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ABSTRACT

We analyse the fourth data release of the Kilo Degree Survey (KiDS-1000) and extract cosmological parameter constraints based
on the cosmic shear peak count statistics. Peaks are identified in aperture mass maps in which the filter is maximally sensitive to
angular scales in the range 2—4 arcmin, probing deep into the non-linear regime of structure formation. We interpret our results
with a simulation-based inference pipeline, sampling over a broad wCDM prior volume and marginalizing over uncertainties on
shape calibration, photometric redshift distribution, intrinsic alignment, and baryonic feedback. Our measurements constrain the
structure growth parameter and the amplitude of the non-linear intrinsic alignment model to g = o [Q,,/0.3]1%% = 0.7651’8:838
and A = 0.71f8:§g, respectively, in agreement with previous KiDS-1000 results based on two-point shear statistics. These
results are robust against modelling of the non-linear physics, different scale cuts, and selections of tomographic bins. The
posterior is also consistent with that from the Dark Energy Survey Year-1 peak count analysis presented in Harnois-Déraps et
al., and hence we jointly analyse both surveys with a common pipeline. We obtain £} = og [Q2,/0.3]% = 0.7597:929, in
agreement with the PlanckwCDM results. The shear-CMB tension on this parameter increases to 3.1o0° when forcing w = —1.0,
and to 4.1o0 if comparing instead with Sé‘?ll'\“CDM = 0.7367001%, one of the tightest constraints to date on this quantity. Residual
biases in the photometric redshifts of the DES-Y1 data and in the modelling of small scales physics could lower this tension,

however it is robust against other systematics. Limits in the accuracy of our emulator prevent us from constraining €2,,.

Key words: gravitational lensing: weak —methods: data analysis —methods: numerical —cosmological parameters —dark en-
ergy —dark matter.

1 INTRODUCTION Dark Energyh Survey? (.I?ES), and the Hyper Suprime-Cam Survey?
(HSC) reaching a precision of a few per cent on parameters central
Cosmic shear cosmology has entered an era of high precision, with to the standard model of cosmology (e.g. Asgari et al. 2021; Amon

recent measurements from the Kilo Degree Survey' (KiDS), the et al. 2022; van den Busch et al. 2022; Secco et al. 2022a; Dalal

* E-mail: joachim.harnois-deraps @newcastle.ac.uk 2DES: www.darkenergysurvey.org.
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et al. 2023; Li et al. 2023a, b). Based on the detection of weak
correlations between the observed shapes of galaxies imparted by
the foreground large-scale structure, cosmic shear is mostly sensitive
to the structure growth parameter Sg = 0g+/$2/0.3, a combination
of the matter density parameter €2, and of the amplitude of the linear
matter power spectrum smoothed on spheres of 842 ~'Mpc, labelled
as og (for lensing reviews, see e.g. Kilbinger 2015; Mandelbaum
2018). These Stage-I1I lensing surveys have been steadily improving
the data quality and the analysis methods, in preparation for the
next generation of cosmic shear experiments such as the Rubin
observatory* (Ivezi¢ et al. 2019), Euclid® (Laureijs et al. 2011), and
the Nancy Grace Roman space telescope® (Akeson et al. 2019).

Despite the large effort that is being invested by international col-
laborations in constructing accurate lensing catalogues of hundreds
of millions of galaxies, it is not entirely clear how to best analyse
these vast data, striking an optimal compromise between accuracy
and precision. To date the shear two-point (2pt) functions are still
regarded as the baseline summary statistics, having been tested for
over a decade and achieving an unmatched level of understanding
and control in all aspects of the analysis, including measurements
tools (e.g. TREECORR and NAMASTER, see Jarvis, Bernstein & Jain
2004; Alonso et al. 2019), theoretical predictions (e.g. Kilbinger et al.
2017), and the impact of systematics (see e.g. Mandelbaum 2018).
The main drawback from these statistics is that they completely
disregard the non-Gaussian information that is stored in the non-
linear matter field, more precisely in the coupling between the phases
of distinct Fourier modes, without which the cosmic web would look
like a Gaussian random field. This is obviously sub-optimal, and this
waste of information will be aggravated in the upcoming cosmic shear
experiments. Accessing this non-Gaussian information is an active
field of research: an array of novel weak lensing statistics are being
developed specifically to utilize this complementary small-scale
information. These new methods are reaching a level of maturity
that makes them competitive at analysing existing cosmic shear data,
carefully balancing the precision versus accuracy metric. Recent
progress is largely due to the radically improved modelling of the
signal, thanks to the increased accuracy of cosmological N-body
codes and the availability of supercomputers (see Angulo & Hahn
2022, for a recent review on N-body codes). Recent examples of
these ‘beyond-2pt’ cosmic shear data analyses include the three-point
function (Fu et al. 2014; Secco et al. 2022b; Burger et al. 2024), peak
count statistics (Kacprzak et al. 2016; Martinet et al. 2018; Shan
et al. 2018; Harnois-Déraps et al. 2021; Ziircher et al. 2022; Liu et al.
2023; Marques et al. 2024; Gatti et al. 2024a), density split statistics
(Brouwer et al. 2018; Gruen et al. 2018; Burger et al. 2022), shear
clipping (Giblin et al. 2018), persistent homology (Heydenreich et al.
2022), moments of convergence maps (van Waerbeke et al. 2013;
Gatti et al. 2020), cumulative distribution functions (Anbajagane
et al. 2023), likelihood-free inference (Jeffrey, Alsing & Lanusse
2021; Lin et al. 2023; Gatti et al. 2024b), or convolutional neural
network inference (Fluri et al. 2019, 2022).

At the moment, these alternative methods exhibit a constrain-
ing power that is similar to that of two-point functions, which
is not surprising given the noise levels of current lensing data,
which make difficult the extraction of information stored in the
noisy higher order moments. The situation will change dras-
tically with the upcoming surveys, where the cosmic web it-

4LSST: www.Isst.org.
5 Euclid: www.euclid-ec.org.
©Roman Space Telescope: roman.gsfc.nasa.gov
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self will be detectable with lensing, at which point the non-
Gaussian information will take on a larger proportion of the
signal.

All forecasts are clear about this: joint cosmic shear analyses
that combine two-point functions and any complementary probe
improve the constraints on cosmological parameters even in presence
of systematic uncertainties (e.g. Li et al. 2019; Schneider et al.
2019; Ziircher et al. 2020; Pyne & Joachimi 2021; Harnois-Déraps,
Martinet & Reischke 2022; Euclid Collaboration: Ajani et al. 2023;
Giblin, Cai & Harnois-Déraps 2023). The main difficulty in many of
these methods comes from their accrued dependence on numerical
simulations, which adds a significant computational overhead to the
data analysis compared to those for which an analytical model exists.
Typically, simulations are needed for modelling the cosmological
signal, for modelling some of the systematics such as baryonic
feedback or intrinsic alignments of galaxies, and for the estimation
of the covariance matrix (although this is not always necessary,
as demonstrated by the recent likelihood-free inference analyses
mentioned above).

This paper contributes an important step to this effort: we carry out
a cosmological analysis based on lensing peak statistics measured
from the fourth data release of the Kilo Degree Survey (KiDS-1000
hereafter). We use the exact same data as those used in the two-
point function analyses of Asgari et al. (2021, A21 hereafter), while
ignoring for now other non-lensing KiDS galaxy catalogues designed
for galaxy clustering analyses (Bilicki et al. 2021; Vakili et al. 2023).
Our method finds peaks in aperture mass maps with an aperture filter
designed for the extraction of small-scale structure, with maximal
sensitivity to scales of less than 4 arcmin, as in Martinet et al.
(2018, hereafter M18) and Harnois-Déraps et al. (2021, HD21). This
contrasts with the recent peak count analysis of Ziircher et al. (2022),
in which peaks are extracted from convergence maps with pixel
resolution of about 7 arcmin. Both methods have their advantages
and downsides, ours strongly focuses on small, non-linear scales,
which, as demonstrated in HD21 and Martinet et al. (2021a), have
a higher potential for complementarity with two-point functions.
Finding a posterior that is statistically consistent with that from
HD21, we combine both likelihoods and carry out a joint KiDS-
1000 + DES DRI data (DES-Y1 hereafter) peak count analysis,
finding the tightest constraints on Sg to date from peaks alone.

After describing the data and simulations in Section 2.1, we
detail our measurement techniques and analysis pipeline in Section
3, and we present our mitigation strategy for the key systematic
uncertainties in Section 4. We finally show our results in Section
5 and discuss our findings afterwards. Supplementary material is
provided in the Appendices, including a thorough discussion of B-
modes (in Appendix A), supplementary pipeline validation tests (in
Appendix B), and a detailed discussion on goodness-of-fit for noisy
covariance matrices (in Appendix C).

2 DATA AND SIMULATIONS

We present in this section the survey data and the various simulation
suites that are used for the cosmological analysis.

2.1 KiDS-1000 data

The Kilo Degree Survey (Kuijken et al. 2015) is a multiband
photometric galaxy survey explicitly designed for weak lensing
cosmology. Carried out at the European Southern Observatory by the
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VST-OmegaCAM, we analyse here the public’ fourth data release
(Kuijken et al. 2019). The observation conditions are of exceptional
quality, with a mean seeing of 0.7 arcsec in the r-band, used for
shape measurements. The photometric redshifts are obtained from
a combination of nine optical and infrared bands (ugriZY JHKj,
see Wright et al. 2020), thanks to the observations of the companion
VIKING survey (VISTA Kilo-degree INfrared Galaxy; Edge et al.
2013). The galaxies selected in this analysis exactly match those used
in the cosmic shear two-point function analyses of A21 and van den
Busch et al. (2022), covering an effective area of 777.4 deg?.

The KiDS DR4 data are reduced with the THELI (Erben et al.
2013) and Astro-WISE (Begeman et al. 2013) pipelines, following
which the shear is inferred from lensfir (Miller et al. 2013; Fenech
Conti et al. 2017). Shear additive and multiplicative biases (c- and
m-corrections) are measured to a high accuracy (Giblin et al. 2021),
where it is shown via a series of null tests that known residual
systematics in the shear measurement could lead to no more than a
0.1o shift in the structure growth parameter Sg = 0g+/$2,/0.3, the
composite quantity that is best measured by cosmic shear. Note that
strictly speaking, the results from the tests carried out in Giblin et al.
(2021) are only shown to hold for two-point cosmic shear statistics.

Following A21, we split the full DR4 galaxies in five tomographic
bins according to their individual best-fitting redshift zg as measured
by BPZ (Benitez 2000), with bin edges set to [0.1, 0.3, 0.5, 0.7, 0.9,
and 1.2]. The tomographic redshift distributions, n“(z), are estimated
via self-organizing maps (SOM, see Wright et al. 2020), which group
galaxies based on their nine-band photometric properties and assign
redshifts based on similar studies made on spectroscopic samples;
galaxies for which no match is found are rejected. We further reject
galaxies for which the SOM redshift catastrophically differs from
the initial zg, resulting in the so-called ‘Gold Sample’ introduced
in Hildebrandt et al. (2021) and used in the subsequent KiDS-1000
cosmic shear analyses mentioned above. As detailed in A21, the
means and the error of the SOM redshift distributions are calibrated
on KiDS-like mock data constructed from the MICE2 simulations
(Fosalba et al. 2015; van den Busch et al. 2020) and accounted for
during the inference stage of our analysis. The redshift accuracy is
excellent due to the nine-band photometry, which helps breaking
degeneracies in the galaxy spectral energy distributions: at worst,
the difference between the mean redshift and that estimated from
the matched spectroscopic sample iS Zest — Zgrye = 0.013 £ 0.0118,
making this a subdominant source of uncertainty in our measurement.
Note that Hildebrandt et al. (2021) further show that the SOM redshift
distributions are fully consistent with independent estimates based on
clustering cross-correlations with spectroscopic reference samples,
providing extra robustness to the method. Fig. 1 shows the redshift
distributions estimated in the five tomographic bins, along with the
variations on these distributions allowed within our photometric
uncertainty.

The SOM selection and the shear inference pipelines are both
repeated on KiDS-like image simulations (Kannawadi et al. 2019),
from which a relation between apparent size, magnitude, and the
observed galaxy shape is used to calibrate the inferred lensfit shear.’
Whereas previous cosmological analyses use a single m-calibration
factor per tomographic bin, the aperture mass map statistics exploited

7KiDS-1000 data: http:/kids.strw.leidenuniv.nl/DR4.

8 A KiDS-1000 re-analysis has been presented in Li et al. (2023b) after
correcting for an anisotropic error in the lensfit likelihood sampler. This
error has not been corrected here, but their study shows the correction has a
negligible impact on the inferred cosmology.
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Figure 1. Tomographic redshift distribution of the KiDS-1000 data. The
thinner lines represent the effect of photometric uncertainty on these distri-
butions, characterized by n“(z) — n“(z + Az,), with Az, sampled 10 times
from Gaussian distributions with widths listed in Table 1. All shifted n“(z)
are then rebinned with the same z bins.

Table 1. Main properties of the KiDS-1000 data used in this work. The
gold sample redshift selection based on zg is identical to that presented in
Hildebrandt et al. (2021). The effective number densities are listed in the
second column, in gal arcmin~2. The shape noise (per component) listed in
the third column reflects the dispersion measured in the observed galaxy
shapes, as documented in Giblin et al. (2021), while the fifth column shows
the mean shape calibration coefficients. The redshift bias and errors listed in
the fourth column are estimated from the SOM method in Hildebrandt et al.
(2021), while the last column shows the additive c¢y/2 terms, which has an
uncertainty of 0.23 x 1073 (Giblin et al. 2021).

(C] s 6‘2) X ]03

oMo nNeff  Oc Zest — Ztrue m
binl 0.62 0.27 0.000£0.0106 —0.009+0.019 (0.295, 0.156)
bin2 1.18 0.26 0.002+0.0113 —0.01140.020 (0.004, 0.621)

bin3 1.85 0.27 0.013+£0.0118
bin4 1.26 0.25 0.011 +£0.0087
bin5 131 0.27 —-0.006 =+ 0.0097

—0.015+0.017  (0.052, 0.728)
0.002 £0.012  (—0.360, 0.948)
0.007 £0.010 (—1.363, 1.155)

in this paper are subject to local variations in the noise levels and
seeing conditions, and we therefore use the above-mentioned relation
to extract a shear calibration per object, m,. This is not necessary, but
allows us to capture possible correlations between the m-correction
and the lensfir weights. These are inevitably noisier than the average
over the full tomographic bins, but a large fraction of this noise
cancels within our aperture mass map calculations as well, while
providing optimal estimates of the local noise contribution (M18).
Let us recall that this calibration corrects for known residual biases
such as shape detection biases (Fenech Conti et al. 2017; Kannawadi
et al. 2019) or blending of the images of galaxies (Hoekstra et al.
2015). While we apply the m-correction per object, the averaged
multiplicative biases per redshift bin used in A21 enter our analysis
at the inference level in the form of nuisance parameters over which
we marginalize. Table 1 summarizes the survey properties relevant
to our analysis.

2.2 DES-Y1 data

The DES-Y 1 measurements is based on the public year-1 data release
from the Dark Energy Survey Collaboration (Abbott et al. 2018),
with source galaxy selections that exactly follow the main cosmic
shear results described in Troxel et al. (2018). The lensing catalogue
consists of 26 million galaxies covering a footprint of 1320 deg? with
a galaxy density of 5.07 gal arcmin~2. The per-galaxy shear signal is
inferred with the METACALIBRATION method (Sheldon & Huff 2017).
Every galaxy is assigned to one of the four tomographic bins based
on the photometric redshift posteriors estimated from the the griz flux
measurements, as detailed in Hoyle et al. (2018). Following Troxel

MNRAS 534, 3305-3330 (2024)
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et al. (2018), the mean and uncertainty on the shear multiplicative
calibration are given by m, = 0.012 £ 0.023.

Whereas the original DES-Y1 results estimated the tomographic
n?(z) from a Bayesian photometric redshift analysis calibrated on
the COSMOS2015 field (Laigle et al. 2016), the HD21 reanalysis
instead opted for n“(z) estimates based on a direct reweighted
calibration of matched spectroscopic data (Lima et al. 2008, DIR
hereafter), following the DES-Y1 reanalyses of Joudaki et al. (2020)
and Asgari et al. (2020). The uncertainty on the DIR mean redshift
distributions is Az, = [0.008, 0.014, 0.011, and 0.009] for redshift
bins a = 1...4, respectively. Both methods have their pros and cons.
The calibration with COSMOS is by design based on a complete
sample but suffers from imperfect redshifts and sampling variance
(see e.g. Alarcon et al. 2021). In contrast, the spec-z samples used for
the DIR method have (close to) perfect redshifts but are incomplete
and not representative of the source sample, which is alleviated by
the reweighting, but often cannot be fully eliminated (see Gruen &
Brimioulle 2017). Importantly, the DIRn“(z) favours Sg values that
are smaller by ASg = 0.03 compared to the COSMOS-calibrated
n(z), which is a 0.8 shift (Joudaki et al. 2020).

2.3 Simulations

As mentioned in the introduction, the accuracy of simulation-based
inference pipelines fully depends on the quality of the numerical
simulations it is calibrated on. The same way 2pt analyses must
carefully understand the scales, cosmologies, and redshifts that are
well captured by their model, it is critical for our peak count analysis
to identify the range of validity of our training simulations. The
additional complexity here is that no simulation suite serves all
purposes, and therefore we must carefully investigate, for all of
them separately, the accuracy and limits of the measurements and
how these impact the peak count statistics. The simulations used in
this work are in many aspects identical to those presented in HD21,
which we refer to for further details. Specifically:

(i) the cosmological dependence of the peak count statistics is
calibrated on the wCDM cosmo-SLICS N-body simulations intro-
duced in Harnois-Déraps, Giblin & Joachimi (2019). They sample
a wide volume in Sg, Q,, wo, and ~ with 25 points arranged in a
Latin hypercube (plus one ACDM point), each evolved with a pair
of N-body simulations designed to suppress sample variance in 2pt
functions, then ray-traced in ten light cones of 100 deg? (10 000 deg?
in total area). These form our cosmology training set, and resolve
the non-linear physics to better than 2 per cent up to k-modes of 2.0
h~'"Mpc, when compared to the Cosmic Emulator (Heitmann et al.
2014). Smaller scales gradually lose precision, affecting mainly their
ability to resolve substructure in most massive objects. The exact
impact of this loss on weak lensing peak counts is investigated in
HD21 with a separate set of simulations ran with a much higher force
resolution, where it is found that this leads to at most a 1 per cent
loss of the highest peaks, which is largely subdominant compared to
both baryonic physics and statistical errors. We revisit this in Section
4 (see also point iv);

(ii) the covariance matrix that captures the sample variance is
estimated from 124 fully independent SLICS N-body simulations
described in Harnois-Déraps & van Waerbeke (2015). These are
evolved from independent initial conditions at a fixed cosmology, and
make our covariance training set. They resolve the same non-linear
physics as the cosmo-SLICS, and are shown in Harnois-Déraps et al.
(2019) and HD21 to produce marginalized errors on cosmological
parameters that are fully consistent with those obtained with an
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analytical calculation, when analysing 2pt statistics. Burger et al.
(2022) further show in the context of density-split statistics that
a covariance matrix estimated from the SLICS or from a much
larger number of log-normal FLASK mocks (Xavier, Abdalla &
Joachimi 2016) produce fully consistent results, as expected for
these mildly non-linear statistics. We further increase the effective
number of covariance mocks by randomly rotating 10 times the
shape noise components. This works particularly well given that
the peak statistics is currently shape-noise dominated:® while the
expectation value of standard 2pt statistics does not depend on
the noise (only their variance does), shape noise affects both the
signal and covariance of map-based statistics (see Appendix D of
Heydenreich, Briick & Harnois-Déraps 2021);

(iii) for the KiDS-1000 analysis, the impact of galaxy intrinsic
alignments is measured from the IA-infused lensing simulations
described in Harnois-Déraps et al. (2022). These are also constructed
from the cosmo-SLICS and therefore resolve the same physical
scales. This /A training set assumes a linear coupling between the
projected non-linear tidal field and the intrinsic ellipticity of every
galaxy, and is therefore physically modelling the non-linear linear
alignment model of Bridle & King (2007) without explicit redshift
nor luminosity dependence. It is expected that this effective IA model
does not fully capture the alignment signal, and that a more physical
model such as the tidal alignment and torquing model (Blazek et al.
2019) or the halo-model of Fortuna et al. (2021) would provide a
more accurate description, however current cosmic shear surveys do
not have the statistical power to constrain parameters beyond the
simpler NLA model (Secco et al. 2022a), which is therefore deemed
sufficient for the current analysis. The IA infusion process has been
shown in Harnois-Déraps et al. (2022) to accurately reproduce the
NLA predictions for the 2pt correlation function down to scales of a
few arcmin, beyond which the NLA is expected to fail in a manner
that is undetectable in the current data. Burger et al. (2024) further
show that these same simulations agree with the IA modelling of
three-point shear statistics. The model fails at scales that correspond
to high overdensities in our simulations, which contribute to lensing
peaks that are excluded from our analysis. We infuse different levels
of IA and marginalize over these choices in the end, as described in
Section 4. for the DES-Y1 analysis, IA are included with a non-linear
halo-based model, see HD21 for details;

(iv) limits in the force resolution of the cosmo-SLICS are bound
to impact the weak lensing statistics in a manner that is not always
predictable. We assess this with the SLICS-HR suite (Harnois-
Déraps & van Waerbeke 2015), a high-resolution version of the
SLICS light cones recently used in a combined lensing-clustering
cosmological analysis (Duncan et al. 2022). The SLICS-HR consist
of ten independent 10 x 10 deg? catalogues that are run at the same
cosmology and with the same particle count and volume as the
SLICS, but the N-body force accuracy has been increased such as to
resolve k-modes up to 10 2~'Mpc. We use these to validate the full
inference pipeline in Section 4.7, acting as our validation set;

(v) the impact of baryon feedback is estimated with the mag-
neticum hydrodynamical simulations,'® forming our baryons train-
ing set. These have been shown to reproduce a number of key
observations relevant to weak lensing studies (Castro et al. 2018), and
notably the feedback on the matter distribution closely matches that

9The average shape noise contribution, computed from the scatter between
the 10 noise realizations for a fixed underlying simulation, takes up about 90
per cent of the total error budget, 95 per cent for the auto-bins.

10\ fagneticum simulations: www.magneticum.org.
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of the BAHAMAS (McCarthy et al. 2017), another suite of hydrosim-
ulations with independent prescriptions for their subgrid physics. The
training set consists of ten 10 x 10 deg?pseudo-independent light
cones extracted'! from full hydrodynamical simulations, and another
10 light cones extracted from dark matter-only sister simulations,
evolved from the same initial conditions (more details on the used
simulations can be found in Martinet et al. 2021b). There is a
large uncertainty on the exact impact of baryonic physics on the
matter distribution (and therefore on our lensing statistics), which
we account for by linearly scaling the relative baryonic bias with a
nuisance parameter, by,ry, Which we marginalize over at the inference
stage.'?

(vi) different N-body codes and ray-tracing methods, even at fixed
cosmology, will have a residual impact on the peaks statistics (Hilbert
et al. 2020). We explore these numerical systematics with the public
full-sky weak lensing simulations from Takahashi et al. (2017, T17
hereafter),'® post-processed into KiDS-1000 mock data (North and
South patches) as in Burger et al. (2024). The T17 simulations follow
the non-linear evolution of 2048 particles in a series of nested
cosmological volumes with side length starting at L = 450h~'Mpc
at low redshift, then increasing at higher redshifts. These result in
108 pseudo-independent full-sky lensing maps, seven of which are
used in this work, with flat ACDM cosmological parameters set to
(Rm, Qb, 03, I, ng, wy) =(0.279, 0.046, 0.82, 0.7, 0.97, -1.0).

2.3.1 Assembling mock surveys

Most of these simulations have been introduced in HD21, in Hey-
denreich et al. (2022), in Burger et al. (2022), and in the references
listed in the previous section; we encourage the interested reader
to consult these for a more complete technical description. To
summarize some of the key properties, all of the abovementioned
simulations are organized in light cones of 100 deg? each, populated
with galaxy samples that match the tomographic n“(z) distributions,
number densities, and shape noise levels of the KiDS-1000 Gold
Sample and DES-Y1 data. Except for the IA-infused simulations, the
galaxy positions, the amplitude of their ellipticities |€ga,| and their
multiplicative shear calibration factors m, are exactly reproduced
in each of the mock survey realizations (i.e. in the cosmology,
covariance, validation and baryon training sets). To achieve this, the
KiDS-1000 data are split into 18 tiles that each fit within 100 deg?
regions, as depicted in Fig. 2, and the shear and convergence from
every simulation is repeated across them, interpolated at the local
galaxy positions. These tiles are analysed separately and combined
only at the level of the summary statistics, ensuring that cross-tile
correlations that exist in the data but not in the simulations are
explicitly ignored. This effect is minor for localized non-Gaussian
probes such as peak statistics, but is critical for e.g. shear 2pt
functions. The shear and convergence are interpolated from the
underlying simulations at the position of every galaxy, infused with
the m, from the data, then combined with the (randomly rotated)
observed ellipticity following:

ran

d
€data + g
rand ,x
I+ €data 8

(€]

€mock =

""The magneticum light cones were built with the public SLICER code: https:
//github.com/TiagoBsCastro/SLICER.

12Note that this parameter is not to be confused with Apary used in A21 (see
their table 2), which specifically relates to one of the free parameters entering
their HMCODE halo model.

13T17: http://cosmo.phys.hirosaki-u.ac jp/takahasi/allsky _raytracing/.

3309

KiDS+DES cosmology with peak counts

Figure 2. Tiling strategy adopted to pave the full KiDS-1000 data with flat-
sky 10 x 10 deg?® simulations (squares). Some of the tiles slightly overlap
due to the sky curvature, in which case the data is split at the mean Dec in
overlapping regions.

In the above expressions, bold-font symbols are spin-2 complex
quantities and g is the m-biased simulated reduced shear. As
described in HD21, this involves rotating each tile at the equator,
which preserves the relative positions of galaxies but modifies their
ellipticities, defined with respect to the North pole.

We repeat this construction for all light cones of the cosmology
training set, the covariance training set, the baryon training set, and
the validation set. Additionally, the uncertainty in the photometric
redshifts is forward-modelled with a further 10 full survey realiza-
tions computed at the fiducial cosmology, in which the n(z) is shifted
by small amounts (details provided in Section 4). In total, this results
in414 simulated mosaic surveys that we analyse in preparation for the
inference stage, with the majority (260) contributing to the cosmology
training set. Each mock further contains 10 random rotations of €g,,,
to improve convergence of the signal.'*

The IA training set are treated slightly differently, since for
these the positions of the mock galaxies must be sampled from
the simulated overdensity maps or halo catalogues, which do not
correlate with the positions in the data (see Harnois-Déraps et al.
2022, for more details). The mosaic survey tiling is therefore not
possible, so we use instead five light cones per IA model and explore
four alignment strengths in KiDS, and one model in DES. Although
these represent a lesser total area than the real data, their sole purpose
is to capture the relative impact of IA on the signal, computed
from ratios in which the sample variance cancels by design. We
use 4 x 5 x 100 deg? of training data, which is enough to capture
this.

The simulations are free of additive biases by construction,
however Giblin et al. (2021) measures residual additive terms c;,
in the KiDS-1000 cosmic shear catalogues, caused by the shape
measurement method itself. These are reported in Table 1 and
subtracted from the observed ellipticities when analysing the real
data. We follow Troxel et al. (2018) by not accounting for any low-
level additive terms in the DES Y1 catalogue. The multiplicative
biases are not easily removed from the data, hence we instead infuse
the mocks with the m, terms per object, and treat thereafter data and
simulations on equal footings.

4For peak statistics, removing the shape noise from simulated data changes
both the mean of the signal and the covariance, whereas for shear 2PCF, the
mean of the signal is unchanged. For this reason, the best way to achieve
convergence on the mean peaks signal is by averaging over multiple noise
realizations.
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3 METHODS

3.1 Aperture mass map statistics

There exists a number of methods for identifying and counting
lensing peaks, including finding maxima on convergence maps (Li
et al. 2019), on wavelet-transformed maps (Ajani et al. 2020) or on
aperture mass maps (Schneider 1996). We here opted for the aperture
mass maps for the following reasons: as argued in M 18, this statistics
is immune to masking-induced biases and strong B-mode leakage
common to methods based on reconstruction of convergence maps,
plus it benefits from a local estimation of the shape and Poisson
noise, yielding more accurate signal-to-noise maps.

Specifically, we cover each of the 18 tiles with a 2D grid with a
pixel size of 0.59 arcmin. We next reconstruct the mass inside an
aperture filter Q centred on each pixel, at position @ on the sky, from
the sum of all tangential ellipticities €, contained therein as:

1

Mo ®) = S, wall + i)

D " wa€ai(8,04)Q0 — 8l Oup, xc).
a

@

The tangential ellipticity about @ is computed as €,(0,0,) =
—[€1(0,) cosep(0, 0,)) + €2(0,) sin(2p(8, 0,))], where 0, is the
position of galaxy a and ¢(8, 8,) is the angle between both coordi-
nates. The sum runs over all galaxies in the aperture, and ng,(8) is
the local galaxy density in the filter when centred at 6. As in M18
and HD21, our filter Q(6, 0y, x.), abridged to Q(6), matches that of
Schirmer et al. (2007), which is optimized for efficiently detecting

NFW haloes:
tanh(x /x.)
X/x;

[1 4 exp(6 — 150x) + exp(—47 + 50x)] .
3

In the above expression, we use the standard value of x, = 0.15,
while x = 0/6,,, with 6 the distance to the filter centre. We addition-
ally use the same filter size, set to 8,, = 12.5 arcmin, which is shown
in M 18 to better detect the cosmological signal over other filter sizes
in KiDS data. We compute equation (2) at every pixel location to
construct our signal map. The variance about this map is computed
at every pixel location with:

1 2 212
—_— w;le."07(160 —0.)), “4)
2n2,(0) [, wa]? Z

where again the sum runs over all galaxies in the filter. The m-
calibration estimated from the image simulations of Kannawadi et al.
(2019) is meant to correct the inferred shear, not the ellipticity, which
explains why it appears in the denominator of equation (2) but not
in that of equation (4), which describes the noise map. Finally, we
take the ratio between equation (2) and the square root of equation
(4) at every pixel location to construct our signal-to-noise maps,
S/N(0) = My,(0)/, /aazp(é’), from which we identify peaks as local
maxima and record their S /AN -values. We repeat this process for the
10 realizations of random rotations and report the average, except for
the covariance training set, for which we do not take the average;
instead, each noise realization leads to an estimate of the covariance
matrix, of which we take the average in the end.

As detailed in HD21, masking is dealt with naturally in aperture
mass statistics, and no special treatment needs to be enforced as long
as data and simulations are masked and analysed the same way. This
is achieved by fixing galaxy positions in the simulations to that of the
observed data, which ensures the impact of the mask is identical. In
our case, we decided nevertheless to act upon masked pixels. These

o) =

02(0) =
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are identified from the galaxy catalogues as regions with an aperture
galaxy density that is either critically low or null, then removed from
the final S/N () maps.

It has been shown that some additional information can be
extracted by combining the peak count statistics measured from
multiple filter sizes (e.g. Ziircher et al. 2022; Giblin et al. 2023),
however M 18 shows that this gain is mild for Stage III surveys. We
therefore opted for a single-scale analysis here, but intend to revisit
this in the future.

3.2 Tomography and selection

Tomographic decomposition of the lensing data allows us to probe the
redshift evolution of the large-scale structures, which is largely driven
by €, and wy via their impact on the growth of perturbations. A direct
consequence of the improved sensitivity to these is a gain in precision
in Sg, arising from degeneracy breaking. This decomposition is
different for the KiDS and DES surveys, which we detail here.

3.2.1 KiDS-1000

From the five KiDS tomographic bins, we include both the auto- and
the cross-redshift measurements, as first defined in Martinet et al.
(2021a). To be specific, peaks are identified from the individual
tomographic galaxy catalogues (the ‘auto’ redshift bins 1, 2, 3,
4, 5), from every possible combination of bin pairs (1U2, 1U3,
104, 1U5... 4U5), triplets (1U2U3, 1U2U4, 1U2U5...), quadruplets
(1U2 U 3U4, 1U2U4U5...), and quintets (i.e. no tomography). As
shown in HD21, Ziircher et al. (2022) and Heydenreich et al. (2022),
these ‘cross-tomographic’ catalogues contain a significant amount
of additional information that is not contained within the ‘auto’ case.
The tomographic peak function is presented in Fig. 3, showing in
the different panels the 30 different redshift bin combinations. For
each case we overlay the predictions from the cosmology training
set in colour with the data measurements in black; the error bars are
obtained from the covariance training set. A similar measurement
is presented in Fig. B1, where the data are replaced by the mean
over our baryons training set. In these figures, we have subtracted
the peak function measured from pure shape noise fields, Ng‘e"jﬁi, to
better highlight the cosmological dependence of the signal.

In all cases, we measure the peak function in S/A bins of width
0.5 in the range [-2.5, 4.0], for a total of 13 bins per subpanel and 390
elements in total. The motivation behind this initial choice of range
is driven by a number of requirements, notably that of having a large
number of peaks per bin to ensure the data is Gaussian-distributed
(with our selection, every bin has at least 200 objects, while bins
outside this range have far fewer objects). Additionally, our analysis
has strict requirements on the modelling precision and on the level
of contamination by residual systematic effects, resulting in this bin
selection being in fact ‘aggressive’. We expand on this in Section
4, where we argue that instead the range [—1.0 < S/N < 3.0] is
a better choice with lower modelling errors, forming a ‘clean’ data
vector of 7 x 30 = 210 elements in total that is used for the main
cosmological analysis.

3.2.2 DES-YI

Following HD21, our DES peak count analysis includes the auto-
and cross-redshift measurements up to pairs of tomographic bins, for
a total of 10 bin combinations. The peak function is measured in 12
S/N bins in the range [0.0 < S/N < 4.0], forming a data vector
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Figure 3. Tomographic weak lensing peak function N[’)(eakS (S/N) measured in the KiDS-1000 data (black squares) and in the cosmology training set simulations,

colour-coded by their Sg value. The pure noise signal N;é’;]zf

has been removed to better highlight the variations with respect to cosmology. The panels show the

results from different combinations of tomographic bins, in which the red dashed lines represents the best-fitting model inferred from our fiducial analysis, see

Section 5.

with 120 elements. Although these details differ compared to the
KiDS-1000 case described above, it is shown in HD21 to be accurate
and competitive.

3.3 Analysis pipelines

Our cosmological inference pipeline heavily builds on the methods
presented in HD21 and Heydenreich et al. (2022), which we briefly
overview here. First, we model the peak function by training a
Gaussian process regression'> emulator (GPR) on the measurements
from the cosmology training set, after averaging over the 10 noise
realizations. The GPR can subsequently produce Np . predictions
within a fraction of a second everywhere inside the parameter volume
covered by the cosmo-SLICS. This therefore determines the prior
ranges over 2, Sg, wo, and &, which we report in Table 2.
Secondly, we must estimate the covariance matrix, which captures
the correlation between the elements of our data vector, central to the
error propagation. As mentioned before, the covariance training set
consists of 124 full survey realizations, each duplicated 10 times

15We use the GPR toolkit provided by SCIKITLEARN (Pedregosa et al. 2011).

with a distinct shape noise realization, producing 1240 pseudo-
independent data vectors from which our covariance matrix C is
extracted.'® Since shape noise is added at the galaxy level, cross-
redshift bins are correlated with the autobins. We show in Fig. 4
the cross-correlation coefficient matrix, defined as C;;/4/CiiCj;,
which better highlights the correlations between the negative and
positive peaks in each of the tomographic block. Also visible is the
significant amount of correlation (and anticorrelation) present in the
off-diagonal component. This matrix contains at most 390 elements
and is thus invertible (since 390 < 1240, see Hartlap, Simon &
Schneider 2007), a criteria that is also naturally satisfied by the
‘clean’” KiDS-1000 data vector, which contains only 210 entries, and
by the DES-Y1 data vector, which contains 120.

Having our model and covariance matrix, we are now in a position
to evaluate the likelihood £ of the model x(;r) with parameters 7,
given the data vector d. We use the Sellentin & Heavens (2016) ¢-
distribution likelihood, which is well suited for nearly Gaussian data

16Tn practice, we follow HD21 and estimate C from the average over 10
matrices, each computed from one of the noise realization.
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Table 2. Priors used in the KiDS likelihood sampling. The ranges for the four
cosmological parameters are determined by the cosmo-SLICS simulations,
while the prescription from sampling the nuisance parameters describing
the photometric redshifts Az, and intrinsic alignments Ajs are taken from
Joachimi et al. (2021). In particular, the redshift parameters are correlated and
drawn from a multivariate Gaussian distribution with means g taken from
Table 1 (fourth column) and a covariance matrix C, described in Section
4.3. The shear calibration parameters Am, are sampled from Gaussian priors
centred on zero with a standard deviation (u, o) estimated in Giblin et al.
(2021). The baryonic feedback parameter bpry is used to scale the effect
measured in the baryon training set.

Parameter Range Prior
Cosmology

Qm [0.1, 0.55] Flat

Sg [0.6, 0.9] Flat

h [0.6, 0.82] Flat

wo [—2.0, —0.5] Flat
Nuisance

Az x 107 [-10, 10] G(r, Cy)
Amy x 10% [—10, 10] G(0.0, 1.9
Amy x 10% [-10, 10] G(0.0,2.0)
Amj x 10% [—10, 10] G(0.0, 1.7)
Amy x 10 [—10, 10] G(0.0,1.2)
Ams x 10% [—10, 10] G(0.0, 1.0)
Astrophysics

Ala [-5,5] Flat
Dpary [0, 2] Flat

auto pairs

3+ bins

Figure 4. This figure highlights the correlations between the different
elements of the KiDS-1000 data vector. From left to right, the 30 blocks
show the correlation coefficients for the different redshift bin combinations,
starting with singlets (i.e. autobins), pairs, triplets, quadruplet, and the no-
tomographic case, with redshift increasing towards the right and the top of
the figure.

vectors with simulation-based covariance matrices.!” It is constructed
as:

17Using instead a multivariate Gaussian likelihood along with a Hartlap factor
is less accurate, see Sellentin & Heavens (2016) for a full discussion.

MNRAS 534, 3305-3330 (2024)

Nsims .
InL(x|d) = 5 In|1+ x%/(Ngms — 1)| +const,  with (5)

x* = [x(w) —d]"C ' [x(m) — d]. (6)

In the above, Ny, = 1240 is the number of realizations used to
evaluate the covariance matrix C. The model depends on the four
cosmological parameters 2.,, Sg, wo, and &, and on a set of 12
(9) astrophysical and nuisance parameters for KiDS (DES), which
characterize the dependence of our signal on the systematic effects
mentioned previously. This is an excellent approximation to the more
general likelihood suggested by Percival et al. (2022) in our case.
Finally, the posteriors are sampled both by the nested sampling
algorithm MULTINEST (Feroz, Hobson & Bridges 2009) and by
NAUTILUS (Lange 2023), implemented within COSMOSIS (Zuntz et al.
2015). While the latter sampler is more robust (Lange 2023), the
former has been more widely used in the literature and is therefore
useful to make fair comparisons with previous analyses. We report
from these the mean and 68 per cent credible intervals computed from
the 1D projected posteriors,'® as well as the maximum a posteriori
for some of our key results.

Since our likelihood function differs from the widely used mul-
tivariate Gaussian, the goodness-of-fit evaluation must be adapted
accordingly. For Gaussian likelihoods, the x2_g,, estimated at the
best-fitting parameters, is to a very good approximation sampling
an underlying x2 probability distribution, which depends only on
the number of degrees of freedom v — this is only an approximation
however, because of informative priors, non-linear modelling, and
correlated error bars (see e.g. Joachimi et al. 2021). A good fit
will have a x2_g close to the maximum of the x2 probability
distribution, while a bad fit will land far in the tail, leading to
a probability to exceed (PTE) that is smaller than our acceptance
threshold, set to 0.01. For our Student-¢ distribution likelihood, we
still assess the goodness-of-fit with PTE values, however the x> curve
needs to be modified (see Appendix C for details).

A few differences exist between the KiDS-1000 and DES-Y1
likelihoods which are worth highlighting here, as these influence the
construction of our joint pipeline. First, the original DES-Y1 peak
count analysis samples oy instead of Sg; the latter is a better option
as it exactly covers the training volume and is therefore adopted for
our DES-Y1 re-analysis.

Secondly, the treatment of intrinsic alignments are simpler in
the DES-Y1 analysis: the IA contribution is estimated from the
alignments of dark matter haloes, which are assumed to fully
correlate with the alignment of central galaxies. This non-linear
prescription provides a single IA model that is then added to
the predictions, without marginalization. As discussed in Section
5.2, not marginalizing over the IA in the KiDS analysis slightly
underestimates the total error. This is likely less important in the
DES-Y1 likelihood since the statistical error is larger.

This also connects with the third difference, which is that in the
baseline DES-Y1 measurement, only the autotomographic redshift
bins are included, in an attempt to avoid possible residual contam-
ination from unmodelled IA in the cross-redshift bins. This turns
out to be an overconservative data cut. Indeed, the recent DES-Y1
persistent homology cosmic shear analysis from Heydenreich et al.
(2022) reveals that the constraints on Sg are negligibly affected by
these IA terms: they show that a full tomographic analysis including

18We refer to these intervals as 1o regions, even though strictly speaking this
notation should only apply to Gaussian posteriors.
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Table 3. Priors used for sampling the nuisance parameters in the DES-Y1
peak statistics analysis. The sampling of photometric redshifts Az, and shear
bias Am, nuisance parameters follows the original cosmic shear paper by
Troxel et al. (2018). The baryonic feedback parameter bpqry is the same as in
the KiDS-1000 likelihood, however there is no IA parameter here.

Parameter Range Prior
Az x 102 [—10, 10] G(0.1, 1.6)
Azy x 10% [—10, 10] G(1.9,1.3)
Azz x 102 [—10, 10] G(0.9,1.1)
Azy x 10% [—10, 10] G(1.8,2.2)
Amg x 102 [—10, 10] G(1.2,2.3)
Astrophysics

bbary [0, 2] Flat

all cross-tomographic combinations shift the parameter by at most
0.30 towards higher Sg values, even when the inferred Ay, is as large
as unity. Although their analysis is based on the different statistics
(they use persistent homology instead of peak count), their results
should hold here too, given that peaks are a subset of their data
vectors. Therefore residual IA cannot play an important role in
the DES-Y1 peak count analysis, justifying our choice to include
the cross-redshift bins here (up-to-pairs, but not the triplets nor the
quadruplets since these are not fully modelled yet for the DES-Y1
data).

A fourth difference in the likelihood concerns the treatment of the
baryonic feedback: in HD21 the peak statistics are measured in the
magneticum simulations to ensure that the selected elements from
the data vectors are immune to unmodelled baryonic mechanisms,
but no marginalization is included. This can potentially lead to a
slightly overoptimistic precision on the DES likelihood compared
to the KiDS-1000 likelihood, which includes marginalization over
the b,y parameter. We therefore decided to include in our joint
analysis the same marginalization machinery for both the KiDS-
1000 and the DES-Y1 pipelines. Moreover, we use a unique Dpry
parameter to infuse baryonic feedback into both surveys, since these
physical processes describe physics that affect the foreground matter
distribution independently of survey-specific source selection. In
total, the combined-survey analysis marginalizes over nine redshift
bias parameters, nine shear bias parameters, one [A, and one baryon
parameter. The sampling strategy of the DES-related parameters are
listed in Table 3. Finally, given the absence of overlap between
two survey footprints and the compatibility of the priors, the two
likelihoods can be directly added at each evaluation point, without
needing to consider cross-survey covariance.

Before running the analysis on the KiDS and DES data, we
validated our pipelines on simulated data, as presented in the
next section, and made no further modifications to thereafter. This
method is not as strong as adopting a full blinding strategy at the
catalogue level, however this avenue was not available anymore since
many authors were already unblinded, having worked on previous
cosmic shear analyses with the same data. In these conditions, our
validation strategy is an excellent option to protect ourselves against
confirmation bias.

4 SYSTEMATIC UNCERTAINTIES

As the amount of high quality lensing data keeps increasing, the
statistical precision reaches unprecedented high levels, and conse-
quently understanding and controlling the residual systematics in
every segment of the data analyses has become one of the primary
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objectives and focus of development in the field of beyond-2pt
statistics. We investigate here a number of such systematic effects that
have been identified in the literature and mentioned earlier, including
residual uncertainties related to interpolation in the modelling, shear
calibration, photometric redshifts, astrophysics (intrinsic alignments
and baryonic feedback), simulation-based covariance matrix, non-
linear physics, source-lens coupling, and likelihood sampling strate-
gies. Some of the systematics that are ignored in this work are those
related to the effect of source blending, depth variations, PSF leakage,
or the cosmology dependence of the IA signal. These will likely
become important in the future, but can be safely omitted in current
Stage-III lensing surveys (see HD21; Ziircher et al. 2022). Amongst
those that we investigate here, many are shown to be subdominant or
heavily suppressed by our range of S/N, while others are forward-
modelled with nuisance parameters that are marginalized over in the
likelihood analysis.

4.1 Modelling

The accuracy of the peak function modelling has two aspects to
be considered: we must understand both how well the cosmology
scaling is captured by the emulator, and whether any elements of our
data vector are affected by either resolution limits of our simulations
or the choice of gravity solver. Regarding the first aspect, the cosmo-
SLICS have been shown to match in precision the commonly used
COSMICEMU (Heitmann et al. 2014), and to even outperform the latter
in terms of range, benefiting from more training nodes (Harnois-
Déraps et al. 2019). The GPR interpolation uncertainty is fully
propagated in the likelihood, and is quantified with a leave-one-
out cross-validation test, in which the emulator is trained on all but
one node, producing predictions at that node that are then compared
with the measurement. As shown in Fig. 5, we cycle over all 26
nodes in this way and estimate an upper limit on the error (since the
actual GPR has all the nodes). The accuracy degrades towards large
positive or negative S/A values, but most of the cross-validation
lines lie well within the statistical precision on the data, shown
with the dashed black lines. There are a handful of exceptions
with poorer accuracy, attributed to removing extreme values of Sg
from the training set and therefore effectively demanding the GPR
to extrapolate. With these edge nodes included, the full emulator
has no such outliers. In fact, as argued in HD21, the most reliable
estimate of the emulator’s precision is evaluated by removing the
fiducial cosmology and training on the others, which is shown as the
thick black lines in the figure and always well within the statistical
precision. For the KiDS modelling, the interpolation error is mostly
at the 1 per cent error over the range —1.0 < S/N < 3.0 (our ‘clean’
range), and is otherwise always under 10 per cent. Similarly, the DES
interpolation error is everywhere under 2 percent (see HD21), the
difference coming from the choice of S/A cuts. This will likely be
a limiting factor for future data analysis with sub-per cent accuracy
requirement on the modelling, and will be addressed by increasing
the number of nodes in the next generation of the cosmology training
set. At the moment however, the interpolation error is low enough
for our analysis. We nevertheless include it in our error budget by
averaging over the square of the residuals (after the outliers have
been removed):

2
; GPR i
COVinerp = diag < (Npeaks - NS:;kS) > , (@)
and adding this to our statistical covariance. We could have instead

used the errors directly provided by the Gaussian process emulator,
however Heydenreich et al. (2021) have shown that the two meth-
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frac error

61

Ss= 0. 0.68 0.76 0.83 0.90
Figure 5. Accuracy of the KiDS-1000 GPR emulator, computed with a leave-
one-out cross-validation test. The results are colour-coded with the Sg value of
the removed training point, and compared with the statistical precision on the
measurement of the peak function (shown with the black dashed lines). The
black solid line indicates the ACDM node, and the different panels show the
auto- and cross-redshift (up to pairs) measurements; the other 15 tomographic
combinations show a similar precision and hence are not shown. The outliers
seen in a few panels are of extreme Sg values and as such required the test
emulator to extrapolate; this does not occur with the full emulator, and should

therefore not be considered when estimating the interpolation error.

ods yield posteriors with negligible differences. This contribution,
although small, helps with the goodness-of-fit in the data analysis.

The second aspect, concerning the training sets themselves, is
discussed below in the section on N-body resolution.

4.2 Shape calibration

Table 1 shows the average multiplicative correction factors m, that
must be applied to the observed galaxy shapes in order to correct for
a combination of residual PSF leakage, blending, and measurement
noise, as assessed from Giblin et al. (2021). While in A21 the uncer-
tainty on the shape calibration is absorbed directly in the analytical
covariance matrix, our simulation-based method works instead at
the level of the data vector, as for all other nuisance parameters.
The M,, estimator itself is unbiased (see equation 2), however we
must propagate forward the uncertainty on the m, calibration. The
impact of potentially miscalibrated shape measurements is estimated
by infusing a non-corrected global term m, — m, + Am, directly
in the simulations and measuring the effect on the different elements
of the peak function N, As we show later, this systematic effect
is completely subdominant compared to the others due to the tight
priors on Am, (reported in Table 2), and hence it is sufficient to
model its impact with a reduced accuracy. In HD21 the estimation
is based on a linear regression (i.e. 0 Npeaks/0Am per data element)
that is fit through 10 values of Am,. We use here only two points,
at =10, which is sufficient given the small values of Am,. The
measured 0 Npeaks/0Am is further discussed in Appendix B, and is
used to modify the data vector for any value of Am, (see equation
8) sampled in the likelihood. For cross-redshift tomographic bins,
we use the mean shift, e.g. Am!Y> = (Am! + Am?)/2, which is
consistent with what is currently done for all shear two-point function
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analyses. We could instead use an ng,-weighted mean to compute
the Am, shift in cross-redshift tomographic bin, however this should
have a negligible effect given the tight priors on these parameters,
and we therefore leave this for the future.

4.3 Photometric redshifts

The KiDS-1000 uncertainty on the redshift distributions has been
fully quantified in Hildebrandt et al. (2021), where it is shown that
the mean of the n(z) is captured to a high accuracy, varying by no
more than 0.014 at the 1o level.!® The posteriors on the mean of the
redshift distributions are used as priors on nuisance parameters in this
work, summarized in Table 2. In this case however, the five redshift
bias parameters Az, must be drawn from a correlated distribution.
This is achieved in a two-step operation where we first draw five
uncorrelated numbers from the priors, then rotate into the correlated
space using a Cholesky decomposition of the redshift covariance
matrix:

11.20 2.600 1.562 0.056 0.622
2.600 12.78 4.081 —1.692 —0.2140
C,x10°= |1.562 4.081 13.81 —1.139 0525 |,
0.056 —1.692 —1.139 7.551 3.054
0.622 —0.2140 0.525 3.054 9.496

which results in a correlated sampling of these five nuisance
parameters (see A21, Hildebrandt et al. 2021, for more details).
We produced a dedicated set of redshift training set simulations in
which the n(z) are shifted, but which are otherwise identical to the
cosmology training set at the fiducial cosmology. Following HD21,
we measure the peak function on full mock surveys with 10 shifts,
each with a slightly different value of Az, sampled from the prior,
then extract a linear fit per data element and estimate 0 Npeaks /0 AZ,.
This derivative is used to forward model redshift uncertainties on our
data vector for arbitrary Az, values. Again, we use the mean shift
when considering cross-redshift bins, and the DES-Y1 0 Npeaks /0 Az,
measurements from HD21.

4.4 Astrophysics

Cosmic shear measurements are strongly affected by IA and baryon
feedback. Using the /A and the baryons training sets described
in Section 2.3, we estimate in a similar way 0Npeus/0Aa and
0 Npeaks/ Obvary, Where Ajp and by, are free parameters that control
the levels of IA and baryon contamination, respectively. The IA
derivative is obtained by linear fitting the peak function’s response
to changes in Aja, measured from the /A training set infused with
Ap =2.0,1.0, 0.0, —1.0, and —2.0. Since IA is currently not well
constrained and the NLA parametrization is an effective model, we
adopt a wide top-hat prior over the range [—5.0; 5.0], as argued in
Joachimi et al. (2021). This extrapolates our fit to larger Ay, values,
which can in principle become inaccurate, however in the end the
30 region of our posterior is fully contained within the training
range (see Section 5). Similarly, the baryon derivative is measured
from the baryons training set, which we use to infuse a baryonic
correction whose strength is controlled by the parameter by,ry. The
case byay = 0.0 corresponds to a dark matter-only universe, while
bpary = 1.0 corresponds to the case where the feedback processes
is exactly described by the magneticum physics. There is a large

9The full shape of the n(z) is less accurate than its mean, and which
consequences we leave for future work.
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uncertainty on the amplitude of this baryon correction, hence we scale
the measured baryonic correction with a free parameter by,ry. Since
the magneticum suites are already a strong model (see Martinet et al.
2021b, for a comparison with other hydrodynamical simulations),
we sample the range byary € [0.0, 2.0], thereby spanning a variety of
realistic models (albeit imposing a fixed shape for the relative signal).
As seen later, low by, values are not well constrained by the data
while larger values are strongly disfavoured, hence we do not extend
the prior limit beyond 2.0.

4.5 Implementation of forward-modelled systematics

Four sources of systematics are forward-modelled in our pipeline.
Following Heydenreich et al. (2022), we construct systematics-
infused data vector as:

syst
Npeakg(ns Amgy, Azq, Ala, bbary)

= NJR () 4 [0 Npears /0 Amg ] Amy + [0 Npears /0Az4] Az ..

+ [aNpeaks/aAIA] AIA + [aNpeaks/abbary] bbary s (8)

where the twelve parameters (Amg, Az, Aa, bpay) are sampled
from the priors described in Table 2. We marginalize over these
nuisance parameters when inferring the values of the cosmological
parameters. Equation (8) assumes that these different systematics are
independent of cosmology and from each other, which we know is
not entirely true. It has been shown that the cosmology dependence of
the baryon feedback is a second order effect (McCarthy et al. 2017),
supporting our simplified approach, however the intrinsic alignments
couple to the tidal field that is in itself cosmology dependent. The
shear calibration and redshift errors are independent of cosmology
a priori, however the derivatives of the peak function with respect
to Am, and Az, are not (see HD21), a secondary effect we neglect
here. Moreover, it has been shown that the photometric and shape
calibration errors are sometimes correlated (MacCrann et al. 2022).
Although these approximation will become important in Stage-1V
surveys, the current level of statistical precision allows us to relax the
modelling of these effects without hurting our results. We illustrate
this point in Section 5.2 by running inference MCMC chains in
which the modelling of some or all of these systematic effects are
switched off: the minor impact this has on the inference validates this
approach. We also assume here that these systematic effects have a
linear dependence on the nuisance parameter, which is probably not
entirely true, but has been shown to be good enough for Stage-III
lensing data in Heydenreich et al. (2022, see their fig. 7).

4.6 Other sources of systematics

In addition to the main systematic effects described in the last section,
we consider here other known sources of errors that could potentially
impact our results.

4.6.1 N-body resolution

Being completely simulation-based, our analysis relies on the quality
of the underlying training samples. As mentioned already in Section
2.3, the cosmology training set has been shown to closely reproduce
the non-linear clustering of the cosmic emulator (Heitmann et al.
2014), which is based on a completely independent N-body code.
This agreement between different gravity solvers is key to assert the
accuracy of the non-linear solution to structure formation (see e.g.
Euclid Collaboration: Knabenhans et al. 2019, for a comparison
between different N-body solvers), and the convergence of the
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solution must be assessed via a comparison with calculations carried
out with a higher force/mass resolution simulations. As shown in
HD21, known limits in the mass resolution of the cosmo-SLICS
used for the peak function emulation mainly affect high peaks. More
precisely, Ny (S JN > 4.0) is systematically underpredicted by
tens of per cent, while the S/N = 4.0 count is affected by no more
than 5 per cent. This is in fact one of the main justification for our
initial choice of upper S/N limit.

The KiDS-1000 data are deeper than DES-Y1, and hence the
sensitivity to such non-linear effects could be accrued here. We
verify this by running our cosmological inference on the peak count
statistics measured from the SLICS-HR, in which the increased force
resolution results in a slightly larger number of large positive and
negative peaks. Details are presented in Appendix B, but in short our
data selection and marginalization scheme almost completely pro-
tects us against this, yielding no noticeable shifts on €2,, nor Sg. As in
HD21, we nevertheless compute a multiplicative factor from the ratio
between the SLICS-HR and the mean of the SLICS and optionally
apply it on our model predictions during the likelihood sampling.
The overall effect is smaller than the baryon and IA corrections,
hence marginalizing over these latter two significantly washes out the
impact of inaccurately modelled non-linear physics under question
here. In the future we intend to look into multifidelity emulators as
in Ho, Bird & Shelton (2022). The T17 and magneticum simulations
were produced with a different N-body solver, and we show later
that their reduced spatial resolution can affect quite significantly the
peak count statistics. We treat this as a further uncertainty on the
small scale physics and optionally add their scatter to the theoretical
error in the covariance matrix, similar to equation (7). In two-point
statistics analysis, this would be equivalent to including a theoretical
error in the covariance matrix to account for difference between
the P (k) predictions provided by HALOFIT (Takahashi et al. 2012),
HMCODE (Mead et al. 2016), or the BACCOEMU (Angulo et al. 2021),
which can have a significant impact on the results (Arico et al. 2023).

4.6.2 Ray-tracing approximations

Our ray-tracing method in itself contains approximations and algo-
rithmic components that are bound to affect to some level the lensing
statistics. Most importantly, the finite thickness of the mass sheets
and the randomization process between them destroys correlations
along the line of sight; in particular it can slice large galaxy
clusters in two, and no structures larger than 257.5 h~'Mpc can
exist along the line-of-sight in our light cones (except for the T17
mocks, which we discuss below). This suppresses some of the large-
scale power, as documented in Takahashi et al. (2017, see their
Appendix B). However, smaller structures, such as those probed
by the peak statistics, are left completely unaffected by this, which is
why no forward modelling is needed here. This has been measured
specifically for peak statistics in Zorrilla Matilla, Waterval & Haiman
(2020) where it was found to play a subdominant role even for Stage-
IV surveys. Of course, full on-the-fly light cones such as the ‘Onion
Universe’ methods (Fosalba et al. 2008) avoid these problems,
which we will consider for future analyses. The T17 simulations
have thinner mass shells of 150.0 2~'"Mpc, but they are constructed
such that the structures are preserved in groups of three shells, thus
yielding a coherence length of 450.0 4~'Mpc, further suppressing
this residual systematic effect.

Another source of error comes from the fact that our simulations
assume the Born approximation in the flat-sky limit, which introduces
small inaccuracies at high-¢ and low redshift, respectively (Hilbert
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et al. 2020). However, these are affecting the signal at a level much
smaller than the statistical accuracy of our lensing data, and are not
expected to matter here.

4.6.3 Covariance matrix

Estimation of the covariance matrix is one of the main computational
challenges for non-Gaussian weak lensing probes, as it requires a
large number of simulations with a resolution that is high enough
to capture the non-linear physics being measured. Resorting to
approximate methods such a FLASK (Xavier et al. 2016) and ICE-
COLA (Izard, Fosalba & Crocce 2018) can significantly lower the
computational cost of creating such mocks, but at the price of a
reduced precision on the physics under investigation. We instead
opted for mocks produced by a full N-body suite, our covariance
training set, and are therefore only limited by the number of mocks
and their box size. To test the convergence of our covariance matrix
with respect to Ngms, We run an inference analysis in which we
increase the number of pseudo-independent realizations to 2120
(and adjusted the likelihood Ngys parameter accordingly), and
find an excellent match to the posterior, with only the tail of the
distribution being slightly modified. We could also have opted for
a data compression such as in Ziircher et al. (2022) but that is
not necessary given our results have converged, and our choice of
likelihood accounts for the noise in the covariance matrix.

The simulation box size could also affect our results, however it has
been shown in Harnois-Déraps et al. (2019) that the SLICS contains
about 75 percent of the ‘super-sample covariance’ term (SSC),
when applied to 2pt statistics, yielding constraints on cosmological
parameters that are highly accurate. Although this has not been
demonstrated to date, peak count statistics are thought to be even
less affected by the SSC, given that the covariance is close to being
Poissonian, not Gaussian. As such, it scales with the number of
peaks measured, which is independent of the survey window. In
addition, as mentioned earlier, Burger et al. (2022) finds for the
density-split statistics an excellent agreement between the SLICS
covariance and that from full sky log-normal FLASK mocks (which
contain an incomplete contribution from the trispectrum term but the
full SSC), supporting our claim that the partly missing SSC must
have a minimal influence on our error budget. This is also consistent
with the recent findings from Linke et al. (2024) according to which
the SSC term affects only the Fourier space estimators, whereas
covariance matrix measured from intrasurvey real-space statistics
such as the M,, are unbiased.

4.6.4 Source-lens coupling and blending

An important difference between real and mock galaxies is that those
in the data are clustered, which leads to a number of effects that
are systematically absent from the calibration sample. For example,
the quality of the shape measurements is lowered in regions of
high density due to blending and obscuration. More importantly,
the uncertainty in photometric redshifts is particularly severe in such
areas, which often results in cluster members being wrongly assigned
a higher redshift. This subsequently creates a small population of
apparently high-redshift outliers that carry an unexpectedly weak
shear component, thus diluting the overall lensing signal. Correcting
for this can be partially achieved with ‘boost factors,” however it
was shown in HD21 and Ziircher et al. (2022) that even though the
excess clustering around high peaks is indeed measured in the data,
the impact this has on the inferred cosmology can be safely ignored.
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It was also shown in Gatti et al. (2024a) that source clustering had a
minimal effect on the peak count statistics, supporting our choice to
neglect this here.

4.6.5 Sampling the likelihood

Our likelihood sampling strategy, described in Section 3.3, assumes
a flat prior for the four main cosmological parameters and the
two astrophysical parameters (Aja and by ), and Gaussian priors
for the parameters associated with photometric redshifts and shape
calibration. This is not strictly speaking a non-informative approach,
however the prior edges about the key measured parameters are
sufficiently broad to have negligible impact on the posterior. Since it
is found in Lemos et al. (2023) that MULTINEST tends to yield slightly
overprecise constraints, we use the NAUTILUS sampler for our fiducial
results, but report both.

We also note that our cosmology sampling strategy is different
from the other KiDS-1000 cosmic shear analyses, mainly due to
the volume where our emulator is valid. For example, A21 sample
uniformly the parameters Sg, w. = Qh?, w, = Qph?, h, and n,.
This choice is designed to avoid regions of parameter space that are
strongly disfavoured by external data, and it was shown in Joachimi
et al. (2021) that while it disfavoured high €, values already in
prior space, the resulting Sg prior space is highly uninformative. We
could have taken a similar approach, however our emulator is much
quicker, and hence it is more natural to sample the full training space,
ensuring a wide sampling of ©,,, Sg, and wy.

Another aspect that currently limits our sampling strategy is the
fact that we hold the value of many parameters fixed, notably €2y,
and n,. In contrast, the DES-Y3 peak count analysis of Ziircher
et al. (2022) use derivatives to marginalize over variation in these
parameters, following the approach we adopt for IA and baryons.
Neglecting to account for these has a small effect on current data sets
(the DES-Y3 joint peaks + power spectrum analysis finds to be of
about 0.130), which are thus ignored here.

4.6.6 M, modes

The observed weak lensing signal can generally be decomposed into a
combination of E- and B-modes, the latter of which can be estimated
for any measurement by rotating all galaxies by 45 degrees; therefore,
for the aperture mass map statistics, it is often referred to as M, (@).
The cosmic shear signal being a pure £-mode generator to first order,
measurements of B-modes are therefore routinely used to assess the
presence of residual systematics in lensing data (see e.g. Ziircher
et al. 2022, for a recent application to peak statistics). Whereas the
two-point function B-mode signal is zero in absence of systematics,
the construction of aperture mass maps on a grid inevitably injects
non-zero M, -modes due to the missing contribution from subpixel
scales (Kilbinger, Schneider & Eifler 2006). This can be important:
for a small-angle cut-off scale of 10 arcsec and an aperture of 6 = 2.0
arcmin, B-modes measured this way can reach about 10 per cent the
size of the E-mode pr signal. This effect is accentuated for larger
cut-off scales and smaller opening angles 6. Given our pixel scale of
35 arcsec, we do expect non-zero M, -modes to be introduced by our
aperture map making, which we fully quantify in Appendix A. We
show therein that the level of contamination is consistent with noise,
that there is no evidence for residual systematics in the data from
this measurement, hence that our cosmological analysis is clean of
B-modes.
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Figure 6. Full inference analysis on the validation set (SLICS-HR) peak count data (blue) with MULTINEST, optionally infused with intrinsic alignments (red)
or baryon feedback (grey). We marginalize over these two effects plus shape calibration and photometric uncertainty. The priors are shown by the dashed grey

lines at the edge of the panels, while the cross-hairs show the input truths.

4.7 Peak count to cosmology pipeline validation

We test our KiDS-1000 cosmology inference pipeline by analysing
simulated data of known cosmology, infused with a controlled
amount of residual systematics. In order to avoid confirmation bias,
these tests are carried out with the validation set, which have not been
used in the cosmology training nor for the covariance estimation, with
an N-body force resolution that is higher than the other simulations
used in this work.?® In addition, we use the forward-modelling
approach presented in Section 4 to infuse the simulated data vectors
with either intrinsic alignments (assuming Aja = 1.0) or baryonic
feedback (with bpyy = 1.0). Fig. 6 shows the results for these three
analysis cases. The maxima of the projected posterior distributions
are all centred on the input truth, except for the by,y parameter,
which are away from zero even in the no-baryon cases. This is a
projection effect similar to those discussed in Joachimi et al. (2021),

20We have further verified that the wCDM cosmology is correctly inferred
when analysing data from the cosmology training set but these tests are easier
to satisfy since the data is used for training the emulator. We discuss these in
greater details in Appendix B.

Chintalapati, Gutierrez & Wang (2022), and Dark Energy Survey
and Kilo-Degree Survey Collaboration (2023), and we have verified
that reducing the lower prior limit to bpyy = —2.0 pushed both the
red and blue maxima towards the ground truth.

In this test, there is a secondary solution for Q,, ~ 0.4 that is
unexpected, and not observed in other peak count analyses (Martinet
et al. 2018; Ziircher et al. 2022; Marques et al. 2024). As detailed
in Appendix B, this feature persists when analysing data from the
cosmology training set at the fiducial cosmology, from the baryons
training set and from the T17 mocks, but can vanish at other
cosmologies. This is caused first by the poor sensitivity of the current
lensing data to 2., as also seen in the large €2, scatter reported in
A21 between different two-point functions, but more importantly by
limits in our GPR emulator, whose residual inaccuracy mostly affects
this parameter. Inferring 2,,, from single mock survey realizations
(as opposed to a mean over several light cones or shape noise
realizations) yields posteriors drawn from either one of these peaks,
resulting in occasional strong biases on this cosmological parameter.
We thoroughly verify that only €2, is affected by this, and therefore
do not report its value in our main analyses. See Appendix B for full
details.
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However, the secondary €2, solution corresponds to an Sg posterior
that is slightly lower than the main solution, which means that if
a particular realization of the data prefers this region, it will on
average have an Sg value about 0.03 lower, which is of the size of
our statistical precision. Conversely, realizations that prefer lower
@, tend to have Sg values that are 0.02 higher than the input truth.
We further observe that this is not always the case: some individual
mock survey realizations from the covariance training set have a best
fit Qp, ~ 0.45, yet their Sg is unbiased compared to the input truth.
Given that this 0.02 — 0.03 shift is about a 1o shift, this potentially
dominates the systematic error budget on Sg, which we therefore
must report aso (syst)=18:8§.

This additional systematics error take its roots from the tilt in the
[Ss — @] posterior, which indicates residual correlation between
these two parameters. We can suppress this tilt, and hence the
additional error, by replacing Sg with ¢ = 03[2,/0.3]%, where o
is the parameter that best fits the [$2,, — 03] degeneracy. According
to this metric, X§ is the most robustly measured quantity from
peak statistics, with no need for a standalone o(syst) term, in
this case a significant advantage. With the validation data, we find

¢ =0.82470033, with @ = 0.582, in excellent agreement with the
input truth of 0.811 with the same «. We report the measurements of
both Sg and X in this paper, but while emphasize is on the former
to better compare with previous measurements from the literature,
the latter is more robust and has interesting properties which we
highlight as well, notably on increasing the agreement with previous
KiDS-1000 measurements and lowering the tension with external
probes.

Back to Fig. 6, we observe that the posteriors on wy and byqry
are wide and significantly overlap with the prior limits, and we
thus expect to be unable to place meaningful constraints on these
parameters with our main KiDS-1000 analysis alone. We observe
a degeneracy in the [Sg — wg] plane here, however we show in
Appendix B that it is not always seen when analysing other
cosmologies, making it impossible to draw physically meaningful
conclusions about this. Only the [Ss — Aja] plane is well constrained
with the current KiDS-1000 peak count analysis: we achieve a 4.4
per cent precision measurement on Sg, with S§HCS~HR — (8161003
(truth is 0.813), and a precision of 04, = 0.45 on Aja, sampling the
likelihood with MULTINEST.

The DES-Y1 pipeline validation is presented in HD21, while that
for the joint KiDS-DES is presented in Appendix B, showing again
an excellent agreement between the inferred cosmology and the input
truth.

5 RESULTS: KIDS-1000

We present in this section the results from our cosmological inference
analyses, beginning with the fiducial KiDS-1000 pipeline, then
reporting on the importance of various selection cuts and systematic
effects. For reasons explained in Section 4.7, we report only the
constraints on Sg and Aja; results are summarized in Table 4 and
further condensed in Fig. 10.

From our fiducial full tomographic KiDS-1000 analysis of the
measurements presented in Fig. 3, we obtain:

SK = 0.733 %505 0 30 a0 A = 071553, ©
TXDS — 0.76575:939 a = 0.600, (10)

after marginalizing over three cosmological parameters (£2,,, wo, and
h) and 11 nuisance parameters (5 X Amg, 5 X Azg, bpary). Unless
explicitly mentioned, all quoted parameter constraints correspond
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Table 4. Summary of our cosmological inference analyses. Posteriors on
Qm, h, and wy are prior-limited, so their constraints are not reported here.
Unless explicitly specified in the first column, the KiDS-1000 measurements
are based on the ‘clean’ data vector, i.e. —1.0 < S/N < 3.0. The last column
presents the maximum a posteriori (MAP) values. Validation of the inference
pipelines on mock data are presented in Appendix B.

Peak count analysis of KiDS-1000

NAUTILUS MULTINEST MAP

Sg Ala Sg Ala Sg
Fiducial 0.73370032 0717040 07337903, 0747043 0.726
ACDM 073215928 0737048 072910026 0.731043 0718
Auto-only 0.734709%0  —0.2%10 07327005 —0.2710 0725
Up to pairs 0.7507003¢ 0107050 074279032 0.117583 0.742
Up to triplets 0.7407093% 0357033 0.740700% 0.37704% 0.738
No tomo 0.69570033  _0.67)7 0.69070038  _0.77)5 0.682

0.036 0.30 0.031 0.27
—25<8/N'<4.0 07205050 0.08%03) 0.717%5%35 0.07%535] 0.728

0.031 0.31 0.023 0.27
—2.5<S8/N'<3.0 0717753 0.14703) 071370053 0221037 0.712
0.0<S/N <40 07397581 0777047 074410553 0.807038  0.734

No IA 0.72610:0%3 - 07207501 - 0.725
No baryons 0.73279032 0717048 0.72579022 0707043 0.725
No syst 0.72910:02¢ - 0723002 —— 0709
No GPR error - — 0732750 071704 0.708
N-body etror - - 0.72573057 0.70108% 0717
No binl 0.7347093 0.107074 07357003 0.107070 0.727
No bin2 0.74070042 —0.78T072 0.74070040 —0.767570 0.738
No bin3 0.77510942 0.977363 077710038 0.957050  0.836
No bind 0.70170:037 0417088 07027003 0.4570%  0.659
No bin5 0.72070:938 053796 0.72370032  0.537037 0.716
Peak count analysis of DES-Y1
DH21 - - 0.73719027 - -
This work 0.743+0:-036 - 074275030 - 0.712
Joint peak count analysis
NAUTILUS MULTINEST
Fiducial 0.73210920 0.827997 073270012 0.82103 0745
ACDM 0.7367501¢ 0817946 0.73610012 0.797040  0.732
No baryons 0.72870020 0.827046  0.7257001%  0.837030  0.726
No IA 0.72610:0% - 0.72975013 - 0.721

to the mean *+lo region of the marginalized posterior, not to
be confused with the point of maximum likelihood in the higher
dimensional space. This is therefore a 3.9 per cent measurement of the
structure growth parameter Xg. The best-fitting model is shown with
the red line in Fig. 3. The joint constraints on two of these parameters
are shown in Fig. 7, along with results from different selections of
tomographic bins. Importantly, the strong Ss — Ajs degeneracy seen
in the no-tomographic case (the tilted dark purple contour) is lifted
by tomographic decomposition, which capture the different redshift
dependence of the cosmological and IA signals. Indeed, in the no-
tomographic case only, and under the NLA framework, large Sg
values can be hidden by large tidal alignments, both fitting equally
well the same data. However, as seen by the coloured histograms in
Fig. 3, the cosmological signal in all tomographic bins is affected by
changes in Sg, while IA mostly modifies the parts of the data vector
that include the lowest tomographic bins. This difference allows one
to break the [Sg — Aja] degeneracy, an important verification of our
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Figure 7. KiDS-1000 constraints on the two best-measured parameters from
peaks count statistics, for different selection of redshift bins. Tomographic
analyses all break the Sg — Aja degeneracy.

IA modelling. This result would be slightly different had we included
redshift evolution of the IA signal, but this effect will be subdominant
given the size of our statistical error bars. This will clearly need to
be investigated with upcoming data sets.

Back to Fig. 7, all tomographic additions contribute to further
tightening the constraints, once again demonstrating the power of
using cross-redshift bins in non-Gaussian statistics. We also observe
that all cases shown in Fig. 7 are consistent, providing statistical
robustness to our measurement.

At our best-fitting parameters the measurement yields a x2
of 250, which reduces to x2;, = 1.22 after dividing by v =
(220 — 4.5) = 205.5 degrees of freedom. Note that although we
use six unconstrained parameters>!' in our likelihood evaluation (the
four cosmological parameters plus Ajy and by,y), it was shown
in Joachimi et al. (2021) that an effective number of v = 4.5 free
parameters better describes the weak lensing data given the existing
correlations and degeneracies, results which we have used here.?? Our
PTE for this measurement is 0.43, which is well above our threshold
of 0.01, using the non-yx? distribution described in Appendix C.
It is worth noting that the KiDS-1000 shear two-point correlation
functions and band power analyses had a lower goodness-of-fit, with
PTE = 0.034 and 0.013, respectively.

In many previous analyses, sampling and marginalization over
wy is often excluded, being considered an extension to the vanilla
ACDM scenario. In the present case, fixing wy to —1.0 when
sampling the likelihood?® results in minor changes to the reported

2I'We do not count as free parameters those nuisance parameters for which
we impose a tight prior.

2t is not guaranteed that the exact same effective number of degrees of
freedom applies here, given that the likelihood is not sampled over the same
volume. We have checked that our goodness-of-fit is robust over choices
for this quantity, with PTE varying between 0.48 and 0.37 over the range
2<v<T.

23This still uses the same wCDM emulator, but only varying the other three
cosmological parameters.
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Figure 8. Effect of S/A cuts on the KiDS-1000 constraints. Large peaks
(S/N> 3) slightly increase the statistical precision on Sg, as seen by
comparing the red and blue contours (see values in Table 4). Negative peaks
(S/N < -1), included in the red but excluded from the grey contours, help in
breaking the [Sg — Aja] degeneracy. The grey and blue contours correspond
to the ‘clean’ and ‘aggressive’ cases, respectively.

(Ss, Tg, Ara) constraints, leading to 0.732790%. 0.76770:92¢ and
0.73t8;3§. Interestingly, we find that the impact of opening up the wg
dimension is far lower than for the two-point statistics, where Troster
et al. (2021) finds a degradation by a factor of a few on the Sg con-
straints (compare their figs 1 and 6). Different degeneracy-breaking
directions are likely causing this difference, which is promising
for upcoming measurements of wy with alternative statistics (see
Martinet et al. 2021b, for a Stage-IV lensing forecast on the dark
energy parameter with peak statistics).

One of the key questions to be explored by beyond-2pt statistics
concerns the exact origin of the non-Gaussian cosmological informa-
tion. Large peaks are often associated with massive galaxy clusters,
which are known to be highly sensitive to the dark energy equation-
of-state parameters for instance, however the wide projection effect
and the fact that baryons, IA, and non-linear physics maximally affect
these large S/N peaks (Martinet et al. 2021b; Harnois-Déraps et al.
2022) complicate the picture. To (partly) answer this question, we
investigate the constraining power contained in the highest (S/N >
3) and lowest (S/AN < 0) bins by removing these sequentially from
the ‘aggressive’ data vector (—2.5 < S/N < 4.0) in the likelihood.
The results are shown in Fig. 8, where we observe that the negative
S/N peaks significantly help break the [ Ss — Aja] degeneracy, while
the highest peaks help in tightening the Sg constraints. In an analysis
that ignored the role of IA, M20 found that the amount of information
about Sg that is contained in negative peaks is quite small, however
here we find that they actually play a key role once IA are forward-
modelled.

5.1 Internal consistency

It has been found in previous cosmic shear analyses (e.g. A2l,
Hamana et al. 2020; Amon et al. 2022) that internal consistency
tests can help differentiate residual systematics from statistical fluc-
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Figure 9. Internal consistency: effect of removing tomographic data from
the KiDS-1000 analysis.

tuations. We therefore stress test our results by removing data from
tomographic bins one at a time before proceeding to the inference. For
example, we consider results obtained from an analysis where exactly
no data from binl (i.e. 1, 1U2...1U2, 1U2U3... 1U2 U3 U4U5) is
used, then no data from bin2, and so on. The results are shown
in Fig. 9, where we observe that all cases are self-consistent, in
agreement with the full selection. Note that the Sg shifts per-bin are
not expected to match exactly those measured with other lensing
probes due to different responses of the cosmic shear estimators to
noise in the data. For example, A21 found that removing the fifth
tomographic bin maximally degrades the precision on Sg, confirming
the large amount of information on this parameter carried by high
redshift bins in shear two-point functions. In contrast, we find here
that removing the third redshift bin has the worst impact on the
precision. The third bin has the greatest number density of galaxies,
hence better captures the information in peak statistics, whose mean
value is affected by the noise level. The constraints on Ay, fluctuate
about the fiducial results by less than 2o, while those on Sg agree
within 1o, as expected.

5.2 Impact of systematics

We present in this section additional variations with respect to the
fiducial analysis, designed to better understand our results and assess
their robustness to residual systematics. We first investigate the
impact of IA on the uncertainty by fixing Aja to 0.72, the best-fitting
value in the fiducial analysis. Doing so, the error bars on Sg shrink
by less than 10 percent, while the mean value is not affected, by
construction. Setting instead the IA parameter to 0.0, we can estimate
the bias on the inferred cosmology if IA are completely neglected.
We measure in this case Sg°"* = 0.725%0 35, 2 0.220 shift from the
fiducial results. Intrinsic alignments are therefore a modest part of
the error budget, suggesting that peak count analyses where IA are
not modelled or held fixed (e.g. M18, HD21, Marques et al. 2024)
likely yield both biased low and slightly optimistic constraints for
Ss.

MNRAS 534, 3305-3330 (2024)

‘We next carry out a similar study this time removing the modelling
of baryons, fixing the associated nuisance parameter to by,y = 0.0.
As reported in Table 4, the measurements are mostly unchanged. As
shown in M21, any non-zero residual feedback tends to lower the
number of high S/N peaks in all tomographic bins, which, when
confronted to fixed data, must be compensated with an increased
value of inferred Ss. Therefore, removing the baryon modelling goes
the other way and reduces the inferred Ss. This is not clearly seen
with the NAUTILUS chains, but the MULTINEST runs shows this shift
with 0.2¢ significance.

Then, removing modelling of all systematics (photo-z, shape
calibration, IA, and baryons) results in Sg values half way between
the no-baryon and no-IA cases, but the error bars are the larger.
This suggests that marginalization over these systematics helps in
finding the true maximal likelihood, which is not at byyy = Aja = 0.
Indeed, the error on Sg becomes smaller than the fiducial case if
Ara and bpyy are fixed to their best-fitting value of 0.72 and 0.5,
respectively, leading to S ™! = 0.728 4 0.030.

The contribution to the error budget coming from the GPR
interpolation uncertainty (equation 7) can be estimated from an
MCMC run where the covariance matrix excludes this term, and
we observe that the error on Sy is reduced by just under 10 per cent.
Similarly, adding an error on small scale non-linear physics estimated
from the scatter between the cosmo-SLICS, magneticum dark matter-
only and the T17 simulations (see Section 4.6.1), can degrade the
error on Sg by 12 per cent. This is an upper limit on the degradation,
given that the cosmology training set has better resolution than these,
hence the real uncertainty is certainly smaller. We do not include this
latter error in the fiducial analysis here, because it is not accurately
estimated, and instead report an upper bound on the effect.

Finally, we compared our fiducial NAUTILUS results with those
from the MULTINEST nested sampler and recover negligible biases in
the inferred parameters, but with smaller error bars (Sg = 0.733 £+
0.032 versus 0.73370:03) for MULTINEST). This is consistent with
previous findings (Lemos et al. 2023) and justifies our choice of
NAUTILUS as our main sampler. We nevertheless report results from
both samplers to ease comparison with previous results.

5.3 Comparison with previous KiDS-1000 results

The Sy measurement presented here is not the first carried out from
KiDS-1000. Previous analyses include the measurements of A21 and
van den Busch et al. (2022), the latter of which used an upgraded
photometric calibration compared to the former, followed by that of
Li et al. (2023b) based on upgraded shear measurements. Loureiro
et al. (2022) carried out a pseudo-C, analysis, Fluri et al. (2022)
used instead a convolutional neural network, while Longley et al.
(2023) re-analysed the data within the LSST-DESC pipeline. We
report these results as the purple symbols in Fig. 10, where we see
that they all seem to prefer slightly higher values of Sy compared
to our own measurements, albeit not by a significant amount. Given
the important differences in the analysis pipelines between these
efforts, it is reassuring to recover < 1o agreements. The constraints
from the wCDM band power analysis from Troster et al. (2021) are
reported in Fig. 11 and are broadly consistent with our peak statistics
constraints, even though peaks are clearly more constraining on Sg
(0.732 £+ 0.032 for peaks versus 0.742 £ 0.047 for band power), due
to the reduced degeneracy in the [Ss — wo] plane. It is worth noting
that both statistics provide similar constraints on the Ajy parameter
(04, = 0.42 for peaks, compared to o4, = 0.36 for band power),
which is reassuring given that both use the same NLA approach. This
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Figure 10. Summary of Sg constraints from this work, from recent cosmic
shear data analyses and from Planck. This figure shows the projected lo
errors.

error is significantly reduced (o4,, = 0.30) when considering the
more aggressive data selection (—2.5 < S/N < 4.0), but since the
associated goodness-of-fit is poor, the results are not straightforward
to interpret. We nevertheless expect tighter constraints on Aja to be
achievable coming from non-Gaussian probes.

We finally remark that our constraints on Xg aligns remarkably
well with the band power measurements presented in A21 (they found

¢ =0.765T00 with @ = 0.58, compared to our measurement of
¢ = 0.76570 030 with & = 0.60).

6 JOINT ANALYSIS WITH DES-Y1

The posterior obtained from the KiDS-1000 peak count analysis
is fully consistent with that from the peak count analysis of the
Dark Energy Year 1 (DES-Y1) presented in HD21. In particular, the
latter finds S§P?' = 0.7377003/, which significantly overlaps with
our SXPS14 results. Other parameters less well measured such as Qy,
and wy are also largely overlapping at the 1o level (see the lower part
of Fig. 11), which means the intersection between the two likelihood
hypervolumes must be large enough to safely combine the two
data sets. Furthermore, both measurements are based on the similar
analysis pipeline and, in particular, exploit the same simulations to
model the cosmology dependence, thereby suppressing the risk of
mis-interpreting the joint data due to non-uniform modelling of the
signal.

6.1 Results: DES-Y1 re-analysis

As detailed in Section 3.3, there are differences between our DES-
Y1 pipeline and that presented in HD21, including the Ss sampling,
the treatment of baryons, the inclusion of the emulator uncertainty
on the covariance and the choice of sampler. The results from these
re-analyses are presented in the lower panel of Fig. 11 (in green and
black). The difference induced on these contours are small, but the
goodness-of-fit improvement is important, with a PTE of 0.53 (using
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Figure 11. Comparison with the previous cosmic shear results. The top part
shows a comparison with the KiDS-1000 band power analysis from Troster
et al. (2021, based on MULTINEST), while the bottom part compares the KiDS
results with the DES-Y'1 peak count analysis from HD21 (black) along with
current re-analysis (green) and detailed in Section 6. Note that the posteriors
obtained from the NAUTILUS sampler are typically wider and more accurate
than those from MULTINEST used in HD21. The excellent agreement seen in
this figure warrants the joint survey analysis.

the same PTE estimator as HD21, we obtain 0.25, which is still a
massive improvement compared to their PTE = 0.005).

We remark that our joint pipeline contains a slight inconsistency:
we include TA with the NLA model in the KiDS-1000 data (with
marginalization over Ajs) and with the non-linear halo-based IA
model for the DES-Y1 data (without marginalization, but with an
on/off switch instead). We verify the impact of this feature by
analysing the likelihood with the DES IA model turned on and off and
report on the difference, which is subdominant (ASg = 0.002). We
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also compare the results from turning off the modelling of baryons,
and from replacing the wCDM by a ACDM analysis, finding in all
cases results consistent with the fiducial analysis. The re-analysis
presented in this work has slightly larger error bars compared to that
of HD21, due to the marginalization over baryons, and to the fact that
NAUTILUS yields constraints slightly larger compared to MULTINEST,
as summarized in Table 4. Notably, we infer:

SPES = 0.7437003¢ | wPES — 07627093 witha = 0.559. (11)

6.2 Results: joint KiDS + DES

We present in this section the results from our joint KiDS-
1000 + DES-Y1 peak count analysis. Sampling the joint likelihood
with our fiducial setup, we achieve improved constraints on Sg and
¢ with:

joint, WCDM X joint, wWCDM .
sy = 07325000, =" = 0.75970019 (12)
and

joint, ACDM . joint, ACDM X
sy =0.7357001¢, =™ =0.7625017 (13)

computed with o = 0.572 in both cases. These are the tightest
results obtained from non-Gaussian cosmic shear statistics to date,
comparable to the recent joint ACDM analysis of the KiDS-1000
and DES-Y3 data (Dark Energy Survey and Kilo-Degree Survey
Collaboration 2023), which measured S}* = 0.792(01. The 2D
posterior is shown in Fig. 12 (in blue) and compared to the fiducial
KiDS-1000 (red) and DES-Y1 (green) peak statistics constraints.
Recall that the Ajn parameter affects only the KiDS likelihood
since, as explained in the previous section, the DES likelihood
assumes instead a fixed halo-based IA model with no free parameter.
We should therefore use caution when interpreting this parameter.
The reported value is close to the point of maximum likelihood
(SML = 0.728), and the size of the error bars on S; is consistent with
our expectation: for example, we read from Table 4 that the ACDM
KiDS-1000 analysis has a mean error of og, = 0.029. Scaling this
precision by the square root of the area, we naively predict a joint
survey error of around 0.018, and obtain 0.017. The error would be
slightly larger had we included as well a marginalization of the 1A
in the DES-Y1 part of this analysis, possibly explaining this slight
difference. At the joint best-fitting cosmology, the PTE values for
the KiDS and DES pipelines are basically unchanged, while the
joint analysis has a x2; = 1.15 and a PTE of 0.96, all satisfying our
goodness-of-fit criteria.

If we restrict the joint analysis to wy = —1.0, the Sg values are
minimally affected while the uncertainty is reduced, as expected
from lowering the dimensionality of the likelihood. Alternatively,
turning on the IA modelling in the DES likelihood only yields a 0.2¢
downward shift, also expected whenever IA modelling is added.
The smallness of this shift is once again showing that the intrinsic
alignment do not significantly impact the peak count statistics as
measured in the DES-Y1 data. In comparison, setting to zero the IA
model in both KiDS and DES results in SJ;‘""“O_IA =0.7257 005,
Holding fixed the baryonic feedback parameter to bpyy = 0.0 has
similar consequences on this joint analysis, shifting the best-fitting
value to Séomt‘"o_bary = 0.72770010, a 0.250 shift compared to the
fiducial case. All these values are summarized in Table 4 and in
Fig. 10 (with the brown symbols).

The dark energy equation-of-state is constrained from this joint
analysis, with

wi™ = 1124042 (14)
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Figure 12. Joint peak count analysis of the KiDS-1000 and DES-Y 1 data. In
the upper panel, the vertical bands indicate the 1o and 20" confidence intervals
from the DES-Y1 re-analysis presented in this paper. The Aja parameter
shown here describes only the IA signal in the KiDS likelihood, since the IA
is fixed to a non-linear model in the DES likelihood (see the main text for
details).

which is the first measurement of this quantity from peak statistics,
and arguably one of the best from cosmic shear-only data analyses.
The upper limit is close to the prior edge on wy, which might lead to
a slight underestimation of the error on this side. However, this mea-
surement is robust against the choice of sampler (wy = —1.0970%
for MULTINEST), against baryon modelling (wg = —1.057)3} setting
brary = 0.0), IA (wo = —1.13%03] setting Ay = 0.0), and scale cuts
(wo = —0.9587005; when including the aggressive S/N cut in
the KiDS-1000 data vector). As shown in Martinet et al. (2021a),
aperture-mass maps statistics are highly sensitive to dark energy
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and these results seem to be showing exactly that. Previously, the
shear two-point function measurement from Troxel et al. (2018)
on DES-Y1 achieved wy = —0.77103 when varying the baryonic
feedback model, using the MULTINEST sampler. The GCNN analysis
of Fluri et al. (2022) was also able to set constraints on dark energy,
with wy = —0.93%033, although they recognize that their results are
affected by the prior boundary on the low side, just like ours is
on the high side.?* Similarly, HD21 found wy > —1.5, also prior-
dominated on one side. Other cosmic shear measurements of wy
involve additional data (Troster et al. 2021; Abbott et al. 2023),
making this an unfair comparison.

It is worth mentioning that all peak count analyses based on the
cosmo-SLICS yield Sg constraints that are lower than the 2PCFs
fiducial analyses. This could be pointing to limitations in the training
set, but is quite speculative at this stage given that the g values
align well. Further investigations and novel simulation suites would
be required to ascertain this, which we post-pone for future work.

6.3 Tension with Planck

The Ss tension between recent CMB anisotropy and weak lensing
data analyses is drawing a lot of attention, as it could point towards
new physics or hidden systematics (see e.g. Abdalla et al. 2022,
for a review). The Planck mission reports S¢'"* = 0.830 & 0.013
(Planck Collaboration VI 2020), which is higher than many lensing
results (see Amon et al. 2023, and references therein). The tension
T can be evaluated with a number of metrics, and we use here a
relatively simple one used in A21, which compares the difference in
the mean with the combined variances, var[Sg]”/@"ek | var[ Sg]Peas

Planck peaks
S, 8 - 8

15)

T =
\/Vﬁr[Sg]Pl“""k + var[ SgJpeaks

With the fiducial setup shown in Table 4, and using the above
definition, our results from the KiDS-1000 peak count analysis are
in T = 2.00 tension with the Planck nominal constraints on Sg from
their wCDM analysis. Troster et al. (2021) finds a similarly low
tension with the same KiDS-1000 data in a wCDM analysis, either
using this simple tension metric or a more sophisticated method
based on the full shape of the posteriors. Similarly, we evaluate our
joint KiDS-DES analysis to be in t = 2.7¢ tension with Planck, an
increase that is driven by the decrease in error bars. Using instead
the MAP values (listed in Table 4) lowers the KiDS tension to 1.70,
and the joint-survey to 1.65.

The tension reaches T = 4.1 in our joint-survey ACDM analysis,
which could be pointing to a resolution of the Sg tension that includes
modification to the dark energy equation of state, as suggested by
Troster et al. (2021) and by the recent results from the Dark Energy
Spectroscopic Instrument (DESI Collaboration 2024), however such
statement cannot be definitive until better w measurements are
obtained from cosmic shear data.

Note that this tension is not only seen in weak lensing, but also
in other late-time probes, e.g. data involving galaxy clustering,
as recently summarized in Alonso et al. (2023, see their fig. 7)
and reviewed with greater details in Abdalla et al. (2022). The

24We review the A21 definition that constraints are uninformed by the prior
when the posterior drops below 0.135 of its maximum at the edges of a
uniform prior volume. In the case of wo we find that the posterior is slightly
above this threshold (0.156) at the upper edge. As this is at the borderline
of the A21 criteria, we therefore caution that the error on this side might be
slightly underestimated.
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Figure 13. Joint constraint on Sg, wg, and Eg‘, where o = 0.572, comparing
here the combined cosmic shear surveys with the CMB results. The tension
is lower on Xg than on Sg.

current work aligns with the existing trend, without providing an
obvious solution. Again, large unaccounted contributions from IA
and baryons could push the inferred Sg value towards Planck, but our
analysis prefers lower values: in particular, we measure bpary < 1.05
at 95 percent CL in the KiDS-1000 analysis, and < 0.82 in the
joint analysis, excluding baryonic feedback models that are stronger
than the magneticum. Also, the redshift estimation methods used
to analyse the DES-Y1 data are suboptimal compared to recent
developments (see e.g. Hildebrandt et al. 2021), potentially causing
biases of up to 0.03 in the inferred Sg value. The observed tension
with Planck would be different if that bias was real.

Interestingly, the tension on Xg is reduced to 7 = 0.720 with
the KiDS-1000 data, and to v = 1.33c with the joint data, in
both cases evaluated at the o value preferred by the cosmic shear
measurements.? This is in part caused by a degradation of the CMB
constraints along this quantity, which completely relaxes the tension,
and in part by a different projection angle of the high-dimensional
posterior, as seen in Fig. 13. At the same time, when holding w fixed,
the tension on Xy is again increased reaching 2.30 for KiDS, slightly
lower than the 30 reported in A21, and 3.10 for our joint analysis.
To summarize, the tension with Planck on Sy is lowered in wCDM
compared to ACDM, and is further lowered when considering the
more robust Xg parameter instead of Sg. This is discussed in more
details in Appendix B.

A more in-depth analysis of this tension requires a robust determi-
nation of the inferred €2,,, parameter. We defer this improvement to
future work, which will benefit from a denser training set, yielding a
more accurate and robust emulator.

7 CONCLUSIONS

We report in this paper a 4.4 per cent measurement of Sg from the
tomographic peak count statistics measured from the KiDS-1000
data. Our simulation-based inference method exploits the non-linear
features extracted from aperture mass statistics, sensitive to scales
as small as 2.0 arcmin. We model the cosmological dependence
with simulated wCDM weak lensing light cones, we estimate the
covariance matrix numerically, and forward model the effect of in-
trinsic alignments, baryonic feedback, photometric redshift error, and
galaxy shape miscalibrations. We find a value of SKPS = 0.73375:932,
which aligns well with previous KiDS-1000 measurements. We
show that our results are robust to residual systematics and that,
of these, intrinsic alignment of galaxies plays the most important

25The PlanckwCDM measurements of g are of 0.793t8:8§? and O.797f8:8§§
for the KiDS-1000 and joint-survey o parameters, respectively.
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role, shifting the best-fitting Sg value by 0.22¢ if left unmodelled.
We also show that the most robustly measured parameter in our
analysis is TXPS = o5 (2,/0.3)% = 0.76570:93, with a = 0.60, in
excellent agreement with previous KiDS-1000 analysis.

The inferred posterior distribution is consistent with the peak count
measurement carried out on the DES-Y1 data using a similar analysis
pipeline (HD21), allowing us to jointly analyse the two data sets,
which yields S3"™ = 0.73270:020, one of the tightest constraints on
this parameter from lensing data alone. The combined data sets have
enough statistical precision to allow the first measurement of the dark
energy equation-of-state parameter from non-Gaussian statistics:
wy™ = —1.12%041, in agreement with the ACDM scenario, and
robust to variations in the analysis choices.

Our best-fitting Sy'™ is also in statistical agreement with all
previous KiDS-1000 analyses and with the HSC-Y3 and DES-Y3
y-2PCF results, but lower than the DES-Y3 measurements from
peaks and moments, and in 2.70 tension with Planck. This joint-
survey tension increases to 40 in our ACDM analysis, but lowers
to 2.3 and 3.10 when considering instead the Xg parameter, for the
KiDS-only and joint survey analyses, respectively.

Our pipeline has been thoroughly tested, however we recognize it
is incomplete. As detailed in Section 4, we hold fixed a number of
cosmological parameters, which likely affect our results, including
Qp, ng, and m,. We also consider a single baryonic feedback
model (although we allow its amplitude to vary), knowing that
other hydrodynamical simulations would provide slightly different
responses. Furthermore, we model A with the redshift-independent
NLA model, which we know is an incomplete effective model, and
we neglect source clustering, as it was shown to be completely
subdominant. Finally, we have identified a systematic effect in our
Gaussian process emulator that is caused by the relatively small
number of training nodes, preventing us from extracting meaningful
information about €2, however all other parameters are unaffected
by this. This limits our ability to further study in higher dimensional
space the potential Sg tension with the CMB. Addressing these will
therefore be the object of future work. It will also be informative to
compare our results to other non-Gaussian probes of cosmic shear,
and possibly combine the methods to further reduce the uncertainty
on Sg and wy.
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APPENDIX A: B-MODES

To leading order, B-modes are not produced by gravitational lensing,
hence their detection in cosmic shear data is generally regarded as an
indication of residual systematics. As mentioned in Section 4.6.6, the
aperture mass map statistics constructed on a grid inevitably induces
B-modes from the missing subpixel contributions, resulting in a non-
zero M, signal. This section presents a careful investigation of the
amplitude, origins, and consequences of these induced B-modes.
In particular, and we find that finite sampling of the shear field
itself is also a source of B-modes in aperture mass maps, on top of
pixelization.
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Figure Al. Noise-subtracted peak count statistics measured from B-modes
data (black squares) for a representative subset of the 30 tomographic bins,
compared with the E-modes cosmological predictions.

We first quantify here the strength of these effects by measuring
the peak function from M, (@) in our data, i.e. aperture mass maps
in which the galaxies are rotated by 45 deg. The (noise-subtracted)
signal Np‘;aks is shown in Fig. Al for a representative subset of the
tomographic bins. We observe that the residual signal is much flatter
than what we would expect from a cosmological signal consistent
with pure noise with a p-value of p = 0.12, above the threshold of
p = 0.01 (the same threshold is used in the main text, and in the DES-
Y3 results for this type of hypothesis testing, see Appendices G and D
of Abbott et al. 2022; Ziircher et al. 2022, respectively). This agrees
with A21, namely that there is no evidence of residual B-modes in
the KiDS-1000 data. It is therefore safe to keep all data entries in our
inference, but investigate further the source of the M, (0) signal seen
by eye in Fig. A1 to confirm it is not problematic.

We carried out peak count measurements of M, (6) on 20 full
survey realizations from the covariance training set (again, these
are pure E-mode mocks rotated by 45 degrees for this exercise),
expecting to find large p-values in all of these trials. Instead, this test
revealed that p-values range from 107'° to 0.1. Some of these trials
seem to rule out completely the null hypothesis (that the B-modes
are consistent with pure noise), even though no B-mode exists at the
catalogue level. The observed M, signal must therefore come from
the aperture map method itself, and is consequently a poor test for
residual observational systematics.

Interestingly, the measured NPBeaks averaged over 20 noise realiza-
tions has a p-value of 1.0, namely <N£aks) = 1‘};’;15(2, suggesting that
these B-modes contain mostly noise, even though on a case-by-case
some realizations see strong deviations. We hypothesize that this
stems from E-modes leaking into B-modes due to an incomplete
knowledge of the shear field: assuming a noiseless, pure E-mode
shear field, the average cross-shear y, on a circle around every
point in the field vanishes by definition, and thus M () = 0 holds
everywhere. However, that is no longer guaranteed once the shear
field is only known at a discrete set of positions, as the average
¥x on a circle no longer necessarily vanishes. We investigate this by
varying the number of source galaxies in our simulations. We achieve
this by running our measurements on Stage-IV mocks created with
a number density of 30.0 arcmin, introduced in Heydenreich et al.
(2021), without any tomographic split. We measure on these the
M, signal from maps sampled (a) at every pixel location, (b) at all
galaxy positions, and (c) at galaxy positions downsampled to match
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Figure B1. Tomographic weak lensing peak function in the baryons training
set. The coloured lines are obtained by scaling the GPR predictions (at the
magneticum cosmology) by the byyy parameter, over the full prior range,
demonstrating that peak statistics are fairly insensitive to changes in baryon
feedback.

the KiDS-1000 number density. In the first case, we find that the B-
mode field M, (@) vanishes completely (up to numerical precision).
The second case induces B-modes of approximately 0.5 per cent of
the E-mode signal, whereas the third case (KiDS-1000-like number
density) yields B-modes of approximately 4 per cent of the E-mode
signal. We note that this is likely to be exacerbated by splitting the
galaxies into different tomographic bins, which further decreases the
number density per aperture. We further note that these tests were
performed in the absence of shape noise to better isolate this effect.

More importantly, since these non-zero Npiaks are caused by finite
sampling of the shear field, and that this sampling is exactly the
same for the data and the cosmology training set, the same amount
of leakage should occur on average. In particular, this should be
fully converged in simulation-based model once averaged over the 50
mock survey x 10 noise realizations per cosmology (20 was shown
to be enough in the discussion above). Therefore our inference must
be immune to these by construction.

APPENDIX B: VALIDATION OF THE
COSMOLOGY INFERENCE PIPELINE

In this section we present a series of validation tests we per-
formed on our cosmology inference pipeline. First, we verified that
the derivatives 0 Npeaks/0Am4, O Npeaks/0AZa, 0 Npeaks/Obpary, and
ONpeaks/0A1a are consistent with the results found in HD21 and
Harnois-Déraps et al. (2022). The element-by-element values are
different since these are survey-specific, but they agree qualitatively.
We next verified that the impact of increased N-body force is of no
consequence, consistent with HD21. This is achieved by carrying
the inference with the validation set (high-resolution) instead of the
mean of the covariance training set, as done in HD21.

We also verified that the peak function measured from the baryons
training set is consistent with the cosmology training set in Fig. B1.
This is an important test, as the baryon mocks based on a completely
independent N-body code. This figures also shows the impact of
varying by, on the data vector. Stronger feedback models (purple)
tend to have fewer large peaks (S/N > 2), and more in the range
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Figure B2. Cosmological constraints inferred from mock data vectors
extracted from two of our cosmology training set models.

—1 < 8/N < 1.5. This is best seen in panel 3U5 but a common
feature to most panels. A few points lie outside the GPR predictions,
which suggest that differences between N-body solvers/ray-tracing
codes have a non-negligible impact on the data vector. We investigate
this below, but first we examine in Fig. B2 the accuracy of our
KiDS-1000 cosmology inference pipeline by showing the recovery
of input parameters for two different cosmologies selected from the
cosmology training set: the fiducial ACDM model as well as wCDM
model 12. We find again an excellent agreement, except that the
double peak solution in €2, when analysing the former model. This
was first seen with the validation training set in Fig. 6, but is absent
from model 12; it therefore seems to be a cosmology-dependent
feature, most likely associated with limits in our GPR emulation.

No parts of the data vector can easily explain the double peak
solution in 2;,. We have examined the posterior distributions result-
ing from our likelihood sampling and identified three tomographic
bins (bins 1, 1U2, and 1U2U3) where the data points were scattering
outside the posteriors. Removing these from the analysis made minor
differences, slightly broadening the contours; we therefore do not
deem justified to remove them from the main analysis.

When inferring the cosmology from the magneticum directly or
the T17 simulations, the results on all cosmological parameters are
severely biased, as seen by the red contours in Fig. B3. As discussed
earlier, this is likely caused by differences in the resolution of the
N-body calculations and/or the ray-tracing algorithm being used
in the creation of these mocks. In particular, the magneticum and
T17 mocks both have lower mass resolution than the main cosmo-
SLICS training set, which inevitably affects the accuracy of their
measured peak statistics at scales as non-linear as those targeted
by this analysis. One way to avoid these biases is to calibrate our
emulator and explicitly enforce the desired data vector (magneticum
or T17) at some point in parameter space. This can be achieved, for
instance, by multiplying our theory by a calibration factor computed
from the target data vector and the GPR prediction at the target
cosmology. This is shown as the blue contours in Fig. B3, where
the input cosmology is now correctly recovered, but the double
@, solution persists, even if varying only that single parameter in
the MCMC. We note that the magneticum and T17 mocks require
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W Magneticum-dm
W Recalibrated GPR

Figure B3. Cosmological constraints inferred from mock data vectors
extracted from the magneticum dark matter-only model, with (blue) and
without (red) recalibrating the emulator (see the main text). Similar results
are obtained with the T17 simulations.

distinct calibrations, and that swapping them yields results almost as
biased as the original case, due to their differences in small scales
resolution. Because of this non-universality we do not calibrate the
prediction in our main analysis, but optionally include the spread
in these correction factors in the covariance matrix, accounting for
added uncertainty about small scales physics.

The important conclusions drawn from these tests are that (1)
small-scales structures that are not fully resolved or converged in
N-body simulations greatly affect the non-Gaussian statistics we are
investigating here, hence future analyses with increased precision
will need to pay particular attention to such considerations, and (2)
the sparsity of our cosmological training nodes impacts the GPR
emulator mostly on the 2, dimension, while all other cosmological
parameters are well recovered. This means that the current analysis
is robust in its measurements of Sg, wo, Aja, and by, however our
constraints on the matter density are unstable and hence we do not
report on them. Since we use the same training nodes for the KiDS
and DES analyses, this applies also to the joint-survey constraints.

We finally tested the joint-survey pipeline with the validation set
defined for both KiDS-1000 and DES-Y1 analyses, and report our
results in Fig. B4. We observe that it recovers very well the input truth:
the best-fitting value is Sy = 0.818™0 032, the maximum-likelihood
value is 0.831, while the truth is 0.813. These results are obtained
from wCDM pipeline assuming the ‘clean’ selection of S/N bin,
marginalizing over all nuisance parameters. All input parameters are
accurately recovered, and we see here again the double €2, solution,
demonstrating that this parameter is subject to artificial degeneracies
caused by our emulator, supporting our choice to not trust nor report
its value in the main analysis. We also verified that the chain elements
that fall in the secondary solution also tend to have a lower Sg by about
0.03, which is larger than our statistical precision, however these
are highly suppressed compared to the KiDS-1000 only pipeline,
justifying our choice not to include this as a standalone systematic
error. Again, the secondary solution yields unbiased g inference,
making the latter a more robust statistics.

We illustrate this last point in Fig. B5 where we present the
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Figure B4. Joint-survey mock analysis of the validation training set.

projected posteriors on og, Sg, and Xg versus 2, for our analyses of
the KiDS-1000 data and of the validation training set. The KiDS-
1000 inference prefers large €2,, values, consistent with being drawn
from the secondary solution discussed earlier. If that is the case,
the inferred value of Sg might be biased low, but Xg is robust. To
illustrate this, we split the fiducial MCMC chain of the simulation
analysis into low- and high-$2,, regions, and recover that both yield
the similar ¥g posteriors, while their Sg values differ by up to 0.03.
We also show in this figure how the tension with Planck evolves
under these change of variables.

APPENDIX C: GOODNESS-OF-FIT FOR
STUDENT-¢t LIKELIHOODS

Noisy numerical covariance matrices need to be treated carefully
in likelihood analyses to avoid biases incurred during the inversion.
A commonly used approach is to debias the inverse matrix with
the Hartlap-Anderson coefficient (Hartlap et al. 2007), however this
often leads to overestimates in the contours. Instead, Sellentin &
Heavens (2016) suggested to replace the Hartlap-corrected multi-
variate Gaussian likelihood by a Student-¢ distribution, which better
accounts for the noise present when estimating the matrix from N
realizations of the data.

Once the likelihood has been sampled and the best-fitting pa-
rameters found, one of the key subsequent steps is to estimate the
goodness-of-fit. This is usually achieved by means of the p-value,
which determines how likely it is that the difference between the
best-fitting model and the measured data is due to a random noise
fluctuation. Given the number of degrees of freedom v, best-fitting 2
measurements from data that is well described by a multi-Gaussian
likelihood will be sampled from a x?2 distribution. Using this metric
with noisy numerical covariance matrices will yield p-values that
are biased towards low values if the inverse matrix is not Hartlap-
corrected. Conversely, if corrected, the p-values are at risk to be on
the high-side (Sellentin & Heavens 2016).

This is demonstrated by a toy model, which is created to follow
our analysis: we generate a matrix A with 210> Gaussian random
numbers (the same dimension as our KiDS-1000 analysis) and define
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Figure BS. (left panel:) KiDS-1000 analysis: posterior distributions on the matter density and on the three clustering parameters (o3, Sg, Xg). The inferred
value of Qy, from the data is higher than in previous KiDS-1000 analyses, consistent from being drawn from the biased secondary solution discussed in the
main text, caused by our emulator. Overplotted in purple are the Planck results, which are in mild tension with KiDS for the first two clustering parameters, but
in full agreement with Xg. (middle:) Mock analysis, here carried out on the validation training set (orange, dashed). Our sample is further split into low- and
high-Q, parts (dark and pale blue, respectively), highlighting the residual [Sg — Q] degeneracy, which vanishes for Xg. (right:) Same as middle panel, but

here showing ACDM analyses.

a ‘true’ covariance matrix © = A7 A. We also define the ‘true’ data
vector as the zero-vector.

Afterwards, the following procedure is repeated 10000 times:
we generate 1240 realizations of a multivariate normal distribution
with mean 0 and covariance X, from which we estimate our sample
covariance matrix C, mimicking the covariance training set. We
then also draw one additional realization X’ of the same multivariate
normal distribution, which constitutes our measurement. Finally, we
calculate the p-value given X and C and a chosen p-value test,
assuming that the degrees of freedom equal the number of elements
in the data vector (since our toy model contains no free parameters).

This procedure yields 10 000 p-values which, if the chosen test is
appropriate for our analysis, form a uniform distribution between
0 and 1. As can be seen in the lower panel of Fig. C1, the yx?-
based p-value tests are heavily biased towards 0, as is expected.
The Hartlap-corrected p-values are more uniformly distributed, but

still show slight biases towards 0 and 1, and consequently a reduced
probability towards central values. Although this effect is relatively
weak for our setup, it becomes more prominent if the degrees of
freedom increase. Nevertheless, this means that a Hartlap-corrected
p-value test is more likely to favour extreme values, but it appears to
be relatively robust.

An unbiased solution to this problem can be achieved by deriving
the sampling distribution of our quadratic statistics?® defined in
equation (6), specifically:

T2 = (@ — X(Trest—1))” C7H(d — X (Wpest—s)) (C1)

20The quadratic statistics described by equation (6) should not be labelled
x?* unless it is sampling a Xf distribution. We used the x2 notation in the

main text only to align with the notation in the weak lensing literature.

MNRAS 534, 3305-3330 (2024)

$202 JoquisAoN G0 Uo Jesn dieys suusyie) Aq G8Z£8/ //SOEE/v/YEG/8101e/seluw/woo dno olwepeoe//:sdiy Wwoly pepeojumoq



3330 J. Harnois-Déraps et al.

nu=400 mmm Hotelling's T2

2
10 1 -
mmm )’ (Hartlap corrected)

10% {

10? {

10*

107 1 .
nu =210
103 B
102 4
0.0 0.2 0.4 0.6 0.8 1.0
p-value PDF

Figure C1. Distribution of p-values extracted from our toy examples based
on three commonly used goodness-of-fit statistics, for v =210 (lower)
and v = 400 (upper). Given a noisy numerical covariance matrix, only the
Hotelling’s T2 distribution returns p-values evenly sampling the range [0,
1]; the x?2 distribution (orange) is heavily skewed towards low p-values,
while the Hartlap-corrected x2 (green) is slightly skewed towards extrema
p-values.

where the data d has dimension p and is drawn from a normal distri-
butiond ~ N(u, X), for unknown mean g and unknown covariance
%, and the C covariance is drawn from a Wishart distribution with
Niims — 1 degrees of freedom (Nims — 1)C ~ W, (2, Ngims — 1).

We now define LLT = £~ and w = L (d — x(pest—git)), such
that Cov [w, w] = 1, the p x p identity matrix. With this, we can
express equation (C1) as

szest—ﬁt = (Ngims — 1)wTV_1w s (C2)

where we have defined V = (Ngms — 1)LCL” and note that V ~
W,(1,, Ngims — 1). We can now introduce an orthogonal matrix
MT™M =1, with the first row being 7wy and the others orthogonal
to it, such that

lwll
0
Mw = ) (C3)

Conditional on M, we have that Q = MVMT ~ W,(1,,, Ngms — 1).
Since this does not depend on M, Q ~ W,(1,, Ngins — 1) also holds
in the unconditional case. With this transformation, equation (C2)
can be written as

—1\2
T2 = Nams — Dllwl? (@77, (C4)

with (Q‘l)f1 being the 1-1 entry of Q~'. Writing out ||w]|? as
w'w = (d — x(Toes—i)” LT L (d — x(Wrest—i))
=(d — x(Tpest—50)" 7 (d — X (Wpest—t))

we recognize this as the usual x? quantity where the true covariance
% is assumed to be known. In other words, ||w||*> ~ x2, with v =
P — ner, Where neg is the effective number of free parameters that are
being varied when finding 7 peg— g, Which accounts for the fact that the
model may contain both constrained and unconstrained parameters.
Returning to the last term in equation (C4), we have
0 = ot
(e7) ! (o) 1

where Qp; and Qy are the 1 x(p—1) and (p— 1) x(p—1)

submatrices of Q. From this it follows (e.g. Gupta & Nagar 1999) that

ﬁ ~ Wi(ly, Ngms — p) = Xﬁmm_ - Putting things together, we
11 o

(C5)

=0n— 01050, (Co)

therefore have that

(Nsims - 1)(P - neff)

XZ
T2 i ~ (Neo — 1 Pheff
best—fit ( s ) 2 (Nsims_p)

XNsims_P

FP —neff, Nsims—p»
€n

where Fp,_ ;. Ngms—p 18 the F-distribution. For the case of no free
parameters, n.; = 0, this reduces to Hotelling’s T? distribution
(Hotelling 1931).

To calculate a p-value, one just has to evaluate the cumulative
distribution function of the F-statistics at @—»33?% T2, replacing
the x2(p — n.g) distribution. Clearly seen in Fig. C1, this constitutes
an ideal solution for our toy model, so we use this statistics to estimate
the p-values of our measurements.

When applied to our fiducial KiDS-1000 peak count data vector,
along with the best-fitting model and our numerical covariance
matrix, we obtain p-values of 0.43 with the (unbiased) Hotelling’s
statistics and for the (slightly biased) Hartlap-corrected x approach,
and 0.02 for the (heavily biased) normal x? statistics.

In this toy example, the difference between the Hotelling’s and the
Hartlap-corrected p-values distributions is quite small, however this
is not always the case. The upper panel of Fig. C1 shows a second
case where now the number of degrees of freedom has been increased
to v = 400, overshooting our joint-survey setup, but close to typical
sizes of data vectors used in 2pt statistics. Keeping Ngims unchanged,
in this case the Hartlap-corrected distribution shows a clear excess
towards low and high p-values. The Hotelling’s distribution is still
flat however, showcasing the advantage of the F-statistics.

This paper has been typeset from a TEX/IZTEX file prepared by the author.

© 2024 The Author(s).

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

MNRAS 534, 3305-3330 (2024)

$202 JoquisAoN G0 Uo Jesn dieys suusyie) Aq G8Z£8/ //SOEE/v/YEG/8101e/seluw/woo dno olwepeoe//:sdiy Wwoly pepeojumoq


https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 DATA AND SIMULATIONS
	3 METHODS
	4 SYSTEMATIC UNCERTAINTIES
	5 RESULTS: KIDS-1000
	6 JOINT ANALYSIS WITH DES-Y1
	7 CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: -modes
	APPENDIX B: VALIDATION OF THE COSMOLOGY INFERENCE PIPELINE
	APPENDIX C: Goodness-of-fit for Student- likelihoods

