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Fluid Antenna-Assisted ISAC Systems
Liaoshi Zhou, Junteng Yao, Ming Jin, Tuo Wu, and Kai-Kit Wong, Fellow, IEEE

Abstract—This letter proposes a fluid antenna-assisted inte-
grated sensing and communication (ISAC) system, where a base
station (BS) transmits signals to a communication user (CU) while
sensing a target. Unlike traditional ISAC systems with fixed-
position antennas (FPAs), fluid antennas are equipped at the BS
and CU, and can be dynamically adjusted within a given area.
Our objective is to jointly optimize the transmit beamforming and
the locations of fluid antennas at the BS and CU to maximize the
downlink communication rate while ensuring the requirements
of the sensing beampattern gain and transmit power of the
BS. Due to the non-convex nature of the original problem and
the high coupling between variables, we employ an alternating
optimization (AO) algorithm, dividing it into three subproblems
and transforming them into convex ones for solution. Simulation
results confirm that our proposed system significantly improves
the performance of ISAC systems compared to benchmarks.

Index Terms—Fluid antenna, integrated sensing and commu-
nication (ISAC), alternating optimization (AO).

I. INTRODUCTION

W ITH the advent of the sixth generation (6G) of wire-
less networks, massive connectivity has become an

inevitable trend for future networks [1]. However, spectrum
scarcity remains a critical challenge for the development
of these networks. To overcome this challenge, integrated
sensing and communication (ISAC) has been identified as a
promising solution that can simultaneously support wireless
communication and sensing using the radar spectrum resource
[2], [3], [4]. Recently, ISAC has attracted considerable interest
due to its high spectral efficiency. Consequently, it has been
deployed in various wireless systems, including ISAC-assisted
mobile edge computing (MEC) systems [5], ISAC-assisted
wireless power transfer (WPT) systems [6], ISAC-assisted
non-orthogonal multiple access (NOMA) systems [7], and
ISAC-assisted physical layer security (PLS) systems [8].

To enhance the communication and sensing performance of
ISAC systems, the incorporation of multiple-input multiple-
output (MIMO) techniques has been proposed as an effective
approach. Nevertheless, traditional MIMO systems with fixed-
position antennas (FPAs) are unable to fully exploit spatial
resources due to the immobility of antennas. To maximize
the spatial degrees of freedom (DoFs) and further enhance
ISAC performance, fluid antennas, a.k.a. movable antennas,
can be utilized to overcome the limitations of FPAs [9], [10],
[11], [12], [13]. The core concept of fluid antennas is that
the antenna locations can be optimized within a certain region
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by controllers, thereby providing additional spatial DoFs [14].
Owing to the benefits of fluid antennas, their application
has been extensively explored in various scenarios, including
NOMA systems [15], secure communication systems [16], and
over-the-air computation (AirComp) networks [17].

Inspired by these advancements, introducing fluid antennas
into ISAC systems is the way forward. The primary advantage
of this integration is the capability to optimize communication
performance by dynamically adjusting the locations of fluid
antennas. In traditional ISAC systems equipped with FPAs, the
main path typically aligns with the target for sensing purposes,
which can significantly impair communication performance.
By strategically designing the locations of fluid antennas at
both the transmitter and receiver, it is possible not only to
maintain alignment with the sensing target but also to enhance
communication performance. To the best of our knowledge,
fluid antenna-assisted ISAC systems remain unexplored.

To address this research gap, this letter proposes a fluid
antenna-assisted ISAC system. In our proposed system, a base
station (BS) equipped with multiple fluid antennas transmits
signals to a communication user (CU) equipped with a single
fluid antenna and a sensing target equipped with a single
FPA. Our aim is to maximize the communication rate under
the sensing beampattern gain and transmit power of the BS
constraints by jointly designing the transmit beamforming of
the BS, the locations of transmit fluid antennas of the BS, and
the location of a single receive fluid antenna of the CU. We
employ the alternating optimization (AO) algorithm to tackle
this highly non-convex problem. Simulation results indicate
that the proposed scheme significantly outperforms benchmark
approaches in terms of ISAC performance.

Notations: We use Tr(A), AH , and AT to denote the spec-
tral norm, trace, conjugate transpose, and transpose, respec-
tively; ‖a‖2 denotes the 2-norm of vector a; A � 0 indicates
that A is positive semidefinite; <{x} means the real part of x;
CN (0, σ2) denotes the distribution of a circularly symmetric
complex Gaussian vector with mean 0 and covariance σ2.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider an ISAC system comprising a dual-functional BS,
a CU, and a sensing target. The BS simultaneously com-
municates with the CU and performs radar sensing directed
towards a potential target. Both the BS and the CU are
equipped with fluid antennas; the BS has N(N ≥ 2) fluid
antennas while the CU is equipped with a single fluid antenna.
These fluid antennas are connected to radio frequency (RF)
chains via integrated waveguides or flexible cables, allowing
free switching (or movement) within defined ranges, denoted
as St for the BS and Sr for the CU, respectively. The
location of the n-th fluid antenna of the BS is defined using
a two-dimensional Cartesian coordinate model and can be
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expressed as tn = [xtn, y
t
n]T , n ∈ N = {1, . . . , N}. The

collective locations of the BS’s fluid antennas are represented
as t = [t1, t2, . . . , tN ] ∈ R2×N . Similarly, the location of the
CU’s single fluid antenna is denoted by r = [xr, yr]T .

We define the beamforming vector of the BS as v ∈ CN×1,
and denote x as the transmit signal, used for both communi-
cation and radar sensing, with E[|x|2] = 1. Consequently, the
received signal at the CU can be expressed as

y(t, r) = h(t, r)vx+ w, (1)

where h(t, r) ∈ C1×N represents the channel vector from the
BS to the CU, and w ∼ CN (0, σ2

w) denotes the additive white
Gaussian noise at the CU.

B. Channel Model

We assume that the size of the ‘moving’1 region for the fluid
antennas is significantly smaller than the distance between
the transmitter and the receiver, thereby adopting the far-
field model in this letter [11], [12]. Despite the mobility of
the fluid antennas, the angles of arrival (AoA) and angles
of departure (AoD) remain constant for each propagation
path. The variation in signal propagation distance for the n-th
antenna at the BS relative to its origin point t0 on the i-th
transmit path is expressed as [18]

ρit(tn) = xtn sinφit cosψit + ytn cosφit, (2)

where φit ∈ [0, π] and ψit ∈ [0, π] represent the elevation and
azimuth AoDs of the i-th path (i ∈ {1, . . . , pt}), respectively.
Also, pt denotes the number of transmit paths. Furthermore,
the phase difference in the signal caused by the displacement
of the n-th transmit fluid antenna from the origin point t0 on
the i-th path is 2π

λ ρ
i
t(tn), where λ is the wavelength. This

leads to the definition of the transmit response vector as

e(tn) ,
[
ej

2π
λ ρ

1
t (tn), . . . , ej

2π
λ ρ

pt
t (tn)

]T
∈ Cpt×1, n ∈ N .

(3)
Building upon (3), the far-field response matrix of the BS can
be expressed as

E(t) , [e(t1), e(t2), . . . , e(tN )]
T ∈ Cpt×N . (4)

Similarly, in the k-th receive path, the difference in propa-
gation distance between the single receive fluid antenna at the
CU and its reference point r0 is calculated as

ρkr (r) = xrn sinφkr cosψkr + yrn cosφkr , k ∈ {1, . . . , pr}, (5)

where φkr ∈ [0, π] and ψkr ∈ [0, π] are the elevation and
azimuth AoAs at the CU, respectively. The receive response
vector for the fluid antenna at the CU is then given by

f(r) ,
[
ej

2π
λ ρ

1
r(r), . . . , ej

2π
λ ρ

pr
r (r)

]T
∈ Cpr×1, (6)

where pr represents the number of receive paths.
Furthermore, we define the path response matrix from t0 to

r0 as Σ ∈ Cpr×pt , where Σi,k represents the response between

1We are abusing the word ‘move’ here to mean the relocation of an antenna.
In practice, this may be achieved by changing the location of the antenna
aperture by using reconfigurable pixel technologies, which does not involve
physical movement of any radiating structure.

the i-th transmit path and the k-th receive path. Hence, the
channel vector from the BS to the CU can be expressed by

h(t, r) = fH(r)ΣE(t). (7)

In the proposed ISAC system, the BS transmits the signals
to the CU to achieve the communication function. Hence, the
communication rate is considered as the performance metric,
which is given by

R = log2

(
1 +

h(t, r)VhH(t, r)

σ2
w

)
, (8)

where V = vvH .
Parallel to this, the BS also employs the beamforming

technique to enhance the sensing function. This approach is
designed to direct a strong beampattern toward potential tar-
gets, thereby increasing the radar signal-to-noise ratio (SNR)
and ultimately improving sensing performance [19], [20].
Consequently, the sensing beampattern gain is adopted as the
metric for sensing performance, which is quantified by

p(t) = Tr
(
E(t)VEH(t)

)
. (9)

C. Problem Formulation

We aim to maximize the communication rate while adhering
to the constraints on the transmit power of the BS and the
sensing beampattern gain. The optimizing variables include the
transmit beamforming matrix V, the locations of the transmit
fluid antennas t, and the location of the receive fluid antenna
r. Thus, the optimization problem can be formulated as

max
t,r,V�0

R (10a)

s.t. t ∈ St, (10b)
r ∈ Sr, (10c)
||tn − tv||2 ≥ D, n, v ∈ N , n 6= v, (10d)
Tr(V) ≤ Pmax, (10e)

Tr
(
E(t)VEH(t)

)
≥ Γ, (10f)

where (10d) is the minimum distance requirement between
the antennas in the transmit region to avoid coupling; (10e)
denotes the maximum transmit power constraint of the BS;
(10f) represents the sensing beampattern gain requirement.

However, due to the highly non-convex objective function
(10a), constraints (10d) and (10f), solving (10) becomes ex-
ceedingly challenging. To address this issue, we employ an AO
algorithm, whose details are given in the following section.

III. AO ALGORITHM

Here, adhering to the procedure of the AO algorithm, we
decompose (10) into three sub-problems and convert them
into convex forms. Subsequently, we alternately optimize these
sub-problems, obtaining a locally optimal solution for (10).
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A. Optimization of Transmit Covariance Matrix

When the locations t and r are fixed, Problem (10) is
reformulated as

max
V�0

R (11a)

s.t. Tr(V) ≤ Pmax, (11b)

Tr
(
E(t)VEH(t)

)
≥ Γ. (11c)

Given that the objective function is concave with respect to V
and the constraints (11b) and (11c) are linear with respect to
V, (11) is inherently convex. Thus, it can be efficiently solved
using the convex programming toolbox CVX [21].

B. Optimization of Transmit Fluid Antenna Location

In this subsection, we focus on optimizing the locations of
the transmit fluid antennas t, given fixed conditions for V and
r. Since log2(1 + x) is an increasing function with respect to
x, maximizing the communication rate R in Problem (10) is
equivalent to maximizing the power term h(t, r)VhH(t, r).
Noting that this term is a scalar, we can reformulate the
optimization problem as

max
t

Tr
(
h(t, r)VhH(t, r)

)
(12a)

s.t. (10b), (10d), (10f). (12b)

Utilizing the properties of the matrix trace, the objective
function in Problem (12) can be equivalently rewritten as

Tr
(
hH(t, r)h(t, r)V

)
= Tr

(
N∑
n=1

s(tn)sH(tn)V

)
, (13)

where s(tn) = fH(r)Σe(tn) ∈ C1×1. Assuming {tj , j 6=
n}Nj=1 are fixed, maximizing (13) is equivalent to maximizing

Tr
(
s(tn)sH(tn)

)
= sH(tn)s(tn)

= eH(tn)Ane(tn)︸ ︷︷ ︸
g(tn)

, (14)

where An = ΣHf(r)fH(r)Σ ∈ Cpt×pt is independent of
tn. Recognizing that g(tn) is convex with respect to e(tn),
we approximate g(tn) using its first-order Taylor expansion
around the point t̂n as a lower bound for the objective
function:

g(tn; t̂n) = 2<
{
eH(t̂n)Ane(tn)

}︸ ︷︷ ︸
ĝ(tn)

− eH(t̂n)Ane(t̂n)︸ ︷︷ ︸
constant

.

(15)

Thus, maximizing g(tn) can be simplified to maximize ĝ(tn).
Addressing non-convex constraints, for (10d), we observe

that ‖tn − tv‖2 is convex with respect to tn. Employing the
first-order Taylor expansion of ‖tn− tv‖2 around t̂n provides
a lower bound, which is given by

f(tn; t̂n) =
1

||t̂n − tv||2
(t̂n − tv)

T (tn − tv). (16)

For constraint (10f), defining the n-th element of v as
v(n) ∈ C1×1, (10f) can be reformulated as

Tr
(
E(t)VEH(t)

)
=g̃(tn) + 2<

{
eH(tn)κ

}
+ d1, (17)

with the detailed proof of (17) shown at the top of next page.
It can be observed that g̃(tn) is convex with respect to

e(tn). To exploit this, we apply a first-order Taylor expansion
around a point t̂n to serve as a lower bound for the following
objective function:

g̃(tn; t̂n) = 2<
{
v(n)vH(n)eH(tn)e(t̂n)

}
− v(n)vH(n)eH(t̂n)e(t̂n)︸ ︷︷ ︸

d2

. (19)

By using (19), we can rewrite constraint (10f) as

Tr
(
E(t)VEH(t)

)
= 2<

{
eH(tn)η

}︸ ︷︷ ︸
g(tn)

+d1 − d2, (20)

where η = v(n)vH(n)e(t̂n) +κ. Subsequent analysis reveals
that g(tn) and ĝ(tn), functions related to tn, are neither
concave nor convex. Thus, the first-order Taylor expansion
is inadequate for these functions. Alternatively, we propose
a surrogate function by employing the second-order Taylor
expansion to obtain the lower bounds of them [11], [12].
Specifically, we have

ĝ(tn; t̂n) =ĝ(t̂n) +∇ĝ(t̂n)T (tn − t̂n)

− δ̂n
2

(tn − t̂n)T (tn − t̂n), (21)

g(tn; t̂n) =g(t̂n) +∇g(t̂n)T (tn − t̂n)

− δn
2

(tn − t̂n)T (tn − t̂n), (22)

where ∇g(tn) and ∇2g(tn) are the gradient and Hessian
matrix of g(tn), respectively, and similarly for ĝ(tn). We
introduce scalars δn and δ̂n such that δnI2 � ∇2g(tn) and
δ̂nI2 � ∇2ĝ(tn), as derived in [11, Appendix B]. This for-
mulation leads to the following convex optimization problem:

max
tn

ĝ(tn; t(m)
n ) (23a)

s.t. t ∈ St, (23b)

f(tn; t(m)
n ) ≥ D,u, n ∈ N , u 6= n, (23c)

g(tn; t(m)
n ) ≥ Γ + d2 − d1

2
, (23d)

where t
(m)
n is the optimal tn of the m-th iteration.

The objective functions in (23a) is characterized as concave
with respect to tn. Moreover, the constraints (23b) and (23c)
are linear with respect to tn. Consequently, the optimization
problem defined in (23) is convex, facilitating its resolution
via established convex optimization methods [21].

C. Optimization of Receive Fluid Antenna Location

In this subsection, our objective is to optimize the location
r of receive fluid antenna with given V and t, and the
optimization problem is given by

max
r

Tr
(
h(t, r)VhH(t, r)

)
(24a)

s.t. (10c). (24b)
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Tr
(
E(t)vvHE(t)

H
)

=Tr

([
N∑
n=1

e(tn)v(n)

][
N∑
n=1

vH(n)eH(tn)

])

=Tr

v(n)vH(n)eH(tn)e(tn)︸ ︷︷ ︸
g̃(tn)

+ Tr

e(tn)v(n)

N∑
i 6=n

vH(i)eH(ti)



+ Tr


N∑
j 6=n

e(tj)v(j)vH(n)︸ ︷︷ ︸
κ

eH(tn)

+ Tr

 N∑
j 6=n

e(tj)v(j)

N∑
i 6=n

vH(i)eH(ti)


︸ ︷︷ ︸

d1

(18)

Consider the eigenvalue decomposition (EVD) of the matrix
V, denoted by V = UV ΛV UH

V , where UV ∈ CN×N
consists of the eigenvectors and ΛV ∈ CN×N is a diagonal
matrix containing the eigenvalues. Then we define Z(r) =

h(t, r)UV Λ
1
2

V ∈ C1×N and z(r) = Λ
1
2

V UH
V EH(t)ΣHf(r) ∈

CN×1. Thus, the objective function (24a) can be written as

Tr
(
h(t, r)VhH(t, r)

)
= Tr

(
Z(r)ZH(r)

)
= zH(r)z(r)

= fH(r)Bmf(r), (25)

where Bm = ΣE(t)UV Λ
1
2

V Λ
1
2

V UH
V EH(t)ΣH . Thus, Prob-

lem (24) is rewritten as

max
r

fH(r)Bmf(rm) (26a)

s.t. (10c). (26b)

Similar to the optimization of transmit fluid antenna locations,
we also use the second-order Taylor expansion to transform
the objective function into a concave quadratic function. Then,
Problem (24) can be transformed as convex form [22].

The aforementioned procedures for solving Problem (10) is
summarized in Algorithm 1, where the optimal t, r, and V in
the lth iteration are denoted as t

(l), r(l), and V(l), respectively.

Algorithm 1 The Proposed Alternating Optimization Algo-
rithm

1: Initialize: l = 0, V(0), t
(0), and r(0);

2: Repeat
l := l + 1;
Update V(l) by (11);
Update t

(l) by (23);
Update r(l) by (26);

3: Until: Convergence.

IV. NUMERICAL RESULTS

In our simulation experiments, we consider that the eleva-
tion and azimuth angles φit, ψ

i
t, φ

k
r , ψ

k
r are all independent and

identically distributed variables randomly distributed in [0, π].
The convergence accuracy is set to 10−3. The minimum dis-
tance constraint between the fluid antennas is set to D = λ/2

and restricted to movement within the range of A × A. The
path response matrix is assumed to be diagonal with Σ[1, 1] ∼
CN (0, τ/(τ + 1)) and Σ[k, k] ∼ CN (0, 1/(τ + 1)(pr − 1))
for k = 2, 3, . . . , pr, where τ = 1 represents the ratio of the
average power of the line-of-sight (LoS) path to the average
power of the non-line-of-sight (NLoS) path. We assume that
the number of transmit and receive paths as pt = pr = 3, the
maximum transmit SNR of the BS is Pmax/σ

2
w = 5 dB, and

the ratio of the minimum sensing beampattern gain and noise
power is Γ/σ2

w = 9 dB. We also set N = 4 and A = 4λ.
In Fig. 1, we demonstrate the convergence behavior of our

proposed alternating optimization algorithm, where N = 2,
3, and 4. From Fig. 1, it is observed that our proposed
alternating optimization algorithm converges after about 9
iterations. Besides, we can also find that the communication
rate increases with the increasing of N .

In Fig. 2, we study the communication rate versus the
maximum transmit SNR of the BS Pmax/σ

2
w. In the legend,

“Proposed” denotes our proposed AO algorithm based scheme,
while “RFA” means the scheme that the BS is equipped with
an N -element uniform linear array spaced by λ/2, and the CU
is equipped with a single fluid antenna. “FPA” represents the
scheme that the BS and CU are both equipped with FPAs.
We can observe from the results in Fig. 2 that the larger
Pmax/σ

2
w, the larger the communication rate. Moreover, at

the same SNR, the “Proposed” scheme consistently achieves
higher rates compared to the other schemes.

Fig. 3 illustrates the impact of normalized fluid antenna
mobility regions A/λ on the communication rate. It can be
observed that the communication rates of all schemes except
for “FPA” scheme increase as A/λ increases. This is because
the location of antennas of the “FPA” scheme is fixed, and
the enhancement of A/λ cannot improve the communication
performance of the “FPA” scheme. Moreover, we can find
that the “Proposed” scheme and the “RFA” scheme exhibit
the significant enhancement in communication rates compared
with the “FPA” scheme. This is attributed to the larger mobility
region can provide larger DoFs. Moreover, we can also find
that the lines of the “Proposed” scheme and the “RFA”
scheme become constant, when A/λ is larger than 4. This
indicates that the considered system can achieve the maximum
communication rate within a finite movable region.

Fig. 4 compares the impact of the ratio of the minimum
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sensing beampattern gain and noise power Γ/σ2
w on the com-

munication rate. It can be observed from Fig. 4 that the achiev-
able communication rates of all schemes decrease as Γ/σ2

w

increases. This is because the BS needs to utilize more spatial
resource to ensure sensing performance, thereby impairing the
communication performance. Besides, the “Proposed” scheme
can effectively overcome the impact of sensing performance
requirement by optimizing the fluid antenna locations, and
achieves the largest communication rate.

V. CONCLUSION

In this letter, we investigated a fluid antenna-assisted ISAC
system, and maximized the communication rate between the
BS and the CU with the requirements of the transmit power
of the BS and the sensing beampattern gain. Due to the
highly non-convex nature of the problem, we utilized an AO
algorithm to obtain a locally optimal solution. Numerical
results demonstrated that our proposed scheme outperforms
traditional schemes in term of communication performance
under the same sensing performance constraint. Furthermore,
with increasing of the fluid antenna area, our proposed scheme
achieves a higher communication rate.
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