
MNRAS 534, 3808–3831 (2024) https://doi.org/10.1093/mnras/stae2243 
Advance Access publication 2024 September 27 

Impro v ed weak lensing photometric redshift calibration via StratLearn 

and hierarchical modelling 

Maximilian Autenrieth , 1 ‹ Angus H. Wright , 2 Roberto Trotta, 3 , 4 , 5 , 6 ‹ David A. van Dyk 

, 1 David C. Stenning 

7 and Benjamin Joachimi 8 
1 Department of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK 

2 Ruhr University Bochum, Faculty of Physics and Astronomy, Astronomical Institute (AIRUB), German Centre for Cosmological Lensing, 
44780 Bochum, Germany 
3 SISSA–International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy 
4 Department of Physics, Imperial College London, Blackett Laboratory, Prince Consort Road, SW72AZ, London, UK 

5 Italian Research Center on High Performance Computing, Big Data and Quantum Computing, Italy 
6 INFN–National Institute for Nuclear Physics, Via Valerio 2, 34127 Trieste, Italy 
7 Department of Statistics and Actuarial Science, Simon Fraser University, 8888 University Drive, Burnaby, B.C., Canada 
8 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom 

Accepted 2024 September 19. Received 2024 July 10; in original form 2023 December 12 

A B S T R A C T 

Discrepancies between cosmological parameter estimates from cosmic shear surv e ys and from recent Planck cosmic microwave 
background measurements challenge the ability of the highly successful � CDM model to describe the nature of the Universe. 
To rule out systematic biases in cosmic shear surv e y analyses, accurate redshift calibration within tomographic bins is key. In 

this paper, we impro v e photo- z calibration via Bayesian hierarchical modeling of full galaxy photo- z conditional densities, by 

employing StratLearn , a recently developed statistical methodology, which accounts for systematic differences in the distribution 

of the spectroscopic training/source set and the photometric target set. Using realistic simulations that were designed to resemble 
the KiDS + VIKING-450 data set, we show that StratLearn -estimated conditional densities impro v e the galaxy tomographic bin 

assignment, and that our StratLearn -Bayesian framework leads to nearly unbiased estimates of the target population means. This 
leads to a factor of ∼ 2 impro v ement upon often used and state-of-the-art photo- z calibration methods. Our approach delivers a 
maximum bias per tomographic bin of � 〈 z〉 = 0 . 0095 ± 0 . 0089, with an average absolute bias of 0 . 0052 ± 0 . 0067 across the 
five tomographic bins. 

Key words: methods: statistical – galaxies: distances and redshifts – large-scale structure of Universe – cosmology: observa- 
tions. 
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 I N T RO D U C T I O N  

osmological parameter estimation from the cosmic microwave
ackground (CMB; Planck Collaboration 2020 ) and from tomo-
raphic cosmic shear measurements (e.g. Asgari et al. 2021 ; Abbott
t al. 2022 ; Sugiyama et al. 2023 ) lead to discrepancies in the
stimated clustering strength of dark matter (see Abdalla et al.
022 for a recent re vie w on cosmic tensions). Such systematic
iscrepancies could challenge the highly successful dark energy and
old dark matter paradigm ( � CDM) in describing the true nature
f the Universe. Of course, such a claim needs critical and detailed
onsideration of the surv e ys and analysis steps performed by the
arious collaborations to rule out systematic biases in the different
rocedures, which might explain said discrepancies. 
Extensiv e e xplorations of various surv e y, model, and analysis
odifications have been performed in recent cosmological interpre-
 E-mail: m.autenrieth19@imperial.ac.uk (MA); rtrotta@sissa.it (RT) 
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b

Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
ations of the current generation of cosmic shear surv e ys, the Dark
nergy Surv e y (DES), the Hyper-Suprime Camera (HSC) surv e y, and

he Kilo-Degree Survey (KiDS). These highlight that inaccuracies
nd statistical uncertainty in the line-of-sight distribution of galaxies
s determined by photometric redshifts can limit, and potentially
ias, constraints on cosmological parameters (cf. Troxel et al. 2018a ,
 ; Hikage et al. 2019 ; Joudaki et al. 2020 ; Asgari et al. 2021 ; Amon
t al. 2022 ; Secco et al. 2022 ; Dark Energy Surv e y and Kilo-De gree
urv e y Collaboration et al. 2023 ; Rau et al. 2023 ). 
In cosmic shear tomograph y, g alaxies are assigned to (pre-

efined) tomographic redshift bins (Hu 1999 ) based on an esti-
ate of their photometric redshift (photo- z). For recent re vie ws

n photometric redshift estimation and its application in large
alaxy surv e ys see Salvato, Ilbert & Hoyle ( 2019 ) and New-
an & Gruen ( 2022 ), respectively. If the estimated population

edshift distribution (in a tomographic bin) differs systematically
rom the (non-observable) true redshift distribution, the parameter
stimates from cosmic shear tomography might be systematically
iased. 
© 2024 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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1 StratLearn is a general-purpose statistical method for learning under covari- 
ate shift. While Autenrieth et al. ( 2024 ) show the ef fecti veness of conditional 
density estimation within the StratLearn framework, the conditional density 
estimators themselves are not part of the StratLearn methodology, and 
have been proposed elsewhere (Izbicki & Lee 2016 ; Izbicki et al. 2017 ). 
For conciseness, we loosely refer to the conditional density estimates as 
‘ StratLearn conditional densities’. 
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For instance, if the estimated redshift distribution is systematically 
ower than it is in reality, then observed gravitational distortions 
re attributed to an o v erly dense and too highly clustered matter
istribution. It is thus essential to obtain accurate redshift distribution 
stimates. In particular, it is crucial to obtain an unbiased estimate of
he first moment (mean) of the true underlying redshift population 
istribution (per tomographic bin), in order to avoid such systematic 
iases in the analysis (Amara & Refregier 2008 ; Reischke 2024 ). This
s because the accuracy of cosmic shear cosmological measurements 
s highly dependent on the accuracy of the first moment of the
inned redshift population distrib utions, b ut much less sensitive to 
he higher-order moments: Reischke ( 2024 ), for example, demon- 
trates that a one-sigma shift in the desired cosmological model 
arameters (for a Euclid -like surv e y) is induced when the first
oment of the redshift distributions is mis-specified at the level 

f < 1 per cent . Conversely, a similar bias is only introduced for the
econd-order moment with a ∼ 10 per cent mis-specification, and 
ll higher-order moments can be essentially ignored (Reischke 2024 , 
ig. 2). 
Several redshift calibration methods have been investigated to 

mpro v e cosmic shear tomography. Wright et al. ( 2019 ) group these
pproaches into three categories: 

(i) cross-correlation with reference galaxy samples that have 
recise and accurate redshifts (Schneider et al. 2006 ; Newman 
008 ; McQuinn & White 2013 ; Morrison et al. 2017 ). This strategy
ims to constrain the photometric redshift population distribution by 
sing spatial cross-correlations between the spectroscopic reference 
ample (with accurate redshift) and the photometric target sample 
without accurate redshift). For each tomographic bin, the pho- 
ometric redshift distribution is reconstructed by cross-correlating 
pectroscopic samples selected within thin redshift slices with the 
hotometric samples (Gatti et al. 2018 , 2022 ; Rau et al. 2022 ). More
ecently, Bayesian hierarchical frameworks have successfully been 
dopted to impro v e photometric redshift population estimates (Leist- 
dt, Mortlock & Peiris 2016 ; Jones & Heavens 2019 ; S ́anchez &
ernstein 2019 ; Alarcon et al. 2020 ; Rau, Wilson & Mandelbaum
020 ; Gatti et al. 2022 ; Rau et al. 2022 , 2023 ), allowing the com-
ination of cross-correlation with template fitting and/or empirical 
pproaches (Tanaka et al. 2018 ; Rau et al. 2022 , 2023 ). 

(ii) stacking of individual galaxy redshift distributions, as adopted 
y Hildebrandt et al. ( 2012 ), Hoyle et al. ( 2018 ), Tanaka et al. ( 2018 ),
amana et al. ( 2020 ), and Malz & Hogg ( 2022 ), and lastly; 
(iii) direct redshift calibration (Lima et al. 2008 ; Hildebrandt et al.

016 , 2020 ; Buchs et al. 2019 ; Wright et al. 2020 ). The idea of direct
edshift calibration is to reweight the distribution of spectroscopic 
edshift, obtained only for a small and non-representative subsample 
f the data (source/training data), to match the distribution of the 
hotometric target data. In recent work, Masters et al. ( 2015 ), Buchs
t al. ( 2019 ), and Wright et al. ( 2020 , hereafter W20 ) develop direct
edshift calibration methods based on self organizing maps (SOM; 
ohonen 1982 ). In W20 , their implementation of SOM-based direct 
alibration is shown to outperform previously proposed methods 
n comprehensive simulations designed to realistically resemble the 
IDS + VIKING-450 data set (Wright et al. 2019 , W20 ; Hildebrandt

t al. 2020 ). Their (and previous) methods obtain a tomographic bin
ssignment via a Bayesian-Photometric-Redshift estimate (Benitez 
000 ), further denoted as z B , calculated for each galaxy. While
mproving on other direct redshift calibration methods, the SOM 

ethod proposed in W20 still leads to potentially concerning bias 
n some tomographic bins, and mitigates these biases by introducing 
dditional systematic selections to the data. Such selections lead to 
ewer sources available for science, and therefore constitute a source 
f increased statistical uncertainty in down-stream cosmological 
nalyses. 

In addition, several methods have been employed to assign 
alaxies to tomographic (typically four or fiv e non-o v erlapping) bins.
he common approach is to group galaxies based on a choice of point
stimate of redshift, e.g. from template fitting or machine learning 
odes. One approach is to employ SOM-based bin assignment by 
ssigning galaxies to tomographic bins with adaptive bin edges based 
n the SOM cell assignment of the galaxies (Buchs et al. 2019 ; Alar-
on et al. 2020 ; Myles et al. 2021 ; Gatti et al. 2022 ; Secco et al. 2022 ).
nother approach is to assign galaxies to tomographic bins according 

o a Directional Neighbourhood Fitting (DNF) photo- z estimate 
Gatti et al. 2018 ; Abbott et al. 2022 ). DNF is a machine learning
ethod that obtains photo- z estimates based on the neighbourhood of

alaxies in a multiband flux space (De Vicente, S ́anchez & Sevilla-
oarbe 2016 ; Gatti et al. 2018 ). More recently, Rau et al. ( 2023 )

mploy a neural network-based photometric redshift conditional 
ensity code (DNNz) to bin galaxies within four tomographic redshift 
ntervals. Rau et al. ( 2023 ) identify regions of the data space that
re difficult to calibrate and remo v e some of the galaxies based on
ifferences in the estimates of DNNz and an SED template fitting
pproach. Others employ photometric redshifts estimated using the 
ayesian-Photometric-Redshift code (BPZ; Benitez 2000 ), which 
onstructs a posterior probability distribution of redshift given a 
ource’s observed photometry. This code produces a posterior mode 
oint-estimate of photometric redshift, z B , which is subsequently 
sed for tomographic binning (Hoyle et al. 2018 ; Hartley et al. 2020 ;
ildebrandt et al. 2020 ; Van Den Busch et al. 2020 ; Wright et al.
020 ; Asgari et al. 2021 ). 
In this paper, we propose a different strategy to impro v e redshift

alibration, based on galaxy (object level) conditional photo- z den- 
ity estimates. More precisely, we employ a recently proposed statis- 
ical method, StratLearn (Autenrieth et al. 2024 ), that allows princi-
led photo- z conditional density estimation under non-representative 
ource/training data. StratLearn alleviates (or bypasses) the problem 

f non-representative source/training data (identified as covariate 
hift), by subgrouping the data into strata based on estimated propen-
ity scores, a pivotal methodology in causal inference (Rosenbaum & 

ubin 1983 ). In our context, the propensity score is the probability
f a galaxy being assigned to the spectroscopic training/source set 
iven the observed covariates (i.e. photometric magnitudes/colours). 
utenrieth et al. ( 2024 ) demonstrate that fitting conditional density

stimators within strata, constructed by partitioning the data based 
n the estimated propensity scores, impro v es full conditional photo-
 density estimates under non-representative source/training data. 
ere, we show that the StratLearn conditional densities 1 can be used
irectly to impro v e the tomographic bin assignment, by assigning
ach galaxy to the tomographic bin with its highest conditional 
robability. In a second step, we construct a Bayesian hierarchical 
ramework to model summaries of each galaxy’s conditional density 
within tomographic bins), leading to nearly unbiased estimates 
f the mean redshift of each tomographic bin. We e v aluate our
o v el Str atLearn -Bayes approach on comprehensive simulations 
MNRAS 534, 3808–3831 (2024) 
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onstructed by W20 , demonstrating a substantial reduction of bias
ompared to the previously proposed SOM calibration method. 

While the primary sensitivity of cosmic shear is to the first moment
f the redshift distribution, other cosmological probes, which also
equire redshift distribution estimation and calibration, are more
ensitive to the accurate recovery of higher-order redshift distribution
oments. Reischke ( 2024 ) shows that higher-order moments have
uch more influence on bias in an analysis of photometric galaxy

lustering. Additionally, cosmic shear surv e ys will become increas-
ngly sensitive to higher-order moments with increasing statistical
ower. As such, it is sensible to consider how we can best estimate
he full redshift distribution. While our StratLearn -Bayes method
s specifically designed to obtain accurate estimates of the first
oments of the redshift distributions, we demonstrate how estimated

ropensity scores can be used in a direct redshift calibration scheme
o obtain accurate estimates of the redshift population distribution
hapes. 

The remainder of the paper is structured as follows. In Section 2.1 ,
e specify notation and we formally introduce the underlying

ovariate shift scenario, arising through the non-representativeness
f the training/source data. In Section 2.2 , we summarize the direct
edshift calibration method. We then briefly introduce the supervised
earning task with a focus on conditional density estimation under
he covariate shift scenario. In Section 3 , we formally introduce
ur approach. In Section 3.1 , we provide a detailed description of
ow we estimate conditional densities under covariate shift within
tratLearn . We then specify how these conditional densities can be
sed to impro v e galaxy tomographic bin assignment (Section 3.2 ).
n Section 3.3 , we demonstrate how summaries of the estimated
onditional densities can be employed in a Bayesian hierarchical
ramework to accurately estimate the redshift population means
within a tomographic bin). In Section 4 , we demonstrate how
nverse propensity score weighting (inverse-PS) can be employed
o estimate the redshift population shapes for each tomographic bin.
n Section 5 , we present numerical e v aluation of our method. We
rst introduce the simulation setting in Section 5.1 . We then e v aluate
ur new bin assignment with a comparison to previously used z B bin
ssignment (Section 5.2 ). We present our redshift calibration results
n Section 5.3 , and illustrate the inverse-PS population distribution
stimates in Section 5.5 . Finally, in Section 6 , we conclude with a
iscussion of our findings, limitations, and implications for future
eak lensing surv e y analyses. 

 ADDRESSING  NON-REPRESENTATIVE  

R A I N I N G  DATA  

.1 Non-r epr esentati v e spectroscopic data and co v ariate shift 

et z i be the true spectroscopic redshift of galaxy i, and x i be the
ector of its observed photometric magnitudes/colours (the exact
hoice of covariates is described in Section 5.1.3 ). In a cosmic shear
nalysis, we have access to a relatively small set of galaxies with
easured spectroscopic redshift, since obtaining spectroscopy for
illions of objects is observationally e xpensiv e (o v er the magnitude

ange in question). For our purposes, spectroscopically measured
edshifts can be considered equal to the true redshift. We denote this
pectroscopic set as source (or training) data D S = { ( x ( i) S , z 

( i) 
S ) } n S i= 1 ,

ith n S galaxies sampled at random from the joint distribution
 S ( x, z). The so-called photo- z estimation problem (Hildebrandt
t al. 2010 ; Freeman, Izbicki & Lee 2017 ; Izbicki et al. 2017 ; Dey
t al. 2022 ) is to find a redshift estimate that can be deployed on
 much larger set of galaxies, for which only the photometric data
NRAS 534, 3808–3831 (2024) 
 T are a vailable, b ut not spectroscopically measured redshifts, z T .
e denote this photometric set as our target data D T = { x ( i) T } n T i= 1 ,

ith n T unlabelled samples from the joint distribution p T ( x, z)
with n T � n S ). The problem is compounded by the fact that
 S ( x, z) �= p T ( x, z), i.e. the spectroscopic source and photometric

arget distributions differ systematically due to selection effects in
he acquisition of spectroscopy based on characteristics of the photo-

etric magnitudes, leading to p S ( x) �= p T ( x). We assume, ho we ver,
hat the conditional distributions of redshift z given the magnitudes x 
re the same in spectroscopic source and photometric target data, i.e.
 S ( z| x) = p T ( z| x). The situation, in which p S ( z| x) = p T ( z| x) but
 S ( x) �= p T ( x), is called ‘covariate shift’ in the statistical learning

iterature (Moreno-Torres et al. 2012 ). If such covariate shift is not
ccounted for, machine learning or other statistical methods that
im to learn the relationship between the covariates and redshift
an perform poorly; the training set is not representative of the
arget/test, meaning that patterns learned from the training set are
ot generalizable. 
The covariate shift assumption has been frequently (sometimes

mplicitly) made in previous photo- z calibration work, (e.g. Lima
t al. 2008 ; Hildebrandt et al. 2020 ; Wright et al. 2020 ). Others
e.g. Hartley et al. 2020 and Newman et al. 2015 ) argue that
edshift failures, the use of quality flags based on galaxy spectral
haracteristics to address these failures, and selecting data based
n these flags may result in the violation of the covariate shift
ssumption. We provide additional discussion on the matter in
ppendix B . 

.2 Dir ect r edshift calibration 

ince in the covariate shift scenario p S ( z| x) = p T ( z| x ) but p S ( x ) �=
 T ( x), it generally follows that the redshift distribution of the
pectroscopic set differs from that of the target, p S ( z) �= p T ( z). Direct
edshift calibration methods reweight the spectroscopic redshift
ample to match the photometric redshift distribution (Lima et al.
008 ). 
More precisely, under the covariate shift scenario, it holds that 

 T ( z, x) = p T ( z| x ) p T ( x ) (1) 

= p S ( z| x ) p T ( x ) (2) 

= p S ( z, x ) 
p T ( x ) 

p S ( x ) 
(3) 

hat is, one can express the joint target distribution by reweighting
he joint source distribution. Precisely, p T ( z, x) = ω( x) p S ( z, x) ,
ith weights ω( x) = p T ( x) /p S ( x). In practice, one can reweight
alaxies in the spectroscopic source set [with weights ω( x)] to
btain a representative sample of the joint target distribution. In
rinciple, looking at the marginal sample of z in the weighted
oint distribution thus provides us a consistent estimate of the target
edshift distribution p T ( z). 

Accurate estimation of the weights ω( x) is key for direct redshift
alibration methods. Lima et al. ( 2008 ) and Hildebrandt et al.
 2020 ) implement a k-nearest-neighbour (kNN) method for weight
stimation. W20 demonstrate impro v ement o v er the kNN method by
omputing the weights via an SOM method, a form of unsupervised
eural network which can map a high-dimensional covariate space
o a lower-dimensional grid. 

Unfortunately, weighting methods typically entail high variance,
articularly if there is a small number of objects with very large
eights. In addition, finding a suitable set of weights ω is not trivial,
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2 We refer the interested reader to the ensemble learning literature for further 
background (Wolpert 1992 ; Van der Laan, Polley & Hubbard 2007 ; Naimi & 

Balzer 2018 ). 
3 Note that, for better readability in ( 4 ) and ( 8 ), we use superscripts ( k) to 
enumerate objects, elsewhere we use subscripts i. 
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ut key for direct calibration methods. Noisy, inaccurate weights 
ight lead to potentially severe bias and strongly increased variance. 

.3 Photometric redshift regression 

nstead of reweighting, our approach uses the labelled spectroscopic 
ource data as a training set to fit supervised full conditional density
odels. Our trained models then deliver a non-parametric estimate of 

he full conditional redshift (photo- z) distribution for each galaxy in 
he photometric target data (conditional on its observed covariates), 
ˆ 
 ( z| x). If source and target data follow the same distribution,
onditional density estimators aim to minimize the generalized risk 
nder the L 

2 −loss (generalized in that the underlying loss can be
e gativ e), giv en by: 

ˆ 
 S ( ˆ f ) = 

1 

n S 

n S ∑ 

k= 1 

∫ 
ˆ f 2 
(
z | x ( k) 

S 

)
d z − 2 

1 

n S 

n S ∑ 

k= 1 

ˆ f 
(
z 

( k) 
S | x ( k) 

S 

)
. (4) 

see Section A for the deri v ations of 4 and Izbicki et al. 2017 for
urther details). To provide intuition for the generalized risk in ( 4 ),
ote that, the second term of ( 4 ) averages the values of the conditional
ensity estimates at the true spectroscopic redshift (known for the 
ource data); this is optimized if the true redshift is at (or close to) the
ode of the conditional density estimate ˆ f ( z i | x i ), with ˆ f ( z i | x i ) being

ery tall and narrow (the Dirac delta distribution at the true redshift
alue is the optimal limiting case). In contrast, the first term of ( 4 ),
hich integrates the squared conditional density estimates over the 

edshift range (without information of the true redshift), is minimized 
or wide and (nearly) uniform conditional density estimates, thus 
enalizing highly localized predictions. Thus, o v erall estimates that 
re very certain (i.e. low variance), but fail to co v er the truth lead to
 high risk. 

In the presence of covariate shift, however, obtaining accurate 
arget estimates requires minimization of the target risk ˆ R T ( ˆ f ), 
hich is obtained by replacing all source samples in ( 4 ) with target

amples, which typically means ˆ R S ( ˆ f ) �= 

ˆ R T ( ˆ f ). The challenge is
o minimize ˆ R T ( ˆ f ) without access to the target true redshift z T .
n the next section, we provide a summary of our approach, called
tratLearn (Autenrieth et al. 2024 ), which allows minimization of 
ˆ 
 T ( ˆ f ) under the covariate shift scenario. 

 BAYESIAN  PHOTOMETRIC  REDSHIFT  

A L I B R AT I O N  V I A  STRATLEARN  

.1 Photo-z conditional densities within StratLearn 

tratLearn allows target risk minimization by subgrouping the source 
nd target data into strata based on estimated propensity scores. 
ithin strata, the joint distribution of target data and source data is

pproximately the same, and target risk can thus be minimized via 
ource risk minimization. In the following, we provide a detailed 
escription of the procedure. 
Let S be a binary indicator variable, with s i = 1 indicating the

ssignment of galaxy i to the spectroscopic source set ( s i = 0
ndicates assignment to the photometric target set). In the context 
f this paper, the propensity score is the probability of a galaxy i 
eing in the spectroscopic source data, given its observed covariates 
photometry) x i , i.e. 

( x i ) : = P ( s i = 1 | x i ) , with 0 < e( x i ) < 1 . (5) 

n practice, we obtain an estimate ̂  e ( x i ) of ( 5 ) via binary, probabilistic
lassification of source and target data using a logistic regression 
odel with all the photometric magnitudes/colours as independent 
redictor variables (main effects) and the source/target set assign- 
ent variable S as the binary dependent variable. We then subgroup

stratify) the source and target data into k = 5 strata based on the
uintiles of the estimated propensity score distribution ˆ e ( x). The 
se of five strata is suggested by Autenrieth et al. ( 2024 ), based on
umerical evidence provided by Cochran ( 1968 ) that subgrouping 
nto k = 5 strata remo v es at least 90 per cent of the bias for many
ontinuous distributions. 

By Proposition 1 of Autenrieth et al. ( 2024 ), within strata, 

 T j ( z, x) ≈ p S j ( z, x) , for j ∈ 1 , . . . , k, (6) 

here S j indicates conditioning on assignment to the j th source 
tratum (analogously for target T j ). It directly follows that ˆ R Tj ( ˆ f ) ≈
ˆ 
 Sj ( ˆ f ) within strata j ∈ 1 , . . . , k. Thus, we can minimize the target

isk ˆ R Tj ( ˆ f ) within strata by minimizing the source risk ˆ R Sj ( ˆ f ) within
trata. See Autenrieth et al. ( 2024 ) for details. 

Given the strata conditional on the estimated propensity score, 
e can now fit any supervized model on the spectroscopic source
ata within each stratum and predict on its respective photometric 
arget stratum. As suggested in Autenrieth et al. ( 2024 ), within each
trata, we employ a weighted av erage (conv e x combination) of two
onditional density estimators: ker-NN (Izbicki et al. 2017 ) and Series 
Izbicki & Lee 2016 ). The kernel nearest neighbour estimator (ker-
N) computes the conditional density of an object via a kernel

moothed histogram of the redshift of its k nearest neighbours in
he respective source stratum. The spectral series estimator (Series) 
dapts a lower-dimensional subspace of the x-space as the intrinsic 
imension of the data, based on data-dependent eigenfunctions of a 
ernel-based operator (Izbicki & Lee 2016 ). Details can be found in
zbicki et al. ( 2017 ) and Izbicki & Lee ( 2016 ). Previous studies
Izbicki et al. 2017 ; Autenrieth et al. 2024 ) indicate that each
stimator appears to perform better in a different data regime, and
ombining them leads to a more robust estimator. 2 

We individually optimize the conditional density estimators (ker- 
N, Series) by minimizing ( 4 ) in each source stratum separately.
he final StratLearn conditional density estimate is obtained by 
ombining the ker-NN and Series conditional density estimates 
ˆ 
 ker-NN ( z| x) and ˆ f Series ( z| x) by optimizing 

ˆ 
 ( z| x) = (1 − α) ˆ f Series ( z| x) + α ˆ f ker-NN ( z| x) , (7) 

ith 0 ≤ α ≤ 1. The parameter α is optimized to minimize the 
eneralized risk 

ˆ 
 S2 ( ˆ f ) = 

1 

n T 

n T ∑ 

k= 1 

∫ 
ˆ f 2 
(
z | x ( k) 

T 

)
d z − 2 

1 

n S 

n S ∑ 

k= 1 

ˆ f 
(
z 

( k) 
S | x ( k) 

S 

)
(8) 

ithin each strata. We note that ( 8 ) only differs from ( 4 ) in that
he first term is averaged over the photometric sample, x T , rather
han the spectroscopic sample, x S , which does not require any target
edshift z T . Finally, ( 7 ) provides a g alaxy-by-g alaxy full conditional
ensity redshift estimate ˆ f ( z i | x i ). 3 Some illustrative examples of
he resulting galaxy conditional density estimates are shown in 

ig. 1 . Section 5.1.3 provides additional details on computation and
arameter optimization of the conditional density estimators. 
MNRAS 534, 3808–3831 (2024) 
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M

Figure 1. Examples of the conditional density estimates ˆ f ( z i | x i ), for galaxies in the photometric target samples, illustrated on the tomographic bin grid. The 
StratLearn assigned bin (the one containing the highest conditional probability) is shaded in blue. The true spectroscopic redshift is shown by the red cross. 
The z B estimate is shown by the green star. A fraction of 30 per cent of the conditional density estimates appear to be roughly bell-shaped like in the top left 
e xample, but man y conditional densities can be skewed and multimodal. Normal distributions with the same means and variances as the conditional density 
examples ˆ f ( z i | x i ) are added as dashed lines (as discussed in Section 3.3 .). 
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.2 Tomographic bin assignment 

or cosmic shear analysis, the photometric galaxies are assigned to
roups along the line-of-sight called tomographic bins. These bins
re constructed with the best available proxy for the true line-of-sight
istance of the galaxies. For wide-field photometric surveys, bins are
ypically constructed based on a redshift estimate determined from
road-band photometry (called the photometric redshift estimate or
hoto- z estimate). 
The KiDS surv e y employs photometric redshifts estimated using

he BPZ code (Benitez 2000 ). More precisely, based on the z B 
oint-estimate (i.e. the posterior mode of the BPZ photometric
edshift posterior probability distributions), W20 assign the photo-
etric galaxies to fiv e non-o v erlapping top-hat photometric redshift

ins: (0 . 1 , 0 . 3] , (0 . 3 , 0 . 5] , (0 . 5 , 0 . 7] , (0 . 7 , 0 . 9] , (0 . 9 , 1 . 2]; we denote
hese ranges as bins 1 through 5, respectively. Galaxies with z B 
stimates outside of the five bin ranges ( z B ≤ 0 . 1 and z B > 1 . 2) are
iscarded. 
NRAS 534, 3808–3831 (2024) 

a

A central step of our proposed photo- z calibration method is the
omputation of g alaxy-by-g alaxy full conditional density redshift
stimates ˆ f ( z i | x i ). Instead of relying on z B , we can therefore use the
ull conditional density estimates ˆ f ( z i | x i ) to provide an alternative
omographic bin assignment for each galaxy i. A natural choice is to
ssign each galaxy to the bin which contains the highest conditional
robability: let b( i) be the bin assignment of galaxy i, then 

( i) = argmax m 

∫ 
B( m ) 

ˆ f 
(
z i | x i 

)
d z, m = 1 , . . . , 5 , l, r, (9) 

ith B( i), i = 1 , . . . , 5 specifying the five tomographic bin redshift
anges. B( l) : = { z| z ≤ 0 . 1 } and B( r) : = { z| z > 1 . 2 } specify two end
ins for galaxies outside of the bin ranges; galaxies assigned to the
nd bins are not used in the analysis. Fig. 1 shows examples of
onditional density estimates, plotted on the tomographic redshift
in grid. The assigned bins b( i) with highest conditional probabilities
re shaded. 
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Figure 2. Graphical representation of our Gaussian hierarchical Bayesian 
model for the estimation of the redshift population mean in each tomographic 
bin, based on (summaries) of the photo- z conditional density estimates 
ˆ f ( z i | x i ). Observed quantities are illustrated in shaded squares. Unobserved 

parameters are illustrated via circles. Dashed arrows illustrate deterministic 
relations, and distributional relations are illustrated via solid arrows. We note 
that ˆ ξi and ˆ τ 2 

i are summary statistics derived from the conditional density 
estimates ˆ f ( z i | x i ). 
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.3 Bayesian hierarchical modelling of conditional densities 

n this section, we detail our Bayesian hierarchical framework for 
ccurate estimation of the redshift population mean within each 
omographic bin, given the object-level (galaxy) conditional density 
stimates. Employing a hierarchical Bayesian framework allows 
s to model the conditional density estimates in a statistically 
rincipled framework, with optimal shrinkage on the object-level 
hoto- z estimates, allowing more precise population mean estimates. 
ig. 2 provides an overview of our hierarchical Bayesian framework, 
ith details described hereafter. 
On the object (galaxy) level, ˆ f ( z i | x i ) is an estimate of the

onditional density p( z i | x i ). Via Bayes theorem, the conditional
ensity p( z i | x i ) can be expressed as 

( z i | x i ) ∝ p( x i | z i ) p( z i ) . (10) 

he estimation of the conditional densities ˆ f ( z i | x i ) is performed be-
ore and outside of the hierarchical Bayesian model fit (as described 
n Section 3.1 ) and without incorporation of prior information on 
he redshift distributions. By assuming a flat prior on z i (e.g. a wide
niform prior that co v ers the e xpected photometric redshift range), 4 

e have p( z i ) ∝ 1. Then, ( 10 ) simplifies to 

( z i | x i ) ∝ p( x i | z i ) . (11) 

On the population level, recall that we aim to accurately estimate 
he population mean μb of z i ( i = 1 , . . . , n T b , with n T b being the
umber of galaxies within tomographic bin b). Accurate estimation 
f μb is crucial to a v oid systematic biases in the downstream cosmic
hear analysis (Amara & Refregier 2008 ; Reischke 2024 ). Thus,
e model the redshift population within each bin with a normal 
istribution – a convenient choice that facilitates the introduction of 
 hierarchical Bayesian framework and a reasonable simplification 
 We note that in future work a more informative prior on the object level 
edshift distributions could principally be included via our hierarchical 
ayesian model in ( 14 ). 

m  

i

5

(

iven that we are primarily interested in the population mean. 
pecifically, at the redshift population level within bin b, we model 

opulation Level: z i | μb , σb 

indep. ∼ N ( μb , σ
2 
b ) , (12) 

ith σ 2 
b being the redshift population variance. 

Thus, we formulate the joint posterior distribution 
( z 1 , . . . , z n T b 

, μb , σb | X n Tb ), with X n Tb : = { x i } n T b 

i= 1 , via 

( z 1 , . . . , z n T b 
, μb , σb | X n Tb ) 

∝ p( X n Tb | z 1 , . . . , z n T b 
, μb , σb ) p( z 1 , . . . , z n T b 

| μb , σb ) p( μb , σb ) 

(13) 

= p( μb , σb ) 
∏ 

i 

p( x i | z i ) p( z i | μb , σb ) (14) 

∝ p( μb , σb ) 
∏ 

i 

p( z i | x i ) p( z i | μb , σb ) , (15) 

here ( 13 ) to ( 14 ) holds due to the independence in ( 12 ) and the
onditional independence x i ⊥ ( { z j } j �= i , μb , σb ) | z i . That is, given
he redshift z i for an object i, the distribution of its photometry x i 
oes not depend on other observed redshifts, nor on the parameters
escribing the population of redshift. ( 14 ) to ( 15 ) follows from ( 11 ).
ince we are not targeting the object-level redshifts z i themselves, 
ut rather an accurate estimate of the population-level mean, μb , we
nte grate o v er the individual galaxies’ redshifts to obtain the marginal
osterior distribution 

( μb , σb | X n Tb ) ∝ p( μb , σb ) 
∏ 

i 

∫ 
p( z i | x i ) p( z i | μb , σb ) d z i . (16) 

.3.1 Replacing p( z i | x i ) with a Gaussian approximation 

lthough we could substitute the estimates, ˆ f ( z i | x i ), of p( z i | x i )
irectly into ( 16 ), the required integrals would be computationally 
 xpensiv e. Instead, we simplify the problem by modelling each
( z i | x i ) with a normal distribution: 

 i | x i indep. ∼ N ( ̂ ξi , ̂  τ 2 
i ) , (17) 

here the estimate of the object-level mean ˆ ξi is simply the mean
f the conditional density estimate, ˆ f ( z i | x i ), while the object-
e vel Gaussian v ariance ˆ τ 2 

i is obtained by computing the variance
f ˆ f ( z i | x i ). More precisely, by treating ˆ f ( z i | x i ) as a histogram
 v aluated on K bins, we have 

ˆ 2 i = 

1 ∑ 

k 
ˆ f m k 

( z i | x i ) 
∑ 

k 

ˆ f m k 
( z i | x i )( m k − ˆ ξi ) 

2 , (18) 

here each k = 1 , . . . , K specifies a histogram bin with location
 k , and ˆ f m k 

is the value of the conditional density (histogram) at
ocation m k . 5 The summary statistics ̂  ξi and ̂  τ 2 

i are observed quantities 
ummarized by ˆ X n Tb : = { ̂ ξi , ̂  τi } n T b 

i= 1 . 
There are two reasons behind our replacement of the condi- 

ional density estimates ˆ f ( z i | x i ) by normal distributions. First, by
odelling both the population- and object-level distributions as 
aussians, the Bayesian posterior distribution for the population 
ean can be calculated analytically. This allows us to scale our
odel to the large photometric data set at hand. Second, and more

mportantly, modelling the conditional densities as Gaussians leads to 
MNRAS 534, 3808–3831 (2024) 

 We note that by bins k (with locations m ( k)), we refer to the density 
histogram) bins and not the tomographic redshift bins. 
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6 The binning of the spectroscopic set (as previously performed by W20 ) 
is needed when performing direct redshift calibration of the binned photo- 
metric set, since the photometric bin assignment is based on (summaries) 
of the conditional density estimates (as described in Section 3.2 ). The 
conditional density estimates implicitly incorporate information of source 
redshift (through the fitting process described in Section 3.1 ). To prevent 
unmeasured confounding (information encoded in the spectroscopic redshift, 
but not in the magnitudes/colors) the same selection function is applied for 
source and target data. 
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lmost unbiased estimates of the population means in all tomographic
ins, as demonstrated in Section 5.3 . In our simulation studies,
e also investigate an alternative hierarchical model that uses the

onditional densities ˆ f ( z i | x i ) directly (without Normal replacement).
n this case, we obtained the posterior distributions via MCMC
ampling (using 5 per cent of the target data due to computational
imitations). Given the results from the subset, the Normal–Normal
odel led to better estimates of the population means than using the

onditional density estimates directly. We refer to Appendix C4 for
urther details. 

With this approximation, ( 16 ) can be written as 

( μb , σb | ̂  X n Tb ) ∝ p( μb , σb ) 
∏ 

i 

∫ 
N 

(
z i | ̂ ξi , ̂  τ 2 

i 

)
×N 

(
z i | μb , σ

2 
b 

)
d z i , (19) 

here N ( t | θ, φ2 ) is the probability density function (pdf) of a normal
istribution with mean θ and variance φ2 , evaluated at t . 
The integral in ( 19 ) can be solved analytically (see Appendix C

or theoretical justifications) to obtain the (joint) marginal posterior
ensity 

( μb , σb | ̂  X n Tb ) ∝ p( μb , σb ) 
∏ 

i 

N 

(
ˆ ξi | μb , ̂  τ 2 

i + σ 2 
b 

)
. (20) 

Writing p( μb , σb ) = p( μb | σb ) p( σb ) and adopting a uniform con-
itional prior density p( μb | σb ) ∝ 1, yields the conditional posterior
istribution of μb given σb : 

b | σb , ˆ X n Tb ∼ N ( ̃  μb , V μb 
) , (21) 

ith 

˜ b = 

∑ 

i 
1 

ˆ τ2 
i 
+ σ 2 

b 

ˆ ξi ∑ 

i 
1 

ˆ τ2 
i 
+ σ 2 

b 

and V 

−1 
μb 

= 

∑ 

i 

1 

ˆ τ 2 
i + σ 2 

b 

, (22) 

ith V 

−1 
μb 

being the total precision. 
Since we are not interested in the posterior uncertainty of σb ,

e choose an empirical Bayesian approach by setting σb to a fixed
alue estimated from the data, i.e. by choosing p( σb ) = δ( σb − ˆ σb ).
n obvious choice for the estimate ˆ σb is the MAP of the marginal
osterior p( σb | ̂  X n Tb ) (shown in the Appendix 36 ). Ho we ver, in
ur simulations, we found that the MAP estimate strongly and
onsistently underestimates σb . For this reason, we do not advocate
he MAP estimate of σb and instead choose a different estimation
trategy, as detailed below. 

Finally, given an estimate of σb , an estimate of μb can be obtained
nalytically via ( 22 ), as ˜ μb , the MAP estimate of μb . 

.3.2 Population variance estimation via stacking of conditional 
ensities 

iven the poor performance of the MAP estimate for σb , we instead
stimate the population variance σ 2 

b via a ‘stacked estimate’ of the
arginal redshift population distribution p b ( z) of galaxies within

omographic bin b. More precisely, we obtain an estimate ˆ p 

stack 
b ( z)

f p b ( z) by averaging (stacking) the conditional densities within bin,
hat is, 

ˆ  stack 
b ( z) = 

1 

n T b 

∑ 

j 

ˆ f ( z j | x j ) . (23) 

ith x j , j = 1 , . . . , n T b , being the photometric magnitudes of the
bserved galaxies within tomographic bin b. While quite intuitive,
he form of ( 23 ) is justified more formally in Section C3 . 
NRAS 534, 3808–3831 (2024) 
An estimate for the redshift population variance σ 2 
b can then be

btained by calculating the variance of ˆ p 

stack 
b ( z), via 

ˆ 2 b = 

1 ∑ 

k ˆ p 

stack 
b,m ( k) ( z) 

∑ 

k 

ˆ p 

stack 
b,m ( k) ( z) 

(
m ( k) − ˆ μstack 

b 

)2 
, (24) 

here k = 1 , . . . , K specifies the (density/histogram) bin with loca-
ion m k , ˆ p 

stack 
b,m ( k) is the value of the stacked density (histogram) ˆ p 

stack 
b 

f bin b at location m ( k), and ˆ μb 
stack is the mean of ˆ p 

stack 
b ( z). An

stimate of the population standard deviation σb is then obtained by
imply taking the square-root of ( 24 ). 

We compare two versions of ( 24 ). First, we compute ( 24 ) via
tacking o v er ˆ f ( z i | x i ), the galaxy conditional density estimates
btained via StratLearn . We denote this method as option StratLearn -
ayes (A). Second, we substitute the conditional density estimates

ˆ 
 ( z i | x i ) by their normal replacements described in ( 17 ). We denote

his option as StratLearn -Bayes (B). 

 ESTIMATING  T H E  POPULATI ON  

I STRI BU TI ON  V I A  INVERSE-PROPENSITY  

C O R E  W E I G H T I N G  

s we demonstrate below, our hierarchical Bayesian framework
elivers highly accurate and precise estimates of the redshift means
ithin each tomographic bin, the quantity of main interest. Its
se of Gaussian distributions for the redshift populations, ho we ver,
recludes realistic distribution shapes. Here, we propose a different
pproach for estimation of the redshift population distributions,
here we use propensity scores for direct redshift calibration, thereby
ielding an estimate of the full tomographic redshift distribution. 
As described in Section 2.2 , direct redshift calibration methods

epend on the estimation of weights ω( x) = p T ( x) /p S ( x), used to
eweight a spetroscopic sample (with known true redshifts) to obtain
n estimate of the redshift distribution of the photometric sample
per tomographic bin). The weights ω( x) can also be expressed via 

( x ) = 

p T ( x ) 

p S ( x ) 
= 

p( s = 1) 

p( s = 0) 

p( s = 0 | x ) 
p( s = 1 | x ) ∝ 

(
1 

p( s = 1 | x ) − 1 

)
. 

(25) 

e can thus obtain an estimate of the weights ω( x) by employing the
nverse of the propensity score (inverse-PS), via the right-hand side
f ( 25 ). To estimate the tomographic binned redshift distributions,
e first obtain a StratLearn conditional density estimate ˆ f ( z i | x i ) as
escribed in Section 3.1 for each galaxy in both the photometric
nd the spectroscopic set. Based on these estimates, each galaxy (in
oth sets) is assigned to its respective tomographic bin, following the
tratLearn binning strategy described in Section 3.2 . 6 

For each tomographic bin, following ( 3 ), we obtain an estimate of
he binned joint target distribution p T b ( z, x) via 

 T b ( z, x) = ω b ( x) p Sb ( z, x) , (26) 
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Figure 3. Spectroscopic redshift distributions of the three spectroscopic 
surv e ys used as source data. 
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ith p sb ( z, x) being the binned joined source distribution of tomo-
raphic bin b, and with weights ω b ( x) computed via inverse-PS
ollowing ( 25 ) for each bin b. We estimate the propensity scores
employing logistic regression as detailed in Section 5.1 ) based on 
he covariates of the spectroscopic source galaxies and photometric 
arget galaxies in the respective tomographic bin. In practice, we 
mploy the relation in ( 26 ) by reweighting galaxies in the binned
pectroscopic source data using the respective estimated inverse- 
S weights (obtained via 25 ). We then obtain an estimate of the
hotometric redshift distribution ˆ p b ( z) (for each tomographic bin 
) by looking at the marginal sample of z in the weighted joint
istribution. This method is numerically demonstrated in Section 5.5 . 

 N U M E R I C A L  D E M O N S T R AT I O N S  

.1 Simulation study 

e explore the performance of our framework using the comprehen- 
ive set of realistic simulations introduced in W20 . The simulations
im to mimic the KiDS + VIKING-450 data set, presented in Wright
t al. ( 2019 ) and Hildebrandt et al. ( 2020 ), starting from the MICE2
imulation (Carretero et al. 2015 ; Crocce et al. 2015 ; Fosalba et al.
015 ; Hoffmann et al. 2015 ) and based on a framework provided
n Van Den Busch et al. ( 2020 ). In the following, we provide a
ummary of the simulated data employed in our study (see W20 
or a full description of the construction and validation of the 
imulations). 

.1.1 Photometric survey 

he simulations are designed to mimic the wide-field, multiband pho- 
ometric data set of KiDS + VIKING-450. The KiDS + VIKING- 
50 data set consists of imaging in nine photometric bands 
 ug riZ Y J H K s ): the four optical bands ( ugri ) are observed as
art of the KiDS surv e y (K uijken et al. 2019 ) using the VLT
urv e y Telescope (VST; Capaccioli, Mancini & Sedmak 2005 ) 

ocated at the European Southern Observatory’s Cerro Paranal 
bservatory in Chile, and the five near-infrared filters ( ZY J H K s )
re observed as part of the VIKING survey (Edge et al. 2013 )
sing the Visible and Infrared Surv e y Telescope for Astronomy 
VISTA; Dalton et al. 2006 ; Emerson, McPherson & Sutherland 
006 , also located at Cerro Paranal). The first 450 square degrees of
oint imaging from the two surv e ys forms the KiDS + VIKING-450
osmic shear surv e y (referred to simply as ‘KiDS’ hereafter). The
imulated photometric data D 

u 
T (where the superscript u refers to 

unweighted’; below, we describe a pre-processing step to produce 
 shear-measurement weighted photometric sample as employed in 
he downstream scientific analysis) consists of ∼21 × 10 6 galaxies, 
or each of which, a simulated measurement of its position, lensing 
onvergence, morphological information, and model magnitudes in 
he ugriZYJHK s -bands is provided. Magnitudes include photometric 
oise, realistic to KiDS surv e y data ( W20 , Section 5.1 ). A large
roportion of galaxies ( ∼17 per cent ) have a flux error greater 
han or equal to the flux measurement in at least one band, and
re therefore flagged as ‘non-detections’ in the KiDS photometric 
rocessing pipeline. Fig. D1 in the Appendix illustrates the full 
attern of such cases. The flux measurement of such non-detections 
as remo v ed prior to our analysis and only placeholder/indicator 
 alues were av ailable to indicate these non-detection cases. We 
hus treat these cases as ‘missing data’ (details on processing of
hese cases appear at the end of this section). While the spec-
roscopic redshift z is unavailable for galaxies in the photometric 
et, a Bayesian redshift estimate z B is also provided (see Section
.2 ), which was used in previous works to assign galaxies to the
omographic bins. 

Finally, a cosmic shear-measurement weight ˆ w i is provided for 
ach galaxy, which relates to the quality of its shear measurement, and
hich filters through to the cosmological analysis for cosmological 
arameter estimation. As a pre-processing step, we resample the 
ata D 

u 
T i proportionally to the cosmic shear-measurement weights 

ˆ  i . In this way, we obtain the target sample D T , with | D T | =
2 . 48 × 10 6 galaxies. Fig. D2 in the appendix demonstrates that
here is a negligible difference in targeting the shear-measurement 
esampled distribution (obtained via the abo v e pre-processing step) 
nd targeting the shear-measurement weighted distribution (as done 
n W20 ). Our results on the resampled data thus hold without loss of
enerality. 

.1.2 Spectroscopic survey 

 much smaller spectroscopic source data set D S , with | D S | =
1 , 537, galaxies is provided, composed of simulated data mimicking
hree surv e ys: zCOSMOS (9930 g alaxies), DEEP2 (6919 g alaxies),
nd VVDS (4688 galaxies), altogether spanning a redshift range 
f 0 . 07 ≤ z ≤ 1 . 43. The spectroscopic redshift distributions of the
hree surv e ys are illustrated in Fig. 3 . The spectroscopic source set
s not a representative sample of the photometric target distribution 
selection effects are described in W20 ). Fig. 4 illustrates the density
f the spectroscopic source redshift distribution (red), and the (true) 
edshift distribution of the photometric simulated target data (blue; 
ot available in practice). While both distributions co v er the same
edshift range, the difference in densities is immediately apparent, 
n effect of the underlying co variate shift. F or each galaxy in
he spectroscopic set, the same set of covariates as provided for
alaxies in the photometric set is available. In addition, an accurate
pectroscopic measurement of the true redshift z is available for each
alaxy, with measurement error that is negligible for our purposes. 
MNRAS 534, 3808–3831 (2024) 
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Figure 4. Spectroscopic (true) redshift distributions of the photometric 
simulated target data D T (not available in practice) compared with the 
spectroscopic source data. 
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Table 1. Composition of the five StratLearn strata. The number of galaxies 
and the average spectroscopic (true) redshift is presented in each source and 
target stratum. (Composition of one random batch of 60 000 photometric 
samples is shown for illustration). 

Stratum Set #galaxies Mean z 

1 Source 6091 0.74 
Target 10 217 0.74 

2 Source 5036 0.77 
Target 11 271 0.74 

3 Source 4351 0.72 
Target 11 957 0.72 

4 Source 3668 0.65 
Target 12 639 0.66 

5 Source 2391 0.58 
Target 13 916 0.57 

All Source 21 537 0.71 
Target 60 000 0.68 
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7 Optimization of ( 4 ) was performed by splitting the source data within each 
strata in a training and validation set (one half each). The parameters which 
led to the best predictive performance on the source validation sets (in each 
stratum) were then selected for each conditional density estimator (ker-NN 

and Series) separately. The final optimization in ( 8 ) was then performed on 
the same source strata validation sets, using the optimized ker-NN and Series 
source validation set predictions. The hyperparameters for the five strata and 
for all 100 LoS are illustrated in the Appendix, Figs D4 , D5 , and D6 . 
8 We performed all computations on a CPU cluster employing up to ∼ 150 
CPU, simultaneously. 
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To account for sampling variance, 100 independent spectroscopic
atalogues are provided, each with above described specifications.
hese correspond to 100 independent fields (lines-of-sights, abbre-
iated as LoS). The fields of the three spectroscopic surv e ys are
ndependent of each other across the 100 LoS. 

.1.3 Choice of covariates and handling of missing data 

o obtain the conditional density estimates for all objects in the pho-
ometric target data, we choose as covariates the r-band magnitude
nd the 8 colours: ( u − g, g − r , r − i, i − Z, Z − Y , Y − J , J − H ,
 − Ks), a set-up previously adopted (e.g. W20 ; Izbicki et al. 2017 ;
utenrieth et al. 2024 ). Using colours instead of magnitudes does
ot worsen the ‘missing data’ pattern, as illustrated in Fig. D1 . As a
re-processing step, all covariates are scaled to have mean zero and
tandard deviation one. In the StratLearn framework, the missing
ata pattern has to be taken into account in the propensity score
stimation step, and in the computation of the conditional density
stimators within strata. For propensity score estimation, we use
ean imputation of the 9 covariates to fill the missing values; we also

dd 9 binary indicator variables as dependent variables (main effects)
o the logistic regression propensity score model, which describe the

issingness of each covariate. Fig. D3 in the appendix illustrates the
istributions of the estimated propensity scores for source and target
ata. The support of the target propensity score distribution is well
o v ered by the support of the source propensity score distribution,
emonstrating the availability of source galaxies that match the
ovariate space of the target galaxies. 

The computation of the conditional density estimators ( ker-NN
nd Series ) requires the calculation of Euclidean distances between
he co variate v ectors of each galaxy. In the missing data cases,
e compute the pairwise distances of two galaxieas using only

he covariate values with measurements (no missingness) for both
alaxies. The large size of the photometric target set causes addi-
ional computational challenges: for prediction of the conditional
ensities on the target data, distance matrices between photometric
NRAS 534, 3808–3831 (2024) 
arget set and spectroscopic source set are required, which is not
omputationally feasible for the entire target set at once. We thus
rocess the prediction on the photometric target set in batches of
0 000 target samples. Table 1 shows the strata composition of
pectroscopic source and photometric target data for one random
atch, illustrating that there is enough spectroscopic source/training
ata in each stratum to fit the conditional density estimators within
trata separately. While there is a slight discrepancy between the
verage redshift in source (0.71) and target data (0.68) o v erall, most
trata have well-balanced redshift means between source and target,
n indicator of reduced covariate shift after the propensity score
tratification (Autenrieth et al. 2024 ). Other batches demonstrate
 similar pattern. To reduce the computational burden, for each
oS, we use a fixed set of hyperparameters for prediction of the
onditional density estimators on all target batches. For each LoS,
e obtained the fixed hyperparameter set by optimizing ( 4 ) and ( 8 ),

eparately for each stratum, using one initial strata composition,
ith a randomly selected target batch. 7 Using batches of photo-
etric target data has the advantage that distance matrices can be

tored in memory, and predictions can be processed in parallel on
everal batches. 8 

.2 Impro v ed bin assignment accuracy 

n this section, we e v aluate the accuracy of the new tomographic
in assignment, obtained via StratLearn -based conditional density
stimates, as described in Section 3.2 , and illustrated in Fig. 1 . 

In Table 2 , we compare our bin assignment with the standard
ractice of using z B for the assignment, across five different clas-
ification performance metrics, demonstrating impro v ement in all
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Table 2. Tomographic bin assignment performance e v aluated o v er 100 LoS, 
comparing the StratLearn bin assignment (following Section 3.2 ) and the 
z B bin assignment. The average (sd) of the performance metrics computed 
for each of the 100 LoS is reported for StratLearn . Using z B , the bin 
assignment is consistently the same for all 100 LoS. For all metrics, higher 
values indicate better performance. 

StratLearn z B 
Performance metric mean (sd) mean (sd) 

Accuracy 0.622 (0.003) 0.526 ( −) 
Balanced accuracy 0.718 (0.003) 0.706 ( −) 
Sensitivity 0.502 (0.006) 0.493 ( −) 
Specificity 0.934 (0.001) 0.918 ( −) 
Cohen’s Kappa 0.439 (0.006) 0.415 ( −) 
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Figure 5. (a) Confusion matrix of the StratLearn tomographic bin assign- 
ment (averaged over 100 LoS). (b) Confusion matrix of the z B tomographic 
bin assignment. The labels ‘l’ and ‘r’ refer to the left and right end bins, 
respectively (for galaxies outside the tomographic bin ranges). 
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f them. On average across the 100 LoS, the StratLearn binning 
ssigns the photometric target galaxies to the correct tomographic 
in in 62.2 per cent of the cases (considering the five tomographic
ins, and both end bins separately). This is a substantial impro v ement
 v er the z B binning, with an accuracy of 52.5 per cent. StratLearn
mpro v es both the sensitivity (true positive rate) and the specificity
true ne gativ e rate) of tomographic bin assignment compared to z B ,
hus also leading to an impro v ement of the balanced accuracy and
ohen’s kappa, which take into account the imbalance of class (bin)
roportions. 9 The standard deviations of all performance measures 
cross the 100 LoS is relatively low (Table 2 ), which demonstrates
hat the impro v ement is consistent throughout the 100 LoS (the z B 
ssignment is the same for all 100 LoS). 

Figs 5 (a) and (b) show the confusion matrices of tomographic bin
ssignment using StratLearn and z B (averaged over the 100 LoS). 
he confusion matrices demonstrate that Str atLearn impro v es the 
in assignment across all five tomographic bins (top five diagonal 
alues), and most substantially in the second bin (with z ∈ (0 . 3 , 0 . 5]),
he one with the largest fraction of galaxies (21.7 per cent). In this
in, Str atLearn impro v es o v er the z B bin assignment by more than
5 per cent. 
The heatmap in Fig. 6 provides a visual comparison of the 

onfusion matrices in Figs 5 (a) and (b). Green squares in Fig. 6
orrespond to an impro v ement of Str atLearn o v er z B , while pink
quares correspond to better performance of the z B assignment. 
he heatmap is computed by subtracting the diagonal values of 
ig. 5 (b), the bin assignment accuracy of z B , from the diagonal
alues of Fig. 5 (a), the bin assignment accuracy of StratLearn ; on
he off-diagonal, the sign is reversed, so that green (positive) values 
enote StratLearn improvement everywhere. The improvement of 
tratLearn is particularly strong in the top five diagonal squares, the 
ve tomographic bins, which are of highest interest for the scientific 
nalysis. 

Fig. D7 in the appendix illustrates the changes in bin assignment of
tr atLearn v ersus z B , showing a moderate to strong disagreement of
tratLearn and z B in most of the bins. The reassignment of galaxies,
nd especially the impro v ed bin assignment accuracy of StratLearn ,
ight thus substantially impro v e cosmological results – this will be 

ubject of a future, dedicated study. 
 The balanced accuracy is defined as (specificity + sensitivity)/2. The 
ohen’s Kappa measures the relative performance of the classifier with the 
erformance of a random guess (based on the class frequency). Both metrics 
ake on values between 0 and 1 (with 1 being a perfect classifier). 

T  

t
f
G

E

.3 Impro v ed population mean estimates accuracy 

he main purpose of this study is to obtain accurate estimates of
he (true) redshift population means within tomographic bins. The 
oremost criteria to e v aluate redshift calibration methods (Newman & 

ruen 2022 ) is the mean discrepancy 

 [ ˆ μb − μtrue 
b ] � 

1 

L 

L ∑ 

l= 1 

( ̂  μb,l − μtrue 
b,l ) , ( = 

̂ bias b ) (27) 
MNRAS 534, 3808–3831 (2024) 
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here L = 100 is the number of LoS, ˆ μb,l the estimated mean
edshift and μtrue 

b,l the true redshift mean for LoS l for galaxies
ssigned to tomographic bin b. We note that ( 27 ) is not a bias in a strict
tatistical sense, since the true redshift mean (within tomographic
in) varies across lines of sights. Ho we ver, being consistent with the
otation of previous studies, we will loosely refer to ( 27 ) as ‘bias’.
n addition to ( 27 ), we are interested in the standard deviation, SD,
f the mean differences across the 100 LoS: 

D 

(
ˆ μb − μtrue 

b 

) = 

√ √ √ √ 

∑ L 

l= 1 

(
μdiff 

b,l − ̂ bias b 
)2 

L − 1 
(28) 

ith μdiff 
b,l = ˆ μb,l − μtrue 

b,l , for l = 1 , . . . , L and b = 1 , . . . , 5. 
Table 3 presents the bias results obtained for our no v el Str atLearn -

ayes method, with a comparison to the SOM direct redshift
alibration method introduced by W20 . While there is a variety
f cutting-edge redshift calibration methods in the literature (e.g.
au et al. 2020 ; Wright et al. 2020 ; Myles et al. 2021 ; Malz & Hogg
022 ; Rau et al. 2023 , among others), the SOM method is an obvious
hoice for comparison, since it has been shown to outperform other
irect redshift calibration methods (e.g. using k-nearest-neighbour
ethods, k NN; Hildebrandt et al. 2016 , 2020 ) on the realistic and

omprehensive simulations (mimicking the KiDS + VIKING-450
ata) considered in this work ( W20 ), thus making it most comparable.
ased on the StratLearn binning, our method options StratLearn -
ayes (A) and (B) lead to an average absolute bias of 0.0053
nd 0.0052 across the five tomographic bins, an improvement of

40 per cent w.r.t the SOM method with z B binning, which leads
o an average absolute bias of 0.0085. We further note that the SOM
with z B binning) method requires systematic quality cuts, which
educe the data size for the scientific analysis (we return to this point
elow). 
We also apply the SOM calibration method using the new

tratLearn binning, applying quality cuts as described in W20 , which
eads to an increase of bias (0.105 absolute average bias) compared
o SOM with the z B binning (0.0085 absolute average bias). Using
he StratLearn -Bayes model on the z B bin assignment also leads
o an increase in bias to 0.0141 and 0.0131 (on absolute average
cross the five bins). Such a reduction in performance could in fact
e expected: the StratLearn -Bayes model is based on the modelling
f the StratLearn object level (galaxy) conditional density estimates,
ut by applying a different binning (e.g. via z B ) additional (external)
rrors are introduced in the assignment of galaxies per tomographic
in. The StratLearn -Bayes framework is not designed for correction
f such external errors (biases), which lead to systematic shifts of
he population mean estimates. For instance, if the z B galaxy bin
ssignment is correlated with the variance of StratLearn galaxy
onditional density estimates, then the (tomographic bin) population
ean estimate in ( 22 ) can be systematically shifted. We thus advise

gainst the combination of StratLearn -Bayes based on z B binning,
nd advocate for the use of StratLearn -Bayes via the StratLearn -
ased binning, which leads to the best performance. 
Table 4 shows the standard deviation (SD) population scatters

rom the 100 LoS. StratLearn -Bayes with StratLearn binning leads
o slightly increased standard deviations of 0.0066 [option (A)] and
.0067 [option (B)] on average across the five tomographic bins,
ompared to the SOM method based on z B binning with an average
f 0.0051. The results in Table 4 indicate that the standard deviation
esults are related to the binning strategy, rather than to the calibration
ethod. Using SOM calibration on the StratLearn binning (with gold

uality cuts) leads to comparable increase in SD of 0.0066 on average
cross the five bins. On the other hand, using the StratLearn -Bayes
NRAS 534, 3808–3831 (2024) 
odel applied on the z B binning leads to a decrease in SD to an
verage of 0.0048 and 0.0047, e ven lo wer than applying SOM on the
 B binning. 

In general, the similarity in results of the StratLearn -Bayes options
A) and (B) demonstrate robustness with respect to the computation
f the population variance (last paragraph of Section 3.3 ). Both
ethods outperform the most comparable calibration method (SOM

n z B binning). Given a slight improvement of bias reduction, we
ropose the application of StratLearn -Bayes (B) as our best method.
Finally, our proposed method, StratLearn -Bayes (B), leads to a
aximum bias within tomographic bins of � 〈 z〉 = 0 . 0095 ± 0 . 0089

in bin 1). In contrast, using SOM based on z B binning, leads
o maximum biases of 0 . 0135 ± 0 . 0052 and 0 . 0147 ± 0 . 0040 (in
in 3 and 4). In addition, SOM based on z B binning requires
ystematic quality cuts (gold selection), which are not necessary
or our methodology. 

The impro v ed accurac y that we see with our proposed method
rings the biases down to � 〈 z〉 < 0 . 01 in all bins. This threshold has
een chosen in previous work as delineating ‘negligible’ and ‘non-
egligible’ biases ( W20 ; Abdalla et al. 2022 ). Moreover, our method
roduces biases that are consistent with zero within 1 . 5 σ in all bins,
hereas the SOM method produces biases that are inconsistent with

ero at the level of ∼ 3 . 7 σ in the fourth bin. As such, our method
s intrinsically less biased given the same calibrating data and target
ide-field population, while retaining a greater number of sources

or scientific analysis. 

.4 Larger sample size for weak lensing analysis 

n Table 5 , we show the absolute numbers of galaxies obtained via
he different tomographic bin assignment strategies and quality cuts.
n bins 2, 4, and 5, the number of galaxies is higher when using
tratLearn binning compared to z B . In bins 1 and 3, the number of
alaxies is slightly higher using the z B binning. Overall, due to the
mpro v ed binning accurac y of Str atLearn , there is an approximately
0 per cent increase in the number of available galaxies for science
summing o v er all bins) when using Str atLearn for tomography
nstead of z B . StratLearn assigns substantially fewer galaxies to
he right end bin than z B (see Figs 5 a and b), leading to a lower
roportion of galaxies that are falsely remo v ed from the analysis (the
ve tomographic bins), but also to a higher proportion of galaxies

hat actually are in the right end bin (having redshift greater than
.2), but are assigned to one of the five tomographic bins (mostly to
in 4 and 5). Given the small biases of StratLearn -Bayes in bins 4
nd 5 (Table 3 ), the inclusion of such high-redshift galaxies does not
eem to have a negative impact on the calibration, but the positive
ffect of increasing the available data size within tomographic bins. 

Table 5 also provides the number of galaxies within bin after
pplying the gold selection, as introduced by W20 . We note that the
old selection cut is not needed when applying the StratLearn -Bayes
pproach, while it is a necessary step to obtain the SOM results. Thus,
ompared to the previously best combination of bin assignment and
alibration method on these simulated data in W20 , the StratLearn -
ayes approach leads to an increase of galaxies available for science
f ∼18 per cent . 
For weak lensing analyses, the rele v ant statistic is the increase in

he ef fecti ve number of sources incorporating the shape measurement
eight. Heymans et al. ( 2012 ) derive the metric for ef fecti ve number
ensity of weak lensing sources as 

 eff = 

1 

A 

( 
∑ 

N w) 2 ∑ 

N ( w 

2 ) 
, (29) 
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Figure 6. Heatmap of confusion matrix (accuracy) differences between 
StratLearn and z B . On the diagonal, the difference of StratLearn – z B 
accuracy’s is sho wn. Of f-axis, the dif ference of z B - StratLearn is sho wn. Thus 
higher values (see colour scale at right) illustrate that StratLearn performs 
better than the z B estimate. 
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10 For illustration purposes, a mild Gaussian kernel density smoothing 
(with bandwidth 0.00294) was applied to the presented distributions in 
Fig. 7 . The non-smoothed distributions are illustrated in Fig. D9 in the 
appendix. 
11 pp-plots are obtained by plotting two (empirical) cumulative distribution 
functions (CDF) against each other. The distributions are equal iff the pp-plot 
falls on the diagonal line from (0,0) to (1,1). 
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here w is the shape-measurement weight for each source i ∈ N ,
nd A is the surv e y area in square-arcmin. The change in the n eff 

ue to the SOM gold selection and quality control is described as
n eff = n 

gold 
eff /n all 

eff . W20 quote this metric for SOM calibration with
uality control in their table 2, finding values of ∼ 0 . 8 in all bins. This
uggests that, for a reanalysis of cosmic shear with our StratLearn -
ayes approach, we would increase the available lensing sample 

tatistical power by a similar ∼ 20 per cent in each tomographic 
in. 

.5 P opulation distrib ution estimates 

n the previous sections, we demonstrate the ability of the StratLearn -
ayes method to accurately and precisely estimate the redshift 
opulation means, which is most crucial for photo- z calibration 
n the weak lensing analysis. Since realistic estimates of the pop- 
lation distribution shapes will become more influential in cosmic 
hear analysis and for photometric galaxy clustering (as discussed 
n Section 1 ), here we numerically demonstrate how propensity 
cores can be employed via inverse-PS weighting (as introduced 
n Section 4 ) to impro v e estimation of the whole shape of the
istribution. 
Table 3. Mean discrepancy (bias) computed over 100 lines of sight for different c
the StratLearn bin assignment as SL . The add-on (gold) denotes quality cuts ap
number of galaxies (in millions) available in the five tomographic bins. 

Binning Galaxies [M] Bin 1 

StratLearn -Bayes (A) SL 12.02 0 .0123 
StratLearn -Bayes (B) SL 12.02 0 .0095 
SOM SL (gold) 11.48 −0 .0084 

StratLearn -Bayes (A) z B 10.90 0 .0259 
StratLearn -Bayes (B) z B 10.90 0 .0228 
SOM z B (gold) 10.17 −0 .0005 
In Fig. 7 , we show the inverse-PS weighted redshift distribu-
ions per tomographic bin (in purple), obtained via the procedure 
escribed in Section 4 , and based on the StratLearn tomographic bin
ssignment (following Section 3.2 ). The true redshift distributions 
er tomographic bin (not known in practice) are shown in black. The
urple inverse-PS weighted distributions exhibit a similar shape as 
he black true redshift population distributions reco v ering reasonably 
ell the true photometric population distribution shapes, particularly 

hroughout tomographic bins 1 to 3. Fig. 7 further illustrates the SOM
stimated population distributions (in orange), and its underlying 
rue redshift population distributions (in light blue) obtained on the 
tratLearn tomographic binning after applying the gold selection 
uality cuts ( W20 ). Fig. 7 presents the average (estimated) redshift
opulation distributions across the 100 LoS per each tomographic 
in. 10 

In Fig. 8 , we assess the quality of the two estimation methods
inverse-PS and SOM) w.r.t. their underlying true distributions 
ia probability–probability plots (pp-plots) 11 : the figure shows the 
verage pp-plot (across the 100 LoS) for the inverse-PS estimated 
istributions versus the true (full) photometric redshift distributions 
er tomographic bin in purple lines, and the average pp-plot of the
OM estimated distributions versus the gold selected true distri- 
utions in orange dashed lines. The vertical bars gives 95 per cent
ntervals indicating the dispersion of the central 95 pp-plot lines from
he 100 LoS. 

Both estimates (inverse-PS and SOM) are close to the diagonal 
ine throughout bins 1 to 3, with larger deviations in bins 4 and 5.
otably, the Inverse-PS and SOM pp-plot lines exhibit very similar 
eviation patterns from the diagonal line; both methods are based 
n reweighting of the spectroscopic samples (following 3 ), which 
xplains similarities in their estimates. The purple (average) inverse- 
S lines are closer to the diagonal line than SOM in tomographic
ins 1,3,4, and 5, and almost identical with SOM in bin 2. In
ddition, the vertical 95 per cent intervals are generally smaller 
or inverse-PS compared to SOM (particularly in bins 1 to 3),
ndicating less variability in the estimate across the 100 LoS. Overall,
he inverse-PS estimate thus approximates its underlying truth (the 
ull binned photometric distribution) better than the SOM method 
ts underlying (gold-selected) true distribution, with the additional 
dvantage that no quality cuts are required for inverse-PS, leading 
o ∼ 18 per cent more galaxies in the photometric sample available 
MNRAS 534, 3808–3831 (2024) 

alibration methods, and different bin assignment strategies. We abbreviate 
plied to the data according to W20 . The Galaxies column shows the total 

Bin 2 Bin 3 Bin 4 Bin 5 | Average | 
−0 .0076 0.0053 −0 .0010 0 .0001 0.0053 
−0 .0092 0.0047 −0 .0013 0 .0012 0.0052 

0 .0022 0.0156 0 .0117 0 .0148 0.0105 

0 .0127 0.0084 0 .0003 −0 .0231 0.0141 
0 .0117 0.0071 −0 .0002 −0 .0236 0.0131 
0 .0036 0.0135 0 .0147 −0 .0102 0.0085 

r 2024
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M

Table 4. As in Table 3 , but showing standard deviation (SD) computed o v er 100 lines of sight for the different calibration methods, and different bin 
assignment strategies. 

Binning Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 | Average | 
StratLearn -Bayes (A) SL 0.0087 0.0065 0.0046 0.0052 0.0082 0.0066 
StratLearn -Bayes (B) SL 0.0089 0.0065 0.0045 0.0052 0.0082 0.0067 
SOM SL (gold) 0.0085 0.0064 0.0059 0.0058 0.0066 0.0066 

StratLearn -Bayes (A) z B 0.0055 0.0048 0.0049 0.0037 0.0051 0.0048 
StratLearn -Bayes (B) z B 0.0052 0.0048 0.0047 0.0036 0.0051 0.0047 
SOM z B (gold) 0.0055 0.0061 0.0052 0.0040 0.0049 0.0051 

Table 5. Sample sizes (in millions) within tomographic bins obtained via different bin assignment strategies and quality cuts (mean and standard deviation 
computed o v er 100 LoS). With (gold), we refer to the gold selection quality cuts described in W20 . 

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Total 
(0.1,0.3] (0 . 3 , 0 . 5] (0.5,0.7] (0 . 7 , 0 . 9] (0 . 9 , 1 . 2] (0 . 1 , 1 . 2] 

StratLearn mean 1.14 3.18 2.29 2.51 2.90 12.03 
(sd) (0.112) (0.207) (0.189) (0.204) (0.220) 

StratLearn (gold) mean 1.06 2.94 2.21 2.51 2.75 11.48 
(sd) (0.089) (0.158) (0.171) (0.205) (0.223) 

z B mean 1.31 1.94 2.84 2.16 2.66 10.90 
(sd) ( −) ( −) ( −) ( −) ( −) 

z B (gold) mean 1.15 1.91 2.36 2.10 2.65 10.17 
(sd) (0.034) (0.007) (0.071) (0.047) (0.003) 

f  

d  

a  

v  

(  

b
 

p  

a  

p  

d  

(  

d  

t  

F  

t  

f  

p  

a
 

a  

o  

i  

p  

i  

s  

o  

1

f
b
m
t

d  

i  

d  

P  

e  

d

6

T  

i  

c  

p  

c  

t  

s  

e  

e  

s  

p  

t  

n  

w
 

d  

o  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/534/4/3808/7783270 by C
atherine Sharp user on 05 N

ovem
ber 2024
or scientific analysis. For additional visualization of the distribution
ifferences presented in Fig. 8 , Fig. D8 in the appendix illustrates
 slightly modified version of Fig. 8 by subtracting the x -axis
alues (the quantiles of the true distributions) from the y -axis values
the quantiles of the estimated distributions) in each tomographic
in. 12 

In Fig. 9 , we assess the differences between the true full
hotometric redshift distribution and the true redshift distribution
fter gold selection, for each of the five tomographic bins. Fig. 9
resents a (modified) pp-plot, illustrating the full true photometric
istributions (on the x -axis) versus the gold selected true distributions
on the y -axis); with the modification that the x -axis values (full true
istribution quantiles) are subtracted from the y -axis (gold selection
ruth quantiles) for better visibility of the distribution differences.
ig. 9 illustrates that there are some mild changes in the underlying

ruth when applying the gold selection quality cuts (compared to the
ull true photometric sample) for bins 1,2,3, and 5. In bin 4, the true
hotometric distributions (before and after gold selection cuts) are
pproximately the same. 

Finally, as noted in Section 2.2 , direct redshift calibration methods
re generally prone to high variance, in particularly in the presence
f a small number of large weights. While we have demonstrated
mpro v ement of inverse-PS upon SOM for estimation of the redshift
opulation distribution shapes on the StratLearn -based binning, it
s true that the inverse-PS estimate can generally be affected by the
ame large variance instability. We note ho we ver that the formulation
f the weights via propensity scores enables the use of methods
NRAS 534, 3808–3831 (2024) 

2 While here we are mostly interested in the population estimates obtained 
or the newly proposed and more accurate StratLearn -based tomographic 
inning, we provide similar assessment of the population distribution esti- 
ates obtained for z B -based tomographic binning in Figs D10 and D11 in 

he appendix. 

t  

h  

a  

g  

v  

2  

o  
eveloped in the (causal inference) propensity score literature to
mpro v e assessment and estimation of the propensity scores for
irect redshift calibration (e.g. Imai & van Dyk 2004 ; Pirracchio,
etersen & van der Laan 2014 ; Austin & Stuart 2015 ; Ridgeway
t al. 2022 ; Autenrieth et al. 2021 ), which will be the subject of a
edicated future work. 

 DI SCUSSI ON  

his paper introduced a no v el statistically principled method that
mpro v es photometric redshift calibration for weak lensing. The
entral plank of our approach is the estimation of individual galaxy
hoto- z conditional densities within a Bayesian hierarchical model,
oupled with the StratLearn framework, a recently proposed sta-
istically principled method for learning under non-representative
ource/training data in the presence of covariate shift (Autenrieth
t al. 2024 ). The computation of galaxy-level conditional density
stimates allows us to introduce an alternative tomographic binning
trategy to the previously used z B -based binning (Benitez 2000 ). We
resented a hierarchical Bayesian framework, ( StratLearn -Bayes),
o model summaries of the conditional density estimates to obtain
early unbiased photometric redshift population mean estimates
ithin tomographic bins. 
Before summarizing the main findings of our study, we briefly

iscuss some limitations associated with our analysis and methodol-
gy, and potential impro v ements for future work. First, we note that
hroughout the paper, we assume that the covariate shift assumption
olds, i.e. we assume there are no unmeasured covariates that are
ssociated with both the source/target selection and the redshift of a
alaxy. As discussed in Appendix B , we plan to consider potential
iolations of this assumptions due to quality cuts (Newman et al.
015 ; Hartley et al. 2020 ) for prevention of redshift failures in
ngoing/future work, with the aim of further reducing bias. We
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Figure 7. Redshift population distribution (estimates) per tomographic bin, with tomographic bins obtained as described in Section 3.2 via StratLearn -based 
binning. The figure illustrates the inverse-PS (purple) and SOM (orange) distribution estimates. The underlying true photometric redshift population distributions 
per tomographic bin (not known in practice) are illustrated in black for the full sample truth, and in light blue for the gold selected true distributions. The 
averaged (estimated) distributions across the 100 LoS are illustrated per tomographic bin. 
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urther note that some of the remaining bias in the population 
ean estimates may be explained by effects introduced via the 

omographic bin assignment described in Section 3.2 . Employing 
 soft classification of galaxies based on the tomographic bin 
robabilities may lead to further bias impro v ement in future work. 
We e v aluated our method on a comprehensi ve and realistic

imulation study ( W20 ; Van Den Busch et al. 2020 ) mimicking the
iDS + VIKING-450 data set (Wright et al. 2019 ; Hildebrandt 

t al. 2020 ) with realistic photometric noise and spectroscopic 
ncompleteness. The results of this study can be summarized in four
oints: 

(i) The StratLearn conditional density-based tomographic binning 
trategy substantially improves upon the z B tomographic bin assign- 
ent, with an o v erall binning accuracy of ∼62 . 2 per cent using

tratLearn , compared to ∼52 . 6 per cent using z B . 
(ii) The StratLearn -Bayes model leads to the lowest bias in the 

stimation of tomographic redshift population means. On average 
cross the five tomographic bins, the proposed StratLearn -Bayes 
ethod leads to an absolute bias of 0.0052, a substantial impro v ement
 v er the previously best direct redshift calibration method employed 
n this simulation study, SOM with z B binning ( W20 ), of 0.0085
verage absolute bias. The strong reduction of bias is accompanied 
y a slight increase in uncertainty, leading to an average standard de-
iation of 0.0067, compared to 0.0051. Using the StratLearn -Bayes 
ramework, we find a maximum bias of � 〈 z〉 = 0 . 0095 ± 0 . 0089,
lightly below the potentially critical bias value of � 〈 z〉 > 0 . 01,
ompared to SOM based on z B binning, which leads to maximum
iases of 0 . 0135 ± 0 . 0052 and 0 . 0147 ± 0 . 0040. 
(iii) While the SOM calibration method based on z B binning, 

equires systematic quality cuts to define a gold sample ( W20 ),
ur method does not require any cuts of the photometric sample.
hus, together with the impro v ed tomographic bin assignment, the
tratLearn -Bayes framework delivers an increase of ∼18 per cent 
n the galaxies available for the cosmic shear analysis. 

(iv) We demonstrate how propensity scores can be employed via 
nverse-PS weighting in a direct redshift calibration approach to ob- 
ain realistic estimates of the redshift population distribution shapes 
er tomographic bin. Given the newly proposed StratLearn binning, 
e show that using inverse-PS leads to a better approximation of the

rue photometric population distributions compared to employing 
OM for estimation of the gold selected population distributions 
with the additional advantage of not requiring any quality cuts). 

Finally, we believe that the impro v ed tomographic binning assign-
ent, the reduction of population mean bias within tomographic bin, 

nd the increase in the number of galaxies available for cosmic shear
nalysis will have a substantial impact on the eventual scientific 
esults and cosmological parameter inference. Analysing the final 
iDS data release with our impro v ed calibration method might

ead to more precise and more accurate constraints on cosmological 
arameter estimates, particularly on S 8 , the clustering strength of 
predominantly dark) matter. We further believe that the proposed 
ethod might provide a powerful tool to improve the analysis 
MNRAS 534, 3808–3831 (2024) 
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M

Figure 8. Probability–probability plots (pp-plot) for the inverse-PS estimated distributions versus the true (full) photometric redshift distributions in purple 
lines, and pp-plots of the SOM estimated distributions versus the gold selected true distributions in orange dashed lines, based on the StratLearn tomographic 
binning (following Section 3.2 ). For each tomographic bin, the averaged pp-plots across the 100 LoS are presented, with vertical bars illustrating 95 per cent 
intervals indicating the range of the central 95 pp-plot lines from the 100 LoS. 
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f present and upcoming cosmic shear analysis. We will inves-
igate if the expected availability of larger spectroscopic source
ata sizes might allow further reduction of bias and variability
o meet the stringent accuracy requirements of Euclid (Laureijs
t al. 2011 ) and the Le gac y Surv e y of Space and Time (LSST;
bell et al. 2009 ). 
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Figure 9. The figure illustrates (modified) pp-plots, comparing the true 
redshift distribution of the full sample (without quality cuts) with the true 
redshift distribution after applying gold selections, per tomographic bin 
(based on StratLearn tomograhic binning, following Section 3.2 ). For better 
readability, we illustrate ‘modified’ pp-plots, with the x -axis placing the 
quantiles of the full sample truth and the y -axis showing the quantiles of 
the gold selected truth subtracted by the x-axis values (the quantiles of the 
full sample true redshift distribution). For each tomographic bin, means of 
the pp-lines across the 100 LoS are illustrated, as well as 95 per cent intervals 
(vertical bars). 
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13 In the causal inference literature, covariates associated with the 
source/target (control/treatment) selection but not with the outcome variable 
are denoted as instrumental variables . In fact, it has been shown that the 
inclusion of instrumental variables in the propensity score analysis does not 
impro v e bias of the target estimates, but may lead to increased variability. 
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PPENDIX  A :  A D D I T I O NA L  DETA ILS  F O R  

O N D I T I O NA L  DENSITY  ESTIMATION  

n this section, we provide deri v ations of the generalized risk under
he L 

2 −loss given in ( 4 ). Following Izbicki et al. ( 2017 ), we start
ith the risk based on the general L 

2 −loss via 

 S ( ˆ f ) = 

“
( ˆ f ( z| x) − f ( z| x )) 2 d P S ( x ) d z, (A1) 

ith ˆ f ( z| x) being the full conditional density estimate of redshift
 giv en the co variates at point x , f ( z| x ) being the true conditional
ensity of z given x , and P S ( x ) being the distribution of the source
ovariates. In extended form, ( 30 ) can be written as 

 S ( ˆ f ) = 

“
ˆ f 2 ( z| x ) d P S ( x ) d z − 2 

“
ˆ f ( z| x ) f ( z| x ) d P S ( x ) d z 

+ 

“
f 2 ( z| x ) d P S ( x ) d z ︸ ︷︷ ︸ 

= constant C 

, (A2) 

hich up to the constant C is equal to 

 S ( ˆ f ) = 

“
ˆ f 2 ( z| x ) d P S ( x ) d z − 2 

“
ˆ f ( z| x ) d P S ( x , z) . (A3) 

rom ( 31 ) to ( 32 ), the equality d P S ( x, z) = f ( z| x ) d P S ( x ) d z (via
adon–Nikodym deri v ati ve) is employed. Gi ven the labelled source

amples ( x S , z S ), we can get an estimate of ( 32 ) via 

ˆ 
 S ( ˆ f ) = 

1 

n S 

n S ∑ 

k= 1 

∫ 
ˆ f 2 
(
z| x ( k) 

S 

)
d z − 2 

1 

n S 

n S ∑ 

k= 1 

ˆ f 
(
z 

( k) 
S | x ( k) 

S 

)
, (A4) 

s presented in ( 4 ). 

PPENDIX  B:  C OVA R I ATE  SHIFT  

SSUMPTION  

n this section, we discuss the covariate shift assumption and its
otential violation due to spectroscopic quality cuts as indicated
y Hartley et al. ( 2020 ). Following a number of previous studies
e.g. Lima et al. 2008 ; Hildebrandt et al. 2020 ; Wright et al. 2020 ),
nd as described in Section 2 , we assume throughout this paper
hat the covariate shift assumption holds, i.e. p S ( x) �= p T ( x), but
 S ( z| x) = p T ( z| x). That means there are no unmeasured covariates

hat are associated to the selection of galaxies into the spectroscopic
ource set, and also predictive for redshift z. 

As discussed in Hartley et al. ( 2020 ), additional selection cuts
ight lead to a violation of this assumption. More precisely, in

ome cases, the spectroscopic redshift measurement/estimate (for
alaxies in the spectroscopic source set) may disagree significantly
ith the true redshift, a situation referred to as ‘redshift failure’

Hartley et al. 2020 ). To a v oid contamination of subsequent analyses,
uality/confidence flags are introduced to indicate and remo v e
alaxies with suspected redshift failure. 

These quality flags are primarily determined based on character-
stics of the galaxy spectra (e.g. the S/N of emission and absorption
ines, and the strength of the 4000 Å break; Hartley et al. 2020 ).
NRAS 534, 3808–3831 (2024) 
ere, we denote the spectroscopic features/covariates used to obtain
he quality flags for a galaxy i as y i . Based on y i , a galaxy is assigned
 high- or low-quality flag, and galaxies with low-quality flags are
emo v ed from the analysis pipeline, so we can assume that the
otal fraction of spectroscopic redshift failures will only be around

1 per cent (Hildebrandt et al. 2020 ). 
Of course, spectral information is obtained only for galaxies in the

pectroscopic source set, but not for galaxies in the photometric target
et. The spectral features y associated to the selection of galaxies into
he final spectroscopic source set are thus unmeasured for galaxies in
he photometric target set. As demonstrated in the causal inference
iterature (e.g. Rubin 1997 ; Myers et al. 2011 ; Austin & Stuart 2015 ),
 correction of such covariates is only necessary/important if they
re also associated to the outcome variable. 13 A possible justification
f our covariate shift assumption is that, given the photometric
ovariates x, the additional spectroscopic covariates y (employed
o indicate quality flags) are not further predicti ve/informati ve of
edshift z , i.e. p( z | x , y ) = p( z| x). A thorough analysis of this
ssumption along with possible correction strategies is a topic of
ngoing/future work. 

PPENDI X  C :  A D D I T I O NA L  M O D E L  DETA ILS  

1 Posterior deri v ations 

his section provides the theoretical justification of the posterior
eri v ations in Section 3.3 . 
Deriving ( 20 ) from ( 19 ) is obtained by integrating over the product

f normal densities in ( 19 ), which can analytically be done via
ompleting the squares. We note that flipping the z i and ˆ ξi in
 19 ) constitutes the standard normal–normal hierarchical model with
aussian measurement errors on latent z i with Gaussian population.
he analytical deri v ation of this model is a standard result in Bayesian
tatistics (see e.g. Gelman et al. 1995 , page 117), demonstrating that ∫ 
R 
N 

(
ˆ ξi | z i , ̂  τ 2 

i 

)
N ( z i | μ, σ 2 ) d z i = N 

(
ˆ ξi | μ, ̂  τ 2 

i + σ 2 
)
. (C1) 

athematically, the densities N ( ̂ ξi | z i , ̂  τ 2 
i ) and N ( z i | ̂  ξi , ̂  τ 2 

i ) are iden-
ical, due to the symmetry of the normal distribution. It thus directly
ollows that ∫ 
R 
N 

(
z i | ̂ ξi , ̂  τ 2 

i 

)
N ( z i | μ, σ 2 ) d z i = N 

(
ˆ ξi | μ, ̂  τ 2 

i + σ 2 
)
, (C2) 

hich concludes ( 20 ) from ( 19 ). 
With a uniform conditional prior density p( μb | σb ), the Gaussian

onditional posterior of μb given σb , ˆ X n T b 
in ( 21 ) then follows

irectly as another standard result (see e.g. Gelman et al. 1995 , page
17). More precisely, ( 20 ) is a product of Gaussian densities, which
ields a Gaussian density (the log-posterior is quadratic in μb ). The
arameters of the Gaussian conditional posterior in ( 21 ) are obtained
y considering the ˆ ξi as independent estimates of μb with variances
 ̂  τ 2 
i + σ 2 

b ). 

http://dx.doi.org/10.1051/0004-6361/201834879
http://dx.doi.org/10.1051/0004-6361/201936782
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2 Posterior distribution of σ

n our hierarchical Bayesian model, the marginal posterior distribu- 
ion of the population variance σb can be obtained via 

( σb | ̂  X n Tb ) ∝ p( σb ) V 

1 / 2 
μ

J ∏ 

j= 1 

(
τ 2 
j + σ 2 

b 

)−1 / 2 
exp 

( 

− ( ̂ ξj − ˜ μb ) 2 

2 
(

ˆ τ 2 
j + σ 2 

b 

)) 

(C3)

ith ˜ μb and V μb 
as defined in ( 22 ). Choosing a uniform prior on σb ,

( σb ) ∝ 1, makes ( 36 ) a proper posterior density (see e.g. Gelman
t al. 1995 , page 117). 

3 Justification of stacked population variance estimate 

n this section, we justify the stacked estimator of the marginal 
edshift population distribution p b ( z) in ( 23 ). Precisely, we can
xpress p b ( z) via 

 b ( z) = 

∫ 
p b ( z| x ) p b ( x ) d x , (C4) 

ith x being photometric magnitudes/colours, p b ( x) being the dis-
ribution of the covariates (magnitudes/colours) of bin b, and p b ( z| x)
eing the conditional distribution of redshift z giv en co variates x of
in b. By assuming the set of photometric magnitudes/colours are 
nite, and assuming that the conditional distribution of z given x is

he same for all bins (i.e. p b ( z| x) = p( z| x)), we obtain 

 b ( z) = 

∑ 

i 

p( z| x = x i ) p b ( x = x i ) . (C5) 

e have an estimate of the conditional densities p( z i | x i ) ≈
 ( z i | x i ). Since z i 

iid ∼ p( z), it holds that p( z| x = x i ) = p( z i | x =
 i ) ≈ ˆ f ( z i | x i ). Further, we can approximate p b ( x = x i ) by counting
ccurrences of x i in the sample of observed magnitudes/colours 
ithin tomographic bin b. Alternativ ely, av eraging o v er all estimated

onditional densities ˆ f ( z i | x i ) of galaxies in bin b directly incorpo-
ates these occurrence frequencies, leading to the estimator in ( 23 ). 

4 Posterior sampling without Gaussian replacement 

n this section, we detail an alternative Bayesian model that di-
ectly employs the non-parametric conditional density estimates 
ˆ 
 ( z i | x i ) ≈ p( z i | x i ), instead of replacing ˆ f ( z i | x i ) with a Gaus-
ian approximation as described in the methods developed in 
ection 3.3 . 

4.1 Model description 

or each tomographic bin b, given the photometric data X n Tb , the
oint posterior distribution of the population mean μb (our parameter 
f interest) and the population standard deviation σb , can be written 
ia 

( μ, σ | X n Tb ) ∝ p( μb , σb ) 
∏ 

i 

∫ 
ˆ f ( z i | x i ) N 

(
z i | μb , σ

2 
b 

)
d z i . (C6) 

n practice, we compute the conditional density estimates ˆ f ( z i | x i )
s histograms on a fine equidistant grid. More precisely, we ob- 
ain ˆ f ( z i | x i ) = 

∑ G 

g= 1 
ˆ f ( g) ( z i | x i ) 1 g , where g = 1 , . . . , G denote the

isjoint and equidistant grid points, and f ( g) is the density at grid
ocation g. Evaluated on a fine grid ( G = 201 grid points in practice),
able C1. Mean discrepancy (bias) and standard deviation (SD) computed 
 v er 100 lines of sight obtained for the Bayesian model described in
ection C4 , using the conditional densities f ( z i | x i ) directly for the object

evel distributions instead of the Gaussian replacements. 

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 | Average | 
ias −0 .0069 −0 .0223 −0 .0046 −0 .0082 0.0279 0.0140 
D 0 .0101 0 .0084 0 .0054 0 .0061 0.0087 0.0077 

 39 ) can then be approximated via 

( μb , σb | X n Tb ) ∝ p( μb , σb ) 

×
∏ 

i 

∑ 

g 

� grid f 
( g) ( z i | x i ) N 

(
z 

( g) 
i | μb , σ

2 
b 

)
, (C7) 

ith N ( z ( g) 
i | μb , σ

2 
b ) denoting the normal density at grid point g, and

 grid being the width of each grid bin. 
For the reasons as described in Section 3.3 , we choose an empirical

ayesian approach, employing the stacked estimate ˆ σ 2 
b for the 

opulation variance parameter σ 2 
b . With σb = ˆ σb fixed, and adopting 

 uniform conditional prior density p( μb | σb ) ∝ 1 (as in Section 3.3 ),
e obtain 

( μb | X n Tb , ̂  σb ) ∝ 

∏ 

i 

∑ 

g 

� grid f 
( g) ( z i | x i ) N 

(
z 

( g) 
i | μb , ̂  σ 2 

b 

)
. (C8) 

4.2 Computation 

e implement a simple Metropolis algorithm to obtain a posterior 
ample of ( 41 ). For computational reasons, we use a subset of 5
er cent (600 000 galaxies) of the target set for our analysis in
his section. Galaxies are assigned to tomographic bins using the 
tratLearn binning described in Section 3.2 . For each tomographic 
in, we then use the Metropolis sample to obtain estimates ˆ μb of the
osterior means, which are then used as the point estimates of the
opulation means μb . 14 

Table C1 presents the bias and SD computed o v er 100 lines of sight.
mploying the conditional densities f ( z i | x i ) led to substantially

arger bias, averaging 0.0140 across the five tomographic bins, 
ompared to the StratLearn -Bayes models employing the Gaussian 
eplacements of the conditional density estimates, which yielded 
n average bias across the five bins of 0.0052 (see Table 3 ). The
ncrease in average bias is attributable to larger biases in tomographic
ins two and five. We note that we found a similar pattern with
arious simulation settings, using different subsets of the shear- 
easurement reweighted photometric sample D T , and the non- 

eweighted photometric sample D 

u 
T (introduced in Section 5.1 ). This 

llustrates that the model with Gaussian replacements appears to 
erform better in various simulation settings. 

PPENDI X  D :  A D D I T I O NA L  F I G U R E S  

his section presents additional figures, as previously referred to 
n the main paper. More precisely, the figures provide additional 
ata/simulation study details, such as Figs D1 and D2 ; and additional
umerical results, Figs D3 , D4 , D5 , D6 , D7 , D8 , D9 , D10 , and D11 .

4 For each posterior sample (each tomographic bin and line of sight), the
etropolis sampler was run for 4000 iterations, leading to an ef fecti ve sample

ize of around 400–800, treating the first 1000 iterations as burn-in. Visual
nspections of trace plots and auto-correlation plots indicate well converged 
hains. 
MNRAS 534, 3808–3831 (2024) 
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Figure D1. ‘Missing data’ pattern for (a) magnitudes, and (b) colours, of a 
random subsample of 60 K galaxies from the photometric surv e y. 

Figure D2. Spectroscopic (true) redshift distributions of the photometric 
surv e y (not known in practice), with and without incorporation of shear- 
measurements weights. The blue dashed line shows the redshift distribution 
of the full photometric sample D 

u 
T (before resampling). The black line shows 

the redshift density of the full photometric density weighted by the shear- 
measurement weights ˆ w , and the green line illustrates the redshift density of 
the resampled sample D T . The black and green line perfectly match, with 
a mean difference of ∼10 −4 , illustrating that there is negligible difference 
of targeting the resampled distribution (as in this study) and targeting the 
weighted distribution (as in W20 ). 

Figure D3. Propensity score distributions of source and target data in 
Section 5 . 
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Figure D4. Illustration of the optimized hyperparameters for the Series conditional density estimator (described in Section 3.1 ). The heatmaps illustrate the 
pre v alence of the various hyperparameter combinations across the 100 LoS for each stratum, respectively. Hyperparameters were optimized as described in 
Sections 3.1 and 5.1 . We note that for the ε hyperparameter two additional grid values (0.05 and 0.11) were a vailable, b ut never selected as the optimal 
hyperparameter, and thus not illustrated here for better readability. In addition, we note that our preliminary investigation showed that values for ε which were 
greater than 0.4 did not (or only marginally) lead to risk impro v ements; we thus used 0.4 as the maximum value for the ε grid. 

Figure D5. Illustration of the optimized hyperparameters for the Ker-NN conditional density estimator (described in Section 3.1 ). The heatmaps illustrate the 
pre v alence of the various hyperparameter combinations across the 100 LoS for each stratum, respectively. Hyperparameters were optimized as described in 
Sections 3.1 and 5.1 . For the ‘bandwidth’ hyperparameter five additional grid values (0.0011 0.0013 0.0015 0.0018 0.002) were a vailable, b ut never selected as 
the optimal hyperparameter. For the ‘# of nearest neighbours parameter’ parameter three additional grid values (2,5,8) were available but never selected as the 
optimal hyperparameter. These grid values are not illustrated in the heatmaps for better readability. 
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Figure D6. Frequency of the optimized α hyperparameter for the Comb 
conditional density estimator (described in Section 3.1 ) across the 100 LoS, 
for the five strata respectively. The α hyperparameter was optimized as 
described in Sections 3.1 and 5.1 . 

Figure D7. Changes in bin assignment using StratLearn versus z B binning, 
averaged across the 100 LoS. 

Figure D8. Modification of the pp-plots illustrated in Fig. 8 to visualize 
differences between the estimated distributions (Inverse-PS and SOM) with 
their underlying ground truth (full photometric truth and gold selected truth); 
modified by subtracting the x -axis values (the quantiles of the true distribu- 
tions) from the y -axis values (the quantiles of the estimated distributions) in 
each tomographic bin illustrated in Fig. 8 . Solid lines illustrate the inverse-PS 
results, and dashed lines illustrate the SOM results. The 95 per cent intervals 
(vertical bars) are omitted for clarity. 
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Figure D9. The same as Fig. 7 , but without additional Gaussian Kernel smoothing of the population distributions. More precisely, the figure illustrates the 
redshift population distribution (estimates) per tomographic bin, with tomographic bins obtained as described in Section 3.2 via StratLearn -based binning. 
The figure illustrates the inverse-PS (purple) and SOM (orange) distribution estimates. The underlying true photometric redshift population distributions per 
tomographic bin (not known in practice) are illustrated in black for the full sample truth, and in light blue for the gold selected true distributions. The averaged 
(estimated) distributions across the 100 LoS are illustrated per tomographic bin. 
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Figure D10. The same as in Fig. 8 , but on z B -based binning instead of StratLearn -based binning. More precisely, the figure presents pp-plots for the inverse-PS 
estimated distributions versus the true (full) photometric redshift distributions in purple lines, and pp-plots of the SOM estimated distributions versus the gold 
selected true distributions in orange dashed lines, based on the z B tomographic binning (following Section 3.2 ). For each tomographic bin, the averaged pp-plots 
across the 100 LoS are presented, with vertical bars illustrating 95 per cent intervals indicating the range of the central 95 pp-plot lines from the 100 LoS. In 
bin 1, the SOM pp-plot line is closer to the 45 ◦ line, while in tomographic bins 3 to 5 the inverse-PS pp-plot line is slightly closer to the 45 ◦ line, with almost 
identical performance in tomographic bin 2. Given the z B -based binning none of the estimators (inverse-PS or SOM) is thus consistently closer to its underlying 
ground-truth (throughout the tomographic bins). 
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Figure D11. The same as in Fig. 7 , but on z B -based binning instead of StratLearn -based binning. More precisely, the figure illustrates the redshift population 
distribution (estimates) per tomographic bin, with z B -based tomographic binning. The figure illustrates the inverse-PS (purple) and SOM (orange) distribution 
estimates. The underlying true photometric redshift population distributions per tomographic bin (not known in practice) are illustrated in black for the full 
sample truth, and in light blue for the gold selected true distrib utions. The a veraged (estimated) distributions across the 100 LoS are illustrated per tomographic 
bin. 
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