Alfaro-Lucas, Joan M;
Chapman, Abbie SA;
Tunnicliffe, Verena;
Bates, Amanda E;
(2024)
High functional vulnerability across the world’s deep-sea hydrothermal vent communities.
Proceedings of the National Academy of Sciences
, 121
(45)
, Article e2403899121. 10.1073/pnas.2403899121.
Preview |
Text
alfaro-lucas-et-al-2024-high-functional-vulnerability-across-the-world-s-deep-sea-hydrothermal-vent-communities.pdf - Published Version Download (5MB) | Preview |
Abstract
At the nearly pristine hydrothermal vents of the deep sea, highly endemic animals depend upon bacteria nourished by hydrothermal fluids that emerge as outflows from the seafloor. These animals are remarkable in tolerating extreme conditions, including high heat, toxic reduced sulfide, and low oxygen. Here, we test whether the extreme vent environment has selected for functionally similar species across the world’s deep ocean, despite well-established global geographic patterns of high phylogenetic distinctness. High functional redundancy in species pools within regions suggests that the extreme environments select for species with specific traits. Yet, some regions emerge as functional hotspots where species pools with distinct functional trait compositions may represent geological idiosyncrasies of the habitats. Moreover, many species are functionally unique, an outcome of low species richness in a system where the species pool is small at all scales. Given the high proportion of functionally unique species, simulated species extinctions indicate that species losses would rapidly translate to the elimination of functionally irreplaceable species and could tip vent systems to functional collapse. Ocean changes and human-induced threats are expected to significantly impact many vent species as human activities expand in the remote deep sea. The opportunity exists now to take precautionary actions to limit the rates of extinction now ubiquitous in more accessible areas of Earth.
Type: | Article |
---|---|
Title: | High functional vulnerability across the world’s deep-sea hydrothermal vent communities |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1073/pnas.2403899121 |
Publisher version: | http://dx.doi.org/10.1073/pnas.2403899121 |
Language: | English |
Additional information: | Copyright © 2024 the Author(s). Published by PNAS. This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), https://creativecommons.org/licenses/by-nc-nd/4.0/. |
Keywords: | Macroecology; functional biogeography; community assembly; functional diversity; functional resilience |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Genetics, Evolution and Environment |
URI: | https://discovery.ucl.ac.uk/id/eprint/10199563 |
Archive Staff Only
View Item |