
Observation-based unit test generation at Meta
Nadia Alshahwan∗

Mark Harman
Alexandru Marginean

Rotem Tal
Eddy Wang

Meta Platforms Inc.,
Menlo Park, California, USA

ABSTRACT
TestGen automatically generates unit tests, carved from serialized
observations of complex objects, observed during app execution.
We describe the development and deployment of TestGen at Meta.
In particular, we focus on the scalability challenges overcome dur-
ing development in order to deploy observation-based test carving
at scale in industry. So far, TestGen has landed 518 tests into pro-
duction, which have been executed 9,617,349 times in continuous
integration, finding 5,702 faults. Meta is currently in the process of
more widespread deployment. Our evaluation reveals that, when
carving its observations from 4,361 reliable end-to-end tests, Test-
Gen was able to generate tests for at least 86% of the classes covered
by end-to-end tests. Testing on 16 Kotlin Instagram app-launch-
blocking tasks demonstrated that the TestGen tests would have
trapped 13 of these before they became launch blocking.
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1 INTRODUCTION
This paper describes our experience developing and deploying
observation-based TestGen (‘TestGen-obs’ or ‘TestGen’ for short1).
TestGen is a tool that automatically generates unit and regression
tests from scratch using scalable serialized observations of salient
objects created during app executions; the tests are generated in
Kotlin in order to test Meta’s Java and Kotlin code bases.

∗Author order is alphabetical. The corresponding author is Mark Harman.
1We also have an entirely separate tool, called ‘TestGen-LLM’ [3], which extends
existing human-written test cases using Assured LLM-Based Software Engineering [6].
By contrast, TestGen-obs generates new tests from scratch using observations.
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Our intention with TestGen is not to fully replace human-written
unit and integration testing. Nevertheless, at the scale Meta operates
(hundreds of millions of lines of code and over 3 billion users) it is
infeasible to rely solely on human engineering effort for test case
design.

Therefore, we have embarked on an automation program for
over a decade, using both well-established and novel software en-
gineering research to deploy automated test design at scale. This
process started with the deployment of end-to-end automated test
design tools such as Sapienz [4], and static analysis tools such
as Infer [16]. We went on to deploy automated simulation-based
test generation for higher level testing of whole communities of
inter-acting users [1, 19, 40].

This previous work covered the system level testing require-
ments such as end-to-end and social testing. More recently, in order
to shift testing leftwards in the development process [5], Meta has
been targeting unit test design automation. Consequently, we are
now tackling the problem of automatic generation of integration
and unit tests, hence TestGen.

A TestGen test is a machine-generated unit test that captures
the current behavior of the function under test, and thus it is capa-
ble of detecting regressions. The tool works by first automatically
instrumenting the app to record runtime values of functions for
which we want to generate unit tests. It records current object in-
stances, return values and parameter values. We call these recorded
runtime values ‘observations’. TestGen automatically saves the ob-
servations when the instrumented version of the app executes the
target function under test. This can be done either by running the
app manually or using existing app execution tooling, such as Jest
End-to-End (E2E) testing or the Sapienz test infrastructure, which
has been deployed since 2018 [4, 32].

A TestGen test asserts that, when called on the observed object
instance with the observed parameter(s), the function under test
produces the expected previously-observed return value. For the
case of functions without a return, TestGen tests assert that the
function executes without exception.

TestGen was originally implemented to generate unit tests for
Meta’s Instagram app, so the results we report in this paper are
based on TestGen’s deployment for Instagram. However, there is
nothing specific to Instagram in how TestGen operates and it is
now being deployed across other Meta platforms and products.
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TestGen tests are regression tests: they assert that the method
under test in a diff2 behaves the same as it did when executed on the
current main branch (called ‘master’). This has 2 primary benefits:

(1) It fully automates unit test generation, without the need for
human intervention to define the assertions (there is no need
for an oracle [9]).

(2) It produces realistic test cases, thereby avoiding false posi-
tives. The tested values can occur at runtime because they
have been observed in a previous execution of the app under
exactly the same circumstances as those tested.

The primary contributions of this paper are:
(1) A scalable industrial-strength observation-based unit test

generation system: TestGen.
(2) A description of the principal novel technical features re-

quired to achieve sufficient scalability that allowed us to
deploy observation-based testing at Meta: depth-aware seri-
alization/deserialization, and an observation–aware Android
memory manager.

(3) A report of our experience of TestGen deployment, where
it has thus far revealed 5,702 faults, and demonstrated its
potential to trap at least 81% of the important issues that
might otherwise impact the launch of new versions of the
Instagram app.

2 META’S OBSERVATION-BASED TESTGEN
SYSTEM

Figure 1: The Architecture of TestGen. TestGen instruments
the app source code to record observations at runtime using
the ObservationLogger. The TestGenerator uses the obser-
vations and the app source code to produce fully-runnable
unit tests. Finally, the TestPublisher integrates with the build
system and publishes a diff with the tests.

Given a method under test, foo, on an object of class A, TestGen
produces (potentially many) unit tests, each of which reflects a
2At Meta, a pull request is known as a ‘diff’ (short for ‘differential’), following the
Mercurial repository management nomenclature.

single execution trace and asserts that: When called on an observed
object instance of type A, with the parameters that TestGen has
observed in a previous execution, foo returns the same value as
that observed in this previous app execution. This is a form of Test
Carving [20], as we explain in more detail in the Related Work
section (Section 4).

TestGen designs its tests, based on observations from previous
app executions. It collects these observations by building a specially
instrumented version of the app. The instrumented app deploys
unobtrusive and fast probes that collect the serialized values subse-
quently used to build tests. The instrumentation logic does not affect
the functional behavior of the app. It simply collects observations
silently in the background. It is also designed to be lightweight, so
as not to unduly affect app execution time, which might otherwise
influence test behavior.

The instrumented app dumps observations into a data store.
Currently, we use the standard Android app DB as the data store
that we optimized for a highly concurrent environment with a high
volume of writes. Because the executions are real E2E executions of
the whole app, the values observed are highly realistic and faithfully
reflect those that could occur in production.

Figure 1 depicts the architecture of TestGen. The source code of
the app is compiled with the ‘Instrumenter’ compiler plugin that
produces the ‘Instrumented APK’. At runtime, the ‘Instrumented
APK’ calls the ‘ObservationLogger’ to record observations. The
observations together with the initial app source code are compiled
with the ‘Test Generator’ plugin that constructs the tests, using the
deserialized json representation of the observations. Finally, the
‘Test Publisher’ constructs the build system files and dependencies
for the test cases, running them 5 times to confirm they are not
flaky. For all tests that pass and are not flaky the TestPublisher
produces a source control revision (i.e., a ‘diff’) that can be landed.
Once this happens, Meta’s Continuous Integration (CI) platform
automatically runs these tests, both continuously and also every
time an engineer submits a diff.
Test Maintenance: Like any other Android unit test deployed at
Meta, TestGen tests will block diffs from landing when they fail. It
is thus important that signals that TestGen tests provide are highly
actionable and that test maintenance does not become a burden for
Meta engineers. It is also important that TestGen provides automatic
ways to unblock engineers when a test fails. TestGen relies on the
assertion failure message to provide actionable information on how
to unblock when a test fails. The assertion failure exactly describes
the difference that caused the failure:
This i s an a u t o m a t i c a l l y g e n e r a t e d u n i t t e s t from TestGen .
TestGen e q u a l i t y a s s e r t i o n f a i l e d ! When comparing the return from
the method under t e s t with the e x p e c t a t i o n for the f i e l d `X` o f
the c l a s s `C` we saw the v a l u e `true` while we e x p e c t e d the
v a l u e ` fa l se ` . The e x p e c t e d return for th i s t e s t i s i n the
r e s o u r c e f i l e `path / t o / r e s o u r c e ` a t l i n e : x column : y .
I f th i s change i s not e x p e c t e d a f t e r the change i n your d i f f , you
can debug th i s t e s t with the debugger i n Android S t u d i o

From this point, the diff author has the following options:
• If the test failure is not expected after the change, the diff

author will debug their code to fix the issue.
• If the test failure is the result of an expected change in behav-

ior then TestGen provides the following automated single-
click resolutions:
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– Update the assertion to reflect the new behavior.
– Call TestGen again to regenerate the test (if the change is

more fundamental than a simple assertion failure).
– Delete the test if the diff author deems it to be no longer

needed.
The rest of this section describes the implementation of the main

TestGen components.

2.1 Instrumenter Plugin
The Instrumenters are distinct compiler plugins that we imple-
mented for Java and Kotlin. In order to collect observations at
runtime, an ‘Instrumenter’ adds extra code into the app at compile
time, to explicitly log the observations.

The Kotlin and Java compilers use an Intermediate Representa-
tion (IR). The TestGen Instrumenter plugin modifies the IR of the
Kotlin/Java code rather than the source code. The compilers gener-
ate standard bytecode from their IR representations. The compiler-
generated bytecode thereby includes the instrumentation logic.
The Instrumented bytecode makes calls to the ‘ObservationLog-
ger’ (discussed in subsection 2.2) to do the heavy lifting of actually
logging the observations. Figure 2 shows an example of this IR
instrumentation added for a Kotlin function.

The Instrumenter constructs an instance of the ObservationLog-
ger at line 2 in Figure 2, the first parameter of which specifies that
observations should be saved to the app DB (‘APP_DB’). The sec-
ond parameter specifies that a random seed should not be used in
this instance3. The third parameter specifies that the observations
should be logged on a different thread (to improve scalability).

The Instrumenter also adds instrumentation code that, when
executed, will record observations for the:
• Current Object Instance: The instrumenter adds a call to

logObs at the start of the method body, to log the value of the
current object instance. Line 3 in Figure 2 shows an example.
• Method Parameters: The instrumenter adds calls to logObs

after the logging call for current object instance. It will add a
call for each function parameter in turn. Lines 4–5 in Figure 2
show two such examples.
• Method Returns: At each return statement, the Instru-

menter adds a call to the logObs as a meaning–preserving
transformation. It creates a temporary variable, in which
it holds the returned value, then passes this to logObs, and
finally returns it. Lines 8–17 in Figure 2 show an example of
this. The block that appears between lines 8–15 is the way
in which TestGen is able to log returns with the semantics-
preserving transformation.

Although it is possible to instrument the whole app, it can be
very time consuming to completely rebuild a whole app, such as
Instagram [26]. As a result, TestGen limits the observation logging
to the set of files for which tests must be generated.

2.2 ObservationLogger
To tackle the observation logging scalability challenge, we introduce
DASAD (Depth-Aware Serialization And Deserialization). DASAD

3For reproducability of the runs, TestGen also allows the use of a predefined random
seed.

introduces depth-aware serialization/deserialization together with
a pointer-based observation sharing mechanism that uses a pointer-
aware Android memory management layer. This scales the collec-
tion of observations, their serialization and serialization protest
generation. With DASAD observations can be made from the app,
while running, without and affecting its performance.

By contrast, a simple reflection-based approach to fully seri-
alizing each relevant object used by an app would not scale: the
instrumented app would soon stop responding (i.e., AnR4) since
such a simple approach would end up serializing large amounts of
entire Android heap store. Furthermore, the space required would
also make this infeasible. For example, at the scale of the Insta-
gram App, which is characteristic of the larger of the commercially
available apps, it takes hours to serialize a single object instance
without DASAD, which would clearly impact the performance of
the app under test, rendering any attempt at observation-based test
generation approach infeasible.

In the remainder of this section, we explain how DASAD ad-
dresses the two scalability challenges:

(1) Serializing large complex objects,
(2) Supporting concurrent runtime environments.

2.2.1 Serializing Large And Complex Objects. In order to serialize
large objects, DASAD uses a combination of depth awareness and
a pointer-based observation representation approach, as explained
below.
Depth-Aware Serialization: Fortunately, for the TestGen use
case, it is usually unnecessary to record the entire object for the
purpose of generating tests. Instead, a test case may only need
to retrieve values observed in nested objects up to a given depth.
This may also generalize to many other use cases, where scalability
can be achieved in a similar depth-aware manner, but here we
focus exclusively on the TestGen use case. To illustrate how depth
awareness can help tackle scale for the test generation use case,
consider the following Java classes:

1 c l a s s Foo {A a ; }
2 c l a s s A { B b ; }
3 c l a s s B { C c ; }

Suppose we want to serialize an instance of Foo. A full serializa-
tion will recursively contain all 3 fields: a, b, and c. If we serialize
with a depth limit of 1, then the serialization will contain only the
field a, in which field b will be null. Depth-aware serialization sim-
ply replaces all fields that are nested deeper than the given depth
with null.
Pointer-Aware Serialization in a Android Memory Manager:
Even with the depth-aware serialization, the number of objects
produced is too numerous and large for it to be feasible to record
them all. The core intuition that we used to tackle this issue is
that most of the objects are sharable by an E2E run (consider, for
example, the Android App context, used in many functions with an
identical instance). To avoid duplication we constructed a memory
management system on top of Android that the serialization uses
to determine when objects are the identical, and can thus be shared
in memory.

Algorithm 1 describes DASAD serialisation. The serialization-
function serialize_object receives as input an object to be serialized.
4https://developer.android.com/topic/performance/vitals/anr

https://developer.android.com/topic/performance/vitals/anr
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1 fun < e l i d e d method name >( s e s s i o n : S e s s i o n ? , i n t e n t : I n t e n t ? ) : Boolean {
2 val tmp0_obs: ObservationLogger = ObservationLogger(logTo = "APP_DB", randomSeed = null, logOnDifferentThread = true)
3 tmp0_obs.logObs</* null */>(observedValue = <this>, lNr = -1L, colNr = -1L, fileName = "file/path/Class.kt", obsType = "CURRENT_OBJ_INST")
4 tmp0_obs.logObs</* null */>(observedValue = session, lNr = 142L, colNr = 31L, fileName = "file/path/Class.kt", obsType = "PARAMETER")
5 tmp0_obs.logObs</* null */>(observedValue = intent, lNr = 142L, colNr = 54L, fileName = "file/path/Class.kt", obsType = "PARAMETER")
6 var i n t e n t : I n t e n t ? = i n t e n t
7 . . .
8 { / / BLOCK
9 val tmp0: Boolean = { / / BLOCK

10 v a l t m p 2 _ e l v i s _ l h s : Boolean ? = < this >. < get − i s T e s t e d C o n d i t i o n > ( )
11 when {
12 EQEQ ( arg0 = t m p 2 _ e l v i s _ l h s , a rg1 = null ) −> f a l s e
13 e l se −> t m p 2 _ e l v i s _ l h s
14 }
15 }
16 tmp0_obs.logObs</* null */>(observedValue = tmp0, lNr = 153L, colNr = 4L, fileName = "/file/path/Class.kt", obsType = "RETURN")
17 return tmp0
18 }
19 }

Figure 2: Kotlin Intermediate Representation (IR) of an example instrumentation. tmp0_obs is an instance of the observation
logger. logObs is its method that logs the observations to the app DB. The grayed code is code that the instrumenter has added.

The variable isFirstSerialization keeps track whether or not we are
serializing the current object for the first time: line 17 gets the
object id and checks whether it is in seenObjects, a hash set of seen
objects ids. The object id is a hash over the object state, such that
it uniquely identifies an object. If it is the first serialization, lines
18 and 19 set the value of isFirstSerialization to true and add it into
the ‘seenObject’. We do this in a syncronized block since this code
will be called in a highly concurrent environment. If the object
was previously serialized, TestGen simply marks its serialization as
POINTS_TO_OBJECT_ID and stops the serialization process.

At deserialization time, the algorithm looks for a full serialization
for the same object id to reconstruct it. If the object is encountered
for the first time, we proceed with each serialization by recursively
calling the serialize_object function on each of its fields. The vari-
able objSerialization is a string that contains the json representation
of the serialized object.

TestGen has to handle pointers in deserialization. TestGen ap-
plies Algorithm 2 to instantiate pointers, prior to the test’s exe-
cution. In Algorithm 2, the entry point is the function get_full_
serialization_map (line 41). This function is applied across all ob-
servations, for all tests generated from the same E2E run. It returns
a set of all full initializations across all these observations (this is
recursive, becuase each field in the recursive traversal of an object
can contain other objects that are either full serializations or pointer
serializations). The first step, is to construct the set of pointerKeys
(lines 42–44) that contains all the keys of serializations that are
pointers.

Lines 45-47 construct the list of all full serializations that have
at least one pointer serialization. Having this list will later allow
us to replace all pointer serializations, such that we obtain ob-
servations containing only full serialization (as the test runtime
requires). Because of the recursive nature of Algorithm 1, obser-
vations might still contain pointer serializations for various fields

Algorithm 1 Pointer-Aware Object Serialization: the algorithm
that TestGen uses to log observations at scale: it keeps track of
already serialized objects to avoid multiple serializations of the
same objects.
1: function is_primitive(𝑜𝑏 𝑗𝑒𝑐𝑡 )
2: ⊲ This function return true if the object is primitive and false otherwise.
3:
4: function primitive_serialization(𝑜𝑏 𝑗𝑒𝑐𝑡 )
5: ⊲ This function dumps the representation of a primitive object.
6:
7: function append_field_serialization(𝑜𝑏 𝑗𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝑓 𝑁𝑎𝑚𝑒 ,𝑓 𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛)
8: ⊲ This function appends to the json representation of the object (objSerialization) with the

serialization of the field named fName: fSerialization.
9:

10: 𝑠𝑒𝑒𝑛𝑂𝑏 𝑗𝑒𝑐𝑡𝑠 ← HashSet<String>
11:
12: function serialize_object(𝑜𝑏 𝑗𝑒𝑐𝑡 )
13: if is_primitive(𝑜𝑏 𝑗𝑒𝑐𝑡 ) then
14: return primitive_serialization(𝑜𝑏 𝑗𝑒𝑐𝑡 )
15: 𝑖𝑠𝐹𝑖𝑟𝑠𝑡𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ← false
16: synchronized {
17: if 𝑜𝑏 𝑗𝑒𝑐𝑡 .get_id() ∉ 𝑠𝑒𝑒𝑛𝑂𝑏 𝑗𝑒𝑐𝑡𝑠 then
18: 𝑖𝑠𝐹𝑖𝑟𝑠𝑡𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ← true
19: 𝑠𝑒𝑒𝑛𝑂𝑏 𝑗𝑒𝑐𝑡𝑠 .add(𝑜𝑏 𝑗𝑒𝑐𝑡 .get_id())
20: }
21: if !𝑖𝑠𝐹𝑖𝑟𝑠𝑡𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 then
22: return "POINTS_TO_" + 𝑜𝑏 𝑗𝑒𝑐𝑡 .get_id()
23: 𝑜𝑏 𝑗𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ← ””
24: for each 𝑓 𝑖𝑒𝑙𝑑 in 𝑜𝑏 𝑗𝑒𝑐𝑡 .get_fields() do
25: 𝑜𝑏 𝑗𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛← append_field_serialization (𝑜𝑏 𝑗𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝑓 𝑖𝑒𝑙𝑑 .name(),

serialize_object(𝑓 𝑖𝑒𝑙𝑑))
26: return 𝑜𝑏 𝑗𝑆𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

in their recursive traversal. This is what the rest of the logic in
get_full_serialization_map tackles.

Lines 48-49 call the method init_serialization. This function
parses each fullSerialization in turn and replaces all its pointer
serializations (e.g., across its fields) with full serializations. The
underlying data structure for fullSerialization preserves the pointer
relationships after replacement. That is, if we replace a field that
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is a pointer serialization P2 in a full serialization S1 with its cor-
responding full serialization S2, the field will keep pointing to the
full serialization S2 rather than copying it. Therefore, the algorithm
need only parse this list once: further initializations will include
the previously processed full serializations.

fullSerializations might contain fields that are still stored as
pointer serializations until lines 48-49 finish execution. The algo-
rithm replaces all pointer serializations in init_serialization across
all the observations and these replacements are also reflected in
earlier replacements (when a particular observation might not be
fully initialized). Therefore, the algorithm guarantees that, from
line 50, there will be no pointer serializations remaining.

Additionally, init_serialization does not process deeper than the
MAX_DEPTH limit because those values would be unneeded in any
case.

At this point, the full_serializations will contain recursion (since
data types can be recursive). Additionally, although we restrict
observations to MAX_DEPTH with the depth-aware serialization,
init_serialization might overshoot this depth, because of initializing
the pointer serialization. For example, suppose the app has a nested
class structure like this: A { b: B {c: C {d: D { ...}} }}.
Suppose we have an object, ObjA, of type A that has pointers to
nested elements. These nested elements may become instantiated,
with the effect that the effective depth for ObjA will be as deep as
its nesting, irrespective of the maximum depth to which DASAD
serializes. In this way, MAX_DEPTH, is merely the maximum depth
to which serialization will process in a single traversal, but not the
maximum depth that will be achieved overall.

fullSerializations is a dictionary with values that can be pointers
(line 16 in 2 adds these pointers). Thus, any processing of these
pointers will affect their values in all the fullSerializations in which
they appear. Since next we want to remove elements that bypass
MAX_DEPTH, we first need to deep copy (in line 50). For exam-
ple, suppose a full serialization, A, with pointer P is already at
MAX_DEPTH - 1. In this case, we want only depth 1 in pointer P.
But P can also be in another full serialization, B, where it is at depth
1. Here we need to keep P with MAX_DEPTH - 1. The deep copy
allows us to do this by making each occurrence of P in fullSeri-
alizations a distinct value, rather than then pointers to the same
value.

The final stage of get_full_serialization_map removes recursion
and keeps elements only up to MAX_DEPTH in the call to re-
move_rec at lines 51–52. remove_rec is a recursive function that
passes each full serialization. When it reaches MAX_DEPTH, it sim-
ply removes the field values. To remove recursion, it keeps track
(in seen) of the objects encountered when parsing a top level full
serialization. If the recursive traversal reaches an already seen ob-
ject, we must be in a recursive case and thus replace the value with
a ‘recursion’ annotation. The outputs of get_full_serialization_map
are then simply used as a string replacement over the set of all
observations, to obtain the set of all fully initialized observations
that the test cases can use at runtime.

2.2.2 Support For A Very High Concurrent Runtime Environment.
Many observations will be serialized and logged concurrently. This
leads to a third scalability challenge for the ‘ObservationLogger’:
support for highly concurrent writes to an external storage medium.

Algorithm 2 Pointer-Aware Object Deserialization: the algo-
rithm that instantiates observations prior to generating tests. The
pointer-aware serialization leaves pointers in observations as an
optimizations. Before the test uses the observations, they need to be
fully-initialized such that the objects can be constructed at runtime.
1: function pointer_serializations(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)
2: ⊲ This function returns all the keys of the pointer serialization.
3:
4: function full_serializations(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)
5: ⊲ This function returns all the full serializations .
6:
7: function init_serialization(𝑝 , 𝑘𝑒𝑦, 𝑜𝑏𝑠 , 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 , 𝑠𝑒𝑒𝑛, 𝑑𝑒𝑝𝑡ℎ)
8: if 𝑑𝑒𝑝𝑡ℎ > 𝑀𝐴𝑋_𝐷𝐸𝑃𝑇𝐻 then return
9: if is_instance(𝑜𝑏𝑠 , 𝑙𝑖𝑠𝑡 ) then

10: for 𝑖 , 𝑖𝑡 in enumerate(𝑜𝑏𝑠) do
11: init_serialization(𝑜𝑏𝑠, 𝑖, 𝑖𝑡, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑, 𝑠𝑒𝑒𝑛,𝑑𝑒𝑝𝑡ℎ + 1)
12: if !is_instance(𝑜𝑏𝑠 , 𝑑𝑖𝑐𝑡 ) then return
13: ℎ𝑎𝑠ℎ ← compute_hash_key(𝑜𝑏𝑠)
14: if ℎ𝑎𝑠ℎ ∈ 𝑠𝑒𝑒𝑛_𝑘𝑒𝑦𝑠 then return
15: if is_pointer_serialization(𝑜𝑏𝑠) then
16: 𝑝 [𝑘𝑒𝑦 ] ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 [ℎ𝑎𝑠ℎ]
17: 𝑠𝑒𝑒𝑛𝐾𝑒𝑦𝑠 ← 𝑠𝑒𝑒𝑛𝐾𝑒𝑦𝑠 |ℎ𝑎𝑠ℎ
18: for 𝑘 , 𝑣𝑎𝑙 ∈ 𝑜𝑏𝑠.𝑖𝑡𝑒𝑚𝑠 do
19: if is_instance(𝑣𝑎𝑙 , 𝑑𝑖𝑐𝑡 ) then
20: init_serialization(𝑜𝑏𝑠, 𝑘, 𝑣𝑎𝑙, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑, 𝑠𝑒𝑒𝑛,𝑑𝑒𝑝𝑡ℎ + 1)
21: if is_instance(𝑣𝑎𝑙 , 𝑙𝑖𝑠𝑡 ) then
22: for 𝑖 , 𝑖𝑡 ∈ enumerate(𝑣𝑎𝑙 ) do
23: init_serialization(𝑣𝑎𝑙, 𝑖, 𝑖𝑡, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑, 𝑠𝑒𝑒𝑛,𝑑𝑒𝑝𝑡ℎ + 1)
24:
25: function remove_rec(𝑝 , 𝑘𝑒𝑦, 𝑜𝑏𝑠 , 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 , 𝑠𝑒𝑒𝑛, 𝑑𝑒𝑝𝑡ℎ)
26: if 𝑑𝑒𝑝𝑡ℎ > 𝑀𝐴𝑋_𝐷𝐸𝑃𝑇𝐻 then
27: if is_instance(𝑜𝑏𝑠 , 𝑑𝑖𝑐𝑡 ) then 𝑝𝑎𝑟𝑒𝑛𝑡 [𝑘𝑒𝑦 ] ← {}
28: else if is_instance(𝑜𝑏𝑠 , 𝑙𝑖𝑠𝑡 ) then 𝑝𝑎𝑟𝑒𝑛𝑡 [𝑘𝑒𝑦 ] ← []
29: if is_instance(𝑜𝑏𝑠 , 𝑙𝑖𝑠𝑡 ) then
30: for 𝑖 , 𝑖𝑡 in enumerate(𝑜𝑏𝑠) do
31: remove_rec(𝑜𝑏𝑠, 𝑖, 𝑖𝑡, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑, 𝑠𝑒𝑒𝑛,𝑑𝑒𝑝𝑡ℎ + 1)
32: if !is_instance(𝑜𝑏𝑠 , 𝑑𝑖𝑐𝑡 ) then return
33: ℎ𝑎𝑠ℎ𝐾𝑒𝑦 ← compute_hash_key(𝑜𝑏𝑠)
34: if ℎ𝑎𝑠ℎ𝐾𝑒𝑦 ∈ 𝑠𝑒𝑒𝑛 then
35: 𝑝 [𝑘𝑒𝑦 ] = 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒_𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛 (𝑝 [𝑘𝑒𝑦 ] )
36: return
37: 𝑠𝑒𝑒𝑛𝐾𝑒𝑦𝑠 ← 𝑠𝑒𝑒𝑛 |ℎ𝑎𝑠ℎ𝐾𝑒𝑦
38: for 𝑘 , 𝑣𝑎𝑙 ∈ 𝑜𝑏𝑠.𝑖𝑡𝑒𝑚𝑠 do
39: remove_rec(𝑜𝑏𝑠, 𝑘, 𝑣𝑎𝑙, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑, 𝑠𝑒𝑒𝑛,𝑑𝑒𝑝𝑡ℎ + 1)
40:
41: function get_full_serialization_map(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠)
42: 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐾𝑒𝑦𝑠 ← 𝑠𝑒𝑡 ( )
43: for 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 in 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 do
44: 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐾𝑒𝑦𝑠 .update(pointer_serializations(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛))
45: 𝑓 𝑢𝑙𝑙𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 ← {}
46: for 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 in 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 do
47: 𝑓 𝑢𝑙𝑙𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 .update(full_serialization (𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛))
48: for 𝑠 in 𝑓 𝑢𝑙𝑙𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 do
49: init_serialization(∅, ∅, 𝑠, 𝑓 𝑢𝑙𝑙𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠, 𝑠𝑒𝑡 ( ), 0)
50: 𝑓 𝑢𝑙𝑙𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 ← deep_copy(𝑓 𝑢𝑙𝑙𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠)
51: for 𝑠 in 𝑓 𝑢𝑙𝑙𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 do
52: remove_rec(∅, ∅, 𝑠, 𝑓 𝑢𝑙𝑙𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠, 𝑠𝑒𝑡 ( ), 0)
53: return 𝑓 𝑢𝑙𝑙𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠

To write the observations to an external storage for later processing,
we use the Android app DB, in which we store them as soon as
the ‘ObservationLogger’ serializes this. To tackle the scalability
challenge of this highly concurrent writing, we:

(1) Execute all the serialization logic and the saving of the ob-
servations to the App DB on different background threads,
that are not prioritized by the OS.

(2) Optimise the Android app DB for multiple concurrent writes.
For this, we enabled write ahead logging5 and set synchro-
nous to off6

5https://www.sqlite.org/wal.html
6https://www.sqlite.org/pragma.html#pragma_synchronous

https://www.sqlite.org/wal.html
https://www.sqlite.org/pragma.html#pragma_synchronous
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Once the observations are written to the app DB, the next steps of
TestGen read them from the DB and store them as resources files, in
json format, together with the generated test case source code.The
generated test case thus consists of a Kotlin unit test that deserializes
the serialized versions of objects stored in the resources files, and
uses these as the parameters to be passed to the function under test.
It makes assertions about the returned values from those calls.

2.3 Test Generator
The test generator reads previously stored observations, and gener-
ates tests for methods decorated with @GenerateTestCases. The
test generator is also implemented as a compiler plugin.

The TestGenerator workflow consists of three top level steps:
Traverse code under test: Traverse the compiler’s Intermediate
Representation (IR) of the method under test, using compiler spe-
cific APIs (the specific API depends on whether the TestGenerator is
traversing Java and Kotlin). In this traversal, a ‘store’ is constructed.
The store contains static information required to produce the test
cases, such as containing class, containing package, method return
type, and the imports that the class under test requires (since many
of them might be used in the unit test)
Compute information required to generate tests: A TestData-
Generator component to TestGen computes test data for each of
the store objects collected in the traversal. The TestDataGenera-
tor has multiple implementations, thereby allowing for different
test data generation strategies. Currently, we have implemented
the observation-based test generation, as described in this paper.
However, we purposely left this component generic, so that other
strategies could be incorporated (see Section 5).
Write out test cases: The TestWriter component produces fully
executable unit tests, written in Kotlin7. An example of a single test
case generated by TestGen can be found in Figure 3. As can be seen,
the format of the test is extremely simple, and human-readable,
and the code that expresses the test case uses standard unit testing
formats. All generated tests include a ‘kill switch’, which allows us
to globally switch off all generated test cases in case of problems

Placeholders (starting with $) are instantiated using static anal-
ysis. The tests assert that, when the test is executed with respect
to a previous observation of the same method, in same object state
(i.e., current object instance; lines 15–19), and with the same inputs
(i.e., parameters; lines 20–27), then the method under test produces
the same result (i.e., the same returned value) as the one previously
observed (lines 28–36).

When the method under test has no return, the template changes
slightly. It will only call the method under test, without adding an
assertion. This makes the tests less valuable than the tests that
assert something about a returned value, but they still bring value
by asserting that the method under test does not crash; essentially
falling back on the implicit oracle [9].

2.3.1 Assertion Equality. An important component of the gener-
ated tests is the equality assertion between the value returned by
the method under test and the value stored as a previous obser-
vation. Generally, TestGen cannot assume that it is possible to
assert equality between two arbitrary Android objects: this will
7It would be technically trivial to adapt TestGen to write the test cases it generates in
other languages; the choice of Kotlin was a matter of convenience only.

1 c l a s s < e l i d e d t e s t c l a s s name> {
2 pr ivate v a l s e r i a l i z e r : DASAD =
3 DASAD . getDASAD ( )
4 pr ivate v a l TESTGEN_RUN_COMMAND =
5 " cd ␣ ~< e l i d e d ␣ path ␣ name> ␣&&␣ . / < e l i d e d ␣ s c r i p t ␣ name > . sh " +
6 " $ARGS_USED_BY_TESTGEN_TO_GENERATE_THE_CURRENT_FILE "
7 pr ivate v a l BUCK_INVOCATION_COMMAND =
8 " buck ␣ t e s t ␣ $BUCK_TARGET_GENERATED_FOR_THIS_TEST "
9

10 @Test
11 fun ` t e s t for $METHOD_UNDER_TEST_NAME $TEST_UUID ` ( ) {
12 i f (DASAD . TESTGEN_KILLSWITCHED ) { return ; }
13 v a l s u b j e c t : $CLASS_UNDER_TEST =
14 DASAD . i n i t i a l i z e O b s e r v a t i o n (
15 " $PATH_TO_CURRENT_OBJECT_INSTANCE_OBSERVATION " ,
16 j a v a C l a s s ,
17 $CLASS_UNDER_TEST : : c l a s s . j a v a )
18 v a l r e t =
19 s u b j e c t . $METHOD_UNDER_TEST (
20 DASAD . i n i t i a l i z e O b s e r v a t i o n (
21 " $PATH_TO_PARAMETER_1_OBSERVATION_IN_RESOURCES " ,
22 j a v a C l a s s ,
23 $CLASS_OF_PARAMETER_1 : : c l a s s . j a v a ) ,
24 / / . . . t h e same p a t t e r n f o r a l l t h e p a r ame t e r s o f t h e MUT
25 )
26 a s s e r t T r u e (
27 DASAD . t e s t G e n A s s e r t E q u a l (
28 " $PATH_TO_RETURN_OBSERVATION " ,
29 j a v a C l a s s ,
30 r e t ,
31 s e r i a l i z e r ,
32 TESTGEN_RUN_COMMAND,
33 BUCK_INVOCATION_COMMAND) )
34 }
35 }
36 / / End o f auto − g e n e r a t e d t e x t .

Figure 3: An Example generated test class. Some commer-
cially sensitive details have been elided. The testmethod: ‘test
for $METHOD_UNDER_TEST_NAME $TEST_UUID‘ asserts
that when called with the previously observed parameters
on the previously observed object state, the method returns
the previously observed value (lines 26–34)

only work when their class happens to override the equality oper-
ator (otherwise TestGen would be asserting pointer equality not
value equality). To ensure the TestGen tests perform meaningful
equality assertions, we implemented a custom equality assertion:
testGenAssertEqual.

testGenAssertEqual takes a serialized observation and the run-
time return of the method under test that should be equal in a pass-
ing test. It serializes to json the runtime return and compares the
two json strings for equality. It considers only common elements
for equality (i.e., commonly existing fields in the recursive traversal
of the data type), since fields that are initialized in a unit test may
differ from those in the E2E run. That is, in the E2E run, many
methods other than the one under test will have been called. These
methods can, for example, call the setter on a field that is not called
in the unit test run. As long as the common fields are equal, and
test execution does not crash, then TestGen determines that the
equality test has passed.

2.4 Test Publisher
The test publisher is the final high level TestGen component exe-
cuted by an overall run of the TestGen workflow. It takes, as input,
the test source file as produced by the Test Generator, and produces
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a diff that contains runnable reliable (i.e., not flaky) tests in CI (i.e.,
including the needed buck build files). To do this, it employs the
following steps:
Buck file: A buck file is a form of ‘make’ file, that describes how
to build a particular component, called a “buck target”. The buck
file generator automatically detects when (and where in the file
system) tests have been generated, and automatically generates
corresponding buck files at the right directory locations. The gen-
erated buck files implement the necessary dependencies, visibility
rules and other buck configuration details required to ensure that
the tests can be fully executed.

Tests can be executed from the command line using a buck test
command. This is the normal way in which engineers execute unit
tests on demand; TestGen tests are, after all, just normal tests, al-
beit machine-generated. TestGen tests will also automatically be
selected when a submitted diff contains code covered by the tests.
Buck Dependencies: The challenge in automatically generating a
buck target is to be sure that it contains all the required dependen-
cies. The first category of dependencies includes those required by
any and all unit tests. Since the tests will directly call the methods
on the class under test and use various types imported there (e.g.,
parameters and return types), we also automatically add all the
dependencies of the class under test to the dependencies of the unit
test’s buck target.

The most challenging dependencies to determine automatically
are those required for observation deserialization. These can be
arbitrary dependencies used in the recursive traversal of any data
type used by the current object instance, returns or parameters. To
compute them, we first analyze all the object types used across all
observations. For each unique object, we construct a set of unique
buck dependencies containing them. We then add all these depen-
dencies to the buck dependencies of the test.

In this way, we ensure that all the required dependencies are in-
cluded. The dependence computation process is ‘liberal’. Therefore,
it favors the generation of a correctly executable test, rather than
one that might fail due to insufficient dependence information in
the buck files. The buck file so-generated may potentially include
some extra dependencies (e.g., not all dependencies of the class
under test are used in the unit test), but this is relatively harmless.
The existing build system often catches and removes any unneeded
dependencies using an independent workflow designed to cater for
arbitrary buck files.
Test Runner: The Test Publisher will run all the tests in the newly-
added buck target and will collect runtime information about them:
whether the test passes consistently, coverage data, etc. The test
runner deletes tests that are either broken or flaky so that the Test
Publisher does not include any tests that do not consistently pass
or that are broken. This insures that the signal to engineers from
automatically-generated test is of the highest quality.
Test Selection: Test generation can produce many test cases; one
per observation. This could lead to a large number of generated
tests, each of which is testing the same method with a different
input-output pair. The Test Selector component produces a test suite
from the available test cases. Currently, we implement a simple
greedy test selection algorithm, guided by a single test objective
of coverage. For the single-objective (test coverage) test-selection

optimization problem, a greedy algorithm is known to be efficient,
and usually not too far from a global optima [43].
Linting: The publisher runs standard Meta CI linters to fix format-
ting issues and other lint-level issues, such as unused imports. We
found that it was easier to fix these using the existing lint tooling, as
a post-processor, rather than trying to statically fix them at test gen-
eration time. Using the standard linters, which interpose in continu-
ous integration also insures that the diff that is ultimately published,
does indeed meet all current linting standards and, therefore, avoids
unnecessary spurious lint error messages on the generated diffs.
Diff Submission: Finally, the publisher submits the generated diff
into the standard Meta CI system. This is the mechanism by which
TestGen’s generated tests enter production; they go through the
diff review process just like any other unit test.

3 RESULTS
This section describes our results from deploying TestGen at Meta
for Instagram. We report 3 different results: TestGen test results
when running in CI at a small scale for 6 months; TestGen coverage
at large scale from E2E tests; and back testing TestGen against past
large regressions captured in launch blocking tasks (LBs); in the
rest of these section.

3.1 Running TestGen in Meta CI
In our deployment process we decided to land TestGen cautiously
and incrementally, and with full human code review, rather than au-
tomatically landing every test that TestGen could generate (which
could potentially run to hundreds of thousands of test cases). In this
way, we iron out deployment and scaling issues incrementally and
avoid bombarding our engineers with a large amount of unfamiliar
test signal all at once. While so-doing we also look out for any
problems that the deployment of tests at such scale could create for
CI and other parts of Meta infra. This section answers the following
research question:

Research Question 1: What is the impact of running TestGen
tests in Meta CI on the relevant code changes that Meta engineers
submitted for the Instagram Android app?

In particular, the RQ establishes baseline statistics for how many
tests have landed into Meta production, and how this initial deploy-
ment has behaved in production. For example, how many times the
tests have been executed, and how many bugs they have found so
far in production. Table 1 presents these results. It gives top level
statistics on the TestGen tests that we landed so far and their runs
in CI since mid 2023.

The number of blocked diffs is a measure of bug-revealing po-
tential. However, it should be noted that these diffs could also have
received signal from other testing and build infrastructure. Also,
the results include experimental diffs. That is, engineers often put
up initial versions of their changes purely in order to stimulate the
testing system to report bugs, fully expecting to see such signal.

Therefore, although these results indicate the bug-revealing po-
tential of the technology, they are not necessarily an accurate re-
flection of the number of bugs that occur in development, but more
reflection of the speed at which developers operate, safe in the
knowledge they have a reliable infrastructure that reports bugs. As
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Landed Total Diff Time Blocked
Tests Runs Failures Diffs

518 9,617,349 75,722 5,702

Table 1: Top level TestGen statistics: 518 landed TestGen tests
executed a total of 9,617,349 times, failing on 75,722 test
executions and detecting 5,702 faults.

the results show, the TestGen tests do run reliably, and do find bugs.
This answers RQ1:

Answer to Research Question 1: TestGen has so-far landed 518
distinct unit tests. In the 6 months between July and December
2023, these tests run in Meta CI a total of 9, 617, 349 times. Test-
Gen tests failed on 75, 722 of these 9, 617, 349 executions, thereby
revealing bugs in 5, 702 code changes that, if landed to production,
would have caused regressions.

3.2 TestGen Coverage Achieved by Observations
Generated from E2E Test Executions

TestGen relies on observing End-to-End (E2E) executions of the
app to collect the observations that it needs in order to be able to
auto-generate tests. There are many ways in which we can generate
such observations, such as executing the app manually, running
Sapienz [4], and running other automated tools that stimulate app
execution.

In the Meta CI, one readily available source of end-to-end ex-
ecutions is the execution of Jest E2E tests8. This is an interesting
source of observations, because it comes from E2E tests. Generating
observations in this way implements a form of test ‘carving’ (see sec-
tion 4). The unit test observations are carved from End-to-End tests,
while the unit test assertions are generated from the return values.

This allows us to investigate a form of ‘coverage completeness’
for the carving process; the degree to which the coverage achieved
by the E2E tests is replicated at the unit test level, by carving the
unit test observations from the E2E test executions. Therefore, in
RQ2, we investigate the TestGen completeness when generating
unit tests for all the code that the Jest E2E runs execute:

Research Question 2: For how many classes that all Jest E2E
tests cover, can TestGen produce covering unit tests?

To answer this question, we run all Jest E2E tests that are marked
as ‘good’ (that is, they execute reliably) in CI on the instrumented
Instagram Android app. We collect observations from these app
executions and generate tests from the observations. We report the
number of Kotlin classes for which TestGen generated tests, as a
proportion of the total number of Kotlin classes that Jest E2E tests
cover.

Overall, we have a total of 5,284 Jest E2E tests for the Android
Instagram app. These tests cover a total of 14,621 Kotlin files (this
is approximately 40% of the total number of Kotlin files for the

8https://jestjs.io/

Android app). Out of these tests, 4,361 are marked as ‘good’ by CI,
while 689 marked as broken, and marked as 234 are flaky9.

We found that, of all 4,361 Jest E2E tests, TestGen automatically
generates tests that covered 86% of the 14,621 Kotlin files that
all the Jest E2E tests cover (5,284 tests). As a source of TestGen
observations, we used the 4,361 tests marked as ‘good’ by CI on
the day we evaluated RQ2. The 86% coverage result is, therefore, a
lower bound, since some of these files would be covered by currently
broken or flaky tests that had previously executed and were thus
included in coverage statistics for Jest E2E test execution.

In particular, we believe that the remaining 14% can be (or already
are) covered because:
• TestGen only runs ‘good’ Jest E2E tests, while the Jest E2E

coverage is reported for all. Only 82% of Jest E2E tests are
‘good’, so TestGen coverage is inherently underestimated.
• TestGen cannot instrument files that execute only in the main

Android Dalvik executable (dex file). Loading all TestGen
dependencies in the main dex is not currently scalable.
• There are a few remaining (relatively obscure, and infre-

quently used) Kotlin constructs and compiler corner cases
that TestGen does not yet fully support.

At this scale we cannot know the precise distributions of these
three root causes, the first of which leads to an underestimate, while
the second two of which are root causes for lack of coverage. We
believe the biggest cause of the three is highly likely to be the first of
the three, suggesting that the lower bound of 86% retained coverage
is a highly conservative lower bound. The answer to the RQ2 is
thus:

Answer to Research Question 2: When running all 4,361 reli-
able Jest E2E tests, TestGen produced unit tests for 12,827 files.
Thus, a conservative lower bound is that TestGen automatically
covers 86% of the files that the end-to-end tests cover.

3.3 Back testing TestGen Against Past Large
Regressions

TestGen’s main purpose is regression testing. In order to validate
our hypothesis that TestGen is effective at preventing regressions
that would otherwise impact developer velocity, we back tested
TestGen on previous large regressions that landed in master in
October and November 2023.

At Meta, once a diff lands in master, it will eventually be pushed
to an internal ‘alpha’ release. The alpha release uses a monitoring
system that creates launch blocking tasks (LBs), thereby protecting
the next stage (‘beta’ release), and ultimately the deployment of
the new version into the App Store. Thus, until launch-blocking
tasks are fixed, the release is blocked. This is why we regard such
launch-blocking tasks to be high–impact regressions, worthy of
study. We ask the following research question to assess TestGen’s
performance at protecting the ‘alpha’ release stage from regressions,
and thereby reducing engineering effort, since it is known that
shifting left tends to reduce bug fixing effort [5].
9These numbers concerning good, broken and flaky, are computed by the Meta CI
dynamically and thus change daily. They do not necessarily reflect typical numbers
for an arbitrary day of execution. However, we report them here for completeness, so
that the reader can fully understand the results we report, as of the census date when
we executed TestGen to collect results for RQ2.

https://jestjs.io/
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Tasks Result Language Notes
13 confirmed Kotlin Regression caught successfully
2 unsupported Kotlin Anonymous objects unsupported
1 unsupported Kotlin Private methods unsupported

Table 2: Back testing results: TestGen was able to prevent 13
out of 16 app-launch-blocking issues. Of the three missed,
two where not unit-testable, while the other was a bug in a
private method.

Research Question 3: What proportion of past high-impact
regressions (LB tasks) can TestGen automatically generate a test
for that would prevent them?

3.3.1 Back testing Method. For back testing, we identified a pool
of LB tasks. These tasks are typically auto-generated to document
detected crashes or bugs that will block Instagram’s future app
launches. Further, because we launch apps at a defined cadence,
launch blockers present a real threat to submitting Instagram’s
latest build to the app store. These LB tasks are usually prioritized
based on severity and manually triaged and fixed by engineers.
From the pool of launch blocking tasks, a total of 16 tasks, previ-
ously manually resolved by engineers with clear code fixes, were
randomly selected without consultation with those actively work-
ing the TestGen project (Table 3).

We only consider LB tasks caused by Kotlin code because Test-
Gen for Java currently remains under development. With the tasks
identified, we then generated unit tests covering the impacted files.
With these unit tests we can determine whether the test would fail
were the fixes not to be implemented, by reverting the fix. Where
such generated tests fail, this indicates that the unit tests could
have prevented the launch blocking bug from landing into master.

3.3.2 Back testing Results. Table 2 summarizes our results when
back testing TestGen on the 16 randomly-selected launch-blocking
tasks involving Kotlin files. TestGen was able to prevent 13 (81%) of
them. Out of the 3 (19%) for which TestGen was not able to generate
a unit test that would have caught the regression:

• 2(13%) were not prevented because they are not unit-testable
(they were part of anonymous methods or objects for which
TestGen cannot create a unit test because it cannot call them).
• 1 (6%) was not prevented because the method that caused

the crash was declared to be a private method.

For the 2 non-unit-testable LB tasks, we could use Testability
Transformation [14, 23, 27] to make them unit-testable.

The other remaining uncovered LB task arose due to a bug in
a private method. We believe that tests for public methods that call
private ones would to catch them, but we had not originally planned
to use TestGen to directly test private methods. We decided to not
generate tests for private methods, since this would couple the gen-
erated tests to implementation details (which is generally a bad prac-
tice). However, if we find regressions are prevalent in private meth-
ods, and that these are not trapped by tests generated for the public
methods that call the private methods, we may revise this position.

The answer to our research question is:

Instagram Error #TestGen TestGen
Product Type Tests Caught?
Profile Illegal State Exception 2 Yes
Stories Uninitialized Property Access - No
Stories Illegal Argument 1 Yes
Deep Links Infra Class Cast Exception 1 Yes
Comments Illegal Argument 1 Yes
Ads Null Pointer Exception - No
Direct Class Cast Exception 1 Yes
OnDevice Tech Illegal State Exception 3 Yes
Feed Null Pointer Exception 1 Yes
Camera Runtime Exception 1 Yes
Camera Android native crash 1 Yes
Direct Illegal State Exception 1 Yes
Design Systems Resources Not Found 1 Yes
Well Being Null Pointer Exception - No
Camera No Such Method 1 Yes
Notifications Null Pointer Exception 1 Yes

Table 3: Launch blocking tasks on which we back tested Test-
Gen. All these tasks were caused by crashes.

Answer to Research Question 3: Out of 16 previous high-
impact regressions in Kotlin code, captured by launch blocking
tasks (LBs), TestGen was able to successfully generate unit tests
that would have prevented 81% of them from becoming launch
blocking (Table 2).

4 RELATEDWORK
TestGen is related to Test Carving [20]. Test carving takes an exist-
ing end-to-end test, and carves the unit test from it. As formulated
by Elbaum et al. in 2009 [20], carving seeks to carve out a ‘pre-state’
from the entire state of the system under test, and a ‘post state’.
A regression test is then formed by re-establishing the pre-state
and asserting the post state. Our approach is similar to this, in the
sense that the pre-state, for our observation-based tests, consists
of the values of the parameters observations of the method under
test, together with the current object instance, while the post state
is the observation of return values.

TestGen generates unit level tests. As shown by Gross, Fraser and
Zeller in 2012 [24], unit test generators may generate false positives
because the unit level parameters and return values are not realiz-
able in any system-level execution. They reported that all 181 errors
found using a popular random test generation system on five open
source systems were false positives. TestGen circumvents this poten-
tial false positive issue using an observation-based approach with
tests generated from observations of real end-to-end executions.

Kampmann and Zeller [30], overcome the false positive issue by
carving parameterized unit tests, such that the resulting unit test
can be ‘lifted’ back to a system level test. This allows possible false
positive test failures to be detected, by checking whether the lifted
computation raises a system failure or not (unit test failures that do
not lift to system test failures are discarded as false positives). Kamp-
mann and Zeller implemented this for C, and showed how it allowed
them to extend carving to make it applicable for fuzzing [31].Other
authors extended the notion of carving, most recently focusing on
carving UI tests to generate API tests [42], where the goal is to
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dynamically infer suitable API endpoints, so that UI-based testing
can be carved to stimulate the corresponding API endpoints.

TestGen’s use of serialized observations is related to previous
work on object capture, such as the OCAT system, which is used
to capture objects for automated testing [29]. Jaygarl et al. applied
OCAT to three open source systems, after integrating it with Ran-
doop [34]. They also mutate the captured observations, although
there is no mechanism for avoiding the consequent potential for
false positives that this may introduce.

Finally, TestGen requires sophisticated serialization and deseri-
alization. It is, therefore, also related to previous work on serial-
ization and deserialization, such as XStream10 and JSX11. One of
the primary contributions of the present paper is the introduction
of a scalable, depth-aware, fully-featured serialization and dese-
rialization framework, suitable for capturing the complex object
serializations needed by industrial observation-based testing.

One of the other potential applications of observation-based
testing, is the use of deserialized objects in human authoring of test
cases. As reported recently by Fazzini et al. [22] developers typi-
cally go to some considerable length to mock, partly spy, fake, and
otherwise build complex objects in order to execute unit tests. The
observations from observation-based test generation can be used to
circumvent the need for the developer to spend (what is typically
considerable) time and effort building such ‘test double’ objects.

The idea of testing based on observations has been in the lit-
erature for over two decades, dating back to the JRapture sys-
tem for Java, introduced in 2000 [38]. Both TestGen and previous
observation-based capture/replay tools share the same orientation
towards regression testing, based on captured observations of run-
time values. However, while TestGen’s observations are serialized
high level object instances captured from the instrumentation of
source code, JRapture captures low level interactions at bytecode
level. Other more recent observation-based testing approaches have
also used higher-level observations captured, for example, for auto-
motive systems [41]. However, in this automotive work, the obser-
vations are of system-level scenarios, mined from traces of simula-
tions and real behaviors for replay in simulation. That makes these
automotive system approaches more like Meta’s simulation-based
testing approach [2], than its TestGen observation-based approach,
for which observations are serialized object values.

TestGen is also related to existing work on generation of tests
more generally. There have been a great many techniques proposed
for test generation over the past five decades, starting with the early
work on random test selection in the mid-1970s [13]. An account
of the many and varied techniques for test data generation would
require a dedicated paper in its own right. For brevity, we refer the
reader to existing comprehensive surveys [8, 15, 33].

TestGen’s primary novelty and technical advance, lies in the way
it tackles the challenges inherent when collecting observations at
scale. Without this, TestGen could not achieve an observation-based
test generation technique that operates on apps like Instagram, that
consist of many tens of millions of lines of code.

10https://x-stream.github.io/
11https://facebook.github.io/jsx/

5 FUTUREWORK
TestGen is designed to allow easy incorporation of other test gener-
ation strategies. It will be particularly interesting to explore hybrid
approaches that extend existing approaches to test generation, such
as concolic [15], fuzzing-based [31], random [34] and search-based
[28], hybridizing each to additionally incorporate observations.

Future work may also consider observation-based approaches
to Metamorphic Testing [17, 36]. While TestGen currently targets
regression testing, there is an established link between regression
testing and Metamorphic Testing [1], which has also recently been
deployed at scale in industry at Meta [1, 12] and at Google [18]. In fu-
ture work, it may be possible to adapt existing metamorphic relation
inference algorithms [39, 44] to apply them to observations. This
would allow us to extend TestGen to tackle metamorphic testing,
especially where such algorithms already have available implemen-
tations that target Java/Kotlin documentation [11], thereby residing
within the same programming language domain as TestGen.

We would be excited to partner with the academic community
on collaborative projects to extend these techniques to consider
observation-based formulations, which we can then collaboratively
evaluate at scale, using the TestGen framework in place at Meta.

TestGen could hybridize with other observation-based approaches,
such as Observation-based Slicing [10]. Observation-based Slicing
may also be helpful to TestGen, since it may help identify suit-
able boundaries for the introduction of mocks. TestGen does not
currently generate mocks, but fortunately the core problem has
previously been studied [7, 35] and extensions that do create mocks
could be informed by work on decisions about when to mock [37].
Observation-based Slicing, combined with these existing mocking
techniques, may additionally provide powerful observation-based
dependence analysis, flexible mocking and debugging.

Future work may also consider multi-objective regression test
formulations [25] to balance different competing regression test cri-
teria, and may therefore extend test selection to use other selection
algorithms. Future work might also draw on invariant inference,
such as techniques like Daikon [21] to infer likely invariants, over
observations, and use these to detect abnormal behaviors, thereby
extending TestGen from regression testing to other forms of testing.

6 CONCLUSION
This paper introduced TestGen, a scalable observation-based unit
test carver, developed by Meta’s Instagram Product Foundation
team, since October 2022, and first deployed in July 2023. So far,
TestGen has reported 5,702 bugs, while back testing demonstrated
it can trap at least 81% of high-impact regressions that would oth-
erwise become app launch blocking for Instagram.

Acknowledgements: We wish to thank the Instagram organization and
leadership for their support, and the many Meta engineers who helped us
to deploy and evaluate TestGen.



Observation-based unit test generation at Meta FSE ’24, Mon 15 - Fri 19 July 2024, Porto de Galinhas, Brazil, Brazil

REFERENCES
[1] John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena Dulskyte, Inna

Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Maria Lomeli, Erik
Meijer, Silvia Sapora, and Justin Spahr-Summers. 2021. Testing Web Enabled
Simulation at Scale Using Metamorphic Testing. In International Conference on
Software Engineering (ICSE) Software Engineering in Practice (SEIP) track. Virtual.

[2] John Ahlgren, Kinga Bojarczuk, Sophia Drossopoulou, Inna Dvortsova, Johann
George, Natalija Gucevska, Mark Harman, Maria Lomeli, Simon Lucas, Erik
Meijer, Steve Omohundro, Rubmary Rojas, Silvia Sapora, Jie M. Zhang, and Norm
Zhou. 2021. Facebook’s Cyber–Cyber and Cyber–Physical Digital Twins (keynote
paper). In 25th International Conference on Evaluation and Assessment in Software
Engineering (EASE 2021). Virtual. Keynote talk given jointly by Inna Dvortsova
and Mark Harman.

[3] Nadia Alshahwan, Jubin Chheda, Anastasia Finegenova, Mark Harman, Inna
Harper, Alexandru Marginean, Shubho Sengupta, and Eddy Wang. 2024. Auto-
mated Unit Test Improvement using Large Language Models at Meta. In Founda-
tions of Software Engineering (FSE 2024). Submitted.

[4] Nadia Alshahwan, Xinbo Gao, Mark Harman, Yue Jia, Ke Mao, Alexander Mols,
Taijin Tei, and Ilya Zorin. 2018. Deploying Search Based Software Engineering
with Sapienz at Facebook (keynote paper). In 10𝑡ℎ International Symposium
on Search Based Software Engineering (SSBSE 2018). Montpellier, France, 3–45.
Springer LNCS 11036.

[5] Nadia Alshahwan, Mark Harman, and Alexandru Marginean. 2023. Software
Testing Research Challenges: An Industrial Perspective. In 2023 IEEE Conference
on Software Testing, Verification and Validation (ICST 2023). IEEE, 1–10.

[6] Nadia Alshahwan, Mark Harman, Alexandru Marginean, Shubho Sengupta, and
Eddy Wang. 2024. Assured LLM-Based Software Engineering (keynote paper).
In 2𝑛𝑑. ICSE workshop on Interoperability and Robustness of Neural Software
Engineering (InteNSE) (Lisbon, Portugal). To appear.

[7] Nadia Alshahwan, Yue Jia, Kiran Lakhotia, Gordon Fraser, David Shuler, and Paolo
Tonella. 2010. AUTOMOCK: automated synthesis of a mock environment for
test case generation. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik.

[8] Saswat Anand, Antonia Bertolino, Edmund Burke, Tsong Yueh Chen, John Clark,
Myra B. Cohen, Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, Jenny
Li, Phil McMinn, and Hong Zhu. 2013. An orchestrated survey of methodologies
for automated software test case generation. Journal of Systems and Software 86,
8 (August 2013), 1978–2001.

[9] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.
2015. The Oracle Problem in Software Testing: A Survey. IEEE Transactions on
Software Engineering 41, 5 (May 2015), 507–525.

[10] David Binkley, Nicolas Gold, Mark Harman, Syed Islam, Jens Krinke, and Shin
Yoo. 2014. ORBS: Language-Independent Program Slicing. In 22𝑛𝑑 ACM SIGSOFT
International Symposium on the Foundations of Software Engineering (FSE 2014).
Hong Kong, China, 109–120.

[11] Arianna Blasi, Alessandra Gorla, Michael D Ernst, Mauro Pezzè, and Antonio
Carzaniga. 2021. MeMo: Automatically identifying metamorphic relations in
Javadoc comments for test automation. Journal of Systems and Software 181
(2021), 111041.

[12] Kinga Bojarczuk and Mark Harman. 2022. Testing of and with cyber-cyber
digital twins. In 7𝑡ℎ International workshop on metamorphic testing (MET 2022).
Pittsburgh, PA, USA. Keynote talk given jointly by Kinga Bojarczuk and Mark
Harman.

[13] Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. 1975. SELECT – a Formal
System for Testing and Debugging Programs by Symbolic Execution. In Interna-
tional Conference on Reliable Software (Los Angeles, California). ACM, New York,
NY, USA, 234–245.

[14] Cristian Cadar. 2015. Targeted Program Transformations for Symbolic Execution.
In 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE) (Bergamo,
Italy). 906–909.

[15] Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Software Testing:
Three Decades Later. Commun. ACM 56, 2 (Feb. 2013), 82–90.

[16] Cristiano Calcagno, Dino Distefano, and Peter O’Hearn. [n. d.]. Open-sourcing
Facebook Infer: Identify bugs before you ship. ([n. d.]). code.facebook.com blog
post, 11 June 2015.

[17] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, T. H.
Tse, and Zhi Quan Zhou. 2018. Metamorphic testing: a review of challenges and
opportunities. ACM Computing Surveys (CSUR) 51, 1 (January 2018), 4:1–4:27.

[18] Alastair F. Donaldson. 2019. Metamorphic testing of Android graphics drivers. In
Proceedings of the 4th International Workshop on Metamorphic Testing, MET@ICSE
2019, Montreal, QC, Canada, May 26, 2019, Xiaoyuan Xie, Pak-Lok Poon, and
Laura L. Pullum (Eds.). IEEE / ACM, 1.

[19] Inna Dvortsova and Mark Harman. 2022. Automated Testing as Production
Simulation: Research Opportunities and Challenges. In 37𝑡ℎ IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE 2022. Michigan, USA.
Keynote talk given jointly by Inna Dvortsova and Mark Harman.

[20] Sebastian G. Elbaum, Hui Nee Chin, Matthew B. Dwyer, and Matthew Jorde. 2009.
Carving and Replaying Differential Unit Test Cases from System Test Cases. IEEE
Transactions on Software Engineering 35, 1 (2009), 29–45.

[21] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 2001. Dy-
namically Discovering Likely Program Invariants to Support Program Evolution.
IEEE Transactions on Software Engineering 27, 2 (Feb. 2001), 1–25.

[22] Mattia Fazzini, Chase Choi, Juan Manuel Copia, Gabriel Lee, Yoshiki Kakehi,
Alessandra Gorla, and Alessandro Orso. 2022. Use of test doubles in Android test-
ing: An in-depth investigation. In Proceedings of the 44th International Conference
on Software Engineering. 2266–2278.

[23] Dunwei Gong and Xiangjuan Yao. 2012. Testability transformation based on
equivalence of target statements. Neural Computing and Applications 21, 8 (2012),
1871–1882.

[24] Florian Gross, Gordon Fraser, and Andreas Zeller. 2012. Search-based system
testing: high coverage, no false alarms. In International Symposium on Software
Testing and Analysis (ISSTA 2012). 67–77.

[25] Mark Harman. 2011. Making the Case for MORTO: Multi Objective Regression
Test Optimization (invited position paper). In 1𝑠𝑡 International Workshop on
Regression Testing (Regression 2011). Berlin, Germany.

[26] Mark Harman. 2022. Scaling Genetic Improvement and Automated Program
Repair (keynote paper). In 3rd IEEE/ACM International Workshop on Automated
Program Repair, APR@ICSE 2022, Pittsburgh, PA, USA, May 19, 2022. IEEE, 1–7.
https://doi.org/10.1145/3524459.3527353

[27] Mark Harman, Lin Hu, Robert Mark Hierons, Joachim Wegener, Harmen Sthamer,
André Baresel, and Marc Roper. 2004. Testability Transformation. IEEE Transac-
tions on Software Engineering 30, 1 (Jan. 2004), 3–16.

[28] Mark Harman, Yue Jia, and Yuanyuan Zhang. 2015. Achievements, open problems
and challenges for search based software testing (keynote Paper). In 8𝑡ℎ IEEE
International Conference on Software Testing, Verification and Validation (ICST
2015). Graz, Austria.

[29] Hojun Jaygarl, Sunghun Kim, Tao Xie, and Carl K Chang. 2010. OCAT: ob-
ject capture-based automated testing. In Proceedings of the 19th international
symposium on Software testing and analysis. 159–170.

[30] Alexander Kampmann and Andreas Zeller. 2019. Carving parameterized unit
tests. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion). IEEE, 248–249.

[31] Valentin J. M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J. Schwartz, and Maverick Woo. 2018. The Art, Science, and
Engineering of Fuzzing: A Survey. CoRR abs/1812.00140 (2018). arXiv:1812.00140
http://arxiv.org/abs/1812.00140

[32] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective Automated
Testing for Android Applications. In International Symposium on Software Testing
and Analysis (ISSTA 2016). 94–105.

[33] Phil McMinn. 2004. Search-based Software Test Data Generation: A Survey.
Software Testing, Verification and Reliability 14, 2 (June 2004), 105–156.

[34] Carlos Pacheco and Michael D Ernst. 2007. Randoop: feedback-directed random
testing for Java. In Companion to the 22nd ACM SIGPLAN conference on Object-
oriented programming systems and applications companion. 815–816.

[35] David Saff and Michael D Ernst. 2004. Mock object creation for test factoring. In
Proceedings of the 5th ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering. 49–51.

[36] Sergio Segura, Gordon Fraser, Ana B. Sánchez, and Antonio Ruiz Cortés. 2016. A
Survey on Metamorphic Testing. IEEE Transactions on Software Engineering 42, 9
(2016), 805–824.

[37] Davide Spadini, Maurício Aniche, Magiel Bruntink, and Alberto Bacchelli. 2017.
To mock or not to mock? An empirical study on mocking practices. In 2017
IEEE/ACM 14th International Conference on Mining Software Repositories (MSR).
IEEE, 402–412.

[38] John Steven, Pravir Chandra, Bob Fleck, and Andy Podgurski. 2000. jRapture: A
capture/replay tool for observation-based testing. In Proceedings of the 2000 ACM
SIGSOFT international symposium on Software Testing and Analysis (ISSTA 2000).
158–167.

[39] Fang-Hsiang Su, Jonathan Bell, Christian Murphy, and Gail Kaiser. 2015. Dynamic
inference of likely metamorphic properties to support differential testing. In 2015
IEEE/ACM 10th International Workshop on Automation of Software Test. IEEE,
55–59.

[40] Shreshth Tuli, Kinga Bojarczuk, Natalija Gucevska, Mark Harman, Xiao-Yu Wang,
and Graham Wright. 2023. Simulation-Driven Automated End-to-End Test and
Oracle Inference. In 45th IEEE/ACM International Conference on Software Engi-
neering: Software Engineering in Practice, SEIP@ICSE 2023, Melbourne, Australia,
May 14-20, 2023. IEEE, 122–133.

[41] Christian Wolschke, Thomas Kuhn, Dieter Rombach, and Peter Liggesmeyer.
2017. Observation based creation of minimal test suites for autonomous vehicles.
In 2017 IEEE International symposium on software reliability engineering workshops
(ISSREW). IEEE, 294–301.

[42] Rahulkrishna Yandrapally, Saurabh Sinha, Rachel Tzoref-Brill, and Ali Mesbah.
2023. Carving UI Tests to Generate API Tests and API Specification. arXiv
preprint arXiv:2305.14692 (2023).

https://doi.org/10.1145/3524459.3527353
https://arxiv.org/abs/1812.00140
http://arxiv.org/abs/1812.00140


FSE ’24, Mon 15 - Fri 19 July 2024, Porto de Galinhas, Brazil, Brazil Alshahwan and Harman, et al.

[43] Shin Yoo and Mark Harman. 2012. Regression Testing Minimisation, Selection and
Prioritisation: A Survey. Journal of Software Testing, Verification and Reliability
22, 2 (2012), 67–120.

[44] Jie Zhang, Junjie Chen, Dan Hao, Yingfei Xiong, Bing Xie, Lu Zhang, and Hong
Mei. 2014. Search-based inference of polynomial metamorphic relations. In

ACM/IEEE International Conference on Automated Software Engineering (ASE’14),
Ivica Crnkovic, Marsha Chechik, and Paul Gruenbacher (Eds.). Vasteras, Sweden,
701–712. https://doi.org/doi:10.1145/2642937.2642994

https://doi.org/doi:10.1145/2642937.2642994

	Abstract
	1 Introduction
	2 Meta's Observation-Based TestGen System
	2.1 Instrumenter Plugin
	2.2 ObservationLogger
	2.3 Test Generator
	2.4 Test Publisher

	3 Results
	3.1 Running TestGen in Meta CI
	3.2 TestGen Coverage Achieved by Observations Generated from E2E Test Executions
	3.3 Back testing TestGen Against Past Large Regressions

	4 Related Work
	5 Future Work
	6 Conclusion
	References

