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Abstract  

Background: Alterations in heart rate (HR) may provide new information about 

physiological signatures of depression severity. This 2-year study in individuals with a 

history of recurrent Major Depressive Disorder (MDD) explored the intra-individual 

variations in HR parameters and their relationship with depression severity.   

Methods: Data from 510 participants (Number of observations of the HR parameters 

=6,666) were collected from 3 centers in the Netherlands, Spain, and the UK, as a 

part of the Remote assessment of disease and relapse-MDD study. We analyzed the 

relationship between depression severity, assessed every 2 weeks with the Patient 

Health Questionnaire-8, with HR parameters in the week before the assessment, 

such as HR features during all day, resting periods during the day and at night, and 

activity periods during the day evaluated with a wrist-worn Fitbit device. Linear mixed 

models were used with random intercepts for participants and countries. Covariates 

included in the models were age, sex, BMI, smoking and alcohol consumption, 

antidepressant use and co-morbidities with other medical health conditions. 

Results: Decreases in HR variation during resting periods during the day were 

related with an increased severity of depression both in univariate and multivariate 

analyses. Mean HR during resting at night was higher in participants with more 

severe depressive symptoms.  

Conclusions: Our findings demonstrate that alterations in resting HR during all day 

and night are associated with depression severity. These findings may provide an 

early warning of worsening depression symptoms which could allow clinicians to take 

responsive treatment measures promptly. 

 

Keywords: depression; resting heart rate, real-world monitoring, trajectories, mobile 

health (mHealth) 
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Introduction  

Major depressive disorder (MDD) is a highly common mental disorder, globally 

affecting approximately 265 million people of all ages (James et al., 2018). MDD is 

often associated with poor health outcomes (Penninx et al. 2013) and non-adherence 

to medications and treatments (DiMatteo, Lepper, & Croghan, 2000). Further, MDD is 

often comorbid with medical conditions such as cardiovascular diseases (CD) 

(Correll et al., 2017; Lett et al., 2004; Penninx, 2017; Penninx et al., 2001). 

Numerous studies have shown that both MDD and CD potentially share underlying 

pathophysiological disturbances such as  systemic inflammation, autonomic 

dysfunction of hypothalamic-pituitary-adrenal (HPA) axis (Angermann & Ertl, 2018), 

and immune system dysregulation (Halaris, 2017).   

 

HR parameters may be used as diagnostic and predictive biomarkers of depression 

severity. A key indicator of the autonomous nervous system (ANS) function is the 

Heart Rate (HR) variability (HRV), consisting of the fluctuations in either the 

instantaneous HR or the length of heartbeats intervals. Increased variability indicates 

an improved autonomic nervous system regulation (Berntson et al., 1997). A reduced 

resting HRV has been related to difficulties in emotion regulation (Williams et al., 

2015).  Previous studies have also reported that individuals with MDD have a 

reduced resting mean HRV (Kemp & Quintana, 2013; Koenig, Kemp, Beauchaine, 

Thayer, & Kaess, 2016; Nabi et al., 2011). More severe depressive symptoms have 

been associated with elevated HR (Carney, Freedland, & Veith, 2005; Carney et al., 

2008; Nabi et al., 2011) and reduced HRV (Caldwell & Steffen, 2018; Hartmann, 

Schmidt, Sander, & Hegerl, 2019; Kemp et al., 2010). Some studies reported that HR 

differences between individuals with MDD and without MDD might be more evident at 

night (Carney et al., 2008; Taillard, Lemoine, Boule, Drogue, & Mouret, 1993). 

Furthermore, people with MDD frequently report irregularities in sleep/wakes states 

(Walker, Walton, DeVries, & Nelson, 2020), which can also affect HR. However, most 
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of these studies have several significant limitations: (i) either they were conducted in 

individuals of the general population including those without a diagnosis of MDD 

(Nabi et al., 2011; Silva et al., 2020); (ii) included only a small study population 

(Hartmann et al., 2019; Li, Hu, Shen, Xu, & Retcliffe, 2015; Narziev et al., 2020; Silva 

et al., 2020); or (iii) were conducted under laboratory conditions such as using 

electrocardiography (ECG) in hospital or research settings (Hartmann et al., 2019; 

Kemp, Quintana, Felmingham, Matthews, & Jelinek, 2012; Koch, Wilhelm, Salzmann, 

Rief, & Euteneuer, 2019; Koenig et al., 2016; Nabi et al., 2011). 

The recording of the ECG during daily life and long periods has several limitations. 

For example, the electrodes of the ECG, can cause skin irritation in long recordings 

due to its wet compound and adhesive properties, or the gel might dry, resulting in a 

reduction of the contact between the electrode and the skin negatively affecting the 

quality of the recording. There are other types of electrodes that are not adhesive but 

they are highly sensitive to motion artifacts. Morever, Holter devices  used for long 

data acquisitions interfere with  the daily life routine, being unfeasible for continuous 

monitoring (Dias & Cunha, 2018).  

Wrist worn devices that are available today may facilitate the measurement of HR in 

naturalistic conditions.  These technologies have several advantages over previous 

devices, including being non-invasive, low burden, low cost, and allowing the 

acquisition and processing in near-real time of a large amount of information. In fact, 

these technologies are able to provide 24 hour of HR monitoring, comfortable design 

and allowed to worn constantly (Castaneda, Esparza, Ghamari, Soltanpur, & 

Nazeran, 2018; Lam, Aratia, Wang, & Tung, 2020; Nelson & Allen, 2019).  

All devices based on the photoplethysmographic (PPG) signal, obtained by 

illuminating the skin with the light from a light-emitting diode (LED) and then 

measuring the amount of light reflected to a photodiode to detect blood volume 

changes in the capillaries above the wrist (Subasi, 2019) from which HR information 

can be derived. The feasibility of deriving HRV from the PPG signal instead of the 
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ECG signal has been widely investigated. In general, HRV derived from the PPG can 

be used as a surrogate of HRV derived from the ECG, when pulses can be 

accurately detected from the PPG, but this is challenging when PPG is recorded at 

wrist during daily life, mainly due to the sensitivity of PPG to movement artifacts. Only 

few studies have validated HRV derived from wrist PPG and always in resting 

conditions (i.e. Hernando, Roca, Sancho, Alesanco, & Bailón, 2018). However, many 

studies have validated the use of HR series provided by these devices to provide 

mean HR estimates over different periods of time (Fuller et al., 2020; Liu et al., 2022; 

Nazari, Macdermid, Sinden, Richardson, & Tang, 2019; Nelson & Allen, 2019). 

Despite the fact that these devices, based on wrist PPG, do not usually allow the 

study of HRV, they can still be useful to study HR trends and slow dynamics during 

the day, and might provide an indicator of ANS regulation of HR. 

 

In order to analyze the use of wrist-worn technologies in assessing individuals with a 

history of recurrent MDD, the Remote Assessment of Disease and Relapse – Central 

Nervous System (RADAR-CNS) (www.radar-cns.org) project, involving the patients, 

took the decision to use a commercially available device which is minimally invasive, 

easy to use and has the sensitivity and precision to generate the desired multimodal 

information (i.e. HR, activity, sleep) (Owens, 2020; Polhemus et al., 2020; Simblett et 

al., 2019). In this project, a wrist worn fitness wearable device was used to track the 

HR dynamics during the whole day, outside the medical environment. This device 

makes use of the PPG signal from which HR is estimated using a proprietary 

algorithm and output at different time intervals. HR can vary significantly over 24 

hours and under different conditions (Shaffer & Ginsberg, 2017), so it is essential to 

take this information into account when analysing and interpreting HR dynamics as a 

marker of ANS.  
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This study assessed the relationship of HR parameters during different 

periods of the day and night and different activity levels with depression severity in a 

cohort of individuals with a recent history of recurrent MDD. Our first objective was to 

explore and test the association of HR parameters with the severity of depression. 

Based on previous literature, we expected that an increase in mean HR and reduced 

HR variation during the day would be related to an increased depression severity 

across the follow-up. Furthermore, we expected a similar pattern during the resting 

periods of the night: an increased mean HR and reduced HR variation associated 

with higher level of depression.  The second objective was to examine whether this 

relationship can be affected by an individual’s characteristics (age, gender body 

mass index (BMI), smoking and alcohol habit, comorbidity with medical health 

conditions and antidepressant medication). We also expected that these factors 

might impact on the association between HR changes and depression severity.  

 

Method: 

Study design and sample 

This study uses data collected from the RADAR-MDD study, as a part of the 

research RADAR-CNS project. The study was co-developed with service users in our 

Patient Advisory Board. They were involved in the choice of measures, the timing 

and issues of engagement and have also been involved in developing the analysis 

plan and representative (s) are authors of this paper and critically reviewed it. 

The RADAR-MDD study explored the use of active and passive remote monitoring 

technology (RMT), including a wrist-worn Fitbit device to track disease course in 

people with a recent history of recurrent MDD (with the latest episode within the past 

2 years) and follow them up for a 2 years.  The active and passive data are collected 

via the active and passive RMT and then send into the RADAR-base platform 

(Ranjan et al., 2019).  For the Fitbit data, they are uploaded to the vendor data 

warehouse and provided to developers via a Web API. Getting these data into the 



7 
 

RADAR system is achieved by implementing a server-side Kafka Source Connector, 

which continuously queries data from the vendor’s Web API and dumps it into Kafka 

inside the RADAR-base platform; this approach can be used to integrate other Web 

API/OAuth2 data sources (GitHub. [2019-03-04]. RADAR-base/RADAR-REST-fitbit  

https://github.com/RADAR-base/RADAR-REST-fitbit website).  

The full protocol has already been published (Matcham et al., 2019; Matcham et al., 

2022). The RADAR-MDD is a multi-centre cohort study involving 623 individuals 

recruited from three sites: Centro de Investigación Biomédica en Red (CIBER); 

Barcelona, Vrije Universiteit Medisch Centrum (VUmc), Amsterdam) and the King’s 

College London (KCL). Participants were recruited through primary and secondary 

mental health care networks (Barcelona and London) and through existing research 

cohorts (participants from Amsterdam were partially recruited through 

Hersenonderzoek.nl (https://hersenonderzoek.nl/) and other ways such as 

advertisements in the https://www.radar-cns.org/participate  and mental health 

charity websites. The study was approved by the ethical committees of participating 

centers and all participants provided written consent.  

 

Instruments  

Depression severity 

Depression severity was assessed with the Patient Health Questionnaire 8 items 

(PHQ-8) (Kroenke et al., 2009) instrument delivered through an app installed in an 

Android smartphone (Ranjan et al., 2019). Participants were asked by push-

notification to complete the PHQ-8 every two weeks. The PHQ-8 score ranges from 0 

to 24 (increasing severity). A cut-off score of ≥10 is the most recommended cut-off 

point for “clinically significant” depressive symptoms (severe or moderate depression 

=1; versus no depression or mild depression=0), which means that the participant is 

likely to meet diagnostic criteria for a depressive episode (or moderate and severe 

depression) in the previous two weeks (Kroenke et al., 2009). Ratings below 10 are 

https://hersenonderzoek.nl/
https://www.radar-cns.org/participate
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usually defined as an asymptomatic state or sub-threshold (no or mild depression). 

Internal consistency was calculated with Cronbach’s alpha, and it was 0.91.  

 

Heart rate features  

HR parameters, such as the mean or the standard deviation, were computed daily 

from the HR signal provided by Fitbit charge 2 and 3 (Fitbit Inc, San Francisco, CA, 

USA), which is obtained from the PPG sensor of the device with a a narrowest 

resolution up to 5 seconds between samples. This device was previously 

demonstrate proven to accurately  measuring HR  (Fuller et al., 2020; Liu et al., 

2022; Nazari et al., 2019; Nelson & Allen, 2019). The HR values were not estimated 

when the Fitbit was not worn. HR was computed during the whole day (24 hours) and 

just at night (from 00:00 to 05:59), as well as just during resting periods and during 

active periods separately. The HR during nighttime calculated by the Fitbit was 

strongly associated with resting HR at night (00:00-05:59) (ρ=0.94, p<0.0001). 

However, a previous study (i.e.(Stucky et al., 2021) proved that the Fitbit 

underestimated the sleep transition dynamics. For this reason, we selected period 

from 00:00 to 05:59 as a conservative night time that might work for a large part of 

the population.   

Resting periods were defined when the number of steps and activity level, derived 

from the accelerometer data were equal to 0. 

A total of 7 HR features were derived for each day: total mean and standard 

deviation of HR (mHR/day and stdHR/day), mean and standard deviation of HR 

during the resting period (resting mHR/day and resting stdHR/day, respectively), 

mean and standard deviation of HR during resting period at night (resting mHR/night 

and resting stdHR/night, respectively) and mean HR for the activity periods (activity 

mHR) (table 1). We computed the average of the each of the daily HR parameters in 

the week before the PHQ-8 assessment across the follow-up. An example of the HR 

parameters for an individual with different depression score during the study was 
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represented in  figure 1.  (Figure 1). One week mean was considered appropriate to 

smooth day-to-day variability, especially during weekdays and weekend 

 

Sociodemographic, smoking habits and medical health conditions  

Information about sociodemographic (age, gender, education years, marital status) 

and medical history including heaviness of smoking index(yes/no), and current 

alcohol habit (yes/no) measured trough the questionnaire Alcohol use disorders 

identification test (Daeppen, Yersin, Landry, Pecoud, & Decrey, 2000) during all the 

follow-up, self-reported BMI and comorbidity with pre-existing medical health 

conditions(yes/no), and current antidepressant medications (yes/no) during the study  

were collected through a the Research Electronic Data Capture  (REDCap) package 

during the enrolment session (Harris et al., 2019, 2009).  

 

Data analysis 

First, we described the sociodemographic characteristics reporting frequencies and 

percentages for categorical variables. Categorical comparisons were made with the 

Chi-square test. Median with standard deviation (Std) and interquartile ranges (IQR) 

were reported for continuous variables. Differences by country in continuous 

variables were explored with the Kruskal-Wallis test. Spearman correlation () was 

calculated between the HR parameters and PHQ-8 to assess the association without 

considering the clustered structure of repeated observations per individual. We also 

looked at the association between the PHQ-8 and the number of observations to 

explore if depression severity was negatively related to the assessment rate (i.e. 

patients with severe depression might be significantly less likely to complete the 

assessment because of their symptoms of abulia and apathy). Second, we compared 

the HR parameters between the observations in individuals with severe or moderate 

depression =1; versus no depression or mild depression=0) to discover HR features 

explaining the variance of PHQ-8. Cohen's d effect size was calculated for the 
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comparisons: the effect size is considered as small, medium, and large using the 0.2, 

0.5 and 0.8 cut-offs. Finally, linear mixed models with PHQ-8 as the outcome were 

computed, in two steps. In both, random intercepts for the participant and country 

levels were included as random effects, and data normalization (z-score) of the HR 

parameters was performed within-participants, so estimates in the mixed models 

indicate the effect of changes in the HR parameters from the participant-specific 

mean. In the first step a mixed model was computed separately for each HR feature 

(mean and standard deviation of HR during the day, resting periods, resting at night 

and activity periods), having that feature and the baseline of PHQ-8 (first measure of 

PHQ-8 in the dataset for each participant) as independent variables. In the second 

step various HR features were included as predictors simultaneously together with 

the baseline of PHQ-8 to estimate their joint effect. Further, in the second step, 

sociodemographic and clinical factors were also included as covariates to test their 

effect in the model, specifically age and BMI as continuous variables and gender, 

smoking, alcohol and antidepressant consumption, and medical comorbidity as 

dichotomous variables. All analyses were performed using the R software package 

“lme4”(Bates, Mächler, Bolker, & Walker, 2015)  software R  (R Core Team, R 

Development Core Team, & R Core Team, 2016). 

 

Results 

Descriptive analyses 

A total of 510 participants (with a total number of HR observations of 6,666) in 

relationship to HR were included in the analyses. The majority of participants were 

female (n= 386, 76 %) and the median age was 50 years old (mean 46.6, std 15.1). 

About half of the participants were single, separated or widowed (268, 53%). The 

majority were receiving antidepressant medication during the follow-up (84.3%). The 

median education years were 15 (Mean: 15.4, std 6.6). The mean BMI was 26 (IQR: 

7.6).  The sociodemographic information across sites is shown in the supplementary 
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materials (Table S1). Only 21.1% (N= 107) reported smoking habits at enrolment. 

More than half (N= 284, 56%) reported comorbidity with medical conditions (please 

see details in supplementary materials Table S2). The table 2 displays the 

descriptives of the variables included in the statistical models.  

 

Spearman correlation between depression severity and HR features, and comparison 

between two groups with different current depression severity.  

Depression severity, as measured with the PHQ-8 was positively related to total 

mHR/day (=0.13) and negatively related to the total stdHR/day ( =-0.21), (p<0.001) 

(Figure 2). The same pattern of correlations was observed during the resting period: 

depression severity was positively related to resting mHR/day (=0.17) and 

negatively related to resting stdHR/day (=-0.12)(p<0.001). During the activity period, 

depression severity was positively related to activity mHR during all day but with a 

small correlation (=0.03, p=0.001). During the night, depression severity was 

positively related with both measures: resting mHR/night (=0.21) and resting 

stdHR/night (=0.13) (p<0.001). In fact, participants with no depression or mild 

depression (PHQ-8<10) and moderate or severe depression (PHQ-8≥10) severity 

had different total mHR/day (t=-7.99, Cohen's d=-0.20 ) and total stdHR/day (t= 

16.61, Cohen's d=0.41) (Figure 2) (p<0.001); resting mHR/night (t=-15.30, Cohen's 

d=-0.39) and resting stdHR/night (t=-7.31, Cohen's d=-0.18) (p<0.001) (Figure 3).  

However, we did not find any significant difference in activity mHR/day (t=-1.67, 

p=0.09).  

We did not find any significant association between depression severity as assessed 

with the PHQ-8 and the number of observations ( =-0.08, p=0.07).  

 

****Insert the Figure 2 and 3 here**** 
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Linear multilevel regression analyses for each of the HR parameters 

The models included the PHQ-8 rating as dependent variable and each of the HR 

features and the baseline of PHQ-8 as independent variables. The within-participant 

coefficient z-scores of the mHR/day (β=-0.18) and stdHR/day (β= -0.34) were 

negatively associated with depression severity (table 3). We also observed a similar 

pattern for resting mHR/day (β=-0.14) and resting stdHR/day (β=-0.32), both were 

negatively associated with depression severity. While, resting mHR/night was 

positively associated with depression severity (β=0.09). On the other hand, no 

association was found for resting stdHR/night and depression severity. 

 

Linear multilevel regression analyses for each of the HR parameters adjusting for all 

parameters and covariates.  

The table 4 shows the results of the multilevel analysis including mean and standard 

deviation of HR during the day, and resting HR during the night as independent 

variables (Model 1). Table 4 does shows the same model when adding the 

sociodemographic and clinical characteristics (adjusted model). The findings are 

consistent in the two models. Increases in mHR/day (β=-0.23) and stdHR/day (β=- 

0.30) were associated with a decrease on PHQ-8, while the increasing resting 

mHR/night (β=0.19) was related with an increase on PHQ-8. We then replicated the 

analyses, replacing the HR during all day with HR at resting state during the day 

(table 5). We observed similar patterns for resting HR during the day: depression 

severity was negatively related to resting mHR/day (β=-0.16) and resting stdHR (β=-

0.30), while a positive association was observed with resting mHR/night (β=0.14, 

p=0.04) (Table 5). No significant findings were found for resting stdHR at night. 

Depression severity was negatively associated with age (β=-0.03, p=0.01) and 

positively to medical health condition (β=1.12, p<0.0001).  
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We then replicated the previous analyses including mHR during the activity period 

and the resting mHR/day and resting mHR/night to confirm that the activity mHR 

does not have an association with depression severity (Table 6). Resting mHR/day 

and resting mHR/night maintained their association with depression severity, as also 

the other 2 covariates did, but activity mHR/day was not associated to depression 

severity (adjusted model). 

 

Discussion  

To the best of our knowledge, this is the first study exploring the association between 

depression severity and HR changes using a wearable device in a sample of people 

with MDD during a long-term period of monitoring. The two main findings of this study 

are: first, lower resting HR variation measured with the standard deviation of HR 

during the day is associated with higher depression severity; and second, resting 

mean HR at night increases with depression severity. These relationships were 

maintained when we adjusted for gender, age, smoking and alcohol habits, also pre-

existing comorbid medical health conditions, and antidepressant treatment.   

These findings are consistent with the study hypotheses. A previous study 

demonstrated that individuals with more severe depression were less active and did 

not perform moderate and vigorous activities that increase the HR during the day 

(Kandola, Lewis, Osborn, Stubbs, & Hayes, 2020). Accordingly, one possible 

explanation could, therefore, be that individuals with MDD have low physical activity. 

The relationship was maintained when we also adjusted for mean HR during activity 

periods.  

At odds with the study hypothesis, we also observed decrease in daily mean HR and 

daily resting HR associated with more severe depression. However, this finding was 

only present in the regression analysis. Accordingly, this association between mean 

HR/day and depression severity could have been affected by Simpson’s paradox, 

given that the direction of the correlation between the two parameters changed from 
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positive in the bivariate analyses to negative in the regression analyses when the HR 

data were within-participants normalized. The negative association was also 

maintained when the predictors were analyzed separately, when they were 

introduced together and then adjusted with the covariates. Further research may be 

needed to advance in the relation between HR and depression severity. 

One possible explanation of the relationship between HR and depression severity 

may be that passive behaviours, such as watching TV, listening to music or any other 

activity that do not include movements, may be more frequent in individuals when 

more depressed (Hallgren et al., 2019). Another explanation might be that a low 

resting mean HR might be provoked by the effect of the medication; however we did 

not observe any effect of antidepressant medication when adjusted for it.. Studies 

conducted both in humans and animals reported that potentially adverse effects of 

antidepressant interactions could lead to an abnormal decrease in the HR (Ababneh, 

Ritchie, & Webster, 2012; Azizi, Elyasi, & Roodposhti, 2019; Woroń, Siwek, & 

Gorostowicz, 2019). However, a recent meta-analysis found that HR alterations were 

not fully explained by antidepressant use alone (Brown et al., 2018).  ` 

 

During the night, the high resting mean HR was associated with higher depression 

severity. In the resting state during the night non-activity periods were included, but 

they can correspond to awake stages where HR could be higher than expected for 

the night time. It is well-known that people with MDD suffer of sleeping difficulties, 

especially insomnia, that would be one explanation of the high mean HR. In healthy 

individuals, resting mean HR decreases significantly during the night due to 

parasympathetic predominance during sleep (Mancia et al., 1983). This decrease 

may be less pronounced in individuals with MDD and related to depression severity. 

Previous studies have also demonstrated that increasing resting mean HR is a 

significant predictor of mortality in people with MDD and heart failure (Carney et al., 

2016; Lau et al., 2021; Nabi et al., 2011). We did not find any association between 
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the resting HR variation during the night and depression severity. Further studies are 

warranted to explore if the HR variation in relation to depression severity fluctuates 

according to the different sleep stages. 

 

As we expected, we observed that low HR variation during all day resting periods 

was related to increased depression severity over time. A low HR variation indicates 

that the body is under stress from psychological events, or other internal or external 

stressors. The reduced resting HR variation may depend on a failure of the 

parasympathetic control via the vagal nerve (Olshansky, Sabbah, Hauptman, & 

Colucci, 2008) that restores the body from overworking and prior accumulated stress 

(Kemp & Quintana, 2013; Kim, Cheon, Bai, Lee, & Koo, 2018). 

 

Decreased HR variation, especially during the resting period is associated with 

increased cardiovascular risk and mortality across different age groups (Brown et al., 

2018; Koch et al., 2019; Koenig et al., 2016) and it is reported in different medical 

health conditions (Galinier et al., 2000; Tessier et al., 2017). In our group, we 

observed that depression severity was positively associated with various comorbid 

medical conditions including cardiovascular disease, metabolic and digestive disease 

rheumatic disease, pulmonary disease and neurological disorders and other (i.e. 

psychiatric, as anxiety, eating disorders and other medical conditions. MDD is 

frequently comorbid with cardiovascular disease (Carney et al., 2005; Penninx, 

2017), long diseases (Yohannes, Willgoss, Baldwin, & Connolly, 2010), metabolic 

syndrome (Pan & Hu, 2013; Vancampfort et al., 2014), and neurological disorder 

(Raskind, 2008). This comorbidity might impact the prognosis and management of 

depression and increase risk of mortality.  

 

Moreover, we also observed that younger age was associated with depression 

severity. Young people may endorse more affective symptoms whereas elderly 
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people may report more cognitive changes and loss of interest (Fiske, Wetherell, & 

Gatz, 2009). Another study found that younger age could have a greater risk of 

multiple depression episodes (Fergusson & Woodward, 2002).  This finding 

highlights the importance of a prompt and early intervention..  Finally, we did not find 

any association of depression severity with gender. It might be due to the fact that 

the majority of our sample was composed of women (76%) and both women and 

men were diagnosed with MDD with recurrent episodes. Neither did we find an 

association between depression and smoking status, alcohol status and BMI in our 

group. One explanation could be that only a  small subgroup reported smoking 

habits, and a few reported BMI over the normal range. Previous studies reported an 

association between depressive symptoms, BMI and smoking habits (Hooker, 

MacGregor, Funderburk, & Maisto, 2014; Strine et al., 2008; Widome et al., 2009).  

 

Strengths and Limitations 

When considering these results, we should acknowledge the limitation of the device 

used. As stated previously, the HR data derived from the PPG are highly correlated 

with the heart rate data derived from the ECG, both HR and HRV (Gil et al., 2010; Lu 

et al., 2008). However, the wrist-worn device used in this study does not provide 

access to the PPG signal but rather to the HR series derived by proprietary 

algorithms at different time intervals. This does not allow for analyzing HRV properly, 

as already stated. Wrist-based device HR determination has been shown to have a 

<5% error in a range of devices and activities relative to gold-standard and closer to 

1% when at rest (Shcherbina et al., 2017). The HR variation can be used as a proxy 

measure of HR fluctuations (Moser et al., 1994). The HR variation has already been 

used to explore the variation of HR in other studies (Quer, Gouda, Galarnyk, Topol, & 

Steinhubl, 2020; Wang, Lizardo, & Hachen, 2022). On the other hand, the Fitbit 

device presents different advantages: comfortable design, it can be used for an 

extended period and is accessible to a broad population for its low cost. Another 
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strengths of this study is the collection of daily mood data which may be superior to 

retrospective reports to measure depression severity in association with daily HR 

parameters. Moreover, we used long term longitudinal data from participants. 

Additional aspects to be considered when analysing the results are that the effect of 

some medications (i.e. beta-blockers and inhaler treatments) was not analyzed; that 

potential adverse effect on HR might be provoked by other medications; and that 

various medical conditions have been included in the analysis but were not 

considered separately. However, the objective was only to explore how co-morbid 

medical condition might impact the association between HR and depression severity.  

Finally, depression severity may be exacerbated by anxiety symptoms..  Further 

research should explore the impact of anxiety and sleep, among others, in the 

association between HR and depression severity.  

 

 

Conclusion  

In this paper, we have demonstrated that HR parameters may be indicators of 

depression severity and that it is possible to collect them on large numbers of 

participants and long follow-ups.  From a clinical perspective, the current data 

suggest that reduced daily resting HR variability could represent a correlate of 

vulnerability to depression severity. Hence, the findings of specific HR biomarkers 

associated to depression severity fluctuations, providing a valuable tool for the early 

recognition or post- depressive monitoring of vulnerable individuals. An early warning 

of potential relapse allows clinicians to take responsive treatment promptly. This 

represents an opportunity to offer individual trajectories of HR parameters. Moreover, 

a longitudinal view of HR variations provides great personal health information in 

real-time and in real-world setting. Further research is needed to translate these 

results into meaningful clinical recommendations. These findings will be integrated in 
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future analyses with multi-modal data collected within the RADAR-MDD study in 

order to develop algorithms to predict changes in clinical state. 
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Figures 

 

Figure1. An example of 7-day mean HR prior to the PHQ-8 assessment from the same participant at the mild 

depression level (left) and moderately severe level (right) during the follow-up.  

 

 
 

Figure 2.  Depression and HR during the day 

Figure Legend: Scatter plot on the left side showed a correlation between PHQ-8 and mHR (above) and between 

PHQ-8 and stdHR (below). Boxplots on the right showed a comparison on total mHR (above) and total stdHR (below) 

between the groups depression vs no depression. 
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Figure 3. Depression and resting HR at night 

Figure Legend: Scatter plot on the left side showed a correlation between PHQ-8 and mHR (above) and between 

PHQ-8 and stdHR (below). Boxplots on the right side showed a comparison on mHR (above) and stdHR (below) 

between the groups depression vs no depression. 
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Table 1. Features Legend: HR parameters derived from the Fitbit.  

 

Features Legend: Clinical and HR parameters derived from the app and 

Fitbit, respectively. 

Variable No 

Observations 

Features 

 mHR/day 6,666 Mean HR data across all day (24h) 

 Std HR/day 6,666 Standard deviation of HR data across all 

day (24h) 

Resting mHR/day 6,613 Mean HR during resting periods, 

identified by activity level = resting and 

number of steps = 0 during the day 

(24h) 

Resting stdHR /day 6,613 Standard deviation of HR during resting 

periods during the day (24h) 

Resting mHR/night 6,261 Mean HR during resting periods at night 

time. 

Resting 

stdHR/night 

6,261 Standard deviation of HR during resting 

periods, identified by number of steps = 

0 only during night time (0:00-05:59) 

Activity mHR/day 

 

6,466 Mean of HR during activity periods (the 

physical activity was classified as lightly, 

moderate and vigorous).  
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Table 2. Baseline, Clinical and HR features  

Variable  

  

     

 

    Median or N (%) 

 

     IQR 

 

  Min 

 

 Max 

Age   50 27 18 76 
Gender (Female) (n,%)  386 (75.7)    
BMI    26 7.6 14 71.7 
PHQ-8  9.00 10.00 0 24 
Smoking status  (yes) 
(N, %) 

    107 (21.1)    

Alcohol habit (yes) (n, 
%) 

 7982 (87.4)    

Antidepressant (yes) (n, 
%) 

 7768 (84.3)    

Comorbidity (yes) (n, %)  284 (56)    

HR parameters Period          Median   IQR     Min   Max 

mHR Day 75.55 11.82 46.62 132.65 
stdHR Day 12.70 3.93 0.00 40.18 

Resting mHR Day 73.64 11.80 46.63 132.65 

Resting stdHR Day 11.46 4.18 0.00 39.26 

Activity mHR Day 81.87 14.19 44.63 135.06 

Resting mHR Night 66.70 12.42 43.16 124.65 
Resting stdHR Night 5.05 2.30 0.00 23.72 

Note: m= mean, IQR= interquartile ranges, std =standard deviation.  
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Table 3.  Multilevel analyses for exploring the associations between the HR 

features and the depressive symptoms severity (PHQ-8).  

Features β SE (95% CI) p-value 

mHR/day -0.18 0.04 (-0.26 to -0.10) <0.0001 

stdHR/day -0.34 0.04 (-0.42 to -0.26) <0.0001 

Resting 
mHR/day 

-0.14 0.04 (-0.22 to -0.06) 0.0004 

Resting 
stdHR/day 

-0.32 0.04 
(-0.40 to -0.24) <0.0001 

Resting 
mHR/night 

0.09 0.04 (0.01 to 0. 17) 0.037 

Resting 
stdHR/night 

-0.01 0.04 (-0.09 to 0.07)  0.824 

Activity 
mHR/day 

-0.05 0.04 (-0.13 to 0.03) 0.215 

Note: each model includes a HR parameter together with the baseline PHQ-8 as independent variables 

to predict  

PHQ-8 changes (continuous variable) 
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Table 4. Mixed model with HR features during the day (24h) and night related to 

depression severity and sociodemographic covariates. 

 

R2 marginal  0.487 R2 marginal  0.749 
AIC     33347.92                  AIC     32446.4 
BIC         33401.85 BIC         32547.1 
Adjusted ICC         0.512 Adjusted ICC         0.497 

Note: Model 1. Daily measure of HR and HR during nighttime parameters were included 

together with the baseline PHQ-8 as independent variables in this model. Adjusted model 

includes all the previous independent variables and covariates. *The reference group is men. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Model 1  Adjusted Model 

Features β  SE 95% CI p-value β SE 95% CI p-value 

Baseline PHQ-8 0.72 0.03 0.67 to 0.77 <0.0001 0.69 0.03 0.63 to 0.75 <0.001 

mHR/day -0.23 0.07 -0.38 to -0.09 0.001 -0.24 0.07 -0.39 to -0.09 0.001 

stdHR /day -0.30 0.06 -0.41 to -0.19 <0.0001 -0.29 0.06 -0.40  to  -0.18 <0.0001 

Resting 
mHR/night 

0.19 0.07 0.05 to 0.33 0.006 0.18 0.07 0.04 to 0.32 0.01 

Resting 
stdHR/night 

0.003 0.05 -0.09 to 0.09 0.93 0.02 0.05 -0.07 to 0.11 0.68 

Age     -0.03 0.01 -0.05 to -0.01 0.01 

Gender (women)* -0.14 0.37 -0.88 to 0.59 0.71 

BMI     0.01 0.02 -0.04 to 0.05 0.84 

Smoking habits     0.44 0.42 -0.39 to 1.27 0.30 

Alcohol      -0.22 0.35 -0.9 to 0.48 0.54 

Comorbidity     1.12 0.34 0.46 to 1.78 <0.001 

Antidepressant     -0.21 0.22 -0.64 to 0.21 0.32 
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Table 5. Linear mixed model with resting HR features during the day (24h) and 

night related to depression severity and sociodemographic covariates.  

Note. Model 1. Resting HR measures during the day and night were included together with 

the baseline PHQ-8 as independent variables, Adjusted model: previous parameters were 

then included in this model with covariates. *The reference group is men. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 Model 1            Adjusted Model 

Features        β SE (95% CI) p-value β  SE         (95% CI)   p-value 

Baseline PHQ-8 0.72 0.03 0.67 to 0.77 <0.0001 0.69 0.03 0.64 to 0.75 <0.001 

Resting mHR/day -0.16 0.07 -0.31 to -0.01 0.03 -0.17 0.08 -0.33 to -0.02 0.02 

Resting 
stdHR/day 

-0.30 0.06 -0.43 to -0.19 <0.0001 -0.32 0.06 -0.44 to -0.20 <0.001 

Resting 
mHR/night 

0.14 0.07 0.004 to 0.28 0.04 0.13 0.07 -0.01 to 0.27 0.07 

Resting stdHR/ 
night 

0.05 0.05 -0.04 to 0.14 0.28 0.07 0.05 -0.02 to 0.17 0.13 

Age     -0.03 0.01 -0.05 to -0.01 0.01 

Gender(women)* -0.15 0.38 -0.89 to 0.59 0.69 

BMI     0.005 0.02 -0.04 to 0.05 0.84 

Smoking habits     0.43 0.42 -0.40 to 1.26 0.30 

Alcohol     -0.23 0.35 -0.92 to 0.46  0.52 

Comorbidity     1.12 0.34 0.45 to 1.78 <0.001 

Antidepressant     -0.24 0.22 -0.67 to 0.18 0.27 

R2 marginal  0.487   R2 marginal  0.501 

AIC 32505.1   AIC 32448.09 

BIC 32505.1   BIC 32548.79 

Adjusted ICC 0.509                   Adjusted ICC 0.498 
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Table 6.  Linear mixed model with mean HR features during the day (24h) and 

night related to depression severity and sociodemographic covariates. 

 Model 1            Adjusted Model 

Features   β  SE 95% CI p-value    β SE 95% CI p-value 

Baseline PHQ-8 0.72 0.03 0.67 to 0.77 <0.0001 0.69 0.03      0.64 to 0.75   <0.001 

Resting mHR/day -0.40 0.06 -0.52 to -0.28 <0.0001 -0.42 0.06 -0.54 to -0.30 <0.001 

Resting 

mHR/night 

0.37 0.06 0.25 to 0.48 <0.0001 0.36 0.06 0.25 to 0.48 <0.001 

Activity mHR/day -0.06 0.04 -0.15 to 0.02 0.18 -0.04 0.05 -0.13 to 0.05 0.42 

Age     -0.03 0.01 -0.05 to -0.01 0.02 

Gender (women)*  -0.15 0.37 -0.88 to 0.59 0.69 

BMI 
    

0.01 0.02 -0.04 to 0.05 0.84 

Smoking habits 
    

0.43 0.42 -0.40 to 1.26 0.32 

Alcohol habit     -0.20 0.35 -0.89 to 0.50 0.58 

Comorbidity 
    

1.10 0.34 0.44 to 1.76 0.001 

Antidepressant     -0.22 0.22 -0.64 to 0.21 0.32 

R2 marginal  0.488   R2 marginal         0.502  

AIC 31888.51   AIC 31885.92  

BIC 31942.08   BIC 31986.35  

Adjusted ICC 0.507   Adjusted ICC 0.496  

Note. Model 1:  Resting and activity HR measures were included together with the baseline 

PHQ-8 as independent variables, Adjusted model: Previous parameters were then included in 

this model with covariates. *The reference group is men.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


