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A B S T R A C T 

We analyse the fourth data release of the Kilo Degree Survey (KiDS-1000) and extract cosmological parameter constraints based 

on the cosmic shear peak count statistics. Peaks are identified in aperture mass maps in which the filter is maximally sensitive to 

angular scales in the range 2–4 arcmin, probing deep into the non-linear regime of structure formation. We interpret our results 
with a simulation-based inference pipeline, sampling o v er a broad wCDM prior volume and marginalizing o v er uncertainties on 

shape calibration, photometric redshift distribution, intrinsic alignment, and baryonic feedback. Our measurements constrain the 
structure growth parameter and the amplitude of the non-linear intrinsic alignment model to � 8 ≡ σ8 [ �m 

/ 0 . 3 ] 0 . 60 = 0 . 765 

+ 0 . 030 
−0 . 030 

and A IA 

= 0 . 71 

+ 0 . 42 
−0 . 42 , respectively, in agreement with previous KiDS-1000 results based on two-point shear statistics. These 

results are robust against modelling of the non-linear physics, different scale cuts, and selections of tomographic bins. The 
posterior is also consistent with that from the Dark Energy Surv e y Year-1 peak count analysis presented in Harnois-D ́eraps et 
al., and hence we jointly analyse both surv e ys with a common pipeline. We obtain � 

joint 
8 ≡ σ8 [ �m 

/ 0 . 3 ] 0 . 57 = 0 . 759 

+ 0 . 020 
−0 . 017 , in 

agreement with the Planck wCDM results. The shear-CMB tension on this parameter increases to 3 . 1 σ when forcing w = −1 . 0, 
and to 4 . 1 σ if comparing instead with S 

joint 
8 ,� CDM 

= 0 . 736 

+ 0 . 016 
−0 . 018 , one of the tightest constraints to date on this quantity. Residual 

biases in the photometric redshifts of the DES-Y1 data and in the modelling of small scales physics could lower this tension, 
ho we ver it is robust against other systematics. Limits in the accuracy of our emulator prevent us from constraining �m 

. 

Key words: gravitational lensing: weak – methods: data analysis – methods: numerical – cosmological parameters – dark en- 
ergy – dark matter. 
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 I N T RO D U C T I O N  

osmic shear cosmology has entered an era of high precision, with 
ecent measurements from the Kilo Degree Survey 1 (KiDS), the 
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ark Energy Surv e y 2 (DES), and the Hyper Suprime-Cam Surv e y 3 

HSC) reaching a precision of a few per cent on parameters central
o the standard model of cosmology (e.g. Asgari et al. 2021 ; Amon
t al. 2022 ; van den Busch et al. 2022 ; Secco et al. 2022a ; Dalal
 DES: www.darkenergysurv e y.org . 
 HSC: www.naoj.org/ Projects/ HSC . 
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t al. 2023 ; Li et al. 2023a , b ). Based on the detection of weak
orrelations between the observed shapes of galaxies imparted by
he foreground large-scale structure, cosmic shear is mostly sensitive
o the structure growth parameter S 8 ≡ σ8 

√ 

�m 

/ 0 . 3 , a combination
f the matter density parameter �m 

and of the amplitude of the linear
atter power spectrum smoothed on spheres of 8 h 

−1 Mpc, labelled
s σ8 (for lensing re vie ws, see e.g. Kilbinger 2015 ; Mandelbaum
018 ). These Stage-III lensing surv e ys hav e been steadily impro ving
he data quality and the analysis methods, in preparation for the
ext generation of cosmic shear experiments such as the Rubin
bservatory 4 (Ivezi ́c et al. 2019 ), Euclid 5 (Laureijs et al. 2011 ), and
he Nancy Grace Roman space telescope 6 (Akeson et al. 2019 ). 

Despite the large effort that is being invested by international col-
aborations in constructing accurate lensing catalogues of hundreds
f millions of galaxies, it is not entirely clear how to best analyse
hese vast data, striking an optimal compromise between accuracy
nd precision. To date the shear two-point (2pt) functions are still
egarded as the baseline summary statistics, having been tested for
 v er a decade and achieving an unmatched level of understanding
nd control in all aspects of the analysis, including measurements
ools (e.g. TREECORR and NAMASTER , see Jarvis, Bernstein & Jain
004 ; Alonso et al. 2019 ), theoretical predictions (e.g. Kilbinger et al.
017 ), and the impact of systematics (see e.g. Mandelbaum 2018 ).
he main drawback from these statistics is that they completely
isregard the non-Gaussian information that is stored in the non-
inear matter field, more precisely in the coupling between the phases
f distinct Fourier modes, without which the cosmic web would look
ike a Gaussian random field. This is obviously sub-optimal, and this
aste of information will be aggravated in the upcoming cosmic shear

xperiments. Accessing this non-Gaussian information is an active
eld of research: an array of no v el weak lensing statistics are being
eveloped specifically to utilize this complementary small-scale
nformation. These new methods are reaching a level of maturity
hat makes them competitive at analysing existing cosmic shear data,
arefully balancing the precision v ersus accurac y metric. Recent
rogress is largely due to the radically impro v ed modelling of the
ignal, thanks to the increased accuracy of cosmological N -body
odes and the availability of supercomputers (see Angulo & Hahn
022 , for a recent re vie w on N -body codes). Recent examples of
hese ‘beyond-2pt’ cosmic shear data analyses include the three-point
unction (Fu et al. 2014 ; Secco et al. 2022b ; Burger et al. 2024 ), peak
ount statistics (Kacprzak et al. 2016 ; Martinet et al. 2018 ; Shan
t al. 2018 ; Harnois-D ́eraps et al. 2021 ; Z ̈urcher et al. 2022 ; Liu et al.
023 ; Marques et al. 2024 ; Gatti et al. 2024a ), density split statistics
Brouwer et al. 2018 ; Gruen et al. 2018 ; Burger et al. 2022 ), shear
lipping (Giblin et al. 2018 ), persistent homology (Heydenreich et al.
022 ), moments of convergence maps (van Waerbeke et al. 2013 ;
atti et al. 2020 ), cumulative distribution functions (Anbajagane

t al. 2023 ), likelihood-free inference (Jeffrey, Alsing & Lanusse
021 ; Lin et al. 2023 ; Gatti et al. 2024b ), or convolutional neural
etwork inference (Fluri et al. 2019 , 2022 ). 
At the moment, these alternative methods exhibit a constrain-

ng power that is similar to that of two-point functions, which
s not surprising given the noise levels of current lensing data,
hich make difficult the extraction of information stored in the
oisy higher order moments. The situation will change dras-
ically with the upcoming surv e ys, where the cosmic web it-
NRAS 534, 3305–3330 (2024) 
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elf will be detectable with lensing, at which point the non-
aussian information will take on a larger proportion of the

ignal. 
All forecasts are clear about this: joint cosmic shear analyses

hat combine two-point functions and any complementary probe
mpro v e the constraints on cosmological parameters even in presence
f systematic uncertainties (e.g. Li et al. 2019 ; Schneider et al.
019 ; Z ̈urcher et al. 2020 ; Pyne & Joachimi 2021 ; Harnois-D ́eraps,
artinet & Reischke 2022 ; Euclid Collaboration: Ajani et al. 2023 ;
iblin, Cai & Harnois-D ́eraps 2023 ). The main difficulty in many of

hese methods comes from their accrued dependence on numerical
imulations, which adds a significant computational o v erhead to the
ata analysis compared to those for which an analytical model exists.
ypically, simulations are needed for modelling the cosmological
ignal, for modelling some of the systematics such as baryonic
eedback or intrinsic alignments of galaxies, and for the estimation
f the covariance matrix (although this is not al w ays necessary,
s demonstrated by the recent likelihood-free inference analyses
entioned abo v e). 
This paper contributes an important step to this effort: we carry out

 cosmological analysis based on lensing peak statistics measured
rom the fourth data release of the Kilo Degree Survey (KiDS-1000
ereafter). We use the exact same data as those used in the two-
oint function analyses of Asgari et al. ( 2021 , A21 hereafter), while
gnoring for now other non-lensing KiDS galaxy catalogues designed
or galaxy clustering analyses (Bilicki et al. 2021 ; Vakili et al. 2023 ).
ur method finds peaks in aperture mass maps with an aperture filter
esigned for the extraction of small-scale structure, with maximal
ensitivity to scales of less than 4 arcmin, as in Martinet et al.
 2018 , hereafter M18 ) and Harnois-D ́eraps et al. ( 2021 , HD21 ). This
ontrasts with the recent peak count analysis of Z ̈urcher et al. ( 2022 ),
n which peaks are extracted from convergence maps with pixel
esolution of about 7 arcmin. Both methods have their advantages
nd downsides, ours strongly focuses on small, non-linear scales,
hich, as demonstrated in HD21 and Martinet et al. ( 2021a ), have
 higher potential for complementarity with two-point functions.
inding a posterior that is statistically consistent with that from
D21 , we combine both likelihoods and carry out a joint KiDS-
000 + DES DR1 data (DES-Y1 hereafter) peak count analysis,
nding the tightest constraints on S 8 to date from peaks alone. 
After describing the data and simulations in Section 2.1 , we

etail our measurement techniques and analysis pipeline in Section
 , and we present our mitigation strategy for the key systematic
ncertainties in Section 4 . We finally show our results in Section
 and discuss our findings afterwards. Supplementary material is
rovided in the Appendices, including a thorough discussion of B-
odes (in Appendix A ), supplementary pipeline validation tests (in
ppendix B ), and a detailed discussion on goodness-of-fit for noisy

ovariance matrices (in Appendix C ). 

 DATA  A N D  SI MULATI ONS  

e present in this section the surv e y data and the various simulation
uites that are used for the cosmological analysis. 

.1 KiDS-1000 data 

he Kilo Degree Survey (Kuijken et al. 2015 ) is a multiband
hotometric galaxy surv e y e xplicitly designed for weak lensing
osmology. Carried out at the European Southern Observatory by the

file:www.lsst.org
file:www.euclid-ec.org
https://roman.gsfc.nasa.gov
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Figure 1. Tomographic redshift distribution of the KiDS-1000 data. The 
thinner lines represent the effect of photometric uncertainty on these distri- 
butions, characterized by n a ( z) → n a ( z + �z a ), with �z a sampled 10 times 
from Gaussian distributions with widths listed in Table 1 . All shifted n a ( z) 
are then rebinned with the same z bins. 

Table 1. Main properties of the KiDS-1000 data used in this work. The 
gold sample redshift selection based on z B is identical to that presented in 
Hildebrandt et al. ( 2021 ). The ef fecti ve number densities are listed in the 
second column, in gal arcmin −2 . The shape noise (per component) listed in 
the third column reflects the dispersion measured in the observed galaxy 
shapes, as documented in Giblin et al. ( 2021 ), while the fifth column shows 
the mean shape calibration coefficients. The redshift bias and errors listed in 
the fourth column are estimated from the SOM method in Hildebrandt et al. 
( 2021 ), while the last column shows the additive c 1 / 2 terms, which has an 
uncertainty of 0 . 23 × 10 −3 (Giblin et al. 2021 ). 

tomo n eff σε z est − z true m ( c 1 , c 2 ) × 10 3 

bin1 0.62 0.27 0 . 000 ± 0 . 0106 −0 . 009 ± 0 . 019 (0.295, 0.156) 
bin2 1.18 0.26 0 . 002 ± 0 . 0113 −0 . 011 ± 0 . 020 (0.004, 0.621) 
bin3 1.85 0.27 0 . 013 ± 0 . 0118 −0 . 015 ± 0 . 017 (0.052, 0.728) 
bin4 1.26 0.25 0 . 011 ± 0 . 0087 0 . 002 ± 0 . 012 ( −0.360, 0.948) 
bin5 1.31 0.27 −0 . 006 ± 0 . 0097 0 . 007 ± 0 . 010 ( −1.363, 1.155) 
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ST-OmegaCAM, we analyse here the public 7 fourth data release 
Kuijken et al. 2019 ). The observation conditions are of exceptional 
uality, with a mean seeing of 0.7 arcsec in the r-band, used for
hape measurements. The photometric redshifts are obtained from 

 combination of nine optical and infrared bands ( ug riZ Y J H K s ,
ee Wright et al. 2020 ), thanks to the observations of the companion
IKING surv e y (VISTA Kilo-de gree INfrared Galaxy; Edge et al.
013 ). The galaxies selected in this analysis exactly match those used
n the cosmic shear two-point function analyses of A21 and van den
usch et al. ( 2022 ), co v ering an ef fecti ve area of 777.4 deg 2 . 
The KiDS DR4 data are reduced with the THELI (Erben et al.

013 ) and Astro-WISE (Begeman et al. 2013 ) pipelines, following 
hich the shear is inferred from lens fit (Miller et al. 2013 ; Fenech
onti et al. 2017 ). Shear additive and multiplicative biases ( c- and
 -corrections) are measured to a high accuracy (Giblin et al. 2021 ),
here it is shown via a series of null tests that known residual

ystematics in the shear measurement could lead to no more than a
.1 σ shift in the structure growth parameter S 8 ≡ σ8 

√ 

�m 

/ 0 . 3 , the 
omposite quantity that is best measured by cosmic shear. Note that 
trictly speaking, the results from the tests carried out in Giblin et al.
 2021 ) are only shown to hold for two-point cosmic shear statistics. 

Following A21 , we split the full DR4 galaxies in five tomographic
ins according to their individual best-fitting redshift z B as measured 
y BPZ (Ben ́ıtez 2000 ), with bin edges set to [0.1, 0.3, 0.5, 0.7, 0.9,
nd 1.2]. The tomographic redshift distributions, n a ( z), are estimated 
ia self-organizing maps (SOM, see Wright et al. 2020 ), which group
alaxies based on their nine-band photometric properties and assign 
edshifts based on similar studies made on spectroscopic samples; 
alaxies for which no match is found are rejected. We further reject
alaxies for which the SOM redshift catastrophically differs from 

he initial z B , resulting in the so-called ‘Gold Sample’ introduced 
n Hildebrandt et al. ( 2021 ) and used in the subsequent KiDS-1000
osmic shear analyses mentioned abo v e. As detailed in A21 , the
eans and the error of the SOM redshift distributions are calibrated 

n KiDS-like mock data constructed from the MICE2 simulations 
Fosalba et al. 2015 ; van den Busch et al. 2020 ) and accounted for
uring the inference stage of our analysis. The redshift accuracy is
xcellent due to the nine-band photometry, which helps breaking 
egeneracies in the galaxy spectral energy distributions: at worst, 
he difference between the mean redshift and that estimated from 

he matched spectroscopic sample is z est − z true = 0 . 013 ± 0 . 0118,
aking this a subdominant source of uncertainty in our measurement. 
ote that Hildebrandt et al. ( 2021 ) further show that the SOM redshift
istributions are fully consistent with independent estimates based on 
lustering cross-correlations with spectroscopic reference samples, 
ro viding e xtra robustness to the method. Fig. 1 shows the redshift
istributions estimated in the five tomographic bins, along with the 
ariations on these distributions allowed within our photometric 
ncertainty. 
The SOM selection and the shear inference pipelines are both 

epeated on KiDS-like image simulations (Kannawadi et al. 2019 ), 
rom which a relation between apparent size, magnitude, and the 
bserved galaxy shape is used to calibrate the inferred lens fit shear. 8 

hereas previous cosmological analyses use a single m -calibration 
actor per tomographic bin, the aperture mass map statistics exploited 
 KiDS-1000 data: http://kids.strw .leidenuniv .nl/DR4 . 
 A KiDS-1000 re-analysis has been presented in Li et al. ( 2023b ) after 
orrecting for an anisotropic error in the lens fit likelihood sampler. This 
rror has not been corrected here, but their study shows the correction has a 
egligible impact on the inferred cosmology. 

s  

c  

a  

i
E  

o  

m  
n this paper are subject to local variations in the noise levels and
eeing conditions, and we therefore use the abo v e-mentioned relation
o extract a shear calibration per object, m a . This is not necessary, but
llows us to capture possible correlations between the m -correction 
nd the lens fit weights. These are inevitably noisier than the average
 v er the full tomographic bins, but a large fraction of this noise
ancels within our aperture mass map calculations as well, while 
roviding optimal estimates of the local noise contribution ( M18 ).
et us recall that this calibration corrects for known residual biases
uch as shape detection biases (Fenech Conti et al. 2017 ; Kannawadi
t al. 2019 ) or blending of the images of galaxies (Hoekstra et al.
015 ). While we apply the m -correction per object, the averaged
ultiplicative biases per redshift bin used in A21 enter our analysis

t the inference level in the form of nuisance parameters o v er which
e marginalize. Table 1 summarizes the surv e y properties rele v ant

o our analysis. 

.2 DES-Y1 data 

he DES-Y1 measurements is based on the public year-1 data release
rom the Dark Energy Surv e y Collaboration (Abbott et al. 2018 ),
ith source galaxy selections that exactly follow the main cosmic 

hear results described in Troxel et al. ( 2018 ). The lensing catalogue
onsists of 26 million galaxies co v ering a footprint of 1320 deg 2 with
 galaxy density of 5.07 gal arcmin −2 . The per-galaxy shear signal is
nferred with the METACALIBRATION method (Sheldon & Huff 2017 ). 
very galaxy is assigned to one of the four tomographic bins based
n the photometric redshift posteriors estimated from the the griz flux
easurements, as detailed in Hoyle et al. ( 2018 ). Following Troxel
MNRAS 534, 3305–3330 (2024) 
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9 The average shape noise contribution, computed from the scatter between 
the 10 noise realizations for a fixed underlying simulation, takes up about 90 
per cent of the total error budget, 95 per cent for the auto-bins. 
10 Magneticum simulations: www.magneticum.org . 
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t al. ( 2018 ), the mean and uncertainty on the shear multiplicative
alibration are given by m a = 0 . 012 ± 0 . 023. 

Whereas the original DES-Y1 results estimated the tomographic
 

a ( z) from a Bayesian photometric redshift analysis calibrated on
he COSMOS2015 field (Laigle et al. 2016 ), the HD21 reanalysis
nstead opted for n a ( z) estimates based on a direct reweighted
alibration of matched spectroscopic data (Lima et al. 2008 , DIR
ereafter), following the DES-Y1 reanalyses of Joudaki et al. ( 2020 )
nd Asgari et al. ( 2020 ). The uncertainty on the DIR mean redshift
istributions is �z a = [0.008, 0.014, 0.011, and 0.009] for redshift
ins a = 1 ... 4, respectively. Both methods have their pros and cons.
he calibration with COSMOS is by design based on a complete
ample but suffers from imperfect redshifts and sampling variance
see e.g. Alarcon et al. 2021 ). In contrast, the spec- z samples used for
he DIR method have (close to) perfect redshifts but are incomplete
nd not representative of the source sample, which is alleviated by
he reweighting, but often cannot be fully eliminated (see Gruen &
rimioulle 2017 ). Importantly, the DIR n a ( z) fa v ours S 8 values that
re smaller by �S 8 = 0 . 03 compared to the COSMOS-calibrated
 ( z), which is a 0.8 σ shift (Joudaki et al. 2020 ). 

.3 Simulations 

s mentioned in the introduction, the accuracy of simulation-based
nference pipelines fully depends on the quality of the numerical
imulations it is calibrated on. The same way 2pt analyses must
arefully understand the scales, cosmologies, and redshifts that are
ell captured by their model, it is critical for our peak count analysis

o identify the range of validity of our training simulations. The
dditional complexity here is that no simulation suite serves all
urposes, and therefore we must carefully investigate, for all of
hem separately, the accuracy and limits of the measurements and
ow these impact the peak count statistics. The simulations used in
his work are in many aspects identical to those presented in HD21 ,
hich we refer to for further details. Specifically: 

(i) the cosmological dependence of the peak count statistics is
alibrated on the wCDM cosmo -SLICS N -body simulations intro-
uced in Harnois-D ́eraps, Giblin & Joachimi ( 2019 ). They sample
 wide volume in S 8 , �m 

, w 0 , and h with 25 points arranged in a
atin hypercube (plus one � CDM point), each evolved with a pair
f N -body simulations designed to suppress sample variance in 2pt
unctions, then ray-traced in ten light cones of 100 deg 2 (10 000 deg 2 

n total area). These form our cosmology training set , and resolve
he non-linear physics to better than 2 per cent up to k-modes of 2.0
 

−1 Mpc, when compared to the Cosmic Emulator (Heitmann et al.
014 ). Smaller scales gradually lose precision, affecting mainly their
bility to resolve substructure in most massive objects. The exact
mpact of this loss on weak lensing peak counts is investigated in
D21 with a separate set of simulations ran with a much higher force

esolution, where it is found that this leads to at most a 1 per cent
oss of the highest peaks, which is largely subdominant compared to
oth baryonic physics and statistical errors. We revisit this in Section
 (see also point iv); 
(ii) the covariance matrix that captures the sample variance is

stimated from 124 fully independent SLICS N -body simulations
escribed in Harnois-D ́eraps & van Waerbeke ( 2015 ). These are
volved from independent initial conditions at a fixed cosmology, and
ak e our co variance tr aining set . The y resolv e the same non-linear

hysics as the cosmo -SLICS, and are shown in Harnois-D ́eraps et al.
 2019 ) and HD21 to produce marginalized errors on cosmological
arameters that are fully consistent with those obtained with an
NRAS 534, 3305–3330 (2024) 
nalytical calculation, when analysing 2pt statistics. Burger et al.
 2022 ) further show in the context of density-split statistics that
 covariance matrix estimated from the SLICS or from a much
arger number of log-normal FLASK mocks (Xavier, Abdalla &
oachimi 2016 ) produce fully consistent results, as expected for
hese mildly non-linear statistics. We further increase the ef fecti ve
umber of covariance mocks by randomly rotating 10 times the
hape noise components. This works particularly well given that
he peak statistics is currently shape-noise dominated: 9 while the
xpectation value of standard 2pt statistics does not depend on
he noise (only their variance does), shape noise affects both the
ignal and covariance of map-based statistics (see Appendix D of
eydenreich, Br ̈uck & Harnois-D ́eraps 2021 ); 
(iii) for the KiDS-1000 analysis, the impact of galaxy intrinsic

lignments is measured from the IA-infused lensing simulations
escribed in Harnois-D ́eraps et al. ( 2022 ). These are also constructed
rom the cosmo -SLICS and therefore resolve the same physical
cales. This IA training set assumes a linear coupling between the
rojected non-linear tidal field and the intrinsic ellipticity of every
alaxy, and is therefore physically modelling the non-linear linear
lignment model of Bridle & King ( 2007 ) without explicit redshift
or luminosity dependence. It is expected that this ef fecti ve IA model
oes not fully capture the alignment signal, and that a more physical
odel such as the tidal alignment and torquing model (Blazek et al.

019 ) or the halo-model of Fortuna et al. ( 2021 ) would provide a
ore accurate description, ho we ver current cosmic shear surv e ys do

ot have the statistical power to constrain parameters beyond the
impler NLA model (Secco et al. 2022a ), which is therefore deemed
ufficient for the current analysis. The IA infusion process has been
hown in Harnois-D ́eraps et al. ( 2022 ) to accurately reproduce the
LA predictions for the 2pt correlation function down to scales of a

ew arcmin, beyond which the NLA is expected to fail in a manner
hat is undetectable in the current data. Burger et al. ( 2024 ) further
how that these same simulations agree with the IA modelling of
hree-point shear statistics. The model fails at scales that correspond
o high o v erdensities in our simulations, which contribute to lensing
eaks that are excluded from our analysis. We infuse different levels
f IA and marginalize o v er these choices in the end, as described in
ection 4 . for the DES-Y1 analysis, IA are included with a non-linear
alo-based model, see HD21 for details; 
(iv) limits in the force resolution of the cosmo -SLICS are bound

o impact the weak lensing statistics in a manner that is not al w ays
redictable. We assess this with the SLICS-HR suite (Harnois-
 ́eraps & van Waerbeke 2015 ), a high-resolution version of the
LICS light cones recently used in a combined lensing-clustering
osmological analysis (Duncan et al. 2022 ). The SLICS-HR consist
f ten independent 10 × 10 deg 2 catalogues that are run at the same
osmology and with the same particle count and volume as the
LICS, but the N -body force accuracy has been increased such as to
esolve k-modes up to 10 h 

−1 Mpc. We use these to validate the full
nference pipeline in Section 4.7 , acting as our validation set ; 

(v) the impact of baryon feedback is estimated with the mag-
eticum hydrodynamical simulations, 10 forming our baryons train-
ng set . These have been shown to reproduce a number of key
bserv ations rele v ant to weak lensing studies (Castro et al. 2018 ), and
otably the feedback on the matter distribution closely matches that

file:www.magneticum.org
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f the BAHAMAS (McCarthy et al. 2017 ), another suite of hydrosim-
lations with independent prescriptions for their subgrid physics. The 
raining set consists of ten 10 × 10 deg 2 pseudo -independent light 
ones extracted 11 from full hydrodynamical simulations, and another 
0 light cones extracted from dark matter-only sister simulations, 
volved from the same initial conditions (more details on the used 
imulations can be found in Martinet et al. 2021b ). There is a
arge uncertainty on the exact impact of baryonic physics on the 

atter distribution (and therefore on our lensing statistics), which 
e account for by linearly scaling the relative baryonic bias with a
uisance parameter, b bary , which we marginalize o v er at the inference
tage. 12 

(vi) different N -body codes and ray-tracing methods, even at fixed 
osmology, will have a residual impact on the peaks statistics (Hilbert 
t al. 2020 ). We explore these numerical systematics with the public
ull-sky weak lensing simulations from Takahashi et al. ( 2017 , T17
ereafter), 13 post-processed into KiDS-1000 mock data (North and 
outh patches) as in Burger et al. ( 2024 ). The T17 simulations follow

he non-linear evolution of 2048 3 particles in a series of nested 
osmological volumes with side length starting at L = 450 h 

−1 Mpc
t low redshift, then increasing at higher redshifts. These result in 
08 pseudo-independent full-sky lensing maps, seven of which are 
sed in this work, with flat � CDM cosmological parameters set to
 �m 

, �b , σ8 , h, n s , w 0 ) = (0.279, 0.046, 0.82, 0.7, 0.97, -1.0). 

.3.1 Assembling mock surveys 

ost of these simulations have been introduced in HD21 , in Hey-
enreich et al. ( 2022 ), in Burger et al. ( 2022 ), and in the references
isted in the previous section; we encourage the interested reader 
o consult these for a more complete technical description. To 
ummarize some of the key properties, all of the abo v ementioned
imulations are organized in light cones of 100 deg 2 each, populated 
ith galaxy samples that match the tomographic n a ( z) distributions,
umber densities, and shape noise levels of the KiDS-1000 Gold 
ample and DES-Y1 data. Except for the IA-infused simulations, the 
alaxy positions, the amplitude of their ellipticities | εdata | and their 
ultiplicative shear calibration factors m a are exactly reproduced 

n each of the mock surv e y realizations (i.e. in the cosmology,
o variance , validation and baryon tr aining sets ). To achiev e this, the
iDS-1000 data are split into 18 tiles that each fit within 100 deg 2 

egions, as depicted in Fig. 2 , and the shear and convergence from
very simulation is repeated across them, interpolated at the local 
alaxy positions. These tiles are analysed separately and combined 
nly at the level of the summary statistics, ensuring that cross-tile
orrelations that exist in the data but not in the simulations are
xplicitly ignored. This effect is minor for localized non-Gaussian 
robes such as peak statistics, but is critical for e.g. shear 2pt
unctions. The shear and convergence are interpolated from the 
nderlying simulations at the position of every galaxy, infused with 
he m a from the data, then combined with the (randomly rotated) 
bserved ellipticity following: 

mock = 

εrand 
data + g 

1 + εrand g ∗
. (1) 
data 

1 The magneticum light cones were built with the public SLICER code: https: 
/ github.com/ TiagoBsCastro/ SLICER . 
2 Note that this parameter is not to be confused with A bary used in A21 (see 
heir table 2), which specifically relates to one of the free parameters entering 
heir HMCODE halo model. 
3 T17 : http:// cosmo.phys.hirosaki-u.ac.jp/ takahasi/ allsky raytracing/ . 

1

b
m
c
r

n the abo v e e xpressions, bold-font symbols are spin-2 comple x
uantities and g is the m -biased simulated reduced shear. As 
escribed in HD21 , this involves rotating each tile at the equator,
hich preserves the relative positions of galaxies but modifies their 

llipticities, defined with respect to the North pole. 
We repeat this construction for all light cones of the cosmology

raining set , the covariance training set , the baryon training set , and
he validation set . Additionally, the uncertainty in the photometric 
edshifts is forward-modelled with a further 10 full surv e y realiza-
ions computed at the fiducial cosmology, in which the n ( z) is shifted
y small amounts (details provided in Section 4 ). In total, this results
n 414 simulated mosaic surv e ys that we analyse in preparation for the
nference stage, with the majority (260) contributing to the cosmology 
raining set . Each mock further contains 10 random rotations of εdata ,
o impro v e conv ergence of the signal. 14 

The IA training set are treated slightly differently, since for 
hese the positions of the mock galaxies must be sampled from
he simulated o v erdensity maps or halo catalogues, which do not
orrelate with the positions in the data (see Harnois-D ́eraps et al.
022 , for more details). The mosaic surv e y tiling is therefore not
ossible, so we use instead five light cones per IA model and explore
our alignment strengths in KiDS, and one model in DES. Although
hese represent a lesser total area than the real data, their sole purpose
s to capture the relative impact of IA on the signal, computed
rom ratios in which the sample variance cancels by design. We
se 4 × 5 × 100 deg 2 of training data, which is enough to capture
his. 

The simulations are free of additive biases by construction, 
o we ver Giblin et al. ( 2021 ) measures residual additive terms c 1 / 2 
n the KiDS-1000 cosmic shear catalogues, caused by the shape 
easurement method itself. These are reported in Table 1 and 

ubtracted from the observed ellipticities when analysing the real 
ata. We follow Troxel et al. ( 2018 ) by not accounting for any low-
e vel additi ve terms in the DES Y1 catalogue. The multiplicative
iases are not easily remo v ed from the data, hence we instead infuse
he mocks with the m a terms per object, and treat thereafter data and
imulations on equal footings. 
MNRAS 534, 3305–3330 (2024) 

4 For peak statistics, removing the shape noise from simulated data changes 
oth the mean of the signal and the covariance, whereas for shear 2PCF, the 
ean of the signal is unchanged. For this reason, the best way to achieve 

onvergence on the mean peaks signal is by averaging over multiple noise 
ealizations. 

https://github.com/TiagoBsCastro/SLICER
http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/
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 M E T H O D S  

.1 Aperture mass map statistics 

here exists a number of methods for identifying and counting
ensing peaks, including finding maxima on convergence maps (Li
t al. 2019 ), on wavelet-transformed maps (Ajani et al. 2020 ) or on
perture mass maps (Schneider 1996 ). We here opted for the aperture
ass maps for the following reasons: as argued in M18 , this statistics

s immune to masking-induced biases and strong B-mode leakage
ommon to methods based on reconstruction of convergence maps,
lus it benefits from a local estimation of the shape and Poisson
oise, yielding more accurate signal-to-noise maps. 
Specifically, we co v er each of the 18 tiles with a 2D grid with a

ixel size of 0.59 arcmin. We next reconstruct the mass inside an
perture filter Q centred on each pixel, at position θ on the sky, from
he sum of all tangential ellipticities εa, t contained therein as: 

 ap ( θ) = 

1 

n gal ( θ ) 
∑ 

a w a (1 + m a ) 

∑ 

a 

w a εa, t ( θ , θa ) Q ( | θ − θa | , θap , x c ) . 

(2) 

he tangential ellipticity about θ is computed as εa, t ( θ , θa ) =
[ ε1 ( θa ) cos (2 φ( θ, θa )) + ε2 ( θa ) sin (2 φ( θ, θa ))], where θa is the

osition of galaxy a and φ( θ, θa ) is the angle between both coordi-
ates. The sum runs o v er all galaxies in the aperture, and n gal ( θ ) is
he local galaxy density in the filter when centred at θ . As in M18
nd HD21 , our filter Q ( θ, θap , x c ), abridged to Q ( θ ), matches that of
chirmer et al. ( 2007 ), which is optimized for efficiently detecting
FW haloes: 

 ( x ) = 

tanh ( x /x c ) 

x /x c 

[
1 + exp (6 − 150 x) + exp ( −47 + 50 x) 

]−1 
. 

(3) 

n the abo v e e xpression, we use the standard value of x c = 0 . 15,
hile x = θ/θap , with θ the distance to the filter centre. We addition-

lly use the same filter size, set to θap = 12 . 5 arcmin, which is shown
n M18 to better detect the cosmological signal o v er other filter sizes
n KiDS data. We compute equation ( 2 ) at every pixel location to
onstruct our signal map. The variance about this map is computed
t every pixel location with: 

2 
ap ( θ ) = 

1 

2 n 2 gal ( θ) 
[∑ 

a w a 

]2 

∑ 

a 

w 

2 
a | εa | 2 Q 

2 ( | θ − θa | ) , (4) 

here again the sum runs o v er all galaxies in the filter. The m -
alibration estimated from the image simulations of Kannawadi et al.
 2019 ) is meant to correct the inferred shear, not the ellipticity, which
xplains why it appears in the denominator of equation ( 2 ) but not
n that of equation ( 4 ), which describes the noise map. Finally, we
ake the ratio between equation ( 2 ) and the square root of equation
 4 ) at every pixel location to construct our signal-to-noise maps,

/ N ( θ) ≡ M ap ( θ ) / 
√ 

σ 2 
ap ( θ ) , from which we identify peaks as local

axima and record their S/ N -values. We repeat this process for the
0 realizations of random rotations and report the av erage, e xcept for
he covariance training set , for which we do not take the average;
nstead, each noise realization leads to an estimate of the covariance

atrix, of which we take the average in the end. 
As detailed in HD21 , masking is dealt with naturally in aperture
ass statistics, and no special treatment needs to be enforced as long

s data and simulations are masked and analysed the same way. This
s achieved by fixing galaxy positions in the simulations to that of the
bserved data, which ensures the impact of the mask is identical. In
ur case, we decided nevertheless to act upon masked pixels. These
NRAS 534, 3305–3330 (2024) 
re identified from the galaxy catalogues as regions with an aperture
alaxy density that is either critically low or null, then remo v ed from
he final S/ N ( θ) maps. 

It has been shown that some additional information can be
xtracted by combining the peak count statistics measured from
ultiple filter sizes (e.g. Z ̈urcher et al. 2022 ; Giblin et al. 2023 ),

o we ver M18 sho ws that this gain is mild for Stage III surv e ys. We
herefore opted for a single-scale analysis here, but intend to revisit
his in the future. 

.2 Tomography and selection 

omographic decomposition of the lensing data allows us to probe the
edshift evolution of the large-scale structures, which is largely driven
y �m 

and w 0 via their impact on the growth of perturbations. A direct
onsequence of the impro v ed sensitivity to these is a gain in precision
n S 8 , arising from de generac y breaking. This decomposition is
ifferent for the KiDS and DES surv e ys, which we detail here. 

.2.1 KiDS-1000 

rom the five KiDS tomographic bins, we include both the auto- and
he cross-redshift measurements, as first defined in Martinet et al.
 2021a ). To be specific, peaks are identified from the individual
omographic galaxy catalogues (the ‘auto’ redshift bins 1, 2, 3,
, 5), from every possible combination of bin pairs (1 ∪ 2, 1 ∪ 3,
 ∪ 4, 1 ∪ 5... 4 ∪ 5), triplets (1 ∪ 2 ∪ 3, 1 ∪ 2 ∪ 4, 1 ∪ 2 ∪ 5...), quadruplets
1 ∪ 2 ∪ 3 ∪ 4, 1 ∪ 2 ∪ 4 ∪ 5...), and quintets (i.e. no tomography). As
hown in HD21 , Z ̈urcher et al. ( 2022 ) and Heydenreich et al. ( 2022 ),
hese ‘cross-tomographic’ catalogues contain a significant amount
f additional information that is not contained within the ‘auto’ case.
he tomographic peak function is presented in Fig. 3 , showing in

he different panels the 30 different redshift bin combinations. For
ach case we o v erlay the predictions from the cosmology training
et in colour with the data measurements in black; the error bars are
btained from the covariance training set . A similar measurement
s presented in Fig. B1 , where the data are replaced by the mean
 v er our baryons training set. In these figures, we have subtracted
he peak function measured from pure shape noise fields, N 

noise 
peaks , to

etter highlight the cosmological dependence of the signal. 
In all cases, we measure the peak function in S/ N bins of width

.5 in the range [-2.5, 4.0], for a total of 13 bins per subpanel and 390
lements in total. The moti v ation behind this initial choice of range
s driven by a number of requirements, notably that of having a large
umber of peaks per bin to ensure the data is Gaussian-distributed
with our selection, every bin has at least 200 objects, while bins
utside this range have far fewer objects). Additionally, our analysis
as strict requirements on the modelling precision and on the level
f contamination by residual systematic effects, resulting in this bin
election being in fact ‘aggressiv e’. We e xpand on this in Section
 , where we argue that instead the range [ −1 . 0 < S/ N < 3 . 0] is
 better choice with lower modelling errors, forming a ‘clean’ data
ector of 7 × 30 = 210 elements in total that is used for the main
osmological analysis. 

.2.2 DES-Y1 

ollowing HD21 , our DES peak count analysis includes the auto-
nd cross-redshift measurements up to pairs of tomographic bins, for
 total of 10 bin combinations. The peak function is measured in 12
/ N bins in the range [0 . 0 < S/ N < 4 . 0], forming a data vector
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Figure 3. Tomographic weak lensing peak function N 

κ
peaks ( S/ N ) measured in the KiDS-1000 data (black squares) and in the cosmology training set simulations, 

colour-coded by their S 8 value. The pure noise signal N 

noise 
peaks has been remo v ed to better highlight the variations with respect to cosmology. The panels show the 

results from different combinations of tomographic bins, in which the red dashed lines represents the best-fitting model inferred from our fiducial analysis, see 
Section 5 . 
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ith 120 elements. Although these details differ compared to the 
iDS-1000 case described abo v e, it is shown in HD21 to be accurate

nd competitive. 

.3 Analysis pipelines 

ur cosmological inference pipeline heavily builds on the methods 
resented in HD21 and Heydenreich et al. ( 2022 ), which we briefly
 v erview here. First, we model the peak function by training a
aussian process regression 15 emulator (GPR) on the measurements 

rom the cosmology training set , after averaging over the 10 noise
ealizations. The GPR can subsequently produce N 

κ
peaks predictions 

ithin a fraction of a second everywhere inside the parameter volume 
o v ered by the cosmo -SLICS. This therefore determines the prior
anges o v er �m 

, S 8 , w 0 , and h , which we report in Table 2 . 
Secondly, we must estimate the covariance matrix, which captures 

he correlation between the elements of our data vector, central to the
rror propagation. As mentioned before, the covariance training set 
onsists of 124 full surv e y realizations, each duplicated 10 times
5 We use the GPR toolkit provided by SCIKITLEARN (Pedregosa et al. 2011 ). 

1

m

ith a distinct shape noise realization, producing 1240 pseudo - 
ndependent data vectors from which our covariance matrix C is 
xtracted. 16 Since shape noise is added at the galaxy level, cross-
edshift bins are correlated with the autobins. We show in Fig. 4
he cross-correlation coefficient matrix, defined as C ij / 

√ 

C ii C jj , 
hich better highlights the correlations between the ne gativ e and
ositive peaks in each of the tomographic block. Also visible is the
ignificant amount of correlation (and anticorrelation) present in the 
ff-diagonal component. This matrix contains at most 390 2 elements 
nd is thus invertible (since 390 < 1240, see Hartlap, Simon &
chneider 2007 ), a criteria that is also naturally satisfied by the
clean’ KiDS-1000 data vector, which contains only 210 entries, and 
y the DES-Y1 data vector, which contains 120. 
Having our model and covariance matrix, we are now in a position

o e v aluate the likelihood L of the model x ( π) with parameters π ,
iven the data vector d . We use the Sellentin & Heavens ( 2016 ) t-
istribution likelihood, which is well suited for nearly Gaussian data 
MNRAS 534, 3305–3330 (2024) 

6 In practice, we follow HD21 and estimate C from the av erage o v er 10 
atrices, each computed from one of the noise realization. 
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M

Table 2. Priors used in the KiDS likelihood sampling. The ranges for the four 
cosmological parameters are determined by the cosmo-SLICS simulations, 
while the prescription from sampling the nuisance parameters describing 
the photometric redshifts �z a and intrinsic alignments A IA are taken from 

Joachimi et al. ( 2021 ). In particular, the redshift parameters are correlated and 
drawn from a multi v ariate Gaussian distribution with means μ taken from 

Table 1 (fourth column) and a covariance matrix C z described in Section 
4.3 . The shear calibration parameters �m a are sampled from Gaussian priors 
centred on zero with a standard deviation ( μ, σ ) estimated in Giblin et al. 
( 2021 ). The baryonic feedback parameter b bary is used to scale the effect 
measured in the baryon training set . 

Parameter Range Prior 

Cosmology 
�m 

[0.1, 0.55] Flat 
S 8 [0.6, 0.9] Flat 
h [0.6, 0.82] Flat 
w 0 [ −2.0, −0.5] Flat 

Nuisance 
�z a × 10 2 [ −10, 10] G( μ, C z ) 
�m 1 × 10 2 [ −10, 10] G(0 . 0 , 1 . 9) 
�m 2 × 10 2 [ −10, 10] G(0 . 0 , 2 . 0) 
�m 3 × 10 2 [ −10, 10] G(0 . 0 , 1 . 7) 
�m 4 × 10 2 [ −10, 10] G(0 . 0 , 1 . 2) 
�m 5 × 10 2 [ −10, 10] G(0 . 0 , 1 . 0) 

Astrophysics 
A IA [ −5, 5] Flat 
b bary [0, 2] Flat 

Figure 4. This figure highlights the correlations between the different 
elements of the KiDS-1000 data vector. From left to right, the 30 blocks 
show the correlation coefficients for the different redshift bin combinations, 
starting with singlets (i.e. autobins), pairs, triplets, quadruplet, and the no- 
tomographic case, with redshift increasing towards the right and the top of 
the figure. 

v  

a

1

i

l

χ

I  

e  

c  

(  

c  

m  

g  

F  

a  

N  

2  

f  

u  

f  

t  

f
 

t  

a  

b  

a  

t  

h  

c  

w  

d  

a  

t  

s  

n
 

l  

c  

c  

a  

o
 

t  

a  

c  

p  

t  

5  

u  

D
 

b  

b  

i  

o  

p  

(  

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/534/4/3305/7783285 by C
atherine Sharp user on 05 N

ovem
ber 2024
ectors with simulation-based covariance matrices. 17 It is constructed
NRAS 534, 3305–3330 (2024) 

s: 

7 Using instead a multi v ariate Gaussian likelihood along with a Hartlap factor 
s less accurate, see Sellentin & Heavens ( 2016 ) for a full discussion. 

1

n

n L ( π | d ) = 

N sims 

2 
ln 

[
1 + χ2 / ( N sims − 1) 

]
+ const , with (5) 

2 = [ x ( π) − d ] T C 

−1 [ x ( π) − d ] . (6) 

n the abo v e, N sims = 1240 is the number of realizations used to
 v aluate the covariance matrix C. The model depends on the four
osmological parameters �m 

, S 8 , w 0 , and h , and on a set of 12
9) astrophysical and nuisance parameters for KiDS (DES), which
haracterize the dependence of our signal on the systematic effects
entioned previously. This is an excellent approximation to the more

eneral likelihood suggested by Perci v al et al. ( 2022 ) in our case.
inally, the posteriors are sampled both by the nested sampling
lgorithm MULTINEST (Feroz, Hobson & Bridges 2009 ) and by
AUTILUS (Lange 2023 ), implemented within COSMOSIS (Zuntz et al.
015 ). While the latter sampler is more robust (Lange 2023 ), the
ormer has been more widely used in the literature and is therefore
seful to make fair comparisons with previous analyses. We report
rom these the mean and 68 per cent credible intervals computed from
he 1D projected posteriors, 18 as well as the maximum a posteriori
or some of our key results. 

Since our likelihood function differs from the widely used mul-
i v ariate Gaussian, the goodness-of-fit e v aluation must be adapted
ccordingly. For Gaussian likelihoods, the χ2 

best−fit , estimated at the
est-fitting parameters, is to a very good approximation sampling
n underlying χ2 

ν probability distribution, which depends only on
he number of degrees of freedom ν – this is only an approximation
o we ver, because of informative priors, non-linear modelling, and
orrelated error bars (see e.g. Joachimi et al. 2021 ). A good fit
ill have a χ2 

best−fit close to the maximum of the χ2 
ν probability

istribution, while a bad fit will land far in the tail, leading to
 probability to exceed (PTE) that is smaller than our acceptance
hreshold, set to 0.01. For our Student- t distribution likelihood, we
till assess the goodness-of-fit with PTE v alues, ho we v er the χ2 

ν curv e
eeds to be modified (see Appendix C for details). 

A fe w dif ferences exist between the KiDS-1000 and DES-Y1
ikelihoods which are worth highlighting here, as these influence the
onstruction of our joint pipeline. First, the original DES-Y1 peak
ount analysis samples σ8 instead of S 8 ; the latter is a better option
s it exactly covers the training volume and is therefore adopted for
ur DES-Y1 re-analysis. 
Secondly, the treatment of intrinsic alignments are simpler in

he DES-Y1 analysis: the IA contribution is estimated from the
lignments of dark matter haloes, which are assumed to fully
orrelate with the alignment of central galaxies. This non-linear
rescription provides a single IA model that is then added to
he predictions, without marginalization. As discussed in Section
.2 , not marginalizing o v er the IA in the KiDS analysis slightly
nderestimates the total error. This is likely less important in the
ES-Y1 likelihood since the statistical error is larger. 
This also connects with the third difference, which is that in the

aseline DES-Y1 measurement, only the autotomographic redshift
ins are included, in an attempt to a v oid possible residual contam-
nation from unmodelled IA in the cross-redshift bins. This turns
ut to be an o v erconserv ati ve data cut. Indeed, the recent DES-Y1
ersistent homology cosmic shear analysis from Heydenreich et al.
 2022 ) reveals that the constraints on S 8 are negligibly affected by
hese IA terms: they show that a full tomographic analysis including
8 We refer to these intervals as 1 σ re gions, ev en though strictly speaking this 
otation should only apply to Gaussian posteriors. 
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Table 3. Priors used for sampling the nuisance parameters in the DES-Y1 
peak statistics analysis. The sampling of photometric redshifts �z a and shear 
bias �m a nuisance parameters follows the original cosmic shear paper by 
Troxel et al. ( 2018 ). The baryonic feedback parameter b bary is the same as in 
the KiDS-1000 likelihood, ho we ver there is no IA parameter here. 

Parameter Range Prior 

�z 1 × 10 2 [ −10, 10] G(0 . 1 , 1 . 6) 
�z 2 × 10 2 [ −10, 10] G(1 . 9 , 1 . 3) 
�z 3 × 10 2 [ −10, 10] G(0 . 9 , 1 . 1) 
�z 4 × 10 2 [ −10, 10] G(1 . 8 , 2 . 2) 
�m a × 10 2 [ −10, 10] G(1 . 2 , 2 . 3) 

Astrophysics 
b bary [0, 2] Flat 

a
0  

a  

(
s  

v
t
t
q
d

b
m
t
b
s
t
t
a
1
p  

p
d
t  

b
p
l  

t  

l  

n

v
n
m  

c  

m
c
v
c

4

A
s
q
e  

o
s
h
r
c
a
l
g  

r
o  

b  

S  

t  

h  

m  

l

4

T  

b
s  

d  

o  

S  

C  

i
D  

p
o  

o  

w  

n  

a  

p  

l  

w  

w
f  

t
h  

e  

fi  

t  

p
a  

r  

i  

d  

a
r
t  

s  

f  

a  

b

C

a  

u
h  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/534/4/3305/7783285 by C
atherine Sharp user on 05 N

ovem
ber 2024
ll cross-tomographic combinations shift the parameter by at most 
 . 3 σ towards higher S 8 values, even when the inferred A IA is as large
s unity. Although their analysis is based on the different statistics
they use persistent homology instead of peak count), their results 
hould hold here too, given that peaks are a subset of their data
ectors. Therefore residual IA cannot play an important role in 
he DES-Y1 peak count analysis, justifying our choice to include 
he cross-redshift bins here (up-to-pairs, but not the triplets nor the 
uadruplets since these are not fully modelled yet for the DES-Y1 
ata). 
A fourth difference in the likelihood concerns the treatment of the 

aryonic feedback: in HD21 the peak statistics are measured in the 
agneticum simulations to ensure that the selected elements from 

he data vectors are immune to unmodelled baryonic mechanisms, 
ut no marginalization is included. This can potentially lead to a 
lightly o v eroptimistic precision on the DES likelihood compared 
o the KiDS-1000 likelihood, which includes marginalization o v er 
he b bary parameter. We therefore decided to include in our joint 
nalysis the same marginalization machinery for both the KiDS- 
000 and the DES-Y1 pipelines. Moreo v er, we use a unique b bary 

arameter to infuse baryonic feedback into both surv e ys, since these
hysical processes describe physics that affect the foreground matter 
istribution independently of surv e y-specific source selection. In 
otal, the combined-surv e y analysis marginalizes o v er nine redshift
ias parameters, nine shear bias parameters, one IA, and one baryon 
arameter. The sampling strategy of the DES-related parameters are 
isted in Table 3 . Finally, given the absence of o v erlap between
wo surv e y footprints and the compatibility of the priors, the two
ikelihoods can be directly added at each e v aluation point, without
eeding to consider cross-surv e y co variance. 
Before running the analysis on the KiDS and DES data, we 

alidated our pipelines on simulated data, as presented in the 
ext section, and made no further modifications to thereafter. This 
ethod is not as strong as adopting a full blinding strategy at the

atalogue le vel, ho we ver this avenue was not available anymore since
any authors were already unblinded, having w ork ed on previous 

osmic shear analyses with the same data. In these conditions, our 
alidation strategy is an excellent option to protect ourselves against 
onfirmation bias. 

 SYSTEMATIC  UNCERTAINTIES  

s the amount of high quality lensing data keeps increasing, the 
tatistical precision reaches unprecedented high levels, and conse- 
uently understanding and controlling the residual systematics in 
v ery se gment of the data analyses has become one of the primary
bjectives and focus of development in the field of beyond-2pt 
tatistics. We investigate here a number of such systematic effects that 
ave been identified in the literature and mentioned earlier, including 
esidual uncertainties related to interpolation in the modelling, shear 
alibration, photometric redshifts, astrophysics (intrinsic alignments 
nd baryonic feedback), simulation-based covariance matrix, non- 
inear physics, source-lens coupling, and likelihood sampling strate- 
ies. Some of the systematics that are ignored in this work are those
elated to the effect of source blending, depth variations, PSF leakage, 
r the cosmology dependence of the IA signal. These will likely
ecome important in the future, but can be safely omitted in current
tage-III lensing surv e ys (see HD21 ; Z ̈urcher et al. 2022 ). Amongst

hose that we investigate here, many are shown to be subdominant or
eavily suppressed by our range of S/ N , while others are forward-
odelled with nuisance parameters that are marginalized o v er in the

ikelihood analysis. 

.1 Modelling 

he accuracy of the peak function modelling has two aspects to
e considered: we must understand both how well the cosmology 
caling is captured by the emulator, and whether any elements of our
ata vector are affected by either resolution limits of our simulations
r the choice of gravity solv er. Re garding the first aspect, the cosmo-
LICS have been shown to match in precision the commonly used
OSMICEMU (Heitmann et al. 2014 ), and to even outperform the latter

n terms of range, benefiting from more training nodes (Harnois- 
 ́eraps et al. 2019 ). The GPR interpolation uncertainty is fully
ropagated in the likelihood, and is quantified with a leave-one- 
ut cross-validation test, in which the emulator is trained on all but
ne node, producing predictions at that node that are then compared
ith the measurement. As shown in Fig. 5 , we cycle over all 26
odes in this way and estimate an upper limit on the error (since the
ctual GPR has all the nodes). The accuracy degrades towards large
ositive or negative S/ N values, but most of the cross-validation
ines lie well within the statistical precision on the data, shown
ith the dashed black lines. There are a handful of exceptions
ith poorer accuracy, attributed to removing extreme values of S 8 

rom the training set and therefore ef fecti vely demanding the GPR
o extrapolate. With these edge nodes included, the full emulator 
as no such outliers. In fact, as argued in HD21 , the most reliable
stimate of the emulator’s precision is e v aluated by removing the
ducial cosmology and training on the others, which is shown as the

hick black lines in the figure and al w ays well within the statistical
recision. For the KiDS modelling, the interpolation error is mostly 
t the 1 per cent error o v er the range −1 . 0 < S/ N < 3 . 0 (our ‘clean’
ange), and is otherwise al w ays under 10 per cent. Similarly, the DES
nterpolation error is everywhere under 2 per cent (see HD21 ), the
ifference coming from the choice of S/ N cuts. This will likely be
 limiting factor for future data analysis with sub-per cent accuracy 
equirement on the modelling, and will be addressed by increasing 
he number of nodes in the next generation of the cosmology training
et . At the moment ho we ver, the interpolation error is low enough
or our analysis. We nevertheless include it in our error budget by
v eraging o v er the square of the residuals (after the outliers hav e
een remo v ed): 

ov interp = diag 

〈(
N 

GPR 
peaks − N 

sim 

peaks 

)2 
〉

, (7) 

nd adding this to our statistical covariance. We could have instead
sed the errors directly provided by the Gaussian process emulator, 
o we v er He ydenreich et al. ( 2021 ) hav e shown that the two meth-
MNRAS 534, 3305–3330 (2024) 
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M

Figure 5. Accuracy of the KiDS-1000 GPR emulator, computed with a leave- 
one-out cross-validation test. The results are colour-coded with the S 8 value of 
the remo v ed training point, and compared with the statistical precision on the 
measurement of the peak function (shown with the black dashed lines). The 
black solid line indicates the � CDM node, and the different panels show the 
auto- and cross-redshift (up to pairs) measurements; the other 15 tomographic 
combinations show a similar precision and hence are not shown. The outliers 
seen in a few panels are of extreme S 8 values and as such required the test 
emulator to extrapolate; this does not occur with the full emulator, and should 
therefore not be considered when estimating the interpolation error. 
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ds yield posteriors with negligible differences. This contribution,
lthough small, helps with the goodness-of-fit in the data analysis. 

The second aspect, concerning the training sets themselves, is
iscussed below in the section on N -body resolution. 

.2 Shape calibration 

able 1 shows the av erage multiplicativ e correction factors m a that
ust be applied to the observed galaxy shapes in order to correct for
 combination of residual PSF leakage, blending, and measurement
oise, as assessed from Giblin et al. ( 2021 ). While in A21 the uncer-
ainty on the shape calibration is absorbed directly in the analytical
ovariance matrix, our simulation-based method works instead at
he level of the data vector, as for all other nuisance parameters.
he M ap estimator itself is unbiased (see equation 2 ), ho we ver we
ust propagate forward the uncertainty on the m a calibration. The

mpact of potentially miscalibrated shape measurements is estimated
y infusing a non-corrected global term m a → m a + �m a directly
n the simulations and measuring the effect on the different elements
f the peak function N 

κ
peaks . As we show later, this systematic effect

s completely subdominant compared to the others due to the tight
riors on �m a (reported in Table 2 ), and hence it is sufficient to
odel its impact with a reduced accuracy. In HD21 the estimation

s based on a linear regression (i.e. ∂ N peaks / ∂ �m per data element)
hat is fit through 10 values of �m a . We use here only two points,
t ±1 σ , which is suf ficient gi ven the small values of �m a . The
easured ∂ N peaks / ∂ �m is further discussed in Appendix B , and is

sed to modify the data vector for any value of �m a (see equation
 ) sampled in the likelihood. For cross-redshift tomographic bins,
e use the mean shift, e.g. �m 

1 ∪ 2 
a = ( �m 

1 
a + �m 

2 
a ) / 2, which is

onsistent with what is currently done for all shear two-point function
NRAS 534, 3305–3330 (2024) 
nalyses. We could instead use an n gal -weighted mean to compute
he �m a shift in cross-redshift tomographic bin, ho we ver this should
ave a negligible effect given the tight priors on these parameters,
nd we therefore leave this for the future. 

.3 Photometric redshifts 

he KiDS-1000 uncertainty on the redshift distributions has been
ully quantified in Hildebrandt et al. ( 2021 ), where it is shown that
he mean of the n ( z) is captured to a high accuracy, varying by no

ore than 0.014 at the 1 σ level. 19 The posteriors on the mean of the
edshift distributions are used as priors on nuisance parameters in this
ork, summarized in Table 2 . In this case ho we v er, the fiv e redshift
ias parameters �z a must be drawn from a correlated distribution.
his is achieved in a two-step operation where we first draw five
ncorrelated numbers from the priors, then rotate into the correlated
pace using a Cholesky decomposition of the redshift covariance
atrix: 

 z × 10 5 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

11 . 20 2 . 600 1 . 562 0 . 056 0 . 622 
2 . 600 12 . 78 4 . 081 −1 . 692 −0 . 2140 
1 . 562 4 . 081 13 . 81 −1 . 139 0 . 525 
0 . 056 −1 . 692 −1 . 139 7 . 551 3 . 054 
0 . 622 −0 . 2140 0 . 525 3 . 054 9 . 496 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

hich results in a correlated sampling of these five nuisance
arameters (see A21 , Hildebrandt et al. 2021 , for more details).
e produced a dedicated set of redshift training set simulations in
hich the n ( z) are shifted, but which are otherwise identical to the

osmology training set at the fiducial cosmology. Following HD21 ,
e measure the peak function on full mock surv e ys with 10 shifts,

ach with a slightly different value of �z a sampled from the prior,
hen extract a linear fit per data element and estimate ∂ N peaks / ∂ �z a .
his deri v ati ve is used to forward model redshift uncertainties on our
ata vector for arbitrary �z a values. Again, we use the mean shift
hen considering cross-redshift bins, and the DES-Y1 ∂ N peaks / ∂ �z a 
easurements from HD21 . 

.4 Astrophysics 

osmic shear measurements are strongly affected by IA and baryon
eedback. Using the IA and the baryons training sets described
n Section 2.3 , we estimate in a similar way ∂ N peaks / ∂ A IA and
 N peaks / ∂ b bary , where A IA and b bary are free parameters that control

he levels of IA and baryon contamination, respectively. The IA
eri v ati ve is obtained by linear fitting the peak function’s response
o changes in A IA , measured from the IA training set infused with
 IA = 2.0,1.0, 0.0, −1.0, and −2.0. Since IA is currently not well

onstrained and the NLA parametrization is an ef fecti ve model, we
dopt a wide top-hat prior o v er the range [ −5.0; 5.0], as argued in
oachimi et al. ( 2021 ). This extrapolates our fit to larger A IA values,
hich can in principle become inaccurate, ho we ver in the end the
 σ region of our posterior is fully contained within the training
ange (see Section 5 ). Similarly, the baryon deri v ati ve is measured
rom the baryons training set , which we use to infuse a baryonic
orrection whose strength is controlled by the parameter b bary . The
ase b bary = 0 . 0 corresponds to a dark matter-only universe, while
 bary = 1 . 0 corresponds to the case where the feedback processes
s exactly described by the magneticum physics. There is a large
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ncertainty on the amplitude of this baryon correction, hence we scale 
he measured baryonic correction with a free parameter b bary . Since 
he magneticum suites are already a strong model (see Martinet et al.
021b , for a comparison with other hydrodynamical simulations), 
e sample the range b bary ∈ [0 . 0 , 2 . 0], thereby spanning a variety of

ealistic models (albeit imposing a fixed shape for the relative signal).
s seen later, low b bary values are not well constrained by the data
hile larger values are strongly disfa v oured, hence we do not extend

he prior limit beyond 2.0. 

.5 Implementation of forward-modelled systematics 

our sources of systematics are forward-modelled in our pipeline. 
 ollowing He ydenreich et al. ( 2022 ), we construct systematics-

nfused data vector as: 

 

syst 
peaks ( π , �m a , �z a , A IA , b bary ) 

= N 

GPR 
peaks ( π) + 

[
∂ N peaks / ∂ �m a 

]
�m a + 

[
∂ N peaks / ∂ �z a 

]
�z a ... 

+ 

[
∂ N peaks / ∂ A IA 

]
A IA + 

[
∂ N peaks / ∂ b bary 

]
b bary , (8) 

here the twelve parameters ( �m a , �z a , A IA , b bary ) are sampled
rom the priors described in Table 2 . We marginalize o v er these
uisance parameters when inferring the values of the cosmological 
arameters. Equation ( 8 ) assumes that these different systematics are 
ndependent of cosmology and from each other, which we know is
ot entirely true. It has been shown that the cosmology dependence of
he baryon feedback is a second order effect (McCarthy et al. 2017 ),
upporting our simplified approach, ho we ver the intrinsic alignments 
ouple to the tidal field that is in itself cosmology dependent. The
hear calibration and redshift errors are independent of cosmology 
 priori, ho we ver the deri v ati ves of the peak function with respect
o �m a and �z a are not (see HD21 ), a secondary effect we neglect
ere. Moreo v er, it has been shown that the photometric and shape
alibration errors are sometimes correlated (MacCrann et al. 2022 ). 
lthough these approximation will become important in Stage-IV 

urv e ys, the current level of statistical precision allows us to relax the
odelling of these effects without hurting our results. We illustrate 

his point in Section 5.2 by running inference MCMC chains in 
hich the modelling of some or all of these systematic effects are

witched off: the minor impact this has on the inference validates this
pproach. We also assume here that these systematic effects have a 
inear dependence on the nuisance parameter, which is probably not 
ntirely true, but has been shown to be good enough for Stage-III
ensing data in Heydenreich et al. ( 2022 , see their fig. 7). 

.6 Other sources of systematics 

n addition to the main systematic effects described in the last section,
e consider here other known sources of errors that could potentially 

mpact our results. 

.6.1 N -body resolution 

eing completely simulation-based, our analysis relies on the quality 
f the underlying training samples. As mentioned already in Section 
.3 , the cosmology training set has been shown to closely reproduce
he non-linear clustering of the cosmic emulator (Heitmann et al. 
014 ), which is based on a completely independent N -body code. 
his agreement between different gravity solvers is key to assert the 
ccuracy of the non-linear solution to structure formation (see e.g. 
uclid Collaboration: Knabenhans et al. 2019 , for a comparison 
etween different N -body solvers), and the convergence of the 
olution must be assessed via a comparison with calculations carried 
ut with a higher force/mass resolution simulations. As shown in 
D21 , known limits in the mass resolution of the cosmo -SLICS
sed for the peak function emulation mainly affect high peaks. More
recisely, N 

κ
peaks ( S/ N > 4 . 0) is systematically underpredicted by

ens of per cent, while the S/ N = 4 . 0 count is affected by no more
han 5 per cent. This is in fact one of the main justification for our
nitial choice of upper S/ N limit. 

The KiDS-1000 data are deeper than DES-Y1, and hence the 
ensitivity to such non-linear effects could be accrued here. We 
erify this by running our cosmological inference on the peak count
tatistics measured from the SLICS-HR, in which the increased force 
esolution results in a slightly larger number of large positive and
e gativ e peaks. Details are presented in Appendix B , but in short our
ata selection and marginalization scheme almost completely pro- 
ects us against this, yielding no noticeable shifts on �m 

nor S 8 . As in
D21 , we nevertheless compute a multiplicative factor from the ratio
etween the SLICS-HR and the mean of the SLICS and optionally
pply it on our model predictions during the likelihood sampling. 
he o v erall effect is smaller than the baryon and IA corrections,
ence marginalizing o v er these latter two significantly washes out the
mpact of inaccurately modelled non-linear physics under question 
ere. In the future we intend to look into multifidelity emulators as
n Ho, Bird & Shelton ( 2022 ). The T17 and magneticum simulations
ere produced with a different N -body solver, and we show later

hat their reduced spatial resolution can affect quite significantly the 
eak count statistics. We treat this as a further uncertainty on the
mall scale physics and optionally add their scatter to the theoretical
rror in the covariance matrix, similar to equation ( 7 ). In two-point
tatistics analysis, this would be equi v alent to including a theoretical
rror in the covariance matrix to account for difference between 
he P ( k) predictions provided by HALOFIT (Takahashi et al. 2012 ),
MCODE (Mead et al. 2016 ), or the BACCOEMU (Angulo et al. 2021 ),
hich can have a significant impact on the results (Aric ̀o et al. 2023 ).

.6.2 Ray-tracing approximations 

ur ray-tracing method in itself contains approximations and algo- 
ithmic components that are bound to affect to some level the lensing
tatistics. Most importantly, the finite thickness of the mass sheets 
nd the randomization process between them destroys correlations 
long the line of sight; in particular it can slice large galaxy
lusters in two, and no structures larger than 257.5 h 

−1 Mpc can
xist along the line-of-sight in our light cones (except for the T17
ocks, which we discuss below). This suppresses some of the large-

cale power, as documented in Takahashi et al. ( 2017 , see their
ppendix B). Ho we ver, smaller structures, such as those probed
y the peak statistics, are left completely unaffected by this, which is
hy no forward modelling is needed here. This has been measured

pecifically for peak statistics in Zorrilla Matilla, Waterval & Haiman 
 2020 ) where it was found to play a subdominant role even for Stage-
V surv e ys. Of course, full on-the-fly light cones such as the ‘Onion
niverse’ methods (Fosalba et al. 2008 ) a v oid these problems,
hich we will consider for future analyses. The T17 simulations 
ave thinner mass shells of 150.0 h 

−1 Mpc, but they are constructed
uch that the structures are preserved in groups of three shells, thus
ielding a coherence length of 450.0 h 

−1 Mpc, further suppressing 
his residual systematic effect. 

Another source of error comes from the fact that our simulations
ssume the Born approximation in the flat-sky limit, which introduces 
mall inaccuracies at high- � and low redshift, respectively (Hilbert 
MNRAS 534, 3305–3330 (2024) 
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t al. 2020 ). Ho we ver, these are af fecting the signal at a le vel much
maller than the statistical accuracy of our lensing data, and are not
xpected to matter here. 

.6.3 Covariance matrix 

stimation of the covariance matrix is one of the main computational
hallenges for non-Gaussian weak lensing probes, as it requires a
arge number of simulations with a resolution that is high enough
o capture the non-linear physics being measured. Resorting to
pproximate methods such a FLASK (Xavier et al. 2016 ) and ICE-
OLA (Izard, Fosalba & Crocce 2018 ) can significantly lower the
omputational cost of creating such mocks, but at the price of a
educed precision on the physics under investigation. We instead
pted for mocks produced by a full N -body suite, our covariance
raining set , and are therefore only limited by the number of mocks
nd their box size. To test the convergence of our covariance matrix
ith respect to N sims , we run an inference analysis in which we

ncrease the number of pseudo-independent realizations to 2120
and adjusted the likelihood N sims parameter accordingly), and
nd an excellent match to the posterior, with only the tail of the
istribution being slightly modified. We could also have opted for
 data compression such as in Z ̈urcher et al. ( 2022 ) but that is
ot necessary given our results have converged, and our choice of
ikelihood accounts for the noise in the covariance matrix. 

The simulation box size could also affect our results, ho we ver it has
een shown in Harnois-D ́eraps et al. ( 2019 ) that the SLICS contains
bout 75 per cent of the ‘super-sample covariance’ term (SSC),
hen applied to 2pt statistics, yielding constraints on cosmological
arameters that are highly accurate. Although this has not been
emonstrated to date, peak count statistics are thought to be even
ess affected by the SSC, given that the covariance is close to being
oissonian, not Gaussian. As such, it scales with the number of
eaks measured, which is independent of the surv e y window. In
ddition, as mentioned earlier, Burger et al. ( 2022 ) finds for the
ensity-split statistics an excellent agreement between the SLICS
ovariance and that from full sky log-normal FLASK mocks (which
ontain an incomplete contribution from the trispectrum term but the
ull SSC), supporting our claim that the partly missing SSC must
ave a minimal influence on our error budget. This is also consistent
ith the recent findings from Linke et al. ( 2024 ) according to which

he SSC term affects only the Fourier space estimators, whereas
ovariance matrix measured from intrasurvey real-space statistics
uch as the M ap are unbiased. 

.6.4 Source-lens coupling and blending 

n important difference between real and mock galaxies is that those
n the data are clustered, which leads to a number of effects that
re systematically absent from the calibration sample. For example,
he quality of the shape measurements is lowered in regions of
igh density due to blending and obscuration. More importantly,
he uncertainty in photometric redshifts is particularly severe in such
reas, which often results in cluster members being wrongly assigned
 higher redshift. This subsequently creates a small population of
pparently high-redshift outliers that carry an unexpectedly weak
hear component, thus diluting the o v erall lensing signal. Correcting
or this can be partially achieved with ‘boost factors,’ ho we ver it
as shown in HD21 and Z ̈urcher et al. ( 2022 ) that even though the

xcess clustering around high peaks is indeed measured in the data,
he impact this has on the inferred cosmology can be safely ignored.
NRAS 534, 3305–3330 (2024) 
t was also shown in Gatti et al. ( 2024a ) that source clustering had a
inimal effect on the peak count statistics, supporting our choice to

eglect this here. 

.6.5 Sampling the likelihood 

ur likelihood sampling strategy, described in Section 3.3 , assumes
 flat prior for the four main cosmological parameters and the
wo astrophysical parameters ( A IA and b bary ), and Gaussian priors
or the parameters associated with photometric redshifts and shape
alibration. This is not strictly speaking a non-informative approach,
o we ver the prior edges about the key measured parameters are
ufficiently broad to have negligible impact on the posterior. Since it
s found in Lemos et al. ( 2023 ) that MULTINEST tends to yield slightly
 v erprecise constraints, we use the NAUTILUS sampler for our fiducial
esults, but report both. 

We also note that our cosmology sampling strategy is different
rom the other KiDS-1000 cosmic shear analyses, mainly due to
he volume where our emulator is valid. For example, A21 sample
niformly the parameters S 8 , ω c ≡ �c h 

2 , ω b ≡ �b h 

2 , h , and n s .
his choice is designed to a v oid regions of parameter space that are
trongly disfa v oured by external data, and it was shown in Joachimi
t al. ( 2021 ) that while it disfa v oured high �m 

values already in
rior space, the resulting S 8 prior space is highly uninformative. We
ould have taken a similar approach, ho we ver our emulator is much
uicker, and hence it is more natural to sample the full training space,
nsuring a wide sampling of �m 

, S 8 , and w 0 . 
Another aspect that currently limits our sampling strategy is the

act that we hold the value of many parameters fixed, notably �b 

nd n s . In contrast, the DES-Y3 peak count analysis of Z ̈urcher
t al. ( 2022 ) use deri v ati ves to marginalize over variation in these
arameters, following the approach we adopt for IA and baryons.
eglecting to account for these has a small effect on current data sets

the DES-Y3 joint peaks + power spectrum analysis finds to be of
bout 0.13 σ ), which are thus ignored here. 

.6.6 M × modes 

he observed weak lensing signal can generally be decomposed into a
ombination of E- and B-modes, the latter of which can be estimated
or any measurement by rotating all galaxies by 45 degrees; therefore,
or the aperture mass map statistics, it is often referred to as M ×( θ).
he cosmic shear signal being a pure E-mode generator to first order,
easurements of B-modes are therefore routinely used to assess the

resence of residual systematics in lensing data (see e.g. Z ̈urcher
t al. 2022 , for a recent application to peak statistics). Whereas the
wo-point function B-mode signal is zero in absence of systematics,
he construction of aperture mass maps on a grid inevitably injects
on-zero M ×-modes due to the missing contribution from subpixel
cales (Kilbinger, Schneider & Eifler 2006 ). This can be important:
or a small-angle cut-off scale of 10 arcsec and an aperture of θ = 2.0
rcmin, B-modes measured this way can reach about 10 per cent the
ize of the E-mode M 

2 
ap signal. This effect is accentuated for larger

ut-off scales and smaller opening angles θ . Given our pixel scale of
5 arcsec, we do expect non-zero M ×-modes to be introduced by our
perture map making, which we fully quantify in Appendix A . We
how therein that the level of contamination is consistent with noise,
hat there is no evidence for residual systematics in the data from
his measurement, hence that our cosmological analysis is clean of
-modes. 
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Figure 6. Full inference analysis on the validation set (SLICS-HR) peak count data (blue) with MULTINEST , optionally infused with intrinsic alignments (red) 
or baryon feedback (grey). We marginalize over these two effects plus shape calibration and photometric uncertainty. The priors are shown by the dashed grey 
lines at the edge of the panels, while the cross-hairs show the input truths. 
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.7 Peak count to cosmology pipeline validation 

e test our KiDS-1000 cosmology inference pipeline by analysing 
imulated data of known cosmology, infused with a controlled 
mount of residual systematics. In order to a v oid confirmation bias,
hese tests are carried out with the validation set , which have not been
sed in the cosmology training nor for the covariance estimation, with
n N -body force resolution that is higher than the other simulations
sed in this work. 20 In addition, we use the forward-modelling 
pproach presented in Section 4 to infuse the simulated data vectors 
ith either intrinsic alignments (assuming A IA = 1 . 0) or baryonic

eedback (with b bary = 1 . 0). Fig. 6 shows the results for these three
nalysis cases. The maxima of the projected posterior distributions 
re all centred on the input truth, except for the b bary parameter,
hich are away from zero even in the no-baryon cases. This is a
rojection effect similar to those discussed in Joachimi et al. ( 2021 ),
0 We have further verified that the wCDM cosmology is correctly inferred 
hen analysing data from the cosmology training set but these tests are easier 

o satisfy since the data is used for training the emulator. We discuss these in 
reater details in Appendix B . 

(  

r
r
W  

d  

d

hintalapati, Gutierrez & Wang ( 2022 ), and Dark Energy Surv e y
nd Kilo-Degree Survey Collaboration ( 2023 ), and we have verified
hat reducing the lower prior limit to b bary = −2 . 0 pushed both the
ed and blue maxima towards the ground truth. 

In this test, there is a secondary solution for �m 

∼ 0 . 4 that is
nexpected, and not observed in other peak count analyses (Martinet 
t al. 2018 ; Z ̈urcher et al. 2022 ; Marques et al. 2024 ). As detailed
n Appendix B , this feature persists when analysing data from the
osmology training set at the fiducial cosmology, from the baryons 
raining set and from the T17 mocks, but can vanish at other
osmologies. This is caused first by the poor sensitivity of the current
ensing data to �m 

, as also seen in the large �m 

scatter reported in
21 between different two-point functions, but more importantly by 

imits in our GPR emulator, whose residual inaccuracy mostly affects 
his parameter. Inferring �m 

from single mock surv e y realizations 
as opposed to a mean o v er sev eral light cones or shape noise
ealizations) yields posteriors drawn from either one of these peaks, 
esulting in occasional strong biases on this cosmological parameter. 

e thoroughly verify that only �m 

is affected by this, and therefore
o not report its value in our main analyses. See Appendix B for full
MNRAS 534, 3305–3330 (2024) 

etails. 
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Table 4. Summary of our cosmological inference analyses. Posteriors on 
�m 

, h , and w 0 are prior-limited, so their constraints are not reported here. 
Unless explicitly specified in the first column, the KiDS-1000 measurements 
are based on the ‘clean’ data vector, i.e. −1 . 0 < S/ N ≤ 3 . 0. The last column 
presents the maximum a posteriori (MAP) values. Validation of the inference 
pipelines on mock data are presented in Appendix B . 

Peak count analysis of KiDS-1000 
NAUTILUS MULTINEST MAP 

S 8 A IA S 8 A IA S 8 

Fiducial 0 . 733 + 0 . 032 
−0 . 032 0 . 71 + 0 . 49 

−0 . 49 0 . 733 + 0 . 021 
−0 . 027 0 . 74 + 0 . 43 

−0 . 43 0.726 

� CDM 0 . 732 + 0 . 029 
−0 . 029 0 . 73 + 0 . 48 

−0 . 48 0 . 729 + 0 . 026 
−0 . 026 0 . 73 + 0 . 43 

−0 . 43 0.718 

Auto-only 0 . 734 + 0 . 050 
−0 . 050 −0 . 2 + 1 . 0 −1 . 0 0 . 732 + 0 . 039 

−0 . 048 −0 . 2 + 1 . 0 −1 . 0 0.725 

Up to pairs 0 . 750 + 0 . 036 
−0 . 050 0 . 10 + 0 . 69 

−0 . 69 0 . 742 + 0 . 032 
−0 . 043 0 . 11 + 0 . 63 

−0 . 63 0.742 

Up to triplets 0 . 740 + 0 . 035 
−0 . 035 0 . 35 + 0 . 53 

−0 . 53 0 . 740 + 0 . 029 
−0 . 029 0 . 37 + 0 . 48 

−0 . 48 0.738 

No tomo 0 . 695 + 0 . 033 
−0 . 087 −0 . 6 + 1 . 7 −2 . 2 0 . 690 + 0 . 038 

−0 . 068 −0 . 7 + 1 . 5 −2 . 0 0.682 

−2.5 <S/ N ≤4.0 0 . 720 + 0 . 036 
−0 . 026 0 . 08 + 0 . 30 

−0 . 30 0 . 717 + 0 . 031 
−0 . 022 0 . 07 + 0 . 27 

−0 . 27 0.728 

−2.5 <S/ N ≤3.0 0 . 717 + 0 . 031 
−0 . 031 0 . 14 + 0 . 31 

−0 . 31 0 . 713 + 0 . 023 
−0 . 023 0 . 22 + 0 . 27 

−0 . 27 0.712 

0.0 <S/ N ≤4.0 0 . 739 + 0 . 031 
−0 . 026 0 . 77 + 0 . 47 

−0 . 47 0 . 744 + 0 . 023 
−0 . 023 0 . 80 + 0 . 38 

−0 . 38 0.734 

No IA 0 . 726 + 0 . 024 
−0 . 042 − 0 . 720 + 0 . 021 

−0 . 031 − 0.725 

No baryons 0 . 732 + 0 . 032 
−0 . 032 0 . 71 + 0 . 49 

−0 . 49 0 . 725 + 0 . 022 
−0 . 027 0 . 70 + 0 . 43 

−0 . 43 0.725 

No syst 0 . 729 + 0 . 024 
−0 . 056 − 0 . 723 + 0 . 022 

−0 . 048 −− 0.709 

No GPR error − − 0 . 732 + 0 . 019 
−0 . 025 0 . 71 + 0 . 40 

−0 . 40 0.708 

N -body error − − 0 . 725 + 0 . 027 
−0 . 027 0 . 70 + 0 . 43 

−0 . 43 0.717 

No bin1 0 . 734 + 0 . 043 
−0 . 037 0 . 10 + 0 . 74 

−0 . 74 0 . 735 + 0 . 035 
−0 . 035 0 . 10 + 0 . 70 

−0 . 10 0.727 

No bin2 0 . 740 + 0 . 042 
−0 . 048 −0 . 78 + 0 . 72 

−0 . 72 0 . 740 + 0 . 040 
−0 . 040 −0 . 76 + 0 . 70 

−0 . 70 0.738 

No bin3 0 . 775 + 0 . 049 
−0 . 055 0 . 97 + 0 . 63 

−0 . 63 0 . 777 + 0 . 048 
−0 . 048 0 . 95 + 0 . 60 

−0 . 60 0.836 

No bin4 0 . 701 + 0 . 037 
−0 . 037 0 . 41 + 0 . 68 

−0 . 68 0 . 702 + 0 . 029 
−0 . 034 0 . 45 + 0 . 59 

−0 . 59 0.659 

No bin5 0 . 720 + 0 . 036 
−0 . 028 0 . 53 + 0 . 61 

−0 . 61 0 . 723 + 0 . 030 
−0 . 025 0 . 53 + 0 . 57 

−0 . 57 0.716 

Peak count analysis of DES-Y1 

DH21 – – 0 . 737 + 0 . 027 
−0 . 031 − −

This work 0 . 743 + 0 . 036 
−0 . 036 − 0 . 742 + 0 . 030 

−0 . 034 − 0.712 

Joint peak count analysis 

NAUTILUS MULTINEST 

Fiducial 0 . 732 + 0 . 020 
−0 . 020 0 . 82 + 0 . 47 

−0 . 47 0 . 732 + 0 . 012 
−0 . 010 0 . 82 + 0 . 33 

−0 . 33 0.745 

� CDM 0 . 736 + 0 . 016 
−0 . 018 0 . 81 + 0 . 46 

−0 . 46 0 . 736 + 0 . 012 
−0 . 015 0 . 79 + 0 . 40 

−0 . 40 0.732 

No baryons 0 . 728 + 0 . 020 
−0 . 016 0 . 82 + 0 . 46 

−0 . 46 0 . 725 + 0 . 018 
−0 . 014 0 . 83 + 0 . 39 

−0 . 39 0.726 

No IA 0 . 726 + 0 . 020 
−0 . 016 – 0 . 729 + 0 . 015 

−0 . 015 – 0.721 

t  

b  

d  

s  

t  

a  

t  

i  

b  

d  

t
v  

w  

F  

c  

t  

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/534/4/3305/7783285 by C
atherine Sharp user on 05 N

ovem
ber 2024
Ho we ver, the secondary �m 

solution corresponds to an S 8 posterior
hat is slightly lower than the main solution, which means that if
 particular realization of the data prefers this region, it will on
 verage ha ve an S 8 value about 0.03 lower, which is of the size of
ur statistical precision. Conversely, realizations that prefer lower
m 

tend to have S 8 values that are 0.02 higher than the input truth.
e further observe that this is not al w ays the case: some individual
ock surv e y realizations from the covariance tr aining set hav e a best
t �m 

∼ 0 . 45, yet their S 8 is unbiased compared to the input truth.
iven that this 0 . 02 − 0 . 03 shift is about a 1 σ shift, this potentially
ominates the systematic error budget on S 8 , which we therefore
ust report as σ (syst) = 

−0 . 03 
+ 0 . 02 . 

This additional systematics error take its roots from the tilt in the
 S 8 − �m 

] posterior, which indicates residual correlation between
hese two parameters. We can suppress this tilt, and hence the
dditional error, by replacing S 8 with � 

α
8 ≡ σ8 [ �m 

/ 0 . 3] α , where α
s the parameter that best fits the [ �m 

− σ8 ] de generac y. According
o this metric, � 

α
8 is the most robustly measured quantity from

eak statistics, with no need for a standalone σ (syst) term, in
his case a significant advantage. With the validation data, we find
 

α
8 = 0 . 824 + 0 . 033 

−0 . 033 , with α = 0 . 582, in excellent agreement with the
nput truth of 0.811 with the same α. We report the measurements of
oth S 8 and � 

α
8 in this paper, but while emphasize is on the former

o better compare with previous measurements from the literature,
he latter is more robust and has interesting properties which we
ighlight as well, notably on increasing the agreement with previous
iDS-1000 measurements and lowering the tension with external
robes. 
Back to Fig. 6 , we observe that the posteriors on w 0 and b bary 

re wide and significantly o v erlap with the prior limits, and we
hus expect to be unable to place meaningful constraints on these
arameters with our main KiDS-1000 analysis alone. We observe
 de generac y in the [ S 8 − w 0 ] plane here, ho we ver we sho w in
ppendix B that it is not al w ays seen when analysing other

osmologies, making it impossible to draw physically meaningful
onclusions about this. Only the [ S 8 − A IA ] plane is well constrained
ith the current KiDS-1000 peak count analysis: we achieve a 4.4
er cent precision measurement on S 8 , with S SLICS −HR 

8 = 0 . 816 + 0 . 039 
−0 . 033 

truth is 0.813), and a precision of σA IA = 0 . 45 on A IA , sampling the
ikelihood with MULTINEST . 

The DES-Y1 pipeline validation is presented in HD21 , while that
or the joint KiDS-DES is presented in Appendix B , showing again
n excellent agreement between the inferred cosmology and the input
ruth. 

 RESULTS:  K I D S - 1 0 0 0  

e present in this section the results from our cosmological inference
nalyses, beginning with the fiducial KiDS-1000 pipeline, then
eporting on the importance of various selection cuts and systematic
ffects. F or reasons e xplained in Section 4.7 , we report only the
onstraints on S 8 and A IA ; results are summarized in Table 4 and
urther condensed in Fig. 10 . 

From our fiducial full tomographic KiDS-1000 analysis of the
easurements presented in Fig. 3 , we obtain: 

 

KiDS 
8 = 0 . 733 + 0 . 032 + 0 . 020 (syst) 

−0 . 032 −0 . 030 (syst) , A IA = 0 . 71 + 0 . 49 
−0 . 49 , (9) 

 

KiDS 
8 = 0 . 765 + 0 . 030 

−0 . 030 , α = 0 . 600 , (10) 

fter marginalizing o v er three cosmological parameters ( �m 

, w 0 , and
 ) and 11 nuisance parameters (5 × �m a , 5 × �z a , b bary ). Unless
xplicitly mentioned, all quoted parameter constraints correspond
NRAS 534, 3305–3330 (2024) 
o the mean ±1 σ region of the marginalized posterior, not to
e confused with the point of maximum likelihood in the higher
imensional space. This is therefore a 3.9 per cent measurement of the
tructure growth parameter � 8 . The best-fitting model is shown with
he red line in Fig. 3 . The joint constraints on two of these parameters
re shown in Fig. 7 , along with results from different selections of
omographic bins. Importantly, the strong S 8 − A IA de generac y seen
n the no-tomographic case (the tilted dark purple contour) is lifted
y tomographic decomposition, which capture the different redshift
ependence of the cosmological and IA signals. Indeed, in the no-
omographic case only, and under the NLA framework, large S 8 
alues can be hidden by large tidal alignments, both fitting equally
ell the same data. Ho we ver, as seen by the coloured histograms in
ig. 3 , the cosmological signal in all tomographic bins is affected by
hanges in S 8 , while IA mostly modifies the parts of the data vector
hat include the lowest tomographic bins. This dif ference allo ws one
o break the [ S 8 − A IA ] de generac y, an important verification of our
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Figure 7. KiDS-1000 constraints on the two best-measured parameters from 

peaks count statistics, for different selection of redshift bins. Tomographic 
analyses all break the S 8 − A IA de generac y. 

I
r  

g  

b
 

t
u
t  

r

o
(  

u
f
i  

p
c
P  

o  

I
f
P

w

�  

s

2

w
2

f
v
f
2
2

c

Figure 8. Effect of S/ N cuts on the KiDS-1000 constraints. Large peaks 
( S/ N > 3) slightly increase the statistical precision on S 8 , as seen by 
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( S/ N < -1), included in the red but excluded from the grey contours, help in 
breaking the [ S 8 − A IA ] de generac y. The gre y and blue contours correspond 
to the ‘clean’ and ‘aggressive’ cases, respectively. 
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A modelling. This result would be slightly different had we included 
edshift evolution of the IA signal, but this effect will be subdominant
iven the size of our statistical error bars. This will clearly need to
e investigated with upcoming data sets. 
Back to Fig. 7 , all tomographic additions contribute to further

ightening the constraints, once again demonstrating the power of 
sing cross-redshift bins in non-Gaussian statistics. We also observe 
hat all cases shown in Fig. 7 are consistent, providing statistical
obustness to our measurement. 

At our best-fitting parameters the measurement yields a χ2 

f 250, which reduces to χ2 
red = 1.22 after dividing by ν = 

220 − 4 . 5) = 205 . 5 degrees of freedom. Note that although we
se six unconstrained parameters 21 in our likelihood e v aluation (the 
our cosmological parameters plus A IA and b bary ), it was shown 
n Joachimi et al. ( 2021 ) that an ef fecti ve number of ν = 4 . 5 free
arameters better describes the weak lensing data given the existing 
orrelations and degeneracies, results which we have used here. 22 Our 
TE for this measurement is 0.43, which is well abo v e our threshold
f 0.01, using the non- χ2 distribution described in Appendix C .
t is worth noting that the KiDS-1000 shear two-point correlation 
unctions and band power analyses had a lower goodness-of-fit, with 
TE = 0.034 and 0.013, respectively. 
In many previous analyses, sampling and marginalization o v er 
 0 is often excluded, being considered an extension to the vanilla 
 CDM scenario. In the present case, fixing w 0 to −1 . 0 when

ampling the likelihood 23 results in minor changes to the reported 
1 We do not count as free parameters those nuisance parameters for which 
e impose a tight prior. 

2 It is not guaranteed that the exact same ef fecti ve number of degrees of 
reedom applies here, given that the likelihood is not sampled over the same 
 olume. We ha ve checked that our goodness-of-fit is robust o v er choices 
or this quantity, with PTE varying between 0.48 and 0.37 o v er the range 
 < ν < 7. 
3 This still uses the same wCDM emulator, but only varying the other three 
osmological parameters. 
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 S 8 , � 8 , A IA ) constraints, leading to 0 . 732 + 0 . 029 
−0 . 029 , 0 . 767 + 0 . 026 

−0 . 026 , and
 . 73 + 0 . 48 

−0 . 48 . Interestingly, we find that the impact of opening up the w 0 

imension is far lower than for the two-point statistics, where Tr ̈oster
t al. ( 2021 ) finds a degradation by a factor of a few on the S 8 con-
traints (compare their figs 1 and 6). Different de generac y-breaking 
irections are likely causing this difference, which is promising 
or upcoming measurements of w 0 with alternative statistics (see 

artinet et al. 2021b , for a Stage-IV lensing forecast on the dark
nergy parameter with peak statistics). 

One of the key questions to be explored by beyond-2pt statistics
oncerns the exact origin of the non-Gaussian cosmological informa- 
ion. Large peaks are often associated with massive galaxy clusters, 
hich are known to be highly sensitive to the dark energy equation-
f-state parameters for instance, ho we ver the wide projection effect
nd the fact that baryons, IA, and non-linear physics maximally affect 
hese large S/ N peaks (Martinet et al. 2021b ; Harnois-D ́eraps et al.
022 ) complicate the picture. To (partly) answer this question, we
nvestigate the constraining power contained in the highest ( S/ N >

) and lowest ( S/ N < 0) bins by removing these sequentially from
he ‘aggressive’ data vector ( −2 . 5 ≤ S/ N ≤ 4 . 0) in the likelihood.
he results are shown in Fig. 8 , where we observe that the ne gativ e
/ N peaks significantly help break the [ S 8 − A IA ] de generac y, while

he highest peaks help in tightening the S 8 constraints. In an analysis
hat ignored the role of IA, M20 found that the amount of information
bout S 8 that is contained in ne gativ e peaks is quite small, however
ere we find that they actually play a key role once IA are forward-
odelled. 

.1 Internal consistency 

t has been found in previous cosmic shear analyses (e.g. A21 ,
amana et al. 2020 ; Amon et al. 2022 ) that internal consistency

ests can help differentiate residual systematics from statistical fluc- 
MNRAS 534, 3305–3330 (2024) 
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Figure 9. Internal consistency: effect of removing tomographic data from 

the KiDS-1000 analysis. 
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uations. We therefore stress test our results by removing data from
omographic bins one at a time before proceeding to the inference. For
xample, we consider results obtained from an analysis where exactly
o data from bin1 (i.e. 1, 1 ∪ 2 ... 1 ∪ 2, 1 ∪ 2 ∪ 3... 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5) is
sed, then no data from bin2, and so on. The results are shown
n Fig. 9 , where we observe that all cases are self-consistent, in
greement with the full selection. Note that the S 8 shifts per-bin are
ot expected to match exactly those measured with other lensing
robes due to different responses of the cosmic shear estimators to
oise in the data. F or e xample, A21 found that removing the fifth
omographic bin maximally degrades the precision on S 8 , confirming
he large amount of information on this parameter carried by high
edshift bins in shear two-point functions. In contrast, we find here
hat removing the third redshift bin has the worst impact on the
recision. The third bin has the greatest number density of galaxies,
ence better captures the information in peak statistics, whose mean
 alue is af fected by the noise le vel. The constraints on A IA fluctuate
bout the fiducial results by less than 2 σ , while those on S 8 agree
ithin 1 σ , as expected. 

.2 Impact of systematics 

e present in this section additional variations with respect to the
ducial analysis, designed to better understand our results and assess

heir robustness to residual systematics. We first investigate the
mpact of IA on the uncertainty by fixing A IA to 0.72, the best-fitting
alue in the fiducial analysis. Doing so, the error bars on S 8 shrink
y less than 10 per cent, while the mean value is not affected, by
onstruction. Setting instead the IA parameter to 0.0, we can estimate
he bias on the inferred cosmology if IA are completely neglected.

e measure in this case S no −IA 
8 = 0 . 725 + 0 . 024 

−0 . 042 , a 0.22 σ shift from the
ducial results. Intrinsic alignments are therefore a modest part of

he error budget, suggesting that peak count analyses where IA are
ot modelled or held fixed (e.g. M18 , HD21 , Marques et al. 2024 )
ikely yield both biased low and slightly optimistic constraints for
 8 . 
NRAS 534, 3305–3330 (2024) 
We next carry out a similar study this time removing the modelling
f baryons, fixing the associated nuisance parameter to b bary = 0 . 0.
s reported in Table 4 , the measurements are mostly unchanged. As

hown in M21, any non-zero residual feedback tends to lower the
umber of high S/ N peaks in all tomographic bins, which, when
onfronted to fixed data, must be compensated with an increased
alue of inferred S 8 . Therefore, removing the baryon modelling goes
he other way and reduces the inferred S 8 . This is not clearly seen
ith the NAUTILUS chains, but the MULTINEST runs shows this shift
ith 0 . 2 σ significance. 
Then, removing modelling of all systematics (photo- z, shape

alibration, IA, and baryons) results in S 8 values half way between
he no-baryon and no-IA cases, but the error bars are the larger.
his suggests that marginalization o v er these systematics helps in
nding the true maximal likelihood, which is not at b bary = A IA = 0.
ndeed, the error on S 8 becomes smaller than the fiducial case if
 IA and b bary are fixed to their best-fitting value of 0.72 and 0.5,

espectively, leading to S syst−fixed 
8 = 0 . 728 ± 0 . 030. 

The contribution to the error budget coming from the GPR
nterpolation uncertainty (equation 7 ) can be estimated from an

CMC run where the covariance matrix excludes this term, and
e observe that the error on S 8 is reduced by just under 10 per cent.
imilarly, adding an error on small scale non-linear physics estimated
rom the scatter between the cosmo-SLICS, magneticum dark matter-
nly and the T17 simulations (see Section 4.6.1 ), can degrade the
rror on S 8 by 12 per cent. This is an upper limit on the degradation,
iven that the cosmology training set has better resolution than these,
ence the real uncertainty is certainly smaller. We do not include this
atter error in the fiducial analysis here, because it is not accurately
stimated, and instead report an upper bound on the effect. 

Finally, we compared our fiducial NAUTILUS results with those
rom the MULTINEST nested sampler and reco v er ne gligible biases in
he inferred parameters, but with smaller error bars ( S 8 = 0 . 733 ±
 . 032 versus 0 . 733 + 0 . 021 

−0 . 027 for MULTINEST ). This is consistent with
revious findings (Lemos et al. 2023 ) and justifies our choice of
AUTILUS as our main sampler. We nevertheless report results from
oth samplers to ease comparison with previous results. 

.3 Comparison with previous KiDS-1000 results 

he S 8 measurement presented here is not the first carried out from
iDS-1000. Previous analyses include the measurements of A21 and
an den Busch et al. ( 2022 ), the latter of which used an upgraded
hotometric calibration compared to the former, followed by that of
i et al. ( 2023b ) based on upgraded shear measurements. Loureiro
t al. ( 2022 ) carried out a pseudo - C � analysis, Fluri et al. ( 2022 )
sed instead a convolutional neural network, while Longley et al.
 2023 ) re-analysed the data within the LSST-DESC pipeline. We
eport these results as the purple symbols in Fig. 10 , where we see
hat they all seem to prefer slightly higher values of S 8 compared
o our own measurements, albeit not by a significant amount. Given
he important differences in the analysis pipelines between these
fforts, it is reassuring to reco v er < 1 σ agreements. The constraints
rom the wCDM band power analysis from Tr ̈oster et al. ( 2021 ) are
eported in Fig. 11 and are broadly consistent with our peak statistics
onstraints, even though peaks are clearly more constraining on S 8 
0 . 732 ± 0 . 032 for peaks versus 0 . 742 ± 0 . 047 for band power), due
o the reduced de generac y in the [ S 8 − w 0 ] plane. It is worth noting
hat both statistics provide similar constraints on the A IA parameter
 σA IA = 0 . 42 for peaks, compared to σA IA = 0 . 36 for band power),
hich is reassuring given that both use the same NLA approach. This
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Figure 10. Summary of S 8 constraints from this work, from recent cosmic 
shear data analyses and from Planck . This figure shows the projected 1 σ
errors. 
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rror is significantly reduced ( σA IA = 0 . 30) when considering the
ore aggressive data selection ( −2 . 5 ≤ S/ N ≤ 4 . 0), but since the

ssociated goodness-of-fit is poor, the results are not straightforward 
o interpret. We nevertheless expect tighter constraints on A IA to be 
chie v able coming from non-Gaussian probes. 

We finally remark that our constraints on � 

α
8 aligns remarkably 

ell with the band power measurements presented in A21 (they found 
 

α
8 = 0 . 765 + 0 . 018 

−0 . 024 with α = 0 . 58, compared to our measurement of
 

α
8 = 0 . 765 + 0 . 030 

−0 . 030 with α = 0 . 60). 

 J O I N T  ANA LYSIS  WITH  DES-Y1  

he posterior obtained from the KiDS-1000 peak count analysis 
s fully consistent with that from the peak count analysis of the
ark Energy Year 1 (DES-Y1) presented in HD21 . In particular, the

atter finds S HD21 
8 = 0 . 737 + 0 . 027 

−0 . 031 , which significantly o v erlaps with
ur S KiDS 

8 1 σ results. Other parameters less well measured such as �m 

nd w 0 are also largely o v erlapping at the 1 σ level (see the lower part
f Fig. 11 ), which means the intersection between the two likelihood
ypervolumes must be large enough to safely combine the two 
ata sets. Furthermore, both measurements are based on the similar 
nalysis pipeline and, in particular, exploit the same simulations to 
odel the cosmology dependence, thereby suppressing the risk of 
is-interpreting the joint data due to non-uniform modelling of the 

ignal. 

.1 Results: DES-Y1 re-analysis 

s detailed in Section 3.3 , there are differences between our DES-
1 pipeline and that presented in HD21 , including the S 8 sampling,

he treatment of baryons, the inclusion of the emulator uncertainty 
n the covariance and the choice of sampler. The results from these
e-analyses are presented in the lower panel of Fig. 11 (in green and
lack). The difference induced on these contours are small, but the 
oodness-of-fit impro v ement is important, with a PTE of 0.53 (using
he same PTE estimator as HD21 , we obtain 0.25, which is still a
assiv e impro v ement compared to their PTE = 0.005). 
We remark that our joint pipeline contains a slight inconsistency: 

e include IA with the NLA model in the KiDS-1000 data (with
arginalization o v er A IA ) and with the non-linear halo-based IA
odel for the DES-Y1 data (without marginalization, but with an 

n/off switch instead). We verify the impact of this feature by
nalysing the likelihood with the DES IA model turned on and off and
eport on the difference, which is subdominant ( �S 8 = 0 . 002). We
MNRAS 534, 3305–3330 (2024) 
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lso compare the results from turning off the modelling of baryons,
nd from replacing the wCDM by a � CDM analysis, finding in all
ases results consistent with the fiducial analysis. The re-analysis
resented in this work has slightly larger error bars compared to that
f HD21 , due to the marginalization o v er baryons, and to the fact that
AUTILUS yields constraints slightly larger compared to MULTINEST ,
s summarized in Table 4 . Notably, we infer: 

 

DES 
8 = 0 . 743 + 0 . 036 

−0 . 036 , � 

DES 
8 = 0 . 762 + 0 . 036 

−0 . 036 , with α = 0 . 559 . (11) 

.2 Results: joint KiDS + DES 

e present in this section the results from our joint KiDS-
000 + DES-Y1 peak count analysis. Sampling the joint likelihood
ith our fiducial setup, we achieve improved constraints on S 8 and
 

α
8 with: 

 

joint, w CDM 

8 = 0 . 732 + 0 . 020 
−0 . 020 , � 

joint, w CDM 

8 = 0 . 759 + 0 . 020 
−0 . 017 (12) 

nd 

 

joint,� CDM 

8 = 0 . 735 + 0 . 016 
−0 . 018 , � 

joint,� CDM 

8 = 0 . 762 + 0 . 017 
−0 . 017 (13) 

omputed with α = 0 . 572 in both cases. These are the tightest
esults obtained from non-Gaussian cosmic shear statistics to date,
omparable to the recent joint � CDM analysis of the KiDS-1000
nd DES-Y3 data (Dark Energy Surv e y and Kilo-De gree Surv e y
ollaboration 2023 ), which measured S NLA 

8 = 0 . 792 + 0 . 016 
−0 . 013 . The 2D

osterior is shown in Fig. 12 (in blue) and compared to the fiducial
iDS-1000 (red) and DES-Y1 (green) peak statistics constraints.
ecall that the A IA parameter affects only the KiDS likelihood

ince, as explained in the previous section, the DES likelihood
ssumes instead a fixed halo-based IA model with no free parameter.
e should therefore use caution when interpreting this parameter.

he reported value is close to the point of maximum likelihood
 S ML 

8 = 0 . 728 ), and the size of the error bars on S 8 is consistent with
ur expectation: for example, we read from Table 4 that the � CDM
iDS-1000 analysis has a mean error of σS 8 = 0 . 029. Scaling this
recision by the square root of the area, we naively predict a joint
urv e y error of around 0.018, and obtain 0.017. The error would be
lightly larger had we included as well a marginalization of the IA
n the DES-Y1 part of this analysis, possibly explaining this slight
ifference. At the joint best-fitting cosmology, the PTE values for
he KiDS and DES pipelines are basically unchanged, while the
oint analysis has a χ2 

red = 1 . 15 and a PTE of 0.96, all satisfying our
oodness-of-fit criteria. 
If we restrict the joint analysis to w 0 = −1 . 0, the S 8 values are
inimally affected while the uncertainty is reduced, as expected

rom lowering the dimensionality of the likelihood. Alternatively,
urning on the IA modelling in the DES likelihood only yields a 0.2 σ
ownward shift, also e xpected whenev er IA modelling is added.
he smallness of this shift is once again showing that the intrinsic
lignment do not significantly impact the peak count statistics as
easured in the DES-Y1 data. In comparison, setting to zero the IA
odel in both KiDS and DES results in S joint, no −IA 

8 = 0 . 725 + 0 . 020 
−0 . 016 .

olding fixed the baryonic feedback parameter to b bary = 0 . 0 has
imilar consequences on this joint analysis, shifting the best-fitting
alue to S joint, no −bary 

8 = 0 . 727 + 0 . 020 
−0 . 016 , a 0.25 σ shift compared to the

ducial case. All these values are summarized in Table 4 and in
ig. 10 (with the brown symbols). 
The dark energy equation-of-state is constrained from this joint

nalysis, with 

 

joint 
0 = −1 . 12 + 0 . 42 

−0 . 31 , (14) 
NRAS 534, 3305–3330 (2024) 
hich is the first measurement of this quantity from peak statistics,
nd arguably one of the best from cosmic shear-only data analyses.
he upper limit is close to the prior edge on w 0 , which might lead to
 slight underestimation of the error on this side. Ho we ver, this mea-
urement is robust against the choice of sampler ( w 0 = −1 . 09 + 0 . 29 

−0 . 29 

or MULTINEST ), against baryon modelling ( w 0 = −1 . 05 + 0 . 51 
−0 . 22 setting

 bary = 0 . 0), IA ( w 0 = −1 . 13 + 0 . 44 
−0 . 33 setting A IA = 0 . 0), and scale cuts

 w 0 = −0 . 958 + 0 . 45 
−0 . 093 when including the aggressive S/ N cut in

he KiDS-1000 data vector). As shown in Martinet et al. ( 2021a ),
perture-mass maps statistics are highly sensitive to dark energy



KiDS + DES cosmology with peak counts 3323 

a
s
o  

f
o  

w  

a  

o  

d
i  

m
 

c  

fi
s  

a
b

6

T
d  

n  

f  

(
r  

τ  

r  

t

τ

W  

d
i  

t  

t
u
b  

j  

i  

t  

a
 

w  

m
T  

S
s
o

 

i
a  

a  

2

w
u
a
o
s

Figure 13. Joint constraint on S 8 , w 0 , and � 

α
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nd these results seem to be showing exactly that. Previously, the 
hear two-point function measurement from Troxel et al. ( 2018 ) 
n DES-Y1 achieved w 0 = −0 . 77 + 0 . 30 

−0 . 37 when varying the baryonic
eedback model, using the MULTINEST sampler. The GCNN analysis 
f Fluri et al. ( 2022 ) was also able to set constraints on dark energy,
ith w 0 = −0 . 93 + 0 . 32 

−0 . 29 , although they recognize that their results are
ffected by the prior boundary on the low side, just like ours is
n the high side. 24 Similarly, HD21 found w 0 > −1 . 5, also prior-
ominated on one side. Other cosmic shear measurements of w 0 

nvolve additional data (Tr ̈oster et al. 2021 ; Abbott et al. 2023 ),
aking this an unfair comparison. 
It is worth mentioning that all peak count analyses based on the

osmo -SLICS yield S 8 constraints that are lower than the 2PCFs
ducial analyses. This could be pointing to limitations in the training 
et, but is quite speculative at this stage given that the � 8 values
lign well. Further investigations and no v el simulation suites would 
e required to ascertain this, which we post-pone for future work. 

.3 Tension with Planck 

he S 8 tension between recent CMB anisotropy and weak lensing 
ata analyses is drawing a lot of attention, as it could point towards
ew physics or hidden systematics (see e.g. Abdalla et al. 2022 ,
or a re vie w). The Planck mission reports S P lanck 

8 = 0 . 830 ± 0 . 013
Planck Collaboration VI 2020 ), which is higher than many lensing 
esults (see Amon et al. 2023 , and references therein). The tension

can be e v aluated with a number of metrics, and we use here a
elatively simple one used in A21 , which compares the difference in
he mean with the combined variances, var [ S 8 ] P lanck , var [ S 8 ] peaks : 

= 

S P lanck 
8 − S 

peaks 
8 √ 

var [ S 8 ] P lanck + var [ S 8 ] peaks 
(15) 

ith the fiducial setup shown in Table 4 , and using the abo v e
efinition, our results from the KiDS-1000 peak count analysis are 
n τ = 2 . 0 σ tension with the Planck nominal constraints on S 8 from
heir wCDM analysis. Tr ̈oster et al. ( 2021 ) finds a similarly low
ension with the same KiDS-1000 data in a wCDM analysis, either 
sing this simple tension metric or a more sophisticated method 
ased on the full shape of the posteriors. Similarly, we e v aluate our
oint KiDS-DES analysis to be in τ = 2 . 7 σ tension with Planck , an
ncrease that is driven by the decrease in error bars. Using instead
he MAP values (listed in Table 4 ) lowers the KiDS tension to 1.7 σ ,
nd the joint-surv e y to 1.65. 

The tension reaches τ = 4 . 1 σ in our joint-surv e y � CDM analysis,
hich could be pointing to a resolution of the S 8 tension that includes
odification to the dark energy equation of state, as suggested by 
r ̈oster et al. ( 2021 ) and by the recent results from the Dark Energy
pectroscopic Instrument (DESI Collaboration 2024 ), ho we ver such 
tatement cannot be definitive until better w measurements are 
btained from cosmic shear data. 
Note that this tension is not only seen in weak lensing, but also

n other late-time probes, e.g. data involving galaxy clustering, 
s recently summarized in Alonso et al. ( 2023 , see their fig. 7)
nd re vie wed with greater details in Abdalla et al. ( 2022 ). The
4 We re vie w the A21 definition that constraints are uninformed by the prior 
hen the posterior drops below 0.135 of its maximum at the edges of a 
niform prior volume. In the case of w 0 we find that the posterior is slightly 
bo v e this threshold (0.156) at the upper edge. As this is at the borderline 
f the A21 criteria, we therefore caution that the error on this side might be 
lightly underestimated. 

g  

w
s  

o

2

f

urrent work aligns with the existing trend, without providing an 
bvious solution. Again, large unaccounted contributions from IA 

nd baryons could push the inferred S 8 value towards Planc k , b ut our
nalysis prefers lower values: in particular, we measure b bary < 1 . 05
t 95 per cent CL in the KiDS-1000 analysis, and < 0 . 82 in the
oint analysis, excluding baryonic feedback models that are stronger 
han the magneticum . Also, the redshift estimation methods used 
o analyse the DES-Y1 data are suboptimal compared to recent 
evelopments (see e.g. Hildebrandt et al. 2021 ), potentially causing 
iases of up to 0.03 in the inferred S 8 value. The observed tension
ith Planck would be different if that bias was real. 
Interestingly, the tension on � 8 is reduced to τ = 0 . 72 σ with

he KiDS-1000 data, and to τ = 1 . 33 σ with the joint data, in
oth cases e v aluated at the α v alue preferred by the cosmic shear
easurements. 25 This is in part caused by a degradation of the CMB

onstraints along this quantity, which completely relaxes the tension, 
nd in part by a different projection angle of the high-dimensional
osterior, as seen in Fig. 13 . At the same time, when holding w fixed,
he tension on � 8 is again increased reaching 2 . 3 σ for KiDS, slightly
ower than the 3 σ reported in A21 , and 3 . 1 σ for our joint analysis.
o summarize, the tension with Planck on S 8 is lowered in wCDM
ompared to � CDM, and is further lowered when considering the
ore robust � 8 parameter instead of S 8 . This is discussed in more

etails in Appendix B . 
A more in-depth analysis of this tension requires a robust determi-

ation of the inferred �m 

parameter. We defer this impro v ement to
uture work, which will benefit from a denser training set, yielding a
ore accurate and robust emulator. 

 C O N C L U S I O N S  

e report in this paper a 4.4 per cent measurement of S 8 from the
omographic peak count statistics measured from the KiDS-1000 
ata. Our simulation-based inference method exploits the non-linear 
eatures extracted from aperture mass statistics, sensitive to scales 
s small as 2.0 arcmin. We model the cosmological dependence 
ith simulated wCDM weak lensing light cones, we estimate the 

ovariance matrix numerically, and forward model the effect of in- 
rinsic alignments, baryonic feedback, photometric redshift error, and 
alaxy shape miscalibrations. We find a value of S KiDS 

8 = 0 . 733 + 0 . 032 
−0 . 032 ,

hich aligns well with previous KiDS-1000 measurements. We 
how that our results are robust to residual systematics and that,
f these, intrinsic alignment of galaxies plays the most important 
MNRAS 534, 3305–3330 (2024) 

5 The Planck wCDM measurements of � 8 are of 0 . 793 + 0 . 019 
−0 . 031 and 0 . 797 + 0 . 018 

−0 . 028 
or the KiDS-1000 and joint-surv e y α parameters, respectively. 
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ole, shifting the best-fitting S 8 value by 0.22 σ if left unmodelled.
e also show that the most robustly measured parameter in our

nalysis is � 

KiDS 
8 ≡ σ8 ( �m 

/ 0 . 3 ) α = 0 . 765 + 0 . 030 
−0 . 030 , with α = 0 . 60, in

xcellent agreement with previous KiDS-1000 analysis. 
The inferred posterior distribution is consistent with the peak count
easurement carried out on the DES-Y1 data using a similar analysis

ipeline ( HD21 ), allowing us to jointly analyse the two data sets,
hich yields S joint 

8 = 0 . 732 + 0 . 020 
−0 . 020 , one of the tightest constraints on

his parameter from lensing data alone. The combined data sets have
nough statistical precision to allow the first measurement of the dark
nergy equation-of-state parameter from non-Gaussian statistics:
 

joint 
0 = −1 . 12 + 0 . 42 

−0 . 31 , in agreement with the � CDM scenario, and
obust to variations in the analysis choices. 

Our best-fitting S joint 
8 is also in statistical agreement with all

revious KiDS-1000 analyses and with the HSC-Y3 and DES-Y3
-2PCF results, but lower than the DES-Y3 measurements from
eaks and moments, and in 2 . 7 σ tension with Planck . This joint-
urv e y tension increases to 4 σ in our � CDM analysis, but lowers
o 2.3 and 3.1 σ when considering instead the � 8 parameter, for the
iDS-only and joint surv e y analyses, respectively. 
Our pipeline has been thoroughly tested, ho we ver we recognize it

s incomplete. As detailed in Section 4 , we hold fixed a number of
osmological parameters, which likely affect our results, including
b , n s , and m ν . We also consider a single baryonic feedback
odel (although we allow its amplitude to vary), knowing that

ther hydrodynamical simulations would provide slightly different
esponses. Furthermore, we model IA with the redshift-independent
LA model, which we know is an incomplete ef fecti ve model, and
e neglect source clustering, as it was shown to be completely

ubdominant. Finally, we have identified a systematic effect in our
aussian process emulator that is caused by the relatively small
umber of training nodes, preventing us from extracting meaningful
nformation about �m 

, ho we ver all other parameters are unaffected
y this. This limits our ability to further study in higher dimensional
pace the potential S 8 tension with the CMB. Addressing these will
herefore be the object of future work. It will also be informative to
ompare our results to other non-Gaussian probes of cosmic shear,
nd possibly combine the methods to further reduce the uncertainty
n S 8 and w 0 . 
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PPENDIX  A :  B- MODES  

o leading order, B-modes are not produced by gravitational lensing,
ence their detection in cosmic shear data is generally regarded as an
ndication of residual systematics. As mentioned in Section 4.6.6 , the
perture mass map statistics constructed on a grid inevitably induces
-modes from the missing subpixel contributions, resulting in a non-

ero M × signal. This section presents a careful investigation of the
mplitude, origins, and consequences of these induced B-modes.
n particular, and we find that finite sampling of the shear field
tself is also a source of B-modes in aperture mass maps, on top of
ixelization. 
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We first quantify here the strength of these effects by measuring
he peak function from M ×( θ ) in our data, i.e. aperture mass maps
n which the galaxies are rotated by 45 deg. The (noise-subtracted)
ignal N 

B 
peaks is shown in Fig. A1 for a representative subset of the

omographic bins. We observe that the residual signal is much flatter
han what we would expect from a cosmological signal consistent
ith pure noise with a p-value of p = 0 . 12, abo v e the threshold of
 = 0 . 01 (the same threshold is used in the main text, and in the DES-
3 results for this type of hypothesis testing, see Appendices G and D
f Abbott et al. 2022 ; Z ̈urcher et al. 2022 , respectively). This agrees
ith A21 , namely that there is no evidence of residual B-modes in

he KiDS-1000 data. It is therefore safe to keep all data entries in our
nference, but investigate further the source of the M ×( θ ) signal seen
y eye in Fig. A1 to confirm it is not problematic. 
We carried out peak count measurements of M ×( θ ) on 20 full

urv e y realizations from the covariance training set (again, these
re pure E-mode mocks rotated by 45 degrees for this e x ercise),
xpecting to find large p-values in all of these trials. Instead, this test
evealed that p-values range from 10 −10 to 0.1. Some of these trials
eem to rule out completely the null hypothesis (that the B-modes
re consistent with pure noise), even though no B-mode exists at the
atalogue level. The observed M × signal must therefore come from
he aperture map method itself, and is consequently a poor test for
esidual observational systematics. 

Interestingly, the measured N 

B 
peaks averaged over 20 noise realiza-

ions has a p-value of 1.0, namely 〈 N 

B 
peaks 〉 = N 

noise 
peaks , suggesting that

hese B-modes contain mostly noise, even though on a case-by-case
ome realizations see strong deviations. We hypothesize that this
tems from E-modes leaking into B-modes due to an incomplete
nowledge of the shear field: assuming a noiseless, pure E-mode
hear field, the average cross-shear γ× on a circle around every
oint in the field vanishes by definition, and thus M ×( θ) ≡ 0 holds
 verywhere. Ho we ver, that is no longer guaranteed once the shear
eld is only known at a discrete set of positions, as the average
× on a circle no longer necessarily vanishes. We investigate this by
arying the number of source galaxies in our simulations. We achieve
his by running our measurements on Stage-IV mocks created with
 number density of 30.0 arcmin, introduced in Heydenreich et al.
 2021 ), without any tomographic split. We measure on these the
 × signal from maps sampled (a) at ev ery pix el location, (b) at all

alaxy positions, and (c) at galaxy positions downsampled to match
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Figure B1. Tomographic weak lensing peak function in the baryons training 
set . The coloured lines are obtained by scaling the GPR predictions (at the 
magneticum cosmology) by the b bary parameter, o v er the full prior range, 
demonstrating that peak statistics are fairly insensitive to changes in baryon 
feedback. 
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Figure B2. Cosmological constraints inferred from mock data vectors 
extracted from two of our cosmology training set models. 
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he KiDS-1000 number density. In the first case, we find that the B-
ode field M ×( θ ) vanishes completely (up to numerical precision). 
he second case induces B-modes of approximately 0.5 per cent of

he E-mode signal, whereas the third case (KiDS-1000-like number 
ensity) yields B-modes of approximately 4 per cent of the E-mode 
ignal. We note that this is likely to be exacerbated by splitting the
alaxies into different tomographic bins, which further decreases the 
umber density per aperture. We further note that these tests were 
erformed in the absence of shape noise to better isolate this effect. 
More importantly, since these non-zero N 

B 
peaks are caused by finite 

ampling of the shear field, and that this sampling is exactly the
ame for the data and the cosmology training set , the same amount
f leakage should occur on average. In particular, this should be 
ully converged in simulation-based model once averaged over the 50 
ock surv e y × 10 noise realizations per cosmology (20 was shown

o be enough in the discussion abo v e). Therefore our inference must
e immune to these by construction. 

PPEN D IX  B:  VA LIDATION  O F  T H E  

O S M O L O G Y  INFERENCE  PIPELINE  

n this section we present a series of validation tests we per-
ormed on our cosmology inference pipeline. First, we verified that 
he deri v ati ves ∂ N peaks / ∂ �m a , ∂ N peaks / ∂ �z a , ∂ N peaks / ∂ b bary , and
 N peaks / ∂ A IA are consistent with the results found in HD21 and
arnois-D ́eraps et al. ( 2022 ). The element-by-element values are 
ifferent since these are surv e y-specific, but the y agree qualitativ ely.
e next verified that the impact of increased N -body force is of no

onsequence, consistent with HD21 . This is achieved by carrying 
he inference with the validation set (high-resolution) instead of the 
ean of the covariance training set , as done in HD21 . 
We also verified that the peak function measured from the baryons 

raining set is consistent with the cosmology training set in Fig. B1 .
his is an important test, as the baryon mocks based on a completely

ndependent N -body code. This figures also shows the impact of 
arying b bary on the data vector. Stronger feedback models (purple) 
end to have fewer large peaks ( S/ N > 2), and more in the range
1 < S/ N < 1 . 5. This is best seen in panel 3 ∪ 5 but a common
eature to most panels. A few points lie outside the GPR predictions,
hich suggest that differences between N -body solvers/ray-tracing 

odes have a non-negligible impact on the data vector. We investigate
his below, but first we examine in Fig. B2 the accuracy of our
iDS-1000 cosmology inference pipeline by showing the reco v ery 
f input parameters for two different cosmologies selected from the 
osmology training set : the fiducial � CDM model as well as wCDM
odel 12. We find again an excellent agreement, except that the

ouble peak solution in �m 

when analysing the former model. This 
as first seen with the validation training set in Fig. 6 , but is absent

rom model 12; it therefore seems to be a cosmology-dependent 
eature, most likely associated with limits in our GPR emulation. 

No parts of the data vector can easily explain the double peak
olution in �m 

. We hav e e xamined the posterior distributions result-
ng from our likelihood sampling and identified three tomographic 
ins (bins 1, 1 ∪ 2, and 1 ∪ 2 ∪ 3) where the data points were scattering
utside the posteriors. Removing these from the analysis made minor 
ifferences, slightly broadening the contours; we therefore do not 
eem justified to remo v e them from the main analysis. 

When inferring the cosmology from the magneticum directly or 
he T17 simulations, the results on all cosmological parameters are 
everely biased, as seen by the red contours in Fig. B3 . As discussed
arlier, this is likely caused by differences in the resolution of the
-body calculations and/or the ray-tracing algorithm being used 

n the creation of these mocks. In particular, the magneticum and
17 mocks both have lower mass resolution than the main cosmo -
LICS training set, which inevitably affects the accuracy of their 
easured peak statistics at scales as non-linear as those targeted 

y this analysis. One way to a v oid these biases is to calibrate our
mulator and explicitly enforce the desired data vector ( magneticum 

r T17 ) at some point in parameter space. This can be achieved, for
nstance, by multiplying our theory by a calibration factor computed 
rom the target data vector and the GPR prediction at the target
osmology. This is shown as the blue contours in Fig. B3 , where
he input cosmology is now correctly reco v ered, but the double

m 

solution persists, even if varying only that single parameter in 
he MCMC. We note that the magneticum and T17 mocks require
MNRAS 534, 3305–3330 (2024) 
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M

Figure B3. Cosmological constraints inferred from mock data vectors 
extracted from the magneticum dark matter-only model, with (blue) and 
without (red) recalibrating the emulator (see the main text). Similar results 
are obtained with the T17 simulations. 
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Figure B4. Joint-surv e y mock analysis of the validation tr aining set . 
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istinct calibrations, and that swapping them yields results almost as
iased as the original case, due to their differences in small scales
esolution. Because of this non-universality we do not calibrate the
rediction in our main analysis, but optionally include the spread
n these correction factors in the covariance matrix, accounting for
dded uncertainty about small scales physics. 

The important conclusions drawn from these tests are that (1)
mall-scales structures that are not fully resolved or converged in
-body simulations greatly affect the non-Gaussian statistics we are

nvestigating here, hence future analyses with increased precision
ill need to pay particular attention to such considerations, and (2)

he sparsity of our cosmological training nodes impacts the GPR
mulator mostly on the �m 

dimension, while all other cosmological
arameters are well reco v ered. This means that the current analysis
s robust in its measurements of S 8 , w 0 , A IA , and b bary , ho we ver our
onstraints on the matter density are unstable and hence we do not
eport on them. Since we use the same training nodes for the KiDS
nd DES analyses, this applies also to the joint-surv e y constraints. 

We finally tested the joint-surv e y pipeline with the validation set
efined for both KiDS-1000 and DES-Y1 analyses, and report our
esults in Fig. B4 . We observe that it recovers very well the input truth:
he best-fitting value is S 8 = 0 . 818 + 0 . 030 

−0 . 025 , the maximum-likelihood
alue is 0.831, while the truth is 0.813. These results are obtained
rom wCDM pipeline assuming the ‘clean’ selection of S/ N bin,
arginalizing o v er all nuisance parameters. All input parameters are

ccurately reco v ered, and we see here again the double �m 

solution,
emonstrating that this parameter is subject to artificial degeneracies
aused by our emulator, supporting our choice to not trust nor report
ts value in the main analysis. We also verified that the chain elements
hat fall in the secondary solution also tend to have a lower S 8 by about
.03, which is larger than our statistical precision, ho we ver these
re highly suppressed compared to the KiDS-1000 only pipeline,
ustifying our choice not to include this as a standalone systematic
rror. Again, the secondary solution yields unbiased � 8 inference,
aking the latter a more robust statistics. 
We illustrate this last point in Fig. B5 where we present the
NRAS 534, 3305–3330 (2024) 
rojected posteriors on σ8 , S 8 , and � 8 versus �m 

for our analyses of
he KiDS-1000 data and of the validation training set . The KiDS-
000 inference prefers large �m 

values, consistent with being drawn
rom the secondary solution discussed earlier. If that is the case,
he inferred value of S 8 might be biased low, but � 8 is robust. To
llustrate this, we split the fiducial MCMC chain of the simulation
nalysis into low- and high- �m 

re gions, and reco v er that both yield
he similar � 8 posteriors, while their S 8 values differ by up to 0.03.

e also show in this figure how the tension with Planck evolves
nder these change of variables. 

PPENDI X  C :  GOODNESS-OF-FI T  F O R  

TUDENT-  t L I K E L I H O O D S  

oisy numerical covariance matrices need to be treated carefully
n likelihood analyses to a v oid biases incurred during the inversion.
 commonly used approach is to debias the inverse matrix with

he Hartlap-Anderson coefficient (Hartlap et al. 2007 ), however this
ften leads to o v erestimates in the contours. Instead, Sellentin &
eavens ( 2016 ) suggested to replace the Hartlap-corrected multi-
ariate Gaussian likelihood by a Student- t distribution, which better
ccounts for the noise present when estimating the matrix from N sims 

ealizations of the data. 
Once the likelihood has been sampled and the best-fitting pa-

ameters found, one of the key subsequent steps is to estimate the
oodness-of-fit. This is usually achieved by means of the p-value,
hich determines how likely it is that the difference between the
est-fitting model and the measured data is due to a random noise
uctuation. Given the number of degrees of freedom ν, best-fitting χ2 

easurements from data that is well described by a multi-Gaussian
ikelihood will be sampled from a χ2 

ν distribution. Using this metric
ith noisy numerical covariance matrices will yield p-values that

re biased to wards lo w v alues if the inverse matrix is not Hartlap-
orrected. Conversely, if corrected, the p-values are at risk to be on
he high-side (Sellentin & Heavens 2016 ). 

This is demonstrated by a toy model, which is created to follow
ur analysis: we generate a matrix A with 210 2 Gaussian random
umbers (the same dimension as our KiDS-1000 analysis) and define
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Figure B5. ( left panel: ) KiDS-1000 analysis: posterior distributions on the matter density and on the three clustering parameters ( σ8 , S 8 , � 8 ). The inferred 
value of �m 

from the data is higher than in previous KiDS-1000 analyses, consistent from being drawn from the biased secondary solution discussed in the 
main text, caused by our emulator. Overplotted in purple are the P lanck results, which are in mild tension with KiDS for the first two clustering parameters, but 
in full agreement with � 8 . ( middle: ) Mock analysis, here carried out on the validation training set (orange, dashed). Our sample is further split into low- and 
high- �m 

parts (dark and pale blue, respectively), highlighting the residual [ S 8 − �m 

] de generac y, which vanishes for � 8 . ( right: ) Same as middle panel, but 
here showing � CDM analyses. 

a  

v

w  

w  

c
t  

n
c  

a
i  

 

a
0  

b
T

s  

p
w  

f
p  

b
 

t
e

T

26 The quadratic statistics described by equation ( 6 ) should not be labelled 
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 ‘true’ covariance matrix � = A 

T A . We also define the ‘true’ data
ector as the zero-vector. 

Afterwards, the following procedure is repeated 10 000 times: 
e generate 1240 realizations of a multi v ariate normal distribution
ith mean 0 and covariance �, from which we estimate our sample

ovariance matrix C , mimicking the covariance training set . We 
hen also draw one additional realization X of the same multi v ariate
ormal distribution, which constitutes our measurement. Finally, we 
alculate the p-value given X and C and a chosen p-value test,
ssuming that the degrees of freedom equal the number of elements 
n the data vector (since our toy model contains no free parameters).

This procedure yields 10 000 p-values which, if the chosen test is
ppropriate for our analysis, form a uniform distribution between 
 and 1. As can be seen in the lower panel of Fig. C1 , the χ2 -
ased p-value tests are heavily biased towards 0, as is expected. 
he Hartlap-corrected p-values are more uniformly distrib uted, b ut 
m

till show slight biases towards 0 and 1, and consequently a reduced
robability towards central values. Although this effect is relatively 
eak for our setup, it becomes more prominent if the degrees of

reedom increase. Nevertheless, this means that a Hartlap-corrected 
-value test is more likely to fa v our extreme values, b ut it appears to
e relatively robust. 
An unbiased solution to this problem can be achieved by deriving

he sampling distribution of our quadratic statistics 26 defined in 
quation ( 6 ), specifically: 

 

2 
best−fit = ( d − x ( πbest−fit ) ) 

T C 

−1 ( d − x ( πbest−fit ) ) , (C1) 
MNRAS 534, 3305–3330 (2024) 

ain text only to align with the notation in the weak lensing literature. 
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igure C1. Distribution of p-values extracted from our toy examples based
n three commonly used goodness-of-fit statistics, for ν = 210 (lower)
nd ν = 400 (upper). Given a noisy numerical covariance matrix, only the
otelling’s T 2 distribution returns p-v alues e venly sampling the range [0,
]; the χ2 distribution (orange) is heavily skewed towards low p-values,
hile the Hartlap-corrected χ2 (green) is slightly skewed towards extrema
-values. 

here the data d has dimension p and is drawn from a normal distri-
ution d ∼ N ( μ, �), for unknown mean μ and unknown covariance
, and the C covariance is drawn from a Wishart distribution with
 sims − 1 degrees of freedom ( N sims − 1) C ∼ W p ( �, N sims − 1). 
We now define LL 

T = � 

−1 and w = L ( d − x ( πbest−fit ) ) , such
hat Cov [ w , w ] = 1 p , the p × p identity matrix. With this, we can
xpress equation ( C1 ) as 

 

2 
best−fit = ( N sims − 1) w 

T V 

−1 w , (C2) 

here we have defined V = ( N sims − 1) LCL 

T and note that V ∼
 p (1 p , N sims − 1). We can now introduce an orthogonal matrix
 

T M = 1 p with the first row being w 
‖ w ‖ and the others orthogonal

o it, such that 

 w = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

‖ w ‖ 
0 
. . . 
0 

⎞ 

⎟ ⎟ ⎟ ⎠ 

. (C3) 
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( https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reus
onditional on M , we have that Q = MV M ∼ W p (1 p , N sims − 1).
ince this does not depend on M , Q ∼ W p (1 p , N sims − 1) also holds

n the unconditional case. With this transformation, equation ( C2 )
an be written as 

 

2 
best−fit = ( N sims − 1) ‖ w ‖ 2 (Q 

−1 
)2 

11 
, (C4) 

ith 
(
Q 

−1 
)2 

11 
being the 1–1 entry of Q 

−1 . Writing out ‖ w ‖ 2 as 

w 

T w = ( d − x ( πbest−fit ) ) 
T L 

T L ( d − x ( πbest−fit ) ) 

= ( d − x ( πbest−fit ) ) 
T � 

−1 ( d − x ( πbest−fit ) ) , 
(C5) 

e recognize this as the usual χ2 quantity where the true covariance
 is assumed to be known. In other words, ‖ w ‖ 2 ∼ χ2 

ν , with ν =
 − n eff , where n eff is the ef fecti ve number of free parameters that are
eing varied when finding πbest−fit , which accounts for the fact that the
odel may contain both constrained and unconstrained parameters. 
Returning to the last term in equation ( C4 ), we have 

(
Q 

−1 
)−1 

11 
= 

1 (
Q 

−1 
)

11 

= Q 11 − Q 12 Q 

−1 
22 Q 21 , (C6) 

here Q 12 and Q 22 are the 1 × ( p − 1) and ( p − 1) × ( p − 1)
ubmatrices of Q . From this it follows (e.g. Gupta & Nagar 1999 ) that

1 
( Q 

−1 ) 11 
∼ W 1 ( I 1 , N sims − p) = χ2 

N sims −p . Putting things together, we

herefore have that 

 

2 
best−fit ∼ ( N sims − 1) 

χ2 
p−n eff 

χ2 
N sims −p 

= 

( N sims −1)( p − n eff ) 

( N sims −p) 
F p−n eff ,N sims −p ,

(C7)

here F p−n eff ,N sims −p is the F -distribution. For the case of no free
arameters, n eff = 0, this reduces to Hotelling’s T 2 distribution
Hotelling 1931 ). 

To calculate a p-value, one just has to e v aluate the cumulati ve
istribution function of the F -statistics at N sims −p 

( p−n eff )( N sims −1) T 
2 , replacing

he χ2 ( p − n eff ) distribution. Clearly seen in Fig. C1 , this constitutes
n ideal solution for our toy model, so we use this statistics to estimate
he p-values of our measurements. 

When applied to our fiducial KiDS-1000 peak count data vector,
long with the best-fitting model and our numerical covariance
atrix, we obtain p-values of 0.43 with the (unbiased) Hotelling’s

tatistics and for the (slightly biased) Hartlap-corrected χ2 approach,
nd 0.02 for the (heavily biased) normal χ2 statistics. 

In this toy example, the difference between the Hotelling’s and the
artlap-corrected p-values distributions is quite small, ho we ver this

s not al w ays the case. The upper panel of Fig. C1 shows a second
ase where now the number of degrees of freedom has been increased
o ν = 400, o v ershooting our joint-surv e y setup, but close to typical
izes of data vectors used in 2pt statistics. Keeping N sims unchanged,
n this case the Hartlap-corrected distribution shows a clear excess
o wards lo w and high p-values. The Hotelling’s distribution is still
at ho we ver, sho wcasing the adv antage of the F -statistics. 

his paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 
© 2024 The Author(s). 
Open Access article distributed under the terms of the Creative Commons Attribution License 
e, distribution, and reproduction in any medium, provided the original work is properly cited. 

https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 DATA AND SIMULATIONS
	3 METHODS
	4 SYSTEMATIC UNCERTAINTIES
	5 RESULTS: KIDS-1000
	6 JOINT ANALYSIS WITH DES-Y1
	7 CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: -modes
	APPENDIX B: VALIDATION OF THE COSMOLOGY INFERENCE PIPELINE
	APPENDIX C: Goodness-of-fit for Student- likelihoods

