Powering the circular economy with maximum metal recovery from printed circuit boards by machine learning and robust optimisation

Waqar Muhammad Ashraf¹, Prashant Ram Jadhao², Ramdayal Panda², Kamal Kishore Pant³, Vivek Dua¹

¹The Sargent Centre for Process Systems Engineering, Department of Chemical Engineering, University College London, UK ² Department of Chemical Engineering, Indian Institute of Technology, Delhi, India ³ Department of Chemical Engineering, Indian Institute of Technology, Roorkee, India

Problem Statement

Objectives

- ✓ Waste Printed Circuit Boards (WPCBs) cause environmental pollution [1] Innovating environmental-friendly solvents for metal recovery Leveraging ML & RO for process optimisation to maximise metal Current chemical solvents-based metal recovery is harmful for human recovery from WPCB operators and hazardous to the environment [2]
- ✓ Metal recovery is limited to trial-and-error experimental exploration
- ✓ Machine Learning (ML) and Robust Optimisation (RO) is rarely explored

Method

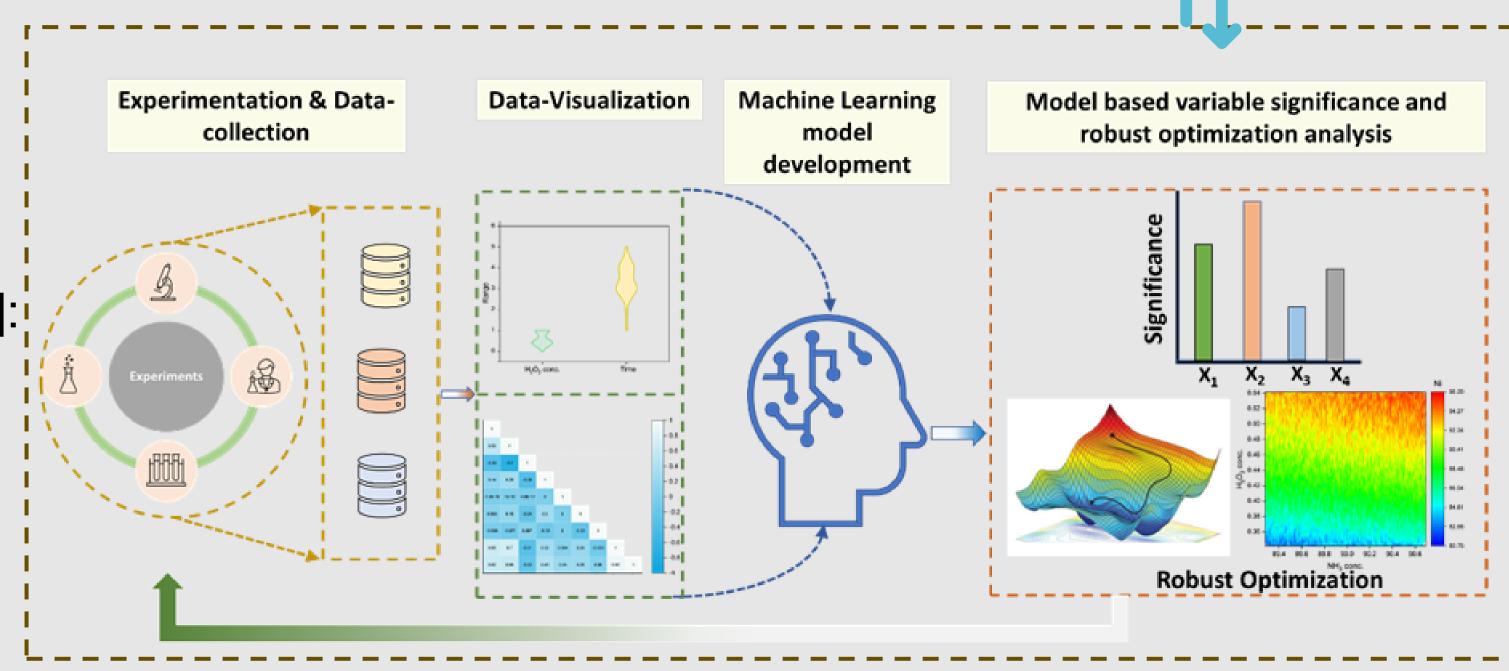
 \checkmark The design space of process variables are : NH₃ conc. (g/L) : 50 – 100, (NH₄)₂SO₄ conc. (g/L) : 100 – 200, H₂O₂

conc. (M): 0 – 1 M, Time (h): 1 – 4, L/S ratio (mL/g): 10 – 30, Temp. (°C): 40 – 100, Stirring speed (rpm): 300 – 900

- ✓ Artificial neural network (ANN) models are trained to predict Cu (%) and Ni (%) recovery
- ✓ Rigorous hyperparameters tuning is carried out to achieve the robust and generalize performance of ANN models
- ✓ Partial derivative-based % significance order of process conditions is as follows [3]: % Significance = $\frac{\sigma_{y_i|x_i}}{\sum_{i=1}^{c} \sigma_{y_i|x_i}^2}$

 $\sigma_{y_i|x_i}^2$ is square of the sensitivity values produced due to x_i

✓ Multi-objective function: f(x): max [$a f_{Cu}(x) + b f_{Ni}(x)$] subject to: h(x) = 0

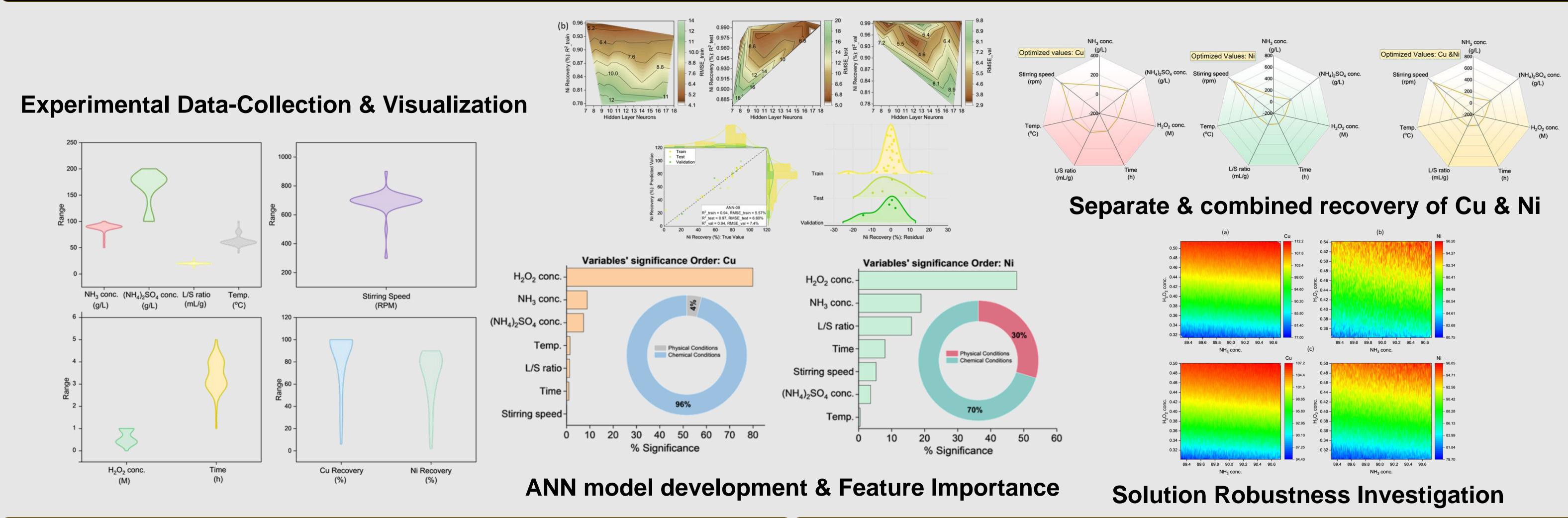

$$x = x_1, x_2, \dots, x_n, x \in X \subseteq \mathbb{R}^n \text{ and } x^L \leq x \leq x^U$$

✓ Mean function response is computed using Monte Carlo simulations as [4]:

$$F(x) = \frac{\sum_{k=1}^{H} f(x + \delta_k)}{H}$$

 \checkmark The estimated solution is robust if:

$$V(x) = \frac{\|F(x) - f(x)\|}{\|f(x)\|} < \epsilon$$



Reaction Mixture

Heating Mantl

 $- \times 100$

Results

Conclusions & Future Work

References

- ✓ ANN models for Cu & Ni are trained with accuracy more than 90%.
- \checkmark H₂O₂ conc. and NH₃ conc. are the two most significant variables affecting metal recovery from WPCBs
- ✓ 100% Cu and 90% Ni are recovered from WPCBs
- \checkmark 15.2 g and 62.6 g equivalent reduction in CO₂ are estimated for Cu and Ni recovery from 10 g
- ✓ The future work will make the digital platform hosting the metal recovery models to estimate the process design conditions

[1] Rajesh, R., D. Kanakadhurga, and N. Prabaharan, Electronic waste: A critical assessment on the unimaginable growing pollutant, legislations and environmental impacts. Environmental Challenges, 2022. 7: p. 100507

[2] Jadhao, P.R., et al., A sustainable route for the recovery of metals from waste printed circuit boards using methanesulfonic acid. Journal of Environmental Management, 2023. 335: p. 117581

[3] Ashraf, Waqar Muhammad, and Vivek Dua. "Artificial intelligence driven smart operation of large industrial complexes supporting the net-zero goal: Coal power plants." Digital Chemical Engineering 8 (2023): 100119.

[4] Mirjalili, S., A. Lewis, and J.S. Dong, Confidence-based robust optimisation using multiobjective meta-heuristics. Swarm and Evolutionary Computation, 2018. 43: p. 109-126

Sargent Centre	
for Process Syst	tems
Engineering	

Acknowledgements

The authors acknowledge the funding received for the project, "E-waste recycling: Development of green and sustainable technology for recovery of metals from electronic waste" from the UCL-IIT Delhi Strategic Partner Fund, award number MFIRP179.

Water Inle

Oil Bath