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Figure 1: The normalized losses distribution of WebVision dataset after one epoch warm-up training, i.e., training with whole
dataset and cross-entropy loss. In (a), ‘clean’/‘noisy’ denotes samples been identified as clean/noisy by CLIPCleaner while the
‘gray vertical line’ denotes the sample selection boundary induced by ‘small-loss’ mechanism. We show some example images
on part 1 in (b) and part 4 in (c) which represents samples identified as ‘clean’ by ‘small-loss’ while rejected by CLIPCleaner and
vice versa. For example, in (b) we can find that many images with small losses due to its similar color or textures to ‘tench’
class, thus been wrongly identified as ‘clean’ by ‘small-loss’ but been correctly rejected by CLIPCleaner.

Abstract
Learning with Noisy labels (LNL) poses a significant challenge for

the Machine Learning community. Some of the most widely used

approaches that select as clean samples for which the model itself

(the in-training model) has high confidence, e.g., ‘small loss’, can

suffer from the so called ‘self-confirmation’ bias. This bias arises

because the in-training model, is at least partially trained on the

noisy labels. Furthermore, in the classification case, an additional

challenge arises because some of the label noise is between classes

that are visually very similar (‘hard noise’). This paper addresses

these challenges by proposing a method (CLIPCleaner) that lever-
ages CLIP, a powerful Vision-Language (VL) model for constructing

a zero-shot classifier for efficient, offline, clean sample selection.

This has the advantage that the sample selection is decoupled from

the in-training model and that the sample selection is aware of

the semantic and visual similarities between the classes due to

the way that CLIP is trained. We provide theoretical justifications

and empirical evidence to demonstrate the advantages of CLIP for

LNL compared to conventional pre-trained models. Compared to
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current methods that combine iterative sample selection with vari-

ous techniques, CLIPCleaner offers a simple, single-step approach

that achieves competitive or superior performance on benchmark

datasets. To the best of our knowledge, this is the first time a VL

model has been used for sample selection to address the problem

of Learning with Noisy Labels (LNL), highlighting their potential

in the domain.
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1 Introduction
Over the past two decades, deep neural networks have demon-

strated exceptional success in various vision tasks, partly due to

the existence of accurately labelled, large-scale datasets such as

ImageNet-1K. However, collecting high-quality labels for such

datasets is generally time-consuming and labour-intensive. Noisy

labels, stemming from human error, ambiguity in labelling criteria,
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or inherent noise in data collection processes, introduce a critical

challenge that traditional learning algorithms must deal with.

To learn with noisy labels (LNL), various methods have been

proposed. Some methods aim to develop robust loss functions [12,

17, 35, 48, 50, 61, 67, 71] or model the labeling error patterns with

a label transition matrix [18, 21, 32, 41, 55, 60]. However, these

methods are often sub-optimal in dealing with high noise ratios

and complicated noise patterns.

More recently, methods based on sample selection [25–27, 39, 40,

46, 49, 52, 65] that aim to identify samples with clean labels have

become perhaps the dominant paradigm. Among them, the most

common sample selection strategies are the ‘small-loss’ mechanism

motivated by the fact that the model tends to fit clean samples

earlier than noisy samples in the training process – this results

in relatively smaller losses for the clean samples. Following this,

most of methods focus primarily on further improving such sample

selection mechanisms. This includes different variants of the ‘small-

loss’ strategy [1, 29, 56], and utilizing kNN [2, 10, 38] or graph

models [53, 54] based on the samples’ feature space for sample

selection. However, these methods are inherently affected by the

label noise, as losses, or the features used for sample selections

are extracted from the model that is being trained (i.e., the in-

training model) – this leads to the infamous ‘self-confirmation’ bias.

Some methods [19, 63] attempt to alleviate ‘self-confirmation’ bias

through model co-training, but this approach introduces additional

computational overhead.Moreover, thesemethods solely rely on the

visual information within the images, and therefore have difficulty

dealing with ‘hard noise’, that is labelling errors between classes

with high visual similarity.

To address the aforementioned issue, we propose a novel method,

namely CLIPCleaner, that leverages the popular visual-language
model CLIP [42] for sample selection. Specifically, we propose using

a CLIP-based zero-shot classifier with descriptive class prompts

that are generated automatically using a Large Language Model for

sample selection. Given that CLIP is trained with massive vision-

language pairs, this leads to a sample selection scheme that has

two advantages: 1. the sample selection is aware of visual and se-

mantic similarities between the classes and therefore compensates

for biases that may arise from relying solely on visual information

for sample selection (fig. 1); 2. the sample selection is indepen-

dent of the in-training model, and therefore immune to the influ-

ence of noisy labels and the ‘self-confirmation’ bias. To the best
of our knowledge, we are the first to employ a large-scale
vision-language model, particularly leveraging its language
modality, for sample selection.

Furthermore, we introduce a very simple semi-supervised learn-

ing method tailored for noisy datasets without common advanced

modules such as co-training or multi-task training, namely MixFix.
The proposed semi-supervised method, gradually introduces more

clean samples and re-labels noisy samples to expand the initial clean

subset selected by CLIPCleaner. Let us note that in the proposed

scheme, the in-training model, i.e., the final classifier, is different

from the VL model that is used for sample selection. More specifi-

cally, unlike common transfer learning techniques such as model

fine-tuning [13], knowledge distillation [51], and prompt-based

learning [3, 69], we adhere to using CLIP solely for sample selec-

tion and refrain from training/fine-tuning it. This has the distinct

advantage that the proposed scheme allows for computationally,

or parameter-wise light in-training model, and allows the use as

sample selectors of VL models to which one does not necessarily

have full access.

We demonstrate the effectiveness and advantages of the pro-

posed method both theoretically and empirically. Despite its sim-

plicity, our method achieves competitive and superior performance

on various datasets, including CIFAR10/CIFAR100 with synthetic

noise (symmetric, asymmetric, and instance-dependent), as well

as real-world noisy datasets like Red Mini-ImageNet, WebVision,

Clothing1M, and ANIMAL-10N.

2 Related works
Sample selection for learning with noisy labels. Most sample selec-

tion methods usually rely on model classifiers, such as the widely-

applied ‘small-loss’ mechanism [1, 19, 24, 29] or model predic-

tions [36, 44, 62]. More recent works focus on further improving

the sample selection quality by modelling the loss with markov

process [56] or dynamically selecting samples with multiple met-

rics [70]. In addition, some works try to utilize the feature represen-

tations for sample selection. Wu et al. [53] and Wu et al. [54] try to

build a kNN graph and identify clean samples through connected

sub-graphs, while Feng et al. [10, 11], Ortego et al. [38] propose

to utilize a kNN in feature space to alleviate the effect of noisy

labels. Some recent methods involving contrastive learning also

identify clean sample pairs based on neighbourhood relationships

in the feature space [31] or fit Gaussian distributions to model the

clean distribution [22]. However, these methods remain unstable

and prone to ‘self-confirmation’ bias, especially in high-ratio noise

scenarios, due to their intrinsic reliance on the in-training model

based on noisy datasets.

Utilization of auxiliary model. The utilization of an auxiliary

noise-free model is reasonable and straightforward for LNL. Related

to us, some methods also try to use pre-trained noise-free models

for learning with noisy labels. Cheng et al. [7], Zheltonozhskii et al.

[68] propose to utilize self-supervised learning [5, 8, 9, 14, 15, 20,

37, 45] since it can learn good representations in the label-free

case. Bahri et al. [2] utilize the pre-logit space of the pre-trained

model along with the kNN classifier for sample selection. Zhu

et al. [72] follow the same idea and also involve CLIP, but they

only utilize its vision encoder as a common pre-trained encoder

without utilizing the language encoder. In this work, we emphasize

that language modality is critical as a supplementary modality and

show the unique advantage of VL models for sample selection, both

theoretically and empirically.

3 Method
In section 3.1, we cast the learning with noisy labels problem in a

formulation that covers mainstream sample selection methods. In

section 3.2, we elaborate our sample selection method, namely CLIP-
Cleaner. In section 3.3, we introduce our semi-supervised learning

method, namelyMixFix. In section 3.4 , we theoretically analyze the

unique advantage of using CLIP for sample selection over common

pretrained models. In section 3.5, we provide further discussions

on the topics of sample selection and the usage of the CLIP model.
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Figure 2: Workflow of CLIPCleaner. We highlight the sections corresponding to the two main steps of CLIPCleaner, and
particularly visualize the intuition of the probability estimation step based on the CLIP zero-shot classifier.

3.1 Revisiting sample selection for LNL
Given a dataset of training samples {𝒙𝑖 , 𝑦𝑖 }𝑁𝑖=1 i.i.d sampled from

a noisy joint distribution 𝑃𝑛 (x, y), the goal is to learn a classifier

𝑓 : x → y that can accurately predict the true labels 𝑦 for new,

unseen clean examples. Let us denote the clean (but unknown) joint

distribution as 𝑃 (x, y). Sample selection methods aim to identify

those samples with (possibly) clean labels. Let us also denote the

sample selection results as {𝑤𝑖 ∈ {0, 1}}𝑁
𝑖=1

with𝑤𝑖 = 1 or 0 repre-

senting sample 𝒙𝑖 been selected or not. For specific sample 𝒙𝑖 , here,
allowing us to propose a concise form to represent most existing

sample selection methods:

𝑤𝑖 = G(𝑃 (y|x = 𝒙𝑖 ), 𝑦𝑖 ;𝜃 ) ∈ {0, 1}. (1)

We define as 𝑃 (y|x = 𝒙𝑖 ) an estimation of the clean conditional

probability 𝑃 (y|x = 𝒙𝑖 ), and abbreviate here asG a specific selection

mechanism, with its hyperparameter as 𝜃 . Intuitively speaking, we

conceptualize a sample selection method into two steps: firstly

estimating clean conditional probability 𝑃 (y|x = 𝒙𝑖 ) for sample 𝒙𝑖 .
Then, applying G to compare 𝑃 (y|x = 𝒙𝑖 ) with the annotated label

𝑦𝑖 , to decide/measure if the annotated label is (likely) clean or not
1
.

However, most sample selection methods inherently and in-

evitably lead to the ‘self-confirmation’ bias as they commonly (more

1
Please note, there are indeed some methods such as TopoFilter [53] and FINE [28]

relying on graph models or eigenvectors rather than probability estimations for sample

selection. With eq. (1) we are not attempting to cover all possible sample selection

mechanisms but to motivate our proposed method.

or less) rely on the in-training model 𝑓 in estimating the condi-

tional probability: 𝑃 (y|x = 𝒙𝑖 ) = 𝑃𝑓 (y|x = 𝒙𝑖 ). To fully avoid such

‘self-confirmation’ bias - the reliance of sample selection on in-

training model 𝑓 , utilizing another pre-trained classifier naturally

fits. Specifically, in this work, we consider to utilize the CLIP model

for sample selection.

3.2 CLIPCleaner: sample selection with
vision-language models

3.2.1 Preliminary on CLIP. We first briefly introduce the CLIP

model [42], which is currently one of the most prevalent vision-

language models. CLIP aims to learn from a dataset of image-text

pairs, denoted as (𝒙′
𝑖
, 𝒛𝑖 )𝑀𝑖=1, which is i.i.d. sampled from a hidden

joint distribution 𝑄 (x, z). Specifically, we consider 𝑄 (x, z) as the
marginalization of𝑄 (x, y, z) for ease of later analysis. We denote as

𝒙′ the images in CLIP training dataset to discriminate from above

in-question noisy dataset, and 𝒛 the corresponding text descriptions.
Then, we have below as CLIP training loss:

𝐿(𝒙′𝑖 , 𝒛𝑖 ;𝑔, ℎ) =
1

2

(
− log

exp(𝑔(𝒙′
𝑖
)𝑇ℎ(𝒛𝑖 ))∑𝑀

𝑗=1 exp(𝑔(𝒙′𝑖 )𝑇ℎ(𝒛 𝑗 ))

− log

exp(𝑔(𝒙′
𝑖
)𝑇ℎ(𝒛𝑖 ))∑𝑀

𝑗=1 exp(𝑔(𝒙′𝑗 )𝑇ℎ(𝒛𝑖 ))
)
.

(2)
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Here, 𝑔 and ℎ denote the vision and language encoder, respectively.

Intuitively, the CLIP model tries to maximize the correspondence

between related image-text pairs.

3.2.2 Estimate 𝑃 (y|x = 𝒙𝑖 ) with CLIP zero-shot classifier. Due to
its multimodal nature, CLIP naturally possesses the ability for zero-

shot classification. As a relatively new technology for the LNL

community, here we revisit CLIP’s zero-shot classification from a

probabilistic perspective, which will also serve as our method for

estimating true conditional probabilities with CLIP.

Let us recall 𝒙, 𝑦, 𝒛 as the image, label and text respectively. Firstly,

we assume 𝑦 ⊥ 𝒙 | 𝒛; intuitively, the semantic label 𝑦𝑖 can be inde-

pendently generated based on a decent image description 𝒛𝑖 alone
for each image 𝒙𝑖 . For zero-shot classification, we have:

𝑃𝑧𝑒𝑟𝑜𝑠ℎ𝑜𝑡 (y = 𝑦𝑖 |x = 𝒙𝑖 ) =
∫

𝑄 (y = 𝑦𝑖 |z = 𝒛𝑖 )𝑄 (z = 𝒛𝑖 |x = 𝒙𝑖 )𝑑𝑧

∝
∫

𝑄 (y = 𝑦𝑖 |z = 𝒛𝑖 )𝑄 (z = 𝒛𝑖 , x = 𝒙𝑖 )𝑑𝑧.
(3)

To calculate above integral analytically is often hard; Practically,

we tend to estimate 𝑃𝑧𝑒𝑟𝑜𝑠ℎ𝑜𝑡 (y = 𝑦𝑖 |x = 𝒙𝑖 ) by sampling 𝒛𝑖 , if
𝑄 (y = 𝑦𝑖 |z = 𝒛𝑖 ) and 𝑄 (z = 𝒛𝑖 , x = 𝒙𝑖 ) is known. Firstly, according
to the training loss used by CLIP, we know that

2
:

𝑄 (z = 𝒛𝑖 , x = 𝒙𝑖 ) ∝ exp(𝑔(𝒙𝑖 )𝑇ℎ(𝒛𝑖 ))).

Still, 𝑄 (y = 𝑦𝑖 |z = 𝒛𝑖 ) remains unknown. Original CLIP designs

a single prompt as ‘A photo of class name of 𝑦𝑖.’, implicitly

assuming that:

𝑄 (y = 𝑦𝑖 |z = ‘A photo of class name of 𝑦𝑖.’) ≈ 1.

Then, with a single prompt we can easily sample a single 𝒛𝑖 to
estimate 𝑃𝑧𝑒𝑟𝑜𝑠ℎ𝑜𝑡 (y = 𝑦𝑖 |x = 𝒙𝑖 ) according to eq. (3). Moreover, it

is plausible that with more high-quality samplings of 𝒛𝑖 instead of

only utilizing one single prompt the estimation would be better. In

this work, we apply below template to generate multiple prompts

{P𝑗 }𝐽𝑗=1 using class-specific features such as the unique color or

habitat of different animal species in an animal classification task
3
:

P𝑗 =‘A photo of {class name of 𝑦𝑖}, which is/has
{class-specific feature 𝑗 of class 𝑦𝑖}.’

Then, we can similarly estimate 𝑃𝑧𝑒𝑟𝑜𝑠ℎ𝑜𝑡 (y = 𝑦𝑖 |x = 𝒙𝑖 ) with
above prompts as below:

𝑃𝑧𝑒𝑟𝑜𝑠ℎ𝑜𝑡 (y = 𝑦𝑖 |x = 𝒙𝑖 ) ∝∼
∑𝐽

𝑗=1
𝑄̃ (z = P𝑗 , x = 𝒙𝑖 ). (4)

3.2.3 Calculate𝑤𝑖 with specific G. With the above estimated con-

ditional probability 𝑃 (y|x = 𝒙𝑖 ) = 𝑃𝑧𝑒𝑟𝑜𝑠ℎ𝑜𝑡 (y = 𝑦𝑖 |x = 𝒙𝑖 ), we can
apply any applicable strategy for sample selection as depicted in

eq. (1). As exploration on more advanced sample selection strategy

G is not the focus in this paper, we consider two simple sample

selection strategies below.

Firstly, we consider a consistency-based selector - compute sam-

ple’s consistency metric (defined as the ratio of the probability

2
Please refer to Supplementary E for full derivation.

3
Please refer to Supplementary B for more details about prompts generation.

of noisy label class to the highest class probability) and identify

samples with high consistency as clean:

G𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = I( 𝑃 (y = 𝑦𝑖 |x = 𝒙𝑖 )
max𝑘 𝑃 (y = 𝑘 |x = 𝒙𝑖 )

≥ 𝜃𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦). (5)

Here, I is the indicator function,𝜃𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 is themanually-defined

threshold, often as 1 by default.

Denoting as {𝑃 (y|x = 𝒙𝑖 )}𝑁𝑖=1 the estimated probabilities for the

training dataset, we also consider the widely-applied loss-based sam-
ple selector - computing the sample’s cross-entropy loss ({− log 𝑃 (y =

𝑦𝑖 |x = 𝒙𝑖 )}𝑁𝑖=1) and then dividing the dataset into two parts based

on a Gaussian Mixture Model (GMM), with the part having smaller

losses designated as clean samples:

G𝑙𝑜𝑠𝑠 = I(P(− log 𝑃 (y = 𝑦𝑖 |x = 𝒙𝑖 ) ∈ GMM𝑠𝑚𝑎𝑙𝑙 ) ≥ 𝜃𝑙𝑜𝑠𝑠 ) . (6)

Due to the possible class imbalances and the various semantic

diversity of different classes, slightly different than the common

approach utilizing a single GMM, we model the losses of samples

from each class by a separate GMM model
4
. Here, 𝜃𝑙𝑜𝑠𝑠 is also the

manually-defined threshold, often as 0.5 by default.

3.3 MixFix: Efficient semi-supervised training
by absorbing and relabelling

With selected subset only, CLIPCleaner can be utilized along with

any existing methods - see Supplementary C for results of utiliz-

ing CLIPCleaner with DivideMix [29]. However, the state-of-the-art

methods often involve multiple modules, such as iterative sample

selection and model training [10, 22, 29], model co-training [19, 63],

and multi-task contrastive learning [31, 38]. While these modules

can be effective, they introduce extra complexity into the learn-

ing process, requiring careful coordination and tuning. To stream-

line the process and enhance efficiency, we aim to avoid intri-

cate methodologies and propose a simple semi-supervised learning

method for noisy datasets — namely MixFix.
Let us denote the selected subset and non-selected subset as

X𝑐 ,Y𝑐 and X𝑛,Y𝑛 . Motivated by FixMatch [43], we also inspect

in unlabeled subset (X𝑛,Y𝑛) each sample’s current prediction 𝒑𝑖
based on the in-training model 𝑓 :

(𝑤𝑖 , 𝑦𝑖 ) =

(0, 𝑦𝑖 ), if 𝑝𝑚 < 𝜃𝑟 and 𝑝𝑚 < 𝜃 ′𝑟 *Drop*

(1, 𝑦𝑖 ), if 𝑝𝑚 > 𝜃𝑟 and 𝑦𝑖 = 𝑦𝑚 *Absorb*

(1, 𝑦𝑚), if 𝑝𝑚 > 𝜃 ′𝑟 and 𝑦𝑖 ≠ 𝑦𝑚 *Relabel*

(7)

Here we denote as 𝑝𝑚 ≜ max𝑙 𝒑𝑖 (𝑙) and 𝑦𝑚 ≜ argmax𝑙 𝒑𝑖 (𝑙).
Please note the difference of 𝒑𝑖 here with our previous estimated

probabilities for sample selection. Intuitively, we ‘absorb’ more

clean samples (𝑦𝑖 = 𝑦𝑚) (not been selected in the sample selection

step) and ‘relabel’ noisy samples (𝑦𝑖 ≠ 𝑦𝑚) with different thresh-

olds (𝜃𝑟 and 𝜃
′
𝑟 ) in non-selected subset, and progressively append

it to initial selected subset to form a dynamic larger training set

X𝑡 ,Y𝑡 . Different from FixMatch [43] using one threshold for all

samples, we typically set 𝜃𝑟 ≤ 𝜃 ′𝑟 . This allows us to fully leverage

noisy labels to distinguish between the ‘absorb’ and ‘relabel’ pro-
cesses. Then, we apply a common cross-entropy loss for training

with this expanded training set X𝑡 ,Y𝑡 .

4
Please refer to Supplementary D for specific ablations.
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3.4 Theoretical justification of CLIPCleaner
Ignoring the language modality and treating the CLIP model as

an ordinary pre-trained model, we can also leverage its vision

encoder 𝑔 solely along with the interested noisy dataset (𝒙𝑖 , 𝑦𝑖 )𝑁𝑖=1
to induce a new classifier 𝑓 ′ (to discriminate it with the model 𝑓

in section 3.1) for estimating the clean conditional probability in

eq. (1). For example, we can simply freeze the weights of 𝑔, use it

as a fixed feature encoder, and train a linear classifier 𝑓 ′ upon it

based on the interested noisy dataset. Then the predicted logits after

softmax normalization can be used as an estimate of 𝑃 (y|x = 𝒙𝑖 ):
𝑃𝑖𝑛𝑑𝑢𝑐𝑒𝑑 (y|x = 𝒙𝑖 ) = softmax(𝑓 ′ (𝑔(𝒙𝑖 ))). (8)

An immediate question is: how does the zero-shot classifier (eq. (4))
compare to the induced classifier here (eq. (8)) in estimating the clean
conditional probability? In fact, the induced classifier can be based

on any visual pre-trained model. If such easily-induced classifier

demonstrates performance comparable to or even better than the

zero-shot classifier, thenwe have nomotivation to specifically adopt

the CLIP model for sample selection. To this end, we conduct a

theoretical analysis and compare the estimated 𝑃 (y|x = 𝒙𝑖 ) in both

options with the true/unknown 𝑃 (y|x = 𝒙𝑖 ). Specifically, following
previous notations, we have below theorems:

Theorem 3.1 (Estimation with zero-shot classifier). Let
G,H be the hypothesis space of vision encoder 𝑔 and language en-
coder ℎ. Let us denote the rademacher complexity as ℜ(G ◦ H) of
the combined CLIP model. Supposing the range of 𝐿 from eq. (2) as
[0, 𝑙𝑐𝑙𝑖𝑝∞ ] for all (𝒙, 𝒛) in sup(𝑄) with 𝑔, ℎ ∈ G,H . Then, for any
𝛿 > 0, with probability at least 1 − 𝛿 we have the following hold:

𝑑 (𝑃𝑧𝑒𝑟𝑜𝑠ℎ𝑜𝑡 , 𝑃 ) ≤ 𝜀𝑑𝑜𝑚𝑎𝑖𝑛+Δ(𝜆0𝜀𝑐𝑙𝑖𝑝 + 𝜆1ℜ(G ◦ H) + 𝜆2𝑙
𝑐𝑙𝑖𝑝
∞

√︂
log 1/𝛿
𝑀

+ 𝜆3𝜀𝑛 )

with 𝜆0, 𝜆1, 𝜆2, 𝜆3 > 0. Here, 𝜀𝑑𝑜𝑚𝑎𝑖𝑛 denotes the bias term induced
by the domain gap between 𝑄 and 𝑃𝑡𝑟𝑢𝑒 , 𝜀𝑐𝑙𝑖𝑝 denotes the expected
risk of the Bayes optimal CLIP model, and Δ ≥ 1 denotes the bias
coefficient induced by designing prompts and sampling in eq. (3).

Theorem 3.2 (Estimation with induced classifier). Let F
be the hypothesis space of induced classifier 𝑓 ′. Let us denote the
rademacher complexity as ℜ(F ) of the induced classifier. Supposing
the range of 𝐿 for training 𝑓 ′ as [0, 𝑙𝑛𝑜𝑖𝑠𝑦∞ ] for all (𝒙, 𝑦) in sup(𝑃)
with 𝑓 ′ ∈ F . Then, for any 𝛿 > 0, with probability at least 1 − 𝛿 we
have the following holds:

𝑑 (𝑃𝑖𝑛𝑑𝑢𝑐𝑒𝑑 , 𝑃) ≤ 𝜀𝑛𝑜𝑖𝑠𝑒+𝜆0𝜀𝑖𝑛𝑑𝑢𝑐𝑒𝑑 + 𝜆1ℜ(F ) + 𝜆2𝑙
𝑛𝑜𝑖𝑠𝑦
∞

√︂
log 1/𝛿

𝑁

with 𝜆0, 𝜆1, 𝜆2 > 0. Here, 𝜀𝑛𝑜𝑖𝑠𝑒 denotes the difference term induced
by the label noise in the training dataset, and 𝜀𝑖𝑛𝑑𝑢𝑐𝑒𝑑 denotes the
expected risk of the Bayes optimal induced classifier.

Please refer to Supplementary F for full derivation. With theo-

rem 3.1 and theorem 3.2, ignoring the uncontrollable and common

bound error terms (marked in gray), we find that the zero-shot clas-
sifier is affected by domain gap and prompts quality while the induced
classifier is affected by the label noise of the noisy dataset, which is

intuitively consistent with our expectation
5
. Put simply, 𝜀𝑛𝑜𝑖𝑠𝑒 is

always unavoidable in theorem 3.2, even with a perfectly-learned

feature encoder; By contrast, in theorem 3.1, Δ can be reduced

5
Please note we are not aiming for strict/tight bounds but to validate the intuition:

zero-shot classifier is noise-free while the induced classifier is noise-affected.

through better prompt engineering, and 𝜀𝑑𝑜𝑚𝑎𝑖𝑛 can be minimized

by training CLIP with a more diverse dataset, thus reducing the

domain gap.We emphasize that this is the unique advantage of CLIP
for sample selection as a vision language model.

3.5 Additional discussion
To be greedy or conservative? So far, we have mentioned two dif-

ferent conditional probability estimation options (eq. (4) and eq. (8))

and two different sample selection strategies (eq. (5) and eq. (6)),

resulting in a total of four different combinations for a possible

overall method. The theoretical analysis above and the subsequent

empirical ablations show that these different combinations exhibit

their preferences in different scenarios. In this work, we adopt a

conservative strategy by taking the intersection of different sam-

ple selection results, prioritizing the precision of sample selection.

Compared to more greedy sample selection strategies, we tend to

rely on the introduced semi-supervised learning strategy - MixFix -

to gradually incorporate more samples into training. This can avoid

amplifying the impact of noisy samples due to overly greedy sample

selection, but it also has the obvious weakness that it will inevitably

miss some ‘hard’ clean samples. We leave further exploration to

future work.

To fully explore CLIP?. The utilization of the CLIP model for

learning with noisy labels remains an area that requires further

investigation. To ensure a fair comparison with existing work, we

adopt standard sample selection paradigm, refraining from train-

ing or fine-tuning the CLIP model [3, 69]. The current prominent

research directions related to CLIP involve fine-tuning the model,

specifically through prompt-based learning. However, as expected,

recent work (CoOp) has indicated that direct fine-tuning CLIP with

noisy datasets can yield poorer performance compared to the ini-

tial zero-shot classifier. Therefore, in addition to sample selection,

incorporating established techniques for LNL into prompt-based

learning with CLIP may also offer promising directions.

4 Experiments
In this section, we conduct extensive experiments on two standard

benchmarks with synthetic label noise, CIFAR10 and CIFAR100,

and four real-world noisy datasets, Red Mini-ImageNet [23], Cloth-

ing1M [57], WebVision [33], and ANIMAL-10N [44]. We mainly

follow previous works [10, 16, 29] for model and training configu-

rations, please refer to Supplementary G for full details. For com-

parison to other works, we report the results from most advanced

SOTA methods - normally including techniques like co-training,

contrastive learning, etc.

4.1 Ablations study
Hyper-parameters w.r.t MixFix. In this section, we ablate on the

only two hyperparameters of our semi-supervised training strategy

MixFix: the ‘absorb’ threshold 𝜃𝑟 and the ‘relabel’ threshold 𝜃 ′𝑟 . Ow-
ing to the precision-recall dilemma when doing sample selection,

here we also need to weigh the precision and recall when intro-

ducing additional training samples. In table 1 we demonstrate that

under different noise ratios, a too-high or too-low threshold leads to

performance degradation, and 𝜃𝑟 < 𝜃 ′𝑟 leads to better performance
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Table 1: Ablations on MixFix with synthetic
CIFAR100 noisy dataset. The top-3 results are
bolded.

𝜃𝑟 𝜃 ′𝑟
Noise ratio

20% 50% 80% 90%

0.7 76.46 74.69 69.50 62.91

0.7 0.8 76.63 75.23 69.72 63.11
0.9 77.06 75.17 67.76 59.17

0.7 75.49 74.30 67.95 63.29
0.8 76.36 74.90 68.86 63.420.8

0.9 76.66 74.50 67.37 58.09

0.7 74.53 73.49 68.74 62.22

0.8 75.98 74.25 68.94 62.810.9

0.9 75.78 74.23 67.17 59.38

𝜃'r

𝜃r

𝜃'r

𝜃r

𝜃'r

𝜃r

𝜃'r

𝜃r

Figure 3: 𝑁𝑡𝑟𝑎𝑖𝑛 denotes number of training samples, 𝑁𝑐𝑙𝑒𝑎𝑛 denotes number
of clean training samples and 𝑁𝑎𝑙𝑙 denotes number of clean training samples.

Table 2: Testing accuracy (%) with CLIP zero-shot classifier.

Model CIFAR10 CIFAR100 Red Mini-ImageNet WebVision Clothing1M ANIMAL-10N

CLIP 89.97 63.72 78.12 73.36 39.73 76.12

SOTA 92.68 [22] 67.7 [22] 49.55 [16] 80.9 SSR+ [10] 74.84 C2D [68] 88.5 SSR+ [10]

Ours 95.15 71.17 54.21 81.56 74.87 88.85

than setting the same value for both thresholds. In fig. 3, we fur-

ther reveal the inherent mechanism. Especially, after reducing the

‘absorb’ threshold 𝜃 ′𝑟 , the proportion of training samples increases

and the accuracy of training samples decreases.

Analyzing CLIP Zero-shot classification as a baseline. In this sec-

tion, we consider utilizing CLIP’s zero-shot classifier directly on the

clean test set, following a procedure that we describe in Section 3.2.

In table 2, we present the zero-shot classification results on six

involved benchmarks and compare them with current SOTA results

as well as our own method. It’s worth noting that CLIP is utilized

with the VIT-B/32 architecture here, while our method and the

SOTA methods adopt simpler structures, such as PreResNet-18 for

the CIFAR dataset. Therefore, this comparison is indeed ‘over strin-

gent’. Even though, we observe that, when compared to directly

utilizing CLIP’s zero-shot classifier, our method delivers significant

improvements on most datasets and outperforms the SOTA LNL

methods on all datasets. We also consider other vision-language

models other than CLIP in Supplementary A.

Analyzing sample selection w.r.t different classifiers and different
mechanisms. In section 3.4, we theoretically conclude that the sam-

ple selection performance of the zero-shot classifier is influenced

by the quality of utilized prompts and the domain gap between

CLIP training dataset and the in-question noisy dataset, while the

performance of the easily-induced classifier trained based on CLIP’s

vision encoder and the in-question noisy dataset is influenced by

the noise of the in-question dataset. To validate this, we empirically

test with two datasets with controllable noise ratios, that is, the CI-

FAR10/100 dataset with synthetic noise and the Red Mini-ImageNet

dataset with real-world noise.

In fig. 4, we show the sample selection result and find that:

• Firstly, as the noise ratio increases, regardless of the dataset

(CIFAR10 vs. CIFAR100 vs. Red Mini-ImageNet), noise modes

(symmetric vs. asymmetric vs. real-world) or CLIP backbones
(VIT-B/32 vs.VIT-L/14@336px vs. RN50), the zero-shot classi-
fier gradually outperforms the induced classifier. This further

validates the unique advantage of CLIP and our theoretical

findings in section 3.4 - that the latter is affected by label

noise while the former is not;

• Additionally, we find that different sample selection mech-

anisms (G𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 VS G𝑙𝑜𝑠𝑠 ) show distinct advantages

and disadvantages on different datasets. Given that noise

information is typically unknown in real-world scenarios,

as analyzed in section 3.5, we default to a conservative sam-

ple selection strategy, which involves utilizing both sample

selection strategies and choosing their intersection as final

selected subset;

• Furthermore, we notice that when comparing two different

choices for obtaining the induced classifier, the LogisticRe-
gression classifier empirically exhibits superior performance

to the kNN classifier. Therefore, we choose the LogisticRegres-
sion classifier as our default choice for the induced classifier.
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Figure 4: Comparisons of various sample selection methods w.r.t different dataset/noise type/noise ratio. Here, we show the
ROC AUC score of binary identification of clean samples.

4.2 Results on synthetic noisy dataset
In this section, we first evaluate our method on the CIFAR datasets

with synthetic symmetric/asymmetric noise. In table 4, We can see

that our method gets competitive and better performance in all

experiment settings, especially when the noise ratio is high (63.11%

testing accuracy with 90% symmetric noise on CIFAR100 dataset).

Also, we would like to emphasize that we keep hyper-parameters

fixed for all experiments here as we believe the method robustness

in a noise-agnostic scenario is critical.

To further validate the performance of our method in handling

the ‘hard noise’, we also conduct experiments on instance-dependent

noise in table 3. Different from symmetric or asymmetric noise,

instance-dependent noise assumes that semantic-similar samples

are more prone to get mislabelled, aligning better with our earlier

definition of ‘hard noise’. Besides, here we here exclude MixFix
and employ the selected samples for training with cross-entropy

loss solely. This exclusion serves to provide additional proof of the

superior sample selection performance of CLIPCleaner.

4.3 Results on real-world noisy datasets
Finally, in table 6, table 7, and table 8 we show results on the

ANIMAL-10N, Red Mini-ImageNet and WebVision datasets, respec-

tively. In summary, our proposed method demonstrates substantial

improvements compared to the current state-of-the-art approaches

on both large-scale web-crawled datasets and small-scale human-

annotated noisy datasets.

Table 3: Testing accuracy (%) on CIFAR10 with instance-
dependent noise.

Method

Noise ratio

10% 20% 30% 40%

CE 91.25 86.34 80.87 75.68

F-correction [41] 91.06 86.35 78.87 71.12

Co-teaching [19] 91.22 87.28 84.33 78.72

GCE [67] 90.97 86.44 81.54 76.71

DAC [47] 90.94 86.16 80.88 74.80

DMI [58] 91.26 86.57 81.98 77.81

SEAL [4] 91.32 87.79 85.30 82.98

CE* 90.76 86.08 80.64 75.27

CLIPCleaner + CE 92.33±0.37 91.06±0.37 89.71±0.37 88.26±0.37

We note, that the proposed CLIPCleaner can also be used in

combination with other schemes. In table 5 we show results on the

Clothing1M dataset both with our default setting (CLIPCleaner +
MixFix) and with it incorporated to two additional schemes: first

incorporating our method with co-training, and second replacing

MixFix with DivideMix [29]. We observe that we obtain results

that are superior to the current state-of-the-art. Meanwhile, we

would like to note that the majority of existing methods have small

differences on the Clothing1M dataset despite the fact that they

have large performance differences on other datasets. This suggests

that additional training techniques may have a greater impact than

sample selection methods on this specific dataset, possibly due to
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Table 4: Testing accuracy (%) on CIFAR-10 and CIFAR-100 with synthetic noise.

Dataset CIFAR10 CIFAR100

Noise type Symmetric Assymetric Symmetric

Noise ratio 20% 50% 80% 90% 40% 20% 50% 80% 90%

CE 86.8 79.4 62.9 42.7 85.0 62.0 46.7 19.9 10.1

Co-teaching+ [63] 89.5 85.7 67.4 47.9 - 65.6 51.8 27.9 13.7

F-correction [41] 86.8 79.8 63.3 42.9 87.2 61.5 46.6 19.9 10.2

PENCIL [62] 92.4 89.1 77.5 58.9 88.5 69.4 57.5 31.1 15.3

LossModelling [1] 94.0 92.0 86.8 69.1 87.4 73.9 66.1 48.2 24.3

DivideMix [29] 96.1 94.6 93.2 76.0 93.4 77.3 74.6 60.2 31.5

ELR+ [34] 95.8 94.8 93.3 78.7 93.0 77.6 73.6 60.8 33.4

MOIT [38] 93.1 90.0 79.0 69.6 92.0 73.0 64.6 46.5 36.0

SelCL+ [31] 95.5 93.9 89.2 81.9 93.4 76.5 72.4 59.6 48.8

TCL [22] 95.0 93.9 92.5 89.4 92.6 78.0 73.3 65.0 54.5

Ours 95.92±0.15 95.67±0.28 95.04±0.37 94.23±0.54 94.89±0.16 78.20±0.45 75.23±0.29 69.72±0.61 63.11±0.89

Table 5: Testing accuracy (%) on Clothing1M.

CE

F-correction

[41]

RRL

[30]

C2D

[68]

DivideMix

[29]

ELR+

[34]

SSR+

[10]

TCL

[22]

Ours Ours (Co-training) CLIPCleaner + DivideMix

69.21 69.84 74.30 74.84 74.76 74.81 74.83 74.80 73.41±0.65 74.01±0.47 74.87±0.44

Table 6: Testing accuracy (%) on WebVision.

Methods

WebVision ILSVRC2012

Top1 Top5 Top1 Top5

Co-teaching [19] 63.5 85.20 61.48 84.70

DivideMix [29] 77.32 91.64 75.20 90.84

ELR+ [34] 77.78 91.68 70.29 89.76

NGC [54] 79.16 91.84 74.44 91.04

FaMUS [59] 79.4 92.8 77.0 92.8

RRL [30] 76.3 91.5 73.3 91.2

SelCL+ [31] 79.9 92.6 76.8 93.0
SSR+ [10] 80.9 92.8 75.8 91.8

TCL [22] 79.1 92.3 75.4 92.4

Ours 81.56±0.29 93.26±0.65 77.80±0.25 92.08±0.44

Table 7: Testing accuracy (%) on Red Mini-ImageNet.

Method

Noise ratio

20% 40% 60% 80%

CE 47.36 42.70 37.30 29.76

Mixup [64] 49.10 46.40 40.58 33.58

DivideMix [29] 50.96 46.72 43.14 34.50

MentorMix [23] 51.02 47.14 43.80 33.46

FaMUS [59] 51.42 48.06 45.10 35.50

InstanceGM [16] 58.38 52.24 47.96 39.62

Ours 61.44±0.45 58.42±0.66 53.18±0.47 43.82±0.87

the fact that the Clothing1M dataset is more fine-grained than other

datasets. For such fine-grained noisy datasets, sample selection may

not be the optimal strategy, as suggested in Supplementary H.

Table 8: Testing accuracy (%) on ANIMAL-10N.

Method Accuracy

CE 79.4

SELFIE [44] 81.8

PLC [66] 83.4

NCT [6] 84.1

InstanceGM [16] 84.6

SSR+ [10] 88.5

Ours 88.85±0.61

5 Conclusion
To mitigate the issues of ‘self-confirmation bias’ and compensate

for visual-only modality in current mainstream sample selection

methods, in this paper, we propose a method utilizing the large-

scale vision-language model CLIP for sample selection, called CLIP-
Cleaner. We substantiate its effectiveness both theoretically and

empirically. Furthermore, we introduce a straightforward semi-

supervised learning method tailored for noisy datasets, called Mix-
Fix, without the need for intricate off-the-shelf techniques. We

emphasize that the exploration of utilizing vision-language models

for noisy datasets, such as the potential of existing prompt learning

techniques, remains an open direction. Additionally, the possibil-

ity of a large domain gap between the CLIP model and the target

dataset can influence results, indicating a need for more refined

vision-language models. Lastly, our experiments suggest that sam-

ple selection methods may not be optimal for fine-grained noisy

datasets, which presents itself also as one of our future research

directions.
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