
The Importance of Accounting for Execution Failures when
Predicting Test Flakiness

Guillaume Haben
University of Luxembourg

Luxembourg
guillaume.haben@uni.lu

Sarra Habchi
Ubisoft
Canada

sarra.habchi@ubisoft.com

John Micco
Broadcom

USA
john.micco@broadcom.com

Mark Harman
Meta and UCL
United Kingdom

mark.harman@ucl.ac.uk

Mike Papadakis
University of Luxembourg

Luxembourg
michail.papadakis@uni.lu

Maxime Cordy
University of Luxembourg

Luxembourg
maxime.cordy@uni.lu

Yves Le Traon
University of Luxembourg

Luxembourg
yves.letraon@uni.lu

ABSTRACT
Flaky tests are tests that pass and fail on different executions of
the same version of a program under test. They waste valuable
developer time by making developers investigate false alerts (flaky
test failures). To deal with this issue, many prediction methods
have been proposed. However, the utility of these methods remains
unclear since they are typically evaluated based on single-release
data, ignoring that in many cases tests that fail flakily in one release
also correctly fail (indicating the presence of bugs) in some other,
meaning that it is possible for subsequent correctly-failing cases
to pass unnoticed. In this paper, we show that this situation is
prevalent and can raise significant concerns for both researchers
and practitioners. In particular, we show that flaky tests, tests that
exhibit flaky behaviour at some point in time, have a strong fault-
revealing capability, i.e., they reveal more than 1/3 of all encountered
regression faults. We also show that 76.2%, of all test executions
that reveal faults in the codebase under test are made by tests that
are classified as flaky by existing prediction methods. Overall, our
findings motivate the need for future research to focus on predicting
flaky test executions instead of flaky tests.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
Software testing, Flaky Tests, ML, Continuous Integration

ACM Reference Format:
GuillaumeHaben, Sarra Habchi, JohnMicco, Mark Harman, Mike Papadakis,
Maxime Cordy, and Yves Le Traon. 2024. The Importance of Accounting
for Execution Failures when Predicting Test Flakiness. In 39th IEEE/ACM

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10. . . $15.00
https://doi.org/10.1145/3691620.3695261

International Conference on Automated Software Engineering (ASE ’24), Octo-
ber 27-November 1, 2024, Sacramento, CA, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3691620.3695261

1 INTRODUCTION
It has been widely reported in the industry (in various companies
including Meta [15] and Google [29]), that test flakiness is one of
the biggest problems that inhibits test efficiency and effectiveness
for practicing software engineers and industrial deployment of
automated testing technology [3].

Traditionally, a flaky test is regarded as one that can pass on one
execution yet fail on another, even though both executions take
place in identical execution environments [15, 26, 28].

In this traditional view, flakiness is a property attributed to a
test case (for each and all of its test executions), rather than either
a property of the code under test (its non-determinism), or the
execution of the test case (its potentially different outcome for the
given execution).

Most practical approaches to test flakiness simply execute each
test multiple times in the same environment. When a test passes on
some and fails on other executions, then the test is marked as flaky.
As a consequence of being so-marked, the test (and any signal that
might accrue from its subsequent execution) is simply discarded.

Many companies cannot afford the drain on developers’ time
considering flaky test signals, so it is important to identify such
tests and address them or remove them, either through repeated
execution or more sophisticated techniques.

Fortunately, there has been a lot of research on test flakiness [33],
and companies like Meta [27] and Google [23] use simply effective
techniques such as repeated test execution to identify flaky tests.

Researchers have proposed advanced predictive techniques [6,
12, 17, 23, 34] that can detect with a relatively high precision which
tests are flaky. However, all of this research and current deployment
practice is based on an assumption that it is a test itself that is flaky
or not, and once a test is marked as flaky, its signal is lost.

What if the test correctly fails (indicating a bug) in one execution,
but fails due to flakiness in another? Such a test would be marked
as flaky (due to the flaky failure), and its signal would be ignored,
even in subsequent correctly failing scenarios, thereby needlessly
discarding potentially useful regression test signal.

In this paper, we show that this situation is not only possible
but also that it is prevalent: through a study of widely available

1979

2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3691620.3695261&domain=pdf&date_stamp=2024-10-27

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Guillaume Haben, Sarra Habchi, John Micco, Mark Harman, Mike Papadakis, Maxime Cordy, and Yves Le Traon

open-source systems, we reveal that about 1/3 of all encountered re-
gression faults are triggered by tests that exhibited flaky behaviour
at some point in time. This is a clearly significant concern for both
research and practice in test flakiness, strongly implying that flaky
tests are useful as they add testing value.

Based on these findings, we make the case for the alternative
approach to flakiness which places the responsibility for flakiness,
not on a test itself, but on the execution of a test. We believe it is
important for the research community to revise its approach to
test flakiness in order to take account of test execution flakiness,
rather than nearly attributing flakiness to a test case (and thereby
deeming all of its execution signals to be flaky and therefore unreli-
able). Such a revised research direction will be highly impactful for
practitioners and industrial deployment of flakiness management
approaches, ensuring far greater test effectiveness.

We provide evidence to support these claims in the paper. More
specifically, based on an evaluation on open source systems, we
show that approximately three quarters of all regression faults
would be missed using the current traditional approach to test
flakiness. Furthermore, we show that over half of the genuinely
fault-revealing failures would be (incorrectly) classified as ‘flaky’
(merely because the test itself is regarded as flaky) by prediction
methods.

By focusing on predicting test execution flakiness, we show that
significant improvements can be achieved in flakiness assessment.
However, our results also reveal that overall prediction performance
for test execution flakiness (using currently available techniques)
remains relatively low.

Taken together, we believe these results strongly motivate fur-
ther study on test execution flakiness. We hope the paper will act
as a ‘rallying cry’ to the research community to consider the assess-
ment of test execution flakiness that is better aligned with the needs
of the domain of the actual practice. As the results we present here
indicate, this would unlock a 4x improvement in regression test
effectiveness, with all the consequent impact this would have on
system reliability, and regression test efficiency and effectiveness.

In summary, the contributions of our paper are:

• We report results from a large empirical study on flakiness
prediction, based on the Chromium project – one of the biggest
open-source industrial projects – involving 10,000 builds,
more than 200,000 unique tests and 1.8 million test execution
failures. This is the first study that investigates the difference
between flaky tests and flaky test executions.

• We provide empirical evidence on existing prediction meth-
ods showing that despite being precise they are far from
satisfactory since they undermine the test signal, i.e., they
flag as flaky the majority, approximately 76.2%, of all test ex-
ecutions that reveal faults in the codebase under test (56.2%
due to misclassifications of non-flaky tests and 20% due to
correct classification of flaky tests that reveal faults in the
particular studied executions).

• We provide empirical evidence that flaky tests have strong
fault-revealing capabilities, indicating an inherent limitation
of existing methods.

2 RELATEDWORK
2.1 Test Flakiness
Flakiness is a known issue in software testing but research studies
on this topic have only gained momentum in the past few years
[32]. Luo et al. [25] conducted the first empirical study on the
root causes of flakiness. They analyzed commit fixes from 51 open-
source projects and created the first taxonomy of flaky tests. Later
on, several studies on test flakiness followed using different settings.
Lam et al. [19] conducted a study on flaky tests at Microsoft to iden-
tify and understand their root causes. They presented RootFinder,
a framework that helps to debug flaky tests using logs and time
differences in their passing and failing runs.

Romano et al. [37] analysed User Interface (UI) tests and show-
cased the flakiness root causes and the conditions needed to fix
them. In the same vein, Gruber et al. [13] presented a large empiri-
cal analysis of more than 20,000 Python projects. They found test
order dependency and infrastructure to be among the top reasons
for flakiness in those projects.

To help debug, reproduce, and comprehend the causes of flaky
tests several tools have been introduced. DeFlaker [4] detects flaky
tests across commits, without performing any reruns, by checking
for inconsistencies in test outcomes with regard to code coverage.
Focused on test order dependencies, iDFlakies [20] detects flaky
tests by rerunning test suites in various orders.

To increase the chances of observing flakiness, Silva et al. [39]
introduced Shaker, a technique that relies on stress testing when
rerunning potential flaky tests. Another line of work aims at re-
pairing (automatically) flaky tests. To this end, Shi et al. [38] pro-
posed iFixFlakies, a framework that recommends patches for order-
dependent flaky tests based on test patterns found in non-flaky
tests that exhibit similar behaviour as flaky tests.

2.2 Flakiness Detection Methods
While they remain scarce, the recent publication of datasets of flaky
tests [4, 13, 20] enabled new lines of work. Prediction models were
suggested to differentiate flaky tests from non-flaky tests. King et
al. [17] presented an approach that leverages Bayesian networks
to classify and predict flaky tests based on code metrics. Pinto et
al. [34] used a bag of words representation of each test to train a
model able to recognize flaky tests based on the vocabulary from
the test code. This line of work has gained a lot of momentum
lately as models achieved higher performances. Several works were
carried out to replicate those studies and ensure their validity in
different settings [7, 14].

In an industrial context, Kowalczyk et al. [18] implemented a
flakiness scoring service at Apple. Their model quantifies the level
of flakiness based on their historical flip rate and entropy (i.e.,
changes in test outcomes across different revisions). Their goal was
to identify and rank flaky tests to monitor and detect trends in
flakiness. They were able to reduce flakiness by 44% with less than
1% loss in fault detection. In our study, we also rely on test history
to help with flakiness prediction.

More recently, FlakeFlagger [2] has been proposed. It builds a
prediction model using an extended set of features from the code
under test together with test smells. The research community con-
tinue to draw attention to this field by considering other possible

1980

The Importance of Accounting for Execution Failures when Predicting Test Flakiness ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 1: Existing machine learning-based studies aiming at detecting test flakiness. The majority of the techniques focus on
detecting flaky tests, while half of the approaches rely on vocabulary features.

Study Model Feature category Features Benchmark Target Year

King et al. [17] Bayesian network Static & dynamic Code metrics Industrial Flaky tests 2018
Pinto et al. [34] Random forest Static Vocabulary DeFlaker Flaky tests 2020

Bertolino et al. [5] KNN Static Vocabulary DeFlaker Flaky tests 2020
Haben et al. [14] Random forest Static Vocabulary DeFlaker Flaky tests 2021
Camara et al. [7] Random forest Static Vocabulary iDFlakies Flaky tests 2021

Alshammari et al. [2] Random forest Static & dynamic Code metrics & Smells FlakeFlagger Flaky tests 2021

Fatima et al. [12] Neural Network Static CodeBERT FlakeFlagger
iDFlakies Flaky tests 2021

Pontillo et al. [35] Logistic regression Static Code metrics &
Smells iDFlakies Flaky tests 2021

Lampel et al. [21] XGBoost Static & dynamic Job execution
metrics Industrial Flaky failures 2021

Qin et al. [36] Neural Network Static Dependency graph Industrial Flaky tests 2022
Olewicki et al. [31] XGBoost Static Vocabulary Industrial Flaky builds 2022
Ackli et al. [1] Siamese Networks Static CodeBERT Various Flaky tests 2022

features to predict flaky tests, this is the case of Peeler [36] for
example, where the authors leveraged test dependency graphs to
predict flaky tests.

Less attention has been given to flaky failures or false alert
predictions. Herzig et al. [16] used association rules to identify false
alert patterns in the specific case of system and integration tests
that contain steps. They evaluated their approach on Windows 8.1
and Microsoft Dynamics AX.

Olewicki et al. investigated the prospect of leveraging vocabulary-
based features on logs from failing builds to predict if failures are
caused by defects in the code or by other non-deterministic issues
including flaky test failures. It is interesting to note that their work
focuses on builds and not tests as we do in our study.

Finally, a recent study by Lampel et al. [21] presented an ap-
proach that automatically classifies jobs by deciding if a job failure
originates from a bug in the code or from flakiness. To do so, they
relied on features from job executions, e.g., CPU load, and run time.
As such they are only concerned with some form of flaky failures
and not with the utility of detecting flaky failures in CI, instead of
tests as we do in this paper.

Table 1 summarizes the state-of-the-art of flakiness prediction
in chronological order. By inspecting the table, we see that most
of the studies focus on predicting flaky tests, with just one focus-
ing on flaky test failures. We also notice that static features like
code metrics and test smells are often used but features based on
vocabulary (i.e., bag-of-words) are the most popular ones. However,
none of these studies investigates the utility of these methods in
predicting flaky test executions and the impact in terms of lost test
signal, i.e.,, potentially missed (regression) faults.

Overall, in contrast to previous work that predicts likely flaky
tests (to be used by developers the way they see fit), our study
investigates their utility as a replacement of test re-runs in relation
to the risk of missing fault-triggering test execution failures.

3 THE CHROMIUM PROJECT
Started in 2008, with more than 2,000 contributors and 25 million
lines of code, the Chromium web browser is one of the biggest
open-source projects currently existing. Google is one of the main
maintainers, but other companies and contributors are also taking
part in its development.

Chromium relies on LuCI as a CI platform [40]. It uses more than
900 parallelized builders, each one of them used to build Chromium
with different settings (e.g., different compilers, instrumented ver-
sions for memory error detection, fuzzing, etc) and to target differ-
ent operating systems (e.g., Android, Mac OS, Linux, and Windows).
Each builder is responsible for a list of builds triggered by commits
made to the project. If a builder is already busy, a scheduler cre-
ates a queue of commits waiting to be processed. This means that
more than one change can be included in a single build execution if
the development pace is faster than what the builders can process.
Within a build, we find details about build properties, start and end
times, status (i.e., pending, success or failure), a listing of the steps
and links to the logs.

At the beginning of the project, building and testing were se-
quential. Builders used to compile the project and zip the results
to builders responsible for tests. Testing was taking a lot of time,
slowing developers’ productivity and testing Chromium on several
platforms was not conceivable. A swarming infrastructure was then
introduced in order to scale according to the Chromium develop-
ment team’s productivity, to keep getting the test results as fast as
possible and independently from the number of tests to run or the
number of platforms to test. Currently, a fleet of 14,000 build bots
runs tasks in parallel. This setup helps to run tests with low latency
and handle hundreds of commits per day [11].

In this study, we focus on testers, i.e., builders only responsible
for running tests. They do not compile the project: when triggered,
they simply extract the build from their corresponding builder and
run tests on this version. At the time of writing, we found 47 testers

1981

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Guillaume Haben, Sarra Habchi, John Micco, Mark Harman, Mike Papadakis, Maxime Cordy, and Yves Le Traon

running Chromium test suites on distinct operating systems ver-
sions. About 200,000 tests are divided into different test suites, the
biggest ones being blink_web_tests (testing the rendering engine)
and base_unittests with more than 60,000 tests each.

For each build performed by any tester, we have access to infor-
mation about test results. The decision process followed by LuCI
to determine a test failure outcome in a specific build is to run a
test up to 5 times. A test is labelled as pass when it successfully
passed after one execution. In case of a failure, LuCI automatically
reruns the test up to 5 times. If all reruns fail, the test is labelled
as unexpected and will trigger a build failure. In the remaining, we
will be referring to unexpected tests as fault-revealing tests. If a test
passes after having one or more failed executions during the same
build, it is labelled as flaky and leads to a passing build.

4 DATA
4.1 Definitions
Some of our definitions are slightly different from the ones used
by previous work since Chromium has its specific continuous inte-
gration setup. To make things clear, we define the elements we will
discuss in this section. We employ the following definitions:

• Fault-revealing test: A test that consistently failed after
reruns in the same build, revealing a regression fault at some
point in the questioned time period.

• Flaky test: A test that failed once or more and then passed
after reruns in the same build at some point in the questioned
time period.

• Non-flaky test: A test that never exhibited flakiness be-
haviour in any of the builds in the questioned time period.

• Flaky execution failure: A test execution failure caused
by a flaky test at a specific build.

• Fault-triggering execution failure: A test execution fail-
ure caused by a fault-revealing test at a specific build.

Flaky and Fault-triggering execution failure definitions regard a
particular build in question and are mutually exclusive, while the
Flaky and Fault-revealing test definitions regard a time period (a
set of builds) in question and are not mutually exclusive, i.e., a test
can be both fault-revealing and flaky at different points in time.

4.2 Data collection
To perform our study, we collected test execution data from 10,000
consecutive builds completed by the Linux Tester by querying the
LuCI API. This represents a period of time of about 9 months taken
between March 2022 and December 2022.

Table 2 summarises the list of information extracted and com-
puted for all tests executed in all builds. The buildId corresponds
to the build in which tests were executed. runDuration is the
execution time spent to run the test. runStatus gives information
about the run result (e.g., passing, failing, and skipped) and run-
TagStatus returns more precise information about the result of a
run depending on the type of test or test suite (e.g., timeout and
failure on exit). We retrieved information about the tests’ source
code by querying Google Git 1. As builds often handle several com-
mits, we select the revision corresponding to the head of the blame

1https://chromium.googlesource.com/chromium/src/+/HEAD/

list: the one on which tests were executed. The testSuite is simply
the name of the test suite the test belongs to and testId is a unique
identifier for a test composed of the test suite and the test name
(the same test name can be present in different test suites).

All the scripts used to collect the data alongside the created
dataset are available in our replication package 2 3.

Table 2: Description of our features. Column Feature Name
specifies the identifiers used in our dataset, while Column
Feature Description details the features

Feature Name Feature Description

buildId The build number associated
with the test execution

flakeRate The flake rate of the test over the last
35 builds

runDuration The time spent for this test execution

runStatus ABORT
FAIL
PASS
CRASH
SKIP

runTagStatus CRASH
PASS
FAIL
TIMEOUT
SUCCESS
FAILURE
FAILURE_ON_EXIT
NOTRUN
SKIP
UNKNOWN

testSource The test source code

testSuite The test suite the test belongs to

testId The test name

4.3 Computing the flake rate
The historical sequence of test results is a valuable piece of infor-
mation commonly used in software testing at scale [18, 23]. We
analyse the history of fault-revealing tests and flaky tests by relying
on their flakeRate.

This means that for a test 𝑡 failing (due to flaky or fault-triggering
execution failure) in a build 𝑏𝑛 , we analyse all the builds from a
time window𝑤 (i.e., from 𝑏𝑛−𝑤 to 𝑏𝑛−1) to calculate its flake rate
as follows:

𝑓 𝑙𝑎𝑘𝑒𝑅𝑎𝑡𝑒 (𝑡, 𝑛) =
∑𝑛−1
𝑥=𝑛−𝑤 𝑓 𝑙𝑎𝑘𝑒 (𝑡, 𝑥)

𝑤
(1)

2Our dataset, experimental data and related code are released by the University of
Luxembourg at https://github.com/serval-uni-lu/Importance-of-Discerning-Flaky-
from-Fault-triggering-Test-Failures
3All data was collected and experiments were performed by the University of
Luxembourg

1982

The Importance of Accounting for Execution Failures when Predicting Test Flakiness ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 3: Data collected from the Chromium CI. We used the Linux Tests tester, with 10,000 Builds mined over nine months. We
extracted Passing, Flaky and Fault-revealing tests and their associated Flaky and Fault-triggering execution failures.

Tester Nb of Builds Period of Time Number of Unique Tests Number of Failures
From To Passing Flaky Fault-revealing Flaky Fault-triggering

Linux Tests 10,000 Mar 2, 2022 Dec 1, 2022 198,273 23,374 2,343 1,833,831 17,171

where 𝑓 𝑙𝑎𝑘𝑒 (𝑡, 𝑥) = 1 if the test 𝑡 flaked in the build 𝑏𝑥 and
0 otherwise. This metric allows us to understand if the flakiness
history of a test can help in the flakiness prediction tasks. The
test execution history (a.k.a. heartbeat) has been used in multiple
studies (especially industrial ones [18, 23]) to detect flaky tests.
These studies assume that many flaky tests have distinguishable
failure patterns over builds and hence can be detected by observing
their history. We check whether this assumption also holds in the
case of Chromium.

Figure 1: Flake rate (x-axis) for Flaky and Fault-revealing
tests. Density (y-axis) is the probability density function. The
area under curves integrates to one. Many flaky tests are
always flaky in their previous builds. A majority of fault-
revealing tests have no history of flakiness at all.

To illustrate the flake rate differences between flaky and fault-
revealing tests, we plot the flake rate for both test categories in
Figure 1. The flake rate is computed using a window of 35 builds. To
set this time window, we checked the number of flaky tests having
a 𝑓 𝑙𝑎𝑘𝑒𝑅𝑎𝑡𝑒 () = 0 for build windows ranging from 0 to 40 builds
with a step of 5. We observed a convergence at size 35, meaning that
higher numbers of builds do not provide additional information.

In the majority of cases, flaky tests have a history of flakiness:
the percentage of flaky tests having a 𝑓 𝑙𝑎𝑘𝑒𝑅𝑎𝑡𝑒 () > 0 is in fact
87.9%. Furthermore, we see a pike for 𝑓 𝑙𝑎𝑘𝑒𝑅𝑎𝑡𝑒 () == 1 as 9.5%
of flaky tests were always flaky in their 35 previous builds. Still,
there is a non-negligible amount (45.3%) of fault-revealing tests
that were flaky at least once in previous builds considered: with
a 𝑓 𝑙𝑎𝑘𝑒𝑅𝑎𝑡𝑒 () > 0. From these observations, we may suggest that
the flakeRate() can be used to detect flakiness. Nevertheless, there
is still an important overlap between the history of flaky tests and
fault-revealing tests.

5 OBJECTIVES AND METHODOLOGY
5.1 Research questions
We start our analysis by assessing the effectiveness of the existing
flakiness prediction methods by considering the critical cases where
fault-revealing execution failures are flagged as flaky by the predic-
tion methods in various CI cycles. We are interested in investigating
the methods’ performance under realistic settings, i.e., correctly
detected and missed flaky and fault-triggering execution failures,
when trained with past CI data and evaluated on future ones. In
contrast to previous work, we perform an in-time evaluation that
considers test executions at different CI cycles. We investigate the
gains and losses of using a prediction method. Thus, we ask:

RQ1: How well do flaky test prediction methods discern flaky
execution failures from fault-triggering ones?

To establish realistic settings, we train the prediction models
using the information available (flaky tests and non-flaky ones, as
done by previous work) at a given point in time, where we have
sufficient historical data to train on. We then evaluate the models
in subsequent builds with respect to flaky and fault-triggering test
failures. We replicate the vocabulary-based methods since they
are popular, easy to implement and quite effective, and aimed at
learning to predict flaky tests, as done by previous studies.

After checking the prediction performance in a realistic setting
(execution failures), we repeat the entire process but now we train
on historical test execution failures instead of tests. We make this
adaptation with the hope of improving further our predictions
and perhaps improving our understanding of the impact that such
predictions may have on missed fault-triggering execution failures
(those marked by the models as flaky). Hence, we ask:

RQ2: How well do flaky execution failure prediction methods
discern flaky execution failures from fault-triggering ones?

To better understand the interplay between flaky and fault-
triggering executions we investigate the distribution of flaky and
fault-revealing tests in the different builds in our dataset. We also
seek to quantify the critical cases where a test having a history of
flakiness happens to reveal a fault. Therefore, we ask:

RQ3: How prevalent are flaky tests and fault-revealing tests
across builds?

5.2 Experimental procedure
5.2.1 Selection of a flaky test detection approach. Being a recent
topic of interest, several techniques have been introduced in the
scientific literature. Approaches relying on code coverage such
as FlakeFlagger [2] or DeFlaker [4] are challenging to implement
in our case. Chromium’s code base consists of several languages
and code coverage is both costly and non-trivial to retrieve. Test

1983

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Guillaume Haben, Sarra Habchi, John Micco, Mark Harman, Mike Papadakis, Maxime Cordy, and Yves Le Traon

smells [6] approaches are also difficult to extract as tests are written
in many different languages and tools do not always exist. Having
those constraints in mind, we decide to use the vocabulary-based
approach introduced by Pinto et al. [34]. This approach received
significant attention with several replication [7, 14] and follow-up
studies and its simplicity makes it easy to implement regardless of
the programming languages used in the system under study.

5.2.2 Training and validation of the existing approaches (RQ1). We
evaluate the ability of the vocabulary-based approach, trained to
differentiate flaky from non-flaky tests and used to predict flaky
test failures. To do so, we divide our dataset into a training set
(containing test information about the first 8,000 builds) and a test
set (containing test information about the last 2,000 builds). We
train our model following the existing methodologies. The flaky set
includes all tests marked as flaky in the training set. The non-flaky
set includes all fault-revealing tests and all passing tests in the
8,000th build (i.e., the last build of the training set) minus the tests
that are found as flaky in any of the builds under study (to increase
the confidence of being non-flaky). The test set includes all flaky
test failures and all fault-triggering execution failures (reported by
fault-revealing tests).

5.2.3 Implementation of a failure execution classifier (RQ2). We
select flaky failures in our dataset as all failures produced by flaky
tests and fault-triggering execution failures are all execution failures
produced by fault-revealing tests. There are no duplicated data in
the case of test failures, as each test execution is unique. For RQ2,
we train our classifier on non-flaky executions (passing and fault-
revealing tests execution) and flaky failures.

5.2.4 Time-sensitive evaluation. We split our data into two parts:
the first 80% builds are selected as a training set and the last 20% as a
holdout set. By doing so, we respect the evolution of failures across
time and avoid any data leakage that could occur by randomly
selecting data. This time-sensitive aspect is very important to con-
sider. We found that not taking this condition into account and
training a model on a shuffled dataset would greatly overestimate
the performance. Figure 2 shows a representation of our dataset.
Flaky tests are present in all builds and Fault-revealing tests are
occasional: they happen in 1/4 of builds (See Section 7). To mitigate
imbalance, we collected all passing tests for 1 build: 𝑏8,000 and use
them in our set of non-flaky tests, for training.

5.2.5 Classifier selection and pipeline description. We use a ran-
dom forest classifier to perform the predictions. Unfortunately, our
dataset is imbalanced with the minority class being 1% of the data.
Using a simple random forest would greatly increase the chance
of having few or no elements from our minority class in the dif-
ferent trees, making the overall model poor in predicting the class
of interest. To alleviate this issue, we decide to use a Balanced
Random Forest classifier [9] to facilitate the learning. This imple-
mentation artificially modifies the class distribution in each tree so
that they are equally represented. Furthermore, we use SMOTE in
the training phase to augment data for the minority class [8].

To represent the tests, we use CountVectorizer to convert texts as
a matrix of token counts. This technique, known as bag-of-words,
is used in previous vocabulary-based approaches [5, 7, 14, 31, 34].

These vectors initially contain as many features as the words ap-
pearing in source code of the tests. As the generated dictionary can
become big (in terms of size) we need to use feature selection to re-
duce it, remove irrelevant features (reducing noise in the data) and
select the most informative features. Feature selection is thus, help-
ing to reduce the model training time and to improve the overall
performance and interpretability of the model.

We use SelectKBest[22] which retains the𝑘 highest score features
based on the univariate statistical test 𝜒2. Hyper-parameters of the
machine learning pipeline, i.e., the number of trees in the forests,
the sampling strategy for SMOTE and the number of features to be
retained are tuned using a grid search approach and cross-validation
in the training set. Once optimized, we retrain a model fitted on
the whole training set and evaluate it on the holdout set.

5.2.6 Metrics. Finally, to evaluate the different models, we rely
on the following metrics derived from true positives (TP), true
negatives (TN), false positives (FP) and false negatives (FN):

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
Recall =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

The accuracy of a model is sensitive to class imbalance. In particular,
the precision and recall metrics can easily be impacted when one
class is underrepresented. To alleviate this issue, we report the
Matthews Correlation Coefficient (MCC) which is a more reliable
statistical rate to avoid over-optimistic results in the case of an
imbalanced dataset [10]. This metric takes into consideration all
four entries of the confusion matrix. MCC ranges from -1 to 1 and
is given by the following formula:

MCC =
𝑇𝑁 ×𝑇𝑃 − 𝐹𝑃 × 𝐹𝑁√︁

(𝑇𝑁 + 𝐹𝑁) (𝑇𝑃 + 𝐹𝑃) (𝑇𝑁 + 𝐹𝑃) (𝐹𝑁 +𝑇𝑃)

In addition to those metrics, we also report the false positive rate
(FPR), that is, the ratio of fault-triggering execution failures mis-
classified as flaky over all fault-triggering execution failures. It is
defined by:

FPR =
𝐹𝑃

𝐹𝑃 +𝑇𝑁

5.3 Data Labeling
This subsection summarises the way data is labelled. As shown
in Figure 2, our dataset consists of a training set and a test set
containing information about the first 8,000 builds and the last
2,000 builds under study, respectively.

5.3.1 Training set. Existing prediction methods focus on differenti-
ating flaky tests from non-flaky tests. In our case, we label as flaky
all tests marked as flaky in a build and as non-flaky tests all failing
tests and all passing tests minus tests that were found to be flaky in
previous builds. Duplicated tests (based on their source code) are
removed. Note that we added and kept passing tests in the training
set to increase the performance of each model.

5.3.2 Test set. The test set consists of all flaky failures (positive
elements) and all fault-triggering execution failures (negative ele-
ments). There are no duplicated elements as each test execution has
a unique set of dynamic properties (run duration and flake rate).

1984

The Importance of Accounting for Execution Failures when Predicting Test Flakiness ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Figure 2: The data collected from Chromium’s CI consists of flaky, fault-revealing and passing tests spread across 10,000 builds.
The build timeline ranges from build 𝑏0 to 𝑏10,000 and depicts the distribution of the collected tests: flaky tests are spread across
all builds and fault-revealing tests happen occasionally. Due to a large number of passing tests, we collected them from the
𝑏8,000 build (i.e., at the end of our training set).

6 RESULTS
6.1 RQ1: Discerning flaky from fault-triggering

execution failures when training on tests
We trained a model on 69,159 passing tests, 910 fault-revealing
tests and 8,857 flaky tests (unique tests). Then, we evaluated it on
217,503 flaky failures caused by flaky tests and 2,320 fault-triggering
execution failures caused by fault-revealing tests. Table 4 reports
the obtained performance. Similar to the performance achieved by
previous vocabulary-based models on other datasets, our model
was able to reach high accuracy with a precision of 99.2% and a
recall of 98.9%. However, we note a high false-positive rate. This is
due to an important amount (76.2%) of fault-triggering execution
failures classified as flaky (FP). This is concerning: fault-triggering
execution failures should not be misclassified as they reflect the ex-
istence of real faults. Overall, the MCC value is equal to 0.20, which
is relatively low and shows that the model struggles (compared to
random selection) to identify fault-triggering execution failures.

Table 4: Vocabulary-based model performance for the pre-
diction of flaky test failures vs fault-triggering execution
failures when trained on flaky vs non-flaky (fault-revealing
and passing tests). Despite a high accuracy on flaky execution
failures, the low MCC and high FPR show us that it remains
challenging for the model to classify negative elements (in
our case: fault-triggering execution failures)

Precision Recall MCC FPR

99.2% 98.9% 0.20 76.2%

The confusion matrix of our model decisions is depicted in Fig-
ure 3. The x-axis reports the predicted label and the y-axis the
actual label. Correct classifications are displayed in the top left (TN)
and bottom right (TP). We clearly observe that the model is able to
detect flaky tests with high precision. We also see that 2,435 flaky

Figure 3: Confusion matrix for the vocabulary-based model.
High accuracy is reached similar to the performance reported
in previous works. Nonetheless, 1,768 (76.2%) out of the 2,320
fault-triggering execution failures are mislabeled as flaky.

tests are classified as non-flaky (FN). This number is also impor-
tant to consider: it translates in all cases where developers will be
required to investigate irrelevant failures.

We want to further understand the reasons behind the classifica-
tion of fault-triggering execution failures. Therefore, we analyse
the (fault-revealing) tests causing those failures. Out of the 2,320
fault-triggering execution failures, 1,768 are in the set of false posi-
tives (76.2%) among which we found 463 (20% of all fault-triggering
execution failures) whose tests have a history of flakiness (flakeR-
ate > 0) and 1,305 (56.2% of all fault-triggering execution failures)
without flakiness history. Here it must be noted that depending on
the size of the history considered, we may have more tests with
past flakiness or less. Overall in our data, 1/3 of all fault-triggering
executions are due to tests that have exhibited flakiness behaviour.

RQ1:We find accurate predictions when aiming at flaky tests.
However, a high proportion (76.2%) of all fault-triggering ex-
ecution failures is classified as flaky (missed faults) and still
an important number (2,435) of flaky tests are marked as fault-
triggering execution failures (false alerts).

1985

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Guillaume Haben, Sarra Habchi, John Micco, Mark Harman, Mike Papadakis, Maxime Cordy, and Yves Le Traon

6.2 RQ2: Discerning flaky from fault-triggering
executions when trained on test failures

RQ1 showed that a vocabulary-based model trained to detect flaky
tests would miss an important number of faults and will incur false
alerts despite having high accuracy. In RQ2 we aim at checking
whether we can improve the performance of recognising fault-
triggering execution failures by training on test failures (flaky and
non-flaky).

Table 5 reports the results of such a model. We notice a high
precision and recall, 99.7% and 91.3% respectively, when predicting
flaky execution failures. The false positive rate is 20.3%, a better
result than in RQ1. However, the MCC only slightly increased to
0.25 showing that classifying failures accurately still remains a
challenge.

Table 5: Vocabulary-based model performance for the predic-
tion of flaky execution failures vs fault-triggering execution
failureswhen training onflaky vs non-flaky (fault-triggering
and passing test executions). The approach yields better per-
formance but is still insufficient to be reliable.

Precision Recall MCC FPR

99.7% 91.3% 0.25 20.3%

RQ2:When training on test failures to predict if a test failure is
flaky or fault-triggering, model performance slightly improves
but is still not effective in the context of the Chromium CI.

6.3 RQ3: How prevalent are flaky tests and
fault-revealing tests across builds?

RQs 1 and 2 showed that a vocabulary-based model trained to detect
flaky tests would miss an important number of faults and will incur
false alerts despite having high accuracy. To better understand the
situation, in this RQ we aim at providing insights on the interplay
between flaky and fault-revealing execution of the tests that are at
some point in time flaky.

Figure 4: Number of flaky tests and fault-revealing tests per
build. On average, there are 250 flaky tests per build and 1
fault-revealing test per failing build.

Figure 4 shows the distribution of flaky tests and fault-revealing
tests in the studied builds. We observe that there is an average of
178 flaky tests per build with a low standard deviation (41), showing
that flakiness is prevalent in the Chromium CI. In the case of fault-
revealing tests, taking into account all builds would result in an
average number of tests close to 0 as a majority of builds are exempt
from them. Thus, for better visualisation, we only considered builds
containing at least one fault-revealing test (i.e., failing builds). The
average number of fault-revealing tests per failing build is 2.7. The
standard deviation for fault-revealing tests is 14.9 and the number
of fault-revealing tests reported in one build is up to 579.

Table 6: Number of builds containing each studied test
type. All builds contain flaky executions. 1/4 contain fault-
revealing tests. Among the failing builds, 3/4 contain only
fault-revealing tests that are flaky in other builds.

Builds containing Number

Flaky tests 10,000
Fault-revealing tests 2,415

Fault-revealing flaky tests 1,974
Faults revealed only by fault-revealing flaky tests 1,766

Table 6 records, for each type of test, the number of builds that
contain at least one instance of the studied test types. We note that
all builds contain at least one flaky test (a test that flaked during
this build). In Chromium CI, execution failures do not cause build
failures. That is, tests flaking within the build are ignored.

Developers are expected to investigate test failures only when
they occur consistently across 5 reruns (resulting in a fault-revealing
test). Such fault-revealing tests occur in 24.2% of the builds (i.e. in
2,415 builds). Interestingly, 1,974 of these builds (i.e. 81.7%) contain
fault-revealing tests that flaked in previous builds, indicating that
tests with a flake history should not be ignored in future builds. In
1,766 builds all fault-revealing tests have flaked in some previous
builds, indicating that no "reliable" tests identified the fault(s).

Figure 5: Distribution of tests in our dataset. 22,477 tests
are exclusively flaky among all builds. 2,343 tests are fault-
revealing, among which 1/3 are flaky in other builds.

1986

The Importance of Accounting for Execution Failures when Predicting Test Flakiness ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

By investigating the status of all tests across all builds – see
Figure 5. Among the 209,530 tests of the Chromium project, 24,820
have failed in at least one build, including 22,477 that were always
flaky. Thus, 2,343 tests were fault-revealing in at least one build,
i.e., they attested the presence of faults, 897 were also flaky in at
least one other build. That is, 38.3% of tests that have been useful to
detect faults have also a history of flakiness.

RQ3 Flakiness affects all Chromium CI builds and mixes critical
(fault-revealing) signals with false (flakiness) signals. Crucially,
81.7% of builds contain fault-revealing tests that were flaky in
some previous builds, and 38.3% of all tests flake in some builds
and reveal faults in other builds. This indicates the strong ability
of (previously detected) flaky tests to reveal faults.

7 DISCUSSION
7.1 Tests being both flaky and fault-revealing
We further investigate the characteristics of the 897 tests that were
found both flaky and fault-revealing in different builds (See RQ3).
Figure 6 plots the number of times the examined tests revealed
a fault (y-axis) and flaked (x-axis) for each test. We observe that
flakiness is dominant, as most of the tests flake significantly more
frequently than triggering faults (833 out of 897 points fall below
the𝑦 = 𝑥 line). Indeed, most of the tests reveal faults only once, with
very few exceptions that reveal faults multiple times. This indicates
that developers cannot predict a fault-triggering execution given
the test execution history since only a few tests revealed a fault in
past builds.

To quantify these numbers, Figure 7 displays the number of tests
identified as fault-revealing and flaky in less (or equal) than 1, 2,
5, 10 and 50 different builds. Interestingly, we see that half of the
897 tests (50.4%) were fault-revealing in only one build. This means
that it is unlikely that a developer would consider these tests as
fault-revealing based on their history as they alsmost always are
flaky. Indeed, a majority of the examined tests were found to be
flaky in at least 50 different builds (40.5% were flaky in less than 50
builds).

7.2 Industrial Focus
In large industrial organisations, a strong testing culture is pro-
moted through well-designed automation infrastructures and a
prominent DevOps culture. This means that every software engi-
neer is expected to write his own tests [24]. Test results and code
changes information are stored in databases keeping years of ex-
ecution history. This data is then decisively used for conducting
accurate regression test selection and prioritisation [23] in order to
provide fast feedback and increase the development pace.

Unfortunately, flakiness has major implications for such tech-
niques [23] requiring particular attention on the transitions of tests
(from Pass to Fail or vice-versa)[29] instead of merely tests. Inter-
estingly, at Google 84% of such transitions originates from flakiness
despite only 16% of tests having some level of flakiness[30]. Apple
also emphasises the value of test transitions for flakiness detection
as they use it as a strong indicator in their flakiness scoring system
based on the flip rate of test results[18].

Figure 6: Number of times a test revealed a fault (y-axis) and
flaked (x-axis) for each of the 897 tests that are both flaky
and fault-revealing. Note that the scale is logarithmic for the
x-axis as the number of flaky occurrences is larger compared
to fault-revealing ones. The line y=x is represented in blue.

Figure 7: Fault-revealing and flaky occurrences of the tests
that are both flaky and fault-revealing. X-axis records the
maximum number of builds that a test was found fault-
revealing/flaky. The y-axis records the number of tests.

All in all, this shows that industries relymore heavily on test tran-
sitions rather than test alone (name, id or source code) to get valu-
able information about tests’ health. In such contexts, test results
(especially negative) are non-blocking in development pipelines
and the key is to get high-confident signals as quickly as possi-
ble that will then feed probabilistic or AI-driven systems to assist
developers taking actions (or not)[27]. This strong focus on test
transitions comforts the message and findings of our study: future
research should focus their efforts and attention on test executions
rather than test alone.

Another recurrent concern regards the confidence of the pro-
vided feedback. In the DevOps culture that is followed by most
of software companies, developers are the ones who decide what
and how to do stuff, so low confidence or wrong signals quickly
lead to abandonment of the tools/technologies. This means that
it is imperative to provide quick and highly confident signals to
developers to have some chance of adoption.

1987

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Guillaume Haben, Sarra Habchi, John Micco, Mark Harman, Mike Papadakis, Maxime Cordy, and Yves Le Traon

Perhaps the most important point related to flakiness prediction
regards the time when related feedback should be provided. In par-
ticular, it is worth developing methods that would provide feedback
across multiple release/commit cycles, for cases where there is a
high number of cycles, instead of directly for every single run. This
way the system could accumulate information over time, provide
confident suggestions, and make useful suggestions to their users
following their release/commit cycles.

Researchers should also consider revising their evaluation met-
rics when dealing with flakiness prediction methods. These should
be evaluated in an over-time fashion, which takes into consideration
the utility of the signal, and its value, and the related development
process. Considering single-release data is certainly a good first
step, however insufficient for CI-related processes that have mul-
tiple release cycles every day, and thus are more interested in the
state changes (e.g., test transitions) of the codebase.

8 THREATS TO VALIDITY
8.1 Internal validity
The main threat to the internal validity of our study lies in the use
of vocabulary-based approaches as predictors of flaky tests and
failures. Approaches leveraging other features, i.e., dynamic, static,
or both, could perform differently. As explained in section 5.2.1,
many features are difficult to extract in the case of Chromium (e.g.,
test smells or test dependency graphs) and features relying on code
coverage are not considered due to the overheads they introduce
and the difficulty of instrumenting the entire codebase. Although
this limits our feature set, the same situation appears in many major
companies such as Google and Facebook. Nevertheless, our key
insight is that many regression faults are discovered by flaky tests,
meaning that they would have been missed even by any flaky test
detector that correctly considers them as flaky.

Most of the research on flakiness prediction focuses on classify-
ing tests. Although in this paper we highlight the need for —and
focus on— detecting failures, one may wonder what would be the
performance of the studied techniques when aiming at detecting
flaky tests (instead of flaky test failures). To this end, we trained a
model using our dataset to distinguish flaky from non-flaky tests
and found similar results with those reported by the literature, i.e.,
MCC 0.77 when shuffling data and MCC 0.52 when performing a
time-sensitive evaluation. The above result shows that the problem
of targeting flaky tests is easier and more predictable. However,
as shown by our analysis it is misleading as more than 2/3 of the
regression faults are missed by such methods.

We evaluate the performance of the predictors in assisting de-
velopers, in a sense replacing the decisions of the developers (on
whether test failures are due to faults or due to flakiness), which
may not reflect the actual case. This is because developers may
guess better than the studied predictors. Unfortunately, there are
clear limits to what we can achieve through an empirical study as
the one we conduct here that does not involve users. While we sim-
ply admit that this is a potential threat to our study, we would argue
that developers are not in a position to predict whether their tests
fail due to faults, as they have no information of fault-triggering
from the history of their test cases for more than 50% of the cases.

8.2 External validity
We show that detecting flaky tests (instead of failures) is harm-
ful as it can miss many regression faults. This is the case for the
Chromium project and, while we believe Chromium to be represen-
tative of other software systems, we cannot guarantee that findings
would generalise to other projects. Similarly, the performance of
the different models we report may vary depending on the project.
Here, we mainly focus on web/GUI tests and flakiness might have
different causes in HTML and Javascript testing compared to other
programming languages.

8.3 Construct validity
We assume that all fault-revealing tests in our dataset indeed reveal
one or several issues in the code. This is the information reported by
the Chromium CI as of today. It is possible that some fault-revealing
tests are actually flaky tests as they might not be executed in a suf-
ficient amount of time. In a sense, the cases that reruns consistently
failed but did not reveal a regression fault are mistakenly considered
as fault-revealing. However, reruns cannot guarantee that a test
is not flaky. As this information is currently used by Chromium’s
developers and further verification is non-trivial, we rely on it
as ground truth for our dataset. Passing tests used as non-flaky
tests could also be mislabeled in our dataset. However, there is a
consequent number of passing tests and it is unlikely that many
would actually be flaky. Furthermore, we also removed from the
set of passing tests any tests that were found to be either flaky or
fault-revealing in any of the 10,000 builds.

9 CONCLUSION
In this paper, we investigated the utility of existing vocabulary-
based flaky test prediction methods as a replacement for test re-
runs, in the context of a continuous integration pipeline. To do so,
we collected data about 23,374 flaky tests and 2,343 fault-revealing
tests composing a dataset of 1.8 million test failures representing
the actual development process of more than 10,000 builds corre-
sponding to a period of 9 months. Thus, we empirically evaluated
the prediction methods and found similar performance compared to
previous studies in terms of precision and recall. Despite the (very)
high accuracy to detect flaky test failures, we also found that 76.2%
of fault-triggering test failures were misclassified as flaky by the
prediction methods, indicating major losses on the fault revelation
capabilities of the test suites. Going a step further, we showed that
flaky tests have a strong ability to detect faults, with 1/3 of all re-
gression faults being revealed by tests that have experienced flaky
behaviour at some point in the project’s lifetime.

These findings motivated the need for execution-focused predic-
tion methods. To this end, we extended our analysis by checking
the performance of execution-focused models (trained on test ex-
ecutions instead of tests) and found that they resulted in similar
accuracy and fewer false positives. Therefore, we believe that ad-
ditional research is needed in order to tackle this vastly ignored
problem of flaky test failure prediction over flaky tests.

10 ACKNOWLEDGEMENTS
Thiswork is supported by the LuxembourgNational Research Funds
(FNR) through the CORE project grant C20/IS/14761415/TestFlakes.

1988

The Importance of Accounting for Execution Failures when Predicting Test Flakiness ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

REFERENCES
[1] Amal Akli, Guillaume Haben, Sarra Habchi, Mike Papadakis, and Yves Le Traon.

2022. Predicting Flaky Tests Categories using Few-Shot Learning. https:
//doi.org/10.48550/ARXIV.2208.14799

[2] Abdulrahman Alshammari, Christopher Morris, Michael Hilton, and Jonathan
Bell. 2021. FlakeFlagger: Predicting flakiness without rerunning tests. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
IEEE, Madrid, Spain, 1572–1584.

[3] Saswat Anand, Antonia Bertolino, Edmund Burke, Tsong Yueh Chen, John Clark,
Myra B. Cohen, Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, Jenny
Li, Phil McMinn, and Hong Zhu. 2013. An orchestrated survey of methodologies
for automated software test case generation. Journal of Systems and Software 86,
8 (August 2013), 1978–2001.

[4] Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung,
and Darko Marinov. 2018. DeFlaker: Automatically Detecting Flaky Tests. In
Proceedings of the 40th International Conference on Software Engineering - ICSE
’18. ACM Press, New York, New York, USA, 433–444.

[5] Antonia Bertolino, Emilio Cruciani, BrenoMiranda, and Roberto Verdecchia. 2020.
Know Your Neighbor: Fast Static Prediction of Test Flakiness. Proceedings of the
International Conference on Software Engineering (ICSE) 9 (2020), 76119–76134.
https://doi.org/10.32079/ISTI-TR-2020/001.Istituto

[6] Bruno Camara, Marco Silva, Andre Endo, and Silvia Vergilio. 2021. On the Use
of Test Smells for Prediction of Flaky Tests. In Proceedings of the 6th Brazilian
Symposium on Systematic and Automated Software Testing (Joinville, Brazil) (SAST
’21). Association for Computing Machinery, New York, NY, USA, 46–54. https:
//doi.org/10.1145/3482909.3482916

[7] B. Camara, M. Silva, A. T. Endo, and S. Vergilio. 2021. What is the Vocabulary of
Flaky Tests? An Extended Replication. In 2021 2021 IEEE/ACM 29th International
Conference on Program Comprehension (ICPC) (ICPC). IEEE Computer Society,
Los Alamitos, CA, USA, 444–454. https://doi.org/10.1109/ICPC52881.2021.00052

[8] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321–357.

[9] Chao Chen, Andy Liaw, Leo Breiman, et al. 2004. Using random forest to learn
imbalanced data. University of California, Berkeley 110, 1-12 (2004), 24.

[10] Davide Chicco and Giuseppe Jurman. 2020. The advantages of the Matthews
correlation coefficient (MCC) over F1 score and accuracy in binary classification
evaluation. BMC genomics 21, 1 (2020), 1–13.

[11] Chromium contributors. 2021. The Chromium Projects. https://www.chromium.
org/. (Accessed on 08/17/2021).

[12] Sakina Fatima, Taher A. Ghaleb, and Lionel Briand. 2022. Flakify: A Black-Box,
Language Model-Based Predictor for Flaky Tests. IEEE Transactions on Software
Engineering 2022 (2022), 1–17. https://doi.org/10.1109/TSE.2022.3201209

[13] Martin Gruber, Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. 2021. An
empirical study of flaky tests in python. In 2021 14th IEEE Conference on Software
Testing, Verification and Validation (ICST). IEEE, IEEE, Online, 148–158.

[14] Guillaume Haben, Sarra Habchi, Mike Papadakis, Maxime Cordy, and Yves
Le Traon. 2021. A replication study on the usability of code vocabulary in
predicting flaky tests. In 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR). IEEE, IEEE, Madrid, Spain, 219–229.

[15] Mark Harman and Peter O’Hearn. 2018. From Start-ups to Scale-ups: Opportu-
nities and Open Problems for Static and Dynamic Program Analysis (keynote
paper). In 18𝑡ℎ IEEE International Working Conference on Source Code Analysis
and Manipulation (SCAM 2018). IEEE, Madrid, Spain, 1–23.

[16] Kim Herzig and Nachiappan Nagappan. 2015. Empirically Detecting False Test
Alarms Using Association Rules. Proceedings - International Conference on Soft-
ware Engineering 2 (2015), 39–48. https://doi.org/10.1109/ICSE.2015.133

[17] Tariq M King, Dionny Santiago, Justin Phillips, and Peter J Clarke. 2018. Towards
a bayesian network model for predicting flaky automated tests. In 2018 IEEE
International Conference on Software Quality, Reliability and Security Companion
(QRS-C). IEEE, IEEE, Lisbon, Portugal, 100–107.

[18] Emily Kowalczyk, Karan Nair, Zebao Gao, Leo Silberstein, Teng Long, and Atif
Memon. 2020. Modeling and Ranking Flaky Tests at Apple. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering: Software
Engineering in Practice (Seoul, South Korea) (ICSE-SEIP ’20). Association for
Computing Machinery, New York, NY, USA, 110–119. https://doi.org/10.1145/
3377813.3381370

[19] Wing Lam, Patrice Godefroid, Suman Nath, Anirudh Santhiar, and Suresh Thum-
malapenta. 2019. Root Causing Flaky Tests in a Large-Scale Industrial Setting. In
Proceedings ofthe 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA ’19). ACM Press, Beijing, China, 101–111.

[20] Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. iDFlakies:
A framework for detecting and partially classifying flaky tests. In 2019 12th ieee
conference on software testing, validation and verification (icst). IEEE, IEEE, Xian,
China, 312–322.

[21] Johannes Lampel, Sascha Just, Sven Apel, and Andreas Zeller. 2021. When Life
Gives You Oranges: Detecting and Diagnosing Intermittent Job Failures at Mozilla.

In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Athens,
Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY,
USA, 1381–1392. https://doi.org/10.1145/3468264.3473931

[22] Scikit learn developers. 2022. sklearn.feature_selection.SelectKBest — scikit-learn
1.1.2 documentation. https://scikit-learn.org/stable/modules/generated/sklearn.
feature_selection.SelectKBest.html. (Accessed on 08/11/2022).

[23] Claire Leong, Abhayendra Singh, Mike Papadakis, Yves Le Traon, and John
Micco. 2019. Assessing transition-based test selection algorithms at Google. In
Proceedings of the 41st International Conference on Software Engineering: Software
Engineering in Practice, ICSE (SEIP) 2019, Montreal, QC, Canada, May 25-31, 2019,
Helen Sharp and Mike Whalen (Eds.). IEEE / ACM, Montréal, Canada, 101–110.

[24] Jeff Listfield. 2017. Google Testing Blog: Where do our flaky tests come
from? https://testing.googleblog.com/2017/04/where-do-our-flaky-tests-come-
from.html. (Accessed on 01/12/2021).

[25] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
empirical analysis of flaky tests. In Proceedings of the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, Vol. 16-21-November-2014. Association
for ComputingMachinery, Hong Kong, 643–653. https://doi.org/10.1145/2635868.
2635920

[26] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
empirical analysis of flaky tests. In 22𝑛𝑑 International Symposium on Foundations
of Software Engineering (FSE 2014), Shing-Chi Cheung, Alessandro Orso, and
Margaret-Anne Storey (Eds.). ACM, Hong Kong, China, 643–653.

[27] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019.
Predictive test selection. In 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, IEEE/ACM,
Montreal, QC, Canada, 91–100.

[28] Atif M. Memon and Myra B. Cohen. 2013. Automated testing of GUI applications:
models, tools, and controlling flakiness. In 35𝑡ℎ International Conference on
Software Engineering (ICSE 2013), David Notkin, Betty H. C. Cheng, and Klaus
Pohl (Eds.). IEEE Computer Society, San Francisco, CA, USA, 1479–1480.

[29] Atif M. Memon, Zebao Gao, Bao N. Nguyen, Sanjeev Dhanda, Eric Nickell, Rob
Siemborski, and John Micco. 2017. Taming Google-Scale Continuous Testing. In
39𝑡ℎ International Conference on Software Engineering, Software Engineering in
Practice Track (ICSE-SEIP). IEEE, Buenos Aires, Argentina, 233–242.

[30] John Micco. 2017. The State of Continuous Integration Testing Google.
[31] Doriane Olewicki, Mathieu Nayrolles, and BramAdams. 2022. Towards Language-

Independent Brown Build Detection. In Proceedings of the 44th International
Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). As-
sociation for Computing Machinery, New York, NY, USA, 2177–2188. https:
//doi.org/10.1145/3510003.3510122

[32] Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn. 2021.
A Survey of Flaky Tests. ACM Trans. Softw. Eng. Methodol. 31, 1, Article 17 (oct
2021), 74 pages. https://doi.org/10.1145/3476105

[33] Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn. 2022.
A Survey of Flaky Tests. ACM Trans. Softw. Eng. Methodol. 31, 1 (2022), 17:1–17:74.
https://doi.org/10.1145/3476105

[34] Gustavo Pinto, Breno Miranda, Supun Dissanayake, Marcelo d’Amorim,
Christoph Treude, and Antonia Bertolino. 2020. What is the vocabulary of
flaky tests?. In Proceedings of the 17th International Conference on Mining Software
Repositories. IEEE, Seoul, South Korea, 492–502.

[35] Valeria Pontillo, Fabio Palomba, and Filomena Ferrucci. 2021. Toward Static Test
Flakiness Prediction: A Feasibility Study. In Proceedings of the 5th International
Workshop on Machine Learning Techniques for Software Quality Evolution (Athens,
Greece) (MaLTESQuE 2021). Association for Computing Machinery, New York,
NY, USA, 19–24. https://doi.org/10.1145/3472674.3473981

[36] Yihao Qin, ShangwenWang, Kui Liu, Bo Lin, Hongjun Wu, Li Li, Xiaoguang Mao,
and Tegawendé F. Bissyandé. 2022. Peeler: Learning to Effectively Predict Flaki-
ness without Running Tests. In 2022 IEEE International Conference on Software
Maintenance and Evolution (ICSME). ICSME, Limassol, Cyprus, 257–268.

[37] Alan Romano, Zihe Song, Sampath Grandhi, Wei Yang, and Weihang Wang.
2021. An Empirical Analysis of UI-based Flaky Tests. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, IEEE, Madrid,
Spain, 1585–1597.

[38] August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. 2019. iFixFlakies
: A Framework for Automatically Fixing Order-Dependent Flaky Tests. In 27th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations ofSoftware Engineering (ESEC/FSE ’19). ACM, TALLINN, ESTONIA,
545–555. https://doi.org/10.1145/3338906.3338925

[39] Denini Silva, Leopoldo Teixeira, and Marcelo d’Amorim. 2020. Shake it! detect-
ing flaky tests caused by concurrency with shaker. In 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, IEEE, Adelaide,
Australia, 301–311.

[40] The Chromium Development team. 2021. chromium/chromium: The official
GitHubmirror of the Chromium source. https://github.com/chromium/chromium.
(Accessed on 07/06/2021).

1989

