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Abstract—Asynchronous radio transceivers introduce signifi-
cant range and velocity ambiguity, posing challenges for accurate
positioning and velocity estimation in passive sensing perceptive
mobile networks (PMNs). To address this issue, we propose the
Cross-Multipath Cross-Correlation (CMCC) algorithm, a joint
carrier frequency offset (CFO) and time offset (TO) estimation
algorithm that supports passive sensing in both non-line-of-
sight (NLOS) and line-of-sight (LOS) environments. The CMCC
algorithm treats the delay-Doppler spectrum of signals reflected
from static objects as an environment-specific “fingerprint spec-
trum” that exhibits a cyclic shift property as the CFO and/or
TO change. By analyzing the number of cyclic shifts, CMCC
efficiently estimates both CFO and TO. Additionally, we provide a
simplified version of CMCC to reduce computational complexity.
Simulation results demonstrate the performance advantages of
our algorithms across various configurations.

Index Terms—Integrated sensing and communications (ISAC),
synchronization, time offset (TO), carrier frequency offset (CFO).

I. INTRODUCTION

With the assistance of millimeter wave and terahertz fre-
quencies, high-precision sensing [1], including range and
velocity estimation, as well as imaging, can be performed in
mobile networks [2], giving rise to the concept of perceptive
mobile networks (PMNs). PMNs can be categorized into
two distinct types: passive and active sensing [3]. In passive
sensing, the remote radio unit (RRU) or user equipment
(UE) estimates desired parameters by exploiting echo signals
transmitted by other RRUs or UEs. In active sensing, the
RRU performs sensing by processing signals transmitted by
itself [4], [5]. Nevertheless, achieving high-performance active
sensing in PMNs requires practical full-duplex technology,
which is not yet sufficiently developed for implementation,
at the time of writing [5]. Moreover, sensing in time-division
duplex (TDD) or frequency-division duplex (FDD) modes,
as described in [5], constrains the achievable communication
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rates [6]. Consequently, passive sensing emerges as a compet-
itive alternative.

However, significant challenges remain for realizing pas-
sive sensing. Specifically, the geographically separated radio
transceivers in passive sensing PMNs are naturally asyn-
chronous [7], which causes non-negligible velocity and range
sensing ambiguities [8]. To mitigate these ambiguities, both
carrier frequency offset (CFO) and time offset (TO) should be
compensated by designing synchronization schemes.

There has been a scarcity of contributions reported in
terms of synchronization in PMNs [6]. Among them, the first
one is based on cross-antenna cross-correlation (CACC) [9],
where cross-correlation between signals received by different
antennas is exploited to eliminate CFO and TO. However,
the cross-correlation doubles the unknown parameters to be
estimated, which results in high computational complexity.
For reducing the computational complexity, the authors of [8]
proposed the mirrored-CACC algorithm, which reconstructs
the output of CACC and reduces the number of unknown pa-
rameters by half. However, both of the two algorithms are only
applicable in LOS scenario. Another two contributions, namely
FarSense [10] and MultiSense [11], applied the channel state
information (CSI)-ratio-based CFO and TO synchronization
algorithms to the non-line-of-sight (NLOS) scenario. Unfor-
tunately, these can only synchronize the phase offset between
transceivers, thus cannot estimate the delay and consequently
cannot perform ranging for targets. Moreover, in [12], a family
of CSI-ratio-based frequency synchronization schemes were
proposed, which can only mitigate CFO. However, they are
only effective in scenarios where the velocities of the targets
are low and a single dynamic path exists.

To address the limitations of the state-of-the-art solutions,
we propose the first viable joint CFO and TO estimation
algorithm for asynchronous passive sensing in PMNs. Our
algorithm is applicable to both single-antenna and multi-
antenna transceivers operating in NLOS environments. In our
approach, we exploit the presence of permanent or long-period
static objects in the environment. Specifically, we leverage
the delay-Doppler spectrum of signals reflected from these
static objects, treating it as an environment-specific fingerprint
spectrum. This spectrum exhibits a cyclic shift property in
response to changes of CFO and TO. By performing cross-



Fig. 1. System model of an asynchronous PMN.

correlation between fingerprint spectra captured at different
time instants, our algorithm accurately estimates both CFO
and TO. This paper constitutes a concise introduction of
the synchronization algorithm module within the framework
presented in our previous work [3].

Notations: AT,AH and A−1 represent transpose, conjugate
transpose and inverse of A, respectively. Re(A), A[i, :],
and A[i, j] stands for the real part, the ith row, and the
(i, j)th element of A, respectively. a(t), a(t), and A(t)
are the scalar function, the vector function, and the matrix
function with respect to the scalar t, respectively. Moreover,
diag(a1, · · · ,an) is a block diagonal matrix whose diagonal
blocks are {a1, · · · ,an}. Round(·) is the operator that takes
the integer closest to a real number. b·c and | · | denote the
floor function and the modulo operator, respectively. IN is the
N dimensional identity matrix.

II. SYSTEM MODEL

We consider an asynchronous PMN relying on the multiple-
input multiple-output orthogonal frequency division multi-
plexing (MIMO-OFDM) technique. As shown in Fig. 1, we
assume that there are L propagation paths between the UE and
the RRU, with LV targets among these L paths. Moreover,
the RRU is equipped with an MR-element uniform linear
array (ULA), while the UE is equipped with an MU-element
ULA. Particularly, the signals propagated via the L paths can
be divided into two categories: the signals reflected by the
targets and the signals reflected by other static objects in the
environment, namely the clutter.

Let us consider the signal propagated from a particular path,
e.g., the lth path, which undergoes reflection by the lVth target.
vl represents the velocity projected onto the normal direction
associated with the lth path. Moreover, we denote the TO and
CFO caused by the separate oscillators of the RRU and the
UE as τo and fo, respectively.

As a result, the time-domain channel impulse response
between the and the RRU is expressed as

H(t)=
∑L

l=1
hlδ(t−

2vl
c
t−τd,l−τo)a

T(MR, φl)a(MU, θl),

(1)
where a(MR, φl) = [1, · · · , e−

j2π(MR−1)d

λ sinφl ] and
a(MU, θl) = [1, · · · , e−

j2π(MU−1)d

λ sin θl ] are the receiving and

transmitting steering vectors of the lth path, respectively.
Here, d, λ, c and δ(·) denote the antenna-element spacing,
the signal wavelength, the speed of light and the Dirac
delta function, respectively. In addition, hl, φl, θl, and τd,l
represent the channel gain, the direction of arrival (DOA), the
angle-of-departure (AOD), and the time delay of the signal
travelling along the lth path, respectively. Moreover, fc is
defined as the carrier frequency.

Furthermore, let us denote the OFDM symbol length as
Tsym = NsTs, where Ts and Ns represent the sampling period
and the number of samples in each OFDM symbol. Moreover,
the number of samples in the cyclic prefix (CP) is denoted
by Ncp, and we define Nsub = Ns − Ncp, which represents
the number of subcarriers. Thus, the gth transmitted OFDM
symbol of the UE upon excluding the CP is formulated as

pg(t) = ej2πfctwT
∑Nsub−1

u=0
xg[u]ej2πu∆ft, (2)

where xg = [xg[0], · · · ,xg[Nsub − 1]] and xg[u] represent the
data symbol modulated on the uth subcarrier of the gth OFDM
symbol, ∆f is the subcarrier spacing. Moreover, w ∈ C1×MU

is the precoding vector.
Without loss of generality and for achieving high sensing

performance with low overhead, in this paper, we assume
that the data payload is used for sensing the target. Note that
our following discussions are also applicable to the scenarios
designating demodulation reference signals (DMRS) or syn-
chronization signal blocks (SSB) as the sensing pilots. Then,
since CP converts linear convolution to circulant convolution,
the received analog signal excluding CP is yg(t) = H(t) ~
pg(t) + zT

g(t), which is further expressed as

yg(t) =
∑L

l=1

∑Nsub−1

u=0
hle

j2πfc t̄aT(MR, φl)a(MU, θl)w
T

· xg[u]ej2πu∆ft̄ + zT
g(t),

(3)
where “~” denotes the circular convolution operator and
t̄ , t− 2vl

c t− τ d,l − τo, and zg(t)∈ C1×MR is the zero-mean
complex-valued additive white Gaussian noise (AWGN) vector
function satisfying E[zH

g (t)zg(t)] = σ2
0IMR , respectively.

Next, yg(t)∈ CM R×1 is demodulated to a baseband signal
by multiplying it with the local carrier, which typically exhibits
a frequency offset fo relative to the transmitter, thus yielding
ȳg(t) = yg(t)e

−j2π(fc+fo)t. Then, ȳg(t) is sampled at time
instant nTs. As a result, the analog signal ȳg(t) is transformed
into a digital signal vector ȳg(nTs), n = 1, · · · , Nsub. For
brevity, in what follows ȳg(nTs) is rewritten as ȳg(n) and
we approximately formulate it as

ȳg(n) ≈
∑L

l=1

∑Nsub−1

u=0
hl e

−j2πfc(τd,l+τo) e
−j2π(ξD,l+ ξo)

Ncp
Nsub

· e−j2π(ξD,l+ξo)(g−1) Ns
Nsub aT(MR, φl)a(MU, θl)w

Txg[u]

· e−j2πu∆f(τd,l+τ o)ej2πu∆fnTs +zT
g(n),

(4)
where zT

g(n) is the complex-valued AWGN vector recorded
at the nth time instant of sampling for the gth transmitted
OFDM symbol. Additionally, ξo = NsubfoTs and ξD,l =



2fcvlNsubTs/c are the CFO and the Doppler offset normal-
ized by the subcarrier spacing, respectively. Furthermore, we
construct Yg = [ȳg(1), · · · , ȳg(Nsub)] as the OFDM samples
received by all the MR antennas of the RRU in the duration
of a single OFDM symbol, and formulate it as

Yg=
∑L

l=1
hle

−j2π(ξD,l+ξo)
Ncp
Nsub e

−j2π(ξD,l+ξo)(g−1) Ns
Nsub e−j2πfc(τd,l+τo)

· aT(MR, φl)a(MU, θl)w
Tτ lD(xg)F+Zg,

(5)
where F, D(xg), τ l and Zg represent the inverse
discrete Fourier transform (IDFT) matrix, diag(xg),
[1,· · · , e−j2π(Nsub−1)∆f(τd,l+τo)] and [zT

g(1),· · · , zT
g(Nsub)],

respectively.

III. THE FINGERPRINT-SPECTRUM-BASED
SYNCHRONIZATION

Before implementing synchronization, we firstly compen-
sate Yg by YgF

−1D−1(xg), as depicted in [13]. Then, let
us define y̆g,m as the mth row of YgF

−1D−1(xg), which
is the gth compensated OFDM symbol received by the mth
antenna, and stack y̆g,m as Γm = [y̆T

1,m, · · · , y̆T
G,m]T. Then,

Γm is formulated as

Γm =
∑L

l=1
αl[m]ζlτ l + Z̄g, (6)

where αl = hle
−j2πfc(τ d,l+τo)a T(MR, φl)a(MU, θl)w

T, and

ζl = [e
−j2πξl

Ncp
Nsub , · · · , e−j2πξl(G−1) Ns

Nsub e
−j2πξl

Ncp
Nsub ] T, where

ξl = ξD,l+ ξo. Moreover, Z̄ = [z̆T
1,m, · · · , z̆T

G,m]T, where z̆g,m
is the mth row of Ẑg .

Then, we implement two dimensional discrete Fourier trans-
form (2D-DFT) to Re(Γm) to reduce the complexity. Noting
that Re(Γm) has the same signal-to-noise ratio (SNR) as
Γm, this operation will not affect the estimation accuracy.
Specifically, by defining Z̃ = FH

G Re(Z̄)FH
Nsub

, the 2D-DFT
of Re(Γm), namely Ȳ, can be represented as

Ȳ =
∑L

l=1
αl[m]FH

Gζl(F
H
Nsub

τT
l )T + Z̃. (7)

According to [14], we obtain the final expression for
(k, n)th element of Ȳ as

Ȳ[k, n]=
1

4

∑L

l=1

{
α̃l[m] SG((k− ξl

Ns

Nsub
)f R)SNsub ((n−

τl
T s

)T R)

+ α̃H
l [m] SG((k + ξl

Ns

Nsub
)f R) SNsub ((n+

τl
T s

)T R)
}

+ Z̃[k, n],

(8)
where τl = τ d,l + τo and SG(·) is an aliased sinc function
[14]. Moreover, fR is the frequency resolution, which can
be expressed as the reciprocal of the total sensing time,
1/(GTsym) [13], while TR is the time resolution and can be
formulated as the reciprocal of the total sensing bandwidth,
1/(Nsub∆f) [13]. In light of the high-attenuation side lobes
of the aliased sinc function, Ȳ[k, n] can be approximately
formulated as

Ȳ[k, n] ≈
1

4

L∑
l=1

α̃l[m]SG((k − ξl
Ns

Nsub
)fR)SNsub [(n−

τl

Ts
)TR] + Z̃[k, n].

(9)

For brevity, we here take the scenario with low-velocity
UE as an example. The clutter channel response will exhibit
a near-zero Doppler frequency shift and the part of spectrum
corresponding to clutter will be centred around ξoNsKfR/Nsub
in the DFT of Re(Γm). Then, we can select the Kup =
Round(ξoNsK/Nsub)th row of Ȳ to be the “identification
sequence”. For brevity, we will refer to the sequence as the
fingerprint spectrum in the following. Moreover, if the velocity
of UE is large, even though the clutter channel response does
not exhibit a near-zero Doppler frequency shift, Kup can still
be determined with the known velocity. However, this is not
the focus of this paper.

To investigate how the fingerprint spectrum evolves in
response to the changes in CFO and TO, we assume that the
CFO and TO increase by ∆ξo and ∆τo, respectively. Then, the
nth element of the updated fingerprint spectrum Ȳup[Kup, n]
is formulated as

Ȳup[Kup, n] ≈

1

4
SG([Kup − ξo

NsK

Nsub
− Int(∆ξo

NsK

Nsub
)− Frac(∆ξo

NsK

Nsub
)]fR)

L∑
l=1

α̃l[m]SNsub ([n−
(τo + τd,l)K

Ts
− Int(

∆τoK

Ts
)− Frac(

∆τoK

Ts
)]T R)

+ Z̃[Kup, n] ≈ Ȳ[Kup + Round(∆ξo
NsK

Nsub
), n+ Round(

∆τoK

Ts
)],

(10)
where Int(·) and Frac(·) represent the integer and fractional
part of a complex value, respectively.

So far, we have drawn the conclusion that the fingerprint
spectrum approximately exhibits a cyclic shift property in
response to the changes of CFO and TO. Specifically, if CFO
and TO increase by ∆ξo and ∆τo, respectively, the finger-
print spectrum will cyclic shift Round(∆ξoNsK/Nsub) and
Round(∆τoK/Ts) respectively, in the direction of increasing
the Doppler frequency shift and the delay.

By exploiting the change pattern between the fingerprint
spectrum and the CFO/TO, the CFO/TO estimation algorithm
is proposed. To begin with, we denote Ȳ[Kup, :] as the original
fingerprint spectrum, ζ, in what follows for convenience.
Then, since the updated fingerprint spectrum is the cyclic shift
of the original fingerprint spectrum, cross-correlation between
ζ and Ȳup can be performed to estimate the CFO and TO as

{∆ξ̂o
NsK

Nsub
,
∆τ̂oK

Ts
}=arg max

k,q

∣∣∣ ∑QB
i=1 Ȳup[k, [(q + i) mod QB]]ζH[i]

|ζ|
√∑QB

i=1 |Ȳup[k, [(q + i) mod QB]]|2

∣∣∣,
(11)

where we have k = 1, · · · ,KB and q = 1, · · · , QB, with KB =
bKG/2c and QB = bKNsub/2c. As a result, by conducting
(11), ∆τoK/Ts and ∆ξoNsK/Nsub can be estimated.

However, the computational complexity of conducting the 2-
D maximum likelihood (ML) search of (11) is high. To reduce
the computational complexity, a simplified version of cross-
multipath cross-correlation (CMCC), called simplified CMCC
(S-CMCC), is designed by decomposing the 2-D ML search
into two separate 1-D ML searches. The first 1-D ML search is
dedicated to CFO estimation. Specifically, we aim to estimate
the CFO by locating the row of Ȳup, which has the closest



 

Fig. 2. An implementation of Ȳ.

power to that of the original fingerprint spectrum.

∆ξ̂o =
Nsub

KNs
arg min

k

∣∣|ζ|2 −∑QB

n=0
|Ȳup[k, n mod QB]|2

∣∣.
(12)

Upon completing the estimation of ∆ξo, another 1-D ML
search can be performed to estimate ∆τo. The estimate is given
by

∆τ̂o=Ts/K arg max
q

∣∣∣ ∑QB
i=1 ζH(i)Ȳup[∆ξ̂oNsK/Nsub, (i+q) modQB]

|ζ|
√∑QB

i=1 |Ȳup[∆ξ̂oNsK/Nsub, (i+q) modQB]|2

∣∣∣.
(13)

IV. NUMERICAL SIMULATIONS

In this section, simulation results are provided to evaluate
the performance of the proposed scheme. Unless otherwise
stated, we assume that the number of antenna-elements on
RRU and each UE is MR = 64 and MU = 2, respectively.
According to [15], the transmit power of UE is set as 25
dBm. In addition, the carrier frequency fc is set as 28 GHz,
while Nsub and Ncp are set as 128 and 16, respectively.
Furthermore, in order to ensure good sensing performance,
we assume that the subcarrier spacing ∆f is as large as
100 kHz. Moreover, the multipath signals are simulated by
generating signals reflected from the static and the moving
objects, while the static objects are randomly set around each
target by adopting the cluster channel model.

In Fig. 2, we present a realization of Ȳ in an asynchronous
clutter-rich PMN. To enhance sensing resolution, we apply 25
times and 5 times zero-padding for the range estimation and
the velocity estimation, respectively. The blue and grey 3D
spectra represent the original and the updated delay-Doppler
spectrum. The CFO and TO in the simulation are equivalent
to a Doppler frequency shift caused by a velocity of 3 m/s and
a time delay resulting from a distance of 10 m, respectively.
The red lines in Fig. 2 are selected as the fingerprint spectrum
sequence, while the dashed grey lines represent the updated
fingerprint spectrum sequence. As depicted in Fig. 2, the up-
dated fingerprint spectrum is the original fingerprint spectrum
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Fig. 3. MSE of residual velocity and range ambiguity vs SNR with {3, 9,
15} clutter paths and simplified/unsimplified estimation algorithm.

with cyclic shifts. Thus, we can estimate both CFO and TO by
determining the number of shifts of the fingerprint spectrum.

In Fig. 3, we evaluate the synchronization performance
of the proposed CMCC and S-CMCC algorithm in practical
scenarios with different number of clutter path. As presented in
the figure, CMCC has much better performance than S-CMCC
in all scenarios. This phenomenon emerges mainly since the
1-D ML CFO estimation in S-CMCC will definitely performs
worse than the 2D ML estimation in CMCC, particularly
when the SNR is small. Another notable phenomenon is, the
synchronization performance degrades when the number of
clutter path increases for both CMCC and S-CMCC. The
underlying reason for this phenomenon is that, at a con-
stant SNR, the power distribution on the fingerprint spectrum
tends to become more uniform with an increasing number of
clutter path (assuming the static objects reflecting clutter are
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randomly distributed). Then, a more uniform power distribu-
tion essentially diminishes the distinctiveness of a fingerprint
spectrum, resulting in a reduction of the correlation peak in
(11) and (13). This, in turn, reduces the mean squared error
(MSE) of synchronization. Moreover, as shown in the figure,
an obvious MSE error floor emerges when the SNR surpasses
a certain threshold. This phenomenon is caused by the 2D-
DFT estimation, which involves identifying the coordinates of
the largest peak in the 2D discrete grid spectrum, as depicted
in Fig. 2. Since the coordinates of the largest peaks typically
do not exactly align with the grid, inevitable estimation errors
occur, resulting in the observed MSE error floor. The error
floor can be mitigated by improving the resolution of 2D-DFT
or using super-resolution estimation algorithms.

In Fig. 4, we evaluate the synchronization performance of
the proposed CMCC and the CSI-ratio based schemes with
varying numbers of clutter paths. It’s important to note that
the state-of-the-art CSI-ratio based scheme does not explic-
itly obtain the CFO; hence, the MSE of the CFO estimate
cannot be used as the evaluation metric. Specifically, the CSI-
ratio based scheme does not directly estimate the CFO but
instead mitigates its impact on received signals by utilizing
the CSI ratio to estimate velocity. In contrast, the proposed
CMCC algorithm directly estimates both the CFO and TO,
then compensates for the offsets in the estimated range and
velocity. Therefore, we use the MSE of the estimated velocity
under asynchronous systems to characterize synchronization
performance. As shown in the figure, regardless of the number
of clutter paths, our CMCC scheme consistently outperforms
the CSI-ratio based scheme. However, both schemes exhibit a
degradation in performance with an increase in the number of
clutter paths. Overall, the simulations demonstrate the superior
performance of CMCC synchronization.

V. CONCLUSIONS

To synchronize transceivers in asynchronous PMNs, we pro-
pose the joint CFO and TO synchronization algorithm suitable
for NLOS scenarios, CMCC, along with its simplified version,
S-CMCC. Simulation results demonstrate that our algorithm
achieves significantly improved synchronization performance,
with performance notably influenced by the number of clutter
paths. Future improvements can be pursued by exploring the
correlation between window functions and synchronization
performance.
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