landscape using a Markov chain Monte Carlo
with Metropolis-Hastings algorithm [114–116]. In this
method, the activation state σ is allowed an isometric
transition to one of N neighboring states. Next, the
actual transition from σ to σ0 occurs with probability
Pðσ0jσÞ ¼ min½1; eEðσÞ−Eðσ0Þ�. We conducted a 106 step
(plus 34 initial steps) walk with randomly chosen initial
states. Next, we removed the initial steps to thermalize and
ensure the independence of results from the initial con-
ditions. Finally, we construct a trajectory between different
basins of attraction from state walks. By comparing the
basin transition probabilities in simulations and experi-
ments, we can assess the extent to which the dynamics of
the proposed random walk model align with those observed
in the brain.

G. Evaluating the thermal properties of the system

Distinct dynamical states have been observed across
multiple spatial scales in neurophysiological recordings
and are of interest, particularly in the context of pathological
dynamics such as those observed in epileptic seizures. The
Ising model is a well-established model capturing many
features observed during epileptic seizures [117] and is
mathematically equivalent to the MEM estimated in this
paper. Since the MEM, as illustrated here, is a generative
model, simulations can explore model behavior following a
range of perturbations. Here, we will use a number of
perturbations that, in some ways, resemble pathophysiolog-
ical features seen in pathological brain states to demonstrate
how this modeling approach may help identify empirically
testable hypotheses based on observed network behavior.
Pathological processes affecting whole-brain dynamics—

such as those relating to the emergence of epileptic
seizures—often have multiple interacting effects on neuro-
nal dynamics. During seizures, there are well-described
changes in mostly local within-region inhibitory coupling
[118], as well as excitatory between-region coupling [119];
Additionally, neuronal function during seizures is altered
through neuromodulatory coupling and local changes in
the homeostatic environment [120,121]. No single model
parameter equates to the sum of these effects. However,
based on previous literature [70], we chose to model the
collection of physiological changes through changes in the
single temperature parameter T. This scales the dependence
on structural connectivity versus intrinsic excitability for
each region, akin to neuromodulatory mechanisms rescaling
the net effective connectivity between regions. At the same
time, T affects hi, capturing changes in intrinsic excitability,
which may represent alterations in intrinsic, within-region
inhibitory-excitatory connection balance.
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The thermal behavior of the MEM was simulated using
an MCMC algorithm. We account for the temperature of
the system using the following variant of the Boltzmann
distribution over activity states (4):

PðσÞ ¼ 1

Z
e−ð1=TÞEðσÞ; ð12Þ

where T is the temperature and the partition function is now
given by

Z ¼
X
σ

e−ð1=TÞEðσÞ: ð13Þ

We initialized the simulation with a random initial state
followed by 1 030 000 random walks. Similar to the above-
mentioned state transition simulations, The first step of the
simulation involved discarding the initial 30 000 steps as
thermalization steps and then down sampling the remaining
walks every 500 samples. The system’s final state at each
temperature step was then used as the initial state for the
next lower temperature step. The simulations were repeated
at different temperatures, starting at the highest temperature
of T ¼ 2 and gradually reducing the temperature to T ¼ 0.
We used the fluctuation-dissipation theorem [122] to

calculate the specific heat and susceptibility. This theorem
relates the fluctuations of the energy to the changes in
temperature, such that the specific heat is given by

C ¼ hE2i − hEi2
T2

; ð14Þ

where E is the energy, T is the temperature, and angle
brackets indicate an average in the MEM. Similarly, the
susceptibility is given by

χ ¼ hM2i − hMi2
T

; ð15Þ

where M ¼ P
i σi is the magnetization of the system. In

infinite systems, these models undergo well-characterized
phase transitions, which are shown to be preserved in
larger-scale finite systems [123]. In the smaller-scale
system under consideration here with the number of nodes
N ¼ 12, we will refer to transitions between dynamical
regimes rather than phase transitions.
Pathological dynamics, as is observed, for example,

during epileptic seizures, are associated with abnormal
patterns of whole-brain activation. Calcium imaging in
larval zebrafish models of epileptic seizures has been
shown to be characterized by sustained, spatially wide-
spread excessive neuronal activity [22]. At the level of
individual neurons, these abnormal dynamics can be
modeled as deviations from a critical regime. Based on
these observations, we sought to identify the conditions
under which the coarse-grained model investigated here

demonstrates similar transitions between dynamic regimes.
To understand the role of different regions in the system’s
thermal behavior, for each region, we removed all of the
connections to that region. We then compared the specific
heat and susceptibility curves obtained from the resection
simulation to the original system to understand how the
resected region changes the critical behavior of the system.
Specifically, we measured the shift in the peak of the
specific heat and susceptibility curves.
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