
Enhancing Testing at Meta with Rich-State Simulated Populations
Nadia Alshahwan, Arianna Blasi, Kinga Bojarczuk, Andrea Ciancone, Natalija Gucevska, Mark
Harman, Simon Schellaert, Inna Harper, Yue Jia, Michał Królikowski, Will Lewis, Dragos Martac,

Rubmary Rojas, and Kate Ustiuzhanina, Meta Platforms Inc.

ABSTRACT
This paper reports the results of the deployment of Rich-State Sim-
ulated Populations at Meta for both automated and manual testing.
We use simulated users (aka test users) to mimic user interactions
and acquire state in much the same way that real user accounts ac-
quire state. For automated testing, we present empirical results from
deployment on the Facebook, Messenger, and Instagram apps for
iOS and Android Platforms. These apps consist of tens of millions
of lines of code, communicating with hundreds of millions of lines
of backend code, and are used by over 2 billion people every day.
Our results reveal that rich state increases average code coverage
by 38%, and endpoint coverage by 61%. More importantly, it also
yields an average increase of 115% in the faults found by automated
testing. The rich-state test user populations are also deployed in
a (continually evolving) Test Universe; a web-enabled simulation
platform for privacy-safe manual testing, which has been used by
over 21,000 Meta engineers since its deployment in November 2022.

KEYWORDS
Software Testing, Cyber Cyber Digital Twins, Simulation-Based
Testing, Machine Learning
ACM Reference Format:
Nadia Alshahwan, Arianna Blasi, Kinga Bojarczuk, Andrea Ciancone, Na-
talija Gucevska, Mark Harman, Simon Schellaert, Inna Harper, Yue Jia,
Michał Królikowski, Will Lewis, Dragos Martac, Rubmary Rojas, and Kate
Ustiuzhanina, Meta Platforms Inc. . 2024. Enhancing Testing at Meta with
Rich-State Simulated Populations. In 46th International Conference on Soft-
ware Engineering: Software Engineering in Practice (ICSE-SEIP ’24), April 14–
20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, Article 111, 12 pages.
https://doi.org/10.1145/3639477.3639729

1 INTRODUCTION
In system level testing, a test user is typically required. The test
user plays the role of a real user. For less interactive systems, this
may have little impact, other than the need for the test user to be
logged in. However, when real users interact with the system, they
typically accrue state (e.g., history of purchases). For such stateful
systems, it is additionally necessary for the test users to mimic this
behaviour, in order to achieve full test coverage and fault revelation.

To simulate community interactions, test users also need to in-
teract with one another through the platform. This form of testing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0501-4/24/04. . . $15.00
https://doi.org/10.1145/3639477.3639729

(with highly interactive test users) is becoming increasingly im-
portant as systems, themselves, increasingly become interactive
platforms on which communities of users interact [24]. For ex-
ample, platforms for online shopping, the ‘gig’ economy, and for
social media and communications, all involve interaction between
users. On such platforms, users interact with each other through the
system, thereby accruing state. System-level testing thus requires
populations of test users that model such community behaviours.

As the test user modelling of real user behaviours becomes more
sophisticated, testing enters the realm of Simulation Based Testing
(SBT), in which the test system becomes a digital twin of the system
under test [6]. This is characterised by the need to make test users
first class citizens; agents with defined and (for testing purposes)
controllable behaviours and state.

Although there have been a great many studies of automated
test data generation [12, 20, 27], there has been comparatively little
work reporting on the impact of test user state on fault revelation.
With this paper we seek to draw the attention of the research
community to this important problem for real-world system-level
testing, illustrate problems, and propose some initial solutions for
rich state populations, with directions for future work.

Specifically, we report the results of the deployment of rich-State
Simulated Populations at Meta for both automated and manual
testing. For automated testing, we investigate two different SBT
test generation techniques with which test users interact to form
simulated communities, thereby accruing state. We report on the
application of these two techniques to three popular social media
applications: Facebook, Instagram, andMessenger on two platforms,
iOS (for Facebook and Messenger) and Android (for all three apps).
The rich state approach has been deployed in all five of these apps
since 2022.

In the most simple mode of test deployment, at the commence-
ment of a test run, the test users have no initial state (denoted
Empty State). In the Empty State approach, test users thus be-
have as though they were a community of real users, who had just
joined the platform. In the other mode of deployment (denoted
Rich State), a full simulation of previous test user interactions is
performed on Meta’s WW platform for SBT [3, 6]. The WW simula-
tion executes on the real Meta platform, but with test users in place
of real uses [6]. WW thereby evolves the test users’ state ‘organi-
cally’ through a simulation that models the way in which real users
naturally interact with each other on the platform. Although it uses
the real platform for the simulation, the test users are completely
isolated from real users [6, 36].

Our results reveal that the WW pre-evolution of test user state
is advantageous. It achieves higher overall coverage and accrues
coverage at a faster rate. This has a knock-on effect on the number
of faults revealed. This finding applies across all apps studied, and
on both platforms, indicating that these are reasonably consistent
and reliable findings.

ar
X

iv
:2

40
3.

15
37

4v
1

 [
cs

.S
E

]
 2

2
M

ar
 2

02
4

https://doi.org/10.1145/3639477.3639729
https://doi.org/10.1145/3639477.3639729

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Alshahwan et al.

Figure 1: The Populations Manager workflow. This is how
Rich State populations are created and evolved. For Sapienz,
we only evolve once on initial creation, and use the 1st gen-
eration only. For the Test Universe, we evolve once per day,
so we are currently on the Nth Population where N is the
number of days since the population has been created.

Figure 2: Populations Manager architecture. The server
queries the configuration database (1) and receives a list of
current populations and their settings (2). For each popula-
tion, the server maintains a runner (3), that is responsible
for monitoring and scheduling new jobs to create additional
test users (4).

We also use Rich State Populations to generate an evolving
simulation of the Meta platforms, such as Facebook and Instagram.
This platform, known as the ‘Test Universe’, allows Meta engineers
to inhabit test user accounts, and control their associated test user
personas in a simulated world. The world stimulated by the Test
Universe includes rich synthetic simulated content, and contains
only test user accounts, thereby ensuring that the Test Universe is
both privacy safe and that it is securely isolated from production.
Nevertheless, since the test universe executes on the WW plat-
form [3], it is a highly realistic simulation, in which all interactions
use the same full stack as production [6].

The primary contributions of this paper are twofold:
(1) An experience report of the deployment of the Test Universe,

its uptake by employees and its application at Meta Platforms
Inc.

(2) A report of the improvements in coverage and fault reve-
lation that result from the deployment of rich evolved test
user states. The results show a significant increase in both
coverage and fault revelation, with high effect size for all
five apps studied. Over all apps, the average increase in fault
revelation is 115%.

Name # populations # test users

Test Universe 1 82,177
Facebook 11 55,260
Messenger 4 16,400
Instagram 3 15,000

Figure 3: Sizes of test user populations deployed at Meta in
the Populations Manager framework.

2 POPULATIONS OF TEST USERS APPROACH
We create synthetic populations of test users using the WW simu-
lation platform [3]. Through interactions with the app – amongst
others: posting, commenting or sending messages – these test users
accumulate state information that is unique to each of them. The
content created by these test users depends on their specific settings,
which we call their test user personas.

In order to efficiently control and scale the populations, we imple-
ment the Populations Manager: a system responsible for scheduling
and monitoring their creation, as well as maintaining the popula-
tions, i.e., removing test users from the populations and scheduling
new creations when creation conditions are met. The Populations
Manager supports both automated and manual testing. We depict
these twoworkflows in Fig. 1. The upperworkflow, labelled ‘Sapienz
workflow’, depicts the fully automated testing case. The lower work-
flow, labelled ‘Test Universe workflow’, depicts the evolutionary
workflow used to support the Test Universe.

Consider the upper workflow.We use the Sapienz automated test
generation system [10, 35] to automatically explore apps using a
population generated in a single generation of the overall evolution
process. This population is updated to refresh and retire test users,
ensuring that they remain suitable for automated testing, according
to a set of well-defined maintenance conditions. In the Sapienz
workflow, we generate the content once for every active test user.
Section 4 describes how we use Sapienz to automatically explore
Meta apps using the population generated by this workflow.

The lower workflow, labelled ‘Test Universe workflow’, is more
elaborate, because it has to cater for continual evolution over mul-
tiple generations of an interacting population of test users. This
workflow essentially simulates the real Meta platforms, such as
Instagram and Facebook. However, the same overall Populations
Manager is used to maintain each generation.

The principal difference between the Sapienz workflow and the
Test Universe workflow is that, in the Test Universe workflow,
between each generation, the population evolves. That is, test users
interact with one another, for example liking each other’s posts,
and sending each other messages. This interaction creates a test
user community, the ‘Test Universe’.

In the Test Universe, test users play the role of bots that au-
tomatically and autonomously interact through the evolutionary
process managed by the Populations Manager. As the test users
(bots) interact with each other in the Test Universe, they accrue
additional test user state. In this way, their autonomous evolution
ensures that their state is also continually updated (evolving), simu-
lating the way in which real user state continually evolves through

Enhancing Testing at Meta with Rich-State Simulated Populations ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

Figure 4: Total number of test users in the Test Universe
between November 2022 and August 2023.

interaction in real user communities. Section 3 describes the Test
Universe deployment in more detail.

The Populations Manager also orchestrates the maintenance of
the populations it creates. The maintenance conditions vary from
use case to use case. To illustrate, consider the automated generation
of tests using Sapienz. The test users’ states can change during the
process of automated testing (because testing may cause test users
to interact). This is unhelpful for replication and testability; such
interactions can lead to test flakiness. Furthermore, certain forms
of automated testing are designed to reveal bugs, rather than to
faithfully replicate normal user behaviour. As a result, some of the
test user states might diverge from being a realistic representation
of content on the platform, potentially negatively influencing the
test coverage e.g. all new messages get opened and there’s no more
notifications to read. To alleviate this issue, we set a limit on the
number of times a particular test user can be used in automated
tests. After hitting this limit, the test user is deactivated and not
used in any future tests. This limit forms one of the maintenance
conditions for the Sapienz workflow, and thereby ensures that test
users remain fit for purpose.

2.1 Test Users
Test users are first class citizens. They execute all of their actions
using the same full stack of backend systems used by real users,
and they observe their world through the same APIs that ultimately
feed information to real users on the real platforms. In this way, we
ensure the realism of the simulation; a founding principle of web
enabled simulation [3] which makes the simulation essentially a
Cyber Cyber Digital Twin [6, 17] of the Meta platforms Instagram,
Messenger and Facebook.

Each test user persona specifies the frequency with which each
feature (such as posting content, and responding to posts) will be
used by the associated test user. With this high level of control over
the amount and type of content that is included in the final state,
we can create different populations that target specific features of
the tested app. For example, when the tester is mostly interested
in features related to Facebook’s Marketplace, we can create a
population that will be mostly focused on items’ listings, as well as
various selling and buying activities, making them prominent in
the resulting population state.

Figure 5: Cumulative number of Meta employees who
claimed a test user from the Test Universe between Novem-
ber 2022 and August 2023. As can be seen, there has been a
steady rise in adoption over the period of deployment, to the
point where over 21,000 employees have claimed a test user.

2.2 Determining population dynamics
Population level dynamics are determined by a population configu-
ration, which specifies, not only its basic properties, such as the size
(number of test users), but also the properties of their test user state.
For the latter, we specify a distribution of different test user per-
sonas over the whole population. This combination of population
configuration, and the distribution of test user personas, uniquely
defines the behaviour of the population. To illustrate, consider a
population of test users in which 10% have their personas set-up to
frequently create postings onMarketplace, while the remaining 90%
are more focused on other aspects of the platform. This population
would be useful for testing Marketplace buy-sell scenarios, where
we ensure that we represent the Marketplace sellers in the 10% and
the remaining users are just ordinary users who could buy and/or
do other things on the platform. Allowing multiple population con-
figurations for the same application enables us to create isolated
environments in which completely different types of experiments
can be conducted.

2.3 Architecture and scale
We present the architecture of the Populations Manager in Figure 2.
The Populations Manager runs continuously, polling for new con-
figurations and any changes to the configurations for the existing
populations. This makes the process of onboarding a new type
of population quick and friction-less, as the engineers need only
describe the specific test user settings.

At the time of writing, the Populations Manager maintains 18
different populations (excluding the Test Universe, described in
detail in Section 3) across Facebook, Messenger, and Instagram,
with more than 86,000 test users overall. Figure 3 describes the
specific sizes of the populations for each of the apps.

3 TEST UNIVERSE DEPLOYMENT
The Test Universe is designed to support cases where an engineer
wants to manually verify the behaviour of the implemented fea-
ture in a controlled simulated environment. It provides realism
and privacy safety, because of its implementation on top of Web
Enabled Simulation [3]. The Test Universe has grown steadily and

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Alshahwan et al.

consistently since its deployment, and is now used by over 21,000
employees at Meta. The growth of the number of test users in this
population is depicted in Figure 4. The growth correlates to the
number of claimed test users (see Figure 5). There is a short period
of plateau around December 2022. This is due to the Christmas
holiday period when a lot of employees were less active due to
annual leave.

The Test Universe is primarily designed to support manual test-
ing. Employees adopt the persona of a test user in the test universe
in order to explore the behaviour of existing and new features.
This allows employees to perform system-level testing on the real
platform, while entirely isolated from production users in a safe
sandbox-style environment. Despite it being primarily designed
for manual testing, the Test Universe does, nevertheless, overcome
some of the hurdles that limit the efficiency and effectiveness of
manual testing at the system level.

One of these (frequently encountered) hurdles that concerns the
need to set up test data objects. This is typically achieved using
data builder APIs. These APIs provide facilities to construct objects
that represent content, such as posts, reels (short form video), and
stories. Additionally, data builders are required to update test user
state to reflect properties of test users, such as posts the test user has
liked, the test user’s friends in the friendship network, and groups
that the test user has joined. While these APIs hide implementation
details, a considerable amount of human-written code is required
to set up the test user state for a specific test purpose.

As a result, it can take a long time to write tests, making the
manual testing process, tiresome, error-prone, and inefficient. To
alleviate this issue, the Test Universe provides engineers with a set
of test users in which state is already present. The engineer does
not have to explicitly set out, neither in detail nor in code, the exact
content and interaction history of a test user. Rather, using the Test
Universe, the test engineer can simply set up broad parameters that
define the kinds of content and interactions pertinent to the test
user. This is done through the persona.

The Test Universe can be thought of as a kind of ‘second life’ ver-
sion of the platforms, Instagram,Messenger and Facebook, available
to all Meta engineers for manual testing. Engineers, and other Meta
employees, can claim a test user within this network and use them
for testing purposes. Claiming means the employee becomes the
sole owner of the test user. In this way, the test engineer sacrifices
a small degree of control over the exact detail of interaction history
and content, for a great deal of reduced effort in test construction.
The steady, consistent and large-scale uptake of the Test Universe
revealed in Figure 5 indicates that the Test Universe strikes the
right balance between detailed test user content/interaction control
and ease of test process.

The test user is a kind of ‘alter ego’ for the engineer. The engineer
takes on the test user and can log in and interact with content and
other test users in the test universe, in exactly the same way as they
would do using the regular platform. When an employee claims a
test user in the Test Universe, they acquire complete control over
settings related to that particular test user: this not only includes
the ability to configure persona settings, but also the ability to influ-
ence which features will appear in the friend network. Additionally,
whenever an employee claims a test user, the Populations Manager

automatically connects them with their teammates’ test users (link-
ing their test users as friends), thereby imbuing the newly-claimed
test user with a pre-existing (and natural) network of friends. This
also allows for easy sharing of test resources (e.g. custom tailored
groups with specific content) in the population.

When an employee claims a test user, we call this their ‘Primary
Test User’. Employees may also want to control other test users,
which they simply want to act as bots that interact with their
Primary Test User. We therefore maintain three pools of test users:

(1) Claimed: Each claimed test user is assigned to a specific
employee as the employee’s Primary Test User. This test user
becomes the employee’s alter ego in the test universe, and
also their way of interacting with their colleagues’ Primary
Test Users, and with unclaimable bots.

(2) Unclaimed: each unclaimed test user continues to evolve
autonomously to ensure it will have state when it becomes
claimed by an employee as their Primary Test User.

(3) (Unclaimable) Bots: bots autonomously evolve and interact
with all other test users. They cannot be claimed as Primary
Test Users, but they can be claimed as secondary test users,
the sole role of which is to interact with Primary Test Users
e.g. send messages to the user. Bots play a role a little bit like
non-player characters in interactive game worlds, except
that they are, to some degree, controllable by employees in
their interactions with Primary Test Users.

As the maintenance condition of the Test Universe, the Pop-
ulations Manager strives to maintain a fixed ratio of unclaimed-
to-claimed test users, in order to make sure there are sufficient
unclaimed test users to not limit the ability to control the friend
network content. As employees cannot change persona settings
for test users claimed by other employees, it is necessary to have
a sufficiently large pool of unclaimed test users and unclaimable
bots. This is also the responsibility of the Populations Manager.

3.1 Evolving population
The Test Universe is a large population of test users with an evolving
state that is updated each day. The Populations Manager schedules
jobs that automatically generate new content for each of the test
users in the population according to their specified personas.

While the daily evolution of the state within the Test Universe
is important to ensure that there is enough content for manual
testing, it is also crucial because certain features expire after a set
amount of time, such as Facebook Stories. Combined with persona
preferences, this gives Meta employees a rich pool of test objects
that are ready to be used on demand.

3.2 Adoption Process
The Test Universe was initially released to selected small groups of
engineers. This allowed us to quickly gather feedback through un-
structured interviews with engineers and iterate on the commonly
requested features to prepare for the release to all Meta employ-
ees. Once this initial set of features was established, we gradually
rolled out and scaled the Test Universe, incrementally on-boarding
employees and providing additional features, as needed.

A range of features were introduced based on the continuous
feedback from employees gathered in feedback forms as well as

Enhancing Testing at Meta with Rich-State Simulated Populations ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

1:1 user studies. These features were launched in order to increase
further adoption. We believe all these features have collectively
helped to increase the number of onboarded employees, but for the
sake of brevity, we illustrate with two examples, here
Example 1: Feedback revealed how important it was that the con-
tent itself should be pleasant to work with. We found that a form
of ‘test fatigue’ set in when much of the textual content, and/or
other aspects of content such as video and images, was generated
as random synthetic content. Although the synthetic content was
generated to be realistic, and typical of content that might oth-
erwise be generated on the real platform, this was insufficient to
avoid fatigue. Rather, employees using the Test Universe wanted
to see content that was also meaningful for them, much as regular
users of the platform might want to do. We found that this tended
to reduce fatigue and increase engagement. Therefore, in addition
to controlling the type of features created by their test user, Meta
employees are also able to set specific subjects – which we name
test user interests – which will then be used to populate the content,
such as relevant text, pictures, and videos.

Employees can include specific items of content, if they choose,
but it can be time-consuming to specify content at this level of detail.
We found that specifying content at the higher level of ‘topics
of interest’ proved to be sufficient to generate content that was
meaningful to employees. It yielded content that employees found
to be pleasing to engage with, and relevant to the test user’s owner,
while simple and high-level to specify, thereby being relatively
friction-free as a deployment vehicle for employee-relevant content.
Example 2: To decrease the friction of logging into the Test Uni-
verse and increase its adoption, we introduced a profile switcher,
which allows employees to switch between their personal account
and their Primary Test User account with a single click from the
Facebook UI.

Figure 5 shows the degree of uptake of test users byMeta employ-
ees after the launch. As can be seen, deployment has led to a steady
linear growth in the size of the Test Universe, and the number of
employees using it for their manual testing activities. At the time
of writing (August 2023) there are over 80,000 test users evolving in
the Test Universe each day, with approximately 21,000 employees
and other Meta employees using or having used a Primary Test
User.

4 SAPIENZ RICH STATE DEPLOYMENT
Sapienz [10, 35] is an unsupervised testing platform that provides
autonomous end-to-end testing for Meta’s family of apps. It was
first deployed in 2017, as a search based automated test generation
platform to test all Meta products [10]. The initial deployment
targeted the Android platform, for which Sapienz automatically
designs test cases, executes them, and reports failures in Meta’s
continuous integration environment. In 2019, Sapienz was extended
to also generate test cases for the iOS platform. Since these initial
deployments, both the range of failures targeted, and the algorithms
used to target them, have been considerably extended and adapted.
Initially, to circumvent the Oracle Problem [14], Sapienz focussed
purely on crashes, but has since been extended to tackle memory
issues and performance-related regressions.

The algorithms used to uncover faults have also been extended to
include many other exploratory strategies, including reinforcement
learning. By using reinforcement learning, Sapienz explores the
app’s features without the need for human input. Sapienz Explo-
ration Mode focuses on automatically exploring the app’s features
to maximize code coverage and identify faults. We use Sapienz
Exploration Mode to continuously test the master builds of Meta’s
apps and create crash-fixing tasks for the engineering teams.

Since 2022, Meta has extended the Sapienz deployment to use
the Rich State test user population to further augment its pre-
production fault-revealing potential. The Rich State allows the
Sapienz algorithm to take advantage of realistic user content and
connections to speed up the testing process with more realistic
test scenarios. For example, Sapienz will spend more time testing
Facebook Groups features if the test user belongs to many groups,
while it may tend to test more messaging features when a test user
has many friends.

5 EVALUATION
In this section, we present empirical results to evaluate the advan-
tage conferred by the use of the Rich State on the deployment of
Sapienz. To do this, we compare against a shadow deployment with
the Empty State in an otherwise identical deployment context.
We ran experiments on Alpha builds constructed between July and
August 2023. An Alpha build is an internal release of a version of
the app containing multiple changes from different development
teams. All Alpha builds are tested by Sapienz, and by other testing
infrastructure before being allowed forward into the Beta release
process. Once the previous app version is cut for the Beta Branch
release, the major app version for the new Alpha release branch is
incremented at approximately one-week intervals. To ensure that
the builds we are testing include a significant number of different
changes1, we select the initial Alpha build from the major app ver-
sion update. The release process ultimately leads to submission to
the corresponding App Store (Android or iOS).

By running in shadowmode deploymentwith the Empty State on
all Alpha builds, we are able to give a fair comparison, as if the
Empty State approach had been deployed into the release pro-
cess. This is what we mean by ‘shadow deployment’. We thus
directly compare Sapienz runs on Empty State Population vs Rich
State Population in a like-for-like setting, on a realistic set of builds
of the app.

We call a single Sapienz exploration on a specific app a ‘Sapienz
run’. A Sapienz deployment dictates several configuration param-
eters about runs. In particular, we define how many runs will be
assigned to a specific Meta app and on which build specifically, and
what kind of test user population Sapienz will use. After Sapienz
logs into the app with a test user account, it enters the following
overall exploration loop:

(1) Extract the UI layout to discover the UI views.
(2) Find all possible actions that can be executed on the available

views (tapping, scrolling, etc.).
(3) Select an action to execute.
(4) Check whether the run should complete (i.e., whether the

test process has used up the pre-defined test budget).
1A change is landed into the code base approximately every few minutes [30].

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Alshahwan et al.

App Name

Endpoints PLs Increase Wilcoxon P-value
Unique Total Unique Total End

points
PLs

End
points

PLsEmpty
State

Rich
State

Empty
State

Rich
State

Empty
State

Rich
State

Empty
State

Rich
State

Facebook Android 28 239 451 662 48 435 1270 1657 47% 30% 0.000 0.000
Facebook iOS 18 198 244 424 26 369 697 1040 74% 49% 0.000 0.000
Messenger Android 6 40 124 158 15 101 584 670 27% 15% 0.016 0.016
Messenger iOS 4 32 104 132 10 87 398 475 27% 19% 0.014 0.014
Instagram Android 45 183 204 342 62 321 477 736 68% 54% 0.009 0.009
All (sum) 101 692 1127 1718 161 1313 3426 4578 61% 38%

Figure 6: Increase in coverage achieved by Rich State over Empty State in terms of (i) Endpoint coverage and (ii) PL coverage
over each of the different apps. As can be seen, both forms of coverage are notably improved using the Rich State approach.
This data is depicted as a Venn diagram in Figure 9.The P values are for a paired Wilcoxon test wrt the Null Hypothesis that the
results obtained with Rich State are not significantly different to those with Empty State.

App Name

Crashes found in Single Build Crashes found in Multiple Builds Increase Wilcoxon
P-value
for Single
Build

Unique Total Unique Total Single
Build

Multiple
Builds

Empty
State

Rich
State

Empty
State

Rich
State

Empty
State

Rich
State

Empty
State

Rich
State

Facebook Android 8 67 21 80 0 266 120 386 281% 222% 0.000
Facebook iOS 2 5 4 7 0 7 24 31 75% 29% 0.000
Messenger Android 3 11 9 17 0 13 50 63 89% 26% 0.022
Messenger iOS 4 8 10 14 0 9 43 52 40% 21% 0.026
Instagram Android 1 3 3 5 0 5 23 28 67% 22% 0.019
All (sum) 18 94 47 123 0 300 260 560 161% 115%

Figure 7: Increase in Rich State over Empty State in Failures found over (i) 1 build and (ii) 10 builds from August 2023. As can be
seen, the Rich State approach significantly improves fault revelation. This data is depicted as a Venn diagram in Figure 10.The
P values are for a paired Wilcoxon test wrt the Null Hypothesis that the results obtained with Rich State are not significantly
different to those with Empty State.

To evaluate the algorithm, we measure app coverage using both
PLs and endpoints. A full instrumentation (able to collect fine-
grained coverage information), simply does not scale to the size
of apps deployed by Meta. Therefore, we use PLs (Performance
Loggers).

PLs are lightweight probes inserted into the app code, that collect
information on key features covered in the code while not unduly
impacting app performance or size. PLs are the preferred way, at
Meta, to log duration and outcome of specific events, and to assess
whether an interaction is successful from the user’s perspective.
They also provide a convenient and lightweight way to measure
code coverage. Endpoints are the entry points into a system or
application, typically a mobile app screen. These correspond well
to interactions between the client and server, and therefore, also
represent a form of coverage. In this section, we report both PLs
and endpoints to measure the coverage achieved at the system level
by a test framework, such as Sapienz.

Of course, coverage is necessary, but not sufficient, for good
testing. While high coverage can give us confidence in the signal
provided by the test process, the effectiveness of a testing strategy
must also be measured by its ability to reveal faults. At the system
level, Sapienz identifies failures, and uses a triage mechanism to
trace these back to faults, reporting the corresponding fault to engi-
neers as a signal in the Meta Continuous Integration environment

[10]. The mapping between faults and failures can be a subtle one,
and there are occasionally duplicates. Nevertheless, our experience
is that the triage process ensures a reasonably close to one-to-one
mapping between failures and the faults reported to engineers as
test signal. Counting unique system level failures found, such as
app crashes triaged to unique causes, thus provides an effective
proxy for the number of unique faults found by the test process.

5.1 Coverage
We seek to answer the following research questions about coverage
achieved by the Rich State: RQ1: What is the improvement in
coverage in Rich State Population over the Empty State? We
divided this question into 2 sub-questions:

• RQ1.1Howdoes the PL coverage achieved byRich State com-
pare to the PL coverage achieved by Empty State?

• RQ1.2: How does the endpoint coverage achieved by Rich
State compare to the endpoint coverage achieved by Empty
State?

• RQ1.3: What is the rate at which the PL coverage grows
over the duration of the test process with Rich State and
Empty State approaches?

To answer these coverage questions, we calculated the average
of coverage over 2000 runs per 10 different Alpha builds. The table

Enhancing Testing at Meta with Rich-State Simulated Populations ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

(a) Facebook App on Android.

(b) Facebook App on iOS.

(c) Messenger App on Android.

(d) Messenger App on iOS.

(e) Instagram App on Android.

Figure 8: Code level coverage growth over the duration of the
test generation process,measured by PL (performance logger)
events (results are similar for endpoints). Test automation is
orchestrated by test exploration with Sapienz. The upper line
in each sub-figure depicts coverage obtained using Rich State,
while the lower is obtained using Empty State. As can be seen,
the coverage achieved grows faster, and further, using the
Rich State approach, giving evidence for the benefit of the
Rich State.

in Figure 6 presents the overall results for coverage achieved by
the two approaches. Figures 9a and 9b provide a more visual repre-
sentation of the unique coverage achieved by each approach, and
the intersection, in terms of endpoints and PLs covered by both
approaches.

The overall improvement in coverage is 38% on average for PLs,
to 61% on average for endpoints. Furthermore, for each app and
for each way of measuring coverage, the coverage achieved by
the Rich State approach outperforms that achieved by the Empty
State approach. The smallest coverage improvement is a 15% PL
improvement in coverage for Messenger on Android, while the
largest improvement is the 74% endpoint coverage improvement
for Facebook on iOS.

In general, it is notable that the coverage improvements tend to
be stronger for Facebook and Instagram compared to Messenger.
We believe that this is due to the richness of features available in
Facebook and Instagram, compared to Messenger. That is, Mes-
senger is essentially a messaging product in which users can send
messages to one another. By comparison, Instagram and Facebook
include messaging, but also many other social media interactions.
We must naturally be careful to avoid overgeneralising based on
only three apps. Nevertheless, these observations may provide some
additional evidence that the rich state is increasingly important for
apps that have higher levels of content-based user interaction.

We might have thought that coverage due to the richer state
would subsume that achievable in an empty state. However, the
results do not show this. It is, therefore, interesting to dive deeper
into these results for the Empty State approach. Upon more de-
tailed manual inspection, we found two primary reasons why the
Empty State approach may cover endpoints and PLs not covered
by the Rich State approach:

(1) Features for onboarding new users: There are some code
paths that are specific to new users’ journeys, such as on-
boarding flows for new users.

(2) Increased probability of hitting deeply nested features:
Certain pages are deeply nested within the app structure.
For example, as the pages that allow changes to settings.
Since these are so deeply nested, the code and endpoints
corresponding to each individual setting may have a low
probability of being hit by exploratory testing. However, in
the empty state, the algorithm has fewer choices, since there
are fewer features available e.g. no posts, no messages that
are clickable etc. For each setting available, in the empty
state, the exploration therefore has a slightly higher overall
chance of being hit during exploratory testing.

Figure 8 presents the results for RQ1.3. Each graph plots the
unique cumulative coverage achieved. Each data point plotted is
the average cumulative coverage over 10 runs. We use averages in
order to cater for non-determinism present in an individual run.
All ten graphs plotted in this figure show a typical logarithmic
growth in test coverage. This is a typical (and expected) pattern
that is witnessed in many testing scenarios because, as cumulative
coverage is achieved, there are fewer remaining available uncovered
items [11, 28, 45].

More importantly, the graphs show that, when testing with Rich
State Populations, test exploration is able to achieve faster coverage

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Alshahwan et al.

growth than when testing with Empty State. This is important,
because all the automated test generation algorithms deployed with
Sapienz are essentially ‘anytime’ algorithms [46]; they accrue value
over time, and can be terminated at any point. This is typical for
all testing processes, so many test generation algorithms share
this ‘anytime’ characteristic. In terms of software testing, the test
generation algorithm typically terminates when the test budget is
exceeded. However, any faults found during the process of testing
are reported immediately. Therefore, a faster coverage growth rate
will typically translate into earlier signal to the engineer from the
test process.

To further test the observations we make about the superiority of
the Rich State Populations, we perform a paired Wilcoxon inferen-
tial statistical test. In each case, the observations are paired by the
Alpha build from which they are constructed: one using the Rich
State Population, and one using the Empty State Population. As
recommended by standard tutorial advice on inferential statistical
analysis of search based (and other nondeterministic) algorithms
[13, 29], we use the Wilcoxon test, because this is a non-parametric
test, and we cannot be sure that the data is normally distributed. In
this way, we obtain a P value for paired observations for each app;
five P values for the PL-based coverage measurement and five for
the endpoint-based coverage.

These P-values are shown in Table 6. As can be seen, in all cases,
the P value is lower than 0.05, indicating that we can reject, at 95%
level, the Null Hypothesis that the coverage observed from the Rich
State Populations is no better than the coverage achieved by the
Empty State Populations. In this case, the effect size is so strong,
that it is revealed by only ten data points, and since the Null Hy-
pothesis is rejected in every pairwise case (i.e., for each app), there
is no risk of Type II error, even with this relatively low sample size.
Furthermore, since in every case, the Rich State produces higher
coverage than the Empty State Populations, the non-parametric
Vargha-Delaney test [38] for effect size is 1.0 in every case, suggest-
ing the highest possible effect size.

In conclusion, the overall answer to RQ1 for coverage, is that
automated testing using Rich State Populations is significantly
superior to the baseline using Empty State Populations. With
the richer test user state, testing is able to achieve higher overall
coverage (of both code markers (PLs), and of endpoints) and it does
this on all apps studied and on both Android and iOS platforms
and, in all cases, it also achieves a faster growth rate of coverage.

5.2 Failures
We seek to answer the following research question in terms of
failures: RQ2: What is the improvement in terms of failures found
in Rich State Populations vs Empty State Populations. We fo-
cus specifically on crashes, since these tend to be the most un-
equivocal of all system failures. We have divided the answer into 2
sub-questions:

• RQ2.1 Are there any type of crashes that can only be de-
tected in Rich State and not in Empty State?

• RQ2.2When testing on a single build, are there any crashes
that are detected faster by one method than by the other?

We measure the total number of failures detected over 10 Al-
pha builds between July and August 2023. The table in Figure 7

(a) Unique Endpoints covered. (b) Unique PLs covered.

Figure 9: Unique coverage metrics across Empty State and
Rich State within Sapienz Automated Testing Runs. Rich
State clearly provides a bigger coverage, however it does not
cover everything Empty State did.

presents the overall results for the crashes found in an (arbitrary)
single build of the app under test (averaged over ten runs), and the
crashes cumulatively found over a consecutive series of ten builds.
Figures 10a and 10b depict the results as Venn Diagrams.

Over multiple builds, there are many unique crashes that can
only be found in Rich State Populations, while there are no crashes
that can only be found in Empty State Populations. This suggests
that, in terms of fault detection, Rich State Populations are much
more valuable since they discover more failures (and thereby more
faults caused by these failures).

To answer RQ2.2 consider Figures 10a and 7. The results pre-
sented in these figures show the average number of crashes detected

Enhancing Testing at Meta with Rich-State Simulated Populations ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

in an arbitrary single build over 2000 tests. The results indicate that
there is a subset of crashes that is discovered faster by Empty State.
However, RQ2.1 suggests that these crashes can also be discovered
by Rich State Populations, over time. Overall, the results indicate
that the Rich State approach is much better at finding failures
than the Empty State approach, while the empty state may add
value when only a ‘single shot’, non-continuous, testing approach
is possible (such as when using a smoke test).

As with coverage, we perform a paired Wilcoxon test on the
data points collected from single builds for the numbers of crashes
found. The P-values are shown in Table 7. As can be seen, the Rich
State approach is significantly better than the Empty State ap-
proach for all five apps studied, although the Empty State approach
can find some crashes in each single build that are not found by the
Rich State approach.

5.3 Limitations and Threats To Validity
The results presented are relatively unequivocal in their demon-
stration of the value of rich test user state but, as always, care is
required in generalising from these findings. All Sapienz deploy-
ments with Empty State Populations and Rich State Populations
were run using the same automatic testing algorithm. Results may
not generalise to other automated testing algorithms. The applica-
tions on which we evaluated are Social Media applications with
a substantial amount of code handling user state, such as online
interactions, browsing user-generated content, and notifications.
Therefore, having a Rich State Population might be expected to
have a substantial benefit during testing. Other apps, especially
less complex apps with little user state, will be likely to witness
some degree of improvement when state is accrued through user
interaction, but the results may differ.

There are other potential threats to the validity of the results. In
order to provide baseline data, we compare results from produc-
tion with those from a shadow baseline deployment. This gives us
experimental control, while ensuring that the shadow deployment
closely mirrors the production deployment. We carefully replicated
the exact steps in the shadow deployment that are taken in the
production deployment, and the same infrastructure was used for
both. This minimises threats to validity, but cannot remove them
entirely.

Since automated testing algorithms are generally ‘anytime algo-
rithms’ [46], an important experimental choice is the cut-off; the
point at which we stop the test process and report coverage and
fault revelation data achieved up to that point. We chose to conduct
experiments consisting of 2000 runs. We found this to be sufficient
to produce robust experimental results. We based this choice on our
observation that Sapienz cumulative coverage acquisition has fully
stabilized after 1500 runs. Indeed, this claim is borne out by the
coverage growth graphs presented in Section 5.1. As a result, we
believe that there is a very low probability that additional coverage
would be achieved after more than 2000 runs, thereby justifying
our choice of this is a cut-off.

A further source of potential threats to validity comes from the
nondeterministic nature of the underlying test exploration process.
To cater for this, we have repeated the experiments over 10 Alpha
builds between July and August 2023 and used standard inferential

(a) Unique failures found in one
particular build.

(b) Unique crashes found across
multiple builds

Figure 10: Number of unique failures found across Empty
State and Rich Statewithin SapienzAutomated Testing Runs.
Overall, more crashes were found in Rich State. Although,
sometimes Empty State found them faster.

statistical testing techniques to assess significance and effect size.
We believe this gives sufficiently robust results.

6 FUTUREWORK AND OPEN CHALLENGES
The problem of catering for test user state, especially in automated
test generation, is a relatively less well studied problem. As demon-
strated by the empirical results presented in Section 5, better han-
dling of test users in general, (and test user state in particular) can
have significant impact on coverage and fault revelation for highly
interactive software systems and platforms. There are three avenues

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Alshahwan et al.

for future work on which we would be delighted to collaborate with
the wider research community:
NewTest User State: We have used the simulation-based approach
to generate test user state, but there may be other approaches that
can generate rich novel content. One promising area might be the
use of Large Language Models [22], which are naturally generative,
and could be used to generate both content and user interactions
equally realistically, but without the full simulation overhead.
Failure Reproducibility: A failure may be the result, not only of
the state of an individual test user, but of an entire set of test users.
The existing literature on test failure reproducibility is promising
[15, 16, 31], but it does not yet fully tackle this problem. For in-
stance, simply cloning the test user and repeating the sequence
of actions that caused the crash may be insufficient, because the
crash may depend on the states of their friends. To better reproduce
such crashes, future systems need to reconstruct a sub-test-user
population that replicates the social network states from a previous
point where the crash occurred. We need more work on algorithms
for reproducibility in the presence of communities of interacting
test users. Such work will help to identify algorithms that identify
minimal needed conditions for reproducibility, thereby increasing
actionability, and reducing time for debugging and test resources
required for reproduction.
Simulation Algorithm: Automated test generation algorithms
have typically not considered the state of interacting test user pop-
ulations as an input to the algorithm, nor as an optimisation goal
[11, 37]. However, this may mean that such algorithms cannot fully
explore features that are not reflected by test users’ profiles, nor
those that require specific sequences of user interactions to have
taken place. We need more work on algorithms that are aware of
test user state and interaction history, and can tune automated test-
ing behaviour to optimise for it. We expect that such work could
have significant impact on testing highly interactive systems.

7 RELATEDWORK
Automated software test generation has a long history, dating
back to pioneering work on search based and symbolic execution
based test generation, for which there are many comprehensive
surveys [20, 27, 37]. As the field evolved and matured, the research
community’s ambition widened from simply covering control flow
in small unit size portions of code [18, 23, 26, 33], to larger system-
level test generation [25, 35]. At the system level, it becomes im-
portant to consider, not only the code directly under test, but the
backend systems with which this code communicates. Among the
back end systems of interest for test generation, stateful systems
(such as databases) present particular challenges [1, 41].

Automated testing has been well studied in the literature, while
platforms to support manual testing more effectively have been
less well studied. Both automated and manual testing need realistic
test data content [11], and this is all the more important when the
system under test involves complex user interactions involving this
content. For example, the data used to populate the database for a
test case have to be realistic in order that any failures detected by
the test will prove to be actionable by engineers. An unrealistic test
will not be actionable because it will not denote a failure that an

engineer can imagine occurring in production. These kinds of ‘un-
realistic’ test failures risk becoming regarded as false positives [10],
and consequently being de-prioritised, thereby wasting engineer
and test effort. Even for those few engineers brave enough to tackle
complex failures with unrealistic test data, the problem of debug-
ging test failures becomes far more time-consuming, and thereby
expensive, because of the lack of use case familiarity and domain
context.

Automatically generating realistic test cases also presents its own
challenges: it moves the problem from merely generating test data
that covers hard-to-cover paths (a challenge in itself), to that of
generating coverage-triggering test data such that it is additionally
representative of production data [9, 19, 21].

Test data realism is especially challenging where the test data
of interest concerns user data, for which privacy considerations
mean that these data cannot come from production observations.
This combination of the need to test at the system level, to gen-
erate realistic data for backend databases, and to do so in a fully
privacy-safe manner, naturally leads us to a Simulation Based Test-
ing approach [4, 5, 36, 43].

In this paper, we use simulation of user communities, and their
interaction to elevate coverage for testing of platform based systems
in which users can interact and thereby accrue state. Simulations
have been used to analyse a wide range of human activities, includ-
ing studies of economics [42], climate change [32], traffic safety
[8], and pandemic dynamics [2]. Simulation has also been used in
the context of social media. For example, Serrano et al. [40] sur-
vey 18 publications of rumour spreading simulation on Twitter,
while Luna and Pennock [34] discussed applications in emergency
management and Padilla et al. [39] analyse agent-based simulations.

The focus of the present paper is on simulation as a way to
test platform-based applications such as social media. In this con-
text, the simulation can be thought of as a digital twin [6]. One
potential challenge in using simulation in this way, is the lack of
reproducibility [7, 44] in the consequent impact on the Oracle Prob-
lem of Software Testing [14]. Not only is the correct behaviour of
the system unknown, it is inherently unknowable [4]. We sidestep
this oracle issue, by focusing purely on the Implicit Oracle [14];
behaviour that is known to be incorrect in any context, such as app
not responding, crashes, and exceptions (such as out of memory
errors).

8 CONCLUSION
This paper introduced the problem of test user state, with a partic-
ular emphasis on the rich states required to adequately cover and
reveal faults in large-scale complex systems involving interactions
between multiple users. The paper provides empirical evidence for
the importance of adequately modelling rich test user state in order
to achieve adequate system coverage and fault revelation. The pa-
per presented results on three popular apps (Facebook, Messenger
and Instagram) over two popular platforms (iOS and Android). The
results show that testing with this enriched state consistently and
convincingly outperforms the unenriched baseline in terms of both
coverage achieved and faults revealed. The paper also reports on
Meta’s deployment and uptake of the rich state Test Universe over
the period from November 2022 to August 2023.

Enhancing Testing at Meta with Rich-State Simulated Populations ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

REFERENCES
[1] Shadi Abdul Khalek and Sarfraz Khurshid. 2010. Automated SQL query generation

for systematic testing of database engines. In Proceedings of the 25th IEEE/ACM
International Conference on Automated Software Engineering. 329–332.

[2] David Adam. 2020. Special report: The simulations driving the world’s response
to COVID-19. Nature (April 2020).

[3] John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena Dulskyte, Inna
Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Ralf Laemmel,
Erik Meijer, Silvia Sapora, and Justin Spahr-Summers. 2020. WES: Agent-based
User Interaction Simulation on Real Infrastructure. In GI @ ICSE 2020, Shin
Yoo, Justyna Petke, Westley Weimer, and Bobby R. Bruce (Eds.). ACM, 276–284.
https://doi.org/doi:10.1145/3387940.3392089 Invited Keynote.

[4] John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena Dulskyte, Inna
Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Maria Lomeli, Erik
Meijer, Silvia Sapora, and Justin Spahr-Summers. 2021. Testing Web Enabled
Simulation at Scale Using Metamorphic Testing. In International Conference on
Software Engineering (ICSE) Software Engineering in Practice (SEIP) track. Virtual.

[5] John Ahlgren, Kinga Bojarczuk, Sophia Drossopoulou, Inna Dvortsova, Johann
George, Natalija Gucevska, Mark Harman, Maria Lomeli, Simon Lucas, Erik
Meijer, Steve Omohundro, Rubmary Rojas, Silvia Sapora, Jie M. Zhang, and Norm
Zhou. 2021. Facebook’s Cyber–Cyber and Cyber–Physical Digital Twins. In 25th
International Conference on Evaluation and Assessment in Software Engineering
(EASE 2021). Virtual.

[6] John Ahlgren, Kinga Bojarczuk, Sophia Drossopoulou, Inna Dvortsova, Johann
George, Natalija Gucevska, Mark Harman, Maria Lomeli, Simon Lucas, Erik
Meijer, Steve Omohundro, Rubmary Rojas, Silvia Sapora, Jie M. Zhang, and Norm
Zhou. 2021. Facebook’s Cyber–Cyber and Cyber–Physical Digital Twins (keynote
paper). In 25th International Conference on Evaluation and Assessment in Software
Engineering (EASE 2021). Virtual. Keynote talk given jointly by Inna Dvortsova
and Mark Harman.

[7] John Ahlgren, Kinga Bojarczuk, Sophia Drossopoulou, Inna Dvortsova, Johann
George, Natalija Gucevska, Mark Harman, Maria Lomeli, Simon M. Lucas, Erik
Meijer, Steve Omohundro, Rubmary Rojas, Silvia Sapora, Jie M. Zhang, and Norm
Zhou. 2021. Facebook’s Cyber–Cyber and Cyber–Physical Digital Twins. In
Proceedings of the Evaluation and Assessment in Software Engineering (EASE 2021)
Conference. to appear.

[8] Saif Al-Sultan, Moath M. Al-Doori, Ali H. Al-Bayatti, and Hussien Zedan. 2014.
A comprehensive survey on vehicular Ad Hoc network. Journal of Network and
Computer Applications 37 (2014), 380 – 392.

[9] Juan C Alonso, Alberto Martin-Lopez, Sergio Segura, Jose Maria Garcia, and
Antonio Ruiz-Cortes. 2022. ARTE: Automated Generation of Realistic Test Inputs
for Web APIs. IEEE Transactions on Software Engineering 49, 1 (2022), 348–363.

[10] Nadia Alshahwan, Xinbo Gao, Mark Harman, Yue Jia, Ke Mao, Alexander Mols,
Taijin Tei, and Ilya Zorin. 2018. Deploying Search Based Software Engineering
with Sapienz at Facebook (keynote paper). In 10𝑡ℎ International Symposium
on Search Based Software Engineering (SSBSE 2018). Montpellier, France, 3–45.
Springer LNCS 11036.

[11] Saswat Anand, Antonia Bertolino, Edmund Burke, Tsong Yueh Chen, John Clark,
Myra B. Cohen, Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, Jenny
Li, Phil McMinn, and Hong Zhu. 2013. An orchestrated survey of methodologies
for automated software test case generation. Journal of Systems and Software 86,
8 (August 2013), 1978–2001.

[12] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Auto-
mated concolic testing of smartphone apps. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering. ACM,
59.

[13] Andrea Arcuri and Lionel Briand. 2011. A Practical Guide for Using Statistical
Tests to Assess Randomized Algorithms in Software Engineering. In 33𝑟𝑑 Inter-
national Conference on Software Engineering (ICSE’11) (Waikiki, Honolulu, HI,
USA). ACM, New York, NY, USA, 1–10.

[14] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.
2015. The Oracle Problem in Software Testing: A Survey. IEEE Transactions on
Software Engineering 41, 5 (May 2015), 507–525.

[15] Jonathan Bell, Nikhil Sarda, and Gail Kaiser. 2013. Chronicler: Lightweight
recording to reproduce field failures. In 35th International Conference on Software
Engineering (ICSE). IEEE, 362–371.

[16] Francesco A Bianchi, Mauro Pezzè, and Valerio Terragni. 2017. Reproducing
concurrency failures from crash stacks. In Foundations of Software Engineering
(FSE). 705–716.

[17] Kinga Bojarczuk, Inna Dvortsova, Johann George, Natalija Gucevska, Mark Har-
man, Maria Lomeli, Simon Lucas, Erik Meijer, Rubmary Rojas, and Silvia Sapora.
2021. Measurement Challenges for Cyber Cyber Digital Twins: Experiences
from the Deployment of Facebook’s WW Simulation System (keynote paper).
In ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM ’21). Keynote talk given jointly by Maria Lomeli and Mark
Harman.

[18] Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. 1975. SELECT – a Formal
System for Testing and Debugging Programs by Symbolic Execution. In Interna-
tional Conference on Reliable Software (Los Angeles, California). ACM, New York,
NY, USA, 234–245.

[19] Mustafa Bozkurt and Mark Harman. 2012. Optimised Realistic Test Input Gen-
eration Using Web Services. In 4𝑡ℎ International Symposium on Search Based
Software Engineering (SSBSE 2012). Riva del Garda, Italy, 105–120.

[20] Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Software Testing:
Three Decades Later. Commun. ACM 56, 2 (Feb. 2013), 82–90.

[21] Dirk Draheim, John Grundy, John Hosking, Christof Lutteroth, and Gerald We-
ber. 2006. Realistic load testing of web applications. In Conference on Software
Maintenance and Reengineering (CSMR’06). IEEE, 11–pp.

[22] Angela Fan, Beliz Gokkaya, Mitya Lyubarskiy, Mark Harman, Shubho Sengupta,
Shin Yoo, and Jie Zhang. 2023. Large Language Models for Software Engineering:
Survey and Open Problems. In ICSE Future of Software Engineering (FoSE 2023.
To Appear.

[23] Gordon Fraser and Andreas Zeller. 2010. Mutation-driven generation of unit tests
and oracles. In International Symposium on Software Testing and Analysis (ISSTA
2010). ACM, Trento, Italy, 147–158. http://doi.acm.org/10.1145/1831708.1831728

[24] Dave Gray. 2015. Everything is a service. https://medium.com/the-connected-
company/everything-is-a-service-96e668fc1fa4

[25] Florian Gross, Gordon Fraser, and Andreas Zeller. 2012. Search-based system
testing: high coverage, no false alarms. In International Symposium on Software
Testing and Analysis (ISSTA 2012). 67–77.

[26] Mark Harman, Lin Hu, Robert Mark Hierons, JoachimWegener, Harmen Sthamer,
André Baresel, and Marc Roper. 2004. Testability Transformation. IEEE Transac-
tions on Software Engineering 30, 1 (Jan. 2004), 3–16.

[27] Mark Harman, Yue Jia, and Yuanyuan Zhang. 2015. Achievements, open problems
and challenges for search based software testing (keynote Paper). In 8𝑡ℎ IEEE
International Conference on Software Testing, Verification and Validation (ICST
2015). Graz, Austria.

[28] Mark Harman and Phil McMinn. 2007. A Theoretical and Empirical Analysis of
Evolutionary Testing and Hill Climbing for Structural Test Data Generation. In
International Symposium on Software Testing and Analysis (ISSTA’07). Association
for Computer Machinery, London, United Kingdom, 73 – 83.

[29] Mark Harman, Phil McMinn, Jerffeson Teixeira de Souza, and Shin Yoo. 2012.
Search Based Software Engineering: Techniques, Taxonomy, Tutorial. In Empiri-
cal software engineering and verification: LASER 2009-2010, Bertrand Meyer and
Martin Nordio (Eds.). Springer, 1–59. LNCS 7007.

[30] Mark Harman and Peter O’Hearn. 2018. From Start-ups to Scale-ups: Opportu-
nities and Open Problems for Static and Dynamic Program Analysis (keynote
paper). In 18𝑡ℎ IEEE International Working Conference on Source Code Analysis
and Manipulation (SCAM 2018). Madrid, Spain, 1–23.

[31] Wei Jin and Alessandro Orso. 2012. Bugredux: Reproducing field failures for in-
house debugging. In 34th international conference on software engineering (ICSE).
IEEE, 474–484.

[32] Gregory L Johnson, Clayton L Hanson, Stuart P Hardegree, and Edward B Ballard.
1996. Stochastic weather simulation: Overview and analysis of two commonly
used models. Journal of Applied Meteorology 35, 10 (1996), 1878–1896.

[33] James Cornelius King. 1969. A Program Verifier. Ph. D. Dissertation. Carnegie
Mellon University.

[34] Sergio Luna and Michael J Pennock. 2018. Social media applications and emer-
gency management: A literature review and research agenda. International
journal of disaster risk reduction 28 (2018), 565–577.

[35] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective Automated
Testing for Android Applications. In International Symposium on Software Testing
and Analysis (ISSTA 2016). 94–105.

[36] KeMao, Timotej Kapus, Lambros Petrou, Ákos Hajdu,MatteoMarescotti, Andreas
Löscher, Mark Harman, and Dino Distefano. 2022. FAUSTA: Scaling Dynamic
Analysis with Traffic Generation at WhatsApp. In 15th IEEE Conference on Soft-
ware Testing, Verification and Validation, ICST 2022, Valencia, Spain, April 4-14,
2022. IEEE, 267–278. https://doi.org/10.1109/ICST53961.2022.00036

[37] Phil McMinn. 2004. Search-based Software Test Data Generation: A Survey.
Software Testing, Verification and Reliability 14, 2 (June 2004), 105–156.

[38] Geoffrey Neumann, Mark Harman, and Simon Poulding. 2015. Transformed
Vargha-Delaney effect size. In Search-Based Software Engineering: 7th Interna-
tional Symposium, SSBSE 2015, Bergamo, Italy, September 5-7, 2015, Proceedings 7.
Springer, 318–324.

[39] Jose J Padilla, Saikou Y Diallo, Hamdi Kavak, Olcay Sahin, and Brit Nicholson.
2014. Leveraging social media data in agent-based simulations. In Proceedings of
the 2014 Annual Simulation Symposium. 1–8.

[40] Emilio Serrano, Carlos A. Iglesias, and Mercedes Garijo. 2015. A survey of
twitter rumor spreading simulations. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
9329 (2015), 113–122. https://doi.org/10.1007/978-3-319-24069-5_11

[41] Kunal Taneja, Yi Zhang, and Tao Xie. 2010. MODA: Automated test generation
for database applications via mock objects. In Proceedings of the 25th IEEE/ACM

https://doi.org/doi:10.1145/3387940.3392089
http://doi.acm.org/10.1145/1831708.1831728
https://medium.com/the-connected-company/everything-is-a-service-96e668fc1fa4
https://medium.com/the-connected-company/everything-is-a-service-96e668fc1fa4
https://doi.org/10.1109/ICST53961.2022.00036
https://doi.org/10.1007/978-3-319-24069-5_11

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Alshahwan et al.

International Conference on Automated Software Engineering. 289–292.
[42] Sergio Terzi and Sergio Cavalieri. 2004. Simulation in the supply chain context:

a survey. Computers in Industry 53, 1 (2004), 3–16.
[43] Shreshth Tuli, Kinga Bojarczuk, Natalija Gucevska, Mark Harman, Xiao-YuWang,

and Graham Wright. 2023. Simulation-Driven Automated End-to-End Test and
Oracle Inference. In 45th IEEE/ACM International Conference on Software Engi-
neering: Software Engineering in Practice, SEIP@ICSE 2023, Melbourne, Australia,
May 14-20, 2023. IEEE, 122–133.

[44] Andreas Weiler, Harry Schilling, Lukas Kircher, and Michael Grossniklaus. 2019.
Towards reproducible research of event detection techniques for Twitter. In 2019
6th Swiss Conference on Data Science (SDS). IEEE, 69–74.

[45] Andreas Zeller. 2007. Beautiful Debugging. In Beautiful Code, Andy Oram and
Greg Wilson (Eds.). O’Reilly & Associates, Inc., Sebastopol, CA 95472, 463–476.
chapter 28.

[46] Shlomo Zilberstein. 1996. Using anytime algorithms in intelligent systems. AI
magazine 17, 3 (1996), 73–73.

	Abstract
	1 Introduction
	2 Populations of test users approach
	2.1 Test Users
	2.2 Determining population dynamics
	2.3 Architecture and scale

	3 Test universe deployment
	3.1 Evolving population
	3.2 Adoption Process

	4 Sapienz Rich State Deployment
	5 Evaluation
	5.1 Coverage
	5.2 Failures
	5.3 Limitations and Threats To Validity

	6 Future work and open challenges
	7 Related work
	8 Conclusion
	References

