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ABSTRACT:
Ultrasound image reconstruction is typically performed using the computationally efficient delay-and-sum

algorithm. However, this algorithm is suboptimal for systems of low channel counts, where it causes significant

image artefacts. These artefacts can be suppressed through model-based inversion approaches; however, their com-

putational costs typically prohibit real-time implementations. In this work, the emerging optical ultrasound (OpUS)

modality is considered, where ultrasound waves are both generated and detected using light. With this modality,

imaging probes comprise very low channel counts, resulting in significant image artefacts that limit the imaging

dynamic range. However, this low channel counts offer an opportunity for non-iterative (“direct”) model-based

inversion (DMI) on modest computational resources available in a typical workstation. When applied to both syn-

thetic and experimental OpUS data, the presented DMI method achieved substantial reduction in image artefacts and

noise, improved recovery of image amplitudes, and–after one-off pre-computation of the system matrices–

significantly reduced reconstruction time, even in imaging scenarios exhibiting mild spatial inhomogeneity. Whilst

here applied to an OpUS imaging system, DMI can be applied to other low channel-count imaging systems, and is

therefore expected to achieve better image quality, reduce system complexity, or both, in a wide range of settings.
VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0034450
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I. INTRODUCTION

Ultrasound imaging is a safe, cost-effective, and versa-

tile imaging modality that exhibits excellent soft-tissue con-

trast and offers good spatial and temporal resolution.1

Imaging probes typically contain hundreds of transducer

elements, each of which can both transmit and receive ultra-

sound waves.1 The resulting backscatter (“pulse-echo”)

radio frequency (RF) data are conventionally reconstructed

into images using a “delay-and-sum” (D&S) algorithm,

which measures the coherence between pulse-echo signals

as detected by multiple transmit–receive detector pairs

(“channels”).1 The D&S algorithm is highly popular due to

its simplicity and numerical efficiency; enabling real-time,

video-rate reconstruction even for imaging systems compris-

ing high numbers of elements.2

However, the D&S algorithm assumes that patterns of

coherence in the data (“actual” signal) constructively add

upon reconstruction, and that other components (e.g., noise,

clutter) are zero-mean and are hence reconstructed to near-

zero values. Whilst this is accurate for systems comprising

high numbers of channels, this assumption breaks down in

low channel-count scenarios, such as sparse arrays (com-

prising very few transducer elements), plane wave or photo-

acoustic imaging [where only a few (or even single)

emissions are employed and hence, only limited transmit

beamforming is possible3] or systems using a single detector

(where receive beamforming is not possible).4

Consequently, such imaging scenarios tend to suffer from

strong image artefacts due to side and grating lobes, mea-

surement noise, inhomogeneous transducer directivity, and

geometrical attenuation–resulting in image distortion, clut-

ter, limited dynamic range, and inaccurate image ampli-

tudes, since the D&S algorithm does not consider the

physics and signal interactions underlying these artefacts.

Alternative reconstruction algorithms have been

devised that are more robust to some or all these sources of

artefacts. However, these algorithms either are non-linear

[e.g., short-lag spatial coherence (SLSC),5 delay-multiply-

and-sum (DM&S)6] and hence modify the appearance of the

actual signal in the image as well as the artefacts, are com-

putationally highly demanding (e.g., minimum-variance

beamforming7) or require substantial amounts of curated

ground-truth training data that can be non-trivial to obtain

a)This work constitutes a more comprehensive investigation of work previ-

ously presented at the IEEE International Ultrasonics Symposium (2021)

(doi:10.1109/IUS52206.2021.9593785).
b)Email: e.alles@ucl.ac.uk
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(e.g., deep learning methods, such as convolutional neural

networks applied to either the RF data directly8 or as a post-

processing step9). Whilst such algorithms offer varying lev-

els of image artefact reductions, they still do not consider

the physics and signal interactions generating the image

artefacts–and hence, cannot address all of the image artefact

sources.

In contrast, a branch of image formation techniques

exists that can, in principle, capture and correct for most of

the artefact-generating principles listed above10 (as well as

material inhomogeneity and multiple scattering,11,12 which

is outside the scope of this paper). Rather than directly com-

bining the RF data to form an image, such “model-based

inversion” (MI) techniques (or “full waveform inversion” in

seismics) instead first numerically predict the RF data gener-

ated and detected by a system, using accurate physical

numerical models that can incorporate any or all of the

artefact-generating mechanisms. Next, these predictions are

numerically inverted to match the experimentally observed

RF data to the optimal set of physical parameters. These

parameters can be converted into an ultrasound image

exhibiting substantially reduced artefacts–especially when

suitable regularisation or stabilisation is applied.13 Such MI

approaches have been shown to readily overcome artefacts

due to geometrical attenuation, sidelobes, measurement

noise artefacts, and transducer element directivity inhomo-

geneity; however, as grating lobes arising from spatial or

temporal undersampling result in ambiguity and distortion

of both the modelled and detected RF data, associated arte-

facts are less effectively suppressed.

Whilst MI methods can be highly effective in reducing

image artefacts, or even providing quantitative data, the sys-

tem matrices involved quickly become prohibitively large to

allow for explicit matrix formulation and direct inversion,14

especially for densely populated three-dimensional (3D)

imaging arrays. Instead, iterative approaches are typically

applied that do not require explicit inversion of the system

matrix but instead use operators describing the system.

Whilst this approach is very successful in a number of appli-

cations,10,15–18 the required number of iterations precludes

real-time implementation in all but the simplest of cases.

Recently, optical ultrasound (OpUS) imaging has

emerged as a viable alternative to electronic transducer tech-

nology. With OpUS, ultrasound waves are both generated

and detected using light; the photoacoustic effect is

employed to convert excitation light into broadband ultra-

sound waves,19 and optically resonant ultrasound detec-

tors20–22 allow for highly sensitive ultrasound detection

using miniature sensors with lateral dimensions down to

tens of microns. A number of OpUS imaging paradigms

have previously been described, ranging from systems com-

prising a single OpUS element that is mechanically trans-

lated across an aperture,21,23,24 to benchtop,25,26

freehand,27,28 or even non-contact systems29,30 capable of

real-time, video-rate imaging. However, due to the experi-

mental complexity and cost of OpUS detection systems,

each of these paradigms employ just a single OpUS

detector, resulting in low RF channel counts (� ca: 200)

equal to the number of OpUS sources. Consequently, OpUS

imaging systems to date suffer from substantial image arte-

facts limiting their dynamic range and clinical relevance.

However, the small channel count of OpUS imaging

systems actually presents an opportunity to perform

non-iterative (“direct”) MI instead, at video-rate and in real-

time, implemented on modest hardware. Whilst both

iterative and direct model-based inversion (DMI) are well-

established in the literature, DMI is ideally suited to OpUS

imaging and has not been previously applied to this modal-

ity. Note, however, that the concepts can be extended to any

scenario exhibiting low RF data channel count. The remain-

der of this manuscript presents the theory and implementa-

tion details of DMI applied to a freehand OpUS imaging

system, followed by a number of synthetic and experimental

imaging scenarios to characterise the performance of the

method.

II. METHODS

A. Problem formulation

MI applied to ultrasound imaging aims to solve for the

spatiotemporally varying contrast (“reflectivity”) Rð~r; tÞ
such that it generates the closest possible match to the mea-

sured RF data (the “B-scan”) Bð~r; tÞ when fed to an appro-

priate forward model. This forward model is based on a

mathematical model of the underlying physical phenomena,

which predicts the ultrasound field generated by one or

more ultrasound sources and detected by a single or more

detectors. The predicted B-scan is generated by

Bð~r ; tÞ ¼ P Rð~r; tÞ
� �

; (1)

where operator Pf� � �g applies the forward model to Rð~r; tÞ.
For linear operators, the forward problem can be written as

the matrix-vector multiplication

~B ¼ P~R; (2)

where P is the two-dimensional “system matrix” and ~B and
~R are reshaped into one-dimensional vectors of the B-scan

and contrast function, respectively. The system matrix is of

dimensions ½Nchan � Nt � Nimg�, which for large numbers of

image pixels Nimg and numbers of channels Nchan rapidly

becomes impractical to compute and store directly.

For low channel count, however, the memory require-

ments are modest, meaning that the reflectivity function ~R
can be obtained by first explicitly computing the inverse of

the system matrix, and subsequently computing

~R � ~P
�1~B: (3)

As the system matrix P is highly sparse and rarely

square, its inverse either does not exist or cannot be com-

puted exactly due to numerical instability, and instead the

least squares solution of Eq. (3) is computed. Regularisation
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can be applied during inversion to improve on the numerical

stability of this inverse matrix. As the matrix-vector multi-

plication of Eq. (3) can be very efficiently distributed across

parallel computation hardware, such as graphical processing

units (GPUs), real-time, video-rate applications are readily

achieved for imaging scenarios comprising low channel

count.

B. Forward model

The forward operator P can, in principle, be formulated

to include any physical phenomenon of note, including mul-

tiple scattering, material inhomogeneities, non-linear propa-

gation, and the physical transduction and digitization

mechanisms–resulting in a forward model that can predict

the detected B-scan in absolute values. However, such

highly complex forward operators are non-linear and there-

fore cannot be implemented by means of a matrix-vector

multiplication, such as in Eq. (2), and hence, can only be

inverted via iterative means. In addition, the application of

forward operators tends to increase in numerical complexity

with increasing realism.

In this work, a number of simplifying assumptions will

be made to keep the computational load tractable. First, low

pressure levels are assumed, and hence, the wave propaga-

tion can be assumed linear. Second, the background material

is assumed to be homogeneous. Third, the acoustic contrast

is assumed to be weak, meaning that multiple scattering can

be ignored and the Born approximation is accurate. Fourth,

absolute contrast values are not relevant for imaging pur-

poses, and hence, the transduction and digitization processes

are not modelled. Finally, the contrast function R is assumed

to be temporally invariant, i.e., Rð~r ; tÞ � Rð~rÞ. These

assumptions enable modelling of the detected ultrasound

field using closed-form, analytical impulse responses, which

are computationally efficient and highly accurate. In this

work, the FOCUS MATLAB toolbox (MATLAB 2024a,

The MathWorks, Natick, MA)31 is used in favour of other

simulators for its high numerical efficiency and lack of

mathematical approximations, resulting in accurate results

even in the transducer near-field.32

The geometry considered here is that of a freehand

OpUS imaging setup27 comprising 64 fibre-optic ultrasound

sources distributed across a linear aperture and a single, cen-

trally placed fibre-optic ultrasound receiver [Fig. 1(a)]. The

sources were modelled as circular piston transducers with

diameters matching the core of the optical fibre (200 lm),

and subjected to a dðtÞ spike distribution as the piston sur-

face velocity source signature. The broadband and omni-

directional fibre-optic ultrasound receiver was modelled as a

point detector with a flat frequency response using the free-

space Green’s function [as stated by Cobbold1 in Eqs. (2.11)

and (2.12), pp. 100]. The system matrix P was then

obtained by, for each image pixel, computing the B-scan

corresponding to a single mathematical point reflector

placed in that pixel location [Figs. 1(b)–1(d)].

Mathematically, this was achieved by convolution of the 64

spatiotemporal impulse responses (modelling the forward

propagation from each of the sources to the pixel) with the

Green’s function (modelling the back-scattering from the

pixel to the detector). For computational efficiency, the con-

volutions and other operations were performed in the fre-

quency domain. For a single scatterer located in image pixel

j, the pulse-echo time trace corresponding to source element

k of B-scan Bðk; tÞ was hence computed as

Bðk; tÞ ¼ F�1

(
Ĥð~r img;j �~rsrc;k;xÞ

� e�ixj~r img;j�~r recj=c

4pj~r img;j �~r recj
� ixv̂ðk;xÞ

)
; (4)

where the coordinates of image pixel j, source element k,

and the single receiver are denoted ~r img;j, ~r src;k, and ~r rec,

respectively. The homogeneous speed of sound is denoted

by c, and operators ^� � � and F�1 indicate spectral notation

and the inverse Fourier transform, respectively. The impulse

response for a circular piston transducer Ĥ was computed

using the FOCUS toolbox, the backscattering from the

image pixel to the detector was computed using the analyti-

cal Green’s function, and in this study, the piston surface

velocity v̂ ¼ 1 was modelled as a dðtÞ spike. See Alles

et al.33 for full implementation details.

C. Matrix inversion method

The system matrix can be inverted in a variety of ways.

However, the singular value decomposition (SVD)34 is of

particular interest here, as it has a number of interesting

properties. The SVD of the system matrix is given by

P � USVT; (5)

where matrices U and V are unitary matrices, S is a diago-

nal matrix comprising the singular values of P, and

operator T denotes the transpose. Equation (5) is approxi-

mate for non-square matrices, as the SVD decomposition

was truncated to obtain a square matrix S (equivalent to

using the ‘econ’ flag in MATLAB).

Once the SVD is computed, a regularised pseudo-

inverse (†) of the system matrix is obtained from

P
† ¼ VS

†

UT; (6)

where diverse regularisation strategies can be applied when

computing S
†

to avoid over-fitting of noise. As the singular

values of P rapidly decrease with increasing rank

[Fig. 1(e)], the computation of P
†

can be accelerated with-

out a significant decrease in accuracy34 by instead comput-

ing a low-rank approximation. This is achieved by

truncating U;S, and V to retain only those singular values

above a given threshold value. If, in addition, the regularised

pseudo-inverse P
†

is not explicitly computed but instead

Eq. (3) is rewritten into the two-stage matrix-vector

multiplication

3516 J. Acoust. Soc. Am. 156 (5), November 2024 Watt et al.
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~R � P
†~B ¼ V S

†

UT
� �

~B
� �

; (7)

the contrast function ~R can be computed at significantly

reduced memory and computational load. Where P
†

is of

dimensions ½Nimg � Nchan � Nt�, sub-matrices V and S
†

UT

are of substantially reduced dimensions ½NSVD � Nchan � Nt�
and ½Nimg � NSVD�, respectively, as the truncation-

constrained number of SVD values is substantially

decreased and hence, NSVD 	 Nchan � Nt and NSVD 	 Nimg.

In this work, an empirically determined singular value

threshold of 10�4 was used to balance accuracy and compu-

tational requirements, corresponding to NSVD¼ 13 861.

Whilst a variety of regularisation methods are com-

monly applied, few methods allow for a direct, closed-form

implementation.35 Here, only two such strategies are consid-

ered: truncated SVD (TSVD) and Tikhonov regularisation.

With TSVD regularisation, the regularised pseudo-inverse

of S is obtained from

S
†

iiðaÞ ¼
1=Sii if Sii 
 a �max ðSÞ;
0 otherwise;

(
(8)

where 0 � a � 1. Conversely, Tikhonov (or L2) regularisa-

tion is applied by setting

S
†

iiðaÞ ¼
Sii

S
2
ii þ a �max Sð Þ2

: (9)

The system matrix contained Nt � Nsrc (rows) by Nimg

(columns) elements, where Nt;Nsrc, and Nimg are the number

of time samples, channels, and image pixels, respectively. In

this manuscript, all images measure 10 mm (lateral) by 7 mm

(axial) at pixel dimensions of 50 by 25 lm, respectively. B-

scans are computed or measured using 1004 time samples at a

sampling rate of 62.5 MSa/s. Thus, Nt ¼ 1004;Nsrc ¼ 64, and

Nimg¼ 56 481, resulting in a system matrix requiring ca. 13.5

GB of memory when stored in single precision which, whilst

substantial, is readily available in modern computers or even

GPUs. Computing the SVD required an additional 37.3 GB of

memory due to the additional matrices created. However,

once the SVD has been computed, the low-rank approxima-

tions to matrices S
†

UT and V require just 3.1 and 2.7 GB of

memory, respectively. The computer used in this work fea-

tured an Intel Core i9-13900KS (Intel, Santa Clara, CA) cen-

tral processing unit (CPU), 192 GB of random access

memory (RAM), and a NVIDIA RTX 6000 Ada GPU featur-

ing 48 GB of GDDR6 RAM. On this computer, serial compu-

tation of the system matrix and SVD, and GPU-accelerated

computation of the matrix S
†

UT, required ca. 49 min,

182 min, and 2.14 s, respectively.

D. Synthetic data

To avoid the “inverse crime,”36 where using the same

numerical model for both inversion and generation of test

data artificially improves the inversion results, synthetic

data were generated using the GPU-accelerated version of

the k-Wave toolbox.37 Whereas the forward model used to

generate the system matrix was based on closed-form ana-

lytical impulse response functions, k-Wave utilises a

pseudo-spectral time-stepping approach. To limit computa-

tion times and enable use of the GPU-accelerated version of

k-Wave, synthetic data were generated assuming a two-

dimensional (2D) geometry, and acoustic reciprocity was

applied to reduce the computational complexity to the prop-

agation of the single wave field generated by a point source

to 64 finite-sized receivers.

The inherently 3D forward model used for DMI was

modified to emulate the 2D k-Wave geometry by using

FIG. 1. (Color online) (a) Photograph (top) and schematic (bottom) of the freehand optical ultrasound (OpUS) imaging probe used and modelled in this

paper. The probe comprises 64 irregularly spaced fibre-optic ultrasound sources and a single fibre-optic detector centered within the imaging aperture.

(b)–(d) The system matrix P is computed from synthetic data, where a single virtual point scatterer is consecutively placed in all Nimg image pixel locations

(b), and the resulting pulse-echo A-scan (c) of dimensions ½Nt � Nsrc�) is computed, reshaped, and stored in the corresponding column of the system matrix

(d). (e) The normalised singular values obtained after singular value decomposition of system matrix P exhibit a rapid decrease in magnitude with increas-

ing rank, which motivates the application of low-rank decomposition methods. Dashed lines indicate the rank threshold corresponding to a minimum nor-

malised singular value of 1%.
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“near-infinitely” extended rectangular sources (200 lm

wide, 1 cm tall) instead of circular sources. B-scans for each

pixel location were computed from coherent summations of

the reflections off a “near-infinitely extending” line of scat-

terers placed orthogonal to the image plane (1 cm tall, 5 lm

scatterer separation). By elevationally extending the sour-

ces, receiver and scatterers, the scenario was rendered

approximately invariant in the elevational direction and

hence, mimicked a 2D setting.

To avoid interference from grid edge effects, the spatial

grid (28 mm lateral, 12 mm axial, 10 lm grid spacing) used

in the k-Wave simulations extended beyond the image

dimensions, and a substantially smaller temporal step size

compared to that of the forward model (1 ns over a 20 ls

duration) was used to ensure numerical stability. The imag-

ing aperture was placed one grid point from the edge to

avoid interference with an externally located perfectly

matched layer.

The OpUS detector was modelled as point-like, and

was hence accurately represented by a point source via

acoustic reciprocity. This source was positioned centrally

within the aperture and modelled as a particle velocity

source excited with a tone burst that was spectrally matched

to experimental data (four cycles at 11 MHz). The 64 finite-

sized circular OpUS sources were approximated as line

receivers with a width of 200 lm, which were implemented

through coherent summation of the pressure traces observed

in 21 adjacent grid points. One additional simulation was

performed to simulate and suppress the cross talk from ultra-

sound waves propagating from the source directly to the

receivers (i.e., without scattering off actual contrast), and its

results filed for future use. This direct cross talk can be of

significantly higher amplitude than the actual pulse-echo

signal and thus reduce signal fidelity. Each k-Wave simula-

tion required ca. 530 s and 3.2 GB of GPU memory to

complete.

Four different synthetic scenarios are considered in this

work. For all phantoms, the background medium was

modelled as water (speed of sound c ¼ 1500 m/s; density

q ¼ 1000 kg/m3). First, a single point scatterer was placed

centrally in the image at an axial depth of 5 mm by assigning

the corresponding grid point a speed of sound of 1570 m/s.

Second, a more quantitative phantom comprising three cir-

cular regions (diameter: 2 mm; axial depth: 3.5 mm) of vary-

ing echogenicity was implemented by assigning each of the

corresponding grid points with values randomly generated

from the ranges 1497 � c � 1503, 1480 � c � 1520, and

1440 � c � 1560 m/s. Third, to study the impact on DMI

performance of contrast in just speed of sound or just den-

sity, a set of two layered phantoms was considered, where

each phantom comprised three layers (thickness: 3 mm) of

either increasing speed of sound (top to bottom: c¼ 1450,

1500, and 1540 m/s and constant q ¼ 1000 kg/m3) or

increasing density (q¼ 967, 1000, and 1027 kg/m3 and con-

stant c ¼ 1500 m/s). Fourth, two phantoms were imple-

mented with geometries mimicking two frames of the

experimental data obtained from a needle insertion into a

vessel phantom. The first of these frames corresponded to

imaging of the vessel phantom in absence of the needle,

where the lumen was assigned a speed of sound of c ¼ 1570

m/s, the tissue c ¼ 1500 m/s, and the whole volume the

background density. The second frame corresponded to

imaging the same vessel phantom but in the presence of the

needle, and used the same spatial geometry and material

properties but included a needle approximated as a material

with properties c ¼ 2000 m/s and q ¼ 1500 kg/m3.

E. Experimental data

Experimental data were obtained with the setup

described in Alles et al.27 in two imaging scenarios. First, a

single, stationary tungsten wire (diameter: 27 lm) was

strung orthogonally to the imaging plane at an axial depth of

5 mm, corresponding to a point scatterer in a homogeneous

background. Second, a wall-less tissue-mimicking phantom

[10% w/w poly(vinyl) alcohol (PVA) cryogel38] shaped

after a blood vessel was submerged in water, and a 23 G

needle was inserted into and retracted from the vessel lumen

under continuous imaging at a frame rate of 11 Hz. This sec-

ond phantom exhibited dynamic changes, material inhomo-

geneities, and a hyper-echoic needle generating backscatter

signal of sufficient amplitude to yield a non-linear response

of the OpUS detector–and was chosen to assess the limits of

the method.

For both synthetic and experimental data, conventional

D&S images were also generated using the GPU-

accelerated algorithm presented by Alles and Desjardins.4

Whilst more elaborate non-model–based methods (e.g., uni-

versal back-projection or time-reversal) exist that could

offer similar artefact reduction, such methods are generally

not applicable to imaging paradigms utilising just a single

detector, like the OpUS modality considered here.

III. RESULTS

The efficacy of the proposed DMI method in suppress-

ing sidelobes and noise is evident when applied to both syn-

thetic and experimental data for a single point scatterer (Fig.

2). The grating lobes (presented as the “wing-shaped” arte-

facts located toward the edges of the D&S images) have

been substantially reduced by ca. 7 dB in the DMI images,

without affecting the axial and lateral resolutions. For the

experimental data, an additional decrease in noise level of

ca. 15 dB was achieved.

Whilst DMI improved on the quality of D&S recon-

structed images, the point target considered above effec-

tively constituted a binary scenario, and did not assess the

quantitative abilities of the DMI method. Therefore, a sec-

ond synthetic phantom was considered that comprised sev-

eral circular regions of varying echogenicity (Fig. 3). For

this phantom, the D&S image not only contained significant

grating lobe artefacts, but also failed to accurately reproduce

the amplitudes of the three regions since the D&S algorithm

does not take geometrical attenuation and the source direc-

tivity into account. Both DMI images exhibited significantly
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reduced artefact levels and an increased dynamic range, and

in addition, more accurately recovered the amplitudes of the

three regions. As previously observed,33 especially for

larger values of a, Tikhonov regularisation achieved greater

suppression of image artefacts than TSVD regularisation, as

a greater proportion of singular values contribute to the

inverse of the system matrix.

The effects of material inhomogeneities are shown in

Fig. 4, where compound D&S and DMI images are shown

for a simple layered medium. The left half of each image

corresponds to a medium where only the density q of the

medium varies with axial depth but the speed of sound c is

constant; in the right half of each image, only c is depth-

dependent whilst keeping q constant. As both D&S and

DMI algorithms assume a homogeneous speed of sound,

spatial distortion of the image is apparent in both cases.

However, similar improvements, as shown in Figs. 2 and 3,

were observed: the DMI images for both layered phantoms

exhibited reduced artefact levels as well as improved recov-

ery of the image quality across the image (most notably for

FIG. 2. (Color online) D&S (left col-

umn) and DMI (right column) for syn-

thetic (top row) and experimental

(bottom row) OpUS data acquired or

generated for a single point scatterer

located at an axial depth of 5 mm. Both

DMI images were obtained using

Tikhonov regularisation at a ¼ 1%.

All panels use the same 30 dB dynamic

range.

FIG. 3. (Color online) Top: D&S (left)

image of a numeric phantom (right)

comprising three circular inclusions of

various echogenicity. Bottom: DMI

images for this synthetic phantom

using Tikhonov (left) and TSVD

(right) regularisation. Both regularisa-

tion methods were performed using

a ¼ 0:1%. All panels use the same

30 dB dynamic range.
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the lower boundary at a depth of ca. 6 mm)—thus confirm-

ing the robustness of DMI, even when the requirement of

material homogeneity is relaxed.

As a final demonstration, the D&S and DMI algo-

rithms were applied to two time frames of the needle inser-

tion phantom, for both synthetic and experimental data

(Fig. 5). Despite material inhomogeneities and (in the

experimental case) a non-linear detector response, DMI

again achieved substantial improvements in image quality

over D&S, improving the clarity and visibility of the vessel

boundary and suppressing the artefacts generated by the

needle that dominated the D&S images. The value of the

regularisation parameter a determines the trade-off

between inversion accuracy (lower values improve the

“sharpness” of the vessel boundary) and stability (inversion

results at lower values suffer from increased noise). An

empirically determined value of a ¼ 1% consistently

resulted in the best trade-off.

The GPU-accelerated D&S images presented here

required approximately 4 ms to compute, whereas the DMI

FIG. 4. (Color online) Compound

D&S (left) and DMI images of a syn-

thetic layered phantom. Each com-

pound image shows the images

obtained when either the material den-

sity (q, left halves) or the speed of

sound (c, right halves) varies between

the layers. Tikhonov DMI reguarisa-

tion was performed using a ¼ 1%. All

panels use the same 30 dB dynamic

range.

FIG. 5. (Color online) Performance comparison between D&S (left-most column) and DMI (three right-most columns) for synthetic (top two rows) and

experimental (bottom two rows) imaging data obtained during a needle insertion into the lumen of a vessel phantom. DMI reconstructions were performed

under Tikhonov regularisation using a ¼ 10%, 1%, and 0.1%. All panels use the same 40 dB dynamic range.
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images required–once the two involved matrices were com-

puted and transferred to GPU memory–just 0.4 ms. This

DMI computation time includes data transfer to and from

the GPU memory. The computational performance of D&S

and DMI is summarised in Table I. Note that the D&S

algorithm could in principle also be converted into a matrix-

vector multiplication, which might be implemented simi-

larly efficiently via a low-rank SVD approximation.

IV. DISCUSSION AND CONCLUSION

Based on the results presented here, DMI is an attrac-

tive alternative to the conventional D&S ultrasound image

reconstruction in systems featuring low channel count.

Here, applied to a freehand OpUS imaging system, DMI

achieved substantial reductions in image artefacts and noise,

and was able to more accurately reproduce the image ampli-

tude, whilst producing images an order of magnitude faster

than with D&S when implemented on modest hardware.

To limit computational complexity, the forward model

used in this work operated under stringent assumptions. The

DMI algorithm presented here was able to suppress image arte-

facts in the presence of material inhomogeneities–although

similar spatial distortions to those observed with D&S resulted.

However, the other assumptions will be harder to relax. For

instance, non-linear propagation of high-intensity ultrasound

cannot be incorporated in the forward linear model, and prop-

erly accounting for multiple scattering off strong contrasts or

material inhomogeneity would either require accurate prior

knowledge of the imaging scenario, or an iterative scheme that

would hinder real-time reconstructions.

Here, only Tikhonov and truncated SVD regularisation

are considered as these schemes are readily applied and

result in a closed-form expression as required for rapid com-

putations [cf. Eqs. (3) and (7)]. Furthermore, with limited

additional computational cost, generalised Tikhonov regu-

larisation could be used to, for instance, prioritise spatially

smoothly varying contrast and still allow for image forma-

tion in a single iteration. However, given the sub-

millisecond matrix multiplication time achieved through

GPU acceleration, rapidly converging few-iteration inver-

sion schemes could be applied instead of DMI that still

achieve real-time results, but allow for a broader range of

regularisation techniques, such as total variation. In

addition, such few-iteration schemes could be applied to

include, e.g., multiple scattering.

In this work, the forward system matrix P was gener-

ated using an impulse velocity source signature, and all

sources were assumed to have identical responses. However,

this resulted in the actual source signature not being inverted

for, resulting in a limit of the axial resolution. In principle,

the source signature of all 64 sources can be measured and

incorporated, which does indeed result in improved axial

resolution (compare Fig. 5 in this work with Fig. 2 of Alles

et al.33) However, as the measurement of these source signa-

tures depends on a stabilisation parameter, this

signature estimation was not incorporated in this work to

avoid ambiguity in the performance assessments of the DMI

method.

The DMI method presented here offers substantial

improvements in image quality, as well as reduced computa-

tion time, compared to D&S image reconstruction, and

achieved this using modest computational hardware. In

addition, the GPU-accelerated implementation allows for

on-the-fly adjustment of the regularisation parameter a to

tailor the DMI performance to the imaging scenario. Whilst

in this work DMI was applied to an OpUS imaging setup,

similar benefits are expected in other low channel-count sce-

narios, such as systems comprising sparse 2D or 3D imaging

arrays, photoacoustic imaging, or plane wave imaging. DMI

could hence simultaneously improve the image quality and

reduce the experimental complexity of future ultrasound

imaging systems in a wide range of settings.
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