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Utilizing the Stern-Gerlach apparatus to create matter-wave superposition states is a long-sought-after goal,
not only due to its potential applications in the quantum realm, but also because of its fundamental implica-
tions for studying the quantum properties of gravity. The main challenge in creating a macroscopic quantum
interferometer arises from the loss of coherence, primarily through two channels. One channel involves strong
coupling with the environment for macroscopic matter, leading to decoherence. The other channel relates to
the precision of wave-packet overlap, which can occur due to external and internal fluctuations of various
sources. The latter introduces a unique challenge for larger-scale masses by perturbing the center of mass
motion of the macroscopic object. Here we study a particular challenge, namely, the issue of internal degrees of
freedom, specifically phonon fluctuations and contrast reduction. This work investigates the contrast reduction
caused by spin—magnetic-field—phonon and diamagnetism-phonon interactions in the quantum gravity-induced

entanglement of masses protocol configuration.
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I. INTRODUCTION

The matter-wave interferometer is an essential tool for
generating sizable spatial superposition states. It represents
the forefront of theoretical physics, as the creation of
spatial superposition states can aid in constructing a the-
ory that reconciles gravity with quantum mechanics [1-5]
and studying the equivalence principle [6-9] and the de-
coherence mechanism [10-21]. In terms of applications,
matter-wave interferometers are also considered for detecting
gravitational waves [22], neutrinos [23], and light axionlike
particles [24]; precise measurements of earth’s gravitational
acceleration [22,25-32]; and detection of space debris [33].

To test the quantum nature of gravity, a proposal known
as quantum-gravity-induced entanglement of masses (QGEM)
has been proposed [34]. To further probe the nature of gravity,
the gravitational-optomechanical test, which tests the analog
of the light-bending experiment in quantum gravity [35], and
measurement-based tests [36] require the creation of a matter-
wave interferometer.

The QGEM proposal utilizes two masses, each prepared in
a spatial superposition state, which is kept at a distance where
the only interaction between them is mediated via gravity.
Suppose detectable entanglement exists between these two
masses. In that case, one can ascertain that the gravitational
interaction is quantum in nature [37-43]. This quantum-
entanglement-based experiment is concordant with the local
operations and classical communication theorem, which states
that classically one cannot mediate quantum entanglement
between two quantum systems [44].

In QGEM, the spatial superposition is created by the Stern-
Gerlach (SG) apparatus [45]. At the same time, the test mass
is a diamond internally embedded with a nitrogen-vacancy
(NV) center. The SG device utilizes the coupling between
the magnetic field and the spin (NV center) to create a
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spatial superposition state. Based on similar mechanisms,
there have been approaches toward atom interferometry. Such
an interferometer has been experimentally realized on atom
chips for half-loop [46] and full-loop [47] schemes. For the
former, the coherent time for maintaining spatial superposi-
tion was 21.45 ms, and the size of 3.98 um was reached. For
the full loop, the coherent time and superposition size were 7
ms and 0.38 um, respectively.

Of course, QGEM imposes higher demands on the
interferometer’s performance, with critical requirements in-
cluding the diamond’s mass M ~ 107'°-107'* kg (with
length scale approximately 10~7-10~® m) and the spa-
tial superposition size needing to reach approximately
10-100 wm [14,15,21,34,48]. The larger mass objects tend to
couple more strongly with their environment, such as the elec-
tromagnetic fields and collisions with residual gas particles.
These couplings act as measurements, causing the collapse
of the spatial superposition state into classical states, known
as decoherence [49,50]. Furthermore, due to experimental
constraints on the magnetic-field gradient [51,52], the time
required to achieve large-scale spatial superposition states is
on the order of Ar ~ 1 s makes it more challenging to main-
tain the spin coherence state of NV centers and the spatial
superposition state of diamond.'

For a closed-loop scheme, another challenge that is inde-
pendent of the environment arises from the Humpty-Dumpty
(HD) effect [55-58], which refers to the overlap problem
of matter waves. For example, in the atomic interferom-
eter mentioned above, if the wave packets on both sides

!See also gravity gradient and relative acceleration noise [33,53,54]
for other sources of noise that lead to dephasing the interferometer
along with electromagnetic sources of noise [18,19].
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FIG. 1. Illustrations of different kinds of forces acting on the lattice chain (represented by black solid wave lines) where positions of the
atom or spin are shown by black dots. The wave packets of the c.m. in the two interferometry arms denoted here by the left (L) and right (R)
arms are plotted by orange and blue dashed circles. (a) Splitting forces F-R acting on the spin with site number s where they have the same
magnitude but opposite direction. (b) Diamagnetic forces EL'R acting on every atom, where, for simplicity, we assume it acts on the spin as

well.

of the interferometer arm cannot precisely overlap (in both
translational and rotational degrees of freedom), they cannot
generate interference fringes and thus lead to the loss of
contrast (see [59], where the analysis of the HD effect has
been analyzed quite nicely, including the impact of angu-
lar momentum and the libration mode of the NV spin). For
macroscopic objects, there is also a challenge of overlap due
to the internal degrees of freedom, such as phonon vibration.
In a very interesting work [60], the contrast reduction of
phonon wave packets induced by coupling NV centers with
magnetic fields was demonstrated. More recently, this cou-
pling has been extended to white noise, providing a boundary
on creating larger-scale spatial superposition states that have
been considered [61].

This work also investigates the contrast loss caused by
phonons in matter-wave interferometers. Unlike atomic-scale
interferometers, due to the diamagnetic property of a diamond
and its interaction with the magnetic field being proportional
to its mass, the diamagnetic interaction becomes essential
in the matter-wave interferometers with a massive object.
For example, the diamagnetic interaction contributes to the
trajectories of the diamond’s center of mass (c.m.) wave pack-
ets. Therefore, the magnetic field must be carefully designed
to guarantee a closed loop [51,62—-64]. In addition, a mass-
independent scheme [64] based on diamagnetic interaction
creating a large superposition size has recently been proposed.
From the perspective of the internal degrees of freedom, the
diamagnetic repulsions of the diamonds on either side of the
interferometer arms are different, leading to the excitation
of varying phonon modes and thus resulting in a contrast
reduction of the internal degrees of freedom. This is fun-
damentally similar to the spin—-magnetic-field interaction in
Refs. [60,61].

In this regard, our paper differs from Refs. [60,61]. We
validate their results for the spin—magnetic-field interaction.
However, we also consider the effect of the diamagnetic con-
tribution, which brings another layer of complexity that is not
present otherwise. In the case of the diamagnetic contribution,
the phonons are also coupled to the c.m. of the diamond. The
difference lies in the fact that for diamagnetic interaction, each
carbon atom in the atomic chain on both sides of the inter-
ferometer arms experiences repulsion in the same direction,
while for the spin—magnetic-field interaction, the chains are
plucked at the NV center in opposite directions, as illustrated
in Fig. 1. Besides the magnetic effects, we will also briefly
mention the role of electric dipole interaction with phonons

and how it affects the latter in comparing the loss of contrast
for the one-loop interferometer.

The structure of this work is arranged as follows. In Sec. II
we introduce the setup, which includes the phonon model and
the statistical model of phonon modes at finite temperature,
and introduce the Wigner function. In Sec. III we provide the
Hamiltonian of the diamond and present the model for the
trajectory of the diamond wave packet. In Sec. IV we examine
the different effects of diamagnetism-phonon coupling and
spin-phonon interaction on phonon dynamics and further uti-
lize displacement operators in Sec. V to describe the phonon’s
contrast reduction. In Sec. VI we present numerical results and
compare the contrast loss induced by these two interactions at
different temperatures. Also, we consider contrast loss led by
other interactions, e.g., potential dipole—electric-field interac-
tion, in the level of the phonon; this part of the discussion can
be found in Appendixes D and E.

II. BRIEF REVIEW OF PHONONS

Phonons constitute the primary focus of this work, and the
model is derived from the lattice chain model (see Ref. [65]).
In the case of atomic interactions, the Hamiltonian for free
phonons can be expressed as

—_—

2 Ki;
Hiwe =m 30 30 5ty = 35 (i + o). (1)
i ij q

where Kj; is a matrix associated with the interatomic inter-
action while Q,(X;) = Q; represents the eigenvector of the
matrix. The position of each atom can be written as X;(¢) +
x;(t), where the capital X;(¢) denotes the equilibrium position
of the ith atom at any instant of time and x; represents its small
vibrations. Because the position of the diamond as a whole
varies within the SG apparatus, the equilibrium position X;(#)
of each atom in the chain becomes a function of time. Notably,
the relative distances between these equilibrium positions,
Xi+1 — X; = const, remain constant. Therefore, X;(¢) can ef-
fectively be regarded as the trajectory of the diamond’s c.m.,
with the distances relative to the center particle X, remain-
ing unchanged. Here, for convenience, we assume that the
NV center (with equilibrium position X;) is embedded at the
c.m. position Xs(z) = X.(¢). In the following, we sometimes
neglect the time ¢ for convenience.

042614-2



PHONON-INDUCED CONTRAST IN A MATTER-WAVE ...

PHYSICAL REVIEW A 110, 042614 (2024)

The small movement x;(¢) can be expanded into mode
amplitude u,, with creation and annihilation operators as

1 i
5t = == ; Qg (). )

where the relation between u, and its conjugate (the momen-
tum 1,), and the creation and annihilation operators can be
expressed as

a, = ——(wyu, +1iut,),
q 2hwq( q"q ‘])
1
+ ..
diq = qu(a)quq — luq). (3)

For simplicity, in our one-dimensional atomic chain model
embedded with an NV center, we assume that all N particles
have an identical atomic mass of carbon m and the mass for
the diamond is M. The w, is the eigenfrequency of the chain
model with the fundamental tone,

wy =mc/L, @)

where ¢ = 17.5x10° m/s is the sound speed within a dia-
mond [65] and L is the length [estimated via L = (M/p)~'/3,
where the density p =3.51x103° kg/m> [66]]. For ex-
ample, for the masses in a range M ~ 107'4-10718 kg
the corresponding fundamental tone is in the range
wy ™~ 1010—10” Hz.

At the initial stage t = 0, before the diamond enters the
SG apparatus and interacts with the magnetic field, one can
assume that the phonons are in a thermal equilibrium state at
a temperature 7 [65],

1 1 ho,
t =0)) = = coth [ = —= ). 5
(ng( )) = 5 co <2kBT> &)
According to the equipartition theorem, one can establish the
relationship between the average number of phonons (n,(0)),
the characteristic length Ou,» and the characteristic momentum
i, as [65]

Dyq 2 I,

(gt =0)) = =20, = Fiang i’ (6)
where o,, and o are statistical averages. A review of this
detail can be found in Appendix B. In the case of thermal equi-
librium, the phonons in each mode g form a mixed state. The
amplitudes and momenta of the phonons thus take on Gaus-
sian distributions, represented by the Wigner function [67] as

u? i
W, i,)=Nexp| —| % + —2 , 7
(uq, 1tg) P 202 T 202 )
q q

where A is normalization factor. Equation (6) gives the nor-
mal mode’s characteristic length and momentum. Note that
o, and oy, are statistical averages dependent on temperature
T (see Appendix B). Once we let the diamond experience the
SG force, the occupation number of the phonons will evolve,
and we will estimate that in the following sections.

III. INTERACTIONS ON STERN-GERLACH APPARATUS

For the diamond embedded with a single spin S in the
NV, we already assume that it has been prepared in a super-
position of opposite directions S® = 1 (right) and S* = —1
(left), hence the spatial superposition. The Hamiltonian for the
diamond’s c.m. consists of three parts’

2
Hom = 5 — psRp — X g2, ®)
2M 2/L0
The first term is just the kinetic energy related to the momen-
tum of the c.m.’s. The second term is the coupling between the
NV center and the magnetic field with the magnetic moment
L = gy, where the Landé g factor g & 2 and Bohr magneton
wy = 9.27x1072* (J/T) [70]. For simplicity, we assume the
NV is located at the c.m. with equilibrium position X; = X..
The appearance of the third term is because diamond is a
diamagnetic material and its susceptibility is a negative value
Xp = —6.2x107° m? /kg [71] with vacuum permeability 1.
One should note that this term is a macroscopic expression.
When a carbon atom chain is placed in an external mag-
netic field pointing in the e, direction, each carbon atom will
contribute a different magnitude of repulsion according to its
equilibrium position X; pointing in the —e, direction. From
the aspect of macroscopic diamond, these small repulsions
collectively form a macroscopic diamagnetic force effectively
acting on the c.m., X..

For the magnetic field in Eq. (8), we give its form that is

experienced by the ith atom as

Bi(t) = By + b(1)Xi(1), €))

where B is the bias magnetic field and b(¢#) denotes the
gradient in the SG apparatus. Note that in Eq. (9) the coor-
dinates along the e, axis are represented by the uppercase X;,
indicating the equilibrium positions of atoms in the chain. For
example, the magnetic field experienced by the spin, which we
have assumed to be located at the center of the chain, becomes
B. = By + b(t)X.. In this model, we consider only the one-
dimensional case, where the separation of the diamond and
the force on the atomic chain is confined to the e, direction.
We do not consider the motion of the diamond in other
dimensions, such as in drop tower experiments where the
diamond needs to move in the direction of earth’s accel-
eration or in magnetic levitation setups where it moves in
a direction orthogonal to e,. In these cases, the form of a
magnetic field becomes very complicated for a closed loop
and it needs a careful design, especially when one takes the
diamagnetic term into account [62,64]. For simplicity, we
consider the movements of c.m.’s only along e,, and they
are subjected only to the spin-magnetism interaction [second
term in Eq. (8)]. Therefore, to get a closed loop, the magnetic

There is also a term related to D(S - 7)* related to the zero-point
splitting [59,62]. This term is relevant for the internal spin degrees
of freedom. Here we are not considering this contribution; we do not
consider the rotation of the diamond in our current context. For the
rotation of the NV center in diamond and its mechanical coupling
with magnetic levitation, see [68,69].
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FIG. 2. (a) Magnetic-field setting inside the Stern-Gerlach apparatus and the corresponding (b) accelerations, (c) velocities, and (d) trajec-
tories of c.m. wave packets. In the time intervals (¢, #) and (fs, f) the magnetic gradient is b(¢) = +ny,, while in (7, #3) and (4, #5) the gradient
is switched to b(t) = —n,. Due to the superposition of the spin (ST? = 41), the c.m. wave packets experience opposite splitting forces due to
the N'V. Thus, in the left (red dashed lines) and right (blue solid lines) arms of the interferometer c.m.’s possess opposite accelerations (denoted
by a“R), velocities, and trajectories (denoted by X®). The duration times for acceleration and deceleration are the same as 7,. We also assume
a free-flight process between #; and 7, with duration 2t; where the magnetic gradient is turned off. Therefore, the entire time for the diamond

flying inside the Stern-Gerlach apparatus is 47, + 27;.

gradient b(¢) can be expressed in a very simple form as [53]

+ny, = [11, 1]
—p, 1 =[t2,13]
b(t) =10, t =13, 14] (10)
—Ny, 1= [t4,15]
+n, = [t5, L],

where in different time intervals the gradients take constant
values =£n,. The closed loop is guaranteed as long as the
acceleration and deceleration durations (denoted by 7,) are the
same. In the interval [#3, #4] there is a free-flight process with
duration t;, where the gradient is turned off, as illustrated in
Fig. 2(a).

In this paper we concentrate on the contrast loss of phonon
modes, while the mismatch issue in the c.m. position and
momentum of the two paths of the superposition is beyond
the scope of this work. The maximum accelerations of the two
paths are thus a series of constants given by

 uS“Rh(r)
==

We assume that at the initial moment, the spin inside the
diamond has been prepared in a superposition and the c.m. of
the diamond is at rest. When the loop starts, wave packets on
either side of the interferometer behave distinctly according
to SR and S*, with opposite accelerations as illustrated in
Fig. 2(b). In this model, we neglect the acceleration due to
the induced diamagnetic potential for the time being. In fact,
including the effect will not modify the current scenario much,

(1)

aL,R (t )

as what matters is the relative force difference between the left
and the right trajectories of the interferometer.

In this simplest case, the c.m. trajectories are symmetric,
given by XR = —XL. As depicted in Fig. 2(d), they can be
expressed by the expressions

LR 2
%’ t =[t,t]
a-R (1227242t +1f
dEdizetd) gy
XER(t) = Y a“ReZ, t=[t3, t4] (12)
a-R (12212 -2t +1f
A 2ned)
LR(_ 2
%7 t = [tS’ f()].

Thus, the relative separation distance AX (t) between the two
trajectories is also a quadratic function of time. During the
time interval [#3, #4], this distance between the two trajectories
reaches the maximum value

AXp = 2|d"R |72, (13)

where we define the positive constant maximum acceleration
|a“R| = un,/M and total duration time At = t5 — ;.

A. Spin-phonon interaction

So far, we can observe from the Hamiltonian (8) that the
diamond experiences two types of forces, i.e., the separa-
tion force acting on the NV particle located at X and the
diamagnetic force exerted by the entire diamond, which are
effectively located at the c.m. Regarding the former, the force
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acts only on the central particle, the spin, which can be read
out by calculating the partial derivative of the second term in
Eq. (8). The splitting force has the form

FFR@) = pS™Rb), (14)

where the index s represents the spin. From here, one can
immediately write the spin—magnetic-field—phonon interac-
tion as Fyx, (recall that x¢ represents a small vibration of the
NV away from its equilibrium position). For clarity, in the
following discussion related to the phonon, we refer to this
coupling as the spin-phonon interaction.

B. Diamagnetism-phonon interaction

For the diamagnetic force acting on the diamond, we con-
sider that each particle has different magnetization opposite
to the direction of the external magnetic field depending on its
equilibrium position X;. Therefore, each atom generates a dif-
ferent magnitude of diamagnetic repulsion Fd];z’),R X)) = FlLd}:
From a macroscopic perspective, the overall diamagnetic re-
pulsion experienced by the diamond is contributed by these
atoms; thus we should obtain the relationship (details of this
part can been found in Appendix A)

Ff = x;l.;/l (Bob +b°XER) = 3 FGi.  (15)
l

where the second part of (15) comes directly from the third
term of Eq. (8), representing the overall repulsion effectively
exerted on the c.m. Therefore, the coupling between the mag-
netic field (diamagnetism) and the ith particle (phonon) in
the chain can now be written as Fif:iif;x,-. In the following
discussion related to the phonon, we refer to this coupling as
the diamagnetism-phonon interaction.

Recalling that we used a linear magnetic field, this simple
magnetic field is widely applied in interferometers [51,72].
Since the magnetic-field gradient can be modeled as a step
function, the separation force (14) acting on the spin is in-
dependent of its equilibrium position X;. Therefore, there is
no coupling between the trajectories of wave packets and the
phonon degrees of freedom.

In contrast to the splitting force acting on the NV center,
the situation for the diamagnetic force (15) acting on each
particle in the atomic chain is more complicated. The tiny
vibrations of these particles (phonons) are coupled to their
equilibrium positions (trajectories) through the magnetic field
(considering Eﬁiﬁx; for each particle). Additionally, as shown
in Fig. 1(a), the forces acting on the NV center in different
wave packets are of the same magnitude but in opposite direc-
tions. Therefore, when the loop is completed, the contrast of
phonon modes always differs by a positive or negative sign in
both normal coordinates and momentum. For the diamagnetic
force in Fig. 1(b), the corresponding atoms in the atomic chain
of the two wave packets experience the same direction of
diamagnetic force but with different magnitudes (depending
on the scale of spatial superposition). It is not difficult to
imagine that the phonon modes will exhibit contrast reduction
under such differential influences.

IV. PHONON FLUCTUATIONS

In this section we study a phonon excited by the two
forces (14) and (15) acting on the lattice chain on the contrast
of phonon wave packets. Here we generally represent the
aforementioned forces as F,»(XiL’R) (sometimes we will neglect
XiL’R for simplicity and use just FiL’R). The total Hamilto-
nian regarding every atom and their interactions with external
fields can be written as

LR
Hiot = Hfree — E F; Xi
i

iFL,R

= Hfee — E E ,—l 122
q’
i,q M

(16)

where Hp. is the free-phonon Hamiltonian in Eq. (1).
Equation (16) represents the energy change of the diamond
interacting with the magnetic field after entering the SG
apparatus.

When the diamond enters the SG apparatus, the interaction
between its internal particles and the external field changes the
number of phonons. With the Hamiltonian (16), the kinematic
equations for the canonical coordinates of each vibrational
mode g can be derived as

i FL’R

iy oy = Sy = )= (17)

where f, encompasses the forces acting on all atoms; it can be

regarded as the force acting on the lattice chain. The solution

of Eq. (17) is

. sin(wyt)

ug(t) = ug(0) cos(wyt) + 1y (0)———
q

¥ f sinw,(t ~ 1) t/)qu’R(t’)dt’. (18)
0 [0

q

Here the initial conditions, i.e., the phonon amplitude
ug(t = 0) and its conjugate momentum ,(t = 0), are solely
dependent on the initial temperature of the diamond (6).
The initial phonon population in mode ¢ is (5) for the ther-
mal equilibrium mixed state considered here. From here, it
can be observed that, due to the difference in forces acting
on the atomic chains on the two sides of the interference
arm, a discrepancy exists in the population of phonons with
mode ¢,

(i + wpu?). (19)

ng(t) = Mq

1
2hw,
Recall that FiL’R in (17) is a generalized form introduced
for convenience. When investigating spin-phonon coupling,
it needs to be replaced with (14). In this case, the summation
over atomic index i disappears (we consider only a single NV
center). When studying the influence of the diamagnetic force
of the lattice chain in different trajectories on internal degrees
of freedom, FiL’R is replaced by (15) and the summation
in (17) should include all atoms.

In Fig. 3 we separately illustrate the differences in the
numbers of phonons induced by these two types of forces (14)
and (15). Recall that the eigenvector Q? of phonons is a
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FIG. 3. Illustrations of occupation numbers of the phonons for (a) the spin-phonon interaction and (b) the diamagnetism-phonon inter-
action. The blue solid and red dashed curves represent the wave packets of the diamond on the right and left sides, respectively. The black
dotted line represents the number of phonons in the diamond before entering the SG device (scaled to one) and the blue solid and red dotted
lines represent the number of phonons on both sides after the closure of the trajectory of the diamond’s c.m. Before the diamond enters the
Stern-Gerlach interferometer, its wave packet is not split, so the initial number of phonons in the ¢ mode is determined only by temperature (5).
After it enters the Stern-Gerlach interferometer, the number of phonons on both sides of the interferometer arms changes over time and a
difference in quantity forms. The phonon frequencies shown here [(a) 2 MHz and (b) 42 kHz] are very low, in order to achieve better visibility.
For the diamond we are interested in (specifically 10~ kg), its natural frequency reaches 10'° Hz. Similarly, at those frequencies, the number
of phonons on both sides of the interferometer arms also forms a difference. However, since the frequency of the magnetic-field variation
(especially the approximately 1 s required for the QGEM experiment) is much lower than the phonon frequencies, the change in the number

of phonons in those frequency ranges is not drastic.

quantity related to the ith atom index. Here we choose it to be
1 as the upper limit. The number of phonons is constant at the
initial moment. After the diamond enters the SG apparatus, the
number of phonons in the two trajectories changes differently
and stabilizes with a constant difference after the duration
time Ar. Recall that we are interested in diamond masses
ranging from M ~ 10~'® to 10~'* kg with frequencies w, in
the range of w, ~ 10'°-10"" Hz. Therefore, the rate of change
of the population of phonons of mode ¢ is extremely rapid.
Here, for visual clarity, we plot the variation in the number
of low-frequency phonons in two types of interactions. One
should note that, due to the size constraints of diamonds
(wo = mc/L), elastic waves in the material do not reach such
low frequencies.

Here we introduce the difference in phonon amplitude and
momentum on both sides of the interferometer arms, which
arise from f;’R,
sinwy(t —1')

t
Auq:/ Af, () dar,
0

Wq
t
A, = /0 Afy(t") coswy(t —t)dt’, (20)

where we define Af, = fX — f;. From here, one can observe
that, due to the spatial superposition of c.m.’s, the lattice
chain in the two wave packets experiences different forces.
In Fig. 4 we illustrate the differences in the phase space of
phonon wave packets from different paths. For visual clarity,
the early stage of phase evolution is faded out, and the normal
coordinate and its conjugate have been made dimensionless.
In [60,61] it is shown that the phase-space trajectories of
phonons exhibit differences because the spin in the lattice is
moving toward different directions, as shown in Fig. 4(a). In
the case of diamagnetism-phonon interaction, the differences

in the force value exerted on the lattice still contribute to
the reduction in contrast for phonon wave packets. In the
next section we will estimate the loss of contrast due to their
couplings.

V. LOSS OF CONTRAST

The contrast in the internal degrees of freedom is defined
as the inner product of the quantum states of phonons after
evolving in the two interferometry arms; for a specific mode
g, it becomes

Cy = vy (anlygan)]. @1

From Eq. (21) it can be seen that the contrast is essentially
the inner product of normalized phonon wave functions. Thus,
a perfect closure of position, momentum, and other relevant
degrees of freedom, including phonon vibrations, would yield
C, =1, while an imperfect closure results in C; < 1, indi-
cating the loss in contrast. We employ the time-dependent
perturbation theory in quantum mechanics for the time evo-
lution of phonon quantum states. In Eq. (16) the interaction
between phonons and the external field in the equation is con-
sidered as a small perturbation. Now we ignore the summation
over g and focus on one mode; the Hamiltonian becomes

_ + LR
H, = hwqaqaq — E F"x;
i

+ » h +
= hoyala, — ZEL’RQ; /2qu (al,+ay). (22

Here recall that the force E.L’R is time dependent and it
is subjected to the equilibrium positions XiL'R(t) of the
atomic chain. Considering that the diamond is in a spatial
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FIG. 4. Splitting in the phase space of a fixed phonon mode where the horizontal and vertical axes represent phonon amplitude and
momentum, respectively. (a) Difference induced by the spin-phonon interaction. (b) Differential phase due to the diamagnetism-phonon
interaction. The blue solid and red dashed curves represent the wave packets of the diamond on the right and left sides, respectively. The

early stages of the phase-space trajectories are faded for clarity.

superposition state, the forces acting on the atomic chains in
the two trajectories are different. In the interaction picture,
denoting the time-dependent perturbation part in Eq. (22) by
V,(t), the quantum state of the phonon obeys the Schrodinger
equation. The overlap of phonon modes in the two arms be-
comes

(Vg (A (AD))
: At
= (14(0)| exp (% /0 d'[Vya) - v;‘(r’)]) |¥4(0))

= (Y (ONUTURY,(0)), (23)
where U, is the time-evolution operator

ULTUR = exp ~ (Adgfty + Augis 24

.Uy _expﬁ( Ugity + Augity). (24)

When computing the second line of Eq. (23), Au,(t) and
Aug(t) emerge, which are precisely defined in Eq. (20). In
Eq. (24) one can first consider the case of spin-phonon cou-
pling (14). In this case, V- and V,* differ exactly by a positive
or negative sign, which is because the forces exerted on the
phonon wave packets on both sides of the interferometer
arms happen to be in opposite directions. In this scenario, the
amplitudes and momentum of the phonons on both sides of
the interferometer arms are displaced in opposite directions
by %Auq and %Auq, respectively. The contrast of the phonon
can be comprehended as the probability of its amplitude and
momentum staying in the initial state v,(0) [60] as shown in
Fig. 4(a); once the two wave packets are separated, the overlap
would not be perfect.

For the diamagnetism-phonon interaction, the decrease in
contrast is also not difficult to imagine. In this case, the
amplitudes and corresponding momentum of the phonons on
both sides of the interferometer arms are displaced to varying
degrees in the same direction. One can always utilize Eq. (23)
to calculate the contrast of the phonon wave function (details

are given in Appendix C) as

C = (Y anlyR(Ar))]|
q

=[[Im[u; U] 25)

q

Here we have considered an initial thermal equilibrium en-
semble of phonons composed of a state 0,4(0).

Note that to evaluate the contrast (25), it is equivalent to
evaluate the mean value of U;"TU(IR, which consists of both
the phonon’s “position” and its conjugate. Therefore, it is
convenient to calculate the mean value by using the Wigner
function, which is a quasidistribution of the phonon’s position
and momentum in phase space, where, for the harmonic mode
considered here, it has a form of the double Gaussian (7).

Therefore, in the end, by multiplying the exponential oper-
ator with Eq. (7) and integrating over u, and i,, the contrast
becomes

Cy = Te[U;TUR 0 (0)]

1 hog 2
coth 3T

=P T S,

At )
/ Af,(t)e' " dt
0

ho,

C 1 hog 5
=exp | ——2L A S (o)

26
4hiw, (26)

The final result of the contrast is an exponential function and
is temperature dependent. Naturally, when qu(a)q) is zero,
interference arms on both sides will exhibit no distinction
and Eq. (26) will yield a result of 1. However, if there is a
difference in the forces acting on the lattice chain on both
sides of the interference arms, then C # 1 and the loss of
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contrast® is expressed as In C. The Fourier transform

At
Afy = qu(a)q):/ Af,(t)e ! dt 27)
0

represents a power spectrum that is a function of w, and
At, determining the value and properties of the contrast.
In the study of noise in SG devices, macroscopic noise is
transformed into the phase fluctuation through this transform.
Thus it is also referred to as the transfer function [33] (see
also [53]). The transfer function is closely related to the tra-
jectory of the interference arms. For the simplest acceleration
protocol (Fig. 1), the transfer function of the splitting force
is very trivial, transforming two constant accelerations. The
resulting f,(w,) for this transformation only contains 1/w,.
However, for forces closely related to the trajectory, their
transfer function contains powers of (1/w,)". In the following
sections, we will compute the contrast.

VI. NUMERICAL RESULTS

In this section we numerically explore contrast reduction
due to phonon wave packets from the interactions given in
Eq. (8). Since we do not want the magnetic-field gradi-
ent, which controls the spatial superposition size, to be too
large, i.e., np < 10° T/m (see [46,73], where such gradients
could be achieved), the maximum spatial separation distances
AXy ~ 107%-103m for different masses. For simplicity,
here we consider phonons as longitudinal elastic waves, w, =
cq [67], and treat them as continuous with a minimum fre-
quency (fundamental frequency) wy = mc/L. In addition, we
take the eigenvector Q; = 1 (recall that in solid-state physics,
these vectors are sinusoidal functions) as an upper limit.
We also define the moment when the diamond wave packet
reaches its maximum separation distance AXy, at time ¢ = 0.
Thus, ty = =21, — rrand tg = —1; = 27, + t¢.

To compute Eq. (26), we need to convert Egs. (14) and (15)
into respective transfer functions. Here we first provide their
forms in the temporal domain as differences on both sides of
the interferometer arms,

AF(t) = u(S® — ")y = 2ums,
AFgi (1) = Z (Fitia — Fidia)
XM
2R (R~ XY). (8)
Ho

C C
The differential force for spin-phonon interaction is easily
understood in (28). These are the constant differences between
the left and right interferometer arms at different time stages.

3From the expression of contrast, one can directly see why high
temperature will destroy contrast. Suppose 7 — oo for a fixed
w,. Then the expression for the exponential part of Eq. (26) is
- 2];%—23 |A f; |? = —o0. Therefore, C — 0. The transfer function A fq
is always nonzero in our case. In the other limit, when w, ~ cg — 0,
for a finite temperature, again C — 0. Lower values of w, can occur
for systems with a lower speed of sound. Typically, these are more
compressible objects for which the speed of sound is lower than that
of the diamondlike system.

Recall that 7y, is the maximum value of the magnetic-field
gradient.

Likewise, for the diamagnetism-phonon coupling, due
to the diamond wave packet being in a spatial superposi-
tion, there is also a difference of the diamagnetic repulsion
generated by the atoms located on the two sides of the in-
terferometer arms (for example, the ith atom with positions
Xl.L’R). Thereafter, we can obtain their corresponding transfer
functions

N 2AXm\’
mm%W=M<ﬂf)Ww¢
a~—q
2
- X, AX3
AFfia 2=M5 P m F2 . 29
| A faia(@g)] (—Zuou%fcv;j) (wg) (29)

In Sec. III the coupling of the magnetic field with the
spin generates the spatial superposition state of the diamond
wave packet. Here we parametrize the trajectory, acceleration,
magnetic-field gradient, and other parameters of the wave
packet in terms of the acceleration duration t,, mass M, and
maximum separation distance AXy. The I'(w,) here arises
from the Fourier transform. For the two types of interactions,
their forms are the same,

[Nwy) = sin[(tr)wy]—2 sin[(Ta+Tr)wy |+ sin[ (27, + T5)w,].
(30)

Substituting the corresponding transfer function in Eq. (29)
into Eq. (26), we can obtain the expression for the contrast
reduction brought about by these interactions,

1 how, \ MAXZ
—In Cypin = Xq:coth <§kB_T)WF (@), (31

1 ho, X2  MSAXS
—InCyiy = Y _coth ( 5— | —L————T%(w,).
p 2keT ) 16p50th T,%w,

(32)

Note that since we start from a one-dimensional atomic
chain model, the mass M in (31) and (32) should in principle
be understood as the mass of a single atomic chain within the
diamond. However, in the subsequent calculations, we will
interpret this M as the total mass of an isotropic homogeneous
cubic diamond with side length L = (M/p)~'/3, where the
main contribution to contrast loss comes from the fundamen-
tal tone wy = mwc/L*

In Fig. 5 we show the contrast reduction resulting from
spin-phonon (solid lines) and diamagnetism-phonon (dashed
and dotted lines) interactions in a setup with At = 1s. The
horizontal axis represents the maximum separation distance
of the diamond’s c.m.’s in the spatial superposition state. The
black (10~'* kg) and red (10~'3 kg) lines compare diamonds
of different masses. We also compared the contrast loss at

“Phonon modes depend on the shape of three-dimensional objects.
Studies on acoustic phonons in circular objects can be found in [74].
The situation becomes considerably more complex for arbitrary-
shaped three-dimensional objects and deserves separate discussion.
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FIG. 5. Phonon-induced contrast loss caused by spin-phonon
(Sp-Ph, solid lines) and diamagnetism-phonon (Dia-Ph, dashed and
dotted lines) interactions in the expected scenario of the QGEM ex-
periment (with a duration time of approximately 1 s). The horizontal
axis AX,, is the maximum separation distance between diamond
wave packets on either side of the interferometer. From Egs. (31)
and (32), the contrast loss caused by phonon modes will be zero when
AXy, = 0, indicating no spatial separation. The contrast loss from
heavier mass M = 10714 kg (four black lines) is correspondingly
greater than that for the smaller mass M = 10~'® kg (four red lines).
Also depicted are scenarios at different temperatures, showing that
the phonon-induced contrast loss at 300 K is greater than that at 4 K.

different temperatures,’ where the results at low temperature
(4 K) are presented by dark solid and dashed lines, while at
high temperature (300 K) results are shown by light solid and
dotted lines. The results indicate that the contrast loss induced
by the spin-phonon coupling is dominant, while the effect
of diamagnetism-phonon interaction is significantly smaller.

>The main contribution of contrast loss comes from the fundamen-
tal frequency wy ~ ¢/L. One can consider two limits here, one is
hwy < kgT and the other is fiwy > kgT . For the former limit, the
square of the transfer function will yield the maximum value of
IT'(wp)|*> ~ 1, and Egs. (31) and (32) become

_ 2keT MAX2  2ksT <AXm)2L7

—lan in ™~
? P ottol R c2t?

2 2.5 2
CInCy, ~ keT x; MPAXS N kT x,p (Axﬂﬁ) I3

8t ulut t2wh 8uduth* \ cttf

respectively. In the other limit, when &wg 3> kgT the hyperbolic

function coth %% — 1. The contrast reductions from the two in-

teractions become
MAX2  p [AXaL?\’
httod A\ T2 ’
X}  MPAXS X2 pS(AX3LMN?
16u3pu*h 7 '

_lncspin ~

—InCy;, ~ G
Tﬁ

16pdu*h tlw)
In the above two limits, we used the relation M = pL?, where p is the
density of test masses and L is the length. In either of the limits, one
can always conclude that more rigid material (which means faster
sound speed) and smaller size of the test masses will produce less
reduction in contrast. The diamondlike crystal would be an example

of an ideal crystal for the QGEM experiment.

The source of these differences can be easily understood by
comparisons in Eqgs. (31) and (32). The contrast reduction
caused by the former interaction is suppressed by a)g, whereas
the contrast loss caused by diamagnetism-phonon interaction
is suppressed by w.

Moreover, room temperature does not drastically alter the
outcomes for either of them. Additionally, it can be observed
that larger diamond masses lead to more phonon contrast
reduction, which is quite understandable. Larger mass implies
a lower range of phonon frequencies. From Eqgs. (26) and (29)
it can be seen that these w, terms appear in the denominators.

From Eq. (26) we can see that the acceleration protocol
profoundly impacts the contrast of the phonon wave packets.
In Fig. 6 we use a density plot to detail the contrast reduc-
tion resulting from different acceleration protocols. In each
plot we highlight the black curves, where the magnetic-field
gradient is precisely 10° T/m, and in the region above it, the
duration time is longer, thus requiring a smaller magnetic-field
gradient. In Figs. 6(a) and 6(b) we study the contrast of a
diamond with a mass of M = 2.25x107'4 kg for different
maximum separation distances AX;, and duration times. In
Figs. 6(c) and 6(d) we set the maximum separation distance
of the c.m.’s to 10~* m, which represents a sufficiently large
separation distance of wave packets in QGEM, and study
the contrast loss for different diamond masses and duration
times.

From Figs. 6(a) and 6(b) one can see that for 1074 kg
diamond, when the separation protocol requires the loop to
be completed within a short time (for example, 0.05 s) while
reaching large separation distance AX,, the loss of contrast
from both interactions could go to 1%. Likewise, in Figs. 6(c)
and 6(d), for large spatial separation as expected by the
QGEM (for example, 10~* m), protocols with heavier dia-
mond and shorter duration time At would also lead to severe
contrast reduction in phonon degrees of freedom. Overall,
significant contrast loss will happen when wave packets of a
large mass diamond are separated over a large spatial distance
within a short period. However, within the current experimen-
tal constraints where the SG magnetic field is constrained to
be less than 10° T/m [46,73], the contrast loss induced by
both couplings is negligible for QGEM.

VII. DISCUSSION

In this paper we have analyzed the contrast loss due to
phonons in creating a spatial superposition of a nanoscaled
diamond embedded with a single NV center based on a
Stern-Gerlach interferometer. During the process of creating a
spatial superposition state using the coupling between the spin
and the linear magnetic field, the spin particle in the lattice
chain generates a pair of forces (14) of opposite directions
and equal magnitudes due to their own spin superposition
state. Similar to the Humpty-Dumpty problem at the center
of mass of the diamond, the spin particles on both sides of
the interferometer arm have different vibrational states in the
lattice, resulting in differences in the quantum states of the
phonons. This also leads to imperfections in the overlap of
phonon wave packets.

The other interaction arises from the diamagnetic prop-
erties of diamond. Each atom in the lattice chain produces
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FIG. 6. Contrast reduction resulting from (a) and (c) spin-phonon coupling and (b) and (d) diamagnetism-phonon interaction under
different close-loop protocols, where the color shading from dark to light represents progressively intensified contrast reduction. (a) and
(b) Scenarios with a diamond mass of M ~ 2.25x10~'* kg, showing different maximum separations AX,, (horizontal axis) and duration times
At (vertical axis). (c) and (d) A desired separation distance of AX,, = 10~* m is assumed for the diamond’s c.m.’s. We explore the contrast
loss caused by phonon wave packets of different masses under varying duration times. We have marked the cases where the contrast loss
reaches 1%. For a diamond with mass M = 2.25x10~'* kg, significant contrast loss requires achieving maximum separation distances of
(a) approximately 10> m and (b) approximately 10~2 m for the c.m. wave packet within 0.05 s. To achieve AX,, = 10~* m within 0.05 s, the
diamond mass needs to reach (c) approximately 10! kg and (d) 10~!2 kg to exhibit significant contrast loss. In these four cases marked, the
magnetic gradients required are all large, becoming approximately 1000—-10 000 times greater than the current experimental capability.

a diamagnetic force (15) when subjected to an external
magnetic field. This diamagnetic force is of the same direction
but has a different magnitude on both sides of the interferome-
ter arm. Similarly, due to this difference, the quantum states of
phonons on both sides are also different, resulting in contrast
reduction.

In this paper we used a linear magnetic field (9), which
is widely used in atomic interferometers. Furthermore, this
linearity greatly simplifies the calculation of the motion state
of spin particles, that is, the splitting force is independent of
trajectories and the equilibrium position.

The situation is more complex regarding the interac-
tion between the diamagnetic force and phonons. Since the
diamagnetic term in the Hamiltonian includes B(X;)?, the
force on the lattice is now coupled with its trajectory. This
external-field-mediated coupling between the phonon and

c.m. trajectory is common in the study of optical cooling of
the motion state of diamond center. In this work we typically
studied the latter situation and compared the contrast reduc-
tion between these two interactions.

Specifically, we assumed that the phonons were initially at
a specific temperature 7' and we utilized the Wigner represen-
tation to express and compute the evolution of the quantum
state of the phonons. Our results indicate that of these two
sources contributing to the contrast loss in the phonon de-
grees of freedom, the effect of the spin-phonon coupling is
dominant. The contrast loss induced by the diamagnetic term
is smaller than the former, as shown in Fig. 5. This result
can be directly understood from (31) and (32). For the spin-
phonon coupling, which does not depend on the trajectory,
the contrast reduction is suppressed by the phonon frequency
to the power of 3. Meanwhile, the contrast loss due to
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diamagnetism-phonon interaction is suppressed by the
phonon frequency to the power of 7.

The latter case directly arises from its coupling with the
trajectory, as the diamagnetic force is a function of time and
its variation is adiabatic. In the seminal work in [60,61], this
is also referred to as the degree of adiabaticity.

However, overall, the contrast reduction induced by both
interactions is minimal. This is good news for matter-wave
interferometers. There are two main reasons for this result.
One is that we limit the gradient of the magnetic field. The
most important reason, however, is that we are studying dia-
monds of very small size (1072°-10~'* kg) compared to the
speed of sound ¢ multiplied by the duration time (on the order
of microseconds and 1 s for QGEM). Since the frequencies
of the phonons are very high (tens of gigahertz to several
terahertz), their contribution to contrast loss is tiny. However,
if we prefer a different material where the speed of sound is
much lower than that of the diamond, we would see the loss of
contrast occur. However, it also depends on how we create the
superposition; hence, it depends on the details of the transfer
function.
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APPENDIX A: DIAMAGNETIC REPULSION

From Eq. (8) one can immediately write the diamagnetic
repulsion given by the entire diamond,

XM XoM
Rt = 05 B 0l = 7 (Bom o+ X"
0

Ho
(A1)

The diamagnetic force here is a macroscopic quantity,
representing the repulsion of the entire diamond to the
magnetic field, which is effectively located at the c.m. with
equilibrium position X.. However, unlike the splitting force
which acts on the central particle, this does not mean that the
repulsion exhibited by particles in the middle of the atomic
chain is equal to Eq. (A1).

Here we consider that each atom in the atomic chain is
magnetized with the potential energy U (X;). We will not delve
into the specific form of this U(X;), but in general it is the
product of the magnetization of a single carbon atom and
the magnetic-field strength experienced by that atom (relevant
discussion can be found in Chap. 4 of [75]). Therefore, each
atom will contribute a different diamagnetic force, and these
microscopic diamagnetic forces will vary in magnitude due to
the different equilibrium positions of the atoms,

(A2)

FlLdll: = _BXU(X)|X:XI,L«R .
The summation over the index i of these microscopic diamag-
netic forces must be equal to Eq. (A1), and thus we have the
relation (15).

APPENDIX B: INITIAL THERMAL EQUILIBRIUM
MIXED STATE

Here we provide supplementary information about charac-
teristic length and characteristic velocity for phonons in (6).
Consider that, before any interaction between fields, the quan-
tum oscillator system for mode ¢ is

Hiree = 3 (i, + 01}, (B1)
The eigenenergy of this simple Hamiltonian is obviously E,, =
hawq(n + %), where n is the phonon number in mode ¢. In
this pure state, there is no ensemble to work with. Now let
us consider that, initially, there are various phonon modes in
the diamond where they have reached a thermal equilibrium
state with the partition function,

Z = Z e PEn
n

00
— e*(ﬂ/Z)ﬁwq Zefnﬂﬁwq
n=0

1
= B2
2 sinh (ghwq) 62)

where B = 1/kgT. The calculation from the second to the
third line in Eq. (B2) can be found in, for example [75]. The
average energy is thus

(E), = _8;22 - %coth <§hwq>. (B3)

Note that the equipartition theorem tells us that the collections
of the phonon’s potential energies and kinetic energies are the
same such that we have

2 2.2
Y = @a'q = —<E>q = _ha)q coth o, . (B4)
2 2 2 4 2kgT

Therefore, the square of the characteristic width and velocity
becomes

h
02 = (i2) = "4 coth ~——2_,
a 1 2 2kgT
h
02 = (i) = 02 = —— coth oL (BS)
o Ve ¢ 2w,  2kpT

APPENDIX C: OVERLAP AND WIGNER
REPRESENTATION

Here we provide some details about Eq. (23). We can
represent the time evolution of the phonon wave function in
the interaction picture for a specific mode g as

o) =ow (< [ wvro)wtor e

We have set [1,4(0)) = |,4(0)), where |,(0)) is a stationary
state in the Schrodinger picture. We have also ignored a global
phase factor that does not contribute to the contrast. One can
express the interaction potential in terms of the phonon mode
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amplitude and momentum as

_ FL,RQz (&i elvdt 4 &qe_lw"t)
Xi: LN 2Me, T

LR L,R

Z F- (@t )+ ; sin(wyt)
uqu cos(wy uqu —a)q

» sin(w,t)
p LR _* 4
= —ilq cos(wqt) 7" — g

quvR(z)

e (C2)
q

The f,® has already been defined in Eq. (17) and the relation

between the creation and annihilation operators and phonon

amplitude can be found in (2) and (3). The overlap of the wave

functions of phonons on both sides of the interferometer arm

can be expressed as

(W anyrRan)
. At
= (¥1(0)] exp (% /0 d'[V,; (') — VqR(t/)]>|1/f1(0)>

N,
= (Y1(0)] exp |:% / dt’(ﬁq cos(wgt)Af,
0

~ sin(wgt)
”q—qu)i| [¥1(0)). (C3)
Wq
The integral terms in the third line of Eq. (23) precisely rep-
resent the differences in phonon amplitudes and momentum
given in Eq. (20). Here one can observe that if the force acting
on the atomic chain is coupled with the spin and magnetic
field, then VIL = —VIR. For diamagnetic interaction, since the
diamagnetic force points in the same direction, the situation is
different.
We use the Wigner representation to calculate the average

of (23). In the Wigner representation, the average of an oper-
ator A(x) can be calculated as

i — / W (x, p)A(x, p)dx dp, (C4)

where W (x, p) is the Wigner function, which provides a qua-
sidistribution of the quantum state simultaneously in position
x and momentum p space. Usually, in the Wigner represen-
tation, one typically needs to utilize the Weyl transform to
express the operator A as a function A(x, p). In this con-
text, the exponential operator in (C3) is already a function
of phonon normal coordinates and their conjugates. We first
consider a pure state of phonons in mode ¢g. Its ground-state
wave function can be expressed as
@q

¥(uy) = (—h)l/ e ©5)

The Wigner function is defined as

W (u,, it,) = 1 /Oo m‘,yl/,quX l/f*u—X dy
q> 7q 2h q 2 q 2

= Lexp — ué + u?’ (Co6)
2@ a0

Where and w" relate to the characteristic width and veloc-

ity, respectlvely. In the thermal equilibrium mixed state, one
needs to replace
how, how,
1 _ 2 cot

ha, h
2 2

, —
2kgT 2wy 2wy

- (C7)

APPENDIX D: CONTRAST LOSS DUE TO INTRINSIC
DIPOLE-PHONON COUPLING

In this Appendix we present the contrast loss due to dipole-
phonon coupling. It is worth noting that the dipole-phonon
coupling we consider does not involve energy-level transitions
of the dipole, such as in the Jaynes-Cummings model. We
consider only the overlap of the positions and momenta of the
phonons on both sides of the interferometer arm, that is, the
motion state of the phonons.

Here let us first consider the case of an intrinsic dipole. In
diamond materials embedded with NV centers, due to the NV
center itself carrying a negative charge, the inevitable occur-
rence of compensatory positive charges arises when it replaces
a carbon atom in the material. As a result, a dipole moment dj
arises, and its specific value depends on the distance from the
compensatory positive charges to the NV center. This value
is approximately 1 D. Here we aim to study the effect of
the dipole on lattice vibrations through its interaction with an
external electric field. Therefore, we assume that this intrinsic
dipole overlaps with the NV center, meaning that the compen-
satory positive charges and the NV center are located in the
same lattice site.

As in the analysis in the main text, let us denote the position
of a single intrinsic dipole by X.(¢) + x., where X.(¢) repre-
sents the equilibrium position, while x. represent the dipole’s
vibration. The dipole-phonon interaction Hamiltonian is again
mediated by an extra electric field £ (X ) as

Hinginsic = _dOE(Xc) (Dl)
Recall that the diamond has its trajectories as illustrated in
Fig. 2. The X. can be expressed explicitly as (12) and E(X;)
represents the electric field experienced by the dipole.

Again, due to the dipole being in a spatial superposition
state (considering the diamond entering the SG apparatus),
if there is a difference in the derivatives of E(X.) on both
sides of the interferometer arm, there will be differences in
the amplitudes and momentum of the phonons, as illustrated
in (20). Obviously, if E(X;) is linear, the coupling between the
dipole and the electric field will not cause such differences.

APPENDIX E: CONTRAST LOSS DUE TO INDUCED
DIPOLE-PHONON COUPLING

This Appendix presents an analysis of the induced dipole-
phonon coupling on phonon contrast loss. Similarly, we
consider only the motion state of the phonons and do not con-
sider the energy-level issues of the dipole. We consider that
each ith particle in the atomic chain experiences an external
linear electric field

E(X;) = Eo + neXi(1), (EL)
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where the constant electric gradient is labeled 7. Again, par-
ticles move parallel to the diamond’s trajectories, and their
equilibrium positions X; become functions of time. Due to the
fact that the diamond is a dielectric material when subjected to
the external electric field, an induced dipole will be generated
in each atom of the lattice chain as

o
di(X;) = G—E(Xi), (E2)
where €, & 5.7 is the relative dielectric constant and the po-

larizability « is given by the Clausius-Mossotti relation

oN _er—l
3¢V & +2°

(E3)

where V is the volume of the diamond. Therefore, the in-
teraction Hamiltonian with the external electric field can be
expressed as

Hingueed = — »_ di(X)E(X;)

@ 2
=-> B X)), (E4)

1

The force exerted on the ith particle can be written straight-
forwardly as

g 2a 20 ,
F = —E()T}e + e—ﬂeXl‘. (ES)

l
r r
The force acting on each polarized particle can be divided
into two parts. The first term is the same on both sides of the
interferometer arm, while the second term differs due to the

spatial superposition state of the diamond. It should be noted
that F; here represents the force experienced by each polar-
ized atom, and depending on their equilibrium positions, the
force on each atom is different. However, since in this model
Xi+1 — X; = const, where const represents the distance be-
tween two atoms, we have X — X® = AX_. Substituting (E5)
into (26) and (27), one can obtain the contrast loss caused by
the induced dipole-phonon interaction as
Co=Teww  coth 3% [3V AXun? eo(e—1)
. ha, €(e,42)

C(wy)| |,
taza)s 4

(E6)

where I'(w,) is related to the Fourier transform given in (30).
Here one can estimate that the contrast loss induced by the
induced dipole is very weak. Taking the diamond masses of
interest (1072°~10~'* kg) as an example, their phonon fre-
quency ranges from tens of gigahertz to several terahertz. In
this case, the first term in (E6) is approximately of magnitude
of 1072*, For the absolute value term, even if one chooses the
maximum value of I'(w,) and specifies a splitting protocol
that achieves a maximum splitting of around 100 ym within
1 s, the order of magnitude of this term only reaches about
101302, Consider a case where a single charge is held at
a distance of 500 um away from the diamond. In this case
the electric-field gradient reaches only 30 V/m?. Even if one
assumes that the distance between the free charge held from
the diamond reaches 100 nm, the electric-field gradient at this
point is approximately 10'® V/m?, which is not sufficient to
increase the contrast caused by dipole—electric-field—phonon
coupling, which becomes negligible.
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