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Abstract 

Objective: This study aimed to compare the ability of a deep-learning platform (the MACSSwin-T model) with 

healthcare professionals in detecting cerebral aneurysms from operative videos. Secondly, we aimed to 

compare the neurosurgical team’s ability to detect cerebral aneurysms with and without AI-assistance. 

 

Background: Modern microscopic surgery enables the capture of operative video data on an unforeseen scale. 

Advances in computer vision, a branch of artificial intelligence (AI), have enabled automated analysis of 

operative video. These advances are likely to benefit clinicians, healthcare systems, and patients alike, yet such 

benefits are yet to be realised. 

 

Methods: In a cross-sectional comparative study, neurosurgeons, anaesthetists, and operating room (OR) 

nurses, all at varying stages of training and experience, reviewed still frames of aneurysm clipping operations 

and labelled frames as ‘aneurysm not in frame’ or ‘aneurysm in frame’. Frames then underwent analysis by the 

AI platform. A second round of data collection was performed whereby the neurosurgical team had AI-

assistance. Accuracy of aneurysm detection was calculated for human only, AI only, and AI-assisted human 

groups. 

 

Results: 5,154 individual frame reviews were collated from 338 healthcare professionals. Healthcare 

professionals correctly labelled 70% of frames without AI assistance, compared to 78% with AI-assistance (OR 

1.77, p<0.001). Neurosurgical Attendings showed the greatest improvement, from 77% to 92% correct 

predictions with AI-assistance (OR 4.24, p=0.003). 

 

Conclusion: AI-assisted human performance surpassed both human and AI alone. Notably, across healthcare 

professionals surveyed, frame accuracy improved across all subspecialties and experience levels, particularly 

among the most experienced healthcare professionals. These results challenge the prevailing notion that AI 
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primarily benefits junior clinicians, highlighting its crucial role throughout the surgical hierarchy as an essential 

component of modern surgical practice. 
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Introduction 

Artificial Intelligence (AI) offers novel solutions to surgical problems.1,2 Computer vision, a domain of AI, 

enables images and videos to be analysed and contextualised by computer technology.1 Advances in computer 

vision analysis of radiographic and diagnostic imaging modalities have been significant in the past two decades, 

yet these benefits are yet to be translated to the operating room (OR).3 Increasingly, however, intraoperative 

video is being viewed as a mass of untapped data with huge potential. Indeed, recent advancements in 

intraoperative CV include phase recognition4,5, navigation6, and instrument segmentation7. In this study, we 

aimed to demonstrate the benefit of surgical computer vision, using microsurgical clipping of cerebral 

aneurysms as an exemplar. 

 

Surgical clipping of cerebral aneurysms is a high-risk procedure, with 30% of operations experiencing 

complications and 36% of poor outcomes attributable to intraoperative issues.8,9 The most feared intraoperative 

complication is aneurysm rupture, occurring in 17% of cases.8 Crucially, the greatest risk of aneurysm rupture 

occurs when the aneurysm is in the surgical field of view.8 Intraoperative identification of aneurysms can be 

challenging owing to narrow surgical corridors, anatomical variation, surrounding vasculature, and dense 

arachnoid adhesions. Indeed, interpreting three-dimensional anatomy in real-time and identification of small 

cerebral aneurysms feature amongst the top technical challenges faced by neurovascular surgeons.10 

Recognition of cerebral aneurysms is not only relevant to the operating surgeon, but also to the wider theatre 

team. Effective teamwork amongst the surgical team is essential to reducing the risk of intraoperative 

complications. Intraoperative cohesion and understanding improves efficiency, reduces stress burden, and 

facilitates rapid solving of intraoperative problems in what are frequently dynamic and high stress 

scenarios.11,12 Indeed, communication breakdown and misunderstanding between surgical team members have 

been shown to contribute directly to adverse events.11,13 The notion of ‘shared mental models’, in which a team 

share a collective understanding of a situation, helps elucidate why group understanding is paramount to 

intraoperative safety.14,15 Essential to this shared experience is scene recognition. Put simply, it is important that 

all personnel in theatre environments understand when the highest risk phase of an operation is occurring, such 

as the aneurysm clipping phase. Recognition enables preparedness and a heightened alertness amongst the 

surgical team and safeguards against unnecessary distraction, akin to the ‘sterile cockpit’ protocol adopted in 

the aviation industry.16,17 Innovations to increase scene recognition and awareness, therefore, stand to benefit 

patient safety. 

 

Previously, our group described MACSSwin-T, a deep-learning platform able to detect or exclude the presence 

of cerebral aneurysms from microsurgical clipping operation operative video, exploiting computer vision based 

on the Shifted-Windows Transformer architecture.18 MACSSwin-T achieved an accuracy of 80.8% (precision 
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51.3% and recall 63.8%) and an average F1-score of 56.8% in multiple cross-fold validation.18 An optimised 

model was produced, and in an initial expert validation assessment demonstrated non-inferiority when 

compared to a cohort of ten attending (consultant grade) neurosurgeons.18 

 

Surgical technologies benefit from stepwise evaluation, such as described by the Idea, Development, 

Exploration, Assessment, Long Term (IDEAL) Framework.19 Prior to first-in-human studies, a range of factors 

pertaining to the safety and efficacy of an innovation should be explored. This comparative, ex- vivo (IDEAL 

Stage 0) study builds on our previous work by comparing the efficacy of the MACSSwin-T platform against 

neurosurgical healthcare professionals in detecting cerebral aneurysms from microsurgical aneurysm clipping 

operations. This study aimed to validate our intervention by comparing the MACSSwin-T platform with 

neurosurgical healthcare professionals at identifying cerebral aneurysms in microsurgical clipping operations. 

Secondly, we aimed to compare neurosurgical healthcare professional’s ability to detect cerebral aneurysms 

with and without AI-assistance. In doing so, we aim to demonstrate the benefits of computer vision in surgical 

contexts. 

 

Methods 

Overview of methods 

An online survey was created and distributed to neurosurgical healthcare professionals (neurosurgeons, 

anaesthetists, and operating room (OR) nurses) worldwide, all at varying stages of training and experience. 

Participants reviewed 15 still frames (seven containing an aneurysm, eight without an aneurysm) derived from 

four aneurysm clipping videos and determined if each frame contained an aneurysm. The frames were analysed 

by the MACSSwin-T platform, which predicted whether the frames did or did not contain an aneurysm. Human 

and AI performance results were compared. In a second version of the survey, the neurosurgical healthcare 

professionals received AI assistance, and initial human performance was compared to AI-assisted performance. 

Survey methodology adhered to Good Survey Practice guidelines20 and have been reported in-keeping with 

CROSS guidelines.21 This comparative validation study represents an IDEAL Stage 0 study, according to the 

IDEAL framework for evaluating innovations.19 At time of publication, TRIPOD-AI reporting guidelines were 

not published -  in the absence of these, this study has adhered to TRIPOD guidelines where applicable.22 All 

patients provided written informed consent for the research video recordings, adhering to General Medical 

Council guidelines; videos and images were anonymised, and formal governance approval was obtained 

(Registration Reference 85-202021-SE). 

 

Model Development: Microsurgical Aneurysm Clipping Surgery (MACS) Dataset and the MACSSwin-T 

Platform 
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Zhou et al.18 created a dataset of 16 aneurysm clipping operative videos with expert-labelled annotations, which 

was used to train a deep-learning architecture for detecting cerebral aneurysms. Frames were extracted from 16 

operative videos at a rate of five frames per second (fps), resulting in a dataset of 356,165 images (the Training 

Dataset – publicly available at available online: https://doi.org/10.5522/04/23533731).23 All frames were 

labelled by experts as containing (n=71,113 frames) or not containing an aneurysm (n=285,052), and labelled 

frames were used to train a deep-learning platform (MACSSwin-T, details of which can be found in the original 

publication18) in a supervised learning phase. The MACSSwin-T platform utilises a shifted-windows (Swin-T) 

transformer architecture to classify frames. MACSSwin-T is based on hierarchical, multi-scale self-attention 

which allows the generation of localised features from multiple frames. These were then aggregated enabling 

the platform to detect and distinguish the aneurysm from similar-looking adjacent vasculature. For clarity, the 

MACSSwin-T platform’s function was exclusively to identify cerebral aneurysms from operative video; the 

platform had no bearing on patient selection for treatment. The MACSSwin-T model underwent four-fold cross 

validation in a 12:4 training:test split, achieving an accuracy of 80.8% (precision 51.3% and recall 63.8%). In 

an initial expert validation assessment, the platform demonstrated non-inferiority when compared to a cohort of 

ten attending neurosurgeons.18 

 

Survey Development: 

Frames of operative aneurysm clippings used in the online survey were taken from a secure database of 

operative video recordings (1280x1080 pixels) of four patients obtained at a single tertiary-academic centre in 

the UK between 2020 – 2021. Videos were derived from elective and emergency cases. No criteria were 

applied regarding location or morphology of aneurysm, or the type of surgical clip applied. Operative videos 

were recorded direct to a ZEISS Kinevo 900 operating microscope (Carl Zeiss Co, Oberkochen, Germany), or a 

ZEISS OPMI Pentero 800 operating microscope (Carl Zeiss Co, Oberkochen, Germany). 

 

Frames were extracted from the four operative videos (unseen to the MACSSwin-T platform) at a rate of 5 fps, 

resulting in 96,129 total frames (the Validation Dataset). A random number generator (Random Number 

Generator; randomwordgenerator.com/number) was used to select 50 frames. Ground truth was established 

through blinded review in duplicate by two vascular neurosurgeons where frames were classified as 

‘Aneurysm-Present’, ‘Aneurysm-Absent’, or ‘Exclude’(Figure 1). Reasons for frame exclusion were: 

i. microscope not pointing at patient, 

ii. microscope moving, 

iii. indocyanine green angiography in process, 

iv. ambiguous image with partial view of the aneurysm making it inconclusive to assign either X or Y 

label, 

v. instruments crossing the field-of-view, 
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vi. rapid changing view within the scene. 

 

 

**Figure 1: Examples of ‘Aneurysm-Present’ Frames (Frames A, C, E) and ‘Aneurysm-Absent’ Frames 

(Frames B, D, F) Frames** 

 

To ensure accurate ground truth during frame reviews, at least one of the reviewers had been present during the 

operation from which the frames were derived, and reviewers had access to the operative videos. Frames with 

conflicting labels (6/50) were excluded. A final dataset of 15 frames was selected from those with concordant 

reviews, to include eight ‘Aneurysm-Absent’ frames and seven ‘Aneurysm-Present’ frames (all frames can be 

found in Supplemental Digital Content 2, http://links.lww.com/SLA/F340). These 15 frames were used to 

create an online survey using SurveyMonkey (Momentive Inc., San Mateo, California, USA). 

 

Data collection: Predictions from Healthcare Professionals and MACSSwin-T Analysis 

Human performance in aneurysm detection was assessed using an online survey, comprising an initial set of 

demographic questions, followed by the 15 still frames. Participants were asked to answer whether each frame 

did or did not contain a cerebral aneurysm in view, in a “Yes” or “No” format. All participants reviewed the 

same 15 frames, in the same (randomised) order. Time to completion of the survey was recorded. Data 

collection was conducted over a four-week 

period in September 2022. Participants were neurosurgical healthcare professionals defined as neurosurgeons 

and anaesthetists of senior (Attending/Consultant) or junior (Trainee/Resident/Fellow) grade, and OR nurses. 

Eligibility criteria for study participants included fulfilling one of these roles and working at a neurosurgical 

centre. No criteria was applied regarding neurosurgical subspecialty of practise. Participants were recruited 

from multiple centres internationally by local study collaborators. Collaborators were issued an information and 

instruction sheet including details of the research project, the host institution, and a QR code with a link to the 

survey. 

 

Following collection of responses from the neurosurgical team, the 15 frames were analysed by the 

MACSSwin-T platform. The platform binarily classified each image as containing an aneurysm or not. Finally, 

a second independent round (Round Two) of data collection was performed during a four-week period in June 

2023, using the same 15 frames, yet this time neurosurgical healthcare professionals were given the 

MACSSwin-T platform’s predictions for each frame, along with the Gradient-weighted (GRAD) Cam class 

activation map for each frame. Human participants were informed that the platform has demonstrated an 81% 

accuracy in detecting cerebral aneurysms and were advised to use this to inform their decision making. 
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Exclusion Criteria 

Incomplete survey responses (defined as <50% complete) were excluded, as were responses suspected to be 

falsified data.24,25 Quantitative steps can be employed to identify such data, and established methodologies such 

as those described by Hernandez et al. were employed to ensure integrity of the dataset (Supplemental Digital 

Content 1, http://links.lww.com/SLA/F340).24,25 

 

Data Analysis 

Data were analysed using Microsoft Excel (Microsoft Corporation, USA), GraphPad (GraphPad Software, 

Inc.), and R (R Foundation for Statistical Computing, Vienna, Austria). Standard definitions were used for 

accuracy, precision, recall, and F1 score.4 Comparative analysis was performed between human only and 

human with AI-assistance groups. Hierarchical mixed-effects regressions were employed for comparative 

analysis between groups with and without AI-assistance, that enabled accounting for confounders and within-

cluster correlations.26 The experimental group was set as the fixed-effect, and the random-effects were frame 

nested within video, occupation, and trainee/expert status. For binary outcomes, mixed-effects logistic 

regressions were conducted. For time, mixed-effected gaussian regressions with log link functions were 

conducted. Two-sided confidence intervals and p-values were calculated. P-values are reported to two 

significant figures up to values <0.001.27 The type-1 error rate was set at α<0.05, with Benjamini-Hochberge 

adjustments for multiple comparisons in any post-hoc testing.28 Difficult and discrimination index for each 

frame were calculated and reported in Supplemental Digital Content 3, http://links.lww.com/SLA/F340. For 

time to completion data, surveys that were recorded to have taken more than 60 minutes were removed, with 

the reasoning that these were likely interrupted sessions on surveys that are not likely to take more than an hour 

otherwise. 

 

Results 

MACSSwin-T Performance 

The MACSSwin-T platform binarily classified each frame as containing an aneurysm or not based on its 

predictive modelling. Results can be seen in the confusion matrix below (Table 1). The platform correctly 

predicted 87% (13/15) of all frames; 100% (8/8) of ‘Aneurysm-Absent’ frames, and 71% (5/7) of ‘Aneurysm-

Present’ frames, giving an accuracy of 87%, precision of 100% and recall of 71%, and an F1 score of 83%. 

 

**Table 1** 

 

Neurosurgical Team Performance: Round One (no AI assistance) 

Round One (no AI assistance) included 230 responses after exclusions, comprising 3396 individual frame 

reviews. Complete responses (i.e., reviewed all 15 frames) were submitted by 208/230 participants; 22/230 
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submitted incomplete surveys, but with >50% frames completed thus eligible for inclusion. The survey was 

completed by 88 neurosurgeons (38 senior grade, 50 junior), 77 anaesthetists (38 senior grade, 39 junior), and 

65 OR nurses. Baseline characteristics of respondents can be found in Table 2. 

 

Analysing responses from all healthcare professional respondents reveals an accuracy of 70% (2370/3396), 

specificity of 70% (2370/3396), sensitivity of 75% (1191/1587), positive predictive value of 65% (1191/1821), 

and negative predictive value of 75% (1179/1575). 

 

Results by specialty are shown in Table 3. Neurosurgeons demonstrated an accuracy of 76% (993/1303), 

compared to 67% (753/1127) for anaesthetists, and 65% (624/966) for OR Nurse frame reviews. There were 

significant differences in accuracy between the groups on ANOVA (p=0.005), with post-hoc pairwise testing 

with Bejamini-Hochberg adjustment for false comparisons showing significant difference between 

neurosurgeons vs anaesthetists or OR nurses, but no significant difference between anaesthetists and OR 

nurses. Respondents were non-significantly better at identifying ‘Aneurysm-Present’ frames than ‘Aneurysm-

Absent’ frames (Neurosurgeons 81% vs 72%; Anaesthetists 69% vs 65%; OR Nurses 74% vs 57%) (p = 0.09). 

 

**Table 2** 

 

**Table 3** 

 

Neurosurgical Team Performance: Round Two (AI assisted) 

The dataset for Round Two (AI assisted) included 118 responses, comprising 1758 individual frame reviews. 

Complete responses (i.e., reviewed all 15 frames) were submitted by 114/118 participants, 4/118 submitted 

incomplete surveys, but with >50% frames completed thus eligible for inclusion. Baseline characteristics for 

respondents can be found in Table 2. Analysing responses from all respondents reveals an accuracy of 78% 

(1370/1758), which was statistically significantly greater than for Round One (without AI-assistance) (70% 

(2370/3396) (Odds Ratio (OR) 1.77, CI 1.44–2.17, p<0.001). Specificity was 77% (719/939), sensitivity was 

80% (651/819), positive predictive value was 75% (652/872), negative predictive value was 81% (719/887). 

Results by specialty are shown in Table 3. Accuracy in frame prediction increased with AI-assistance for 

neurosurgeons (76% correct in Round 1 vs 88% in Round 2) (OR 2.66, CI 1.62-4.39, p<0.001)), anaesthetists 

(67% vs 77%) (OR 1.75, CI 1.32-2.34), p<0.001)), and non-significantly with OR nurses (65% vs 70%) (OR 

1.34, CI 0.98-1.84, p=0.066)). Difficult and discrimination index for each frame is reported in Supplemental 

Digital Content 3, http://links.lww.com/SLA/F340. 

 

Time to Survey Completion 
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Median time to complete the survey was 5.8 minutes (IQR 4.5 - 8.4) in Round One (no AI-assistance), and 5.5 

minutes (IQR 3.5 – 7.9) in Round Two (AI-assisted) (P=0.16). Neurosurgeons were non-significantly quicker 

to complete the survey with AI-assistance (Round Two time 5.0 minutes (IQR 3.7 – 6.5)) than without AI-

assistance (Round One time 6.1 minutes (IQR 4.5 – 8.8)) (p=0.26). This improvement was driven by Attending 

neurosurgeons, who’s time to completion near-significantly improved with AI-assistance (Round One time 6.2 

minutes (IQR 4.9 – 8.8) vs Round Two time 4.0 minutes (IQR 3.3 – 5.6) (p= 0.060). No significant difference 

in timing was noted for anaesthetists or OR nurses when comparing AI versus no AI-assistance. 

 

Discussion 

Principal Findings 

This study presents the key findings from a comparative study comparing the accuracy of a deep-learning 

platform and neurosurgical healthcare professionals (with and without AI-assistance) in the detection of 

cerebral aneurysms from microsurgical aneurysm clipping operations. 

 

First, our data demonstrate that AI-assisted human performance is superior to both human performance and AI 

performance alone. In this study, AI-assistance was provided through offering the MACSSwin-T model’s 

prediction along with frame activation-maps. Improvements in accuracy were noted for all three occupations – 

neurosurgeons improved from 76% to 88%, anaesthetists 67% to 77%, and OR Nurses 65% to 70%. These 

results serve as a quantitative demonstration of the breakdown in shared mental models within the operating 

theatre, and support the use of AI technology to enhance collaborative orientation amongst the neurosurgical 

team.29 Breakdown in shared understanding is particularly pertinent in neurosurgery, a high-stress, high-risk 

specialty in which communication breakdown influences patient outcomes and risk of litigation.30 

 

Second, and perhaps most significant – our findings suggest that the greatest benefits were observed in the most 

experienced healthcare professionals, neurosurgical Attendings, whose frame accuracy significantly improved, 

and time-to-completion near-significantly benefited. This finding purports the value of clinician-AI 

collaboration in improving surgical safety, and contradicts assertions that the benefits of AI-assistance are 

confined to junior clinicians.31 The reasons for this are intriguing. One possible explanation pertains to the 

adage ‘the more you know, the more you see’. In 1993, Ericsson et al. published their seminal paper on the 

attainment of expert performance through deliberate practise32; a key upshot of expert performance is the 

ability to interpret and understand more with a given dataset or situation than non-experts. In the case of small, 

obscured, and challenging aneurysms, AI-assistance may provide experts with the necessary nudge to confirm 

their suspicion that an aneurysm is present in the field of view. 
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Finally, we demonstrate that the MACSSwin-T platform outperformed humans (no AI-assistance), and showed 

a high precision and recall in keeping with our previous work.18 Analysis of frame-level discrepancies between 

the MACSSwin-T platform and human performance reveals interesting findings. The platform was highly 

accurate in its identification of ‘Aneurysm-Absent’ frames (100%), in part due to the imbalance in ‘Aneurysm-

Absent’ to ‘Aneurysm-Present’ frames in the initial dataset (80% vs 20%), as a result of aneurysm exposure 

making up only a small phase of the operation.18 Yet, with inverse-proportional weighting of the two classes in 

the training loss function and adjustment of the model’s decision threshold, the platform was optimised to 

detect ‘Aneurysm-Present’ frames without increasing erroneous ‘Aneurysm-Absent’ detections (i.e. false 

positives). This was apt in cases where the aneurysm was partially obscured, where humans found 

identification troublesome, but the platform was able to accurately locate the aneurysm (Figure 2, frame C). 

Figure 2 shows challenging frames for MACSSwin-T and the neurosurgical team, along with activation maps 

demonstrating the focus point of the platform. ‘Aneurysm-Absent’ frames were particularly challenging for the 

neurosurgical team. Notably, correct identification of ‘Aneurysm-Absent’ frames was increased with AI-

assistance, from 65% to 77% (p < 0.001). 

 

**Figure 2: challenging frames for MACSSwin-T and the neurosurgical team with associated 

MACSSwin-T activation maps: Frames (A) and (B) are ‘Aneurysm-Present’ frames that the MACSSwin-T 

platform incorrectly classified as ‘Aneurysm-Absent’ frames. Frame (A) is a complex operative scene with 

numerous instruments and vessels in frame, as well as the aneurysm partially obscured by Cottonoids, which 

may account for the incorrect classification by MACSSwin-T. Human performance was also poor for this 

frame, with 57% of the neurosurgical team correctly classifying the frame. Frame (B) shows the 

atherosclerosed aneurysm dome in clear view – this variation in appearance may account for the incorrect 

platform classification, as the activation map shows little focus on the white dome; in contrast, 85% of 

neurosurgeons correctly identified the aneurysm. Frame (C) is a ‘Aneurysm-Present’ frame correctly classified 

by the MACSSwin-T platform, yet was the frame on which human performance was worst, with 51% of 

respondents correctly identifying the frame as containing as an aneurysm. Frame (D) was amongst the most 

commonly correctly classified frames by human assessors, with 84% of the neurosurgical team correctly 

labelling the ‘Aneurysm-Present’ frame (the frame was also correctly classified by MACSSwin-T). Only two 

other frames had a greater correct percentage, both of which showed contained an aneurysm clip around the 

aneurysm.** 

 

Findings in the Context of the Literature 

Current AI applications in the field of aneurysm detection primarily rely on radiomic-based methods, using 

imaging modalities such as CT, MRI, or Angiography.33 In this study, we present a novel approach to 

intraoperative aneurysm detection. While intraoperative computer vision has been successfully applied in 
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several surgical contexts3,3,34,35, its utilisation in neurosurgery is emerging. Previous works by Pangal et al. and 

Staartjes et al. have demonstrated the feasibility of using deep-learning platforms for real-time anatomy 

segmentation in endoscopic endonasal surgery, in cadaveric and in-vivo settings respectively.36,37 Additionally, 

Das et al. introduced the PAINet model for anatomical structure identification during pituitary surgery, 

achieving 66% accuracy in sella identification.38 Another significant contribution in neurosurgery comes from 

Choi et al., who employed a YOLACT-based architecture for anatomic detection in mastoidectomy.39 Our 

study adds to this growing body of research, expanding the potential applications of AI in neurosurgical 

procedures. Further, this study showcases the feasibility of an attention-based learning architecture (the shifted-

window Transformer model) in anatomic detection, distinguishing it from the prevailing use of convolutional 

neural networks (e.g. ENet, PSPnet, UNet, SegNet, YOLO, and ErfNET).34,39,40 This substantiates an 

alternative, hierarchical strategy for developing novel AI architectures to tackle contemporary challenges in 

surgical contexts. Rapid, real-time anatomic recognition of intracranial aneurysms represents a leap in AI-

healthcare capabilities, with numerous potential benefits in decision support, system efficiency, and education. 

 

Strengths and Limitations 

This study has strengths in its international scope, adherence to established frameworks29,34,3521, and small-scale 

pre-clinical validation in a subset of neurosurgical attendings prior to wider distribution18. Limitations include 

training on a limited dataset from a single institution, reducing generalisability and enhancing risk of 

overfitting. Participants were asked to binarily classify frames as ‘Aneurysm-Absent’ or ‘Aneurysm-Present’, 

whereas surgeons typically take a probabilistic approach to a live, three-dimensional situation. Some images 

were of low-resolution, reflecting the challenge in the operating room. Some participants commented that 

anatomy is more readily identifiable when benefiting from binocular disparity, enabling a three-dimensional 

view through the microscope. This is undoubtedly true, and we expect that neurosurgeons would score higher if 

able to view the operative scenes through a microscope and interact with the surgical environment. This does 

not, however, impact the ability of anaesthetists or OR nurses who rely wholly on the microscope monitor. 

When selecting frames for the survey, frames with conflicting consultant labels were excluded, which may bias 

the selected frames towards easier instances. Data collection was conducted in the same centres for Round One 

and Two, raising potential for participants who had already completed the survey in Round One repeating it. To 

minimise this potential for bias, participants were not shown which frames they scored correctly/incorrectly 

after Round One, participants were asked if they had completed the survey before, and Round One and Two 

were conducted nine months apart. Due to anonymity requirements, we could not link individual scores 

between survey rounds, but we conducted a sensitivity analysis by accounting for whether participants had 

previously undertaken the survey as a random effect, which revealed no differences in the study’s results. 

Survey distribution in English may have introduced selection bias. 

 

ACCEPTED

D
ow

nloaded from
 http://journals.lw

w
.com

/annalsofsurgery by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbsIH

o4X
M

i0hC
yw

C
X

1A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

4/O
A

V
pD

D
a8K

2+
Y

a6H
515kE

=
 on 11/01/2024



Conclusion 

This IDEAL stage 0 study compared a novel deep-learning computer vision platform (MACSSwin-T) with 

neurosurgical healthcare professionals in identifying cerebral aneurysms from microsurgical clipping operation 

images. Our data demonstrate that AI-assisted human performance is superior human performance without AI-

assistance. Senior neurosurgeons benefited the most from AI-assisted aneurysm detection, with improved frame 

accuracy and time-to-completion. This research contradicts the prevailing narrative within the AI-healthcare 

paradigm, which asserts that the benefits of AI-assistance are most notable in junior clinicians. Future research 

in this area should focus upon model architecture iteration prior to first-in-human validation, in accordance with 

IDEAL Stage 0 & 1 evaluation. 
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Table 1: Confusion Matrix for MACSSwin-T Model 
Performance on Fifteen Frames 

Ground Truth 
Positive

Ground Truth 
Negative 

Prediction Positive 5 0 
Prediction Negative 2 8 
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Table 2. Baseline characteristics of respondents 

 Round One 
(no AI 
assistance) 

Round Two 
(AI assisted) 

 
Total respondents (n = ) 
 
Gender (%) 

Male 
Female 
Prefer not to say 
Non-binary 

 
Age group (%) 

18 to 24 
25 to 34 
35 to 44 
45 to 54 
55 to 64 
65 to 74 

 
Occupation: 

Neurosurgeon 
Consultant/Attending 
Trainee/Resident/Fellow 

Anaesthetist 
Consultant/Attending 
Trainee/Resident/Fellow 

OR Nurse 

 
230 
 
 
54% (123/230) 
46% (106/230) 
0.4% (1/230) 
0% (0/230) 
 
 
3% (7/230) 
44% (102/230) 
30% (68/230) 
12% (28/230) 
10% (22/230) 
1% (3/230) 
 
 
38% (88/230) 
N = 38 
N = 50 
33% (77/230) 
N = 38 
N = 39 
28% (65/230)

 
118 
 
 
45% (53/118) 
55% (65/118) 
0% (0/118) 
0% (0/118) 
 
 
2% (2/118) 
50% (59/118) 
22% (26/118) 
14% (16/118) 
10% (12/118) 
3% (3//118) 
 
 
31% (36/118) 
N = 12 
N = 24 
31% (37/118) 
N = 18 
N = 24 
34% (40/118) 
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Table 3: Percentage and number of correct frame reviews per specialty (%, N) 
OR = Odds Ratio; CI = Confidence Intervals; * denotes statistical significance. 
 All Frames  ‘Aneurysm-Absent’ 

Frames 
 ‘Aneurysm-Present’ 

Frames 
 Round 

One 
(no AI-
assistan
ce) 

Round 
Two 
(AI 
assiste
d) 

OR 
CI 
P 
value 

 Round 
One 
(no AI-
assistan
ce) 

Round 
Two 
(AI 
assiste
d) 

OR 
CI 
P 
value 

 Round 
One 
(no AI-
assistan
ce) 

Roun
d 
Two 
(AI 
assist
ed)

OR 
CI 
P 
value 

Neurosurgeons 76% 
(993/13
03) 

88% 
(473/5
38) 

2.66 
(1.62-
4.39) 
*<0.0
01

 72% 
(500/69
4) 

87% 
(251/2
88) 

3.28 
(1.70-
6.31) 
*<0.0
01

 81% 
(493/60
9) 

89% 
(222/
250) 

2.22 
(1.23-
4.00) 
*0.00
82

Consultant/Atten
ding Grade 

77% 
(438/56
6) 

92% 
(166/1
80) 

4.24 
(1.63-
11.1) 
*0.00
31

 73% 
(220/30
1) 

91% 
(87/96
) 

5.12 
(1.50-
17.5) 
*0.00
92

 82% 
(218/26
5) 

94% 
(79/8
4) 

4.26 
(1.25-
14.5) 
*0.02 

Trainee/Resident
/fellow Grade 

75% 
(555/73
7) 

86% 
(307/3
58) 

2.24 
(1.26-
3.98) 
*0.00
56

 71% 
(280/39
3) 

85% 
(164/1
92) 

1.03 
(1.27-
6.20) 
*0.01
0

 80% 
(275/34
4) 

86% 
(143/
166) 

1.74 
(0.90-
3.38) 
0.1 

Anaesthetists 67% 
(753/11
27) 

77% 
(475/6
20) 

1.75 
(1.32-
2.34) 
*<0.0
01

 65% 
(389/60
2) 

75% 
(238/3
31) 

1.84 
(1.18-
2.87) 
*0.00
73

 69% 
(364/52
5) 

79% 
(227/
289) 

1.86 
(1.19-
2.90) 
*0.00
67

Consultant/Atten
ding Grade 

69% 
(387/55
9) 

75% 
(196/2
61) 

1.43 
(0.95-
2.13) 
0.08

 69% 
(205/29
8) 

78% 
(108/1
39) 

1.72 
(0.88-
1.21) 
0.11

 70% 
(182/26
1) 

72% 
(88/1
22) 

1.22 
(0.56-
2.68) 
0.62

Trainee/Resident
/Fellow Grade 

64% 
(366/56
8) 

78% 
(279/3
59) 

2.08 
(1.41-
3.06) 
*<0.0
01

 61% 
(184/30
4) 

73% 
(140/1
92) 

1.96 
(1.09-
3.54) 
*0.02
5

 69% 
(182/26
4) 

83% 
(139/
167) 

2.50 
(1.48-
4.22) 
*<0.0
01

Operating 
Room Nurse 

65% 
(624/96
6) 

70% 
(422/6
00) 

1.34 
(0.98-
1.84) 
0.066 

 57% 
(290/51
3) 

69% 
(220/3
20) 

1.86 
(1.17-
2.96) 
*0.00
88

 74% 
(334/45
3) 

72% 
(202/
280) 

0.91 
(0.58-
1.42) 
0.67 
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Table 4: Difficulty Index and Discrimination Index for Individual Frames 
 Round One (no AI) Round Two (AI assisted) 
 Difficulty Index Discrimination 

Index
Difficulty Index Discrimination 

Index
Image 1 
(aneurysm absent) 

0.70 0.34 0.78 0.13 

Image 2 
(aneurysm absent) 

0.57 0.43 0.70 0.18 

Image 3 
(aneurysm present) 

0.76 0.31 0.66 0.13 

Image 4 
(aneurysm absent) 

0.66 0.33 0.68 0.21 

Image 5 
(aneurysm present) 

0.79 0.25 0.81 0.13 

Image 6 
(aneurysm present) 

0.51 0.05 0.65 0.18 

Image 7 
(aneurysm absent) 

0.79 0.37 0.81 0.14 

Image 8 
(aneurysm present) 

0.85 0.17 0.94 0.06 

Image 9 
(aneurysm present) 

0.57 0.17 0.58 0.14 

Image 10 
(aneurysm absent) 

0.54 0.26 0.73 0.17 

Image 11 
(aneurysm absent) 

0.52 0.41 0.76 0.17 

Image 12 
(aneurysm present) 

0.84 0.22 0.96 0.05 

Image 13 
(aneurysm absent) 

0.65 0.33 0.81 0.11 

Image 14 
(aneurysm present) 

0.93 0.17 0.97 0.03 

Image 15 
(aneurysm absent) 

0.78 0.30 0.86 0.09 
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FIG 1 

  

ACCEPTED

D
ow

nloaded from
 http://journals.lw

w
.com

/annalsofsurgery by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbsIH

o4X
M

i0hC
yw

C
X

1A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

4/O
A

V
pD

D
a8K

2+
Y

a6H
515kE

=
 on 11/01/2024



 

FIG 2 
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FIG 3 
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