
Empirical Software Engineering (2025) 30:22
https://doi.org/10.1007/s10664-024-10556-3

Hyperfuzzing: black-box security hypertesting
with a grey-box fuzzer

Daniel Blackwell1 · Ingolf Becker1 · David Clark1

Accepted: 23 September 2024
© The Author(s) 2024

Abstract
Despite being a severe error where programs inadvertently reveal confidential information,
insecure flows rarely receive explicit attention during software testing. LeakFuzzer uses an
input-output non-interference property, specialised via a security flow policy for the program
under test, to advance the state of the art. It detects insecure flows by using hypertesting for
violations of the program’s non-interference property. LeakFuzzer extends the capabilities
of the state of the art fuzzer, AFL++, and thus inherits its advantages such as scalability,
automated input generation, high coverage and low developer intervention. It can thus detect
the same set of errors asAFL++, aswell as being able to detect violations of secure information
flow policies at small additional performance costs. This offers a significant advance in
scalability and automation for the state of the art. We evaluated LeakFuzzer on a diverse set
of 12 C and C++ benchmarks containing known bugs that cause confidential information to
be disclosed, ranging in size from just 80 to over 900k lines of code. Nine of these are taken
from real-world CVEs including Heartbleed and a recent error in PostgreSQL. Given 20
24-hour runs, LeakFuzzer can find 100% of the insecure flows in the SUTs whereas existing
techniques using the CBMC model checker and AFL++ augmented with different sanitizers
can only find 40% at best.

Keywords Information flow control · Information leakage · Fuzzing · Software testing

1 Introduction

In 2015 Johannes Kinder made the case for automated hypertesting (Kinder 2015).
His motivating example was Heartbleed, the famous violation in OpenSSL of the now
standard program flow security hyperproperty (Clarkson and Schneider 2008) called non-

Communicated by: Feldt and Zimmermann

B Daniel Blackwell
daniel.blackwell.14@ucl.ac.uk

Ingolf Becker
i.becker@ucl.ac.uk

David Clark
david.clark@ucl.ac.uk

1 University College London, London, United Kingdom

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-024-10556-3&domain=pdf
http://orcid.org/0000-0001-7320-9057

 22 Page 2 of 28 Empirical Software Engineering (2025) 30:22

interference (Goguen and Meseguer 1982). Until our creation of LeakFuzzer, Kinder’s
implicit challenge of automatically detecting violations of the non-interference property had
not been met. LeakFuzzer is the first tool that automatically generates a set of hypertests and
uses them to check that a C/C++ program together with its security policy do not violate
the non-interference property. Since LeakFuzzer is a modification of the greybox mutational
feedback fuzzer AFL++ (Fioraldi et al. 2020), it not only automatically generates new test
inputs but it inherits the fuzzer’s exploratory power with respect to branch coverage of the
target program.

The key theoretical underpinning for LeakFuzzer is the non-interference property. In
Goguen and Meseguer’s 1982 paper the property was stated in a general way:

One group of users, using a certain set of commands, is noninterfering with another
group of users if what the first group does with those commands has no effect on what
the second group of users can see Goguen and Meseguer (1982).

There are many ways this idea can be instantiated and for LeakFuzzer we use a version of
this property that frequently occurs in the secure flow literature (Sabelfeld and Myers 2003).
We only observe program inputs and outputs to determine whether confidential information
has been revealed (hence our characterisation of the security property as “black box”).
Further, the property only considers terminating inputs and assumes that each input has at
most both a high security (secret) part and a low security (non-secret or public) part, similarly
for outputs. For example, the interface through which Heartbleed is triggered has a public
input (the packet sent by the client to the server) and a public output (the response sent from
the server back to the client), but other parts of internal memory written to by the process
during execution must be treated as secret as keys or other secrets may be stored there. In
this work, we treat any internal memory that is written to—without the express intention
of it being output to public output—as a secret input. This (low security inputs and outputs
with internal memory protected as a high input) is a common security policy in practice for
multi-user programs / systems (Heusser and Malacaria 2010).

The recognition that non-interference is formally a hyperpropertywaspublished in 2008by
Clarkson and Schneider (2008). They distinguished properties of single program executions,
such as non-termination, from security properties such as non-interference or bounds on the
amount of confidential information revealed. These latter formal properties must necessarily
be expressed in terms of sets of executions. As explained in Section 2, our non-interference
property is expressed as a universal quantification over pairs of program executions. So a
failure of the non-interference property must need a pair of tests, i.e. a hypertest, to witness
a fault. Figure 1 illustrates the hypertest concept.

In Fig. 1 a function, leakyExample is paired with a security policy where secret
has a higher classification than public. The input parameters names align with the security
policy names, and the return value of leakyExample is visible to public. Hypertest 1 has
two inputs, the first has 〈public = 3, secret = 5〉, the second has 〈public = 3, secret = 2〉. Note
that only the value of secret changes between the two inputs. However the (public) output
values from the function leakyExample are different. The forgoing is a single hypertest
(pair of tests in this case) that exposes a violation of the non-interference property by the
program/policy pair. Not every hypertest exposes a violation as shown by hypertest 2 in
Fig. 1. Security properties are further discussed in Section 2.

The Heartbleed bug in the OpenSSL cryptography library resulted in a buffer over-read,
which exposed secret program memory information to attackers. Buffer over-reads are auto-
matically detectable by fuzzing in combination with MemorySanitizer, now included with
Clang and GCC. However, most buffer over-read bugs result in program crashes, it is rare

123

Empirical Software Engineering (2025) 30:22 Page 3 of 28 22

Fig. 1 Synthetic code example with an accompanying security policy and two hypertests, one exposing a
violation of non-interference and the other failing to do so

for them to cause confidential information to be revealed to an unprivileged user. As a result,
when these bugs are detected with MemorySanitizer they are usually assigned a lower prior-
ity, because the tool has no knowledge of the information leakage. LeakFuzzer is capable of
detecting the insecure flow, indicating the severity of the bug. The strength of hypertesting
against a security property is both that insecure flow detection is completely general, i.e.
independent of the nature of the flow; and that there are no uncertainties. Either a hypertest
witnesses a violation or it does not.

Existingbenchmarks only include a small number of real programs (Heusser andMalacaria
2010), or a large number of toy programs (Hamann et al. 2018), which violate secure flow
properties. To better evaluate the extended capabilities of LeakFuzzer, we collected a set
of 12 C/C++ programs of varying sizes, from 82 to 905,264 lines of code, nine of which
contain insecure flows that have been assigned CVE numbers, into a test bench we call
Secure Information Flow Faults (SIFF). We have used these SUTs to compare LeakFuzzer
against existing state of the art approaches to insecure flow detection. Specifically we have
compared LeakFuzzer against a model checking approach, that uses the C Bounded Model
Checker (CBMC), and conventional AFL++ augmented in turn with two different sanitisers,
MemorySanitizer (MSan) and DataFlowSanitizer (DFSan). Unlike CBMC, the mutational
engine ofAFL++ is nondeterministic somultiple runswere required for comparison purposes.
Each setupwas run 20 times for up to 24-hours (the same as FuzzBenchMetzman et al. 2021),
over 400 CPU days of cumulative evaluation was performed.

LeakFuzzer found every insecure flow in every program but not with every campaign,
however the majority of the 24 hour LeakFuzzer campaigns did find the sought insecure
flow. In comparison to LeakFuzzer, AFL++, augmented with either sanitizer, was able to
detect insecure flows in 5/12 SIFF SUTs while CBMC could detect insecure flows in 3/12
SIFF SUTs. LeakFuzzer tended to use more memory than AFL++ and less than CBMC,

123

 22 Page 4 of 28 Empirical Software Engineering (2025) 30:22

which exhausted the available 128GB of memory on one SUT, but there were no issues with
memory exhaustion for LeakFuzzer in any experiment.

The contributions of this paper can be summarised as:

• The creation of LeakFuzzer, the first hyperfuzzer to test against an input-output non-
interference property,

• The creation of the Secure Information Flow Faults benchmark suite (SIFF), a set of
varied C/C++ programs for assessing insecure flow detection tools,

• A rigorous evaluation study using SIFF that assesses the efficacy and efficiency of Leak-
Fuzzer and compares it with three other tools: CBMC, and AFL++ augmented first with
DataFlowSanitizer then with MemorySanitizer.

2 Background

In this section we elaborate the concepts on which previous insecure flow detection tools
and LeakFuzzer are built: security policies, the non-interference property, hypertesting and
greybox fuzzing.

2.1 The Information Flow Control Problem

Information outside programs (inputs and outputs) that travels over networks can be
encrypted, providing a level of security. The interface(s) to programs may need to distinguish
between different groups of users based on their privileged access to information, hence the
access control problem. But implicit within the problem of designing programs with cor-
rect access control for different privilege groups is that of maintaining correct information
flow control during program operation. A program that correctly implements encryption
and access control may still be vulnerable if its operation inadvertently leaks information
between privilege groups. It is this last problem that LeakFuzzer addresses. All three tech-
niques, encryption, access control, and flow security are required for “end to end” security
of computing with information.

Contemporary approaches to information flow control use a policy for the program, var-
iously called a secure flow policy, a non-interference policy, or simply a security policy,
depending on the context. One of the earliest and best known, developed for the USA mili-
tary, is the 1973 Bell Lapadula model of access control that provided flow guarantees if the
model was followed (Bell and LaPadula 1973). Their work formalised security policies and
introduced the notion of a security classification for each piece of information in a program.
Denning subsequently recognised that the Bell and LaPadula principle of “no read ups and
no write downs” between higher privilege and lower privilege groups produced an ordering,
in fact a partial order, and that this could be extended to a lattice ordering, for complete-
ness (Denning 1976). She then introduced Lattice Based Access Control (LBAC) in which
program data containers are mapped to lattice points that represent access control categories.
The lattice ordering is interpreted as that information can only flow within the program from
a lower classification to a higher one. To sum up, program users are divided into privilege
groups as are data containers (variables etc.) within the program. A lattice is constructed
with nodes labelled with the privilege groups and the ordering of the lattice expresses the
constraints on information flow between them. The simplest and most widely used lattice for
security policies is the two point or High-Low lattice with the ordering Low � High. In this

123

Empirical Software Engineering (2025) 30:22 Page 5 of 28 22

paper every program discussed or experimented on has a security policy that is a mapping of
its data containers to either High or Low in the High-Low lattice.

Aprogramanda security policybeing correctly aligned is expressedvia a security property.
The commonly used security property for many program-policy pairs stems from the 1982
paper by Goguen and Meseguer (1982) which introduced the non-interference principle
described in Section 1. This is commonly interpreted as an input-output property in terms of
the behaviour of the program and this is what LeakFuzzer uses:

A program P satisfies non-interference if and only if for any pair of low equivalent
initial states, the resulting final states from running P with these initial states are also
low equivalent.

We assume each state of the program can be partitioned into two parts, a High and a
Low part. Low equivalence of a pair of states means that the parts of the two states that are
labelled asLow contain the same values. Essentially, LeakFuzzer is using the non-interference
property as a (hyper)test oracle.

As another example, consider a simple program that only takes input from a High user,
and makes all output available to any user (i.e. to Low users):

1 password = read_from_high()
2 print(password)

As usual our secure flow policy is based on the High-Low lattice. The only data container
in the program is the variable password that is labelled High as it is written by input from
a high user. Since the data in password is printed, it is effectively made available to Low
users. From the source code, it is clear that the secret value password is copied to the
program output visible to Low; and thus violates the security policy. We can witness this
violation by providing a pair of inputs that differ only in their High part, and consequently
differ in their Low output. For this program any pair of inputs are Low equivalent as there
is no Low labelled data container, hence a non-interference violation witnessing hypertest
could be the pair ofHigh inputs “test” and “pass” that produce Low outputs “test” and “pass”.
The inputs were Low equivalent and the (low) outputs differed.

2.2 Side-Channel Leakage

At a high level of abstraction, side-channel leakage is leakage of information through means
other than program output; for example through execution time or power consumption. Being
able to detect differences in these observables that are dependent on the High input values
allows an attacker to deduce information about those values. Consider the following program:

1 guess = read_from_low()
2 password = read_from_high()
3 if guess.length != password.length:
4 exit
5 for i in 0..guess.length:
6 if guess[i] != password[i]:
7 exit

Here the security policy again uses the High-Low lattice and read_from_low() takes
input fromLow, andread_from_high() takes input fromHigh, thus the variablesguess
andpassword containLow andHigh information respectively. Firstly the length of the input

123

 22 Page 6 of 28 Empirical Software Engineering (2025) 30:22

is checked against the length of the actual password, exiting if they are not equal. The ‘for’
loop in lines 5-7 checks each character of the input guess against the actual password, and
when any single character does not match the password, it exits. Assuming that Low is able
to observe the runtime of this process, and read_from_high() always takes the same
amount of time, Low can learn information about the degree of correctness of their guess.
The longer the program runtime, the closer their guess is to being correct and thus the more
information they learn about the value of password.

Notably there is no output from this program. Outputting the result (correct or incorrect)
would in itself leak information about the value of password.

2.3 Self-Composition

Self-composition (Barthe et al. 2011), as the name suggests, involves composing a program
with itself in such a way as to provide the two executions with the same Low inputs but
differingHigh (secret) inputs; the Low outputs can then be compared to check that theymatch
(indicating non-interference). This approach is used by side-channel fuzzers (discussed in
Section 3.1), aswell as themodel checking approach thatwe compare against in the evaluation
of LeakFuzzer. Self-composition is useful as it can convert a hypertest into a single test. See
the following example where the input parameter public is classified as Low and secret
is High:

1 int isLarge(int public, int secret) {
2 // do some stuff here, does not matter what
3 ...
4 if (secret > 2) return 1; else return 0;
5 }

To implement the self-composition approach we would create the following wrapper
function that compares the output of isLarge with two different secret values:

1 int selfComposedIsLarge(int pub, int sec1, int sec2) {
2 assert(isLarge(pub, sec1) == isLarge(pub, sec2));
3 }

Any testcase for the wrapper function that causes the assertion to fail here, for example 〈
pub = 0, sec1 = 1, sec2 = 3 〉, is a witness to the insecure flow of secret infor-
mation in isLarge. Essentially self-composition allows a hypertest to be performed with a
single testcase (given a wrapper function), thus allowing it to be used by techniques that do
not natively support hypertesting.

2.4 Fuzzing

Fuzzing is program testing technique. Generally it is considered a system testing technique,
but could be applied to smaller units, and is generally appliedwith the intention of discovering
security vulnerabilities. The term fuzzing dates back to at least 1990 (Miller et al. 1990). At
its core, it is closely related to random testing and the process is orchestrated by a tool called
a fuzzer. The fuzzer is responsible for generating test cases, executing them and watching
for crashes within the program. The term fuzzing campaign is used to refer to the fuzzing

123

Empirical Software Engineering (2025) 30:22 Page 7 of 28 22

process from start to finish. These fuzzing campaigns run for a long time, regularly at least
24 hours (Klees et al. 2018), but often much longer (Moroz 2019).

Like software testing in general, there are 2 opposing top-level approaches to building a
fuzzer: a black-box approach which has no knowledge of the SUT’s (System Under Test)
internal structure and state, whereas a white-box approach uses program analysis to improve
exploration of program behaviours. An example black-box fuzzer is Zzuf (Hocevar 2007),
the key advantage of the black-box approach is that test cases can be generated with virtually
no overhead and fuzzing speed only depends on the program runtime. An example white-box
fuzzer is SAGE (Godefroid et al. 2012) which leverages symbolic execution to allow it to
systematically test different execution paths; this process suffers from the typical limitations
of symbolic execution, which limits scalability. Indeed some of the approaches based around
fuzzing are incredibly complicated, take for example DriFuzz (Shen et al. 2024), which uses
concolic execution to figure out how to successfully initialise hardware device drivers; these
drivers are executed inside of a full system emulation (using QEMU Bellard 2005).

There is one further class of fuzzer, lying between black-box and white-box classes is the
aptly named grey-box class, one of the most well known is American Fuzzy Lop (Zalewski
2014) (AFL) and its updated relativeAFL++ (Fioraldi et al. 2020).AFL instruments the binary
for the SUT in such a way as to receive coverage information detailing which branches were
run in an execution; testcases are mutated and mutations run, with the fuzzer storing any
that lead to new coverage in a queue for further mutation. Using this queue-based mutation
approach, AFL is able to explore a wide range of the SUT’s behaviours without the program
size and complexity constraints of a white-box fuzzer. AFL includes a compiler pass for
LLVMthat generates and inserts the necessary instrumentation (but can compile onlyC/C++),
but it is also capable of fuzzing uninstrumented binaries using its built in QEMUmode. There
are many extensions to AFL to support Python, Rust, JavaScript, Java, Swift, OCaml and
.net (Google 2019).

2.5 Sanitizers

Whilst fuzzing primarily aims to detect crashes in programs,modifications can bemade to the
program under test to allow for a broader range of errors to be detected. One of the simplest
ways to achieve this is to add assert statements that trigger a crash whenever a bad state is
reached.

There is a family of these error detectors included in the LLVM compiler infrastructure
referred to as sanitizers (Google 2011). As such, they are compiled into the program under
test and doing this is usually as simple as adding a compilation flag for C and C++ programs.
When an error is detected by the sanitizer at runtime, the program is crashed and thus the
error detected by the fuzzer. The sanitizer dumps useful information such as stack trace and
other details before exiting, which aids in the debugging process later on.

AddressSanitizer detects addressability related memory issues such as use after free,
buffer overflows and use after scope; it also includes LeakSanitizer which detects memory
leaks. ThreadSanitizer detects data races and deadlocks, MemorySanitizer detects use of
uninitialised memory and UndefinedBehaviourSanitizer detects undefined behaviour such as
integer overflow and bitwise shifts out of bounds. DataFlowSanitizer is an implementation
of dynamic taint analysis, which requires modifying the test program to insert API calls to
label data and check for label propagation.

123

 22 Page 8 of 28 Empirical Software Engineering (2025) 30:22

3 RelatedWork

3.1 Fuzzing Applied to Side-Channel Leakage

Fuzzing has been applied to side-channel leakage detection, firstly in 2019 by a tool called
DifFuzz (Nilizadeh et al. 2019). DifFuzz works on Java programs, and makes use of self-
composition. It executes the target program with two differing secret inputs, and counts the
number of JVM (Java virtual machine) bytecode instructions executed in each case; if these
differ then it is flagged as a timing leak. A follow on paper of DifFuzz is QFuzz (Noller
and Tizpaz-Niari 2021), which also provides an estimate on the quantity of confidential
information leaked through the timing side-channel.

A 2020 paper describes a fuzzing tool—ct-fuzz (He et al. 2020)—for detecting side-
channel leakage in C and C++ programs. Like DifFuzz, it uses self-composition, but has a
more complex model for estimating runtime: firstly it checks that both executions follow
the exact same path, and additionally a CPU cache model is used to determine whether any
differences in cache misses exist.

Another 2020 paper describes a fuzzing-based approach for detecting JIT-induced side-
channels in the JVM (Brennan et al. 2020). Here JIT refers to just-in-time compilation, which
is used to compile heavily used sections of code at runtime, speeding them up. Statistical
methods are used to determine the amount of secret information that can be learned from the
differences in execution time caused by the JIT compilation.

Note that the first three papers (Nilizadeh et al. 2019; Noller and Tizpaz-Niari 2021; He
et al. 2020) use models to estimate runtime differences, which can vary significantly between
hardware setups. The final paper (Brennan et al. 2020) overcomes this by using real execution
times combined with statistics, but would ideally still need each program to be tested on each
possible target hardware setup. In contrast to LeakFuzzer, none of these tools are able to detect
insecure information flows to program output, as the detection of side-channel leakage is a
fundamentally different problem.

3.2 Quantified Information Flow

There is a body of work on static or dynamic analysis for measuring the size of insecure
flows that began with Clark et al. (2007). Detecting an insecure flow and measuring one
are two different things, but depending on the algorithm for measuring it, they can overlap.
Heusser’s work falls into this category (Heusser and Malacaria 2010) as does that of Biondi
mentioned above (Biondi et al. 2018) as well as the tool LeakiEst (Chothia et al. 2013).
These approaches either use static analysis and do not scale to larger programs (like CBMC
discussed below), or are dynamic but do not automatically generate inputs, like LeakiEst or
LeakWatch (Chothia et al. 2014).

3.3 Constraint Solving Approaches to Quantifying Information Flow

An alternative approach to LeakFuzzer is constraint based model checking, a formal verifi-
cation technique. In 2010, Heusser and Malacaria (2010) used the CBMC (Bounded Model
Checker for C) tool to provide a lower bound on the quantity of information leaked through
insecure flows in C programs, including evaluation on six real world programs (four of which
contained reported CVEs). The method described there iterates over guesses at the channel
capacity of an insecure flow so that an upper bound on it can eventually be found.

123

Empirical Software Engineering (2025) 30:22 Page 9 of 28 22

Integral to the process is that it discovers by constraint solving whether two or more
distinct outputs can be produced as a counter example to a channel capacity assertion by
providing the program with inputs that do not differ in their non-secret part.

A 2012 paper by Phan et al. (2012) used symbolic execution to quantify information
flow, in this case using Java Pathfinder (JPF), which as the name suggests operates on Java
bytecode programs. This technique is similar to that explained above, but was evaluated only
on fabricated example programs.

It is acknowledged that there are issues with scaling these verification techniques to work
with larger programs. A proposed solution is to approximate the model to reduce solving
complexity (Biondi et al. 2018), although so far this has only been implemented in a simplified
toy programming language.

3.4 Hypertesting

Recent papers on HyperGI, a technique that detect insecure flows and repairs them also use
hypertests (Mesecan et al. 2021, 2022). However, they do not have a method for automatic
hypertest generation.

4 LeakFuzzer

Formal verification techniques for discovering insecure information flows within programs
tend to suffer from an inability to scale, unlike software validation (testing) techniques.
However many validation-based approaches do not solve the problem of testcase generation,
which is a significant issue for programs accepting complex inputs. In comparison, fuzzing
is a validation technique that is noted for its ability to handle testcase generation, achieve
good program exploration and scale well to large programs. Here we present LeakFuzzer, a
fuzzing-based tool developed with the goal of providing automated, scalable insecure flow
detection.

LeakFuzzer is based on the popular AFL++ fuzzer (Fioraldi et al. 2020), and as such
contains all of the basic components of a standard grey-box fuzzer as used for finding reg-
ular program errors; these are shown in black in Fig. 2. There is an input queue that stores
‘interesting’ inputs; in LeakFuzzer’s case this is unmodified from AFL++, whereby an inter-
esting input is one that previously achieved unseen program coverage and therefore should
be mutated further to generate new inputs by the mutation engine. The forkserver creates
instances of the system under test (SUT), feeds them the mutated inputs and collects cover-
age information. Finally, the decision engine receives the coverage information and decides
whether this input is ‘interesting’ and thus should be stored in the input queue.

We have made a number of architectural modifications and additions in order to detect
a new class of error: insecure flows. The conceptual changes are shown in green in Fig. 2.
Firstly, program output is fed back through the forkserver to the decision engine. Secondly the
decision engine has beenmodified to process program output and store input pairs that expose
insecure flows. Finally, the mutation engine has been modified as described in section 4.2.

LeakFuzzer is able to detect a superset of the errors that AFL++ can. The hypertesting
approach used in LeakFuzzer can be generalised to test for any hyperproperty, and we call a
fuzzer that implements such an approach a hyperfuzzer. Note that in the following sections
a simple security policy is assumed, with two classifications secret and public, where secret
is of a higher classification than public.

123

 22 Page 10 of 28 Empirical Software Engineering (2025) 30:22

Fig. 2 High-level architectural overview of a grey-box fuzzer (black), with additions for LeakFuzzer (green)

4.1 Hypertesting Approach

By storing a map from program inputs to outputs LeakFuzzer only needs to run each input
once. This contrasts with the efficiency of methods that use self-composition (discussed in
section 2.3) to achieve hypertests. Suppose that there are N distinct High labelled values in
the test set. For each possible Low labelled input, self composition must in the worst case
explore a space of C N

2 explicit pairs, i.e. O(N 2), as opposed to LeakFuzzer’s exploration of
a space of at most O(N).

In order to illustrate this, let’s consider this simple program which takes no public inputs,
one secret input—a 2-bit unsigned integer int (taking values between 0 and 3 inclusive)—
and returns a value that is visible to public:

1 int isLarge(int secret) {
2 if (secret > 2) return 1; else return 0;
3 }

Using the self-composition approach we could create the following wrapper function:

1 int selfComposedIsLarge(int secret1, int secret2) {
2 assert(isLarge(secret1) == isLarge(secret2));
3 }

The six possible non-repeating inputs to selfComposedIsLarge are {0, 1},
{0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}. Of these, {0, 3}, {1, 3}
and {2, 3} cause the assertion to fail. This means that three out of the six (12) hyper-
tests expose the insecure flow from secret. Therefore if we were to sample hypertest pairs
uniformly, we would expect that two (1÷ 1

2) hypertests need evaluation before we detect the
flow. This means running isLarge four times; but it could potentially be as high as eight
times in the worst case (that is, the three hypertest pairs that do not detect the flow are chosen
first).

123

Empirical Software Engineering (2025) 30:22 Page 11 of 28 22

The approach taken by LeakFuzzer instead requires each input to be tested no more than
once by caching the output so that it can be compared against in future without needing to be
rerun. Caching outputs in full would require too much memory, hence we store 64-bit hashes
of program outputs alongside 64-bit hashes of the corresponding program public and secret
inputs. Hashes are capable of colliding, however for a 64-bit hash, collisions are unlikely
to effect a fuzzing campaign with 1 billion (≈ 230) or so inputs significantly. The XXH64
hash (4973 2014) is used due to it’s extremely high throughput. Not only can we store and
compare outputs for programs with large output spaces, but the comparisons can be done in
a single machine code instruction due to the size of the stored hashes. This sacrifices some
memory efficiency compared to naive self-composition—which requires no memory of past
inputs and outputs—in exchange for improved time efficiency as each input can be executed
just once.

A pseudocode listing of the insecure flow detection algorithm used by LeakFuzzer can
be found in Fig. 3, and line numbers in the following prose reference this figure. A hash
table is held in memory by LeakFuzzer, with the public input hashes used as keys, that map
to values consisting of a structure containing secret input hashes, output hashes and other
properties (lines 6–11). Using this hash table we can detect differences in output within pairs
of testcases where public inputs are identical, and secret inputs differ. This is sufficient to
infer that an insecure flow does occur.

This does not ensure that those output differences are not caused by some form of non-
determinism as opposed to being deterministically influenced by the secret input. To mitigate
this, LeakFuzzer stores any testcases that have resulted in a different output to other testcases
with an identical public input, reruns them 100 times and directly compares the output buffers
byte-by-byte, with any testcases that give flaky (inconsistent) outputs being discarded (lines
26–31). Any testcases that pass this flakiness test are stored in full in the hash table value’s
structure (line 36), and once a pair of non-flaky, output differing testcases has been found for
any public input hash then both are reported as an insecure hypertest pair and output to file
(lines 38–42).

4.2 Generating {Public, Secret} Input Pairs

The basis for LeakFuzzer, AFL++, has no awareness of the internal structure of inputs by
default, and as such generates only raw byte arrays. It is up to the fuzzing harness to parse
these byte arrays into a format that can be used by the program being tested. This is, at its
core, a similar process to deserialisation.

A naive approach to deserialising a fuzzer generated input into public and secret parts
could be taken if either the public or secret parts were of fixed length x. One could simply
read in the first min(input.length, x) bytes needed to fill the fixed length part, and then read
the remaining max(input.length − x, 0) bytes into the other part. If both parts are of fixed
length x and y bytes, then the min(input.length− x − y, 0) bytes beyond those required can
simply be discarded.

In the case that both input parts can be of variable length, then the fuzzer generated input
could be split in half, with the first part used as input for Low and the latter used as input for
High. Alternatively, the first 1 (or more) byte(s) could be interpreted as an integer x indicating
the length of the secret part of the input; the first x bytes after the length indicator would be
read into the secret input, and the remaining bytes (if any) read into the public input.

These simple approaches require no adaptations to the fuzzer, however the fuzzer has no
awareness of which parts of the generated input correspond to the public and secret inputs.

123

 22 Page 12 of 28 Empirical Software Engineering (2025) 30:22

Fig. 3 Pseudocode algorithm describing the hypertesting approach used by LeakFuzzer

123

Empirical Software Engineering (2025) 30:22 Page 13 of 28 22

In order to detect differences in output caused by insecure flows, inputs must only differ in
their secret parts. Without awareness of which parts of the input are secret, the fuzzer cannot
be certain of whether any observed differences are due to the public or secret parts of the
generated inputs.

In order to overcome this difficulty, LeakFuzzer is adapted to have oversight of public and
secret parts of generated inputs. This separation of input segments has several advantages.
First and foremost, it allows LeakFuzzer to determine whether output differences are caused
by insecure flows (assuming a fully deterministic program). Secondly, it allows for specific
targeting of mutations on either part of the input (as selected from the fuzzer input queue).

We have discussed why a hypertest exposing an insecure flow will have identical public
inputs, but differing secret inputs, so we may wish to schedule a period that mutates the
secret part of the input exclusively. Figure 4 shows the memory structure of the stored inputs,
a visualisation of the mutation phases and finally the encoded input exactly as it will be
provided to the SUT (note that fuzzing harnesses must decode this back into byte arrays, and
a utility function to do this is included with the LeakFuzzer source).

Fig. 4 Block diagram showing the internal and external representations of inputs in LeakFuzzer

123

 22 Page 14 of 28 Empirical Software Engineering (2025) 30:22

LeakFuzzer has three mutation phases targeting: the public part of the input, the secret
part of the input, and the entire input. All three strategies are used because any part of the
program input could decide whether a particular path is chosen, and branch conditions may
depend on some aspect of both the public and secret parts of the input. Note that the lengths
of both the public and secret parts can be altered by the mutations, and this is accounted for
in the fuzzer logic.

The set of available mutations that can be applied to each part of the input are unaltered
from AFL++, these are:

• bitflips: flip 1, 2 or 4 consecutive input bits
• byte-flips: flipping all bits in 1, 2 or 4 consecutive input bytes
• arithmetic mutations: adding or subtracting 8-, 16-, or 32-bit values from a set of con-
secutive input bytes

• interesting value substitutions: setting 1, 2, 4 or 8 consecutive input bytes to interesting
values such as 0, UNSIGNED_MAX, SIGNED_MAX, 1, -1 etc.

• dictionary substitutions: replacing input bytes with constant values that were collected at
compile time (for example from conditional expressions) – this is effective for breaking
through ‘magic value’ checks

• cloning: copy a random slice of the input and insert it somewhere in the input
• deletion: delete a random slice of the input
• splicing: select another input from the input queue, take a random slice of it; then either
replace part of the current input with this slice, or insert it somewhere in the current input.

These mutations are applied in a random order, as per the default for AFL++. Initially only
one mutation is applied to an input in order to generate a new input for execution. Once a
fuzzing campaign has fuzzed every queued input at least once, and has failed to discover any
new coverage for at least 60 minutes, then the number of applied mutations before execution
is increased by one – allowing the fuzzer to generate more diverse inputs, in the hope of
busting out of the current exploration plateau.

4.3 Handling Invalid Memory Reads

The following subsections detail the types of memory misusage that can lead to insecure
flows, and how LeakFuzzer can detect this.

4.3.1 Uninitialised Memory Reads

LeakFuzzer targetsCandC++programs, both ofwhich requiremanualmemorymanagement.
Oneof the consequences of this is that variables are not automatically initialised at declaration.
This uninitialised variable (section of memory) then contains the values that previously
occupied this section of memory; this information potentially contains secrets. One would
assume that this type of error is rare, however when using structs this mistake is much
easier to make. It is common to declare a struct instance, and then populate the member
values manually. This approach does avoid writing to each member twice (first to zero it,
then secondly to set it to the final value), however it also means that if the developer forgets
to set a member then this is left uninitialised. If this uninitialised value is then output from
the program, it can reveal secret information.

123

Empirical Software Engineering (2025) 30:22 Page 15 of 28 22

4.3.2 Out of Bounds Memory Reads

Closely related to uninitialised memory usage is out of bounds memory usage, as both can
cause insecure flows due to the reading of values that were not assigned to in the current
scope. Heartbleed was caused by data from out of bounds buffer access being copied to
program output. An additional source of these errors that can exist in C and C++ is the use
of memcpy with structs. This is due to memory alignment, which is done for performance
reasons. Take, for example, the following struct:

1 struct instruction_t {
2 char direction;
3 int distance
4 };

A tightly packed structure on a 64-bit machine (with 32-bit ints as per gcc) would take
up only 5 bytes: 1 byte for direction followed by 4 bytes for distance. However,
assuming a preference for 4-byte memory alignment, this struct would actually take up 8
bytes: 1 byte for direction, 3 bytes of padding to reach a 4-byte boundary, and 4 bytes
for distance. Naively serialising this struct to program output by using memcpy, the 3
bytes of uninitialised padding would also be output, potentially revealing secret information.

4.3.3 Solution

The fuzzing harness that is used to convert the raw byte-string generated by the fuzzer into
a form of input accepted by the program often runs only a single input through a slice of the
system. Asmemory pages are zeroed by theOS before being passed to the program process, it
is common that early uninitialised memory reads access these zeroed regions. The longer that
the program runs, themore common it is thatmemory is reused; and this is particularly the case
in long running interactive programs such asweb servers and databases. It is therefore possible
that invalid memory reads that lead to confidential information being output can go unnoticed
in these fuzzing harnesses, but would affect live long-running processes. Additionally, the
output would change depending on the previous value stored in that area of memory and thus
may appear to exhibit a form of non-determinism.

In order to allow for the detection of these potential insecure flows, LeakFuzzer uses a
technique to set internal program memory to a pattern of consistent non-zero values. To do
this, a portion of the generated secret input is used as a seed for a pseudorandom number
generator, and a sequence of bytes is generated using this (in the current implementation, 8
bytes). This sequence of bytes is then replicated, until it fills the process stack memory, by
a function within the initialisation phase of the fuzzing harness. Heap memory initialisation
is handled by a provided wrapper for the malloc function, this wrapper first allocates the
required memory plus an additional 8-bytes and then fills it with the repeated pseudorandom
byte sequence. The additional 8-bytes cause differing outputs in the case of buffer overreads.

By seeding the pseudorandom sequence from the secret input, it becomes possible for
LeakFuzzer to generate hypertests that can produce differing deterministic outputs due to
invalid memory reads and thus expose the insecure flow.

4.3.4 Worked Example: Heartbleed

Below is an abbreviated slice of the source code containing the Heartbleed bug:

123

 22 Page 16 of 28 Empirical Software Engineering (2025) 30:22

1 char *packet = ...; // array of bytes sent by the ‘public’ level user
2 unsigned int payload_length;
3 ...
4
5 // Read from the payload_length field from the request packet
6 n2s(packet, payload_length);
7 ...
8
9 // buffer stores the response packet
10 unsigned char *buffer, *bp;
11
12 // Allocate memory for the response, size is 1 byte
13 // message type, plus 2 bytes payload_length, plus
14 // payload_length, plus 16 bytes padding. Note that
15 // this buffer is never accessed out-of-bounds, instead
16 // it is ‘packet‘ that gets overread
17 output_buffer = OPENSSL_malloc(1 + 2 + payload_length + 16);
18
19 ...
20
21 // copy ‘payload_length‘ bytes from ‘pl‘ to ‘output_buffer‘ where:
22 // ‘pl‘ is a pointer to the payload within ‘packet‘
23 // and ‘output_buffer‘ is the buffer that will be returned to the user
24 memcpy(output_buffer + 3, pl, payload_length);
25
26 ...
27 OPENSSL_free(buffer);
28 // send the populated buffer back to the ‘public’ level user
29 r = ssl3_write_bytes(
30 s, TLS1_RT_HEARTBEAT, output_buffer,
31 3 + payload + padding
32);

The issue here is that on line 6, the value of payload_length is read from the public
input packet; this number of bytes is then copied to the public program output buffer
on line 24. The public user is able to set payload_length to a value between 0 and
65,535; and crucially, they can send a much shorter actual payload (say 1 byte), leading to
a buffer overread, the contents of which are then returned to them through public output on
lines 29–32. By default, LeakFuzzer uses a security policy which labels any internal program
memory that should not be returned to public as secret; in this particular case, the contents of
the response header, payload from packet, and padding bytes should be returned to public
in the response packet, but anything else should not be.

The contents of the buffer overread will be internal program memory; whatever happens
to be allocated in the memory following packet. In a freshly brought up system, as the
fuzzing harness is, it is likely that this memory has not yet been used and will contain
0s; in a long running server application, this memory could contain secrets such as login
request details or other confidential information. Note that OpenSSL is a library for allowing
secure communications, and as such is built in to many server-side applications. In the
case of a fuzzing harness whereby internal program memory is either zeroed or does not
change between executions (due to program state getting reset), sending a malformed packet
that triggers the Heartbleed bug many times would not result in any observable difference
in output. This is where the LeakFuzzer’s aforementioned techniques for handling invalid
memory reads come into play.

The packet variable is allocated on the heap by OPENSSL_malloc, the OpenSSL
project’s custom wrapper for malloc. The malloc call within the wrapper is replaced at
compilation time by LeakFuzzer, meaning that an extra 8-bytes are allocated and all of the
allocated bytes are populated with values generated from the secret input that LeakFuzzer
generated. Now when a malformed packet triggering Heartbleed is provided as public input,

123

Empirical Software Engineering (2025) 30:22 Page 17 of 28 22

Fig. 5 An example packet triggering Heartbleed. The top table shows the internal format of the heartbeat
request packet as sent by the client. The bottom table shows the memory layout of the allocated packet
buffer from line 1 of the code listing above; note that the memory after packet has not yet been allocated to
anything and is thus zeroed. Finally, the bottom line of text shows the output contents sent back to the client
(i.e. the output) in hex string form; no matter how many times the fuzzing harness is ran, this output will not
differ

the corresponding public output is affected by the values of those 8-bytes due to the buffer
overread. Producing a hypertest consisting of two inputs with matching public parts and
differing secret parts will demonstrate the insecure flow, as the outputs now differ.

From the above figures, we can see that the pair of tests: { public: 010009746573
74, secret: 0 } and { public: 01000974657374, secret: 22 } deter-
ministically produce different outputs01000974657374777F67FEFE and 010009746
57374917BFFD9F2 respectively.AsFig. 5 shows,withoutLeakFuzzer’s approach tomem-
ory handling, we would not be able to observe any difference in output (Figs. 6 and 7).

Fig. 6 The top table shows the memory layout of packet when allocated by LeakFuzzer, note the extra 8
bytes allocated after the end of packet and the repeating 8-byte pattern that has been used to initialise the
memory. The bottom table shows the memory layout after it has been populated with the contents of the sent
packet; note that bytes 0-6 are unchanged from Fig. 5, but 7-14 are now non-zero. The program output now
differs compared to Fig. 5; but does not change if the fuzzing harness is reran with the same secret input (0)

123

 22 Page 18 of 28 Empirical Software Engineering (2025) 30:22

Fig. 7 The top table again shows the memory layout of packet when allocated by LeakFuzzer, this time a
different secret input, 22, was provided and hence a different repeating 8-byte pattern generated. The bottom
table shows the memory layout after it has been populated with the contents of the sent packet; again bytes
0-6 are unchanged from the previous figure, but 7-14 differ. The program output differs compared to Fig. 6
due to the different secret input values (22 and 0)

5 Evaluation and Results

Having described LeakFuzzer and how it works, in this section we evaluate how well it
performs against faults that cause insecure flows in the benchmark software suite we have
assembled. We assess the usual questions of efficacy and efficiency. We then evaluate how
well its performance compares to a representative sample of available tools that can be used
to detect insecure flows.

5.1 Research Questions

RQ1: How many known insecure flows in our SUTs are discovered by LeakFuzzer?

We seek to answer efficacy permissively, by the percentage of SUTs in which the known
error is found in at least one of the 20 24-hour runs.

RQ2: In what proportion of runs does LeakFuzzer detect insecure flows within a standard
24-hour fuzzing budget?

Here we seek to determine the efficiency of LeakFuzzer by considering the mean time to
discovery and the proportion of runs that detect leakage of confidential information within a
standard fuzzing campaign budget of 24 hours.

RQ3: How efficacious and efficient is LeakFuzzer in comparison with existing practical
approaches that can detect insecure flows?

We compare with three tools: MemorySanitizer, DataFlowSanitizer, and the C Bounded
Model Checker (CBMC). We compare the results using the same metrics as used in RQ1 and
RQ2 for all three tools. Additionally we look at measurements of memory usage.

First we discuss the creation of the benchmark suite.

5.2 Secure Information Flow Faults (SIFF) Benchmark Suite

No benchmark suite for insecure flows in C and C++ was available to our knowledge. Hence
we created SIFF, a secure information flow faults repository that contains programs together
with fuzzing harnesses, initial fuzzing seeds and example insecure flow exposing hypertests.

123

Empirical Software Engineering (2025) 30:22 Page 19 of 28 22

Information flow control issues are difficult to find in known issue databases due to the
language used to describe them. Typically they are referred to as information leaks, however
the word leak is overloaded and could refer to memory leaks, resource leaks or confidential
information leaks, with the former two being more prevalent in C and C++ programs. In total
we have included 12 distinct programs, of which 9 are taken from confirmed CVE reports
and others are example programs taken from existing work. Implicit and explicit flows are
represented in the program suite as well as memory management and design issues. It also
has examples of different sized SUTs and a mixture of kernel and user space programs.
In addition, the SUTs have variety in input types including byte strings, human readable
formats and SQL queries. The programs taken from CVE reports span errors from 2007 to
2022. We have taken all of the programs containing CVEs from the work using CBMC to
detect information leaks (insecure flows)(Heusser and Malacaria 2010). The repository is
publicly available for reuse in future research.

A fuzzing harness has been constructed for each individual program. The OpenSSL-
1.0.1f fuzzing harness was modified from the version contained in fuzzer-test-suite (Google
2016). Additionally, when testing usingAFL++ based systems, the PostgreSQLprogramuses
the AFL++ Grammar Mutator ((h1994st) 2020) plugin to generate SQL statements from a
provided grammar. This is because the standard mutation engine struggles to generate valid
statements even when provided with many seeds (Table 1).

All programs are written in C with the exceptions of Banking, Password Check and
Reviewers; these were originally written in Java and manually converted to C++.

Program Design Errors
Of the 12 programs, six contain insecure flows caused by program design error, where a flow
logic error causes the leakage. For these programs, there is explicit secret input, public input
and public output; the bug report allows us to construct a security policy for them.

5.2.1 Memory Mismanagement Errors

Four of the programs contain memory related errors and all are detected by LeakFuzzer. For
these we use a security policy whereby all user input is labelled public, all output is labelled
public, and any other internal program memory is labelled secret. In order to allow us to
populate the secret internal program memory from input, we use the techniques described in
section 4.3. The first of these is appletalk, this is a simplified version of the original bug taken
from a previous paper on measuring information leakage (Heusser and Malacaria 2010).
This reveals confidential information from stack memory within the Linux kernel, and is
caused by failure to initialise all members of a struct before returning the value to userspace.
OpenSSL-1.0.1f contains the infamous Heartbleed bug which revealed information by out-
putting internal program heap memory due to a buffer over-read. RDS (reliable datagram
sockets), sigaltstack and tcf_fill_node are also taken from the Linux kernel, with information
revealed from stack memory; again caused by failure to initialise all struct members. Finally,
sr9700_rx_fixup is taken from a Linux network driver which reveals information from heap
memory due to buffer over-read.

5.3 Testing Environment

All tests were run inside Docker containers based on the Ubuntu 20.04 distribution of Linux.
Fuzzing experiments were run with 10 fuzzing campaigns in parallel, each bound to a single

123

 22 Page 20 of 28 Empirical Software Engineering (2025) 30:22

Ta
bl
e
1

Pr
og

ra
m

de
ta
ils

fo
r
m
em

be
rs
of

th
e
Se
cu
re

In
fo
rm

at
io
n
Fl
ow

Fa
ul
ts
be
nc
hm

ar
k
su
ite

Pr
og
ra
m

N
am

e
Fl
ow

Ty
pe

L
oC

C
V
E
N
um

be
r

So
ur
ce

ap
pl
et
al
k

E
+
M

11
0

C
V
E
-2
00

9-
30

02
H
eu
ss
er

an
d
M
al
ac
ar
ia
(2
01

0)
,K

le
ba
no
v
et
al
.(
20

13
)

B
an
ki
ng

I
+
PD

15
0

–
H
am

an
n
et
al
.(
20

18
)

cp
us
et

E
+
PD

82
C
V
E
-2
00
7-
28
75

H
eu
ss
er

an
d
M
al
ac
ar
ia
(2
01

0)

N
et
w
or
kM

an
ag
er

E
+
PD

18
,1
85

C
V
E
-2
01

1-
19

43
–

O
pe
nS

SL
-1
.0
.1
f

E
+
M

27
9,
46

6
C
V
E
-2
01

4-
01

60
G
oo

gl
e
(2
01

6)

Pa
ss
w
or
d
C
he
ck

I
+
PD

11
7

–
H
am

an
n
et
al
.(
20

18
)

Po
st
gr
eS

Q
L

E
+
PD

90
5,
26

4
C
V
E
-2
02

1-
33

93
–

R
D
S

E
+
M

94
,2
48

C
V
E
-2
01

9-
16

71
4

–

R
ev
ie
w
er
s

I
+
PD

14
5

–
H
am

an
n
et
al
.(
20

18
)

si
ga
lts
ta
ck

E
+
M

14
1

C
V
E
-2
00
9-
28
47

H
eu
ss
er

an
d
M
al
ac
ar
ia
(2
01

0)

sr
97

00
_r
x_

fix
up

E
+
M

43
9

C
V
E
-2
02

2-
26

96
6

–

tc
f_
fil
l_
no

de
E
+
M

81
0

C
V
E
-2
00

9-
36

12
H
eu
ss
er

an
d
M
al
ac
ar
ia
(2
01

0)

N
ot
e
th
at
Fl
ow

Ty
pe

is
ab
br
ev
ia
te
d
us
in
g
th
e
ke
y:

E
:e
xp
lic
it
flo

w
,I
:i
m
pl
ic
it
flo

w
,M

:M
em

or
y
is
su
e,
PD

:P
ro
gr
am

de
si
gn

is
su
e

123

Empirical Software Engineering (2025) 30:22 Page 21 of 28 22

CPU core. Model checking (CBMC) experiments were not run in parallel due to RAM space
being a common bottleneck. Tests were run on dedicated servers each equipped with 2 x Intel
Xeon E5-2620 v2 processors, making for a total of 12 cores (24 threads) at 2.10GHz, and
128GB RAM. As is common in the evaluation of fuzzers, each benchmark was fuzzed for
24 hours, though this time length does not produce definitive runs on large programs (Klees
et al. 2018).

Each experimental setup/run was repeated 20 times. The nature of the mutational engine
on the inputs is nondeterministic so different results may occur in different 24 hour runs.

6 Results

6.1 RQ1: Howmany known insecure flows in the set of benchmarks are discovered
by LeakFuzzer?

RQ1: How many known insecure flows in the set of benchmarks are discovered by
LeakFuzzer?

For all 12 programs, insecure flowswere detected in at least 40% of the runs. This includes
all flow types, in particular five of the six program design errors were detected in 95% or
more runs. Discussion on the cause of variability follows in RQ2.

LeakFuzzer finds every insecure flow in every program, but not in every run.

6.2 RQ2: In what proportion of runs does LeakFuzzer detect insecure flows within a
standard 24-hour fuzzing budget?

Each run used the same set of initial seeds. As can be seen in Table 2, even for the same
program, runtime before detecting the first insecure flow varied considerably due to non-
deterministic input queue and mutation selection strategies used in AFL++.

Table 2 Results for LeakFuzzer
on the SIFF benchmark suite

SUT % runs flow
detected

flow detected time (s)

Mean Std. Dev.

appletalk 100 175.23 250.49

Banking 100 1.48 1.25

cpuset 95 1.16 0.41

NetworkManager 100 228.01 141.43

OpenSSL-1.0.1f 75 40,141.11 21,129.60

Password Check 100 483.65 1,575.00

PostgreSQL 55 32,870.09 19,788.94

RDS 100 3,223.85 8,910.57

Reviewers 100 82.53 87.38

sigaltstack 100 55.42 17.65

sr9700_rx_fixup 40 16,530.35 27,442.28

tcf_fill_node 100 64.86 44.92

123

 22 Page 22 of 28 Empirical Software Engineering (2025) 30:22

The two most complex programs as measured by lines of code—OpenSSL-1.0.1f and
PostgreSQL—had the longest discovery times, as would be expected with an exploratory
approach such as fuzzing. LeakFuzzer took a surprisingly long time to discover the insecure
flow in sr9700_rx_fixup despite containing relatively few lines of code due to the part of the
input space that triggers the bug being very small. In this particular case there were 28 edges
that could be covered, and in 19 of the 20 runs 17 edges were covered; only 12 were covered
in the other run. As might be expected, the insecure flow was not detected in the run that
produced less coverage. As the other runs demonstrate, there is not a one-to-one relationship
between coverage and the discovery of insecure flows. We see a similar lack of correlation
between coverage and insecure flow discovery for both OpenSSL-1.0.1f and PostgreSQL.

It is likely that all fuzzing campaigns would have discovered insecure flows if left to run
for long enough; however within the 24-hour time limit imposed here the majority still
did.

6.3 RQ3: How does LeakFuzzer compare with existing approaches that could be
used to detect insecure flows?

Both MemorySanitizer (MSan) and DataFlowSanitizer (DFSan) were evaluated using a sim-
ilar fuzzing harness and input seeds. These setups were fuzzed by an unmodified version of
AFL++ for 24-hours each to provide a fair comparison against LeakFuzzer. Those programs
containing an insecure flow caused by a memory issue were evaluated with MSan, and those
containing a program design issue with DFSan (Table 3).

6.3.1 Memory Sanitizer (MSan)

As one of the LLVM sanitizers, MSan can be used in combination with fuzzing to detect
uninitialised memory usages. For this reason, it may be able to detect a proportion of the

Table 3 Results for AFL++ in combination with the two sanitizers on the SIFF benchmark suite

SUT Sanitizer % runs flow
detected

Flow detected time (s)

Mean Std. Dev

appletalk MSan 0 – –

banking DFSan 0 – –

cpuset DFSan 100 0.12 0.11

NetworkManager – – – –

OpenSSL-1.0.1f MSan 100 2377.47 2732.26

Password Check DFSan 0 – –

PostgreSQL DFSan 0 – –

RDS MSan 100 548.71 152.25

Reviewers DFSan 0 – –

sigaltstack MSan 100 330.78 225.23

sr9700_rx_fixup MSan 0 – –

tcf_fill_node MSan 100 101.96 85.25

123

Empirical Software Engineering (2025) 30:22 Page 23 of 28 22

insecure flows caused by memory mismanagement errors. It is worth noting that the presence
of uninitialised memory use does not necessarily imply that the program output will be
affected, thus there may not be confidential information revealed by many errors detected by
MSan. In order to determine whether a crash detected by MSan ‘detected’ an insecure flow,
the stack trace for each discovered error was manually inspected. If fixing said error would
eliminate the flow then it was considered to have been ‘detected’ in that run. Due to repeats
sharing the same executable, each unique crash (i.e. those sharing a stack trace) only needed
inspecting once.

The four programs containing insecure flows caused by memory mismanagement –
appletalk, OpenSSL-1.0.1f, RDS and sr9700_rx_fixup – were evaluated with MSan, as it
can potentially detect these. Of this subset, errors related to the known insecure flow were
discovered inOpenSSL-1.0.1f andRDS byMSan. It is likely that the error inOpenSSL-1.0.1f
was discovered much more quickly by MSan than LeakFuzzer as many inputs that trigger
the buffer over-read do not reach far enough in memory to result in disclosure of confidential
information. LeakFuzzer instead requires that there are discernible differences in output so
must find those inputs that trigger this behaviour. The error in RDS was also detected more
quickly by MSan, though not by such a significant margin.

6.3.2 DataFlowSanitizer (DFSan)

As it provides an implementation of taint analysis, DFSan is more closely related to informa-
tion flow control thanMSan.WhereMSan required no modification to the fuzzing harnesses,
for DFSan we added labels to the secret inputs and asserted that this label did not propagate
to the program output. Any input that resulted in the assertion failing was considered to have
discovered the insecure flow.

We had expected that DFSan would be unable to detect the three implicit flows due to
the fact that DataFlowSanitizer tracks only data flow and not control flow; this proved to be
the case in all runs. It was slightly less clear whether PostgreSQL would trigger an assertion
failure due to the secret values being stored into the database before being fetched in certain
queries that expose the insecure flow. As the database might write the values to disk and
retrieve from disk, we expect that any taint labels are lost in this process. It is also possible
that no query exposing the insecure flow was generated, however it seems unlikely that this
would be the case for all 20 runs given that LeakFuzzer succeeded in 11 of its 20 runs.
Whatever the cause, the results show that for the setup that we used, DFSan was unable to
detect the information flow from secret input to public output. Finally, we observe that the
error in cpuset is discovered very quickly by DFSan; this is a simple program, and is explored
by the fuzzer very quickly.

The NetworkManager benchmark is a better candidate for detection by DFSan than by
MSan, however as both require all dependencies to be compiled with sanitizer flags it was
not tested. Attempts were made to resolve all dependencies. However after significant time
was spent attempting to do this all the way down the stack too many issues were encountered
to consider going any further. Note that the ‘banking’, ‘password check’ and ‘reviewers’
benchmarks required building the C++ standard library from scratch too, though this was
managed in reasonable time.

6.3.3 C BoundedModel Checker (CBMC)

Model checking harnesses were created for each of the benchmarks to allow the model
checker to verify the presence of an insecure flow. An issue was encountered in building the

123

 22 Page 24 of 28 Empirical Software Engineering (2025) 30:22

Table 4 Results for CBMC on the SIFF benchmark suite

SUT % runs flow
detected

Flow detect time (s) Exit Cause

Mean Std. Dev

appletalk 100 0.29 0.10 Success

cpuset 100 1.21 0.38 Success

NetworkManager 0 – – Segfault

OpenSSL-1.0.1f 0 – – Timeout

PostgreSQL 0 – – Timeout

RDS 0 – – OOM

sigaltstack 100 0.17 0.013 Success

sr9700_rx_fixup 0 – – Timeout

tcf_fill_node 0 – – Timeout

‘banking’, ‘password check’ and ‘reviewers’ benchmarks, as these are written in C++. This is
due to a known issue that CBMC parser “does not handle more modern and template-heavy
C++, this means it often runs into problems with parts of the standard library” (tegansb and
Schwartz-Narbonne 2020). As a result, themodel checker was evaluated on the 7 benchmarks
written in C (Table 4).

Three of the smallest benchmarks—appletalk, cpuset and sigaltstack—finished quickly
and CBMCmanaged to find a counterexample falsifying the assertion. In two of these cases,
it was able to detect the insecure flow faster than LeakFuzzer on average. LeakFuzzerhad a
meandiscovery timeof 175.23s and0.17s for appletalk and sigaltstack respectively, compared
to 0.29s and 0.17s for CBMC.

CBMC struggled with larger programs as again a 24-hour time limit was imposed, leading
to four subjects consistently exiting before the model checker was finished (marked in the
table as ‘timeout’). Note that tcf_fill_node timed out in our CBMC experiments, whereas it
did not in the CBMC approach’s original evaluation (Heusser and Malacaria 2010). In the
original paper they explain that they use a simplified version of the kernel code but do not

Table 5 Table of results for
Memory Usage

SUT Mean Memory Usage (MiB)
LeakFuzzer AFL++ CBMC

appletalk 2,671.68 28.73 19.13

banking 22,699.78 28.80 –

cpuset 1,926.38 28.74 12.22

NetworkManager 1,622.63 28.27 1,633.14

OpenSSL-1.0.1f 3,196.45 37.75 66,685.88

Password Check 603.52 29.03 –

PostgreSQL 710.54 4.27 7,734.69

RDS 7,433.65 32.30 127,203.04

Reviewers 423.30 36.76 –

sigaltstack 4,927.68 30.50 19.06

sr9700_rx_fixup 5,949.39 205.25 22,477.16

tcf_fill_node 2,928.99 30.50 29,630.58

123

Empirical Software Engineering (2025) 30:22 Page 25 of 28 22

provide their source code. We instead simply isolate the slice of code without simplifying it,
which may explain why our benchmark version does not successfully complete. In the case
of RDS, the 128GB of memory available on the evaluation hardware was exhausted causing
an out of memory (OOM) early exit. Finally, when attempting the verify NetworkManager,
CBMC would exit due to a segmentation fault within the model checker itself.

The formal verification approach was faster in the instances where it managed to resolve
however, as has been found in prior works, it fails to scale well enough to work on the larger
programs (Table 5).

6.4 Memory Usage Comparison

One of the concerns with storing information about every tested input in LeakFuzzer as
described in section 4.1 is the potential memory usage. As can be seen, over the 24 hour runs,
memory usage of LeakFuzzer is certainly much higher than AFL++ with the sanitizers, but
typically lower than CBMC in the long running test cases. None of the 200 LeakFuzzer runs
ran out of memory on the evaluation machine equipped with 128GB RAM.

LeakFuzzerwas able to detect the insecureflow in all 12 of the programs in someproportion
of the 24-hour runs. The combination of AFL++ with the sanitizers was able to detect
insecure flows in five subjects, and CBMC was able to detect flows in just three subjects.
Of the 12 programs, insecure flows were detected by all methods in just two: cpuset and
sigaltstack. Additionally, LeakFuzzer has been shown to use more memory than AFL++
as expected, however generally less than CBMC, and there were no issues with memory
exhaustion in our tests.

7 Conclusions and FutureWork

We have presented LeakFuzzer, a fuzzer-based hypertesting approach to detecting leakage
of confidential information, and proven its ability to do so on a varied range of benchmarks
including seven information leakage related CVEs. It has outperformed a combination of
state of the art existing insecure flow detecting techniques, and demonstrated its ability to
scale to real-world systems of considerable size. It inherits the advantages of the type fuzzers
on which it is based, most notably scalability, coverage and automated input generation.
Because it stores more data than a conventional fuzzer, it uses more memory though this was
not a problem in our evaluation experiments.

In the future, we hope to extend LeakFuzzer to handle programs written in other pro-
gramming languages, where sanitizers are not available. Additionally we plan to quantify the
flows to allow for application to a broader range of programs, such as password checkers,
that need to reveal some amount of confidential information in order to function usefully.

Acknowledgements Daniel Blackwell was supported by UK EPSRC grant no. EP/S022503/1.

Data Availability A replication package including results of the evaluation in this paper is freely available at
https://figshare.com/s/fa143b65420ab7ab1e3c.

Declarations

Conflicts of interest The authors declared that they have no conflict of interest.

123

https://figshare.com/s/fa143b65420ab7ab1e3c

 22 Page 26 of 28 Empirical Software Engineering (2025) 30:22

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

(h1994st) SH (2020) Grammar Mutator - AFL++. https://github.com/AFLplusplus/Grammar-Mutator
4973 C (2014) xxHash. https://github.com/Cyan4973/xxHash
Barthe G, D’argenio PR, Rezk T (2011) Secure information flow by self-composition. Math Struct Comput

Sci 21(6):1207–1252
Bell DE, LaPadula LJ (1973) Secure computer systems: mathematical foundations. Technical report, MITRE

CORP BEDFORD MA
Bellard F (2005) Qemu, a fast and portable dynamic translator. In: USENIX annual technical conference,

FREENIX track, vol 41. Califor-nia, USA, pp 10–5555
Biondi F, EnescuMA, Heuser A, Legay A,Meel KS, Quilbeuf J (2018) Scalable approximation of quantitative

information flow in programs. In: International conference on verification, model checking, and abstract
interpretation. Springer, pp 71–93

Brennan T, Saha S, Bultan T (2020) Jvm fuzzing for jit-induced side-channel detection. In: Proceedings of the
ACM/IEEE 42nd international conference on software engineering, pp 1011–1023

Chothia T, Kawamoto Y, Novakovic C (2013) A tool for estimating information leakage. In: Sharygina N,
Veith H (eds) Computer aided verification. Springer, Berlin, Heidelberg, pp 690–695

Chothia T, Kawamoto Y, Novakovic C (2014) Leakwatch: estimating information leakage from java programs.
In: Kutyłowski M, Vaidya J (eds) Computer Security - ESORICS 2014. Springer, Cham, pp 219–236

Clark D, Hunt S, Malacaria P (2007) A static analysis for quantifying information flow in a simple imperative
language. J Comput Secur 15(3):321–371

ClarksonMR, Schneider FB (2008)Hyperproperties. In: 21st IEEEComputer security foundations symposium
Denning DE (1976) A lattice model of secure information flow. Commun ACM 19(5):236–243
Fioraldi A, Maier D, Eißfeldt H, Heuse M (2020) {AFL++}: combining incremental steps of fuzzing research.

In: 14th USENIX workshop on offensive technologies (WOOT 20)
GodefroidP,LevinMY,MolnarD (2012) Sage:whitebox fuzzing for security testing.CommunACM55(3):40–

44
Goguen JA, Meseguer J (1982) Security policies and security models. In: 1982 IEEE symposium on security

and privacy, pp 11–11. https://doi.org/10.1109/SP.1982.10014
Google (2011) sanitizers. https://github.com/google/sanitizers
Google (2016) fuzzer-test-suite. https://github.com/google/fuzzer-test-suite
Google (2019) afl-based-fuzzers-overview.md. https://github.com/google/fuzzing/blob/master/docs/afl-

based-fuzzers-overview.md
Hamann T, Herda M, Mantel H, Mohr M, Schneider D, Tasch M (2018) A uniform information-flow security

benchmark suite for source code and bytecode. In: Nordic conference on secure IT systems. Springer,
pp 437–453

He S, Emmi M, Ciocarlie G (2020) ct-fuzz: fuzzing for timing leaks. In: 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST). IEEE, pp 466–471

Heusser J, Malacaria P (2010) Quantifying information leaks in software. In: Proceedings of the 26th annual
computer security applications conference, pp 261–269

Hocevar S (2007) zzuf - multi-purpose fuzzer. http://caca.zoy.org/wiki/zzuf
Kinder J (2015) Hypertesting: the case for automated testing of hyperproperties. In: 3rd Workshop on hot

issues in security principles and trust (HotSpot)
Klebanov V, Manthey N, Muise C (2013) Sat-based analysis and quantification of information flow in pro-

grams. In: Quantitative evaluation of systems: 10th international conference, QEST 2013, Buenos Aires,
Argentina, August 27-30, 2013. Proceedings 10. Springer, pp 177–192

Klees G, Ruef A, Cooper B, Wei S, Hicks M (2018) Evaluating fuzz testing. In: Proceedings of the 2018 ACM
SIGSAC conference on computer and communications security, pp 2123–2138

123

http://creativecommons.org/licenses/by/4.0/
https://github.com/AFLplusplus/Grammar-Mutator
https://github.com/Cyan4973/xxHash
https://doi.org/10.1109/SP.1982.10014
https://github.com/google/sanitizers
https://github.com/google/fuzzer-test-suite
https://github.com/google/fuzzing/blob/master/docs/afl-based-fuzzers-overview.md
https://github.com/google/fuzzing/blob/master/docs/afl-based-fuzzers-overview.md
http://caca.zoy.org/wiki/zzuf

Empirical Software Engineering (2025) 30:22 Page 27 of 28 22

Mesecan I, Blackwell D, Clark D, CohenMB, Petke J (2021) Hypergi: automated detection and repair of infor-
mation flow leakage. In: 36th IEEE/ACM International conference on Automated Software Engineering
(ASE)

Mesecan I, Blackwell D, ClarkD, CohenMB, Petke J (2022)Keeping secrets:multi-objective genetic improve-
ment for detecting and reducing information leakage. In: 37th IEEE/ACM international conference on
automated software engineering, ASE

Metzman J, Szekeres L, Simon L, Sprabery R, Arya A (2021) Fuzzbench: an open fuzzer benchmarking
platform and service. In: Proceedings of the 29th ACM joint meeting on european software engineering
conference and symposium on the foundations of software engineering, pp 1393–1403

Miller BP, Fredriksen L, So B (1990) An empirical study of the reliability of unix utilities. Commun ACM
33(12):32–44

Moroz M (2019) google/AFL. https://github.com/google/AFL/blob/master/docs/status_screen.txt
Nilizadeh S, Noller Y, Păsăreanu CS (2019) Diffuzz: differential fuzzing for side-channel analysis. In: 2019

IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, pp 176–187
Noller Y, Tizpaz-Niari S (2021) Qfuzz: quantitative fuzzing for side channels. In: Proceedings of the 30th

ACM SIGSOFT international symposium on software testing and analysis, pp 257–269
Phan Q-S, Malacaria P, Tkachuk O, Păsăreanu CS (2012) Symbolic quantitative information flow. ACM

SIGSOFT Softw Eng Notes 37(6):1–5
Sabelfeld A, Myers AC (2003) Language-based information-flow security. Sel Areas Commun 21(1):5–19
Shen Z, Roongta R, Dolan-Gavitt B (2024) Drifuzz: harvesting bugs in device drivers from golden seeds
tegansb, Schwartz-Narbonne D (2020) github.com - diffblue/cbmc - Parsing Errors when compiling C++

#5489. https://github.com/diffblue/cbmc/issues/5489
Zalewski M (2014) american fuzzy lop (2.52b). http://lcamtuf.coredump.cx/afl/

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Daniel Blackwell

123

https://github.com/google/AFL/blob/master/docs/status_screen.txt
https://github.com/diffblue/cbmc/issues/5489
http://lcamtuf.coredump.cx/afl/

 22 Page 28 of 28 Empirical Software Engineering (2025) 30:22

Ingolf Becker

David Clark

123

	Hyperfuzzing: black-box security hypertesting with a grey-box fuzzer
	Abstract
	1 Introduction
	2 Background
	2.1 The Information Flow Control Problem
	2.2 Side-Channel Leakage
	2.3 Self-Composition
	2.4 Fuzzing
	2.5 Sanitizers

	3 Related Work
	3.1 Fuzzing Applied to Side-Channel Leakage
	3.2 Quantified Information Flow
	3.3 Constraint Solving Approaches to Quantifying Information Flow
	3.4 Hypertesting

	4 LeakFuzzer
	4.1 Hypertesting Approach
	4.2 Generating {Public, Secret} Input Pairs
	4.3 Handling Invalid Memory Reads
	4.3.1 Uninitialised Memory Reads
	4.3.2 Out of Bounds Memory Reads
	4.3.3 Solution
	4.3.4 Worked Example: Heartbleed

	5 Evaluation and Results
	5.1 Research Questions
	5.2 Secure Information Flow Faults (SIFF) Benchmark Suite
	5.2.1 Memory Mismanagement Errors

	5.3 Testing Environment

	6 Results
	6.1 RQ1: How many known insecure flows in the set of benchmarks are discovered by LeakFuzzer?
	6.2 RQ2: In what proportion of runs does LeakFuzzer detect insecure flows within a standard 24-hour fuzzing budget?
	6.3 RQ3: How does LeakFuzzer compare with existing approaches that could be used to detect insecure flows?
	6.3.1 Memory Sanitizer (MSan)
	6.3.2 DataFlowSanitizer (DFSan)
	6.3.3 C Bounded Model Checker (CBMC)

	6.4 Memory Usage Comparison

	7 Conclusions and Future Work
	Acknowledgements
	References

