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Abstract

The spectral theory of Pseudo-Differential Operators (ΨDOs) with smooth

symbols is quite mature. Many aspects are well studied including asymp-

totic formulae of eigenvalues (see [4], [9], [14] and the references therein).

There are two types of results: those for unbounded ΨDOs (e.g. [14])

and those for compact ΨDOs [4]. We focus on the latter ones.

There are significantly more results for associated operators, for the case

when the symbol of a ΨDO is smooth, or when ΨDOs are defined on

modulation spaces. However, considerably less is known about the cases

with discontinuous symbols, even for the simplest type of discontinuity.

This work is devoted to spectral properties of compact ΨDOs OpW
1 (σ)

with a certain type of symbols, namely Weyl symbols with jump disconti-

nuity. These symbols are considered indicator functions σ = χΛ of given

bounded regions Λ in phase space.

The general goal is to understand how the rate of eigenvalues decay de-

pends on the geometry of the boundary ∂Λ.
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Impact Statement

The main impact of the dissertation is to Time-Frequency analysis where

ΨDOs of Weyl’s type are intensively studied. The operators we con-

sider in this work (those with symbols/signals equal to indicator func-

tions χΛ, i.e. concentrated in a localised domain Λ in the time-frequency

plane/phase space) are of interest to Signal Processing theory. For in-

stance, the asymptotic decay of eigen/singular values of such ΨDOs

(called time–frequency localisation operators in corresponding applied lit-

erature) determines the characteristics of time-frequency filters (see [7],

[11]).

In quantum mechanics, finding the exact upper and lower bounds of

quasi-probability integrals (1.2.1) leads to estimates of the maximal and

minimal eigenvalues of the corresponding ΨDO and is also of interest to

many researchers (see [21]). In 1988 Flandrin [7] conjectured that under

some conditions the quasi-probability integral does not exceed 1.

However, this conjecture was recently rejected by Delourme, Duyckaerts

and Lerner [2], and an explicit counterexample was provided. This re-

quired to study a bounded non-compact ΨDO (along with its eigenvalues)

with signal concentrated on the first quarter of the time-frequency space.

In the thesis we focus on the asymptotic behaviour of eigenvalues of an

operator similar to that in [2] but naturally adjusted to be compact. The

result of the study is an asymptotic formula (1.2.2) for the case when the

signal is concentrated on an angular domain (see Chapter 5), as well as

asymptotic estimates when we extend the domain to any polygonal re-

gion.

To achieve this, we develop some auxiliary techniques (see Chapter 3),

which can be presented as an independent result in time-frequency theory

and the second main result of the dissertation.
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Chapter 1

Introduction

1.1 General notations

Part A.

χΩ indicator function of Ω ⊆ Rd

∂Ω boundary of Ω ⊆ Rd

C∞
0 (Ω) space of smooth (infinitely differentiable)

functions on Ω with a compact support

W 2
2 (Ω) Sobolev space (of order 2) Section 4.1, p.60

of functions in L2(Ω)

⟨f, g⟩ inner product on L2(Ω) space

⟨x⟩ :=
√

1 + |x|2 Japanese brackets on Rd

ζδ(·) = ζ(·) smooth cut-off function Definition 3.2.6, p.42

DA domain of an operator A Section 4.1, p.60

A closure of an operator A

A∗ adjoint operator

ν±(A) deficiency indices of Definition 4.1.2, p.61

a symmetric operator A

8



1.1. GENERAL NOTATIONS 9

#(λ,A) spectral counting function of a Section 4.1, p.61

lower semibounded operator A

#(λ;V ; (a, b)) counting function of Section 4.1, p.61

one-dimensional Schrödinger

operator on (a, b) with potential V

n±(λ, σ) = n±(λ) spectral counting functions of a Definition 2.1.1, p.21

compact ΨDO with symbol σ

n(λ,A) number of singular values of a Section 4.1, p.61

self-adjoint compact operator A

exceeding λ

λ+k (T ) ( λ−k (T ) ) positive (negative) eigenvalues of Section 2.1, p.21

a self-adjoint compact operator T

sk(T ) singular values of a compact Section 2.2, p.24

operator T

lγ,∞, ∥ · ∥γ,∞ weak-lγ quasi-normed space Definition 3.1.1, p.31

and weak-lγ quasi-norm

lγ,∞(Lq)(Rd), weak lattice quasi-normed space Definition 3.1.2, p.32

∥ · ∥q,γ,∞ and weak lattice quasi-norm

lγ(Lq)(Rd) lattice quasi-normed space Definition 3.1.3, p.32

∥ · ∥q,γ and lattice quasi-norm

Sγ Schatten operator ideal class Section 2.2, p.24

Sγ,∞ weak-Schatten operator class Section 2.2, p.24

Sγ Weidl quasi-normed space Section 2.2.3, p.26,

Definition 2.2.9, p.27

F , F−1 Fourier and inverse Fourier Part B, p.10

transform
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1.1. GENERAL NOTATIONS 10

Opa
α(p) pseudo-differential operator with Part B, p.10

amplitude p

OpW
α (σ) pseudo-differential operator with Part B, p.10

symbol σ of Weyl’s type

Part B. Pseudo-differential operators and differential no-

tations

We use the following notation for the pseudo-differential operator on

L2(Rd) with amplitude p = p(x,y, ξ)

Opa
α(p)u(x) :=

( α
2π

)d ∫∫
R2d

eiα(x−y)ξp(x,y, ξ)u(y)dydξ (1.1.1)

If in addition p(x,y, ξ) = σ
(

x+y
2
, ξ
)
, we use the notation

OpW
α (σ) = OpW

α (σ(t, ξ)) := Opa
α

(
σ
(x+ y

2
, ξ
))
,

and p is called symbol of Weyl’s type.

Notations F and F−1 stand for the Fourier transform and the inverse

Fourier transform, respectively, defined by

F(f)(·) =
( 1

2π

) d
2

∫
Rd

f(t)e−it·dt, F−1(f)(·) =
( 1

2π

) d
2

∫
Rd

f(t)eit·dt.

To specify the arguments in the Fourier transform of functions of the

type f = f(x,y), where x,y ∈ Rd, we define

Fx→ξ[f(x,y)] := g(ξ,y),

where

g(ξ,y) =
( 1

2π

) d
2

∫
Rd

f(t,y)e−itξdt.

Notations Fy→ξ, F−1
ξ→x are defined accordingly.

Note, that if the amplitude p = p(x, ξ) (in this case p is called symbol),

Opa
1(p)u(x) = F−1

ξ→x

[
p(x, ξ)Fy→ξ[u(y)]

]
.

Consider a multivariable function f : Rd → R.

10



1.1. GENERAL NOTATIONS 11

The gradient of f(x) = f(x1, x2, ..., xd) is denoted by

∇f =
(
∂x1f, ∂x2f, ..., ∂xd

f
)
,

where we use a short notation for the partial derivative,

∂xj
f :=

∂f

∂xj
, j = 1, 2, ..., d.

To describe the control of the partial derivatives the following notation

is used ∣∣∇mf
∣∣ :=√√√√ ∑

0≤j1,j2,...,jd≤m
j1+j2+...+jd=m

∣∣∣∂j1x1∂
j2
x2 ...∂

jd
xdf
∣∣∣2.

For functions with more than one multidimensional variable, e.g. if f =

f(x, ξ) : Rd × Rd → R, consider the following notations

∇xf =
(
∂x1f(x, ξ), ∂x2f(x, ξ), ..., ∂xd

f(x, ξ)
)
,

∇ξf =
(
∂ξ1f(x, ξ), ∂ξ2f(x, ξ), ..., ∂ξdf(x, ξ)

)
,∣∣∇k

x∇m
ξ f
∣∣ =√√√√ ∑

0≤j1,j2,...,jd≤m, 0≤t1,t2,...,td≤k
j1+j2+...+jd=m, t1+t2+...+td=k

∣∣∣∂t1x1∂
t2
x2 ...∂

td
xd∂

j1
ξ1
∂j2ξ2 ...∂

jd
ξd
f(x, ξ)

∣∣∣2.

Part C. Asymptotic notations

Big-O and little-o notation.

Let
(
g(x;A)

)
A∈A be a parametric family (indexed by A ⊆ Rm) of real

valued functions g(x;A) on Ω ⊆ R.
We use the notation

g(x;A) = O(f(x;A)),

if g(x;A) = b(x;A)f(x;A), where for any fixed parameters (a1, a2, ..., am) =

A the function b(x) = b(x;A) is a bounded function on Ω.

Notation O(fk;A) is defined similarly.

Remark. Mostly, in the thesis we use notation O(f(x)) or O(fk), i.e. it

is clear what stands for the variable x (index k) and what stands for the

parameter aj.

Few exceptions, like sk(T ) = O(k−p), always have the form of a log-power

function with a parameter in the power, e.g. fk = ka1 loga2(k + 1).

11



1.1. GENERAL NOTATIONS 12

The notation o(f(x)), x→ x0, x0 ∈ R∪{∞}, stands for α(x)f(x), where
α(x) → 0, x→ x0.

If f is a parameterised function, o(f(x;A)) = α(x;A)f(x;A), where

α(x;A) → 0, x→ x0 for any fixed A.

Notations o(fn), o(fn;A), n→ ∞ are defined similarly.

Domination of functions.

Let
(
f(x;A)

)
A∈A and

(
g(x;A)

)
A∈Abe two parametric families (indexed

by A ⊆ Rm) of real valued functions on Ω ⊆ Rd.

Let Ao = (ai1 , ai2 , ..., ait), 1 ≤ i1 < i2 < ... < it ≤ m, be a list of some

parameters of A = (a1, a2, ..., am).

Notation f(x;A) ≲
Ao
g(x;A) is used if

|f(x;A)| ≤ CAo |g(x;A)|, x ∈ Ω, A ∈ A,

where CAo depends on Ao = (ai1 , ai2 , ...ait) only (does not depend on x

and other parameters aj, j /∈ {i1, i2, ..., it}).

f(x;A) ≲ g(x;A) means that there exists C > 0 such that

|f(x;A)| ≤ C|g(x;A)|, x ∈ Ω, A ∈ A.

For sequences (fn)n∈Zd , (gn)n∈Zd the notations fn ≲
Ao

gn and fn ≲ gn

are defined similarly.

Remark. Mostly, in the thesis A ⊆ Rm for some m, i.e. aj are real

numbers. However, sometimes parameter aj might stand for a set (e.g.

sk(OpW
1 (χΩ)) ≲

Ω
k−

3
4 in the proof of Corollary 3.2.4) or for a function

(e.g. sk(Tm) ≲m,a k
−m in Corollary 3.2.7).

Equivalence of functions.

Two real valued functions f and g are equivalent,

f(x) ∼ g(x), x→ x0 ∈ R ∪∞, if limx→x0

f(x)
g(x)

= 1.

12



1.2. MOTIVATION 13

1.2 Motivation

The study of time–frequency localisation operators OpW
1 (χΛ) (ΨDO with

Weyl symbol σ(t, ξ) = χΛ(t, ξ), Λ ⊆ Rt × Rξ) helps to investigate signal

energy concentration in Signal Processing. The operator establishes the

following connection with the quasi-probability distribution function, the

Wigner function W (·, ·) (see [8]), by

⟨OpW
2π(χΛ)u, v⟩ =

∫∫
χΛ(t, ξ)W (u, v)(t, ξ)dtdξ =

∫∫
Λ

W (u, v)(t, ξ)dtdξ

(1.2.1)

The properties of the quasi-probability integral 1.2.1 are important for

the signal energy distribution [7]. Unlike classical mechanics where the

value of the integral of the standard probability density function is always

between 0 and 1 (inclusive), in quantum mechanics the integration of

W (·, ·) may give a result which is negative or greater than 1.

Flandrin conjectured [7] that for any convex domain Λ the integral (1.2.1)

does not exceed 1 for any normalised v = u.

However, Delourme, Duyckaerts and Lerner in [2] rejected the hypothe-

sis by finding an eigenfunction of OpW
2π(χΛ) where Λ = {t ≥ 0, ξ ≥ 0} ⊆

Rt×Rξ is the first quarter in the phase space, corresponding to the max-

imal eigenvalue of the operator.

While in [2] Flandrin’s conjecture was invalidated via numerical argu-

ments, later Lerner in [12] provided a theoretical proof.

It turns out the bounds of the integral (1.2.1) coincide with the minimal

and maximal eigenvalues of OpW
2π(χΛ).

For some domains Λ (namely, concave cones on the phase space), Lerner

described the extreme values of the spectrum (see [12, Ch. 7]) and

made hypotheses about more general cases of convex regions.

13



1.2. MOTIVATION 14

The symbol of the main operator we consider in this work is the function

studied by Lerner, χ{t,ξ≥0}, multiplied by a function a(t, ξ) ∈ C∞
0 (R2),

i.e. a smooth compactly supported function. Unlike Lerner’s work [12]

where the norm of the bounded non-compact operator OpW
2π(χ{t,ξ≥0})

is studied, we focus on the asymptotic behaviour of eigenvalues of the

compact operator OpW
1 (a(t, ξ)χ{t,ξ≥0}).

The main goal of this work is to obtain asymptotic formulae and estimates

for the eigenvalues of operators when the signal is concentrated on a

polygonal domain and to develop tools for obtaining such formulae. In

particular, if Λ represents a bounded angular region in the phase space,

we prove that the kth positive (negative) eigenvalue

λ±k =
1

4π2
k−1 log(k + 1)

(
1 + o(1)

)
(1.2.2)

Splitting an arbitrary polygon Λ into triangles, we can obtain a weaker

result, λ±k = O(k−1 log(k+1)). However, (1.2.2) may be no longer be true

for any n−sided polygonal, since the method (to obtain an asymptotic

formula) introduced in Chapter 5 can be applied to signals the ”main

part” of which is the indicator function of an angular region only.

Generally, considering a compact operator OpW
1 (aχΛ) on L2(R), we notice

that the rate of decay of eigenvalues depends on the curvature of the

boundary ∂Λ.

If the boundary can be described by a straight line (i.e. we consider

symbol a · χΛ where Λ is a set {(t, ξ)|ξ ≤ c1t + c2}, the rate of decay is

O(k−1). For a polygonal boundary the rate does not exceed O
( log(k+1)

k

)
.

The ”angles in the boundary” slow down the decay comparing with the

case mentioned above, and it is not established yet if this estimate is

sharp.

Finally, when the curvature of the boundary becomes non-zero at least

at some points, the decay slows down even more and can reach ckk
− 3

4

where ck ∈ [t1, t2] ⊆ (0,∞) for annular regions [13, Prop. 10]. Ra-

manathan and Topiwala [13, Th. 9] proved the estimate O(k−
3
4 ) for

any C1-boundary.

The following paragraph describes existing methods and tools to estimate

singular values of compact ΨDOs (which implies the same estimates in

a self-adjoint case) and compares them with the toolkit proposed in this

work.

14



1.3. REVIEW OF EXISTING METHODS 15

1.3 Review of existing methods

Considering compact integral operators, there is a variety of methods to

estimate their singular values. One of the simplest approaches is to use

Hilbert-Schmidt (H-S) norms for appropriate operators, i.e. when the

kernel K is an L2-integrable function with ∥K∥2L2 =
∑
s2n, where sn are

singular values of the operator arranged in a non-increasing order (i.e.

s1 ≥ s2 ≥ ... ≥ sn > 0). This gives the estimate for the nth singular

value sn of the kind sn = o(n−1/2∥K∥L2). Unfortunately, this method

might give a rather rough estimate. However, sometimes it is convenient

to split the operator into several complementary parts, the “main body”

and the “remainder”. While the techniques used for the “main” part

differ, an appropriate estimate for the remainder part (usually it is an

operator with a kernel which is either discontinuous or has an unbounded

support) may be obtained with the help of the H-S norm, which might

give the best possible estimate particularly for the remainder part.

Another approach is to approximate the operator using a sequence of

finite rank operators and Satz III of Weyl’s paper [20]. This provides an

estimate of the form

n1/2sn ≤ ∥K −Kn∥L2 ,

where {Kn} are kernels of the operators in the approximation sequence

(i.e. Rank Kn ≤ n).

An advanced version of this approach was used in [13] where the authors

successfully applied the technique to the case when the symbol is the

indicator function supported on a domain with a smooth boundary.

It turns out (see [13, Th. 9]) that if the boundary of the region Λ

has a piecewise C1−boundary, then the kth eigenvalue can be estimated

λ±k = O(k−
3
4 ). The estimate is sharp when the boundary consists of

radial circles. However, it can be strengthened for some other regions.

Unfortunately, the finite rank approximation does not provide precise

estimates for other symbols (when the symbol is an indicator of a domain

other than an annular region). The approximation can be enhanced if

the uniform grid for the main part (which Ramanathan and Topiwala

used) is replaced with a more advanced one, for instance, the gradient

grid. Although this may provide a better result, it still does not give the

precise estimate we expect.

Rewriting the ΨDO as an integral operator in an equivalent (in some

sense) form can reduce the question to the case of smooth symbols where

relevant techniques are available (see [18], [4]). If the kernel K is sup-

ported on a compact set Ω, the degree l of its smoothness defines the

15



1.3. REVIEW OF EXISTING METHODS 16

order of the estimate [4, Ch.11, §8, Th.4, p.273],

sn = CΩ,l

(∫
Ω

∥K(·, y)∥2W l
2(Ω)dy

) 1
2 · o

(
1

n
1
2
+l

)
.

For kernels with unbounded support one can use other estimates, which

require certain regularity conditions of the symbol. In Section 3.2 we ex-

tend this estimate to a wider class of kernels (see Theorem 3.2.3). This

completely covers the result of Ramanathan and Topiwala in [13] as we

will see in Corollary 3.2.4.

Belonging to trace-ideal operator classes (Schatten classes Sp,Sp,∞) (see

Section 2 for notations) immediately implies polynomial estimates of the

type sn ≲ n− 1
p .

Some spectral estimates for ΨDOs with smooth symbols are obtained in

[18, Th. 2.5 - 2.7].

Sometimes the symbol σ = σ(t, ξ) is not necessarily smooth but belongs

to Lp(Rd × Rd) class.

In this case the following estimate holds (see [10, Th 2.2])

∥Opa
1(σ)∥Sq,∞ ≤ Cp∥σ∥p,

where 1
p
+ 1

q
= 1, p ∈ [1, 2].

However, the best estimate provided by this theorem is o(n− 1
2 ) when

p = 2 and the operator is Hilbert-Schmidt.

We focus on the case when the variables are separated,

i.e. σ(x, ξ) = f(x)g(ξ), where f and g belong to some specific functional

spaces. There are several known results.

For instance, if p > 2, f ∈ Lp(Rd) and g ∈ Lp
w(Rd), the weak-Lp−space,

the Cwikel (see [5]) theorem holds,

∥Opa
1(fg)∥Sp,∞ ≤ Cp · ∥f∥p · ∥g∥p,w.

Birman and Solomyak introduced a special lattice-norm class lp(Lq)(Rd)

to cover the case 0 < p < 2 (see [3, Th. 11.1]) and obtained the

estimate

∥Opa
1(fg)∥Sp ≤ Cp · ∥f∥2,p · ∥g∥2,p, (1.3.1)

where f, g ∈ lp(L2)(Rd) (see Chapter 3 for notations).

Simon in [15, Th. 4.6] extended the result above on so called weak-

lattice quasi-normed spaces (however restricting the interval of values

16



1.4. MAIN RESULTS 17

p). If one of the functions (for example, g) belongs to a weak quasi-

normed space, lp,∞(Lq)(Rd), then the following weak operator norm esti-

mate holds

∥Opa
1(fg)∥Sp,∞ ≤ Cp · ∥f∥2,p · ∥g∥2,p,∞, (1.3.2)

where f ∈ lp(L2)(Rd), g ∈ lp,∞(L2)(Rd), p ∈ (1, 2).

In this work we obtain a new result (Theorem 3.3.1), which covers Si-

mon’s result (see Remark 3.3.2), and extend the estimate above to a wider

interval, p ∈ (0, 2), and for a wider class of functions, namely, when both

f and g belong to possibly different weak-lattice quasi-normed spaces

lγ1,∞(Lq)(Rd) and lγ2,∞(Lq)(Rd), respectively. Unlike Simon’s estimate

(1.3.2), the operator is no longer in Sp,∞ (i.e. the estimate is weaker)

in the case when γ1 = γ2 (i.e. when f and g both belong to the same

weak-lattice space). To describe the asymptotic behaviour of the opera-

tor singular values, we consider Weidl operator classes Σf,p introduced in

Chapter 2. In the next paragraph we compare the obtained result with

the Simon’s estimate (1.3.2) in more details.

There is a spectral asymptotic formula for some types of ΨDOs obtained

by Dauge and Robert in [6]. However, his method and computations are

quite cumbersome. What we achieve below obeys his results, however

requires much simpler derivations. A different method is introduced,

which is independent from the approach of Dauge and Robert.

1.4 Main results

The main result refers to the Weyl discontinuous symbol of a special type

(indicator of an angular region) and can briefly be represented as

λ±k

(
OpW

1 (χ{(ξ,t) | ξ≤ct, t≥0}a(t, ξ))
)
=

1

4π2

log(k + 1)

k

(
1 + o(1)

)
(1.4.1)

where c ∈ R and a(·, ·) ∈ C∞
0 (R2).

The ΨDO OpW
1 (χ{(ξ,t) | ξ≤ct, t≥0}a(t, ξ)) is the main operator studied in

this work.

The estimate (1.4.1) is not a Schatten-wise estimate. While Schatten

operator classes Sp,∞ provide polynomial estimates O(k−1/p), the main

operator eigenvalues asymtotics can be described more precisely using

Weidl operator classes Sp consisting of the operators with singular val-

ues decay rate O(k−
1
p log−

1
p (k + 1)) (see Definition 2.2.3 in Section 2).

The spectral analysis of this operator requires some preliminary work and

some techniques for operators of the form Opa
1(f(x)g(ξ)). As mentioned

17



1.4. MAIN RESULTS 18

before, this was investigated in [4] and [15]. However these results are

not enough and we need to generalise them on a wider class of functions

f, g, the lattice (quasi-)normed spaces lp,∞(Lq)(R) introduced in Chapter

3.

In Theorem 3.3.1 we consider symbols which admit separation of vari-

ables.

If γ1, γ2 ∈ (0, 2), γ = max{γ1, γ2}, p(x,y, ξ) = f(x)g(ξ)

where f ∈ lγ1,∞(L2)(Rd), g ∈ lγ2,∞(L2)(Rd), then

sk
(
Opa

1(p)
)
≤ Cγk

− 1
γ log−

1
γ (k + 1) · ∥f∥2,γ,∞ · ∥g∥2,γ,∞, if γ1 = γ2,

and

sk
(
Opa

1(p)
)
≤ Cγ1,γ2k

− 1
γ · ∥f∥2,γ1,∞ · ∥g∥2,γ2,∞, if γ1 ̸= γ2.

Taking f and g equal to ζ(t)
t

or ⟨t⟩−1 = 1√
t2+1

we obtain

sk
(
Opa

1(fg)
)
= O(k−1 log(k + 1))

We call each of these four operators Opa
1(fg) the model operator.

It turns out the spectral analysis of the operator OpW
1 (χP ) where P refers

to a polygon in the phase space (along with the main operator), can be

reduced (see Chapter 5, Section 5.4) to the model operator.

Theorem 3.3.1 is an independent result and can be considered as the

secong main result of the work.

According to Remark 3.3.2 this theorem covers Simon’s result (1.3.2) and

generalises it for p = γ ∈ (0, 1] and also for the case when functions f

and g belong to different weak-lattice spaces.

The idea used in [15, Th. 4.6] repeats Cwikel’s approach (see [5, p.3])

of splitting the support of the symbol into two parts (split into dyadic

cubes each), which are described by inequalities

fn(x)gk(ξ) ≥ R (corresponding to the ”big” values of the symbol) and

fn(x)gk(ξ) < R (corresponding to the ”small” values of the symbol),

where fn, gk are the corresponding norms of f, g on the nth and kth dyadic

cube, respectively.

For the ”big” part, Simon uses the trace norm (∥ · ∥S1) estimate, which

might not exist in case p ∈ (0, 1]). For the ”small” part the Hilbert-

Schmidt norm (∥ · ∥S2) estimate is used, which diverges when both func-

tions lie in a weak-lattice space.

Unlike Simon’s idea, we split the support in a different way. Instead of

18



1.5. HOW THE PAPER IS STRUCTURED 19

the ”hyperbolic partition” we split separately function f and function g

into fR−, fR+ and gR−, gR+, respectively, where subscript R− refers to

the ”big” values and R+ to the small ones.

It turns out that for such ”rectangular” partition the Hilbert-Schmidt

estimate gives a more precise result. Moreover, for the ”big” part we use

Sq−norm estimate, q < γ, following (1.3.1), which, in case γ ≤ 1, gives

a more precise result than the trace-norm estimate in [15, Th. 4.6].

The combination of the smart partition and appropriately chosen auxil-

iary facts is the key ingredient leading to stronger results than the existing

ones.

1.5 How the paper is structured

In Chapter 2 we introduce notations of Weidl operator classes and state

the general result of the perturbation theory, Theorem 2.2.14, which al-

lows to state asymptotic formulae for the operators we study reducing

them to the model operators with a known asymptotic formula.

Chapter 3 consists of some generalisations of known results with focus

on Theorem 3.3.1 and Theorem 3.3.14.

Theorem 3.3.1 describes the case when the symbol p(x, ξ) = f(x)g(ξ),

where f ∈ lγ1,∞(L2)(Rd), g ∈ lγ2,∞(L2)(Rd) for some γ1, γ2 ∈ (0, 2). It

turns out that the ”weakest decaying function” dictates the estimate for

the singular value, i.e. sk ≲γ1,γ2 k
− 1

γ , where γ = max{γ1, γ2} and γ1 ̸= γ2.

Otherwise, when f and g have the same ”rate of decay”(i.e. γ1 = γ2 = γ)

sk ≲γ k
− 1

γ log
1
γ (1 + k).

In Theorem 3.3.14 we prove an auxiliary result of the reduction process.

Under certain restriction, the ΨDO with the Weyl symbol

p(x,y, ξ) = a(x+y
2
)b(ξ) belongs to the same trace-ideal class as the one

with the symbol p(x, ξ) = a(x)b(ξ).

The model operators we appeal to, OpW
1 (⟨t⟩−1⟨ξ⟩−1), OpW

1 (ζ(t)t−1⟨ξ⟩−1)

etc, are introduced in Remark 3.3.16.

Chapter 4 describes the theory of self-adjoint operators of a specific type

in terms of operator decoupling. These results help to establish asymp-

totic formulae for the model operator (see Chapter 5, Section 5.3).

The main chapter, Chapter 5, consists of the reduction process (from

the main operator (5.0.1) to the model operator OpW
1 (ζ(t)t−1⟨ξ⟩−1))

in terms of obtaining an asymptotic estimate (Lemma 5.1.4 and The-

orem 5.1.9) Using two different approaches (Dauge-Robert formula and

19



1.5. HOW THE PAPER IS STRUCTURED 20

Birman-Schwinger principle), we obtain the asymptotic formula (1.2.2)

in Sections 5.2 and 5.3, respectively.

20



Chapter 2

Weidl classes and

asymptotical formulae

2.1 Notations and auxiliary results

We denote the positive and negative eigenvalues of a compact self-adjoint

operator T by

λ+1 ≥ λ+2 ≥ . . . λ+k ≥ ... > 0 > ...− λ−k ≥ −λ−2 ≥ . . . ≥ −λ−1

counted with their multiplicities.

Consider a self-adjoint compact pseudo-differential operator T = OpW
1 (σ)

with real valued Weyl symbol σ.

We introduce the spectral counting and volume functions as follows.

Definition 2.1.1. Spectral counting functions n+, n− of a compact pseudo-

differential operator OpW
1 (σ) are defined by

n±(λ) = n±(λ;σ) :=
∣∣∣{k| ± λ±k ≥ λ}

∣∣∣.
Definition 2.1.2. Spectral volume function V+ : [0,∞) → [0,∞) of a

compact pseudo-differential operator is defined by

V±(λ; ) = V±(λ;σ) :=
1

(2π)d

∫
±σ(t,ξ)>λ

dtdξ.

We focus on V+, n+ functions, but the same results hold for the V−, n−

analogues.

Due to [6, Th. (1.3)] under some assumptions about the symbol σ

n+(λ;σ) = V+(λ;σ)(1 + o(1)), λ→ 0 + . (2.1.1)

21



2.1. NOTATIONS AND AUXILIARY RESULTS 22

Definition 2.1.3. Symbol σ satisfying (2.1.1) is called ”Weyl asymp-

totics symbol” (see [9, §9, p.67]).

The following lemma is an auxiliary result describing the connection be-

tween the asymptotic expansion of the counting function n±(λ) of the

operator OpW
1 (σ) and the sequence of its eigenvalues, λ±k .

Note that n±(λ
±
k ) = k. Hence, for any Weyl asymptotics symbol

V+(λ
+
k ) = k(1 + o(1)), k → ∞ (2.1.2)

A natural question is whether we can invert the formula below and under

what restrictions one can consider λ+k ∼ V −1
+ (k).

Lemma 2.1.4. Let f : (0,∞) → (0,∞) be a differential function satis-

fying
f ′(x)

f(x)
>
C1

x
(2.1.3)

for some constant C1 > 0 and for all x > 0.

Moreover, let (βk)k≥1 be a sequence of positive numbers such that βk → ∞
and

f(βk) = k(1 + o(1)), k → ∞.

Then

βk = f−1(k)(1 + o(1)), k → ∞,

where f−1 is the inverse function of f .

Proof. Since f(x) > 0 for all x > 0, we deduce f ′(x) > 0 from (2.1.3).

Thus, f is a strictly increasing function which has a differentiable inverse

f−1 with
(
f−1
)′
(k) = 1

f ′(x)
> 0 for any k and x such that k = f(x) > 0.

Moreover, the inverse function f−1 also obeys (2.1.3) but with another

constant. Indeed,

1

k
(
f−1
)′
(k)

=
f ′(x)

f(x)
>
C1

x
=

C1

f−1(k)
.

Thus, (
log f−1(·)

)′
(k) =

(
f−1
)′
(k)

f−1(k)
<

1

C1k
(2.1.4)

With the help of the Mean value theorem for f−1

βk = f−1(f(βk)) = f−1(k + o(k)) = f−1(k) + f−1(k + o(k))− f−1(k)

= f−1(k) +
(
f−1
)′
(k0) · o(k) = f−1(k)

(
1 +

k

f−1(k)
·
(
f−1
)′
(k0) · o(1)

)
,
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2.1. NOTATIONS AND AUXILIARY RESULTS 23

where k0 ∈ (k, k + o(k)) (without loss of generality we assume that

o(k) > 0)

It remains to prove that k
f−1(k)

·
(
f−1
)′
(k0) is a bounded function. Indeed,

using the Mean value theorem for log(f−1) and (2.1.4)

0 <
k

f−1(k)
·
(
f−1
)′
(k0) <

k

f−1(k)
· f

−1(k0)

C1k0

=
1

C1

· k

k + o(k)
· elog(f−1(k0))−log(f−1(k))

≲ C−1
1 e(log f

−1(·))′(t)(k0−k) < C−1
1 e

k0−k
C1t < C−1

1 e
k0−k
C1k = C−1

1 eo(1) = O(1),

where t ∈ (k, k0).

Remark 2.1.5. The statement of the lemma is also true for

f : (d1,∞) → (d2,∞), d1, d2 > 0. Condition (2.1.3) for f(x) = V+
(
1
x

)
is

a consequence of condition (T) in [6, p.93] for V (λ), λ = 1
x
.

Theorem 2.1.6. If function f(x) = V+
(
1
x
;σ
)
satisfies (2.1.3) and σ is

a Weyl asymptotics symbol, then

λ+k = V −1
+ (k)(1 + o(1)), k → ∞.

Proof. Since f−1(k) = 1
V −1
+ (k)

, taking βk = 1
λ+
k

→ ∞, k → ∞, using

(2.1.2), lemma 2.1.4 implies the asymptotics βk =
1

V −1
+ (k)

(1+o(1)), which

leads to the result.

Example. Log-power functions (see [9, §9, p.65]). It appears that V+(λ) =
−C · λ−a log λ, λ ∈ (0, 1) with a, C > 0 satisfies (2.1.3).

Indeed, V+
(
1
x

)
= C · xa log x. Hence, for x > 1

V ′
+(x)

V+(x)
=
Ca · xa−1 log x+ Cxa−1

C · xa log x
=
a

x
+

1

x log x
≳
a

x
.

However, there is no explicit formula for V −1
+ . Instead we can obtain an

asymptotic expression of log λ in terms of V+.

log V+(λ) = logC−a log(λ)+log log(λ)−1 = −a log λ(1+o(1)), λ→ 0+,

or equivalently

log λ = − log V+(λ)

a
· (1 + o(1)).

Therefore,

λ−a = − 1

C
· V+(λ)
log λ

=
a

C
· V+(λ)

log V+(λ)
· (1 + o(1)).
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Expressing λ = V −1
+ (t) as the inverse function of t = V+(λ),

V −1
+ (t) =

(C
a

) 1
a ·
( log t

t

) 1
a · (1 + o(1)).

Thus, finally, due to Theorem 2.1.6

λ+k ∼
(C
a

) 1
a ·
( log k

k

) 1
a
, k → ∞.

Remark 2.1.7. In the case when V+ does not satisfy (2.1.3), sometimes

the main part of the asymptotic expansion of V+ might obey (2.1.3). In

this case the statement of the theorem is still true.

Indeed, if V+
(
1
x

)
= Ṽ+

(
1
x

)
(1+o(1)), x→ ∞ and Ṽ+

(
1
x

)
obey (2.1.3), then,

since k = n+(λ
+
k ) ∼ V+(λ

+
k ) ∼ Ṽ+(λ

+
k ), condition (2.1.2) also holds. We

apply Theorem 2.1.6 to the function Ṽ+
(
1
x

)
to obtain

λ+k ∼ Ṽ −1
+ (k), k → ∞.

In the example above the function Ṽ+(λ), the inverse of function

Ṽ −1
+ (k) =

(
C
a

) 1
a ·
(

log k
k

) 1
a
is asymptotically equivalent to

V+(λ) = −C · λ−a log λ as λ→ 0+.

2.2 Weidl operator classes

We denote by {sk(T )}k≥1 the set of singular values of a compact operator

T arranged in a non-increasing order counted with multiplicities, i.e.

sk(T ) = λ+k
(√

T ∗T
)
, s1(T ) ≥ s2(T ) ≥ ...

First recall the Schatten operator class Sp, p > 0, the collection of all

compact operators T with {sk(T )}k≥1 ∈ lp. The Schatten quasi-norm

(norm for p ≥ 1) ∥ · ∥Sp is defined as follows

∥T∥Sp := ∥{sk(T )}∥p =
( ∞∑

k=1

spk(T )
) 1

p
,

∥T∥S∞ := ∥{sk(T )}∥∞ = s1(T ) = ∥T∥.

Belonging to a Schatten class Sp provides a trace-class estimate
∑∞

k=1 s
p
k(T ) ≤

C, and, as a consequence of this, sk(T ) = o
(
k−

1
p
)
.

Indeed, since {sk(T )}k≥1 is a decreasing sequence, and the series
∑∞

k=1 s
p
k(T )

converges, the part of its remainder
∑2n

k=n+1 s
p
k(T ) → 0, n→ ∞. There-

fore,

nsp2n(T ) ≤
2n∑

k=n+1

spk(T ) = o(1).
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Hence, sp2n(T ) = o(n−1), which implies sk(T ) = o
(
k−

1
p
)
for both odd and

even indices k.

An important generalisation of the Schatten operator class is the quasi-

normed space Sp,q where the norm is defined by

∥T∥Sp,q := ∥{sk(T )}∥p,q :=


(∑∞

k=1 k
q
p
−1sqk(T )

) 1
q
, q ∈ (0,∞)

supk k
1
p sk(T ), q = ∞.

We focus on the space Sp,∞ (the weak-Schatten class). For any compact

operator T in this space we obtain a pointwise polynomial estimate of

the form sk(T ) = O
(
k−

1
p
)
.

Since ∥ · ∥Sp,∞ is not a norm, the standard triangle inequality does not

hold. However, we can state a weaker result, the quasi-triangle inequality

stated in the Proposition below (see [3, Lemma 1.1]).

Proposition 2.2.1. For any p ∈ (0, 1) and a finite or countable set of

Tn ∈ Sp,∞ ∥∥∥∑
n

Tn

∥∥∥p
Sp,∞

≤ C
∑
n

∥∥Tn∥∥pSp,∞
where C = C(p) does not depend on the number of Tn.

Moreover, if T ∗
mTk = O for any m ̸= k, then the inequality holds for

p ∈ (0, 2).

The full set of relationships between Schatten and weak-Schatten oper-

ator classes, the triangle and quasi-triangle inequalities for their norms

and quasi-norms respectively can be found in [3, §1].

Next, we generalise the weak-Schatten class Sp,∞ by introducing a non-

polynomial scale of estimates.

Let’s introduce a certain class of functions f , the class B, satisfying

• f : [0,∞) → [0,∞)

• f(0) = 0, f(1) = 1, limx→∞ f(x) = ∞

• f is increasing and concave

All functions in this class obey

Lemma 2.2.2. If f ∈ B, then f(n+ 1) ∼ f(n), i.e. limn→∞
f(n+1)
f(n)

= 1,

and f is a subadditive function, i.e.

f(n+m) ≤ f(n) + f(m) for any n,m ≥ 0.
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Proof. Since, f is an increasing concave function, the function F (x) =
f(x+m)−f(x)

m
, m > 0, is decreasing. Thus, for any n,m > 0 F (n) < F (0),

which is equivalent to f(n+m) ≤ f(n) + f(m).

Due to the monotonicity and subadditivity f(n) ≤ f(n+1) ≤ f(n)+f(1).

Thus, 1 ≤ f(n+1)
f(n)

≤ 1 + f(1)
f(n)

→ 1, n → ∞. Therefore, limn→∞
f(n+1)
f(n)

=

1.

For f ∈ B and for a positive parameter γ > 0 we recall the following

operator class (see [19, p.119])

Definition 2.2.3.

Σf,γ := {T−compact operator| sup
k
sk(T )f(k)

1
γ <∞}

The notations of two important examples of Σf,γ considered in the work

are below. If f(x) = x, then Σf,γ = Sγ,∞. If f(x) = log 2
1−log 2

·
(

x
log(1+x)

− 1
)
,

then Σf,γ = Sγ.

Definition 2.2.4. For a compact operator T the spectral counting func-

tions n is defined by

n(λ;T ) :=
∣∣∣{k|sk(T ) ≥ λ}

∣∣∣
Lemma 2.2.5. For any compact operator T and any f ∈ B
the upper limit lim sups→0+ f(n(s;T ))s

γ exists if and only if there exists

lim supk→∞ f(k)sγk. Moreover, the values of the limits are the same.

Remark 2.2.6. The statement is also true if we replace sk with λ±k .

Proof. If lim sups→0+ f(n(s;T ))s
γ exists, then for any sequence xk → 0

(including xk = sk) lim supk→∞ f(n(xk;T ))x
γ
k = lim sups→0+ f(n(s;T ))s

γ.

Since n(sk;T ) = k, lim supk→∞ f(k)sγk = lim sups→0+ f(n(s;T ))s
γ.

Let lim supk→∞ f(k)sγk = D.

Take any s ∈ (0, s1). There exists such n that s ∈ [sn+1, sn). Since f is

an increasing function,

f(n+1)sγn = f(n(sn+1;T ))s
γ
n ≥ sγf(n(s;T )) ≥ sγn+1f(n(sn;T )) = f(n)sγn+1

(2.2.1)

Since f(n+ 1) ∼ f(n),

lim
n→∞

f(n+ 1)sγn = lim
n→∞

f(n)sγn = lim
n→∞

f(n)sγn+1 = D.

Now, applying the squeeze theorem in (2.2.1), we obtain

lim
n→∞

f(n(s;T ))sγ = D.
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Let’s introduce the following seven functionals on this operator class.

Definition 2.2.7. [19, (1.3), (1.4)]

|T |f,γ := sup
k
f(k)sγk(T ),

Df,γ(T ) = lim sup
s→0+

f(n(s;T )(s))sγ = lim sup
k→∞

f(k)sγk,

df,γ(T ) = lim inf
s→0+

f(n(s;T )(s))sγ = lim inf
k→∞

f(k)sγk,

∆±
f,γ(T ) = lim sup

s→0+
f(n±(s;T )(s))s

γ = lim sup
k→∞

f(k)(λ±k )
γ,

δ±f,γ(T ) = lim inf
s→0+

f(n±(s;T )(s))s
γ = lim inf

k→∞
f(k)(λ±k )

γ.

Remark 2.2.8. Due to Lemma 2.2.5 the functionals are well defined. The

functional | · |f,γ describes the estimates of the singular values

sk(T ) ≤
|T |

1
γ

f,γ

f(k)
1
γ

for any k.

The functionals Df,γ, df,γ (∆±
f,γ, δ

±
f,γ) help to describe the asymptotic for-

mula of singular values (eigenvalues) as k → ∞,

sk(T ) =
Ak

f(k)
1
γ

· (1 + o(1)), where df,γ ≤ Ak ≤ Df,γ ≤ |T |f,γ,

λ±k (T ) =
Bk

f(k)
1
γ

· (1 + o(1)), where δ±f,γ ≤ Bk ≤ ∆±
f,γ.

While Schatten operator class provides the polynomial scale {k−1/γ}γ
and corresponding estimates O(k−1/γ) for the kth singular value, Weidl

operator classes give more precise scales {f(k)−1/γ}γ for the estimates

using slowly increasing functions f ∈ B.

Definition 2.2.9. To describe the rate of eigenvalues decay it is conve-

nient to use the following functionals, which are quasi-norms,

∥T∥Σf,γ
:= |T |

1
γ

f,γ = sup
k
f

1
γ (k)sk(T ), f ∈ B.

In particular,

∥T∥Sγ
=
( log 2

1− log 2

) 1
γ
sup
k

( k

log(1 + k)
− 1
) 1

γ
sk(T ).

Remark. If f(x) = x, ∥ · ∥Σf,γ
= ∥ · ∥Sγ,∞
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Definition 2.2.10.
◦
Σf,γ:= {T ∈ Σf,γ | Df,γ = 0}.

The following theorem is a triangle inequality analogue for the functionals

introduced above.

Theorem 2.2.11. [19, (1.7)] If T1, T2 ∈ Σf,p where f ∈ B, then

Df,p(T1 + T2)
1

p+1 ≤ Df,p(T1)
1

p+1 +Df,p(T2)
1

p+1

Proof. We use the following inequality (see [4, Ch. 11, §1, (17), p.245])

n(s;T1 + T2) ≤ n(θs;T1) + n((1− θ)s;T2), θ ∈ (0, 1).

Thus, using the properties of the functions in class B (monotonicity and

Lemma 2.2.2),

f(n(s;T1 + T2)) ≤ f(n(θs;T1) + n((1− θ)s;T2))

≤ f(n(θs;T1) + f(n((1− θ)s;T2), θ ∈ (0, 1).

Hence, multiplying by sp,

sp · f(n(s;T1 + T2)) ≤
(sθ)pf(n(θs;T1))

θp
+

(s(1− θ))pf(n((1− θ)s;T2)

(1− θ)p
.

Taking lim sups→0+ we obtain

Df,p(T1 + T2) ≤ θ−pDf,p(T1) + (1− θ)−pDf,p(T2).

Then, taking infθ∈(0,1), we obtain the result.

Remark 2.2.12. The statement of the Theorem 2.2.11 is also true for the

functionals ∆±
f,p, δ

±
f,p and df,p.

Applying the triangle inequality above for T1 and T2 − T1, we get∣∣Df,p(T1)
1

p+1 −Df,p(T2)
1

p+1

∣∣ ≤ Df,p(T1 − T2)
1

p+1 .

Since Df,p(T1 − T2) ≤ |T1 − T2|f,p, the following corollary (for the func-

tional Df,γ(·) and for the other five) holds.

Corollary 2.2.13. If T1, T2 ∈ Σf,p where f ∈ B, then∣∣∆±
f,p(T1)

1
p+1 −∆±

f,p(T2)
1

p+1

∣∣, ∣∣Df,p(T1)
1

p+1 −Df,p(T2)
1

p+1

∣∣,
∣∣δ±f,p(T1) 1

p+1 − δ±f,p(T2)
1

p+1

∣∣, ∣∣df,p(T1) 1
p+1 − df,p(T2)

1
p+1

∣∣ ≤ |T1 − T2|
1

p+1

f,p .
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The following theorem provides a useful result of perturbation theory. It

turns out that the asymptotic formulae are the same for two operators

(T and Tm) which differ from each other by an operator Tr with a higher

rate of its eigenvalues decay.

Theorem 2.2.14. If T = Tm + Tr, where Tm ∈ Σf,p, Tr ∈ Σg,p with

limx→∞
f(x)
g(x)

= 0, f, g ∈ B, then

T ∈ Σf,p, Df,p(T ) = Df,p(Tm),

Tr = T − Tm ∈
◦
Σf,p .

Proof. Using the result above

∣∣Df,p(T )
1

p+1 −Df,p(Tm)
1

p+1

∣∣p+1 ≤ Df,p(Tr) = lim sup
k

s
1
p

k (Tr)g(k) ·
f(k)

g(k)

≤ Dg,p(Tr) · lim
k→∞

f(k)

g(k)
= 0.

Remark 2.2.15. The statement of the Theorem is also true for the func-

tionals ∆±
f,p, δ

±
f,p and df,p.

If the asymptotics for singular values of two operators, T1 and T2, is the

same, e.g. (f(k))−1(1 + o(1)), the sum T1 + T2 might have a different

asymptotic formula (g(k))−1(1 + o(1)), f = o(g) (indeed, check T2 =

−T1).
However, an important fact about singular values estimation for the sum

of two compact operators T1 and T2, namely, the Ky Fan’s inequality

(see [4, Ch.11, §1, p.3]), may help

s2n−1(T1 + T2) ≤ sn(T1) + sn(T2) (2.2.2)

Remark 2.2.16. Note that for any sum of a fixed finite number No of

operators Tk, k = 1, 2, ..., No, with the log-polynomial rate of singular

values decay, i.e. sn(Tk) ≤ Cn−a logb n, where a > 0 and b are two real

constants, we state the same type of estimate, i.e.

sn

( No∑
k=1

Tk

)
≤ Ca,b,No · n−a logb n, (2.2.3)

where Ca,b,No depends on a, b,No only.

Indeed, if sn(T1), sn(T2) ≤ C logb n
na , then s2n(T1 + T2) ≤ s2n−1(T1 + T2) ≤
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2C logb n
na . Therefore,

sn(T1 + T2) ≤ C2a+1 log
b n
2

na
≤ Ca,b

logb n

na
.

Note, that a result similar to (2.2.3) (corresponding to a different rate of

decay) might not be true when singular values decay exponentially, i.e.

of sn ≲a e
−an.

If singular values decay polynomially, we can sometimes state an estimate

for an infinite sum of operators using Proposition 2.2.1.
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Chapter 3

General estimates for singular

values of ΨDOs with symbols

of specific form

3.1 Basic concepts and definitions

In this section we introduce the notions for some sequence and function

spaces, which help to specify the ΨDO’s symbols we use in this work.

We also define the representation

f = fR− + fR+

for the functions in these spaces, which helps to split the symbol (and

the ΨDO) into the main and remainder parts.

Definition 3.1.1. For a number γ > 0 the space lγ,∞ (sometimes called

the weak-lγ) is defined as follows

lγ,∞ :=
{
(an)n∈Zd | ∥a∥γ,∞ := sup

E>0
E ·
(
#
{
n : |an| > E

}) 1
γ
<∞

}
,

where #{...} stands for the number of elements in a set.

A canonical example of a normalised vector of this space is the sequence

an = n− 1
γ , n ∈ Z.

Consider here and thereafter the following partition of Rd into unit

d−dimensional cubes

Rd =
⊔

n∈Zd

Qn ,

where Qn = [0, 1)d + n := {x+ n| x ∈ [0, 1)d}.
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Definition 3.1.2. For numbers q, γ > 0 the weak lattice quasi-norm is

defined as follows

∥f∥q,γ,∞ :=
∥∥∥ (∥fχQn∥q

)
n∈Zd

∥∥∥
γ,∞

,

where ∥ · ∥q is defined by ∥f∥q :=
( ∫

Rd |f(x)|qdx
) 1

q
and refers to the

standard Lq−norm whenever q ≥ 1.

The quasi-normed space of functions with finite quasi-norm ∥ · ∥q,γ,∞ is

denoted by lγ,∞(Lq)(Rd).

Definition 3.1.3. For numbers q, γ > 0 the lattice quasi-norm is defined

as follows

∥f∥q,γ :=
∥∥∥ (∥fχQn∥q

)
n∈Zd

∥∥∥
γ
,

where ∥ · ∥γ is defined by ∥(an)n∈Zd∥γ :=
(∑

n∈Zd |an|γ
) 1

γ
and refers to

the standard lγ−norm whenever γ ≥ 1. The corresponding quasi-normed

space is denoted by lγ(Lq)(Rd).

Properties of lattice quasi-norms

Proposition 3.1.4. For a fixed f ∈ lγ(Lq)(Rd), γ, q > 0 the quasi-norm

function Nf,γ(·) = ∥f∥·,γ is well defined and increasing on (0, q).

The quasi-norm function Nf,q(·) = ∥f∥q,· is well defined and decreasing

on (γ,∞).

For any δ > γ > 0 the following inclusion holds lγ,∞(Lq)(Rd) ⊆ lδ(Lq)(Rd).

Proof. Indeed, the Hölder inequality with weights α
β
and 1 − α

β
, where

0 < α < β < q, implies that

∥f∥γα,γ =
∑
n∈Zd

(∫
Qn

|f(x)|αdx
) γ

α

≤
∑
n∈Zd

(∫
Qn

|f(x)|βdx
) γ

α
·α
β ·
(∫

Qn

1 dx
) γ

α
·(1−α

β
)

= ∥f∥γβ,γ.

Both quasi-norms ∥f∥α,γ, ∥f∥β,γ are finite, since in the same spirit ∥f∥β,γ ≤
∥f∥q,γ <∞.

Note that Nf,q(·) = ∥f∥q,· is a decreasing function due to the correspond-

ing property of lp−(quasi-)norms.

Let f ∈ lγ,∞(Lq)(Rd), i.e. ∥f∥q,γ,∞ <∞.

The number of an = ∥fχQn∥q ∈ lγ,∞ which exceed 2
k
γ can be estimated

by
∣∣∣{n|aγn > 2k}

∣∣∣ ≤ 2−k · ∥(an)∥γγ,∞ = 2−k∥f∥γq,γ,∞.
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Since
∣∣∣{n|aγn > ∥f∥γq,γ,∞ + ϵ}

∣∣∣ < 1, an ≤ ∥f∥q,γ,∞ for all n.

Consider the following partition of the positive half line,

(0,∞) =
⊔

−∞<k≤−1

(2k, 2k+1] ⊔ (1,∞)

to obtain the estimate for ∥f∥δq,δ.

∥f∥δq,δ =
∑

∥fχQn∥
γ
q>1

∥fχQn∥δq +
∑
k≤0

∑
∥fχQn∥

γ
q∈(2k,2k+1]

∥fχQn∥δq

≤
∑

∥fχQn∥
γ
q>1

∥f∥δq,γ,∞ +
∑
k≤0

∑
∥fχQn∥

γ
q∈(2k,2k+1]

2(k+1)· δ
γ

≤ ∥f∥γ+δ
q,γ,∞ +

∑
k≤0

2(k+1)· δ
γ · 2−k∥f∥γq,γ,∞

≤ ∥f∥γ+δ
q,γ,∞ + 2

δ
γ ∥f∥γq,γ,∞ ·

∑
k≤0

2k(
δ
γ
−1)

≲
δ,γ

∥f∥δ+γ
q,γ,∞ + ∥f∥γq,γ,∞ <∞ (3.1.1)

Definition 3.1.5. For a function f ∈ lγ,∞(Lq)(Rd), where q, γ > 0, and

for any positive real number R the following representation

f = fR− + fR+ (3.1.2)

is defined, where

fR− =
∑

∥fχQn∥
γ
q>R−1

fχQn ,

fR+ =
∑

∥fχQn∥
γ
q≤R−1

fχQn .

Lemma 3.1.6. Let f ∈ lγ,∞(Lq)(Rd), where γ and q are some positive

numbers. Then for any β, δ s.t. γ > β > 0 and for any R > 1 the quasi-

norms ∥fR−∥q,β and ∥fR−∥q,γ are finite and the following inequalities hold

∥fR−∥q,β ≤ Cβ,γ∥f∥
γ
β
q,γ,∞ ·R− 1

γ
+ 1

β ,

∥fR−∥q,γ ≤ Cγ∥f∥q,γ,∞
(
log

1
γ (R + 1) + log

1
γ
(
∥f∥q,γ,∞ + 1

))
,

Moreover, if in addition q ≥ 2 > γ > 0, then ∥fR+∥2 is finite and

∥fR+∥2 ≤Mγ∥f∥
γ
2
q,γ,∞ ·R− 1

γ
+ 1

2 .
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The constants Cβ,γ, Cγ and Mγ are defined in the proof and depend on

parameters β and γ only.

Proof. Let’s proceed with the first estimate. After the substitution r =

R− 1
γ the inequality can be reduced to a homogeneous one. Indeed, rewrite

the statement as follows

Cβ
β,γ ≥

∑
∥fχQn∥

γ
q>R−1 ∥fχQn∥βq

∥f∥γq,γ,∞ ·R−β
γ
+1

=

∑
∥fχQn∥

γ
q>rγ ∥fχQn∥βq

∥f∥γq,γ,∞ · r−γ · rβ

=

∑
∥r−1fχQn∥

γ
q>1 ∥r−1fχQn∥βq

∥r−1f∥γq,γ,∞
.

Due to homogeneity, since the expression above can be expressed as a

function of f
r
= f

R
− 1

γ
, we can consider ∥f∥q,γ,∞ = 1 by applying new

variables, f̃ = f · ∥f∥−1
q,γ,∞, R̃ := R · ∥f∥γq,γ,∞.

Now, using (R−1,∞) =
⊔∞

k=0(2
kR−1, 2k+1·R−1] we split the fR−-representation

as follows

fR− =
∑

∥fχQn∥
γ
q>R−1

fχQn =
∑
k≥0

∑
∥fχQn∥

γ
q∈(2kR−1,2k+1·R−1]

fχQn .

The number of an = ∥fχQn∥q ∈ lγ,∞ which exceed 2
k
γR− 1

γ can be esti-

mated by

∣∣∣{n|aγn > 2kR−1}
∣∣∣ ≤ 2−kR · ∥(an)∥γγ,∞ (3.1.3)

Thus, for a positive β < γ

∥fR−∥βq,β =
∑
k≥0

∑
∥fχQn∥

γ
q∈(2kR−1,2k+1·R−1]

∥fχQn∥βq

≤
∑
k≥0

∑
∥fχQn∥

γ
q∈(2kR−1,2k+1·R−1]

2(k+1)·β
γ ·R−β

γ

≤
∑
k≥0

2(k+1)·β
γ ·R−β

γ ·2−kR∥f∥γq,γ,∞ ≤ 2
β
γ ·R−β

γ
+1·
∑
k≥0

2k(
β
γ
−1) = Tβ,γ ·R−β

γ
+1,

where Tβ,γ = 2
β
γ +1

2−2
β
γ

.

In the same spirit we deal with the 3rd estimate for q ≥ 2. Using Propo-

sition 3.1.4, the monotonicity of the quasi-norm function, we obtain

∥fR+∥22 = ∥fR+∥22,2 ≤ ∥fR+∥2q,2 =
∑

∥fχQn∥
γ
q≤R−1

∥fχQn∥2q
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=
∑
k≥0

∑
R−1·2−(k+1)<∥fχQn∥

γ
q≤R−1·2−k

∥fχQn∥2q

≤
∑
k≥0

∑
R−1·2−(k+1)<∥fχQn∥

γ
q≤R−1·2−k

R− 2
γ · 2−

2k
γ

≤
∑
k≥0

R− 2
γ · 2−

2k
γ · 2k+1R = 2R2(− 1

γ
+ 1

2
) ·
∑
k≥0

2k(1−
2
γ
) = Tγ ·R2(− 1

γ
+ 1

2
),

where Tγ = 2
2
γ +1

2
2
γ −2

.

The 2nd estimate cannot be reduced to a homogeneous inequality, how-

ever, we repeat the same estimates as for ∥fR−∥β,γ.
Consider R∥f∥γq,γ,∞ > 1 (otherwise fR− = 0).

∥fR−∥γq,γ =
∑
k≥0

∑
∥fχQn∥

γ
q∈(2kR−1,2k+1·R−1]

∥fχQn∥γq

≤
∑
k≥0

∑
∥fχQn∥

γ
q∈(2kR−1,2k+1·R−1]

2k+1 ·R−1

Note that the number of an = ∥fχQn∥q ∈ lγ,∞ which exceed 2
k
γR− 1

γ with

R∥f∥γq,γ,∞ < 2k is zero due to (3.1.3).

Thus, we can consider k ≤ log2(R∥f∥γq,γ,∞) =: k0 in the upper bound

above. For these values of k we use the same estimations as for ∥fR−∥β,γ
to obtain

∥fR−∥γq,γ ≤
∑

k0≥k≥0

2−kR∥f∥γq,γ,∞ · 2k+1 ·R−1 = 2∥f∥γq,γ,∞ ·
∑

k0≥k≥0

1

= 2∥f∥γq,γ,∞k0 = 2(log 2)−1∥f∥γq,γ,∞(logR + γ log ∥f∥q,γ,∞)

≤ 2(log 2)−1∥f∥γq,γ,∞
(
logR + γ log(∥f∥q,γ,∞ + 1)

)
.

Thus,

∥fR−∥q,γ ≤ 2
1
γ (log 2)−

1
γ ∥f∥q,γ,∞

(
logR + γ log

(
∥f∥q,γ,∞ + 1

)) 1
γ
.

Note that since γ
1
γ < 2,(

logR + γ log
(
∥f∥q,γ,∞ + 1

)
)

1
γ ≤

(
2max{logR, γ log(∥f∥q,γ,∞ + 1)}

) 1
γ

= 2
1
γ max{(logR)

1
γ , γ

1
γ log

1
γ
(
∥f∥q,γ,∞ + 1

)
}

≤ 2
1
γ (logR)

1
γ + 21+

1
γ log

1
γ
(
∥f∥q,γ,∞ + 1

)
.
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Therefore,

∥fR−∥q,γ ≤ Cγ

(
∥f∥q,γ,∞(log

1
γ (R + 1) + ∥f∥q,γ,∞ log

1
γ
(
∥f∥q,γ,∞ + 1

))
.

The exact formulae for the constans are Cγ = 2
(

4
log 2

) 1
γ
, Cβ,γ = T

1
β

β,γ =

2
1
γ + 1

β(
2−2

β
γ

) 1
β
and Mγ =

√
Tγ = 2

1
γ +1

2√
2
2
γ −2

.

3.2 Domain boundary. Known and new re-

sults.

Recall that we use the following notation for the ΨDO on L2(R) with

amplitude p = p(x, y, ξ)

Opa
α(p)u(x) =

α

2π

∫∫
R2

eiα(x−y)ξp(x, y, ξ)u(y)dydξ,

and we denote its kth singular value (counted with multiplicity) by

sk = sk
(
Opa

α

(
p
))
,

i.e. s1 ≥ s2 ≥ ... ≥ 0.

If in addition p(x, y, ξ) = σ
(

x+y
2
, ξ
)
, we use the notation

OpW
α (σ) = OpW

α (σ(t, ξ)) = Opa
α

(
σ
(x+ y

2
, ξ
))

Let’s focus on the case σ = χΛ for some domains Λ ⊆ R2 in the phase

space.

As it was mentioned in the Introduction, the rate of singular values

decay depends on the curvature of the boundary ∂Λ. If the bound-

ary can be described by a straight line (see the details in Theorem

3.2.8), the rate of decay is O(k−1). For an angular boundary (when

Λ = {(t, ξ)|c1t ≤ ξ ≤ c2t}) the rate is 1
4π2 · log(k+1)

k
, and for general polyg-

onal boundary the rate does not exceed O
( log(k+1)

k

)
. It is not established

yet if this estimate is sharp.

The decay is ckk
− 3

4 where ck ∈ [t1, t2] ⊆ (0,∞) for annular regions [13,

Prop. 10]. Ramanathan and Topiwala [13, Th. 9] proved the estimate

O(k−
3
4 ) for any C1-boundary.

In this chapter we give another proof of the estimate O(k−
3
4 ) using a
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more advanced technique. We rewrite the considered ΨDO as an in-

tegral operator and study its kernel using known results (see Theorem

3.2.1). We generalise then this theorem extending domain Ω to the whole

R (see Theorem 3.2.3), which also helps to prove the estimate O(k−1) for

a straight line boundary case.

However, to prove the estimate O
( log(k+1)

k

)
when the boundary consists

of angles, we need to apply a completely different approach, which is

presented in Chapter 5. In some sense this is an intermediate rate of

decay in terms of comparison with the straight line boundary case and

C1-boundary case and requires Weidl operator class scales instead of

Schatten ones (see Remark 2.2.8).

First, recall a corollary of the Theorem [4, Ch. 11, §8, Th.4, p.273]

for one-dimensional case.

Theorem 3.2.1. Let sk be the kth singular value of the integral operator

Au(x) =
∫
Ω
K(x, y)u(y)dy where Ω is a finite interval and for almost all

y the function K(·, y) ∈ W l
2(Ω) with

∫
Ω
∥K(·, y)∥2

W l
2(Ω)

dy <∞.

Then A ∈ Sp,∞ where 1
p
= 1

2
+ l, and the following estimate holds

sk(A) ≤
C|Ω|,l

k
1
2
+l

(∫
Ω

∥K(·, y)∥2W l
2(Ω)dy

) 1
2
.

Corollary 3.2.2. Consider an integral operator A defined on L2(R) by

Au(x) =

∫
R
K(x, y)u(y)dy,

where kernel K(·, ·) ∈ C∞
0 (R2).

Then singular values of A decay superpolynomially, i.e. for any integer

n > 0 there exists such constant Cn that

sk(A) ≤
Cn

kn
.

Let’s extend the theorem above to a wider class of kernels.

Theorem 3.2.3. Consider an integral operator Q defined on L2(R) by

Qu(x) =

∫
K(x, y)u(y)dy

where kernel K satisfies the following conditions:

supp K ⊆ {(x, y)| |x+ y| ≤ R} for some R > 0,

|K(x, y)| ≤ C⟨x− y⟩−m2 , for some C > 0, m2 >
1

2
,
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K(·, y) ∈ C l(R) for almost all y,

moreover,
∑
1≤n≤l

∣∣∣∂nK
∂xn

(
x, y
)∣∣∣ ≤ C⟨x− y⟩−m1 , where m1 ≤ m2.

If m1 < l + 1
2
, then Q ∈ S 1

m
,∞ (i.e. sk(Q) ≤ C1k

−m), where

m =
1

2
+ l ·

m2 − 1
2

m2 −m1 + l
.

If m1 > l + 1
2
, then Q ∈ S 1

m
,∞, where m = 1

2
+ l.

Finally, if m1 = l + 1
2
= m, then Q ∈ S 1

m
, i.e.

sk(Q) ≤ C2

(
log(k + 1)

k

)m

.

The constants C1, C2 in the estimates depend on R,C, l,m1 and m2 only.

Remark. In this Section we are interested in two cases. The first case

is m2 = l = 1, m1 = 0, which corresponds to C1-boundary of the domain

Λ (see Corollary 3.2.4). The estimate gives sk(Q) = O(k−
3
4 ).

The second case is m1 = m2 = l = 1 and describes the operators when

the boundary of Λ is a straight line (see Corollary 3.2.8).

The statement is also true for l = 0 if we conventionally take m1 = 0. In

this case we have sk(Q) = O( 1√
k
), the estimate for singular values which

is true for any Hilbert-Schmidt operator.

For all positive values of l we obtain an asymptotic decay close or equal

to k−
1
2
−l as in Theorem 3.2.1.

Proof. Consider the flip operator J defined by Ju(x) = u(−x). Since J

is a unitary operator, sk(Q) = sk(QJ). Rewrite T = QJ as follows

(Tu)(x) = (QJu)(x) =

∫
K(x, y)u(−y)dy =

∫
K(x,−y)u(y)dy.

Define Kn(x, y) := K(x,−y)χ[n,n+1](y). Note that since

supp K ⊆ {(x, y)| |x+ y| ≤ R},

supp Kn ⊆ {(x, y)| x, y ∈ [n − R, n + 1 + R]}. Therefore, we can define

the following integral operator on L2(n−R, n+ 1 +R) by

(Tnu)(x) :=

∫
Kn(x, y)u(y)dy =

∫
K(x,−y)χ[n,n+1](y)u(y)dy
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Split the operator T as follows

Tu(·) = Tχ|n|>Nu(·) +
∑
|n|≤N

Tχ[n,n+1]u(·) =: Tχ|n|>Nu(·) +
∑
|n|≤N

Tnu(·).

Since for almost all y kernel Kn(·, y) ∈ C l
0(R2) with ∂jKn

∂xj

(
·, y
)

= ∂jK
∂xj

(
·,−y

)
χ[n,n+1](y) for j = 1, 2, ..., l,

|Kn(x, y)| ≤ C⟨x+ y⟩−m2 ,
∣∣∣∂jKn

∂xj
(
x, y
)∣∣∣ ≤ C⟨x+ y⟩−m1 .

Thus,

∥Kn(·, y)∥2W l
2(n−R,n+1+R) ≲l,C

∫ n+1+R

n−R

1

⟨x+ y⟩2m2
dx+

∫ n+1+R

n−R

1

⟨x+ y⟩2m1
dx

≲
R

1

⟨n+ y −R⟩2m1
,

Thus, the integral∫
[n−R,n+1+R]

∥Kn(·, y)∥2W l
2(n−R,n+1)dy ≲R

∫
[n−R,n+1+R]

1

⟨n+ y −R⟩2m1
dy

≲
R
⟨2n−R⟩−2m1

for any y ∈ [n, n+ 1].

Thus, due to Theorem 3.2.1

∥Tn∥2Sp,∞ ≲
l,C,R

n−2m1 ,

where p = 2
2l+1

.

Now consider three cases mentioned in the statement.

Case 1. Let m1 < l + 1
2
. Thus, m1p =

2m1

2l+1
< 1.

Now, using quasi-triangle inequality (see Proposition 2.2.1)∥∥∥ ∑
|n|≤N

Tn

∥∥∥p
Sp,∞

≲p

∑
|n|≤N

∥Tn∥pSp,∞ ≲
l,R

∑
0<|n|≤N

n−m1p ≲p,m1
N1−m1p

(3.2.1)

Hence,

k
1
p sk

( ∑
|n|≤N

Tn

)
≤
∥∥∥ ∑

|n|≤N

Tn

∥∥∥
Sp,∞

≲
l,R,m1

N
1
p
−m1 ,

or equivalently

sk

( ∑
|n|≤N

Tn

)
≲

l,R,m1

(N
k

) 1
p ·N−m1 .
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The Hilbert-Schmidt estimate for N > R gives

ks2k(Tχ|y|>N) ≤
∥∥∥ ∑

|n|>N

Tn

∥∥∥2
S2

= ∥K(x,−y)χ|y|>N∥L2(R2)

≲
C

∫ ∞

N

∫ y+R

y−R

1

⟨x+ y⟩2m2
dx dy ≲

R

∫ ∞

N

1

⟨2y −R⟩2m2
dy ≲

R
N−(2m2−1).

Thus,

sk(Tχ|x|>N) ≲C,R
k−

1
2 ·N−m2+

1
2 .

Finally, using Ky Fan inequality (2.2.2) for N > R

s2k−1(Q) = s2k−1(T ) ≤ sk(Tχ|x|>N)+sk

( ∑
|n|≤N

Tn

)
≲

C,R,m1,l
k−

1
2N−m2+

1
2+k−

1
pN

1
pN−m1 .

To optimize this estimate we choose N such that

k−
1
pN

1
p
−m1 = k−

1
2N−m2+

1
2 ,

i.e. N = k
1/p−1/2

1/p−m1+m2−1/2 = k
l

l+m2−m1 .

Finally, due to Remark 2.2.16

sk(Q) ≲C,R,m1,m2,l
k−

1
pk

(1/p−1/2)(1/p−1/m1)
1/p−m1+m2−1/2 = k

m1−m2(2l+1)
2(m2−m1)+2l = k

− 1
2
− l

2
· 2m2−1
m2−m1+l .

Case 2. Let m1p > 1. The quasi-triangle inequality (3.2.1) rewrites as

follows∥∥∥ ∑
|n|≤N

Tn

∥∥∥p
Sp,∞

≲p

∑
|n|≤N

∥Tn∥pSp,∞ ≲
l,R

∑
0<|n|≤N

n−m1p <
∑

0<|n|<∞

n−m1p = Cp,m1 .

Therefore, repeating the same argument,

sk(Q) = sk(T ) ≲C,R,m1,m2,l
sk

( ∑
|n|≤N

Tn

)
+sk(Tχ|x|>N) ≲C,l,R

k−
1
p+k−

1
2N−m2+

1
2 .

The optimal choice of N satisfies k−
1
p = k−

1
2N−m2+

1
2 which leads to

sk(Q) ≲C,l,m1,m2,R
k−

1
p = k−( 1

2
+l).

Case 3. Let m1p = 1. Then (3.2.1) gives∥∥∥ ∑
|n|≤N

Tn

∥∥∥p
Sp,∞

≲
l,R

logN.

40



3.2. DOMAIN BOUNDARY. KNOWN AND NEW RESULTS. 41

Thus, taking N s.t. k−
1
p = k−

1
2N−m2+

1
2 ,

sk(Q) = sk(T ) ≲C,R,m1,m2
sk

( ∑
|n|≤N

Tn

)
+sk(Tχ|x|>N) ≲C,l,R

k−
1
p (logN)

1
p+k−

1
2N−m2+

1
2

= k−
1
p ((logN)

1
p + 1) ≲m1,m2,p

(
k−1 log(k + 1)

) 1
p
= k−m1 logm1(k + 1).

An important consequence of Theorem 3.2.3 is Ramanathan and Topi-

wala’s result describing a pseudo-differentiable operator whose symbol is

nothing but an indicator function of a region with a smooth boundary.

Corollary 3.2.4. [13, Th. 9] Consider operator

OpW
1 (σ)u(x) =

1

2π

∫∫
R2

eiξ(x−y) · σ
(x+ y

2
, ξ
)
u(y)dydξ,

where σ(t, ξ) = χΩ(t, ξ) s.t. Ω is a region in R2 with piece-wise C1−
boundary. Then

OpW
1 (σ) ∈ S 4

3
,∞

Proof. First, consider the case when the region Ω can be expressed as

follows

Ω = {(t, ξ) | α(t) ≤ ξ ≤ β(t), t ∈ [T1, T2]} (3.2.2)

with α, β ∈ C1(T1, T2), supp α, supp β ⊆ [T1, T2].

Using Fubini’s theorem the operator with symbol χΩ(t, ξ) can be repre-

sented as an integral operator

OpW
1 (χΩ)u(x) =

1

2π

∫∫
R2

eiξ(x−y) · χΛ

(x+ y

2
, ξ
)
u(y)dydξ

=
1

2π

∫
R

∫ β
(

x+y
2

)
α
(

x+y
2

) eiξ(x−y)dξ u(y)dy =

∫
R
K(x, y)u(y)dy

where kernel

K(x, y) = ie
i
2
(x−y)

(
α
(

x+y
2

)
+β
(

x+y
2

))
·
sin
(

1
2
(x− y) ·

(
β
(
x+y
2

)
− α

(
x+y
2

)))
(x− y)

.

Indeed, |K(x, y)| ≤ C
⟨x−y⟩ and |K ′

x(x, y)| ≤ C. Therefore, applying The-

orem 3.2.3 for m1 = 0,m2 = l = 1 we obtain the following upper bound

for the kth singular value

sk ≲Ω
k

m1−m2(2l+1)
2(m2−m1)+2l = k−

3
4 .

A general domain Ω with a piece-wise C1−boundary can be split by a
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finite number of Ωj such that each of them after a rotation (if necessary)

satisfies the property (3.2.2).

Since the estimate sk(OpW
1 (χΩj

)) ≲
Ωj
k−

3
4 is polynomial, using Ky Fan’s

inequality and Remark 2.2.16 we conclude sk(OpW
1 (χΩ)) ≲Ω

k−
3
4 .

Remark 3.2.5. It turns out that the degree of smoothness of the boundary

Ω does not make any impact on the estimate in the suggested method.

Indeed, taking region Ω with C l−boundary and applying Theorem 3.2.3

for m1 = −l + 1,m2 = 1 we obtain again

sk ≲Ω,l
k−

3l
4l = k−

3
4 .

Definition 3.2.6. By cut-off function ζδ(t) with parameter δ we un-

derstand any even C∞(Rd)−function such that ζδ(t) = χ|t|≥δ, whenever

|t| /∈ (δ, δ + 1) for some positive δ.

Without loss of generality consider ∥ζδ∥∞ = 1. If the value of δ does not

matter, we use the notation ζ(t) := ζ1(t).

Corollary 3.2.7. Consider a compact operator Tm (m ≥ 1) on L2(R)
defined by

Tmu(x) =

∫
ζ(x− y)

(x− y)m
a(x+ y)u(y)dy,

where a ∈ C∞
0 (R).

Then Tm ∈ S 1
m
,∞ (i.e. sk(Tm) ≲m,a k

−m)

Proof. Indeed, applying Theorem 3.2.3 for m2 = m1 = m and any l ≥ m

we obtain the result.

The following theorem describes the case when the ”discontinuous part”

of the domain boundary is a straight line.

Theorem 3.2.8. Assume η = η(t, ξ) ∈ C∞
0 (R2), χΛ = χΛ(t, ξ), where

Λ = {(t, ξ)| ξ ≤ at+ b}. Then

OpW
1 (χΛη) ∈ S1,∞.

Proof. Since shifts and rotations of region Λ on the phase space reduce

ΨDO to a unitary equivalent operator (see [8, Ch.2, Prop. 2.13], [11, Th.

6, p.3327]), without loss of generality we can assume that a = 1, b = 0

and supp η ⊆ R+ × R+. The kernel K of the operator can be expressed

as follows

2πK(x, y) =

∫
R
eiξ(x−y)χΛ

(x+ y

2
, ξ
)
η
(x+ y

2

)
dξ
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= η
(x+ y

2

)
·
∫ x+y

2

0

eiξ(x−y)dξ = −iη
(x+ y

2

)(
ei·

x2−y2

2 − 1
)
· 1

x− y
.

Let ζ(t) := ζ1(t) be a cut-off function on R. Decompose the kernel K as

follows

K(x, y) = S(x, y) + T (x, y),

where

S(x, y) = − i

2π
η
(x+ y

2

)(
e

i
2
(x2−y2)− 1

)
· 1

(x2 − y2)
· (x+ y)(1− ζ(x− y))

is a C∞-function (consider eα−1
α

= 1+ α
2
+ α2

3!
+ ... ∈ C∞) supported on a

bounded region Ω = {(x, y)| |x+ y| < const} ∩ {(x, y)| |x− y| < 1} and

T (x, y) = − i

2π

(
ei·

x2−y2

2 − 1
)
· 1

x− y
ζ(x− y)η

(x+ y

2

)
.

Applying Corollary 3.2.2 and Corollary 3.2.7 we obtain

S ∈ ∩γ>0Sγ,∞, T ∈ S1,∞,

which completes the proof.

Discontinuous kernel

There are some results for the case when the kernel is not a smooth

function.

For instance, [4, Ch. 11, §8, Th. 6] implies A1, A2 ∈
⋂

p>0 Sp,∞, where

A1u(x) =

∫
R
χ{x<x0}K(x, y)u(y)dy, A2u(x) =

∫
R
χ{y<y0}K(x, y)u(y)dy

are integral operators defined on L2 with kernel K(·, ·) ∈ C∞
0 (R2). How-

ever, generally one can state a significantly weaker result about operator

AΩu(x) =

∫
R
K(x, y)χΩ(x, y)u(y)dy,

where Ω is an arbitrarily bounded region in R2 with C1-boundary and

function K(x, y) ∈ C∞(R2).

Splitting the operator into the ”main” and ”remainder” parts (in the

same spirit as in Theorem 3.2.3), one can show

AΩ ∈
⋂
p>1

Sp,∞,

i.e. unlike A1 or A2 (which have the superpolynomial rate of singular
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values decay, i.e. sk(Aj) ≲p k
−p for any p > 0), the singular values of AΩ

satisfy

sk(AΩ) ≲ϵ k
−1+ϵ for any ϵ > 0.

For some cases when Ω = {x + y ≥ 0} (the main operator (5.0.1) is

reduced to this case in Chapter 5), the estimate might be O(k−1 log(k +

1)). For the operator (5.0.1) this estimate is sharp. This is the case when

the polynomial scale provided by Schatten operator classes gives a rough

estimate O(k−1+ϵ), while the Weidl class Σf , f(x) = C( x
log(1+x)

−1
)
gives

exactly the precise result (see Remark 2.2.8).
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3.3 Auxiliary results. Overview and proofs.

Consider the pseudo-differential operator on the L2(Rd) space

Opa
α(p)u(x) =

( α
2π

)d ∫∫
R2d

eiα(x−y)·ξp(x,y, ξ)u(y)dξdy.

The results of the section are represented by the estimates of the operator

norms with the amplitude p of the form p(x,y, ξ) = a(x,y)b(ξ) for some

suitable functions a and b (i.e. when the frequency variable ξ is separated

from others).

Two main theorems are Theorem 3.3.1, where functions a = a(x) and

b = b(ξ) belong to a lattice quasi-norm spaces, and Theorem 3.3.14 which

helps to reduce the Weyl symbol σW = a
(
x+y
2
)b(ξ) to the one of the form

σ = a(x)b(ξ).

Theorem 3.3.1. Let γ1, γ2 ∈ (0, 2), γ = max{γ1, γ2} and p(x,y, ξ) =

f(x)g(ξ), where f ∈ lγ1,∞(L2)(Rd), g ∈ lγ2,∞(L2)(Rd).

If γ1 = γ2, then Opa
1(p) ∈ Sγ and∥∥Opa

1(p)
∥∥
Sγ

≤ Cγ · ∥f∥2,γ,∞ · ∥g∥2,γ,∞.

If γ1 ̸= γ2, then Opa
1(p) ∈ Sγ,∞ and∥∥Opa
1(p)

∥∥
Sγ,∞

≤ Cγ1,γ2 · ∥f∥2,γ1,∞ · ∥g∥2,γ2,∞.

Proof. Without loss of generality we might consider

∥f∥2,γ,∞ = ∥g∥2,γ,∞ = 1.

We denote fn(x) = fχQn(x) and gn(ξ) = gχQn(ξ).

Due to Proposition 3.1.4 and (3.1.1) f ∈ lγ1,∞(L2)(Rd) ⊆ l2(L2)(Rd) =

L2(Rd). Moreover, ∥f∥2 = ∥f∥2,2 = Cγ1 . A similar result holds for

g ∈ L2(Rd), i.e. ∥g∥2 = Cγ2 .

Part A.

Consider the first case, γ1 = γ2 = γ.

Idea of the proof

The idea of the proof is to split (with the help of the the decomposi-
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tion (3.1.2) for functions in lγ,∞(L2)(Rd)) the operator as follows

Opa
1(fg) =

∑
∥fn∥γ2>R−1

(
Opa

1(fngR−) + Opa
1(fngR+)

)
+Opa

1(fR+g).

Then we estimate the singular values of operators Opa
1(fngR−) using

(1.3.1). The singular values of the operators Opa
1(fngR+), Opa

1(fR+g)

are estimated with the help of Hilbert-Schmidt norm. Finally, Remark

2.2.16 helps to combine the mentioned estimates.

Let’s proceed with the details.

Step 1. sk(Opa
1(fngR−)) estimate

Take any q ∈ (0, γ). Then, using Lemma 3.1.6 for f, g ∈ lγ,∞(L2)(Rd) we

obtain the following estimates

∥fR−∥2,q, ∥gR−∥2,q ≲γ R
− 1

γ
+ 1

q , (3.3.1)

∥fR−∥2,γ, ∥gR−∥2,γ ≲γ (log(R + 1))
1
γ , (3.3.2)

∥fR+∥2, ∥gR+∥2 ≲γ R
− 1

γ
+ 1

2 , (3.3.3)

where R > 1 and

fR− =
∑

∥fn∥γ2>R−1

fn, fR+ =
∑

∥fn∥γ2≤R−1

fn,

gR− =
∑

∥gn∥γ2>R−1

gn, gR+ =
∑

∥gn∥γ2≤R−1

gn.

Using (1.3.1), the Birman-Solomyak estimate, we obtain

∥Opa
1(fngR−)∥Sq ≲q

∥∥fn∥∥2,q · ∥gR−∥2,q ≲γ R
1
q
− 1

γ

∥∥fn∥∥2,q.
Hence, for any k and R

k
1
q sk(Opa

1(fngR−)) ≲γ,q R
1
q
− 1

γ

∥∥fn∥∥2,q = R
1
q
− 1

γ

∥∥fn∥∥2,
and thus,

k
1
γ sk(Opa

1(fngR−)) ≲γ,q

(
R

k

) 1
q
− 1

γ ∥∥fn∥∥2 (3.3.4)
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Step 2. sk(Opa
1(fngR+)) estimate

Using the Hilbert-Schmidt estimate and (3.3.3), we obtain

ks2k(Opa
1(fngR+)) ≤

∑
t

s2t (Opa
1(fngR+)) = ∥fn(x)gR+(ξ)∥2L2(Rd×Rd)

= ∥fn∥22 · ∥gR+∥22 ≲γ ∥fn∥22 ·R
1− 2

γ .

Therefore,

k
1
γ sk(Opa

1(fngR+)) ≲γ ∥fn∥2 ·

(
R

k

) 1
2
− 1

γ

(3.3.5)

Step 3. sk(Opa
1(fR−g)) estimate

Combining (3.3.4) and (3.3.5) together and using Fan’s inequality (2.2.2),

k
1
γ s2k−1(Opa

1(fng)) ≤ k
1
γ sk(Opa

1(fngR−)) + k
1
γ sk(Opa

1(fngR+))

≲γ ∥fn∥2 ·

((
R

k

)− 1
γ
+ 1

q

+

(
R

k

) 1
2
− 1

γ
)

(3.3.6)

Taking R = k we obtain

∥Opa
1(fng)∥γ,∞ = sup

k
k

1
γ sk(Opa

1(fng)) ≲γ ∥fn∥2.

Since Opa
1(fng) and Opa

1(fmg) satisfy

Opa
1(fng)

∗
Opa

1(fmg) = Opa
1(fg)

∗
χQnχQmOpa

1(fg) = 0

for any n ̸= m, using the quasi-triangle inequality for γ < 2 (see Propo-

sition 2.2.1) and (3.3.2)

∥∥∥Opa
1(fR−g)

∥∥∥γ
Sγ,∞

=
∥∥∥Opa

1(fk−g)
∥∥∥γ
Sγ,∞

=
∥∥∥ ∑

∥fn∥γ2>k−1

Opa
1(fng)

∥∥∥γ
Sγ,∞

≲γ

∑
∥fn∥γ2>k−1

∥∥Opa
1(fng)

∥∥γ
Sγ,∞

≲γ

∑
∥fn∥γ2>k−1

∥fn∥γ2 = ∥fk−∥γ2,γ ≲γ log(k + 1).
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Thus,

sk(Opa
1(fR−g)) = sk(Opa

1(fk−g)) ≲γ

(
log(k + 1)

k

) 1
γ

(3.3.7)

Step 4. sk(Opa
1(fR+g)) estimate and final result

Applying the Hilbert-Schmidt estimate again, with the help of (3.3.3)

we obtain

ks2k(Opa
1(fR+g)) = ks2k(Opa

1(fk+g)) ≤
∑
t

s2t (Opa
1(fk+g))

= ∥fk+g∥2L2(Rd×Rd) = ∥fk+∥22 · ∥g∥22 ≲γ k
1− 2

γ .

Hence,

sk(Opa
1(fR+g)) = sk(Opa

1(fk+g)) ≲γ

1

kγ
(3.3.8)

Finally, (3.3.7) and (3.3.8) and Ky Fan’s inequality (2.2.2) imply

s2k−1(Opa
1(fg)) ≤ sk(Opa

1(fR−g))+sk(Opa
1(fR+g)) ≲γ

(
log(k + 1)

k

)γ

+
1

kγ

≲γ

(
log(k + 1)

k

)γ

.

Part B.

Now, let’s consider the case γ1 > γ2 (the reasoning when γ1 < γ2 is

absolutely similar)

We split the operator as follows

Opa
1(fg) = Opa

1(fR−gR−) + Opa
1(fR+gR−) + Opa

1(fgR+).

Apply (1.3.1), the Birman-Solomyak estimate for Opa
1(fR−gR−) and ∥·∥Sq -

norm, where q ∈ (γ2, γ1) ⊆ (0, 2):

∥Opa
1(fR−gR−)∥Sq ≲q

∥∥fR−
∥∥
2,q

· ∥gR−∥2,q.

Proposition 3.1.4 implies lγ2,∞(L2)(Rd) ⊆ lq(L2)(Rd). Thus, ∥gR−∥2,q ≤
∥g∥2,q = Cq. Using (3.3.1) we obtain

k
1
q sk(Opa

1(fR−gR−)) ≲γ1,q
R

− 1
γ1

+ 1
q .

In the same spirit as in the previous case we estimate sk(Opa
1(fR+gR−))
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and Opa
1(fgR+) using the Hilbert-Schmidt estimate

ks2k(Opa
1(fR+gR−)) ≤

∑
t

s2t (Opa
1(fR+gR−)) = ∥fR+gR−∥2L2(Rd×Rd)

= ∥fR+∥22 · ∥gR−∥22 ≲γ1
R

1− 2
γ1 · ∥g∥22 ≲γ1,γ2

R
1− 2

γ1

and

ks2k(Opa
1(fgR+)) ≤

∑
t

s2t (Opa
1(fgR+))

= ∥fgR+∥2L2(Rd×Rd) = ∥f∥22 · ∥gR+∥22 ≲γ2
R

1− 2
γ2 · ∥f∥22 ≲γ1,γ2

R
1− 2

γ2 .

Combining all of the above and using Fan’s inequality (2.2.2), we finally

obtain

s3k−2(Opa
1(fg)) ≤ sk(Opa

1(fR−gR−))+sk(Opa
1(fR+gR−))+sk(Opa

1(fgR+))

≲γ1,γ2

(
R

k

) 1
q

·

(
1

R

) 1
γ1

+

(
R

k

) 1
2

·

(
1

R

) 1
γ1

+

(
R

k

) 1
2

·

(
1

R

) 1
γ2

.

Taking R = k completes the proof.

Remark 3.3.2. If in addition f ∈ lγ(L2)(Rd), i.e. f belongs to a strong

lattice-normed space, then the estimate (3.3.7) can be strengthened. In-

deed, in this case ∥fR−∥2,γ ≤ ∥f∥2,γ <∞ and (3.3.7) can be rewritten as

follows

sk(Opa
1(fR−g)) ≲γ

(
∥fR−∥2,γ

k

) 1
γ

≲γ k
− 1

γ .

Repeating the remaining part of the proof we obtain the Simon’s estimate

(1.3.2), Opa
1(fg) ∈ Sγ, but for a wider interval of parameter γ values,

(0, 2).

For the next result, Theorem 3.3.14 (about the connection between the

initial operator and the one with the corresponding Weyl symbol), we

need some auxiliary tools.

The following two propositions correspond to some theorems in [18]

which describe the estimates when a particular control of the amplitude

p(x,y, ξ) is considered.
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Proposition 3.3.3 (Theorem 2.6 in [18] forw(x,y) = x+y
2

and h1 = h2 ≡ 1).

Suppose that q ∈ (0, 1], Fn ∈ lq(L1)(R2d) where

Fn(w, ξ; p) =
n∑

k,t=0

|∇k
w∇t

ξp(w, ξ)|, n = [d · q−1] + 1.

Then

∥OpW
1 (p)∥Sq ≤ Cq∥Fn(p)∥1,q

where Cq depends on q only.

Example. The amplitude p(x,y, ξ) = 1
⟨ξ⟩2

1
⟨x+y⟩3 along with all its

derivatives belongs to lq,1(R2) for any q > 1
2
. Thus, Op1

(
1

⟨ξ⟩2
1

⟨x+y⟩3

)
∈

∩q> 1
2
Sq.

Proposition 3.3.4 (Theorem 2.5 in [18]form = 0, T = I and h1 = h2 ≡ 1).

Suppose that q ∈ (0, 1], Pn ∈ lq(L1)(R3d), where

Pn(x,y, ξ; p) =
n∑

k,t=0

|∇k
x∇t

yp(x,y, ξ)|, n = [d · q−1] + 1.

Then

∥Op1(p)∥Sq ≤ Cq∥Pn(p)∥1,q.

The following lemma describes the estimate for a general case of the

symbol of the form a(x,y)b(ξ) under some control of a and b.

Lemma 3.3.5. Consider p(x,y, ξ) = a(x,y)b(ξ), where

a ∈ C∞(R2d), b ∈ lγ,∞(L2)(Rd), 0 < γ < 2,

|∇m
x ∇t

ya| ∈ lβ(L1)(R2d) for some β ∈ (0, γ) ∩ (0, 1]

and t,m = 0, 1, ..., n = [dβ−1] + 1.

Moreover, suppose that for some positive number Ma at least one of the

following two conditions holds

(i) sup
s

∥a(s+ ·, ·)∥L2(Rd) = sup
s

(∫
|a(y + s,y)|2dy

) 1
2 ≤Ma,

(ii) sup
s

∥a(·, s+ ·)∥L2(Rd) = sup
s

(∫
|a(x,x+ s)|2dx

) 1
2 ≤Ma.

Then

Opa
1(p) ∈ Sγ,∞, sk(Opa

1(p)) ≤ Cβ,γ,d ·
(
Da +Ma

)
· ∥b∥2,γ,∞ · k−

1
γ ,
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where Da = max0≤m,t≤n

∥∥∥|∇m
x ∇t

ya|
∥∥∥
1,β

and Cβ,γ,d depends on β, γ, d only.

Proof. Without loss of generality consider

Ma := sup
s

∥a(s+ ·, ·)∥L2(Rd) <∞.

Let’s split our operator as follows

Opa
1(p) = Opa

1(a · bR−) + Opa
1(a · bR+)

Proposition 3.3.4 for operator Opa
1(a · bR−) implies

∥Op1(a · bR−)∥ββ ≤ Cβ ·
∥∥∥ ∑

0≤m,t≤n

|∇m
x ∇t

ya(·, ·)bR−(·)|
∥∥∥β
1,β

= Cβ ·
∥∥∥ ∑

0≤m,t≤n

|∇m
x ∇t

ya(·, ·)|
∥∥∥β
1,β

· ∥bR−∥β1,β.

Using monotonicity of lattice quasi-norm function and Lemma 3.1.6 we

obtain

∥bR−∥β1,β ≤ ∥bR−∥β2,β ≤ Cβ
β,γ · ∥b∥

γ
2,γ,∞ ·R1−β

γ .

The quasi-triangle inequality implies∥∥∥ ∑
0≤m,t≤n

|∇m
x ∇t

ya(·, ·)|
∥∥∥β
1,β

≤ Cβ,n

∑
0≤m,t≤n

∥∥∥|∇m
x ∇t

ya(·, ·)|
∥∥∥β
1,β

≤ Cβ,n · max
0≤m,t≤n

∥∥∥|∇m
x ∇t

ya|
∥∥∥β
1,β
.

Hence,

ksβk(Op1(a · bR−)) ≤ Cγ,β,d · ∥b∥γ2,γ,∞ · max
0≤m,t≤n

∥∥∥|∇m
x ∇t

ya|
∥∥∥β
1,β

·R1−β
γ ,

or equivalently

sk(Op1(a · bR−)) ≤ Cβ,γ,d · ∥b∥
γ
β

2,γ,∞ · max
0≤m,t≤n

∥∥∥|∇m
x ∇t

ya|
∥∥∥
1,β

·

(
R

k

) 1
β

·R− 1
γ

(3.3.9)

Without loss of generality let’s consider condition (i).

Let’s rewrite Opa
1(a · bR+) as an integral operator.

Op1(abR+)u(x) =
( 1

2π

)d ∫∫
R2d

ei(x−y)·ξa(x,y)bR+(ξ)u(y)dξdy

=
( 1

2π

) d
2

∫
Rd

a(x,y) · (F−1bR+)(x− y)u(y)dy,
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where F−1 stands for the inverse Fourier transform.

Now, the Hilbert-Schmidt estimates provides

ks2k(Op1(a·bR+)) ≤ ∥Opa
1(a·bR+)∥22 ≤

∫∫
|a(x,y)|2·|(F−1bR+)(x−y)|2dxdy

=

∫∫
|a(y + s,y)|2 · |(F−1bR+)(s)|2dyds

≤
∫

|(F−1bR+)(s)|2 ·
(
sup
s

∫
|a(y + s,y)|2dy

)
ds

≤M2
a · ∥F−1bR+∥22 =M2

a · ∥bR+∥22 ≤ C2
γ ·M2

a · ∥b∥γ2,γ,∞ ·R1− 2
γ .

Therefore,

sk(Opa
1(a · bR+) ≤ Cγ ·Ma ·

(R
k

) 1
2 · ∥b∥

γ
2
2,γ,∞ ·R− 1

γ . (3.3.10)

Without loss of generality let’s consider ∥b∥2,γ,∞ ̸= 0.

Taking R = k · ∥b∥−γ
2,γ,∞ in (3.3.9), (3.3.10) and using Fan’s inequality

(2.2.2) we obtain

s2k−1(Opa
1(a · b)) ≤ sk(Opa

1(a · bR−)) + sk(Opa
1(a · bR+))

≤ Cβ,γ,d · ∥b∥
γ
β

2,γ,∞ · max
0≤m,t≤n

∥∥∥|∇m
x ∇t

ya|
∥∥∥
1,β

·

(
R

k

) 1
β

·R− 1
γ

+Cγ ·Ma · ∥b∥
γ
2
2,γ,∞ ·

(R
k

) 1
2 ·R− 1

γ

= ∥b∥2,γ,∞
(
Cβ,γ,d · max

0≤m,t≤n

∥∥∥|∇m
x ∇t

ya|
∥∥∥
1,β

+ Cγ ·Ma

)
· k−

1
γ .

Remark 3.3.6. In the case β = γ ∈ (0, 1] we can state

sk(Opa
1(p)) ≤ Cγ,d ·

(
Da +Ma

)
· ∥b∥2,γ,∞ ·

(
log(k + 1)

k

) 1
γ

.

The proof almost repeats the previous one, except the replacement of

(3.3.9) with

sk(Opa
1(a · bR−)) ≤ Cγ,d · ∥b∥2,γ,∞ · max

0≤m,t≤n

∥∥∥|∇m
x ∇t

ya|
∥∥∥
1,γ

·

(
logR

k

) 1
γ

.
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Remark 3.3.7. If in addition |∇m
x ∇t

ya| ∈ lγ,∞(L1)(Rd), then

sk(Opa
1(p)) ≤ Cγ,d ·

(
Da +Ma

)
· ∥b∥2,γ,∞ ·

(
log2(k + 1)

k

) 1
γ

.

The following two lemmata (along with corollaries) give examples of func-

tions in the lattice quasi-norm spaces we consider in the proof of Theorem

3.3.14.

Lemma 3.3.8. If three vectors (1,−1)T , (c1, c2)
T and (c3, c4)

T are pair-

wise linearly independent in Q2, then the series∑
−∞<n,m<∞

n̸=m
c1n+c2m ̸=0
c3n+c4m ̸=0

1

|n−m|k|c1n+ c2m|s|c3n+ c4m|t

converges for any k > 1 and s, t ≥ 0, where s+ t > 1.

Remark. Vectors (c1, c2)
T and (c3, c4)

T can be collinear. Vector (1,−1)T

can be replaced with any other Q2-vector preserving linear independence

with each of the other two. We choose (1,−1)T with our further estimates

in mind.

Proof. We can consider that ci ∈ Z (otherwise multiply by a common

denominator of all 4 coefficients) After the substitution w = n−m, v =

c1n+ c2m, we reduce the series to∑
−∞<w,v<∞
v ̸=0,w ̸=0
v+cw ̸=0

1

|w|k|v|s|v + cw|t
,

where c is a new constant. Without loss of generality consider c > 0.∑
−∞<w,v<∞
v ̸=0,w ̸=0
v+cw ̸=0

1

wkvs|v + cw|t
=

∑
v>0,w>0
v+cw ̸=0

2

wkvs(v + cw)t
+
∑

v>0,w<0
v+cw ̸=0

2

|w|kvs|v + cw|t

≤
∑
v,w>0

2

wkvs+t
+

∑
w<0, cw<u=v+cw

u̸=0

2

|w|k(u− cw)s|u|t

≤
∑
v>0

2

wk

∑
v>0

1

vs+t
+

∑
w<0, cw<u<0

2

|w|k(u− cw)s|u|t
+
∑

w<0<u

2

|w|k(u− cw)s|u|t

≤
∑
v>0

4

wk

∑
v>0

1

vs+t
+

∑
w>0, cw>u>0

2

wk(cw − u)sut

53



3.3. AUXILIARY RESULTS. OVERVIEW AND PROOFS. 54

= const+
∑
w>0

2

wk

( ∑
cw>u>0

1

(cw − u)sut

)
To finish the proof we establish the following estimate∑

cw>u>0

1

(cw − u)sut
≲c,t,s (logw)

s

for any fixed c > 0, w > 1.

Indeed, if t > 1 or s > 1, the sum is dominated by convergent series,∑
n>0

1
nmax{t,s} . Suppose t, s ≤ 1. If s = 1, then

∑
u∈(0,cw)

1
cw−u

≲c,t,s logw.

Let s < 1. Since t > 1− s, using the Hölder inequality we obtain

∑
cw>u>0

1

(cw − u)sut
≤

( ∑
cw>u>0

1

cw − u

)s

·

( ∑
cw>u>0

1

u
t

1−s

)1−s

≲c,t,s (logw)
s.

Corollary 3.3.9. For any integer d > 0 and k, s > d define

f(x,y) =
1

⟨x− y⟩k⟨x+ y⟩s
, g(x,y) =

1

⟨x− y⟩k⟨x⟩s
, x,y ∈ Rd.

For any β ∈
(
max{1

s
, 1
k
} · d, 1

)
f, g ∈ lβ(L1)(R2d).

Lemma 3.3.10. For any two linear independent vectors (c1, c2)
T and

(c3, c4)
T in R2 and any k > 1 the series∑

(n,m)∈Z2

χ{|c1n+c2m|<1}

⟨c3n+ c4m⟩k

is convergent.

Proof. Using the substitution u = c1x+ c2y, v = c3x+ c4y with non-zero

Jacobian determinant, we can estimate

∑
(n,m)∈Z2

χ{|c1n+c2m|<1}

⟨c3n+ c4m⟩k
≲

k,c1,c2,c3,c4

∫
R2

χ{|c1x+c2y|<1}

⟨c3x+ c4y⟩k
dxdy

≲
k,c1,c2,c3,c4

∫
|u|≤1

du

∫
R

dv

⟨v⟩k
<∞.

Corollary 3.3.11. For any two linear independent vectors (c1, c2)
T and

(c3, c4)
T in R2, for any k > 1 and β ∈

(
1
k
, 1
)

χ{|c1x+c2y|<1}

⟨c3x+ c4y⟩k
∈ lβ(L1)(R2).

54



3.3. AUXILIARY RESULTS. OVERVIEW AND PROOFS. 55

The auxiliary lemma below provides a convenient substitution for the

symbol to avoid singularities after the integration by parts.

Lemma 3.3.12. Let p = p(x,y, ξ) : Rd ×Rd ×Rd → R be an amplitude

satisfying

p(x,y, ξ) = p(ξ) ∈ Cm(Rd), lim
|ξ|→∞

∣∣∇k
ξp(x,y, ξ)

∣∣ = 0

for any x,y ∈ Rd and k = 0, 1, ...,m− 1.

Moreover, let ∣∣∇k
ξp(x, ·, ·)

∣∣ ∈ L1(R2d)

for any x ∈ Rd and k = 0, 1, ...,m− 1.

Then

Opa
1(p) = Opa

1

(
(1− i(x− y)∇ξ)

mp

⟨x− y⟩2m

)
.

Proof. Integration by parts gives

(xk−yk)
∫
Rd

ei(x−y)ξ ·∂ξkp(x,y, ξ)dξ = i(xk−yk)2
∫
Rd

ei(x−y)·ξp(x,y, ξ)dξ

for any k = 1, 2, ..., d.

Thus, ∫
Rd

ei(x−y)ξ
(
p− i(x− y)∇ξp

)
dξ =

∫
Rd

ei(x−y)ξp(x,y, ξ) dξ

−i
d∑

k=1

(xk − yk)

∫
Rd

ei(x−y)ξ · ∂ξkp(x,y, ξ)dξ

=
(
1+|x−y|2

)
·
∫
Rd

ei(x−y)ξp(x,y, ξ) dξ = ⟨x−y⟩2
∫
Rd

ei(x−y)ξp(x,y, ξ) dξ.

Therefore,∫
Rd

ei(x−y)ξp(x,y, ξ) dξ =

∫
Rd

ei(x−y)ξ

(
1− i(x− y)∇ξ

)
p(x,y, ξ)

⟨x− y⟩2
dξ.

Repeating this reduction m times and applying Fubini’s theorem, we

obtain the statement.
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Remark 3.3.13. Using the same approach one can obtain the following

formula in one dimensional case∫
[a0,a1]

eisξp(s) ds = i
ξ

⟨ξ⟩2
p(a0) + i

ξ

⟨ξ⟩2

(
1 + iξ∂s

)
p

⟨ξ⟩2
(
a0
)

+

∫
[a0,a1]

eisξ
(
1 + iξ∂s

)2
p

⟨ξ⟩4
(
s
)
ds,

where p ∈ C2(R) with p(a1) = p′(a1) = 0, k = 0, 1.

Finally,

Theorem 3.3.14. Consider functions g = g(s), b = b(ξ) ∈ C∞(Rd),

with parameters α > d, γ > 1
α
satisfying

|∇jg(s)| ≲ ⟨s⟩−α, j = 1, 2, ..., l = l(α, γ),

|∇kb| ∈ lγ,∞(L2)(Rd), k = 0, 1, 2, ..., [2α] + 1.

Then

Opa
1

((
g
(x+ y

2

)
− g(x)

)
b(ξ)

)
∈ Sγ,∞.

Remark. This theorem reduces the Weyl symbols σW = g
(
x+y
2

)
b
(
ξ
)
to

one of the form σ = g(x)b(ξ) when singular values are estimated. Then

we can apply Theorem 3.3.1. The parameter l ≥ max{ d
γ
, d}+ 1.

Proof. Let’s define a(x,y) = g
(

x+y
2

)
− g(x).

Applying Lemma 3.3.12, after the multiple integration by parts we rep-

resent the kernel of the operator as follows

Opa
1(ab) =

1

(2π)d

∫∫
R2d

ei(x−y)·ξa(x,y)b(ξ)u(y)dydξ

=
1

(2π)d

∫∫
R2d

ei(x−y)ξ · a(x,y)

⟨x− y⟩2m
· (1− i(x− y)∇ξ)

mb(ξ)u(y)dydξ

=
∑
|j|=k

Opa
1

(
Aj · ∂jξ b

)
,

where

Aj(x,y) = Cj ·
∏

1≤t≤d(xt − yt)
jk

⟨x− y⟩2m
· a(x,y).

Let’s prove that for a fixed m ≥ 2α + 1 each Opa
1

(
Aj · ∂jξ b

)
∈ Sγ,∞,

checking that all conditions in Lemma 3.3.5 are satisfied.

Let’s estimate |∇r
x∇k

yAj| using the Leibniz rule and the fact that
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|xt − yt|u < 1 + |xt − yt|w for any 0 < u < w.

|∇r
x∇k

yAj| ≲j,Cj,r,s

∏
1≤t≤d(1 + |xt − yt|)jt

⟨x− y⟩2m
·
∑
0≤t≤r
0≤u≤k

∣∣∣∇u
x∇t

y

(
g
(x+ y

2

)
−g(x)

)∣∣∣.

Note that since 1+|xt−yt|
2

≤
√

1+|xt−yt|2
2

≤ ⟨x−y⟩√
2
,

∏
1≤t≤d(1 + |xt − yt|)jt

⟨x− y⟩2m
≲

d

⟨x− y⟩
∑d

t=0 jt

⟨x− y⟩2m
=

1

⟨x− y⟩2m−k
≤ 1

⟨x− y⟩m
.

Therefore,

|∇r
x∇k

yAj| ≲j,Cj,r,k,d

1

⟨x− y⟩m
·
∑
0≤t≤r
0≤u≤k

(t,u)̸=(0,0)

∣∣∣∇u
x∇t

y

(
g
(x+ y

2

)
− g(x)

)∣∣∣

+
1

⟨x− y⟩m
·
∣∣∣g(x+ y

2

)
− g(x)

∣∣∣
≲

α,r,k

1

⟨x− y⟩m⟨x+ y⟩α
+

1

⟨x− y⟩m⟨x⟩α
+

1

⟨x− y⟩m
·
∣∣∣g(x+ y

2

)
−g(x)

∣∣∣.
The first two terms in the upper bound above belong to lβ(L1)(R2d) for

β ∈ ( 1
α
,min{γ, 1}). Indeed, since m ≥ 2α+ 1 > d, we can directly apply

Corollary 3.3.9. It remains to estimate the last term.

Representing the difference g(x)− g(0) as the line integral, we obtain

|g(x)− g(0)| =
∣∣∣ ∫

{tx|0≤t≤1}
∇g · dr

∣∣∣ = ∣∣∣ ∫ 1

0

d∑
j=1

∂xj
g(xt) · xjdt

∣∣∣
≤

d∑
j=1

|xj|·
∫ 1

0

1

⟨tx⟩α
dt =

∑d
j=1 |xj|
|x|

·
∫ |x|

0

1

⟨t⟩α
dt ≲

α,d

∑d
j=1 |xj|√∑d
j=1 |xj|2

≤
√
d.

Thus, g ∈ L∞(Rd).

Mean Value Theorem implies the estimate∣∣∣g(x+ y

2

)
− g(x)

∣∣∣ ≤ |y − x|
2

· max
0≤t≤1

∣∣∣∇g(x+ y

2
· t+ (1− t)x

)∣∣∣
≲ |y − x| · 1

min 0≤t≤1

〈
x+ y−x

2
· t
〉α .

Note that, if |x− y| ≤ |x|, then for any t ∈ (0, 1)∣∣∣x+
y − x

2
· t
∣∣∣ ≥ |x| − t

∣∣∣y − x

2

∣∣∣ ≥ |x| −
∣∣∣x
2

∣∣∣ = ∣∣∣x
2

∣∣∣
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and
1

⟨x− y⟩m
∣∣∣g(x+ y

2

)
− g(x)

∣∣∣ ≲α

1

⟨x− y⟩m−1
· 1

|x|α
.

Otherwise, if |x − y| > |x|, then |x − y|m > |x − y|m2 |x|m2 and, since

g ∈ L∞(Rd),

1

⟨x− y⟩m
∣∣∣g(x+ y

2

)
− g(x)

∣∣∣ ≲α,d

1

⟨x− y⟩m
2

1

⟨x⟩m
2

.

Therefore, since m ≥ 2α + 1 > 2d+ 1, for any x,y ∈ Rd

1

⟨x− y⟩m
∣∣∣g(x+ y

2

)
− g(x)

∣∣∣ ≲α,d

1

⟨x− y⟩m−1

1

|x|α
+

1

⟨x− y⟩m
2

1

⟨x⟩m
2

≲
α,d

1

⟨x− y⟩2d
· 1

⟨x⟩α
+

1

⟨x− y⟩α
1

⟨x⟩α
∈ lβ(L1)(R2d)

due to Corollary 3.3.9.

Therefore, DAj
= max0≤r,k≤n

∥∥∥|∇r
x∇k

yAj|
∥∥∥
1,β

<∞, where n = [dβ−1] + 1.

Moreover, using the same estimates and triangle inequality

MAj
= sup

s
∥Aj(s+ ·, ·)∥L2(Rd) = sup

s
∥Aj(s+ y,y)∥L2(Rd)

≤ sup
s

∥∥∥ 1

⟨s⟩2d+1⟨s+ 2y⟩α
+

1

⟨s⟩2d+1⟨s+ y⟩α

+
1

⟨s⟩2d
· 1

⟨s+ y⟩α
+

1

⟨s⟩α
1

⟨s+ y⟩α
∥∥∥
L2(Rd)

≲
α,d

sup
s

1

⟨s⟩d

(∥∥∥ 1

⟨s+ 2y⟩α
∥∥∥
L2(Rd)

+
∥∥∥ 1

⟨s+ y⟩α
∥∥∥
L2(Rd)

)

≲
α,d

sup
s

1

⟨s⟩d
∥∥∥ 1

⟨y⟩α
∥∥∥
L2(Rd)

<∞.

Finally, ∂j1ξ1 ...∂
jd
ξd
b ∈ lγ,∞(L2)(Rd), which implies the claimed result.

Using the result above for d = 1, α = 2, γ = 1, g(t) = ζ(t)
t

and β(ξ) = ζ(ξ)
ξ
,

we obtain

Corollary 3.3.15.

Opa
1

((
ζ(x)

x
−

2ζ
(
x+y
2

)
x+ y

)
ζ(ξ)

ξ

)
∈ S1,∞.

The obtained result is fully compliant with the asymptotic formula

[6, p. 95, (2.1)’] and is a core tool for proving the main result in Chapter

5 (see Theorem 5.1.9 about an angular domain).
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Model operator

Remark 3.3.16. Since S1,∞ ⊆ S1 (recall that T ∈ S1 means sk(T ) ≲
log(k+1)

k
, see Definition 2.2.3) this Corollary allows to reformulate the

result of Theorem 3.3.1 in the following way

OpW
1

(ζ(t)
t

ζ(ξ)

ξ

)
∈ S1.

The same is true for operators OpW
1 (⟨t⟩−1⟨ξ⟩−1),OpW

1 (ζ(t)t−1⟨ξ⟩−1),

OpW
1 (ζ(2t)t−1⟨ξ⟩−1) ∈ S1, which might be considered as model opera-

tors, which we appeal to in Chapter 5.

Indeed,

ζ(t)

t

1

⟨ξ⟩
− ζ(t)ζ(ξ)

tξ
=
ζ(t)

t

ξ − ⟨ξ⟩ζ(ξ)
ξ⟨ξ⟩

=
ζ(t)

t
· F (ξ),

where F ∈ l
1
3
,∞(L2).

Thus, by Theorem 3.3.1 Opa
1

(
ζ(x)
x

1
⟨ξ⟩ −

ζ(x)ζ(ξ)
xξ

)
∈ S1,∞. Similarly,

Opa
1

(
1

⟨x⟩⟨ξ⟩ −
ζ(x)
x⟨ξ⟩

)
∈ S1,∞. Note that

1

⟨t⟩⟨ξ⟩
− ζ(t)ζ(ξ)

tξ
=

1

⟨t⟩⟨ξ⟩
− ζ(t)

t⟨ξ⟩
+
ζ(t)

t⟨ξ⟩
− ζ(t)ζ(ξ)

tξ
.

Thus, Opa
1(⟨x⟩−1⟨ξ⟩−1),Opa

1(ζδ(x)x
−1⟨ξ⟩−1) ∈ S1.

Therefore, due to Corollary OpW
1 (⟨t⟩−1⟨ξ⟩−1),OpW

1 (ζ(t)t−1⟨ξ⟩−1) ∈ S1.

The inclusion OpW
1 (ζ(2t)t−1⟨ξ⟩−1) ∈ S1 follows from the fact that ζ(2t)

t
−

ζ(t)
t

∈ C∞
0 . Therefore,

Opa
1

(ζ(2x)
x⟨ξ⟩

− ζ(x)

x⟨ξ⟩

)
∈ S1,∞ (3.3.11)
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Chapter 4

Self-adjoint differential

operators

4.1 Introduction

The spectral analysis of unbounded operators requires quite a different

toolkit compared to the one described in the previous chapter. Some

estimates for the number of eigenvalues of this type of operators are ob-

tained in [17] However, the operators discussed in the [17] are considered

on a finite interval (a, b). Below we discuss some techniques of decou-

pling an unbounded operator defined on R to reduce it to the case of a

finite interval (a, b) applying spectral aspects of the theory of self-adjoint

extensions. The theory of self-adjoint extensions is well-described in [4,

Ch. 10].

We start with the model theorems about the adjoint of the Laplacian

−∆ defined on the set of functions with Dirichlet boundary conditions

(Lemmata 4.2.1 and 4.2.4 ) and then extent these results. After that

we introduce the machinery which helps to compute the spectral count-

ing functions of the main ΨDO (introduced in Chapter 5) using spectral

results of some specific differential operators (Proposition 4.4.1).

Notations used

We denote byW 2
2 (Ω) the Sobolev space equipped with the norm ∥f∥W 2

2 (Ω) =(
∥f∥2

L2(Ω)
+∥f ′∥2

L2(Ω)
+∥f ′′∥2

L2(Ω)

) 1
2
, where f ′ and f ′′ are weak derivatives

of order 1 and 2, respectively.

Domain, DA, of an operator A is considered as a dense subspace in L2

space.
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Definition 4.1.1. We define operator H(a,b) := H0 − p, where

H0 = −∆ = − d2

dx2
, p ∈ L∞(R),

the domain of the operator

DH(a,b)
= {y| y ∈ W 2

2 (a, b), y(a) = y(b) = 0},

where a, b ∈ R ∪ {−∞} ∪ {∞}.

Remark. H(a,b) is a differential operator corresponding to the differential

expression l(y) = −y′′ − py.

Spectral counting functions #(·, A), n(·, A),#(·;−p; (a, b))

We use the following notations:

#(λ;−p; (a, b)) for the counting function of the one-dimensional Schrödinger

operator H(a,b);

Spectral counting function of a lower semibounded operator

#(λ,A) :=
∣∣∣{k|λk(A) < λ}

∣∣∣;
Number of singular values of a self-adjoint compact operator

n(λ,A) :=
∣∣∣{k|sk(A) > λ}

∣∣∣.
Definition 4.1.2. Deficiency indices ν−(A), ν+(A) of a symmetric oper-

ator A are defined as follows

ν±(A) := dimKer
(
A

∗

∓ iI
)
,

where I denotes the identity operator.

As shown in Corollaries 4.3.4, 4.3.6 all the results in this chapter (about

the adjoint operators and deficiency indices) are valid for any potential

function p ∈ L∞(R), i.e. do not change under small perturbations. Thus,

we consider p = 0.

4.2 Restrictions of differential operators

with Dirichlet boundary conditions

In this section we study the properties of decouplings, differential op-

erators with a wider set of boundary conditions. Being a common re-
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striction, such operators connect two other differential operators (their

extensions), one of which leads to the model operator, while the other

has a well-estimated counting function (see Proposition 4.4.1 below)

Let R ∈ (a, b), |a|, |b| < ∞. Consider differential operator TR = −∆ on

a finite interval (a, b) with domain

DR = {y ∈ W 2
2 (a,R)⊕W 2

2 (R, b)| y(a) = y(R) = y(b) = 0, y′ ∈ C(a, b) }

Lemma 4.2.1. The adjoint operator T ∗
R = −∆ and

D∗
R = {y ∈ W 2

2 (a,R)⊕W 2
2 (R, b)| y(a) = y(b) = 0, y(R−0) = y(R+0) }

Proof. Since for any f, g ∈ DR the derivative f ′ is absolutely continuous

on (a, b), g′ ∈ L2(a, b) ⊆ L1(a, b), we can apply integration by parts and

obtain

⟨TRf, g⟩ = −
∫ b

a

f ′′(t)g(t)dt = −f ′g
∣∣∣b
a
+ fg′

∣∣∣b
a
+ ⟨f, TRg⟩ = ⟨f, TRg⟩.

Thus, TR is symmetric. Let’s find the domain of its adjoint.

The idea of the proof is based on the approach proposed in [1, Ch. 4, p.

163] with some adjustments.

Step 1.

First, we prove the inclusion

D∗
R ⊆ {y ∈ W 2

2 (a,R)⊕W 2
2 (R, b)| y(a) = y(b) = 0, y(R−0) = y(R+0)}.

For any g ∈ D∗
R define T ∗

Rg = g∗ ∈ L2 and consider f = f1χ[a,R], where

f1 ∈ DR with f ′
1(R) = 0. By definition

−
∫ R

a

f ′′(t)g(t)dt = ⟨TRf, g⟩ = ⟨f, T ∗
Rg⟩ =

∫ R

a

f(t)g∗(t)dt

LetGc1(t) =
∫ t

a
g∗(z)dz+c1. SinceG is absolutely continuous, integration

by parts gives∫ b

a

f(t)g∗(t)dt =

∫ R

a

f(t)G′
c1
(t)dt = −

∫ R

a

f ′(t)Gc1(t)dt+ f(t)Gc1(t)
∣∣∣R
a

= −
∫ R

a

f ′(t)Gc1(t)dt = −
∫ R

a

f ′(t)
(∫ t

a

Gc1(s)ds+ c2

)′
dt
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=

∫ R

a

f ′′(t)
(∫ t

a

Gc1(s)ds+ c2

)
dt

−f ′(t)
(∫ t

a

Gc1(s)ds
)∣∣∣R

a
=

∫ R

a

f ′′(t)
(∫ t

a

Gc1(s)ds+ c2

)
dt.

Thus, ∫ R

a

f ′′(t) ·
(
g(t) +

∫ t

a

Gc1(s)ds+ c2

)
dt = 0. (4.2.1)

Take

f1(t) =

∫ t

a

∫ w

a

(
g(s) +

∫ s

a

Gc1(u)du+ c2

)
ds dw

We claim that f ∈ DR.

Indeed, f(a) = 0 and f ′′(t) = g(t) +
∫ t

a
Gc1(s)ds + c2 ∈ L2(a,R). Let’s

compute f(R) and f ′(R).

f ′(R) =

∫ R

a

(
g(s)+

∫ s

a

Gc1(u)du+c2

)
ds = It,g+It,g∗+c1·

(R− a)2

2
+c2(R−a),

f(R) =

∫ R

a

(
Iw,g + Iw,g∗

)
dw + c1 ·

(R− a)3

6
+ c2 ·

(R− a)2

2
,

where It,g =
∫ t

a
g(s)ds and It,g∗ =

∫ t

a

∫ s

a

∫ u

a
g∗(z)dz du ds.

Consider the system of independent linear equations f(R) = f ′(R) = 0,

which has an unique solution in terms of c1, c2.

Now (4.2.1) can be rewritten

∥∥∥g(t) + ∫ t

a

Gc1(s)ds+ c2

∥∥∥
L2(a,R)

= 0.

Thus, g(t) = −
∫ t

a
Gc1(s)ds + c2 a.e. on (a,R). This implies g′(t) =

−Gc1(t) = −
∫ t

a
g∗(z)dz − c1 ∈ AC(a,R) ⊆ L2(a,R).

Differentiating once again we obtain g′′ = −g∗ ∈ L2(a,R). Thus, χ(a,R)g ∈
W 2

2 (a,R), T
∗
Rg = −g′′.

Similarly, taking f = f2χ[R,b] with appropriate f2 ∈ DR we obtain

χ[R,b]g ∈ W 2
2 (R, b), T

∗
Rg = −g′′.

Let’s rewrite ⟨TRf, g⟩ = ⟨f, T ∗
Rg⟩ for f ∈ DR, g ∈ W 2

2 (a,R) ⊕W 2
2 (R, b)

using integration by parts separately on each of the segments [a,R] and

[R, b].

⟨TRf, g⟩ = −
∫ R

a

f ′′(t)g(t)dt−
∫ b

R

f ′′(t)g(t)dt

= −f ′g
∣∣∣R
a
+ fg′

∣∣∣R
a
− f ′g

∣∣∣b
R
+ fg′

∣∣∣b
R
−
∫ R

a

f(t)g′′(t)dt−
∫ b

R

f(t)g′′(t)dt

= −f ′(R)g(R− 0)− f ′(b)g(b) + f ′(a)g(a) + f ′(R)g(R + 0) + ⟨f, T ∗
Rg⟩

63



4.2. RESTRICTIONS OF DIFFERENTIAL OPERATORS
WITH DIRICHLET BOUNDARY CONDITIONS 64

= ⟨f, T ∗
Rg⟩.

Therefore,

f ′(R)g(R− 0) + f ′(b)g(b) = f ′(a)g(a) + f ′(R)g(R + 0).

Taking f such that f ′(R) = 0 we obtain f ′(b)g(b) = f ′(a)g(a). If in

addition f ′(b) = 1, f ′(a) = 0, then g(b) = 0. Similarly, when f ′(a) =

1, f ′(b) = 0, g(a) = 0.

Finally, f ′(R)g(R− 0) = f ′(R)g(R + 0). Thus, if f ′(R) = 1, g(R− 0) =

g(R + 0), which completes the proof for the inclusion

D∗
R ⊆ {y ∈ W 2

2 (a,R)⊕W 2
2 (R, b)| y(a) = y(b) = 0, y(R−0) = y(R+0) }.

Step 2.

Conversely, if g ∈ {y ∈ W 2
2 (a,R)⊕W 2

2 (R, b)| y(a) = y(b) = 0, y(R−0) =

y(R + 0) }, f ∈ DR, the integration by parts twice gives

⟨TRf, g⟩ = −
∫ R

a

f ′′(t)g(t)dt−
∫ b

R

f ′′(t)g(t)dt

= −f ′g
∣∣∣R
a
+ fg′

∣∣∣R
a
− f ′g

∣∣∣b
R
+ fg′

∣∣∣b
R
−
∫ R

a

f(t)g′′(t)dt−
∫ b

R

f(t)g′′(t)dt

= −f ′(R− 0)g(R− 0) + f ′(R+ 0)g(R + 0)−
∫ b

a

f(t)g′′(t)dt = ⟨f, T ∗
Rg⟩.

Thus, g ∈ D∗
R, and we obtain the inverse inclusion.

Remark 4.2.2. There is another way to prove T ∗
Rg = −g′′ by using the

definitions of Sobolev space and generalized derivatives.

For any f ∈ C∞
0 (a,R) ⊆ DR and g ∈ D∗

R

−
∫ R

a

f ′′(t)g(t)dt = ⟨TRf, g⟩ = ⟨f, T ∗
Rg⟩ =

∫ R

a

f(t)g∗(t)dt,

where g∗ = T ∗
Rg.

Therefore, −g∗, the L2−function, is the 2nd weak derivative of the func-

tion g on (−∞, R) by definition, i.e. −g′′ = T ∗
Rg on (a,R).

Lemma 4.2.3. The deficiency indices ν±(TR) = 1.

Proof. First, let’s prove that TR is closed. Since DR and D∗
R are dense in

L2, T ∗∗
R exists and TR = T ∗∗

R (see [4, Ch.3, §3, p.70, Th.7]). The inclusion
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TR ⊇ TR holds, as for any operator. Thus, it is sufficient to explain why

TR = T ∗∗
R ⊆ TR.

Let’s f ∈ D∗
R, g ∈ D∗∗

R (the domain of T ∗∗
R ). Since TR ⊆ T ∗

R ,T ∗∗
R ⊆ T ∗

R,

and thus, f(a) = f(b) = g(a) = g(b) = 0. Moreover, we can define

f(R) := f(R− 0) = f(R+0) and similarly g(R) := g(R− 0) = g(R+0).

Now, after the integration by parts on (a,R) and (R, b), as previously,

the condition ⟨T ∗
Rf, g⟩ = ⟨f, T ∗∗

R g⟩ becomes

−
∫ b

a

f ′′(t)g(t)dt = −f ′g
∣∣∣R
a
+ fg′

∣∣∣R
a
− f ′g

∣∣∣b
R
+ fg′

∣∣∣b
R
−
∫ b

a

f(t)g′′(t)dt

= −f(R) ·
(
g′(R + 0)− g′(R− 0)

)
+ g(R) ·

(
f ′(R + 0)− f ′(R− 0)

)
−
∫ b

a

f(t)g′′(t)dt = −
∫ b

a

f(t)g′′(t)dt.

Thus, for any f ∈ D∗
R

f(R) ·
(
g′(R + 0)− g′(R− 0)

)
= g(R) ·

(
f ′(R + 0)− f ′(R− 0)

)
.

Now, taking f such that f(R) = f ′(R+ 0) = 0, f ′(R− 0) = 1 we obtain

g(R) = 0. Taking f with f(R) = 1 we get

g′(R + 0)− g′(R− 0) = g(R) · (f ′(R + 0)− f ′(R− 0)) = 0.

Therefore, g ∈ DR which proves the inclusion D∗∗
R ⊆ DR.

Let’s find the deficiency indices. Since, TR is a closed operator,

ν−(TR) = dimKer(T ∗
R + iI) = dim{y ∈ D∗

R| y′′ = iy}

In W 2
2 (a,R)⊕W 2

2 (R, b) the equation y′′ = iy has solution of the form

y = c1χ(a,R]e
λx + c2χ(a,R]e

−λx + c3χ(R,b)e
λx + c4χ(R,b)e

−λx,

where ±λ are square roots of i (ℜλ > 0). Thus, the conditions y(a) =

y(b) = 0, y(R − 0) = y(R + 0) form a system of 3 linear independent

equations 
c1e

λa + c2e
−λa = 0

c3e
λb + c4e

−λb = 0

(c1 − c3)e
λR + (c2 − c4)e

−λR = 0

which has a one-dimensional space of solutions in terms of (c1, c2, c3, c4).

Therefore, ν−(TR) = 1. Similarly, ν+(TR) = 1.
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The lemmata above can be extended to the case a = −∞, b = ∞.

Consider differential operator TR = −∆ with

DR = {y ∈ W 2
2 (−∞, R)⊕W 2

2 (R,∞)| y(R) = 0, y′ ∈ C(R) }

Lemma 4.2.4. The operator TR is symmetric, the adjoint operator T ∗
R is

defined by the same expression, i.e. T ∗
R = −∆, and its domain is defined

by

D∗
R = {y ∈ W 2

2 (−∞, R)⊕W 2
2 (R,∞)| y(R− 0) = y(R + 0) }.

Proof. The first part of the proof repeats Lemma 4.4.4.

Step 1.

Recall that for f, g ∈ DR the derivatives f ′ and g′ are absolutely continu-

ous. Moreover, f, g, f ′, g′, f ′′, g′′ ∈ L2(R), thus (due to the same argument

as in [4, Ch.4, §8, Lemma 1, p.120]),

lim
|x|→∞

f(x) = lim
|x|→∞

f ′(x) = lim
|x|→∞

g′(x) = lim
|x|→∞

g(x) = 0 (4.2.2)

Thus, we can apply integration by parts

⟨TRf, g⟩ = −
∫ ∞

−∞
f ′′(t)g(t)dt = −f ′g

∣∣∣∞
−∞

+fg′
∣∣∣∞
−∞

+ ⟨f, TRg⟩ = ⟨f, TRg⟩.

Thus, TR is symmetric. Let’s find the domain of its adjoint.

Step 2.

Let’s prove the inclusionD∗
R ⊆ {y ∈ W 2

2 (−∞, R)⊕W 2
2 (R,∞)| y(R−0) =

y(R + 0)}.
For any f ∈ C∞

0 (−∞, R) ⊆ DR and g ∈ D∗
R

−
∫ R

−∞
f ′′(t)g(t)dt = ⟨TRf, g⟩ = ⟨f, T ∗

Rg⟩ =
∫ R

−∞
f(t)g∗(t)dt,

where g∗ = T ∗
Rg.

Therefore, −g∗, the L2−function, is the 2nd weak derivative of the func-

tion g on (−∞, R) by definition, i.e. g′′ = −T ∗
Rg on (−∞, R).

The existence of g′ ∈ L2(−∞, R) immediately follows from the equiva-

lence of the Sobolev space norms (see [16, Ch. 1, §112]). However, we

prove this directly.

We claim the existence of g′ in the weak sense and that this is an

L2−function.
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Indeed, since g, g′′ ∈ L2(R), their Fourier transforms, F(g),F(g′′)(ξ) =

−ξ2F(ξ) ∈ L2(R), i.e.∫
R
|F(g)(ξ)|2dξ,

∫
R
|ξ|4|F(g)(ξ)|2dξ <∞.

Additionally, since 2|ξ|2 ≤ 1 + |ξ|4,∫
R
|ξ|2|F(g)(ξ)|2dξ <∞.

Therefore ξF(g) ∈ L2(R). Denote h = F−1
(
iξF(g)

)
∈ L2(R).

For any ϕ ∈ C∞
0 (R) by the Plancherel theorem

⟨g, ϕ′⟩ = ⟨F(g),F(ϕ′)⟩ = ⟨F(g), iξF(ϕ)⟩ = −⟨iξF(g),F(ϕ)⟩ = −⟨h, ϕ⟩,

which by definition means that h is the 1st weak derivative of function g.

In the same spirit we deal with functions g defined on (R,∞).

The remaining part of the proof repeats the proof of Lemma 4.2.1.

Let’s rewrite ⟨TRf, g⟩ = ⟨f, T ∗
Rg⟩ for f ∈ DR, g ∈ W 2

2 (−∞, R) ⊕
W 2

2 (R,∞) using integration by parts separately on each of the intervals

(−∞, R) and (R,∞).

⟨TRf, g⟩ = −
∫ R

−∞
f ′′(t)g(t)dt−

∫ ∞

R

f ′′(t)g(t)dt

= −f ′g
∣∣∣R
−∞

+fg′
∣∣∣R
−∞

−f ′g
∣∣∣∞
R
+fg′

∣∣∣∞
R
−
∫ R

−∞
f(t)g′′(t)dt−

∫ ∞

R

f(t)g′′(t)dt.

Since f and g satisfy (4.2.2) and f(R− 0) = f(R + 0) = 0,

fg′
∣∣∣R
−∞

= fg′
∣∣∣∞
R

= 0.

Due to f ′(R− 0) = f ′(R + 0) = f ′(R)

f ′g
∣∣∣R
−∞

= f ′(R)g(R− 0), f ′g
∣∣∣∞
R

= −f ′(R)g(R + 0)

Therefore,

⟨TRf, g⟩ = −f ′(R)g(R− 0) + f ′(R)g(R + 0) + ⟨f, T ∗
Rg⟩ = ⟨f, T ∗

Rg⟩.

Therefore,

f ′(R)g(R− 0) = f ′(R)g(R + 0).

67



4.2. RESTRICTIONS OF DIFFERENTIAL OPERATORS
WITH DIRICHLET BOUNDARY CONDITIONS 68

Thus, if f ′(R) = 1, then g(R− 0) = g(R+0), which completes the proof

for the inclusion

D∗
R ⊆ {y ∈ W 2

2 (−∞, R)⊕W 2
2 (R,∞)| y(R− 0) = y(R + 0) }.

Step 3.

Now let g ∈ {y ∈ W 2
2 (−∞, R) ⊕W 2

2 (R,∞)| y(R − 0) = y(R + 0) } and

f ∈ DR.

The integration by parts twice on the intervals (−∞, R) and (−R,∞)

gives

⟨TRf, g⟩ = −
∫ R

−∞
f ′′(t)g(t)dt−

∫ ∞

R

f ′′(t)g(t)dt

= −f ′g
∣∣∣R
−∞

+fg′
∣∣∣R
−∞

−f ′g
∣∣∣∞
R
+fg′

∣∣∣∞
R
−
∫ R

−∞
f(t)g′′(t)dt−

∫ ∞

R

f(t)g′′(t)dt.

Since g(R − 0) = g(R + 0), f(R − 0) = f(R + 0) = 0, f ′(R − 0) =

f ′(R + 0) = f ′(R), and due to (4.2.2) the expression above equals

−
∫ ∞

−∞
f(t)g′′(t)dt = ⟨f, T ∗

Rg⟩.

Thus, g ∈ D∗
R, and we obtain the other inclusion {y ∈ W 2

2 (−∞, R) ⊕
W 2

2 (R,∞)| y(R− 0) = y(R + 0)} ⊆ D∗
R.

Lemma 4.2.5. The deficiency indices ν±(TR) = 1.

Proof. The proof repeats the proof of Lemma 4.2.3.

In W 2
2 (−∞, R) ⊕W 2

2 (R,∞) the equation y′′ = iy has two independent

solutions, one per each half-line (−∞, R) and (R,∞):

f1(x) = c1e
λxχ(−∞,R), f2(x) = c2e

−λxχ(R,∞),

where ℜ(λ) > 0.

Since f1(R− 0) = f2(R + 0),

c1e
λR + c2e

−λR = 0.

Therefore, it has a one-dimensional space of solutions in terms of (c1, c2).

Hence, ν−(TR) = 1. Similarly, ν+(TR) = 1.
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Definition 4.2.6. For R > 0 define operator LR := −∆ on domain

DR = {y| y ∈ W 2
2 (−∞,−R)⊕W 2

2 (−R,R)⊕W 2
2 (R,∞) , y(±R) = 0}

and operator

Lo
R := −∆ on domain {y| y ∈ W 2

2 (−R,R) , y(±R) = 0}.

A similar operator is considered later, in Proposition 4.4.1, the only dif-

ference being that now we consider the whole real number line R. The

following result explains why LR = −∆ (unlike operators TR discussed

above) is a self-adjoint operator.

Lemma 4.2.7. The operator LR = −∆ defined on the domain DR is

self-adjoint.

Proof. Note that for f, g ∈ DR the derivatives f ′ and g′ are absolutely

continuous. Moreover, f, g, f ′, g′, f ′′, g′′ ∈ L2(R), thus,
(due to the same argument as in [4, Ch.4, §8, Lemma 1, p.120]), lim|x|→∞ f(x) =

lim|x|→∞ f ′(x) = lim|x|→∞ g′(x) = lim|x|→∞ g(x) = 0.

We claim that LR is symmetric operator. Indeed, integration by parts

twice for f, g ∈ DR gives

−⟨LRf, g⟩ =
∫ ∞

−∞
f ′′(t)g(t)dt

=

∫ −R

−∞
f ′′(t)g(t)dt+

∫ R

−R

f ′′(t)g(t)dt+

∫ ∞

R

f ′′(t)g(t)dt

= f ′g
∣∣∣−R

−∞
− fg′

∣∣∣−R

−∞
+ f ′g

∣∣∣R
−R

− fg′
∣∣∣R
−R

+ f ′g
∣∣∣∞
R
− fg′

∣∣∣∞
R

+

∫ −R

−∞
f(t)g′′(t)dt+

∫ R

−R

f ′′(t)g(t)dt+

∫ ∞

R

f ′′(t)g(t)dt

=

∫ ∞

−∞
f(t)g′′(t)dt = −⟨f, LRg⟩.

Let’s prove that there exists 2nd weak derivative f ′′ on each of the three

intervals, (−∞,−R), (−R,R) and (R,∞).

Take any f ∈ C∞
0 (−∞, R) ⊆ DR and g ∈ D∗

R (the domain of the adjoint

operator)

−
∫ R

−∞
f ′′(t)g(t)dt = ⟨LRf, g⟩ = ⟨f, L∗

Rg⟩ =
∫ R

−∞
f(t)g∗(t)dt,

where g∗ = L∗
Rg.

Therefore, −g∗, the L2−function, is the 2nd weak derivative of the func-

tion g on (−∞, R) by definition, i.e. g′′ = −L∗
Rg on (−∞, R).
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In the same spirit g′′ = −L∗
Rg on (−R,R) and on (R,∞).

The existence of g′ ∈ L2(−∞, R) immediately follows from the equiva-

lence of the Sobolev space norms (see [Smi64, p.331]).

Therefore, D∗
R ⊆ W 2

2 (−∞,−R)⊕W 2
2 (−R,R)⊕W 2

2 (R,∞).

Since, LR is symmetric, DR ⊆ D∗
R. It remains to prove that D∗

R ⊆ DR.

Indeed, for any f ∈ DR, g ∈ D∗
R repeat integration by parts:

−⟨LRf, g⟩ =
∫ ∞

−∞
f ′′(t)g(t)dt =

∫ −R

−∞
f ′′(t)g(t)dt+

∫ R

−R

f ′′(t)g(t)dt

+

∫ ∞

R

f ′′(t)g(t)dt

= f ′g
∣∣∣−R

−∞
− fg′

∣∣∣−R

−∞
+ f ′g

∣∣∣R
−R

− fg′
∣∣∣R
−R

+ f ′g
∣∣∣∞
R
− fg′

∣∣∣∞
R
+

∫ ∞

−∞
f(t)g′′(t)dt

= f ′(−R− 0)g(−R− 0) + f ′g
∣∣∣R
−R

− f ′(R+ 0)g(R+ 0) +

∫ ∞

−∞
f(t)g′′(t)dt

= −⟨f, L∗
Rg⟩ =

∫ ∞

−∞
f(t)g′′(t)dt.

Thus,

f ′(−R − 0)g(−R − 0) + f ′(R − 0)g(R − 0) − f ′(−R + 0)g(−R + 0) −
f ′(R + 0)g(R + 0) = 0.

For a fixed f denote

f1 = f ′(−R− 0), f2 = f ′(−R + 0), f3 = f ′(R− 0), f4 = f ′(R + 0)

(4.2.3)

Function f ′ need not be continuous at points R and −R. Therefore, for
any four values fi, i = 1, 2, 3, 4, one can find a proper function f ∈ DR

satisfying (4.2.3).

Now, taking f such that f1 = 1, f2 = f3 = f4 = 0, we obtain g(−R−0) =

0. Similarly, one can prove g(−R+0) = g(R− 0) = g(R+0) = 0, which

implies that D∗
R ⊆ DR. Therefore, LR is a self-adjoint operator.

Definition 4.2.8. The decoupling of LR is the operator Lc
R = −∆ on

domain

Dc
R = {y| y ∈ W 2

2 (−∞, R)⊕W 2
2 (−R,R)⊕W 2

2 (R,∞),

y(±R) = 0, y′(±R− 0) = y′(±R + 0) }

Remark 4.2.9. For the operator Lc
R we can obtain a similar result (as in

70



4.3. SMALL PERTURBATIONS OF DO 71

previous Lemma 4.2.4), i.e. the domain of its adjoint

Dc
R
∗ = {y ∈ W 2

2 (−∞,−R)⊕W 2
2 (−R,R)⊕W 2

2 (R,∞)|

y(−R + 0) = y(−R− 0), y(R + 0) = y(R− 0)}

with ν±(L
c
R) = 2.

Indeed, if a function y ∈ W 2
2 (−∞,−R)⊕W 2

2 (−R,R)⊕W 2
2 (R,∞) satisfies

y′′ = iy, then

y = c1χ(−∞,−R]e
λx + c2χ(−R,R)e

−λx + c3χ(−R,R)e
λx + c4χ[R,∞)e

−λx,

where ±λ are square roots of i (ℜλ > 0). In other words there are four

independent solutions: one per each half-line (−∞,−R) and (R,∞), two

one the finite interval (−R,R).
Thus, (c1, c2, c3, c4) must obey the following system of 2 linear indepen-

dent linear equationsy(−R− 0) = c1e
−λR = c2e

λR + c3e
−λR = y(−R + 0)

y(R− 0) = c4e
−λR = c2e

−λR + c3e
λR = y(R− 0)

,

which has exactly 2 independent solutions in terms of (c1, c2, c3, c4).

Remark 4.2.10. We single out two operators, LR and H(−∞,∞) + p which

are two self-adjoint extensions of the operator Lc
R. This helps to com-

pute the spectral counting function of corresponding operators using the

theory of self-adjoint extensions (Proposition 5.3.5 )

Before the description of the reduction procedure in Chapter 5 we need

to state some auxiliary results.

4.3 Small perturbations of DO

Let’s recall the notion of operator domination.

Definition 4.3.1. (see [4, Ch.3, §4.1]) Let T and S be two operators

defined on a Hilbert space H with the domains DT and DS, respectively,

s. t. DT ⊆ DS.

S is said to be dominated by T if there exist such constants a, b ≥ 0 that

∥Sf∥ ≤ a∥Tf∥+ b∥f∥, ∀f ∈ DT

If in addition there exists a < 1 satisfying the estimate above, we say

that S is strongly dominated by T .

Clearly, for any function p ∈ L∞(R) the multiplication operator p defined
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on L2 is strictly dominated by any other operator defined on L2 with any

constant a ∈ [0, 1) and b = sup |p|.
The following three propositions ( [4, Ch.3, §4, Th. 2, 3, p.74 ] and [4,

Ch.4, §1, Th.9, p.100]) help to describe the basic properties of the DO

perturbations.

It turns out that closeness, self-adjointness and deficiency indices are

stable under strongly dominated perturbations.

Proposition 4.3.2. Let T be a closed operator with the domain DT and

S be strongly dominated by T . Then T + S defined on DT is closed

Proposition 4.3.3. Let T be closed and densely defined. Suppose S

and S∗ are strongly dominated by T and T ∗ respectively. Then operators

(T + S)∗ and T ∗ have the same domain and

(T + S)∗ = T ∗ + S∗.

Corollary 4.3.4. If T is a self-adjoint operator, then for any p ∈ L∞(R)
the operator T − p is self-adjoint as well. In particular, LR − p is a self-

adjoint operator.

Proposition 4.3.5. Let S and T be symmetric operators. Suppose T is

closed with the domain DT and S is strongly dominated by T . Then the

symmetric operator S + T is closed on DT and

ν±(T ) = ν±(S + T )

Corollary 4.3.6. If p = gV ∈ L∞(R), then the operator Lc
R−p is closed

and

ν±(L
c
R − p) = ν±(L

c
R) = 2.

4.4 Schrödinger operators with Dirichlet

boundary conditions

In this section we consider two Schrödinger operators with Dirichlet

boundary conditions, which form an essential part of the reduction pro-

cess.

The following result (see [17, Th. 6.4., p.31] ) helps to estimate the

counting function #(λ;−p; (−R,R)) of a Schrödinger operator −∆ − p

on a finite interval with Dirichlet boundary conditions f(−R) = f(R) = 0

(i.e. we cinsider operator Lo
R − p). We adapt the theorem for our needs

and state the result in a suitable form.
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Proposition 4.4.1. Let p ∈ C1(R) be a non-negative function, and let

R > 0. Then for any λ ∈ R one has∣∣∣∣∣#(λ;−p; (−R,R))− 1

π

∫
(−R,R)

√
p(t)dt

∣∣∣∣∣ ≤
∫
(−R,R)

|p′(t)|
4π(p(t) + |λ|)

dt

+
6
√
|λ|+ 1

π
·R + 1.

We will see in Chapter 5 that this result corresponds to the Weyl asymp-

totics, (2.1.1), where the spectral counting function #(·) is approxi-

mated by the spectral volume function V ( 1
x
) which is exactly equal

to 1
π

∫
(−x,x)

√
p(t)dt. The exact correspondence is provided by Birman-

Schwinger principle, Theorem 5.3.4 in Section 5.3.

Corollary 4.4.2. Suppose for all x the potential p(x) = gV (x) satisfies

the following conditions

C1⟨x⟩−α ≤ V (x) ≤ C2⟨x⟩−α,

|V ′(x)| ≤ C0⟨x⟩−(α/2+1+ϵ)

where C0, C1, C2, ϵ > 0, α ≥ 2,

Then for R = g
1
α the counting function

#(−λ;−p; (−R,R)) = #(−λ, Lo
R − p) satisfies

Cα,1g
1
2 (1 + o(1)) ≤ #(−λ, Lo

R − p) ≤ Cα,2g
1
2 (1 + o(1)), if α > 2,

√
C1

π
· g

1
2 log g (1 + o(1)) ≤ #(−λ, Lo

R − p)

≤
√
C2

π
· g

1
2 log g (1 + o(1)), if α = 2,

where Cα,j (depends on α only) are positive constants. All asymptotic

estimates above are considered when g → ∞.

If p(x) = g⟨x⟩−2, i.e. if C1 = C2 = 1, then

#(−1;−p; (−R,R)) = 1

π
g

1
2 log g (1 + o(1)).

Proof. First, we have to estimate the ”main part” of the formula, the

integral 1
π

∫
(−R,R)

√
p(t)dt, and then ”the error term” consisting of two

parts, the integral 1
4π

∫
(−R,R)

|p′(t)|
p(t)+1

dt, and the summand 6
√
2

π
· R = Cg

1
α .

We will see that the error term is significantly less than the main part

for α ≥ 2, however, it has the same order when α ∈ (0, 2).
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Let’s go through the details.

√
C1 ·

√
g

∫ R

−R

⟨x⟩−
α
2 dx ≤

∫
(−R,R)

√
p(t)dt ≤

√
C2 ·

√
g

∫ R

−R

⟨x⟩−
α
2 dx

where

√
g

∫ R

0

⟨x⟩−
α
2 dx =

g
1
2 log g(1 + o(1)), α = 2

Cαg
1
2 , α ∈ (2,∞)

To estimate the remainder we use the asymptotic properties of p′ and p.∫
(−R,R)

|p′(t)|
p(t) + 1

dt ≤
∫
(−R,R)

C0g⟨t⟩−α/2−1−ϵ

C1g⟨t⟩−α
dt ≲

C0,C1,α,ϵ
Rα/2−ϵ = g1/2−ϵ/α.

The following two estimates

g
1
2 log g ±

(
O(g

1
2
− ϵ

2 ) + C ·R
)
= g

1
2 log g(1 + o(1)),

Cαg
1
2±
(
O(g

1
2
− ϵ

α )+C·R
)
= Cαg

1
2 log g(1+o(1)) where R = g

1
α = o(g

1
2 ), α > 2,

finish the proof.

Remark 4.4.3. The asymptotic formula

#(−1;−p; (−R,R)) = 1

π
g

1
2 log g (1 + o(1)).

still holds for V (x) = ζ(x)2

x2 ∼ 1
⟨x⟩2 , x → ∞. The same estimates in the

proof of the Corollary can be applied.

It turns out that for a convenient potential function p the two operators

mentioned above, Lo
R− p and LR− p, have ”almost” the same number of

eigenvalues (for a proper potential p), since LR − p can be decomposed

in the orthogonal sum LR − p = H(−∞,−R) ⊕ H(−R,R) ⊕ H(R,∞), Namely,

the following lemma holds.

Lemma 4.4.4. Let R = g
1
α , p = g · 1

⟨x⟩α or p = g · ζα(x)
xα , α > 0. Then

#(−1, LR − p) = #(−1, Lo
R − p).

Proof. Note that #(−1;−p; (−∞,−R)) = #(−1;−p; (−R,∞)) = 0.

Indeed, consider x > R = g
1
α . Then −p > −I. Since −∆ > 0, the

operator −∆ − p + I > 0. Hence, all eigenvalues of this operator are

positive.

Since every f ∈ DR can be represented as the orthogonal sum f = f1 +

f2 + f3, where f1 = fχ(−∞,−R), f2 = fχ(−R,R) and f3 = fχ(R,∞), there is
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one-to-one correspondence between the eigenfunctions (and eigenvalues)

of the operator LR and the eigenfunctions (and eigenvalues) of

H(−∞,−R) ⊕ H(−R,R) ⊕ H(R,∞). Hence,

#(−1, LR − p) = #(−1, Lo
R − p)

+ #(−1;−p; (−∞,−R)) + #(−1;−p; (−R,∞)) = #(−1, Lo
R − p).
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Chapter 5

Weyl discontinuous symbol.

Asymptotic estimates and

formulae.

In this Chapter we analyse the case when the signal is concentrated on

an angular domain of the phase space.

Consider the following operator

OpW
1 (σ)u(x) =

1

2π

∫∫
R2

eiξ(x−y) · σ
(x+ y

2
, ξ
)
u(y)dydξ (5.0.1)

where symbol σ(t, ξ) := χ{t≥0}(t) · χ{ξ≤ct}(t, ξ) · a(t, ξ), a ∈ C∞
0 (R × R)

with supp a ⊆ [−R,R]2 and c ∈ R.

We will see below (Remark 5.1.7) that the spectral properties of the op-

erator do not depend on c, thus we can consider c = 0, i.e. we can reduce

the angular region to a region with a right angle. To estimate singular

values of (5.0.1) we implement the following approach.

We reduce (5.0.1) to a different pseudo-differential operator with a smooth

slowly decaying symbol σ̃ using the process described in Theorem 5.1.3.

For this type of symbols we have a toolkit described in Section 3.3. Cor-

rectly splitting the symbol and the kernel of the operator (the process

is described in detail in Lemma 5.1.4 and Theorem 5.1.9) we obtain the

main part of the operator, which is unitarily equivalent to the operator
a(0,0)
4π

Opa
1

( ζδ(t)
t

1
⟨ξ⟩

)
. Then we apply Theorem 3.3.1 to obtain the asymp-

totic estimate O(log(k+1)k−1). The remainder part belongs to the class

S1,∞.

ΨDO with symbol ζδ(t)
t

1
⟨ξ⟩ has the same asymptotic decay of singular val-

ues as ΨDO with symbol 1
⟨t⟩⟨ξ⟩ . Therefore, both symbols can be used

as the main part of the symbol partition. However, the multiple ζδ(t)
t
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containing the cut-off function ζδ (the parameter δ = 2R as we will see

below) provides some essential properties of the operator kernel (see Ex-

ample 5.1.2) making the spectrum symmetric.

At the end of the Chapter we derive the asymptotic formula for the eigen-

values of (5.0.1).

The Chapter is structured as follows. Section 5.1 contains some aux-

iliary facts (Lemma 5.1.1 about spectrum symmetry and Theorem 5.1.3

about symbol reassembling), which help to proceed with the process of

splitting the model operator in such a way that the main part of this

partition is a self-adjoint compact operator T1 (see Theorem 5.1.9) with

a symmetric spectrum, and, thus, has the same asymptotic estimates for

its eigenvalues as for its singular values.

In the last two sections we derive the asymptotic formula (1.2.2) using

two different methods. In Section 5.2 we use the Weyl asymptotic law

described in Chapter 2. In Section 5.3 we use the results of Chapter 4

and the Birman-Schwinger principle to reduce the asymptotic formulae

for DO (of a special type) to the one for the model ΨDO.
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5.1 Eigenvalues and asymptotic estimates.

To estimate the eigenvalues of the operator (5.0.1) we split it in such

a way that ”the main part” has symmetric (with respect to the origin)

spectrum, and thus, the estimates for positive eigenvalues λ+1 ≥ λ+2 ≥
. . . λ+k > 0 (as well as for negative, −λ−1 ≤ −λ−2 ≤ . . . − λ−k < 0) are the

same as for the singular values.

The auxiliary lemma below describes a general case of an operator having

symmetric point spectrum.

Lemma 5.1.1. LetW be a linear space which can be expressed as a direct

sum W = W1 ⊕W2. Let T be a linear operator on this space such that

TW1 ⊆ W2 and TW2 ⊆ W1.

Then the point spectrum of T is a symmetric set, i.e. if λ is an eigenvalue

of T , then −λ is its eigenvalue as well. Moreover, the eigenvalues λ,−λ
of finite multiplicity have the same algebraic and geometric multiplicity.

Proof. Let Vλ be the eigenspace corresponding to the eigenvalue λ. Take

any v ∈ Vλ. If v admits the following decomposition, v = v1 + v2 where

vj ∈ Wj, then

Tv1 + Tv2 = Tv = λv = λv2 + λv1.

Since Tv1, v2 ∈ W2 and Tv2, v1 ∈ W1,

Tv1 = λv2, T v2 = λv1.

Therefore,

T (v1 − v2) = Tv1 − Tv2 = λv2 − λv1 = −λ(v1 − v2),

Hence, u = v1− v2 is an eigenvector corresponding to the eigenvalue −λ.
If V−λ is the corresponding eigenspace, then linear map S : Vλ → V−λ

defined by S(v) = S(v1 + v2) = v1 − v2 is a bijection, which implies that

eigenspaces are of the same dimension.

Now let’s prove that algebraic multiplicities coincide as well. It is suf-

ficient to show that for any integer n > 0 the linear map S defined as

previously (by S(v) = S(v1+ v2) = v1− v2) is a bijective correspondence

between subspaces Ker(T − λI)n and Ker(T + λI)n. This implies the

equality of algebraic multiplicities, since in this case

dimKer(T − λI)n = dimKer(T + λI)n.

Proceed by induction. If n = 1, then

v1 + v2 ∈ Ker(T − λI) = Vλ ⇐⇒ v1 − v2 ∈ V−λ = Ker(T + λI)
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as previously shown.

Let the statement be true for some n = k.

Consider v = v1 + v2 ∈ Ker(T − λI)k+1 where vj ∈ Wj. Note that

0 = (T − λI)k+1v = (T − λI)k(T − λI)(v1 + v2)

= (T − λI)k(Tv2 − λv1 + Tv1 − λ1) = (T − λI)k(u1 + u2),

where u1 = Tv2 − λv1 ∈ W1 and u2 = Tv1 − λv2 ∈ W2 .

Using the induction step, this implies that

u1 − u2 ∈ Ker(T + λI)k,

which means

0 = (T + λI)k(u2 − u1) = (T + λI)k(Tv1 − λv2 − Tv2 + λv1)

= (T + λI)k(T + λI)(v1 − v2) = (T + λI)k+1(v1 − v2).

Hence, v = v1 − v2 ∈ Ker(T + λI)k+1.

Example 5.1.2. Consider the following L2(R) → L2(R) integral opera-
tor

(Tu)(x) =

∫
R
K(x, y)u(y)dy,

where kernel K(x, y) satisfies

suppK ⊆ {(x, y)| xy < 0} (5.1.1)

If Tu = λu for some function u ̸= 0, then there exists a function v ̸= 0

such that Tv = −λv (i.e. T has symmetric point spectrum with respect

to the origin). Moreover, λ and −λ have the same multiplicity.

Proof. Take W1 = {f ∈ L2(R) | supp f ⊆ (−∞, 0]}, W2 = {f ∈
L2(R) | supp f ⊆ [0,∞)} and apply Lemma 5.1.1

An important technique presented in the theorem below describes the

main idea of the reduction process. We ”reassemble” the symbol σ such

that the new symbol σ̃ is more convenient to work with in terms of

spectral estimates.

Theorem 5.1.3. If symbol σ = σ(t, ξ) ∈ L2(R2), then

OpW
1 (σ) =

∫
R
K
(x+ y

2
, x−y

)
u(y)dy, where K(λ, µ) =

1

2π

∫
eiµrσ(λ, r)dr.
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Moreover,

OpW
1 (σ)P = OpW

1 (σ̃),

where Pu(x) = u(−x) is the flip operator and

σ̃(t, ξ) =

∫
e−isξK

(s
2
, 2t
)
ds =

1

π

∫∫
ei(2tr−sξ)σ(s, r)drds.

Let T be an integral operator defined by Tu(x) =
∫
RK

(
x+y
2
, x−y

)
u(y)dy

on L2(R) where K has support in [a, b]×R, K(·, µ) ∈ C2(R), ∂mλ K(λ, ·) ∈
L1(R) for any λ ∈ [a, b], µ ∈ R and m = 0, 1, 2. Then

sk(T ) = sk

(
OpW

1 (σ̃)
)
.

Remark. Since P is a unitary operator, sk

(
OpW

1 (σ)
)
= sk

(
OpW

1 (σ̃)
)
.

Proof. Let’s represent the pseudo-differential operator in the form of an

integral operator. First, consider σ ∈ C∞
0 (R2). Due to Fubini’s theorem

OpW
1 (σ)u(x) =

1

2π
·
∫
R

∫
R
ei(x−y)ξ · σ

(x+ y

2
, ξ
)
u(y)dydξ

=
1

2π

∫
R

∫
R
ei(x−y)ξ · σ

(x+ y

2
, ξ
)
dξu(y)dy =

∫
R
K
(x+ y

2
, x− y

)
u(y)dy,

where kernel K(λ, µ) = 1
2π

∫
eiµsσ(λ, s)ds ∈ C∞(R2).

Let Pu(y) = u(−y) be the flip operator. Since this is a unitary operator,

sk

(
OpW

1 (σ)
)
= sk

(
OpW

1 (σ)P
)
. Hence, we can proceed with the latter

one.

Using the Fourier inversion theorem,

K(λ
2
, µ) = 1

2π
·
∫∫

R2 e
i(λ−t)ξK( t

2
, µ)dtdξ, we obtain

OpW
1 (σ)Pu(x) =

∫
R
K
(x− y

2
, x+ y

)
u(y)dy

=
1

2π
·
∫
R

∫∫
R2

(
ei(x−y−t)ξK

( t
2
, x+y

)
dt dξ

)
u(y)dy =

∫∫
F (x, ξ, y)dξu(y)dy,

where F (x, ξ, y) = (2π)−1
∫
R e

i(x−y−t)ξK
(

t
2
, x + y

)
dt. If we can inter-

change the order of integration, then∫∫
F (x, ξ, y)dξu(y)dy =

∫∫
F (x, ξ, y)u(y)dydξ

=
1

2π
·
∫
R2

ei(x−y)ξ
(∫

R
e−itξK

( t
2
, x+ y

)
dt
)
u(y)dydξ
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= Opa
1

(∫
R
e−itξK

( t
2
, x+ y

)
dt

)
u(x) = OpW

1 (σ̃)u(x),

which leads to the statement of the theorem.

It is sufficient to prove∫∫
F (x, ξ, y)u(y)dξdy =

∫∫
F (x, ξ, y)u(y)dydξ

for u ∈ C∞
0 (R) (on the Schwartz space) and then continuously extend

the identity to L2(R).

Since for any µ supp K(·, µ) ⊆ supp σ(·, µ) ⊆ [a, b] for some a, b ∈ R,
due to Corollary 3.3.13 |F (x, y, ξ)| ≲σ ⟨y⟩−2⟨ξ⟩−2 for any x. Hence,

F (x, ·, ·) ∈ L1(R2) for any x, and we can apply Fubini’s theorem to

change the order of integration. Therefore,

sk
(
OpW

1 (σ)
)
= sk

(
OpW

1 (σ̃)
)
.

Any σ ∈ L2 can be approximated by a sequence of smooth symbols

σn ∈ C∞
0 . Due to Plancherel theorem

∥∥OpW
1 (σ)

∥∥
S2

=
∥∥∥K(x− y

2
, x+ y

)∥∥∥2
L2(R2)

=

∫∫ ∣∣∣K(x− y

2
, x+ y

)∣∣∣2dxdy
=

∫∫
|K(λ, µ)|2dµdλ =

1

2π

∫∫
|F−1(σ(λ, ·)(µ))|2dµdλ

=
1

2π

∫∫
|σ(λ, µ)|2dµdλ =

1

2π
∥σ∥2L2(R2).

Thus, convergence σn → σ in L2 implies the convergence

OpW
1 (σn) → OpW

1 (σ) in the Hilbert-Schmidt norm, which implies the

convergence in the operator norm. Note that σn → σ in L2 also implies

σ̃n → σ̃. Indeed, since

σ̃(t, ξ) = 2Fλ→ξ

[
F−1

ξ→t[σ(λ, ξ)]
(λ
2
, 2t
)]

(t, ξ),

due to the Plancherel theorem

∥σ̃n − σ̃∥L2 = 2∥σn − σ∥L2 → 0.

Therefore,

OpW
1 (σ̃n) → OpW

1 (σ̃),

which finishes the proof.
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Recall the main operator (5.0.1)

OpW
1 (σ)u(x) =

1

2π

∫∫
R2

eiξ(x−y) · σ
(x+ y

2
, ξ
)
u(y)dydξ

with σ(t, ξ) = χ{t≥0}(t) · χ{ξ≤ct}(t, ξ) · a(t, ξ), where
a ∈ C∞

0 (R× R) with supp a ⊆ [−R,R]2.
The initial symbol σ is discontinuous but compactly supported. Since the

kernel of the operator OpW
1 (σ) is a discontinuous function, we cannot

apply Theorems 3.2.1, 3.2.3 directly. Instead, we can reduce symbol

σ to a new equivalent one (in terms of spectral analysis), symbol σ̃, via

Theorem 5.1.3. It turns out that the new symbol σ̃ is no longer compactly

supported; however, it is a smooth function with a low rate of decay. The

tools introduced in Section 3.3 help to estimate singular values for such

type of symbols.

To estimate the eigenvalues of the model operator we split symbol

σ
(
x+y
2
, ξ
)
= σ1(x, y, ξ) + σ2(x, y, ξ), where

σ1 = ζδ(x− y)σ, σ2 = (1− ζδ(x− y))σ, δ = 2R (5.1.2)

The first symbol σ1 is supported outside the strip {|x− y| > δ}, thus, we
do not deal with the singularities when analysing the functions like σ

x−y

(for example, if we integrate by parts). Conversely, the other symbol,

σ2, allows to apply specific estimates since x and y are relatively close to

each other.

We need this split to emphasise the main part of the symbol σ which

corresponds to the operator Opa
1(σ1). This operator, in turn, can be

decomposed into a sum of two operators, T1 + T2, s.t. T1 has a kernel

supported on {xy < 0} (see Example 5.1.2) and, thus, a symmetric spec-

trum (which implies the same rate of decay for eigenalues as for singular

values, which is O(k−1 log k) as we will see below). The operator T2 along

with Opa
1(σ2) are the remainder terms, which have a faster rate of singu-

lar values decay, which is O(k−1).

As follows from Theorem 2.2.14, the spectral properties of the main op-

erator OpW
1 (σ) are the same as the spectral properties of its main part

Tm in the representation

OpW
1 (σ) = Tm + Tr,

where Tm := T1 ∈ S1 and Tr := T2 +Opa
1(σ2) ∈ S1,∞.

The lemmata below explain this in detail.
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Lemma 5.1.4.

Opa
1(σ1) = T1 + T2,

where T1 is a self-adjoint compact operator with a symmetric (with respect

to the origin) spectrum satisfying (5.1.1) and defined by

T1u(x) = − i

2π

∫
R
χ{x+y≥0} · ei

c(x2−y2)
2 ·

ζ2R(x− y)a
(
x+y
2
, c(x+y)

2

)
x− y

u(y)dy,

Opa
1(σ1), T1 ∈ S1, T2 ∈ S1,∞.

Proof. Step 1.

Due to Theorem 5.1.3 the kernel K
(
x+y
2
, x− y

)
of the operator Opa

1(σ1)

is represented by

K(λ, µ) =
1

2π
χ{λ≥0} · ζδ(µ)

∫
(−∞,cλ]

eiµξ · a(λ, ξ)dξ

= − i

2π
χ{λ≥0}e

iµcλ

N∑
j=0

ij∂jξa(λ, cλ)
ζδ(µ)

µj+1
+ χ{λ≥0}F (λ, µ)

ζδ(µ)

µN
(5.1.3)

where δ = 2R, F (·, µ) ∈ C∞
0 (R) and

∣∣∂lλ∂kµF (λ, µ)∣∣ ≤ Cl,k · µk−1 for any

l, k ≥ 0.

Indeed, the integration by parts N times (the number N will be defined

later) when µ ̸= 0 gives

∫
(−∞,cλ]

eiµξ · a(λ, ξ)dξ = −eicλµ
N∑
j=0

ij+1∂jξa(λ, cλ)
1

µj+1

+
iN

µN

∫
[−R,cλ]

eiµξ∂Nξ a
(
λ, ξ
)
dξ.

Taking F (λ, µ) := iN

2π

∫
[−R,cλ]

eiµξ·∂Nξ a
(
λ, ξ
)
dξ we obtain the result claimed

above, since

∂kλF (·, µ) ≲a,c,k,N
µk−1.

Therefore, we may split operator Opa
1(σ1) into the sum T1 + T2, where

T1 is defined in the statement of the theorem, T2 is an integral operator

defined by

T2u(x) =
N∑
j=1

∫
R
Kj

(x+ y

2
, x− y

)
u(y)dy,

where

Kj(λ, µ) = −i
j+1

2π
χ{λ≥0}e

icλµ∂jξa(λ, cλ)
ζδ(µ)

µj+1
,

j = 1, 2, ..., N − 1,
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KN(λ, µ) = χ{λ≥0}F (λ, µ)
ζδ(µ)

µN
.

Step 2.

Note that for any compact operator T sk
(
w1Tw2

)
= sk

(
T
)
, if |w1(x)| =

|w2(y)| ≡ 1 for almost all x and y, since operators T and w1Tw2 are

unitarily equivalent (see [3, §1.6])
Thus, taking w1(x) = ei

cx2

2 and w2(y) = e−i cy
2

2 , we may consider up to

unitary equivalence

T1u(x) = − i

2π

∫
R
χ{x+y≥0}a

(x+ y

2
,
cx+ cy

2

)ζδ(x− y)

x− y
u(y)dy.

Using the remark to Theorem 5.1.3 we get sk(T1) = sk(Opa
1(σ̃1)), where

σ̃1(t, ξ) =

∫
e−isξK0

(s
2
, 2t
)
ds,

with

K0(λ, µ) = − i

2π
χ{λ≥0} · a(λ, cλ)

ζδ(µ)

µ
.

Applying Remark 3.3.13 for [a0, a1] = [0, 2R]∫
[0,2R]

eisξK0(s/2, 2t) ds = i
ξ

⟨ξ⟩2
K0(0, 2t) + i

ξ

⟨ξ⟩2

(
1 + iξ∂λ

)
K0

⟨ξ⟩2
(
0, 2t

)

+

∫
[0,2R]

eisξ
(
1 + iξ∂λ

)2
K0

⟨ξ⟩4
(
s/2, 2t

)
ds = R0 ·

ζδ(t)

t

1

⟨ξ⟩
+
ζδ(t)

t
· R1(ξ)

⟨ξ⟩2
,

where R0 =
a(0,0)
4π

, ∂kR1 ∈ L∞(R) for any k ≥ 0.

Since ζδ(t)
t

∈ l1,∞(R), using Theorems 3.3.1 and 3.3.14 we get

Opa
1

(2R0ζδ(x+ y)

x+ y
· 1

⟨ξ⟩

)
∈ S1, Opa

1

(ζδ(x+ y)

x+ y
· R1(ξ)

⟨ξ⟩2
)
∈ S1,∞.

Hence, the main part of the model operator is unitarily equivalent to a

new ΨDO,

T1 ≃ Opa
1(σ̃1) ∈ S1.

Step 3.

Similarly estimate the singular values of operators with kernels Kj, j =

1, ..., N −1 (which decay faster than K0 as functions of µ). Each of them

can be reduced to

Opa
1

(ζδ(x+ y)

(x+ y)j
· Rj(ξ)

⟨ξ⟩

)
∈ S1,∞, ∂kRj ∈ L∞(R).
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Slightly differently we deal with the kernel KN , since F (λ, µ) might not

allow the separation of variables λ and µ. Reduce to Opa
1(σ̃N), where

due to Remark 3.3.13

σ̃N(t, ξ) = i
ξ

⟨ξ⟩2
F (0, 2t)ζδ(t)

tN
+ i

ξ

⟨ξ⟩2

(
1 + iξ∂λ

)
F

⟨ξ⟩2
(
0, 2t

)
· ζδ(t)
tN

+
ζδ(t)

tN

∫
[0,2R]

eisξ
(
1 + iξ∂λ

)2
F

⟨ξ⟩4
(
s/2, 2t

)
ds.

Since |∂kλF (s/2, 2t)| ≲a,c,k,N
tk−1,

σ̃N(t, ξ) =
1

⟨ξ⟩
A(t)

⟨t⟩N
+

1

⟨ξ⟩2
A1(t)

⟨t⟩N−1
+

1

⟨ξ⟩2
A2(t, ξ)

⟨t⟩N
,

where A,A1, ∂
k
ξA2(t, ·) ∈ L∞(R), |∂kt A2(·, ξ)| ≲

a,c,k,N
tk+1. Therefore,

using Proposition 3.3.3 with q = 1, n = 2

OpW
1

( 1

⟨ξ⟩2
A2(t, ξ)

⟨t⟩N
)
∈ S1

for N ≥ 5. Indeed, in this case |∂kt (A2(t, ξ)⟨t⟩−N)| ≲
a,c,k,N

⟨t⟩3−N ≤
⟨t⟩−2 ∈ L1(R), k = 0, 1, 2.

Since OpW
1

(
1
⟨ξ⟩

A1(t)
⟨t⟩N + 1

⟨ξ⟩2
A1(t)
⟨t⟩N−1

)
∈ S1,∞, T2 ∈ S1,∞.

Note that since supp a ∈ [−R,R]2, the kernel of T1 satisfies (5.1.1).

Indeed, |x + y| < 2R along with |x − y| > 2R imply xy < 0. Thus, the

spectrum of the operator is symmetric.

Remark 5.1.5.

Examples of the boundary ∂Ω when the method is applicable.

In Section 3.2 we discussed the case with smooth boundary (which gives

estimate O(k−
3
4 )). A natural question is whether we can consider a

curved angular area, i.e. σ(t, ξ) = σf (t, ξ) := χ{t≥0}(t) · χ{ξ≤f(t)}(t, ξ) ·
a(t, ξ) where f is a smooth function.

It turns out that the method applied above is applicable only for linear

functions f (and for the standard angular region). Indeed, as it was

shown in the proof, the reduction of the main operator to a suitable

unitarily equivalent one requires the identity of the form

ei(x+y)f(x−y
2

) = eiG1(x)eiG2(y) = F1(x)F2(y),
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which is equivalent to

(x− y)f
(x+ y

2

)
= G1(x) +G2(y) (5.1.4)

for some functions G1 and G2

Lemma 5.1.6. Representation (5.1.4) is equivalent to f(t) = c1t + c2

for some constants c1, c2.

Proof. Definitely, f(t) = c1t+c2 admits the representation. To prove the

other direction of the statement we denote Hj(x) =
Gj(2x)

2
. This implies

(x− y)f(x+ y) = H1(x) +H2(y).

Taking y = x we obtain H1(x) = −H2(x) =: H(x).

Thus, for any real t, s the following holds

(s− t)f(s+ t) = H(s)−H(t).

Take t = 0 and obtain H(s) = sf(s) +H(0). Thus,

(s− t)f(s+ t) = sf(s)− tf(t).

Thus,

(s− 2)f(s) = (s− 1)f(s− 1)− f(1),

or equivalently

f(s) =
s− 1

s− 2
f(s− 1)− f(1)

s− 2
.

Repeating this formula s− 1 times (for s, s− 1, s− 2, ..., 2), obtain

f(s) =
s− 1

s− 2
f(s− 1)− f(1)

s− 2
=
s− 1

s− 3
f(s− 2)− f(1)(s− 1)

(s− 2)(s− 3)
− f(1)

s− 2

=
s− 1

s− 4
f(s− 3)− f(1)(s− 1)

(s− 3)(s− 4)
− f(1)(s− 1)

(s− 2)(s− 3)
− f(1)

s− 2
= ...

=
s− 1

1
f(2)−f(1)(s−1)·

∑
1≤j≤s−2

1

j(j + 1)
= (f(2)−f(1))s+2f(1)−f(2)

= c1s+ c2.

Remark 5.1.7. Since we consider f(t) = ct and the singular values esti-

mate does not depend on c, we can take c = 0 and consider the quadrant

{t ≥ 0, ξ ≤ 0} in the main operator description.
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Lemma 5.1.8.

Opa
1(σ2) ∈ S1,∞,

where σ2 is defined in (5.1.2).

Proof. To obtain the estimate Opa
1(σ2) ∈ S1,∞, we proceed in the same

way as in the Lemma 5.1.4, except we do not decompose the kernel

K(λ, µ) of the operator Opa
1(σ2) as in (5.1.3). Note that the kernel K is

compactly supported on R2.

Thus, we reduce the symbol σ2 to the symbol σ̃2 (the operators Opa
1(σ̃2) ≃

Opa
1(σ2) are unitarily equivalent), where due to Remark 3.3.13

σ̃2(t, ξ) = i
ξ

⟨ξ⟩2
K(0, 2t)ζδ(t)

tN
+ i

ξ

⟨ξ⟩2

(
1 + iξ∂λ

)
K

⟨ξ⟩2
(
0, 2t

)
· ζδ(t)
tN

+
ζδ(t)

tN

∫
[0,2R]

eisξ
(
1 + iξ∂λ

)2
K

⟨ξ⟩4
(
s/2, 2t

)
ds.

Therefore, since supp K(·, ·) ∈ [0, 2R]× [−2R, 2R],

σ̃2(t, ξ) =
A(t)

⟨ξ⟩
+
A1(t)

⟨ξ⟩2
+
A2(t, ξ)

⟨ξ⟩2
,

where A,A1 ∈ C∞
0 (R), |∂mt ∂lξA2(·, ·)| ∈ L∞(R2). Therefore, using Propo-

sition 3.3.3 with q > 1
2

OpW
1

( 1

⟨ξ⟩2
A2(t, ξ)

⟨t⟩N
)
∈
⋂
q> 1

2

Sq

Theorems 3.3.1 and 3.3.14 imply

OpW
1

(A(t)
⟨ξ⟩

)
∈ S1,∞, OpW

1

(A1(t)

⟨ξ⟩2
)
∈ S 1

2
,∞

Since all the auxiliary results have been derived, we can decompose the

model operator as follows.

Theorem 5.1.9. The operator (5.0.1) can be decomposed as follows

OpW
1 (σ) = Tm + Tr ∈ S1,

where Tr ∈ S1,∞, the main part of the representation, Tm, is a self-adjoint

compact operator with a symmetric (with respect to the origin) spectrum

defined by

Tmu(x) = − i

2π

∫
R
χ{x+y≥0}·ei

c(x2−y2)
2 ·

ζ2R(x− y)a
(
x+y
2
, c(x+y)

2

)
x− y

u(y)dy ∈ S1
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and is unitarily equivalent to OpW
1 (σ̃), where

σ̃(t, ξ) =
a(0, 0)

4π

ζ2R(2t)

t
· 1

⟨ξ⟩
+
ζ2R(2t)

t
·O
( 1

⟨ξ⟩2
)
.

Remark 5.1.10. For the spectral estimates due to (3.3.11) the cut-off

function ζ2R(2t) can be replaced with ζ2R(t).

Remark 5.1.11. Let A,B,C be 3 non-collinear points on the (t, ξ)−plane

and ∠ABC be the interior of the corresponding angle on the phase space.

Define c := tan
(
∢ABC − π

2

)
. Since singular values of an operator are

invariant under translations and rotations (see [8, Ch.2, Lemma 2.14],

[11, Th. 6, p.3327]),

sk(OpW
1 (ζ̃(t, ξ)χ∠ABC)) = sk(OpW

1 (ζ(t, ξ)χt≥0,ξ≤ct)) = O
(
k−1 log(k + 1)

)
,

where ζ(t, ξ), ζ̃(t, ξ) ∈ C∞
0 (R2) and ζ(t, ξ) = ζ̃(t1, ξ1), where (t1, ξ1) are

new variables (after the substitution which shifts the angular region

∠ABC to the angular region {(t, ξ) | t ≥ 0, ξ ≤ ct}).

Remark 5.1.12. Since T1 is a self-adjoint operator satisfying (5.1.1), due

to Example 5.1.2

λ−k
(
OpW

1 (σ̃1)
)
= λ+k

(
OpW

1 (σ̃1)
)
= s2k

(
OpW

1 (σ̃1)
)
= O

( log(k + 1)

k

)
.

Remark 5.1.13. The estimate for the eigenvalues of the model operator

can be obtained even in the case when the point spectrum is not sym-

metric. We appeal to the following fact.

Proposition 5.1.14. [4, Ch.11, §5, Th.5, p.260] For any compact operator

T and p > 0

k∑
r=1

|λr(T )|p ≤
k∑

r=1

sr(T )
p, k = 1, 2, ...,

where {λr(T )}r≥1 is the sequence of eigenvalues of T enumerated (counted

with their multiplicity) so that {|λr(T )|} is a non-increasing sequence.

Let’s apply this Proposition for our operator. If 0 < p < 1, then for

k ≥ 1

k|λ±k (OpW
1 (σ)|p ≤ max

{ k∑
r=1

|λ+r (OpW
1 (σ)|p ,

k∑
r=1

|λ−r (OpW
1 (σ)|p

}

≤
k∑

r=1

(
sr(OpW

1 (σ))
)p

≲a

k∑
r=1

logp r

rp
≲p

∫ k

1

logp x

xp
dx =

∫ log k

0

tpet−ptdt

88



5.2. ASYMPTOTIC FORMULA VIA DAUGE-ROBERT RESULT 89

=
tpet−pt

1− p

∣∣∣∣∣
log k

0

− p

∫ log k

0

tp−1et−ptdt ≲p (log(k + 1))p · k1−p.

Thus,

|λ±k (OpW
1 (σ)| ≲a

log(k + 1)

k
.

Note that due to the Proposition for any compact operator T , the esti-

mate sk(T ) ≲ k−p1(log(k + 1))p2 , p1 > 0, implies λk(T ) ≲ k−p1(log(k +

1))p2 .

5.2 Asymptotic formula via Dauge-Robert

result

Recall that the main operator (5.0.1) can be decomposed (see Theorem

5.1.9) as follows

OpW
1 (σ) = Tm + Tr,

where Tm ≃ T are unitarily equivalent,

T =
a(0, 0)

4π
OpW

1 (σ̃) =
a(0, 0)

4π
OpW

1 (ζ(t)t−1⟨ξ⟩−1) ∈ S1

and

Tr ∈ S1,∞.

Using tools from Chapter 2 we state

Theorem 5.2.1. The following asymptotic formula holds

λ±k

(
OpW

1 (σ)
)
=
a(0, 0)

4π2
· log k

k
+ o
( log k

k

)
as k → ∞.

Proof. Let’s compute the spectral volume function V+ (see Definition

2.1.2) directly.

2πV+

(a(0, 0)
4π

λ;
a(0, 0)

4π
ζ(t)t−1⟨ξ⟩−1

)
=

∫
2≥t≥1; ζ(t)t−1⟨ξ⟩−1>λ

dtdξ

+

∫
t≥2; t−1⟨ξ⟩−1>λ

dtdξ.

The first integral can be estimated as follows∫
2≥t≥1; ζ(t)t−1⟨ξ⟩−1>λ

dtdξ ≤
∫
2≥t≥1; ⟨ξ⟩−1>λ

dtdξ ≤
√

1

λ2
− 1 <

1

λ
.
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For the second integral, we have 1
2⟨ξ⟩ ≥

1
t⟨ξ⟩ > λ, thus, |ξ| ∈

[
0,
√

1
4λ2 − 1

]
and∫

t≥2; t−1⟨ξ⟩−1>λ

dtdξ = 2

∫ √
1

4λ2
−1

0

∫ 1
⟨ξ⟩λ

0

dtdξ =
2

λ

∫ √
1

4λ2
−1

0

1√
ξ2 + 1

dξ

=
2

λ
log
(√ 1

4λ2
− 1 +

1

2λ

)
=

2

λ
log
(1
λ

)(
1 + o(1)

)
, λ→ 0 + .

Therefore,

V+

(a(0, 0)
4π

λ;
a(0, 0)

4π
ζ(t)t−1⟨ξ⟩−1

)
=

1

π
· 1
λ
log

1

λ
+O

(1
λ

)
, λ→ 0+

Finally, the volume spectral function for the main operator

V+

(1
x
; σ̃
)
=
a(0, 0)

4π2
x log x+O(x), x→ ∞ (5.2.1)

Using Remark 2.1.7 and the example of log-power function for

Theorem 2.1.6,

λ+k (Tm) = λ+k

(
OpW

1 (σ̃)
)
=
a(0, 0)

4π2

log k

k
(1 + o(1)), k → ∞.

Since OpW
1 (σ)− Tm ∈ S1,∞, due to Theorem 2.2.14

λ+k

(
OpW

1 (σ)
)
= λ+k (Tm) =

a(0, 0)

4π2

log k

k
(1 + o(1)), k → ∞.

The same result holds for negative eigenvalues since the spectrum is

symmetric.

5.3 Asymptotic formula via reduction to

model ΨDO from DO

In this paragraph we reduce the study of the spectral counting function

of the model pseudo-differential operator to the analysis of differential

operators (DO) using the Birman-Schwinger principle. The reduction

process leads to a Schrödinger operator with negative potential defined

on a real number line R.
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Let’s start with some preliminary results. The following lemmata repre-

sent DO and DO-related operators in the ΨDO form.

Proposition 5.3.1. [4, Ch.8, §5, p.198]

Let am ∈ C, 0 ≤ m ≤M and D be a differential operator defined by

Du =
∑

M≥m≥0

am · i
mdm

dxm
u

Then

D = F−1
( ∑

M≥m≥0

amξ
m
)
F = Opa

1

( ∑
M≥m≥0

amξ
m
)
,

where ψ(ξ) =
∑

M≥m≥0 amξ
m denotes the multiplication operator.

Lemma 5.3.2. Operator (H0 + I)−
1
2 defined on W 2

2 (R) admits the fol-

lowing representation

(H0 + I)−
1
2 = Opa

1

(
⟨ξ⟩−1

)
Proof. Due to Proposition 5.3.1

(H0 + I) = F−1(ξ2 + 1)F = Opa
1

(
ξ2 + 1

)
.

Note that (
F−1

√
ξ2 + 1F

)2
= F−1

√
ξ2 + 1FF−1

√
ξ2 + 1F

= F−1
√
ξ2 + 1

√
ξ2 + 1F = F−1(ξ2 + 1)F = H0 + I.

Therefore,

(H0 + I)
1
2 = F−1

√
ξ2 + 1F .

Moreover,

F−1
√
ξ2 + 1FF−1 1√

ξ2 + 1
F = F−1

√
ξ2 + 1

1√
ξ2 + 1

F = F−1F = I.

Hence,

(H0 + I)−
1
2 = F−1 1√

ξ2 + 1
F .

Finally,

(H0 + I)−
1
2u(x) =

1√
2π

∫
eixξ

1√
ξ2 + 1

û(ξ)dξ = Opa
1

( 1√
ξ2 + 1

)
.
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Remark 5.3.3. The following representation holds

(H0 + I)−
1
2V (H0 + I)−

1
2 = (H0 + I)−

1
2V

1
2V

1
2 (H0 + I)−

1
2 = A∗A,

where

A := Opa
1

(
V (x)

1
2 ⟨ξ⟩−1

)
.

The main part of the reduction process is based on the following principle.

It turns out that the counting function of a specific pseudo-differential

operator coincides with the counting function of a certain lower semi-

bounded differential operator. Namely,

Theorem 5.3.4. (’Birman-Schwinger principle’ )

#(−1, H0 − gV ) = n
( 1
√
g
,Opa

1

( 1
√
g

√
V (x)

⟨ξ⟩

))
.

Proof. Note that (see [4, Ch.9, §2, Th.6, p.213]) for any self-adjoint com-

pact operator T and any number λ > 0

n(λ, T ) = max{dimM |M is a subspace of functions ψ in L2(R)

with ⟨Tψ, ψ⟩ > λ · ∥ψ∥2}

and for any any self-adjoint and lower semibounded operator L and for

any number µ < 0

#(µ, L) = max{dimM |M is a subspace of functions ψ in DLR

with ⟨Lψ, ψ⟩ < µ · ∥ψ∥2}.

Define

m1 = max{dimM1|M1 is a subspace of functions ψ in W 2
2 (R)

with ⟨(H0 − gV )ψ, ψ⟩ < −∥ψ∥2},

m2 = max{dimM2|M2 is a subspace of functions ψ in (H0+I)
1
2 (W 2

2 (R))

with ⟨−Bψ,ψ⟩ < −1

g
∥ψ∥2},

where operator B = (H0+I)
− 1

2V (H0+I)
− 1

2 can be expressed as a product

A∗A with A =
√
V ·Opa

1

(
1√
ξ2+1

)
due to Remark 5.3.3.

We claim that m1 = m2.

Indeed, if ψ ∈ M1 (where M1 is some subspace in the definition of m1),
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then −∥ψ∥2 > ⟨(H0 − gV )ψ, ψ⟩, which is equivalent to

⟨gV ψ, ψ⟩ > ⟨(H0 + I)ψ, ψ⟩ = ⟨(H0 + I)
1
2ψ, (H0 + I)

1
2ψ⟩.

Let w = (H0 + I)
1
2ψ ∈ (H0 + I)

1
2 (W 2

2 (R)).
Then, plugging ψ = (H0 + I)−

1
2w in the estimate above, we obtain

⟨w,w⟩ = ⟨(H0 + I)
1
2ψ, (H0 + I)

1
2ψ⟩ < ⟨gV (H0 + I)−

1
2w, (H0 + I)−

1
2w⟩

= ⟨g(H0 + I)−
1
2V (H0 + I)−

1
2w,w⟩ = ⟨gBw,w⟩,

Therefore,

⟨−Bw,w⟩ < −1

g
∥w∥2

and w = (H0 + I)
1
2ψ ∈ M2 (some subspace defined in the definition of

m2). Moreover, since (H0+ I)
1
2 is invertible operator, the maximal num-

ber of linearly independent functions w satisfying ⟨−Bw,w⟩ < −1
g
∥w∥2

is not less than the number of linearly independent functions ψ ∈ M1.

Thus, m2 ≥ m1.

Conversely, if w ∈M2, then define ψ = (H0+I)
− 1

2w ∈ W 2
2 (R). It follows

that

−∥ψ∥2 > ⟨(H0 − gV )ψ, ψ⟩

and ψ ∈M1. Similarly, since (H0 + I)−
1
2 is invertible, m1 ≥ m2.

Hence,

#(−1, H0 + gV ) = m1 = m2 = #
(
− 1

g
,−(H0 + 1)−

1
2V (H0 + 1)−

1
2

)
= #

(
− 1

g
,−A∗A

)
= n

( 1
√
g
, A
)
,

where A is defined in Remark 5.3.3.

Common restriction of 2 self-adjoint operators

The motivation to study different lower semibounded operators in Chap-

ter 4 comes from the fact that they might have a common restriction.

In this case one can infer some information about the spectral counting

functions of these operators.

It turns out that the two self-adjoint extensions of a common closed sym-

metric operator have counting functions, which differ by a finite number.

Namely, the following theorem holds
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Proposition 5.3.5. ([4, Ch. 9, §3, Lemmata 2, 3, p.214-215]) Let A0

be a closed symmetric operator with discrete spectrum and finite equal

deficiency indices ν±(A0) = n. Let A = A∗, B = B∗ be two its self-

adjoint extensions. Then for λ ∈ ρ(A) ∩ ρ(B) (where ρ(·) stands for the

resolvent set of an operator) the quantity rank((A−λI)−1−(B−λI)−1) =

r is finite and

|#(λ,A)−#(λ,B)| ≤ r < n.

In this paragraph consider

V (x) =
ζ2(x)

x2
:=

ζ21 (x)

x2
.

Since V ∈ L∞(R), the operator p = gV is dominated by −∆, and we can

apply the results from Chapter 4 to obtain the estimate for the counting

function of the model operator Opa
1

(√
V (x)
ξ2+1

)
, which is in the same Weidl

operator class as the main operator (5.0.1).

The following reasoning helps to establish the connection between the

model operator and the operator whose spectral counting function has

been estimated.

We consider a suitable Schrödinger operator H(−∞,∞) with the same

counting function (see Theorem 5.3.4), which we try to estimate with

the same upper bound as for #(−1;−p; (a, b)) (Corollary 4.4.2 and Re-

mark 4.4.3) For this purpose, we take the decoupling LR, whose counting

function equals to #(−1;−p; (−R,R)) and try to find a suitable common

restriction of H(−∞,∞) and LR − p (the operator Lc
R − p), since due to

Proposition 5.3.5 this means that their counting functions differ by a

constant number.

This reasoning leads us to the result, which is the theorem below

Theorem 5.3.6.

n
(
Op
(
ζ(t)t−1⟨ξ⟩−1

)
, x−1

)
=

2

π
x log x+O(x), x→ ∞.

Remark 5.3.7. This is in line with the result (5.2.1). Indeed,

n
(
Op
(
ζ(t)t−1⟨ξ⟩−1

)
, x−1

)
∼ V+

(1
x

)
+ V−

(1
x

)
∼ 2

π
x log x, x→ ∞.
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Thus,

n
(a(0, 0)

4π
Op
(
ζ(t)t−1⟨ξ⟩−1

)
, x−1

)
∼ 1

2π2
x log x, x→ ∞.

Therefore,

sk

(a(0, 0)
4π

Op
(
ζ(t)t−1⟨ξ⟩−1

))
=
a(0, 0)

2π2

log k

k
(1 + o(1)), k → ∞.

Finally, s2k = λ±k ∼ a(0,0)
4π2

log k
k
, k → ∞ which repeats the result of

Theorem 5.2.1.

Proof. Take p = gV = g · ζ2(x)
x2 , R =

√
g and λ = −1. The operators

H(−∞,∞) and LR are self-adjoint extensions of the operator Lc
R − gV .

Thus, due to Proposition 5.3.5 and Corollary 4.3.6∣∣∣#(−1;−p; (−∞,∞))−#(−1, LR)
∣∣∣ ≤ ν+(L

c
R − gV ) = 2.

Lemma 4.4.4 implies #(−1, LR) = #(−1, Lo
R).

Using Theorem 5.3.4, we obtain

n
(
Op1

(
ζ(t)t−1⟨ξ⟩−1

)
, g−

1
2

)
= #(−1, H0 − gV )

= #(−1;−p; (−∞,∞)) ∈
(
#(−1, Lo

R)− 2,#(−1, Lo
R) + 2

)
.

Remark 4.4.3 for α = 2 implies

#(−1, Lo√
g) =

1

π

√
g log g +O(

√
g), g → ∞

which finishes the proof.

5.4 Additional remarks and conclusion

In this Section we describe two corollaries of the main result, Theorem

5.1.9.

Let’s see how the asymptotic formulae change in the case of the angular

boundary, if one of its sides becomes smooth (in terms of the properties

of the corresponding smooth function a), i.e. the boundary of the domain

is described by a straight line.

Recall the main result of the previous Chapter. If we impose some ad-

ditional conditions on function a, namely, if symbol σ(t, ξ) := χ{t≥0}(t) ·
χ{ξ≤0}(ξ) · a(t, ξ), where a ∈ C∞

0 (R+ ×R), i.e. supp a ⊆ [ϵ, R]× [−R,R]

95



5.4. ADDITIONAL REMARKS AND CONCLUSION 96

for some positive numbers ϵ, R, then OpW
1 (σ) ∈ S1,∞.

Indeed, in this case a(0, 0) = 0 and the following representation (Theorem

5.1.9) of the main part of the symbol σ holds

σ̃(t, ξ) =
a(0, 0)

4π

ζ2R(2t)

t
· 1

⟨ξ⟩
+
ζ2R(2t)

t
·O
( 1

⟨ξ⟩2
)

=
ζ2R(2t)

t
·O
( 1

⟨ξ⟩2
)
.

Due to Theorem 3.3.1 OpW
1 (σ) along with OpW

1 (σ̃) ∈ S1,∞, which con-

firms the result of Theorem 3.2.8.

The following theorem states that the estimate k−1 log(k + 1) holds for

any polygonal region.

Theorem 5.4.1. Let Ω = A1A2...An be the interior of an n−sided poly-

gon on the (t, ξ)-phase space. Then

OpW
1 (χΩ) ∈ S1.

Proof. First we prove the statement for any triangle Λ = A1A2A3, then

split the polygon Ω into n− 2 triangles, Ω =
⋃

1≤j≤n−2 Λj, using Remark

2.2.16 and (2.2.3),

sk(OpW
1 (χΩ)) ≲n

∑
1≤j≤n−2

sk(OpW
1 (χΛj

)) ≲
Λ1,...,Λn−2

k−1 log(k + 1).

To prove the theorem for the triangle Λ, we introduce a smooth function

a ∈ C∞
0 (R2) s.t. a ≡ 1 on the interior of triangle Λ, |a| ≤ 1 outside the

interior of Λ (see Fig. 5.1 below).

Split symbol χΛ as follows (Fig. 5.2)

χΛ = aχ∠A1A2A3 − aχ{t≤lA1A3
} + aχ∠B1A1B2 + aχ∠B2A3B4 ,

where lA1A3 is the line passing through A1 and A3.

Figure 5.1: symbol χΛ and function a = a(t, ξ)
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Figure 5.2: functions aχ∠A1A2A3 , aχ∠B1A1B2 + aχ∠B2A3B4 and aχ{t≤lA1A3
}

Theorem 5.1.9 implies OpW
1 (aχ∠A1A2A3),OpW

1 (aχ∠B1A1B2) and OpW
1 (aχ∠B2A3B4) ∈

S1. Theorem 3.2.8 gives OpW
1 (aχ{t≤lA1A3

}) ∈ S1,∞.

Finally, due to Theorem 2.2.14 OpW
1 (χΛ) ∈ S1.

In conclusion, we notice that for asymptotic estimates sometimes we

treat ΨDO as an integral operator and study the properties of its kernel

to apply corresponding tools (Section 3.2), sometimes we ”reassemble”

the symbol in such a way that a new symbol satisfies conditions of The-

orems 3.3.1, 3.3.14 and continue to deal with a new ΨDO.

Splitting the kernel or the symbol into parts and applying Ky Fan’s in-

equality, we can obtain asymptotic estimates for eigen/singular values,

However, it is impossible to use the same approach to obtain an asymp-

totic formula if the parts have the same order of s-numbers decay, and

there is no way to apply the results of perturbation theory, Theorem

2.2.14. That is why, if the boundary is a broken line and has at least

2 angles (e.g. the boundary is a triangle/polygon), the contribution of

each angle to the main term of the asymptotic formula is 1
4π2

log k
k

. Adding

these parts might compensate the main terms, thus, we are not sure if

the estimate O(k−1 log(k + 1)) is sharp.
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