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Simplicial Kuramoto models have emerged as a diverse and intriguing class of models describing oscillators on sim-
plices rather than nodes. In this paper, we present a unified framework to describe different variants of these models,
categorized into three main groups: “simple” models, “Hodge-coupled” models, and “order-coupled” (Dirac) models.
Our framework is based on topology, discrete differential geometry as well as gradient systems and frustrations, and
permits a systematic analysis of their properties. We establish an equivalence between the simple simplicial Kuramoto
model and the standard Kuramoto model on pairwise networks under the condition of manifoldness of the simplicial
complex. Then, starting from simple models, we describe the notion of simplicial synchronization and derive bounds
on the coupling strength necessary or sufficient for achieving it. For some variants, we generalize these results and
provide new ones, such as the controllability of equilibrium solutions. Finally, we explore a potential application in the
reconstruction of brain functional connectivity from structural connectomes and find that simple edge-based Kuramoto
models perform competitively or even outperform complex extensions of node-based models.

The renowned Kuramoto model has provided a uni-
fied framework for understanding synchronization in net-
works of interacting oscillators. However, traditional
networks only account for pairwise interactions, limit-
ing their applicability in complex systems. A promis-
ing new paradigm has emerged—networks with group
interactions—where interactions occur among any num-
ber of units. Such higher-order systems are represented
by either hypergraphs or simplicial complexes, with the
latter possessing a rich theory rooted in topology. The
surge of interest in the application of simplicial complexes
has also reached synchronization, inspiring novel models
and extensions which include higher-order interactions.
In this paper, we present a rigorous mathematical foun-
dation for studying the class of higher-order Kuramoto
models where the oscillators are placed on the simplices
of a simplicial complex. We leverage discrete differen-
tial geometry and gradient systems to express them in a
common mathematical form, thus enabling the formula-
tion of a simplicial synchronization framework. We focus
on similarities and differences between the behaviors of
these models and their node-centric counterparts, showing
when they are equivalent and deriving general conditions
for the onset of synchronization.

I. INTRODUCTION

Synchronization is defined as the emergence of order from
the interactions among many parts. It is a ubiquitous phe-
nomenon that occurs in both natural and human-engineered
systems1–3 and can be observed in a wide range of systems,
including the firing of neurons4, the twinkling of fireflies5,
power grids6,7 or audience applause8. Despite the complex-
ity and differences of these systems, the canonical Kuramoto
model9 provides a unified framework for describing the on-
set of synchronization in systems of oscillators that interact in
a pairwise fashion. While the original version of the model
included interactions between all pairs of oscillators, later ex-
tensions of the model allowed the specification of arbitrary
network topologies10. This, in turn, revealed interesting rela-
tionships between the dynamical properties of the model and
the structure of the underlying network11,12.

Traditional networks, however, provide a limited perspec-
tive on complex systems as they only consider pairwise in-
teractions. To overcome this limitation, a new paradigm has
recently emerged: networks with group (or higher order) in-
teractions, i.e., interactions between any number of units13–15.
Group interactions have been recognized to play an important
role in a rapidly growing list of systems, including brain net-
works16, social17–19 and biological communities20–22 among
many others13,14. Group interactions can be represented by
two main mathematical frameworks: hypergraphs or sim-
plicial complexes. Although hypergraphs are more general,
simplicial complexes have more structure because of the ad-
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ditional inclusion (or closure) condition: all subsets of a
simplex must be contained in a simplicial complex. Con-
sequently, simplicial complexes—like pairwise networks—
possess a rich theory rooted in the mathematical field of dis-
crete differential geometry and topology. Their expressive
power is also greatly increased by the possibility of including
weights23, which naturally become embedded in their topo-
logical24,25 and spectral structure26. The effect of a simplicial
complex structure has been shown to induce new dynamical
phenomena, such as explosive transitions27 and multistabil-
ity28, across a variety of dynamical processes, including ran-
dom walks29, diffusion30–32, consensus33–35, spreading36–42,
percolation43–45, and evolutionary game theory46.

Naturally, this process of simplicialization has also reached
synchronization. One way to approach the modeling of syn-
chronization in higher-order systems is to extend the family
of possible interactions to include groups. From a network of
interacting oscillators, we pass to a simplicial complex where
node oscillators can also interact through triangles, tetrahedra,
or higher order structures, (see for example Refs 47–61). An-
other approach is to consider the simplicial Kuramoto62 as a
model of synchronizing dynamics of higher-order topological
signals. With it, we are not constrained to consider the evo-
lution of oscillators placed on nodes, but we can place them
on simplices of any order. This change, which at the begin-
ning may appear arbitrary, allows us to consider higher-order
interactions in a novel and powerful way: if an edge can con-
nect only two nodes at a time, a triangle connects three edges,
a tetrahedron four triangles, etc. . . More generally, simplicial
oscillators of order k will interact through (k+ 1)-simplices,
resulting in interactions of order k+2. In line with the guiding
principles of higher-order network theory, the essential differ-
ence between agents and carriers of interactions fades away,
leaving us with wider modeling freedom. Its evolution equa-
tion, moreover, can be elegantly written by borrowing some of
the concepts of discrete exterior calculus63, the discrete anal-
ogous to differential geometry on manifolds. This geometric
structure allows us to get precious insights into the dynamics
of the model and how it is related to the topological properties
of the simplicial complex. This fruitful relation with topology
has also recently put the simplicial Kuramoto at the center of
the attention, resulting in different variants and extensions of
the original model64–67.

In this work, we aim to lay down the mathematical foun-
dations for the study and derivation of Kuramoto models on
simplicial complexes. In particular, we focus on the models
belonging to the second class mentioned above, that is the
ones where oscillators themselves are simplices and interact
through the adjacency structure encoded in a simplicial com-
plex. Our approach relies on consistent geometric and dy-
namical structures such as discrete differential geometry and
gradient systems to express the simplicial Kuramoto models
in a strict mathematical form while allowing for several ex-
tensions able to couple the dynamics across Hodge subspaces
or simplicial orders.

A. Structure of the paper

The work is structured as follows. We first state the Ku-
ramoto model in Section II A and review the needed concepts
of discrete differential geometry in Section II B.

In Section III, we introduce the standard simplicial Ku-
ramoto model and interpret its interactions in terms of the ge-
ometry and topology of the underlying simplicial complex.
With this approach, we find that the model is locally equiv-
alent to the standard Kuramoto model when the complex is
locally manifold-like.

Furthermore, in Section IV, we define a natural notion of
simplicial phase-locking, which we then relate to the projec-
tions of the dynamics on higher and lower dimensional sim-
plices, allowing us to give a geometric picture of its mean-
ing. Taking inspiration from classic works on the node Ku-
ramoto11, we discuss the phase-locked configurations and
derive necessary and sufficient conditions on the coupling
strength for their existence.

Then, in Section V, we review and generalize some vari-
ants of the simplicial Kuramoto model that couple the dynam-
ics across Hodge subspaces, such as the explosive model62

or the simplicial Kuramoto-Sakaguchi67. Then, in Section VI
we expand on the Dirac formulation of Ref. 64 that couples
oscillators across orders of interactions, and Hodge subspaces
when coupled with the models of Section V.

Finally, in Section VII, we apply some of the models stud-
ied here to real-world brain data and show how simple, edge-
based simplicial Kuramoto models can achieve better corre-
lations with functional connectivity than the standard node-
based Kuramoto model.

II. PRELIMINARIES

A. Kuramoto model

We begin by briefly introducing the classical Kuramoto
model. Let us consider a system of n phase oscillators, char-
acterized solely by their phase θi and natural frequency ωi,
the frequency at which they oscillate when isolated from any
interactions. The evolution of the uncoupled system can be
described by a set of differential equations: θ̇i = ωi for each
oscillator i. To account for the interaction among oscillators,
various approaches can be employed, depending on the un-
derlying physics of the phenomenon under investigation. A
particularly elegant and widely studied model, renowned for
its simplicity and analytical tractability, was introduced by
Kuramoto9. Known as the Kuramoto model, it is described
by the following system of first-order differential equations:

θ̇i = ωi−σ

n

∑
j=1

sin(θi−θ j). (1)

In this formulation, an additional term captures the effect of
interactions between oscillator i and every other oscillator j,
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modulated by a positive coupling or interaction strength pa-
rameter, denoted as σ . By the properties of the sine function,
we observe that the interaction force between oscillators i and
j becomes zero when θi− θ j = kπ i.e. when θi and θ j rep-
resent the same or opposite angles modulo 2π . Conversely,
the interaction is strongest when the phase difference between
the oscillators corresponds to odd multiples of π

2 , implying
orthogonal states on the unit circle. This simple interaction
mechanism forms the basis of the Kuramoto model, whose
variants and generalizations68–70 give it the capability of hav-
ing a much richer behavior.

B. Discrete differential geometry

A simplicial complex63,71 is a generalization of a graph
that, along nodes and edges, can include triangles, tetrahe-
dra, and their higher-dimensional analogues. Given a set of N
vertices V = {v0, . . . ,vN−1} we call k-simplex any subset of
V with k+1 elements. The dimension of a k-simplex σ is k,
dimσ = k. Geometrically, we think of 0-simplices as nodes,
1-simplices as edges, 2-simplices as triangles, and so on. A
simplicial complex ∆ is a set of simplices closed by inclusion,
that is, every subset of a simplex is itself a simplex belonging
to the simplicial complex (Fig. 1a). We call nk the number of
k-simplices in ∆. We consider in particular oriented simplicial
complexes, where each k-simplex is given an ordering of its
vertices [v0, . . . ,vk−1], such that two orderings are considered
equivalent if they are related by an even number of swaps.
This means that each simplex can have only two possible ori-
entations (Fig. 1b).

Simplices in a simplicial complex can be related in two
different ways. A subface of a k-simplex σ ∈ ∆ is any
(k− 1)-simplex τ contained in σ . The subfaces of a trian-
gle [a,b,c] are, for example, its edges [a,b], [b,c], [a,c]. We
write τ < σ when τ is a subface of σ . A superface of a
k-simplex σ ∈ ∆ is any (k + 1)-simplex τ which contains
σ . In this case, we write τ > σ . An oriented k-simplex
σ = [v0, . . . ,vk] is said to be coherently oriented with its sub-
face τ , with nodes {v0, . . . ,vi−1,vi+1, . . . ,vk}, if the orientation
given to τ is equivalent to the one of

[v0, . . . ,vi−1,vi+1, . . . ,vk] . (2)

We write σ ∼ τ when σ > τ and they are coherently oriented,
while σ � τ when σ > τ and they are incoherently oriented.
In addition, we say that two k-simplices σ ,τ are lower adja-
cent if they share a common subface (we write σ ^ τ) while
they are said to be upper-adjacent if there exists a (k + 1)-
simplex which contains both of them (we write σ _ τ).

For this work, it is important to highlight two special types
of subfaces. We call free, a subface which belongs only to a
single simplex, and manifold-like a subface τ which belongs
to exactly two simplices σ1,σ2, one coherently oriented with
τ (σ1 ∼ τ) and the other incoherently (σ2 � τ). This last defi-
nition comes from the fact that a simplicial complex where all
the (n− 1)-simplices are manifold-like (which we call sim-
plicial n-manifold), can be embedded into a Euclidean space
to be an oriented topological n-manifold, in the sense that it

locally looks likeRn. If the simplicial complex is not a simpli-
cial manifold, we can still have manifold-like subfaces which,
when the complex is embedded, correspond to subspaces that
are manifolds. In dimension 1, for example, a manifold-like
subface is a node incident to only two edges so that the com-
plex looks like a line (Fig. 4a).

From a geometric point of view, simplicial complexes take
the role of geometric domains upon which we define cochains,
algebraic objects which correspond to discrete analogues of
differential forms. A (real) k-cochain is simply a function as-
sociating a real number to every k-simplex. The vector space
of k-cochains is named Ck(∆) with a natural basis given by the
functions associating 1 to a particular simplex, and 0 to all the
others. Any k-cochain can therefore be written as

Ck(∆) 3 x =
nk

∑
i=1

xiσ
i , (3)

with a basis cochain σ i(σ j)= δ i
j associated to every k-simplex

σi. Moreover, it is conventional to algebraically impose that a
change of sign corresponds to a change of orientation

[v0,v1, . . . ,vk] =−[v1,v0, . . . ,vk] .

If we assign positive weights to the k-simplices wk
1, . . . ,w

k
nk
>

0, then we can endow the cochain space with an inner product
given by the inverse of the diagonal matrix Wk

Wk = diag
(

wk
1, . . . ,w

k
nk

)
. (4)

We denote the inner product of cochains by 〈v,w〉wk
def
=

vTW−1
k w, and its induced norm by ‖v‖wk

def
=
√

vTW−1
k v, ex-

plicitly given as

‖v‖wk =

√
nk

∑
i=1

1
wk

i
v2

i . (5)

The inner product and the norm reduce to the standard Eu-
clidean inner product and 2-norm when the complex is un-
weighted, i.e. Wk = Ink for all k = 1, . . . ,K. In the rest of
this work, we will always consider cochain spaces endowed
with weights, meaning that inner products and norms will be
weighted, and transposes will become adjoints. While this
approach requires some care, it allows us to avoid carrying
weight matrices along in every formula, resulting in more el-
egant and concise expressions that do not sacrifice generality.

The adjacency structure of the simplicial complex, and thus
the complex itself, can be encoded in a family of linear oper-
ators acting on cochains. We define the k-th order incidence
matrix Bk ∈ Rnk−1×nk describing the adjacency relations be-
tween k-simplices and (k−1)-simplices, as

Bk(i, j) =


+1 if dimσi = k−1, σ j > σi and σ j ∼ σi ,

−1 if dimσi = k−1, σ j > σi and σ j � σi ,

0 otherwise .
(6)
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FIG. 1. a. Geometrical representation of a small oriented simplicial complex. b. Oriented simplices of orders 0 (nodes), 1 (edges), 2 (triangles)
and 3 (tetrahedra).

We then define the coboundary operator

Dk = B>k+1 , (7)

mapping k-cochains to (k+ 1)-cochains. Its adjoint with re-
spect to the inner product, which we name weighted boundary
operator, is

Bk = (Dk−1)∗ =Wk−1BkW−1
k . (8)

Indeed, by definition of adjointness, for a (k− 1)-cochain
x and a k-cochain y, 〈Dk−1x,y〉wk = 〈Dk−1x,W−1

k y〉2 =

〈x,BkW−1
k y〉2 = 〈x,W−1

k−1Wk−1BkW−1
k y〉2 =

〈
x,Bky

〉
wk−1 . The

coboundary and boundary operators should be thought of as
the discrete analog of the divergence and curl operators of dif-
ferential calculus. They satisfy what is known as the “funda-
mental theorem of topology”

BkBk+1 = 0, DkDk−1 = 0 ∀k , (9)

which is a linear-algebraic formalization of the topological
fact that a boundary has no boundary. We call k-cocycle a
k-cochain x such that

Dkx = 0 , (10)

and a weighted k-cycle a k-cochain x such that

Bkx = 0 . (11)

With these two operators, we can define the discrete Hodge
Laplacians72, which generalize the well-known graph Lapla-
cian to act on higher order cochains

Lk = Lk
↓+Lk

↑ = Dk−1Bk +Bk+1Dk . (12)

It can be easily proven that the kernel of the discrete k-Hodge
Laplacian is isomorphic to the k-th real (co)homology group
of the simplicial complex

kerLk = kerBk ∩kerDk ∼= Hk(∆;R) = kerDk/ ImDk−1 ,

meaning that its dimension dimkerLk is equal to the k-th Betti
number of ∆, i.e. the number of k-dimensional holes of the
simplicial complex73. Intuitively, the 0-dimensional holes are
the connected components, 1-dimensional holes are empty
regions bounded by 1-simplices, whereas the 2-dimensional
holes are cavities bounded by 2-simplices. A particularly im-
portant result is that, on a connected simplicial complex of

order 0, or equivalently a graph, the only harmonic cochains
x∈ kerL0 are the ones whose components are all equal x=α1

for α ∈ R. This means that, in intuitive terms which will
become clearer later on, harmonicity extends the notions of
“constant” and “identical” to simplicial quantities in higher-
order settings.

III. THE SIMPLICIAL KURAMOTO MODEL

In this section, we formulate and study the Kuramoto model
for interacting simplicial oscillators proposed in Ref. 62. The
rest of this section is organized as follows:

• In Section III A, we formulate the simplicial Kuramoto
model using the tools of discrete differential geometry
introduced in Section II B.

• In Section III C, we describe the local form of the two
types of interactions in the model: from below and from
above. In the case of interactions from below, we iden-
tify the presence of self-interactions resulting from free
subfaces.

• In Section III D, we show that the k-th order simpli-
cial Kuramoto model and the standard node Kuramoto
model are equivalent when the simplicial complex is a
simplicial k-manifold.

• In Section III E, we describe how the dynamics natu-
rally split into three independent subdynamics using the
combinatorial Hodge decomposition theorem.

• In Section III F, we recall the definition of simplicial
order parameter proposed in Ref. 67, discuss its impli-
cations on the meaning of synchronization in the sim-
plicial model, and its differences with the standard Ku-
ramoto order parameter.

A. Simplicial Kuramoto model

Given a simplicial complex ∆, the k-th order simplicial Ku-
ramoto model62,67 describes a system where the k-simplices
are oscillators interacting through common subfaces and su-
perfaces. For example, one can consider oscillating edges that
interact through common nodes and triangles (see Fig. 3a).
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FIG. 2. a. Edge simplicial Kuramoto on the simplicial complex described in Example 1. b. The effective hypergraph of the dynamics
describing the actual interactions taking place between the oscillators. The interaction hyperedges are labeled by the name of the simplex in
the original complex which generates them. Note how the hyperedge [4], representing the term sin(θ[34]) in Eq. (16), is interpreted here as a
self-interaction.

The model can be elegantly formulated with the boundary and
coboundary operators as

θ̇(k) = ω−σ
↑Bk+1 sin

(
Dk

θ(k)

)
−σ

↓Dk−1 sin
(

Bk
θ(k)

)
.

(13)

Here, the phases of the oscillating k-simplices are gathered
in the nk-dimensional vector θ(k), formalized as a k-cochain
θ(k) ∈Ck(∆), while ω ∈Ck(∆) represents the natural frequen-
cies, i.e. ωi is the frequency at which oscillator i oscillates
when no interactions are present. Notice that it is customary
to interpret the phases to lie in the unit circle R/2πZ, but it
is convenient to work with them as if they were real numbers.
In this manuscript, the entries of ω can take any real value
and are not required to be equal, meaning that we study the
general case of non-identical oscillators, unless stated other-
wise. The parameters σ↑,σ↓ > 0 represent respectively the
strength of the coupling through superfaces and subfaces. As
shown in Ref. 34, the two interaction terms Bk+1 sin(Dkθ) and
Dk−1 sin(Bkθ) describe, respectively, interactions from above
and below, i.e. each oscillating k-simplex interacts with its
adjacent simplices through both higher (k+ 1) and lower di-
mensional (k−1)-simplices (Fig. 3). In Section III C, we un-
pack the matrix formulation and see the explicit form of these
interaction terms. For ease of notation, from now on we will
drop the subscript from θ(k), as the order of oscillation can be
easily inferred by the indices of the boundary and coboundary
matrices in Eq. (13).

The form of Eq. (13) is not arbitrary but comes from the
fact that, for k = 0, it reduces to the standard Kuramoto model
(from now on referred to as “node Kuramoto”) on a network

θ̇i = ωi−σ ∑
j

Ai j sin(θi−θ j) , (14)

where A is the graph adjacency matrix. To see why, notice that
Eq. (14) can be rewritten in matrix form using the boundary
and coboundary matrices (see Appendix A) as

θ̇ = ω−σB1 sin(D0
θ) . (15)

One can think of D0 as projecting the node phases on the
edges by associating to each edge, which describes an inter-
action, the difference of its endpoints’ phases. The boundary
operator B1 then projects the interactions back to the nodes,
so that each node receives contributions from all edges that
are incident to it. The extension of this term to higher-order
oscillators is straightforward once one sees the model as a
nonlinear extension of the graph Laplacian L0θ = B1D0θ →
B1 sin(D0θ), which can be naturally generalized with the dis-
crete Hodge Laplacian defined in Eq. (12).

Notice that in the case of the node Kuramoto, no simplices
with order lower than the nodes exist, hence the dynamics re-
sults from interactions from above, as the left term of Eq. (13).
The interaction term from below is naturally introduced to ac-
count for the lower adjacency structure present in simplicial
complexes, but absent in graphs. Simply put, two triangles
can be adjacent through a common edge and a common tetra-
hedron, but two nodes can only be adjacent through an edge,
i.e. a higher-order simplex. These dynamics belongs to a
wider class of dynamical systems on simplicial complexes,
whose stability properties have been studied when the sine
is replaced with a general nonlinearity in Refs. 34, 74, and
75. The properties of node-like phase-oscillator models with
general nonlinear interaction functions have been extensively
studied in Refs. 76–85.

Example 1. Let us now study explicitly a simple exam-
ple of the simplicial Kuramoto dynamics of the edge os-
cillators on a small, unweighted simplicial complex (Fig-
ure 2a). The simplicial complex of interest is given by ∆ =
{[1], [2], [3], [4], [12], [13], [23], [34], [123]} and, taking into ac-
count the orientations, the incidence matrices of order 1 and
2 are

B1 =

[12] [13] [23] [34]
−1 −1 0 0 [1]

1 0 −1 0 [2]
0 1 1 −1 [3]
0 0 0 1 [4]

, B2 =

[123]
1 [12]

−1 [13]
1 [23]
0 [34]

.

Since ∆ is unweighted, we also have from Eq. (8) that the
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weighted boundary matrices simply correspond to the in-
cidence matrices B1 = B1, D0 = B>1 , B2 = B2, D1 = B>2 .
If we consider the vector of phases on the edges θ =
(θ[12],θ[13],θ[23],θ[34]) and zero natural frequencies ω = 0,
then, after some algebra, we see that Eq. (13) becomes

θ̇[12] =−σ
↓ (sin(θ[12]+θ[13])+ sin(θ[12]−θ[23])

)
−σ

↑ sin(θ[12]−θ[13]+θ[23])

θ̇[13] =−σ
↓ (sin(θ[13]+θ[12])+ sin(θ[13]+θ[23]−θ[34])

)
+σ

↑ sin(θ[12]−θ[13]+θ[23])

θ̇[23] =−σ
↓ (sin(θ[23]−θ[12])+ sin(θ[23]+θ[13]−θ[34])

)
−σ

↑ sin(θ[12]−θ[13]+θ[23])

θ̇[34] =−σ
↓ (sin(θ[34]−θ[13]−θ[23])− sin(θ[34])

)
,

(16)
where the interaction terms from below and from above are
identifiable by their coupling strengths. Notice that some of
the interactions from below are pairwise, others are higher-
order (they involve three oscillators) and one, sin(θ[34]), is
of order 0 as it depends on the value of a single oscillator.
Moreover, the interaction from above through the triangle, as
we expected, is higher-order and involves three oscillators.

While it is natural to define the dynamics on the edges and
formulate the model using the incidence matrices of the sim-
plicial complex, it is interesting to look at Equation (16) from
another point of view. If we forget about the underlying sim-
plicial complex and that θ[i j] is a phase associated with an edge
oscillator, what we are left with is a dynamical system where
the phases of 4 different oscillators evolve by interacting with
each other in a way specified by the functional form of the
equations. It is natural, therefore, to consider these oscilla-
tors as nodes and represent their interactions with hyperedges,
i.e. arbitrary groups of nodes. What we get, by neglecting
the signs inherited by the orientations, is an effective hyper-
graph (Fig. 2b) which does not resemble the original simpli-
cial complex but has the advantage of clearly representing the
actual interaction structure underlying the dynamics. In gen-
eral, the effective hypergraph has the k-simplices as its nodes,
and has one hyperedge for each (k+ 1) and (k− 1)-simplex
responsible for the interaction. Thus, the simplicial Kuramoto
model can be seen as a particular kind of hypergraph oscil-
lator dynamics where the coupling functions depend on the
orientations of the original simplices.

Notice how the coupling functions in Eq. (16) are differ-
ent from the ones classically used in hypergraph oscillator
models47,49–53 as they do not possess the standard phase-shift
symmetry which dictates that increasing the phase of every
oscillator by the same amount should leave the dynamics un-
changed. This is due to the presence in the model of a differ-
ent symmetry, the harmonic phase-shift symmetry, which we
discuss in more detail in Section III E.

B. Simplicial Kuramoto as a system of resonant oscillators

Interestingly, we can connect the functional form of the
simplicial Kuramoto to a system of resonantly interacting os-

cillators, following the procedure outlined in Ref. 2, Section
8.1.

Consider first the case in which ω is close to being a k-
cocycle, i.e. Dkω ≈ 0. Now, we consider a single interaction
from above given by the (k + 1)-simplex a = [a0, . . . ,ak+1],
with the oscillators on its subfaces indexed 0, . . . ,k+1. Then,
the condition Dkω ≈ 0 can be written explicitly as

ξa,0ω0 +ξa,1ω1 + · · ·+ξa,k+1ωk+1 ≈ 0 , (17)

where ξa, j ∈ {−1,1} is the relative orientation of a w.r.t. its
subface with index j.

Additionally, the evolution of the oscillators’ phases θ j can
be written in general form

θ̇ j = ω j + · · ·+ εQa(θ0, . . . ,θk+1) , (18)

where Qa is a generic interaction function between k+ 2 os-
cillators associated with a and the dots refer to the other in-
teractions in which oscillator j is involved. We also make
the usual assumption of weak coupling ε � 1. Function
Qa(θ0, . . . ,θk+1) is 2π-periodic in each of its arguments so
that it can be written in Fourier series as

Qa(θ0, . . . ,θk+1) = ∑
s0,...,sk+1∈Z

f s0,...,sk+1
a ei∑n snθn , (19)

where f s0,...,sk+1
a are complex coefficients indexed by the in-

tegers s0, . . . ,sk+1. Since the coupling is weak, we can now
write the phase as θ j = ω jt + ϕ j and assume that the ϕ j,
named slow phase, varies slowly on the time scale of ω

−1
j .

Substituting this into Equations (18) and (19), we get the evo-
lution of the slow phase

ϕ̇ j = · · ·+ ε ∑
s0,...,sk+1∈Z

f s0,...,sk+1
a eit ∑n snωnei∑n snϕn . (20)

We may now perform a time averaging over the same scale
of the periods ω

−1
l of the oscillators involved. In this way,

given our assumption of slow phases, the slow phases ϕl can
be assumed to be constant and, we see, all the terms ωn in
the sum with explicit time dependence will correspond to fast
oscillation. Theses will all result in a null contribution except
those that satistfy the resonance condition

s0ω0 + s1ω1 + · · ·+ sk+1ωk+1 ≈ 0 . (21)

Given that we chose ω to be a k-cocycle (17), we have that
Equation (21) is satisfied with si = mξa,i for any m ∈ Z.

Then, assuming the only relevant resonant terms are the in-
teger multiples of the relative orientations (ξa,0, . . . ,ξa,k+1),
we have that

Qa(θ0, . . . ,θk+1) = ∑
m∈Z

f
mξa,0,...,mξa,k+1
a eim∑ j ξa, jθ j

= q

(
∑

j
ξa, jθ j

)
.

If, moreover, q(ψ) = sin(ψ), we get the coupling of the form
obtained in Ref. 86 for three resonantly interacting oscillator
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FIG. 3. a. The simplicial Kuramoto model allows us to consider oscillators, shown here as clocks, on the edges of a simplicial complex,
interacting through nodes and triangles. b. The interaction from above Eq. (22) happens between k + 2 oscillating k-simplices through a
single (k+ 1)-simplex, here highlighted in red. c. In the interaction from above, each oscillator involved is influenced by a term depending
on the oriented sum of the phases. The phase θ2 appears with a minus sign because its edge is oriented in the opposite direction relative to
the triangle. d. The interaction from below Eq. (25) happens between an arbitrary number of oscillating k-simplices through a single (k−1)-
simplex, highlighted here in red. e. Unlike interactions from above, interactions from below through free subfaces are akin to self-interactions.

communities and of the simplicial Kuramoto model interac-
tions.

This resonance condition, however, only holds for a sin-
gle k + 1 simplex a in the simplicial complex. Hence, it is
then natural to ask whether it is possible to find frequencies
ω which are in a similar resonance relation for all interac-
tions at once. As the cocycle condition Dkω ≈ 0 means that
(Dkω)a ≈ 0 for every (k+ 1)-simplex a, the resonance con-
dition holds for all interactions from above. For interactions
from below, one can check that we instead can ask for ω to
be an approximate k-cycle Bkω ≈ 0. Therefore, if we have
Bkω ≈ 0 and Dkω ≈ 0 at the same time, we will have a reso-
nance condition which holds for all interactions in the simpli-
cial model. Moreover, Bkω ≈ 0 and Dkω ≈ 0 ⇐⇒ Lkω ≈ 0,
that is ω needs to be close to the k-th harmonic space of the
simplicial complex for the above derivation to be valid for a
full simplicial complex (and not just one simplex).

Summing up, the simplicial Kuramoto model may be ob-
tained as a system of harmonically resonant (Lkω ≈ 0) inter-
acting oscillators on the effective hypergraph associated with
the simplicial complex and an initially generic coupling func-
tion. It is interesting to note that, although the coupling func-
tions obtained here is not shift-invariant as discussed above,
they are also observed in some settings of node Kuramoto
models like in Ref. 86 for interacting communities of oscil-
lators.

C. As above, not so below: the two types of interactions

The introduction of Eq. (13) was initially motivated by
purely formal and symmetry arguments. It is then important
to study the local form of the different interaction terms to un-
derstand what kind of system is being described. Following a
similar procedure to the one proposed in Ref. 34, we treat the
two types of interactions separately.

Let us start with the interaction from above

I↑(θ)
def
= −Bk+1 sin(Dk

θ) , (22)

which is a direct generalization of the standard node Ku-
ramoto interaction term −B1 sin(D0θ). To understand its be-
havior, we look at the simplest possible interaction of its kind,
where we have a single (k+ 1)-simplex regulating the inter-
action between its k+2 oscillating subfaces (Fig. 3b). In this
case, the incidence matrix is a column vector of the form

Bk+1 = ξ
↑ ∈ {−1,1}k+2 , (23)

where ξ
↑
i is 1 if the subface i is coherently oriented with the

(k+ 1)-simplex, and −1 if it is incoherently oriented. It fol-
lows that Dk = (Bk+1)

>= (ξ ↑)>. Equation (22) then becomes

I↑(θ) =−ξ
↑ sin

(
(ξ ↑)>θ

)
, (24)

which means that each oscillator will be influenced by the
same scalar value given by the oriented sum of the phases
(ξ ↑)>θ , with a sign depending on the coherence or incoher-
ence of the orientations (see Fig. 3c). In the nodes case, this
simply reduces to I↑(θ) = (−sin(θ1− θ2),−sin(θ2− θ1))

>.
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Given that a (k+ 1)-simplex always has k+ 2 subfaces, this
kind of interaction involves k + 2 oscillators and thus, for
k > 0, is genuinely higher order, in the sense that it does not
result from the composition of multiple pairwise interaction
terms.

The interaction from below

I↓(θ)
def
= −Dk−1 sin(Bk

θ) (25)

describes the interactions of simplicial oscillators through
lower-order simplices. This interaction from below is absent
in the node Kuramoto, and it represents the true novelty of the
simplicial model. First, while only k + 2 simplices of order
k can interact through a (k+1)-simplex, an arbitrary number
of k-simplices can have a common subface and interact from
below. This allows us to consider arbitrary higher-order inter-
actions, not restricted by the order of the oscillating simplices.
It is then natural to ask if the interactions from below are lo-
cally of a similar form to the interactions from above, as in the
case of Eq. (22). For this, let us consider again the simplest
possible interaction, i.e. the general case of N k-simplices
lower adjacent through a common subface with arbitrary ori-
entations, as illustrated in Fig. 3d. By considering an appro-
priate ordering of the simplices, this configuration is described
by the incidence matrix

Bk =


ξ
↓
1 ξ

↓
2 · · · ξ

↓
N

o1 0 · · · 0
0 o2 · · · 0
...

...
...

...
0 0 · · · oN

 , (26)

where the entries ξ
↓
i ∈ {−1,1} describe the relative orien-

tation between simplex i and the common subface, while
oi ∈ {−1,1}k contains the relative orientations between sim-
plex i and its other subfaces not involved in this interaction
from below. Given that Dk−1 = (Bk)

>, Eq. (25) becomes

I↓(θ) =−ξ
↓ sin

(
(ξ ↓)>θ

)
− k sin(θ) , (27)

where ξ ↓ = (ξ ↓1 , . . . ,ξ
↓
N)
>. Notice that the first term is

formally the same as in Eq. (24) for the interaction from
above. Each oscillator receives a contribution depending on
the phases of all oscillators involved in the interaction. This
means that the higher order interaction given by a (k + 1)-
simplex shares the same structure as the higher order interac-
tion given by k+2 oscillators sharing a common subface.

However, an extra term −k sin(θ) appears, but by carrying
out the computations which lead from Eq. (25) to Eq. (27),
it appears that this extra term is a sum of contributions com-
ing from the subfaces not involved in the interaction, which,
in this case, are free i.e. they are subfaces of only one sim-
plex. In fact, here each oscillator has k free subfaces, hence
the multiplication factor k in front of sin(θ). In general, due to
this term, each oscillator modulates its own frequency based
on its own phase, which is akin to a self-interaction through
its free subfaces (Fig. 3e). Formally, this term also appears in

the Adler equation2 describing the phase difference of a sys-
tem with one oscillator driven by another one. From that point
of view, the self-interaction terms can be seen as the driving
of each oscillator by another non-existent oscillator that has a
constant phase set to zero.

D. Manifold-like simplicial complexes

Interestingly, if the interaction from below involves exactly
two oscillating simplices, one coherent and the other incoher-
ent with respect to the common subface so that the complex at
that subface is manifold-like (see Section II B), the interaction
term will be the same as the standard node Kuramoto, i.e. of
the form sin(θ1−θ2).

Different kinds of interactions occur at non-manifold-like
subfaces (Fig. 4a), that is:

1. at subfaces that are free, resulting in self-interactions;

2. at subfaces that are adjacent to more than two simplices
of order k, i.e. genuinely high-order interactions;

3. at subfaces adjacent to two simplices that are both co-
herently or incoherently oriented, resulting in interac-
tions of the form sin(θ1 +θ2)

87.

If every (k−1)-simplex which has at least a k-simplex inci-
dent to it is manifold-like, so that the simplicial complex is a
simplicial manifold, we have the following equivalence result.

Theorem 1 (Simplicial Kuramoto on a manifold). Let ∆ be
a k-dimensional oriented simplicial manifold. Then it follows
that the simplicial Kuramoto dynamics of order k is equivalent
to the standard node Kuramoto taking place on the 1-skeleton
of the dual cell complex to ∆, that is, the graph with a node
for each k-simplex and an edge for each (k−1)-simplex.

Proof. Under the assumptions that ∆ is manifold-like, we can
apply the discrete analogous to Poincaré duality (see63 p.50)
to obtain Bk = D̃0, Dk−1 = B̃1, where B̃ and D̃ are, respec-
tively, the weighted boundary and coboundary operators of the
dual cell complex to ∆. The interaction term from below in
the primal complex becomes the interaction term from above
in the 1-skeleton of the dual, i.e.

θ̇ = ω−σ
↓Dk−1 sin(Bk

θ) = ω−σ
↓B̃1 sin(D̃0

θ) ,

which has the same form as the standard node Kuramoto
model in Eq. (15).

An illustration of this result can be seen in Fig. 4b with a
triangulated sphere. Notice also that the dual graph to a sim-
plicial k-manifold will necessarily be a (k+1)-regular graph,
as every oscillating k-simplex has exactly k+1 subfaces.

E. Hodge decomposition of the dynamics

Thanks to the particular form of the two interaction terms,
one can use a well-known result in combinatorial topology to
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FIG. 4. The form of the interactions from below of the simplicial Kuramoto is equivalent to ones of the standard node Kuramoto on manifold-
like subfaces of the simplicial complex. a. From left to right: a 1-dimensional simplicial manifold, where every node is manifold-like as it is
incident to exactly two edges with different orientations. In the middle is a simplicial complex where the 1-dimensional manifold-like regions
are highlighted with different colors. On the right, the different ways in which a subface can produce an interaction different from a standard
Kuramoto interaction: 1. the subface is free, 2. there are more than two oscillators incident to it, 3. there are two oscillators incident to it
which are both coherently or incoherently oriented. b. If the complex is an oriented simplicial manifold, then the interaction term from below
is equivalent to a node Kuramoto taking place on the 1-skeleton of the dual cell complex.

decompose the dynamics into three independent subdynam-
ics. To show this, let us consider a simplicial complex ∆,
weighted or unweighted, which describes the interactions be-
tween k-th order oscillators. Then, the simplicial Hodge de-
composition theorem88 states that every cochain can be de-
composed into three orthogonal components

Ck(∆)∼= Rnk = ImBk+1⊕kerLk⊕ ImDk−1 , (28)

which can be interpreted as analogous to divergence-free, har-
monic, and curl-free vector fields. We use the theorem to de-
compose both the phases cochain θ and the natural frequen-
cies ω

θ = θdf +θH +θcf, ω = ωdf +ωH +ωcf , (29)

where cf stands for curl-free, H for harmonic, and df for
divergence-free. Rewriting the simplicial Kuramoto dynam-
ics leveraging the orthogonality of the components, Eq. (13)
is equivalent to the following system

θ̇df = ωdf−σ↑Bk+1 sin(Dkθdf)

θ̇H = ωH

θ̇cf = ωcf−σ↓Dk−1 sin(Bkθcf) .

(30)

These three equations are of crucial importance. They tell us
that under the simplicial Kuramoto dynamics: i) the curl-free,
the harmonic, and the divergence-free components evolve in-
dependently of one another, and ii) the harmonic component
is not affected by the interaction terms. Notice also that the
interaction from above affects only the divergence-free com-
ponent, while the one from below affects only the curl-free
component.

Moreover, if ωH 6= 0, there can be no equilibrium of the
system as each component of θH will always evolve with a
fixed angular speed. It follows that it is always possible to
pass to a frame of reference where the harmonic component
is constant in time, simply by performing the change of vari-
ables θ → θ −ωH. In the case of the node Kuramoto this
corresponds to passing to the co-rotating frame of reference,
as ωH = ω̄1, i.e. the constant vector of the average natural

frequency. This is part of a more general observation that
the addition of a harmonic cochain x ∈ kerLk to the phases
has no effect on the dynamics. In fact, it can be proven that
kerLk = kerBk ∩ kerDk and thus both Bkx and Dkx are zero.
Any change of variable γ = θ +x will thus leave Eq. (13) for-
mally unchanged. In this sense, we can say that the harmonic
space is the gauge of the simplicial Kuramoto. In other words,
the fact that in general 1 is not harmonic in higher-order sys-
tems on simplicial complexes means that these systems do not
possess a phase-shift symmetry in the traditional sense: per-
turbing all oscillators the same way (perturbation vector pro-
portional to 1) does not leave the dynamics unchanged, con-
trary to traditional node Kuramoto models. However, a (pos-
sibly bigger) symmetry space exists with the harmonic space,
which gives a different non-constant “phase-shift symmetry”
to the model for each hole present in the simplicial complex.
Note that the presence of additional symmetries may also oc-
cur when considering specific higher-order interactions be-
tween populations of node-based oscillators56,57.

F. Simplicial order parameters and gradient system

To measure the degree of synchronization of a phase config-
uration, it is common to employ the order parameter, which,
for an unweighted network of N oscillators, is defined as

R̃(θ) =
1
N

∣∣∣∣∣ N

∑
α=1

eiθα

∣∣∣∣∣ . (31)

By definition, it is non-negative, and it reaches its maximum
value of 1 when the oscillators are fully synchronized, i.e.
when they all have the same phase θ ∝ 1.

The order parameter defined in Eq. (31), however, assumes
an all-to-all coupling of the oscillators and thus is not appro-
priate to describe situations where the topology of the inter-
actions is non-trivial. In this work, we focus on a particular
generalization11 of Equation (31) which takes into account the
underlying network structure through the use of the incidence
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matrix

R(θ) =
n2

0−2n1 +21> cos(B>1 θ)

n2
0

. (32)

While Eq. (32) reduces to Eq. (31) in the case of a fully con-
nected network, it is, in fact, a natural order parameter for
Equation (15), as its gradient gives us the interaction term of
the dynamics

∇θ R(θ) ∝−B1 sin(B>1 θ) = I↑(θ) , (33)

meaning that R(θ) is the potential function which gives the
node Kuramoto interaction term as its gradient, i.e. θ̇ = ω +

σ
n2

0
2 ∇θ R(θ). When we can write the interaction term of a

model as a gradient of a potential function, we say, with a
slight abuse of terminology, that its dynamics is in “gradient
system” form. In these cases, we interpret the potential as the
natural order parameter associated with the model.

As proposed in Ref. 67, we can extend this intuition to the
simplicial case and, neglecting constants that do not appear in
the gradient, define the simplicial order parameter

Rk(θ) =
1

Ck

(
1
>W−1

k−1 cos(Bk
θ)+1

>W−1
k+1 cos(Dk

θ)
)
,

(34)

with the normalization constant

Ck = 1
>W−1

k−11+1
>W−1

k+11 . (35)

The weight matrices are added to further generalize the con-
struction to weighted simplicial complexes, and generate the
weighted simplicial Kuramoto model as the gradient system

Wk∇θ Rk(θ) ∝ I↑(θ)+ I↓(θ) . (36)

This order parameter reaches a maximum value of 1 if θ ∈
kerBk ∩ kerDk i.e. when the phases cochain belongs to the
harmonic space. This is a direct generalization of synchro-
nization in the node Kuramoto model: in a connected net-
work, kerL0 = span{1}, and the full synchronization condi-
tion is θ ∝ 1, which is equivalent to the phase cochains being
harmonic.

Hence, under this definition, full synchronization in the
simplicial model does not mean that the phases are all equal,
but that θ is harmonic67. Moreover, as the k-th harmonic
space of a simplicial complex is isomorphic to the k-th homol-
ogy group, we can think of fully synchronized configurations
as, intuitively, localized around the k-dimensional holes.

Definition 1 (Full synchronization). A configuration θ is said
to be fully synchronized under the k-th order simplicial Ku-
ramoto dynamics if θ ∈ kerLk.

From the simplicial order parameter Eq. (34), we can ex-
tract two partial order parameters

R−k (θ)
def
=

1
C−k

1
>W−1

k−1 cos
(

Bk
θ

)
(37a)

R+
k (θ)

def
=

1
C+

k
1
>W−1

k+1 cos
(

Dk
θ

)
, (37b)

where the normalization constants C±k = 1
>W−1

k±11 ensure that
they take values in [−1,1]. In this way, it holds that

CkRk(θ) =C+
k R+

k (θ)+C−k R−k (θ) , (38)

and thus, aside from normalization, the order of a configu-
ration is computed by measuring separately the local order
induced respectively on (k−1) and (k+1)-simplices.

Notice that, by neglecting the constants in passing from
Eq. (32) to Eq. (34), we have an order parameter that has val-
ues in the interval [−1,1]. This allows us to meaningfully dis-
tinguish two different types of synchronized configurations.
We call a configuration of phases phase synchronized when
its order is close to 1 and anti-phase synchronized when it
is close to −1. Phase synchronization generalizes to simpli-
cial complexes the situation where close oscillators have simi-
lar phases (Fig. 5a), while in anti-phase synchronization close
oscillators have opposite phases forming “checkerboard” pat-
terns, resembling an antiferromagnetic Ising model (Fig. 5b).

Notice also how, in this work, with “phase synchronization”
and “full synchronization” we refer to the static properties of
a configuration of phases θ , with no information on how it
evolves under the dynamics. The notion of a configuration
that “stays synchronized” under the dynamics will be tackled
with the concept of phase-locking in Section IV A.

IV. EQUILIBRIUM ANALYSIS

We now study the equilibrium properties of the simplicial
Kuramoto model, extending to the simplicial cases concepts
and results known in the node case.

• In Section IV A, we extend the notion of phase-locking
to simplicial complexes, we look at its geometric mean-
ing and see how it reduces to standard node synchro-
nization on manifold-like regions of the complex.

• In Section IV B, we develop the necessary framework
to discuss the equilibrium properties of the simplicial
Kuramoto model, define reachable equilibria (Def. 6)
and relate their existence to the presence of simplicial
phase-locked configurations.

• In Section IV C, we derive two bounds on the cou-
pling strength providing necessary conditions for the
existence of equilibria. We define the critical coupling
(Def. 7) and characterize it as the solution to a linear
optimization problem.

• In Section IV D, we prove a simple lower bound on the
coupling strength which gives a sufficient condition for
the existence of reachable equilibria.

A. Simplicial phase-locking

It directly follows from the Hodge decomposition of the
simplicial Kuramoto model (see Eq. (30)) that studying its
equilibrium properties is equivalent to separately studying the
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FIG. 5. Configurations of phases θ ∈ C1, whose sine is shown here in color, which are phase (R1(θ) ≈ 1) and anti-phase (R1(θ) ≈ −1)
synchronized in the case of a chain of edges, which is “quasi”-manifold as all subfaces except the endpoints are manifold-like, and a more
general 1-dimensional simplicial complex. a. In the case of phase synchronization, close oscillators on manifold-like regions have similar
phases. b. Anti-phase synchronized configurations, instead, are such that, on manifold-like regions, adjacent oscillators have opposite phases.

equilibria of the curl-free and divergence-free components. If
these two converge to equilibrium, then the complete system
will converge to a configuration evolving with constant har-
monic angular speed, given by ωH (θ̇ = θ̇H = ωH).

Definition 2 (Simplicial phase-locking). We say that the k-
th order simplicial Kuramoto dynamics is phase-locked from
above if θ̇df = 0 and phase-locked from below if θ̇cf = 0.

To motivate this definition, we consider the projections of
the dynamics on lower and upper order simplices, defined as

θ
(+) def

= Dk
θ = Dk

θdf (39)

θ
(−) def

= Bk
θ = Bk

θcf . (40)

We can think of θ (+) and θ (−) as the discrete versions of,
respectively, the curl and divergence of the vector field θ

and, we prove, they can equivalently capture simplicial phase-
locking.

Proposition 1 (Phase-locking equivalence). A configuration
of phases θ is phase-locked from above (from below) if and
only if its projection onto higher (lower) dimensional sim-
plices is in equilibrium.

θ̇df = 0 ⇐⇒ θ̇
(+) = 0, θ̇cf ⇐⇒ θ̇

(−) = 0 . (41)

Proof. If θ̇df = 0, then

θ̇
(+) = Dk

θ̇df = 0 ,

because of Eq. (39). If instead θ̇ (+) = 0, then

θ̇df = (Dk)†Dk
θ̇ = (Dk)†

θ̇
(+) = 0 ,

where (Dk)† is the weighted Moore-Penrose pseudoinverse89

and (Dk)†Dk is the orthogonal projection operator onto
Im(Dk)∗ = ImBk+1.

This result allows us to include in Definition 2 the stan-
dard concept of phase-locking for the node Kuramoto. In

fact, the node Kuramoto on a heterogeneous network is clas-
sically said to be phase-locked when the phase difference
of connected oscillators stays constant in time. This means
that θ̇

(+)
e = (D0θ̇)e = θ̇i − θ̇ j = 0 for every edge e = (i, j)

in the network. According to Proposition 1, the divergence-
free component of the dynamics is in equilibrium and the sys-
tem is, by Definition 2, simplicially phase-locked from above.
If the network is connected, moreover, θ̇ must be harmonic,
i.e. θ̇ ∝ 1, a situation which is usually named frequency-
synchronized as the frequencies of all oscillators coincide.

While phase-locking in the standard Kuramoto model
means that all oscillators evolve with the same angular fre-
quency, it is not clear how this extends to the simplicial case.
In the case of phase-locking from below, we see that

θ̇
(−) = 0 ⇐⇒ d

dt
(Bk

θ) = Bk
θ̇ = 0 ,

or equivalently that θ̇(t), the cochain containing the angular
frequencies, is a weighted cycle (see Eq. (11)). This, in turn,
means that for each (k−1)-simplex α

∑
i>α

ξα,iθ̇i = 0 , (42)

where ξα,i ∈ {−1,1} is the relative orientation of k-simplex
i with respect to its subface α . Interestingly, Eq. (42) corre-
sponds to a flow conservation condition. Indeed, if we con-
sider graphs with oscillating edges, at each node, the total
phase flow of the incoming edges is the same as the total flow
of the outgoing ones. In general, we can apply Eq. (42) to
understand phase-locking from below in some particular situ-
ations.

Proposition 2 (Phase-locking on manifold-like regions). If θ

is phase-locked from below, i.e. θ̇ (−) = 0,

1. the connected manifold-like regions (see Section II B)
of the complex (with respect to order k) evolve with
the same angular frequency and are thus frequency-
synchronized;

2. oscillators with free subfaces (see Section II B) are
frozen, i.e. θ̇i = 0.
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Proof. 1. At a manifold-like subface we have only two inci-
dent simplices, one coherently oriented and one incoherent,
which we name respectively i and j. Condition Eq. (42) gives
us θ̇i− θ̇ j = 0 ⇐⇒ θ̇i = θ̇ j, so the incident oscillators are
frequency-synchronized. 2. If oscillator i has a free subface
then, by definition, that particular subface will be incident
only to oscillator i. Phase-locking at that subface implies that
θ̇i = 0, thus concluding the proof.

A simple application of this result is shown in Fig. 6a where
the behavior of a phase-locked configuration can be inferred
a priori by looking at the geometry of the graph. It can also
be empirically seen that frequency-synchronized manifold re-
gions exhibit phenomena akin to traveling waves localized
around the k-holes of the complex, when its homology is not
trivial.

B. Existence of equilibria

To study the equilibrium of the simplicial Kuramoto model,
it is convenient to work with the θ (±), defined in Eqs. (39)
and (40) as projections of the phases onto upper and lower
simplices. Their evolution equations62 are readily obtained
by multiplying Eq. (13) by Dk and Bk to get

θ̇
(+) = ω

(+)−σ
↑Lk+1
↓ sin(θ (+))

def
= f (+)(θ (+))

θ̇
(−) = ω

(−)−σ
↓Lk−1
↑ sin(θ (−))

def
= f (−)(θ (−)) ,

(43)

where Lk+1
↓ ,Lk−1

↑ are the half Laplacian matrices from
Eq. (12), and we defined the projected natural frequencies as

ω
(+) def

= Dk
ω, ω

(−) def
= Bk

ω . (44)

An equilibrium for the projected dynamics, say, θ
(+)
∗ ∈Rnk+1 ,

will thus need to satisfy the equation f (+)(θ
(+)
∗ ) = 0, while

also being a projection i.e. θ
(+)
∗ ∈ ImDk. Let us now focus

on the first condition, and compute all the possible solutions
to the equations f (±)(θ (±)

∗ ) = 0. We have f (+)(θ
(+)
∗ ) = 0 ⇐⇒ Lk+1

↓ sin(θ (+)
∗ ) = ω(+)

σ↑

f (−)(θ (−)
∗ ) = 0 ⇐⇒ Lk−1

↑ sin(θ (−)
∗ ) = ω(−)

σ↓
,

(45)

and, since ω(+) ∈ ImDk = ImLk+1
↓ and ω(−) ∈ ImBk =

ImLk−1
↑ , the equilibrium equations can be solved using the

pseudoinversesin(θ (+)
∗ ) = (Lk+1

↓ )† ω(+)

σ↑
+ x(+)

sin(θ (−)
∗ ) = (Lk+1

↑ )† ω(−)

σ↓
+ x(−)

, (46)

for any weighted (k + 1)-cycle x(+) ∈ kerBk+1 and (k− 1)-
cocycle x(−) ∈ kerDk−1. Moreover, by applying well-known
properties of the Moore-Penrose pseudoinverse, we can sim-
plify these expressions.

Lemma 1. We have the following equalities

(Lk+1
↓ )†

ω
(+) = (Bk+1)†

ω, (Lk−1
↑ )†

ω
(−) = (Dk−1)†

ω . (47)

Proof. We have

(Lk+1
↓ )†

ω
(+) = (DkBk+1)†Dk

ω = (Bk+1)†(Dk)†Dk
ω

= (Dk)∗†(Dk)†Dk
ω = (Bk+1)†

ω,

and, analogously, (Lk−1
↑ )†ω(−) = (Dk−1)†ω .

Definition 3 (Natural potentials). We call natural potentials of
order k the quantities

β
(+) = (Bk+1)†

ω ∈ Rnk+1 , β
(−) = (Dk−1)†

ω ∈ Rnk−1 . (48)

The name potential comes from the fact that, for k = 1, β (−)

is an assignment of potentials to the nodes such that for each
edge the difference of potential between its end-points (i.e. the
voltage) is equal to ω . Moreover, it can be easily proven that
they correspond to the higher and lower order signals that ap-
pear in the Hodge components of the natural frequency vector
ω as

ω = Bk+1
β
(+)+ωH +Dk−1

β
(−) .

The values of the natural potentials are expressed in terms of
the weighted Moore-Penrose pseudoinverse, which in Eq. (48)
is computed with respect to the inner products on the cochain
spaces W−1

k k = 1, . . . ,K Eq. (4). To compute the natural po-
tentials of a weighted simplicial complex, the weights have to
be included correctly in the pseudoinverse. The explicit for-
mula, written in terms of the standard unweighted pseudoin-
verse is the following (Ref. 89, Remark 2)

β
(+) =W

1
2

k+1

(
W
− 1

2
k Bk+1W

1
2

k+1

)†

W
− 1

2
k ω (49)

β
(−) =W

1
2

k−1

(
W
− 1

2
k Dk−1W

1
2

k−1

)†

W
− 1

2
k ω . (50)

Using the definition of natural potentials, we can rewrite the
equilibrium conditions of Eq. (46) assin(θ (+)

∗ ) = β (+)

σ↑
+ x(+)

sin(θ (−)
∗ ) = β (−)

σ↓
+ x(−)

, (51)

where we see that a necessary condition for the existence of a
solution is for the right-hand sides to be bounded in [−1,1] or,
equivalently, for x(+) ∈ kerBk+1 and x(−) ∈ kerDk−1 to satisfy
the following condition of admissibility.

Definition 4 (Admissible cycles). We call a (weighted) cycle
x(+) ∈ kerBk+1 admissible if∥∥∥∥∥β (+)

σ↑
+ x(+)

∥∥∥∥∥
∞

≤ 1 . (52)
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FIG. 6. Simplicial Kuramoto dynamics on a simple graph with two holes (drawn here as a continuous space), where the edges are identical
oscillators (ω = 1) with starting phase θ(0) = 01. a. The panel shows a diagram of the graph, highlighting the non-manifold points respon-
sible for the non-triviality of the dynamics. The different branches of the graph are colored according to their frequency in a phase-locked
(Definition 2) state. In particular, the oscillation is frequency-synchronized on the two holes and exhibits traveling waves, while it is frozen
(θ̇ = 0) on the branch connecting them. b. A few snapshots of the dynamics on the graph are shown, with edges colored according to the sine
of their phases. In the last frame, the effect of the non-manifold points is evident. c. The dynamics is run for different values of the coupling
strength, and the absolute value of the frequency (|θ̇ |) at the final integration time is shown with the edges’ widths. The last frame shows how
the system reaches the same phase-locked configuration predicted with Eq. (42) and depicted in panel a.

We call a cocycle x(−) ∈ kerDk−1 admissible if∥∥∥∥∥β (−)

σ↓
+ x(−)

∥∥∥∥∥
∞

≤ 1 . (53)

With a slight abuse of notation, we call them both admissible
cycles, and we name their sets A (+) and A (−).

Proposition 3 (Necessary condition from admissible cycles).
A necessary condition for the existence of equilibrium solu-
tions of the (±) dynamics is that A (±) 6= /0.

Intuitively, each cochain β (±)/σl should be close to, re-
spectively, the vector space of weighted (k + 1)-cycles (for
(+)) and (k−1)-cocycles (for (−)).

When both x(+) and x(−) are admissible, we can invert the
sine function in Eq. (46) and get an explicit expression for the
set of equilibrium configurations of the projections.

Definition 5 (Equilibrium sets). We define the equilibrium
sets of the projections as

E (+) =

{
(−1)s+ � arcsin

(
β (+)

σ↑
+ x(+)

)
+πs++2πm+ :

s+ ∈ {0,1}nk+1 , m+ ∈ Znk+1 , x(+) ∈A (+)

} ,

(54)

E (−) =

{
(−1)s− � arcsin

(
β (−)

σ↓
+ x(−)

)
+πs−+2πm− :

s− ∈ {0,1}nk−1 , m− ∈ Znk−1 , x(−) ∈A (−)
}
,

(55)

where � is the component-wise Hadamard product.

Any θ
(±)
∗ ∈ E (±) will thus be a fixed point of the dynamics

of Eq. (43).
From a geometric point of view, the equilibrium set E (±) is

a subset ofRnk±1 and, for fixed s±,m±, is a manifold of dimen-
sion given by dimkerDk−1 for (−) and dimkerBk+1 for (+).
For example, for the projection on the nodes of edge dynam-
ics, we have that dimkerD0 is the number of connected com-
ponents. If the simplicial complex is connected then E (−) is a
collection of curves in an n0-dimensional space (see Fig. 7b).

We thus found a complete characterization of the configu-
rations θ

(±)
∗ ∈ Rnk±1 which are fixed points of the dynamics

of Equation (43) .

Proposition 4. f (±)(θ (±)
∗ ) = 0 if and only if θ

(±)
∗ ∈ E (±) .

This condition is only partially useful because, while it
tells us which configurations θ

(±)
∗ are solutions to the equi-

librium equations, it does not specify which ones are projec-
tions, i.e. can be obtained by projecting a phase cochain θ

on the (k± 1)-simplices. In particular, notice that the dy-
namics for the (−) component (the same holds for (+)) in
Eq. (43) states that the time derivative of θ (−) will be the vec-
tor ω(−)−σ↓Lk−1

↑ sin(θ (−)), which always belongs to ImBk.
This, together with the initial phase configuration being a pro-
jection of a phase cochain, θ

(−)
0 = Bkθ0 ∈ ImBk, implies that

the trajectories live in the subspace ImBk i.e. projections re-
main projections under the dynamics. Only the equilibria in
E (−) which also belong to ImBk are thus relevant for the dy-
namics, and thus we call them reachable.
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Definition 6 (Reachable equilibria). We define the sets of
reachable equilibria as

R(−) = E (−)∩ ImBk (56)

R(+) = E (+)∩ ImDk . (57)

We then have our final result.

Proposition 5 (Equivalence phase-locking reachability). The
curl-free (divergence-free) component admits equilibria if and
only if θ (−) (resp. θ (+)) admits reachable equilibria.

The framework we developed in this section can be fruit-
fully exploited to independently discuss the existence of
equilibrium configurations of the divergence-free and of the
curl-free components of the simplicial Kuramoto dynamics
(Eq. (30)). In particular, Proposition 5 tells us that such con-
figurations will exist if and only if there are reachable equilib-
ria for the projections. These, in turn, are subsets of the larger
sets of fixed points (Definition 5), whose explicit expression is
known and whose non-emptiness can thus be controlled more
easily, giving us necessary conditions for equilibrium.

Interestingly, one can prove that Definition 6 and Proposi-
tion 5 are simplicial generalizations of the dynamic and ge-
ometric conditions for equilibrium in the node Kuramoto of
Ref. 90 (see Appendix B).

C. Necessary conditions for phase-locking

In this section, we investigate the relation between the equi-
librium properties of the simplicial Kuramoto model and the
value of the coupling strength. It is natural to think that having
a stronger interaction would make it easier for the system to
reach a synchronized configuration as the intrinsic differences
among the oscillators, encoded by their natural frequencies,
become secondary. This intuition is extensively confirmed
by numerous results proved about the node Kuramoto (see
Refs. 11, 91, and 92), some of which we extend to the simpli-
cial case. We will thus derive bounds on the coupling strength,
which gives us necessary and sufficient conditions for the ex-
istence of reachable equilibria, i.e. for phase-locking from
below and from above. Note that all the results below refer
to the existence of phase-locked configurations and provide
no information about whether the dynamics will actually con-
verge to them.

Let us consider a simplicial complex whose m-simplices
have weights wm

1 , . . . ,w
m
nm for any order m, and focus on the

k-th order simplicial Kuramoto dynamics. The easiest con-
ditions to derive are those that ensure that there are no ad-
missible cycles A (±) = /0. If it holds then the equilibrium
sets are empty E (±) = /0 (Definition 5) and, by inclusion, the
reachable sets are as well R(±) = /0 i.e. there are no reachable
equilibria/phase-locked configurations.

Proposition 6 (Sufficient condition for no phase-locking). If

σ
l < σ

(±)
s

def
=

1√
nw

k±1

∥∥∥β
(±)
∥∥∥

wk±1
, (58)

where

nw
k±1

def
=

nk±1

∑
i=1

1
wk±1

i
, (59)

then E (±) = /0 and the (±) projection admits no equilibria.

Proof. First, see that we can bound the weighted wk±1 norm
[Eq. (5)] with the ∞-norm:

‖v‖wk±1 =

√
nk±1

∑
i=1

1
wk±1

i
v2

i ≤

√
nw

k±1

(
max

i
v2

i

)
≤
√

nw
k±1 ‖v‖∞

.

With this in mind, we can write∥∥∥∥∥β (±)

σl
+ x(±)

∥∥∥∥∥
∞

≥ 1√
nw

k±1

∥∥∥∥∥β (±)

σl
+ x(±)

∥∥∥∥∥
wk±1

.

The two addenda in the norm are orthogonal with respect
to the inner product W−1

k±1 because, in the (−) case, x(−) ∈
kerDk−1 and

β
(−) ∈ Im(Dk−1)† = Im(Dk−1)∗ = (kerDk−1)⊥ ,

thus

1√
nw

k±1

∥∥∥∥∥β (±)

σl
+ x(±)

∥∥∥∥∥
wk±1

=
1√
nw

k±1

√∥∥∥∥β (±)

σl

∥∥∥∥2

wk±1
+
∥∥x(±)

∥∥2
wk±1

≥ 1√
nw

k±1

∥∥∥∥∥β (±)

σl

∥∥∥∥∥
wk±1

.

If this last term is strictly greater than 1 then there will be no
admissible cycles and, therefore, no equilibria.

The condition in Proposition 6 is easy to check and pro-
vides a way to tune the coupling constants to make the set of
admissible cycles empty, and thus phase-locking (from above
or from below) impossible. It is now natural to ask what is
the minimum value of σ such that there are admissible cy-
cles, to get a sharper necessary condition for the existence of
phase-locked configurations.

Definition 7 (Critical coupling). We call critical coupling
σ
(±)
∗ for the (±) projection the minimum value of σ such that

there are admissible cycles (A (±) 6= /0).

It follows directly from the definition that σ
(±)
s < σ

(±)
∗ . To

find its value, notice first that there can be admissible cycles
x(±) (Def. 4) if and only if

min
x∈kerDk−1

∥∥∥∥∥β (±)

σl
+ x

∥∥∥∥∥
∞

≤ 1 . (60)

By manipulating this expression, we can get the exact value
of the critical coupling as a solution to a linear optimization
problem.
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Theorem 2 (Value of the critical coupling). The critical cou-
pling σ

(±)
∗ can be found in the solution of a linear optimiza-

tion problem

σ
(+)
∗ = min

x∈kerBk+1

∥∥∥β
(+)+ x

∥∥∥
∞

(61)

σ
(−)
∗ = min

x∈kerDk−1

∥∥∥β
(−)+ x

∥∥∥
∞

, (62)

which corresponds to the ∞-distance of β (±) from the space
of weighted (k+1)-cycles (resp. (k−1)-cocycles).

Proof. Using Eq. (60), we first show that the critical couplings
σ
(−)
∗ ,σ

(+)
∗ satisfy, respectively.

min
x∈kerDk−1

∥∥∥∥∥β (−)

σ
(−)
∗

+ x

∥∥∥∥∥
∞

= 1, (63)

min
x∈kerBk+1

∥∥∥∥∥β (+)

σ
(+)
∗

+ x

∥∥∥∥∥
∞

= 1 . (64)

If the statement were false and

min
x∈kerDk−1

∥∥∥∥∥β (−)

σ
(−)
∗

+ x

∥∥∥∥∥
∞

= a ,

with 0 < a < 1, then we could divide both sides by a and get

min
x∈kerDk−1

∥∥∥∥∥ β (−)

aσ
(−)
∗

+
1
a

x

∥∥∥∥∥
∞

= 1 ,

which means that for σ = aσ
(−)
∗ < σ

(−)
∗ there is an admissible

cycle x
a , which is impossible because we assumed that σ

(−)
∗ is

the smallest coupling with that property.
Then, multiplying both terms of Eq. (64) by σ

(−)
∗ , we have

min
x∈kerDk−1

∥∥∥β
(−)+σ

(−)
∗ x

∥∥∥
∞

= σ
(−)
∗ .

It is now possible to perform a linear change of variable in the
optimization problem σ

(−)
∗ x→ x̃ which will change the opti-

mal solution position but not the optimum itself. This means
that σ

(−)
∗ disappears from the left-hand side and it is found as

the solution to the optimization problem above.

In some special cases, the critical coupling admits a closed
formula. For example, for the (−) projection of the simplicial
Kuramoto dynamics on the edges of a connected simplicial
complex, the set of admissible vectors and the critical cou-
pling can both be found explicitly.

Theorem 3 (Critical coupling in the edge simplicial Ku-
ramoto). For the (−) component of the edge dynamics on a
connected simplicial complex, it holds that

x(−) ∈A (−) ⇐⇒ x(−) = x1 , (65)

where

−min

(
β (−)

σ↓

)
−1≤ x≤−max

(
β (−)

σ↓

)
+1 , (66)

and

σ
(−)
∗ =

max
(

β (−)
)
−min

(
β (−)

)
2

. (67)

Proof. If the complex is connected we have that D0 has a 1-
dimensional kernel given by span{1}. This means that there
are admissible vectors if and only if∥∥∥∥∥β (−)

σ↓
+ x1

∥∥∥∥∥
∞

≤ 1 ⇐⇒ −1≤
β
(−)
i
σ↓

+ x≤ 1 ,

∀i = 1, . . . ,n0, which holds if and only if Eq. (66) holds, and
has solutions only when

max

(
−β (−)

σ↓

)
−1≤min

(
−β (−)

σ↓

)
+1

⇐⇒ σ
↓ ≥ max(β (−))−min(β (−))

2
.

It is now worth noting that the properties of the projections
θ (+) = Dkθ and θ (−) = Bkθ are not entirely symmetrical, as
the space of (k + 1)-cycles can be trivial (kerBk+1 = {0})
and thus there are situations in which the space of admissi-
ble cycles is simply A (+) = {0}. The same cannot be said for
kerDk−1 resulting in the down projection (−) being generally
harder to treat. To shed more light on this, let us consider the
k-th order dynamics on a simplicial complex ∆ which has at
least one k-simplex. From Definition 4, the existence of equi-
libria for both of them depends on the presence or absence of
admissible cycles which, respectively, must belong to kerBk+1

and kerDk−1. The asymmetry stems from the fact that Dk−1

cannot have a trivial kernel because

kerDk−1 = (ImBk)⊥ =︸︷︷︸
Hodge

ImDk−2⊕kerLk−1 , (68)

and thus

• if k = 1 then kerD0 = kerL0, which is non-trivial as
there is at least one connected component;

• if k > 1 then dimkerDk−1 ≥ dimImDk−2 which is
nonzero because, by inclusion, there is a nonzero num-
ber of (k−1)-simplices and Dk−2 is not an all-zero ma-
trix.

The same cannot be said for Bk+1 as, in general, there is no
restriction on the number of (k + 1)-cycles. In fact, on the
same line of Eq. (68),

kerBk+1 = (ImDk)⊥ = ImBk+2⊕kerLk+1 ,

which is empty when there are no (k + 2)-simplices and no
(k+1)-holes. Therefore, the case of kerBk+1 = {0} deserves
a special treatment.
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00 11

11

FIG. 7. a. Fixing the natural frequencies ω , we simulate the edge simplicial Kuramoto model on a small simplicial complex with 20 different
initial phase configurations, for values of σ ∈ [0,1], and compute the time-averaged partial order parameters R−1 (left), R+

1 (right) from t = 0 to
t = 1000. The vertical lines correspond to the values of σs (Proposition 6), σ∗ (Theorem 2), σ∞ (Eq. (75)) and σfp (Theorem 5). If we identify
the last “jump” in the order with the emergence of reachable equilibria, then we see how the special values of σ we derived actually bound its
value from below and from above. As predicted by Theorem 4, the equilibrium transition value for the (+) projection is exactly σ

(+)
∗ = σ

(+)
∞ .

b. The meaning of the different values of σ is depicted by numerically computing the equilibrium set E (−) ⊂ R3 (Definition 5 with m− = 0)
for the edge dynamics on a 2-simplex. We see how the equilibrium set E (−) is empty for σ = σ

(−)
s , it first appears as a discrete set of points

for σ = σ
(−)
∗ and grows, intersecting the plane ImB1 for σ ≥ σ

(−)
fp giving rise to a reachable equilibrium (Definition 6), marked here as a

black dot.

Theorem 4 (No higher-order cycles). If there are no (k+1)-
cycles ( kerBk+1 = {0}) then the following properties hold:

1. if A (+) 6= /0 then A (+) = {0};

2. if A (+) 6= /0 then the equilibrium set is a discrete set of
points given by

E (+) =

{
(−1)s+ � arcsin

(
β (+)

σ↑

)
+ s+π : s ∈ {0,1}nk+1

}
;

(69)

3. σ
(+)
∗ =

∥∥∥β (+)
∥∥∥

∞

;

4. All equilibria are reachable E (+) = R(+).

Proof. We prove each statement below.
1. It is trivial because 0 is the only vector in kerBk+1.
2. Directly follows from Eq. (51) with x(+) = 0.
3. 0 is the only vector in kerBk+1 so it will be admissible if
and only if ∥∥∥∥∥β (+)

σ↑

∥∥∥∥∥
∞

≤ 1 .

The smallest value of σ↑ for which this holds is σ↑ =∥∥∥β (+)
∥∥∥

∞

.

According to Definition 6, an equilibrium is reachable for the
(+) projection if it belongs to ImDk. In this case,

ImDk = (ker(Dk)∗)⊥

= (kerBk+1)⊥ = {0}⊥ = Rnk+1 ,

which concludes the proof.

Notice how, in this case, the critical coupling σ
(+)
∗ is both

the transition value for the existence of admissible cycles
(by Definition 4) and the existence of the equilibria of the
divergence-free component (by Proposition 5). This means
that σ↑ ≥ σ

(+)
∗ is a necessary and sufficient condition for the

existence of phase-locked configuration. From this general
result, we can obtain for free the well-known11 exact equilib-
rium transition for the node Kuramoto on trees as, by defini-
tion, they have no 1-cycles.

D. Sufficient condition for phase locking

Necessary conditions for equilibrium are useful in a set-
ting where we are interested in pushing the system to a non-
equilibrium state. If, in fact, we are able to tune the coupling
strength below one of the bounds derived above (σs or σ∗), we
are guaranteed that the system will not reach a phase-locked
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configuration. If, however, we want the system to be phase-
locked, we need sufficient conditions that can ensure the exis-
tence of such equilibria.

An elegant bound on σl, that both ensures the existence of
equilibria and that is easy to compute, can be found generaliz-
ing one of the results proven in Ref. 93, Theorem 4.7 by using
the proof technique first introduced in Ref. 11 for the node
Kuramoto.

Theorem 5 (Sufficient condition for the existence of stable
reachable equilibria). For any γ ∈ (0,π/2), if

σ
l ≥ σ

(±)
fp (γ)

def
=

√
maxi wk±1

i

sin(γ)

∥∥∥β
(±)
∥∥∥

wk±1
, (70)

there exists an asymptotically stable reachable equilibrium for
the (±) dynamics such that∥∥∥θ

(±)
∥∥∥

∞

≤ γ . (71)

Proof. The proof directly follows the constructions in Ref. 11,
Theorem 2 by rewriting the equilibrium equation for the pro-
jection dynamics as a fixed point equation (hence the subscript
fp in σ ) x = f (x) and finding σl such that f is a continuous
function from a convex compact set to itself. Brouwer’s fixed
point theorem then provides the existence of a fixed point (a
reachable equilibrium) in this set. The full proof can be found
in Appendix C.

Four important observations should be highlighted from
this result:

1. it is always possible to tune the coupling strengths in
order for the curl-free and divergence-free components
to independently reach equilibrium;

2. after a certain value of the coupling strength, these equi-
librium configurations always exist and at least one of
them is close to the origin;

3. increasing the coupling will also increase the closeness
of the equilibrium to the origin;

4. we see from the definition of the simplicial order param-
eter Eq. (34) that, if each component of the projection
is close to 0, then the configuration will be such that
Rk ≈ 1 i.e. phase synchronized (Section III F).

We also highlight that, when the complex is unweighted, the
expression of the bound becomes

σ
(±)
fp (γ) =

1
sin(γ)

∥∥∥β
(±)
∥∥∥

2
. (72)

Tor the node Kuramoto and for γ = π

2 , it reduces to

σ
(+)
fp =

∥∥∥B†
1ω

∥∥∥
2
=
∥∥∥(L0)†B>1 ω

∥∥∥
2
, (73)

which, when approximated, gives the well-known bound

σ ≥ 1
λ2(L0)

∥∥∥B>1 ω

∥∥∥
2
, (74)

where λ2(L0) is the Fiedler eigenvalue of the network. An-
other interesting observation is that∥∥∥β

(+)
∥∥∥2

wk+1
=
〈
(Bk+1)†

ω,(Bk+1)†
ω

〉
wk+1

=
〈

ω,(Bk+1Dk)†
ω

〉
wk

=
〈

ω,(Lk
↑)

†
ω

〉
wk

,

which is exactly the effective resistance of ω as defined in
Ref. 94. In other words, to have equilibrium, the coupling
must overcome the “structural” resistance of the simplicial
complex, encoded in both the incidence structure (Lk

l) and the
natural frequencies. This is a powerful observation because
it means that it might be possible to define pairs of structures
and frequencies to reach particular types of dynamics or con-
trol the frequencies to move across regimes.

Finally, while Theorem 5 ensures the existence of reachable
equilibria, in practice its value σ

(±)
fp tends to be conservative

and to overestimate the minimum value of σ for which stable
reachable equilibria exist. In perfect analogy with the node
Kuramoto literature92, it is often seen in practice that

σ
(±)
∞

def
=
∥∥∥β

(±)
∥∥∥

∞

(75)

is closer to the true reachability threshold, and thus provides a
sharper bound. This value, moreover, exactly coincides with
the reachability transition in some special cases, such as in
Thm. 4. The different bounds on σ found in Sections IV C
and IV D are shown in Fig. 7, where they are related to the
partial order parameters on a small simplicial complex. We
see how σ∗ and σfp actually bound the point of the last jump,
corresponding to the transition value after which the dynamics
admits reachable equilibria.

V. COUPLING THE HODGE COMPONENTS

The simplicial Kuramoto model of Eq. (13) provides a nat-
ural way to formulate synchronization dynamics of topolog-
ical signals interacting on a simplicial complex95. Building
upon its form, many different variants with interesting behav-
iors can be formulated. The first models we consider are those
for which the Hodge decomposition of the dynamics does not
lead to decoupled equations.

• In Section V A, we review the explosive model, pro-
posed in Ref. 62, which couples the Hodge components
through the order parameters. We state the model and
propose a similar variant, obtained as a gradient system,
which lends itself to an easier analytical treatment.

• In Section V B, we consider Sakaguchi-Kuramoto type
models, where the dynamics is frustrated by an external
parameter. This classical variant is extended to the sim-
plicial case in two ways: the first directly follows from
the node Kuramoto and the second, proposed in Ref. 67,
adds frustration in an orientation-independent fashion.
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A. Explosive simplicial Kuramoto

The first work on the simplicial Kuramoto model62 pro-
posed to couple the different Hodge components of the dy-
namics with factors depending on the partial order parameters.
In that work, having defined the partial order parameters

R[+]
k (θ) =

1
nk+1

∣∣∣∣∣nk+1

∑
α=1

ei(Dkθ)α

∣∣∣∣∣
R[−]

k (θ) =
1

nk−1

∣∣∣∣∣nk−1

∑
α=1

ei(Bkθ)α

∣∣∣∣∣ ,
(76)

for a k-cochain θ , the following dynamical system is proposed

θ̇ = ω−σ
↓R[+]

k (θ)Dk−1 sin
(

Bk
θ

)
−σ

↑R[−]
k (θ)Bk+1 sin

(
Dk

θ

)
, (77)

which was shown to display explosive transitions in the order
parameters R[±]

k when varying σ .
The partial order parameters of Eq. (76) are different from

the ones defined here in Eqs. (37a) and (37b). Indeed, our
formulation allows for negative values (Section III F) as well
as a derivation of the simplicial Kuramoto dynamics as a gra-
dient system. We show here that a nonlinearity introduced
into the potential allows us to formulate an explosive model
analogous to Eq. (77). From the two partial order parameters
defined in Eqs. (37a) and (37b), we can consider their product
and define the explosive simplicial Kuramoto model as

θ̇ =C+
k C−k Wk∇θ (R+

k R−k ) , (78)

whose explicit dynamics is

θ̇ = ω−σ
↓R+

k (θ)D
k−1 sin

(
Bk

θ

)
−σ

↑R−k (θ)B
k+1 sin

(
Dk

θ

)
.

(79)

where we have introduced coupling strengths and natural fre-
quencies for generality. The projected dynamics and the
Hodge components are now coupled because the interaction
term from below depends only on θ (−) but R+

k depends on
θ (+), and vice versa for the interaction from above. This non-
linear gradient system dynamics is different from Eq. (77), but
still displays an explosive phase transition in the order param-
eter, even for small simplicial complexes (Fig. 8a). The possi-
bility of having a negative order parameter in front of the inter-
action terms, moreover, can make the model behave in such a
way as to maximize the phase difference between interacting
oscillators96, giving rise to new dynamical phenomena. As
shown in Fig. 8a, the model shows a second phase transition
in σ after which the dynamics is bistable and can converge to
both phase (Rk ≈ 1) and anti-phase (Rk ≈ −1) synchronized
configurations.

Interestingly, for this model, we can find a sufficient con-
dition for the existence of a phase-locked configuration anal-
ogous to Theorem 5. In this case, as expected, the bounds
related to the (+) and (−) projections are coupled.

Theorem 6 (Sufficient condition for the existence of reach-
able equilibria). For any γ(+),γ(−) ∈ (0,π/2), if

σ↑ ≥
√

maxi wk+1
i

sin(γ(+))cos(γ(−))

∥∥∥β (+)
∥∥∥

wk+1

σ↓ ≥
√

maxi wk−1
i

sin(γ(−))cos(γ(+))

∥∥∥β (−)
∥∥∥

wk−1

, (80)

then both the projections θ (+),θ (−) of the explosive simplicial
Kuramoto model Eq. (79) admit reachable equilibria such that∥∥∥θ

(+)
∥∥∥

∞

≤ γ
(+),

∥∥∥θ
(−)
∥∥∥

∞

≤ γ
(−) . (81)

Proof. The proof is similar to the one of Theorem 5 and can
be found in Appendix D.

It is interesting to see that, in the bound above, there is a
tradeoff between the coupling strengths of the two projections.
If we want a low bound on the coupling for the (+) projec-
tion, then we need γ(+) to be high and γ(−) to be low. By
doing so, however, we will result in a high value of the bound
for the (−) component. Notice, moreover, how this result is
only concerned with stating the presence of a phase-locked
configuration whose projections can independently be made
arbitrarily close to the origin (and thus with high values of the
order parameters) by tuning the couplings, but states nothing
about whether the dynamics will actually converge to them. In
addition, stability analysis is challenging for this system and
is left for future work.

This gradient system approach suggests a more general way
to build variants of the simplicial Kuramoto model which cou-
ple the dynamics across Hodge subspaces. For this, we can
consider a general function f of the partial order parameters
and take its gradient

θ̇ =Wk∇θ f (R+
k ,R

−
k ) , (82)

which, modulo normalization constants, reduces to the stan-
dard simplicial Kuramoto Eq. (13) for f (x,y) = x + y. As
an example, if we consider a linear interpolation between
the standard potential and the explosive one, fε(x,y) = (1−
ε)(x+ y)+ εxy, parametrized by ε ∈ [0,1], we have what we
call mixed model

θ̇ =Wk∇θ ((1− ε)CkRk + εC+
k C−k R+

k R−k ) ,

which explicitly reads

θ̇ =−(1− ε + εR−k (θ))B
k+1 sin(Dk

θ)

− (1− ε + εR+
k (θ))D

k−1 sin(Bk
θ) .

(83)

For ε = 0, we recover the standard simplicial Kuramoto
model, and for ε = 1 we get Eq. (79). The phase diagram of
this dynamics is shown in Fig. 8b, where the explosive transi-
tion for ε = 1 is evident and a region of bistability appears for
high values of σ . Notice that, although the potential is linear
in ε , the stationary dynamic is not, and, through an analogous
proof, it is possible to derive a result equivalent to Theorem 6
to get sufficient conditions for the existence of reachable equi-
libria.
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FIG. 8. Fixing the natural frequencies and the frustrations, we run variants of the simplicial Kuramoto model on a small simplicial complex for
different values of σ ∈ [0,1] and compute the time-averaged partial order parameters (red: lower order parameter, blue: upper order parameter).
a. The explosive model Eq. (79) shows an explosive transition in both the down- (left) and up- (right) partial order parameters. After a certain
value of σ , moreover, some of the trajectories converge to anti-phase synchronized configurations characterized by the order parameter being
close to −1. b. The phase diagram of mixed model Eq. (83) is depicted for σ ∈ [0,1], ε ∈ [0,1]. For any given ε , the dashed lines show the σ

corresponding to the first and last jump in the order. As we can see, they converge to a single point when ε = 1, signaling the explosiveness
of the model. The dashed line on the right encircles the region in which the system is bistable, and the trajectories can converge to both phase
and anti-phase synchronized configurations.

B. Simplicial Sakaguchi-Kuramoto

The Sakaguchi-Kuramoto model97 is a well-known exten-
sion of the Kuramoto model, which modifies the interaction
function by including a phase lag parameter. Given a frustra-
tion vector α on the edges, we can write it as a modification
of Eq. (14)

θ̇i = ωi−σ ∑
j

Ai j sin(θi−θ j +αi j) . (84)

We can extend it to the simplicial case in a simple manner by
considering two frustration cochains αk−1 ∈Ck−1 and writing
the simplicial Kuramoto model

θ̇ = ω−σ
↑Bk+1 sin

(
Dk

θ +αk+1

)
−σ

↓Dk−1 sin
(

Bk
θ +αk−1

)
, (85)

where α is the effect of an external field on each interaction
simplex. As this model does not couple the Hodge subspaces,
we refer to it as the simple frustrated model. In addition, while
it has a simple form, it can be proven that it does not reduce to

the Sakaguchi-Kuramoto model of Eq. (84) for k = 067. Be-
fore considering how to include frustrations in a more mean-
ingful way, we notice that this simple frustration has the sur-
prising property that α can be used to control the system by
making any projected configuration reachable and stable.

Theorem 7 (Control of reachable equilibrium in simple
model). If σl > σ

(±)
∞ =

∥∥∥β (±)
∥∥∥

∞

, then, for any chosen pro-

jected configuration θ
(±)
∗ , i.e. θ

(+)
∗ ∈ ImDk, θ

(−)
∗ ∈ ImBk, if

αk±1 = arcsin

(
β (±)

σl

)
−θ

(±)
∗ , (86)

then θ
(±)
∗ is an asymptotically stable, reachable equilibrium

for the (±) projection of the simple frustrated dynamics
Eq. (85).

Proof. We prove it for the (+) projection, as the (−) case is
analogous. We see from Equation (85) that an equilibrium
θ
(+)
eq of the (+) projection of the frustrated dynamics will sat-
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isfy

sin
(

θ
(+)
eq +αk+1

)
=

β (+)

σ↑
+ x(+) .

As σ↑ ≥
∥∥∥β (+)

∥∥∥
∞

, x(+) = 0 is an admissible cycle (Def. 4)
and thus

θ
(+)
eq = arcsin

(
β (+)

σ↑

)
−αk+1 = θ

(+)
∗ ∈ ImDk ,

is a reachable equilibrium. The proof of stability can be found
in Appendix E.

We can visualize this result by looking at any panel of
Fig. 7b and noticing that the action of a linear frustration cor-
responds to a translation of E (−), resulting in a different in-
tersection with the reachable subspace. The strength of The-
orem 7 is in the fact that, with a fine-tuned frustration, it is
possible to have equilibrium configurations as ordered as we
want while keeping the coupling strengths comparatively low.
By exploiting this idea, we can get the following corollary.

Corollary 1. Under the hypotheses of Theorem 7, if

αk±1 = arcsin

(
β (±)

σl

)
, (87)

then 0 ∈ Rnk±1 is a stable, reachable equilibrium for the (±)
projection and thus there is a stable equilibrium configuration
of the frustrated dynamics Eq. (85) with partial order param-
eter R±k (θ) = 1.

Proof. Simply follows by applying Theorem 7 with θ
(±)
∗ = 0

and using the definition of simplicial order parameter Eq. (34).

An application of this corollary can be seen in Figure 9,
where the configuration where all phases differences θ (−) are
equal to 0 is made reachable by tuning the frustration. The
problem with this simple frustration formulation comes from
the oriented nature of the simplices. Intuitively, two oscillat-
ing simplices with a common subface a will see the frustration
on a with a different sign, depending on their relative orienta-
tions. In Ref. 67, this issue is addressed by lifting the phases
cochains, similarly to29, into another space where both ori-
entations are present, and by then projecting back to obtain
a model which is independent on the orientation of (k + 1)-
simplices. We write here the resulting equation, slightly gen-
eralized from Ref. 67 to include orientation-independent frus-
trations on (k−1)-simplices too. We define the lift operators

V k =

(
Ink
−Ink

)
, Uk =

(
Ink
Ink

)
, (88)

and indicate with (A)± def
= (A±|A|)/2 the projection of a ma-

trix onto its positive or negative components. Using these def-
initions, we can write the orientation-independent simplicial

-1

0

1

0
-1

0

1

0

FIG. 9. Application of Corollary 1 to the (−) projection of the dy-
namics on a small simplicial complex. Tuning the frustration cochain
it is possible to have a stable equilibrium configuration such that
θ
(−)
eq = 0, as shown by the bottom panel.

Sakaguchi-Kuramoto model

θ̇ = ω−σ
↑
(

Bk+1(V k+1)>
)−

sin
(

V k+1Dk
θ +Uk+1

αk+1

)
−σ

↓
(

Dk−1(V k−1)>
)−

sin
(

V k−1Bk
θ +Uk−1

αk−1

)
.

(89)

Note that the projection of the external operator onto its
negative components is nonlinear, and thus changes its im-
age and kernel. This means that the Hodge decomposition of
Equation (89) will lead to components that are not evolving
independently but are coupled.

Proposition 7. 67 It holds that Eq. (89) is independent on the
orientation of the simplices of order k−1 and k+1.

Proof. Let us focus on the interaction from below, as the other
case is completely symmetrical. A change of orientation of
a (k− 1)-simplex indexed by i can be encoded in the ac-
tion of a diagonal matrix P such that Pj j = 1 if j 6= i and
Pii = −1. The boundary and coboundary operators in the
new simplicial complex with the orientation of i flipped are
D̃k−1 = Dk−1P, B̃k = PBk. We see that the change of orien-
tation matrix related to simplex i acts on the lift matrix from
the right by swapping rows i and 2i V k−1P = P̃V k−1, where P̃
is the corresponding permutation matrix. The interaction term
from below will then become(

D̃k−1(V k−1)>
)−

sin
(

V k−1B̃k
θ +Uk−1

αk−1

)
=
(

Dk−1(V k−1)>
)−

P̃sin
(

P̃V k−1Bk
θ + P̃Uk−1

αk−1

)
=
(

Dk−1(V k−1)>
)−

sin
(

V k−1Bk
θ +Uk−1

αk−1

)
,
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as P̃2 = I and P̃Uk−1 = Uk−1, being P̃ a row-swap operation
between two equal rows.

The orientation-independent model, and its associated
Proposition 7 (proven in Ref. 67) can be better understood by
making the following observations. If we consider arbitrary
α̃k±1 = (αk±1,αk±1) ∈ R2nk±1 which are not necessarily of
the form Uk+1αk±1 = (αk±1,αk±1), we can define the more
general orientation-selective simplicial Sakaguchi-Kuramoto
model

θ̇ = ω−σ
↑
(

Bk+1(V k+1)>
)−

sin
(

V k+1Dk
θ + α̃k+1

)
−σ

↓
(

Dk−1(V k−1)>
)−

sin
(

V k−1Bk
θ + α̃k−1

)
. (90)

In this case, we can see that a different frustration will act on
k-simplices depending on their relative orientation. In partic-
ular, the elements of αk±1 represent frustrations on (k± 1)
simplices acting only on the k-simplices which are incoher-
ently oriented with them, while the last components αk±1 will
act only on coherently oriented simplices. Hence, if these
two coincide, we have orientation independence. Indeed, it
is enough to expand the lift matrices and projection operators
to see that, for example, the term of the interaction from above
can be rewritten as

(Bk+1)− sin(Dk
θ +αk+1)+(Bk+1)+ sin(Dk

θ −αk−1) ,
(91)

and notice that the nonzero elements of (Bk+1)− contain
the adjacencies between incoherently oriented k and (k +
1)-simplices, while (Bk+1)+ contains only the coherently-
oriented adjacencies. Moreover, when αk+1 = −αk+1, then
we can compact the two matrices (Bk+1)± and get back the
simple frustration of Eq. (85), which can now be interpreted as
inducing opposite frustrations on coherently or incoherently
oriented simplices. Finally, it should be possible to also con-
trol the equilibrium solution via α̃k±1, but as this system is
now coupled, both projections will have to be controlled to-
gether to obtain a consistent system.

VI. COUPLING THE DIFFERENT ORDERS WITH THE
DIRAC OPERATOR

Up to this point, we have considered topological signals
of a fixed order, on nodes, edges, triangles, and so on. This
approach gives rise to interesting types of interactions. How-
ever, it does not fully exploit the multi-order nature of sim-
plicial complexes, because it involves only k-simplices and
their upper/lower adjacencies. This is a direct consequence
of the fact that BkBk+1 = 0: coupling signals between, for
example, nodes and triangles, cannot be done with a simple
concatenation of boundary operators. Instead, we can gen-
eralize the simplicial Sakaguchi-Kuramoto models by letting
the frustration vector be the signal of a lower/higher order on
the same simplicial complex. This can be formalized through

the discrete Dirac operator (also known as Gauss-Bonnet op-
erator98), first introduced in Ref. 99 in the context of simpli-
cial complexes, and later used for synchronization64 and sig-
nal processing100.

A. Discrete Dirac formalism

For a simplicial complex with simplices up to order
K, we can gather the phases into a single vector Θ =
(θ(0),θ(1), . . . ,θ(K)) and define the Dirac operator on simpli-
cial complexes66,99,101 as the square, block tridiagonal matrix

D def
= tridiag([D0, . . . ,DK−1], [0, . . . ,0], [B1, . . . ,BK ]) , (92)

where 0 indicates the matrix of the right size with all zero
elements. The Dirac operator contains all the adjacency struc-
ture of the simplicial complex and it is, by construction, the
“square root” of the Laplacian matrix of the complex, in the
sense that its square is the block diagonal matrix of the Hodge
Laplacians

L def
= D2 = diag(L0, . . . ,LK) . (93)

In Ref. 64 it is shown how, on a network (K = 1), we can
elegantly write the evolution of the phases of oscillating nodes
and edges under the simplicial Kuramoto dynamics with the
Dirac operator as

Θ̇ = Ω−σDsin(DΘ) , (94)

where Ω = (ω(0),ω(1)) contains the natural frequencies.
Equation (94), however, only corresponds to the simplicial
Kuramoto model for phases on edges of a network and does
not generalize to simplicial complexes of arbitrary order. In-
deed, for a simplicial complex with nodes, edges, and trian-
gles (K = 2), the Dirac operator is

D =

 0 B1 0
D0 0 B2

0 D1 0

 ,

and the corresponding Kuramoto model becomes

Dsin(DΘ) =


B1 sin

(
D0θ(0)+B2θ(2)

)
D0 sin

(
B1θ(1)

)
+B2 sin

(
D1θ(1)

)
D1 sin

(
D0θ(0)+B2θ(2)

)
,


which does not correspond to three uncoupled simplicial Ku-
ramoto models on the nodes, edges, and triangles. It is nev-
ertheless possible to write the simplicial Kuramoto models on
all orders with the Dirac operator D by considering its decom-
position into the sum of its upper and lower block triangular
matrices. Indeed, instead of splitting D by order100, we split
by type of interaction to obtain a direct generalization for the
boundary operators appropriate for the Dirac case

D = d+δ , (95)
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where

δ = tridiag([0, . . . ,0], [0, . . . ,0], [B1, . . . ,BK ]) , (96)

and

d= tridiag([D0, . . . ,DK−1], [0, . . . ,0], [0, . . . ,0]) . (97)

If seen as operators from the direct sum of the cochain spaces
C0(∆)⊕ ·· · ⊕CK(∆) ∼= Rn0+···+nK (whose inner product is
given in matrix form by W−1 = diag(W−1

0 , . . . ,W−1
K )) to it-

self, then one is the adjoint of the other, d= δ∗ i.e.

d= Wδ>W−1 .

It also follows from BkBk+1 = 0 that these operators are nilpo-
tent

d2 = δ2 = 0 , (98)

and their products give the block diagonal matrices of up and
down Laplacians

L↓
def
= dδ and L↑

def
= δd . (99)

As an example, for K = 2, we have

δ+d=

0 B1 0
0 0 B2

0 0 0

+

 0 0 0
D0 0 0
0 D1 0

 ,

hence the two Laplacians are

L↑ =

L0
↑ 0 0

0 L1
↑ 0

0 0 0

 ,L↓ =

0 0 0
0 L1

↓ 0
0 0 L2

↓

 .

Moreover, we have that

L = D2 = (d+δ)2 = dδ+δd , (100)

which suggests an elegant way to write the evolution of the
phases of all simplices in the complex under the simplicial
Kuramoto dynamics as

Θ̇ = Ω−σ
↑δ sin(dΘ)−σ

↓dsin(δΘ) , (101)

where δ sin(dΘ) contains all the interaction terms from above
and dsin(δΘ) all the ones from below. It is easy to check that
on a network (K = 1) we recover D sin(DΘ) as an interac-
tion term. Equation (101), moreover, has the same form of
the simplicial Kuramoto model of Eq. (13), and thus can be
written as a gradient system

Θ̇ = Ω+CW∇ΘR(Θ) , (102)

with the Dirac order parameter defined as

R(Θ) =
1
C

(
1
>W−1 cos(dΘ)+1

>W−1 cos(δΘ)
)
, (103)

with normalization constant C = 1
>W−1

1. It can also be
written as

R(Θ) =
1
C

K

∑
k=1

CkRk(θ(k)) , (104)

or in terms of the partial Dirac order parameters

R−(θ)
def
=

1
C−

1
>W−1 cos(δΘ) (105a)

R+(Θ)
def
=

1
C+

1
>W−1 cos(dΘ) , (105b)

where the normalization constants C± = 1
>W−1

1 as

CR(Θ) =C+R+(Θ)+C−R−(Θ) . (106)

Naturally, we also have the Hodge decomposition Eq. (28)
on all orders

K⊕
k=1

Ck(∆) = Imδ⊕kerL⊕ Imd . (107)

In Eq. (101), however, the phases of the simplices of different
orders evolve independently of one another, as Equation (101)
is just a formal reformulation to include all possible simplicial
Kuramoto models that exist on a simplicial complex of order
K into a single formula. The advantage of this formulation is
that it provides a general mathematical framework to couple
the dynamics across different orders.

B. Explosive Dirac Kuramoto dynamics

To couple the dynamics across orders, Ref. 95 proposed to
multiply the interaction with the factor depending on the order
parameters Eq. (76) of the dynamics above and below, as a
Dirac generalization of the earlier explosive model of Ref. 62.
For a network (K = 1), this coupling was made into a so-called
Nodes-Links (NL) model95{

θ̇(0) = ω(0)−R[−]
1 (θ(1))B1 sin(D0θ(0))

θ̇(1) = ω(1)−R[+]
0 (θ(0))D0 sin(B1θ(1)) ,

(108)

and, with non-oscillating triangles, into the Nodes-Links-
Triangles (NLT) model95

θ̇(0) = ω(0)−R[−]
1 (θ(1))B1 sin(D0θ(0))

θ̇(1) = ω(1)−R[+]
0 (θ(0))R

[+]
1 (θ(1))D

0 sin(B1
θ(1))

−R[−]
1 (θ(1))B

2 sin(D1
θ(1)) .

(109)

Inspired by these formulations, we can write order-coupled
models in the Dirac formalism. As we did in Section V A
with the explosive model, we can write the following nonlin-
ear gradient system

Θ̇ = Ω+C+C−W∇Θ

(
R+R−

)
, (110)



23

where the coupling is global as it depends on all simplices of
all orders. Alternatively, we can have a coupling across only
adjacent orders with

Θ̇ = Ω+W∇Θ

(
K

∑
k=1

C+
k−1C−k R+

k−1R−k

)
, (111)

which is such that, for all orders k, the interaction term from
below of order k will depend on the order parameter from
above of order k− 1 and vice versa. We leave the analysis
of these models for future works.

C. Frustrated Dirac Kuramoto model

Just as in Refs. 64 and 65, one can instead consider a lo-
cal coupling with the half super-Laplacian matrices L↑,L↓,
by writing

Θ̇ = Ω−σ
↓dsin

(
δΘ− zγL↑Θ

)
−σ

↑δ sin
(
dΘ− zγL↓Θ

)
,

(112)

where z> 0 regulates the strength of the local cross-order cou-
pling and γ is the block-diagonal matrix101

γ = diag(In0 ,−In1 , . . . ,(−1)KInK ) , (113)

which anticommutes with both d and δ. This choice of γ

comes from the fact that for the linearized dynamics (with
unit coupling strengths) Θ̇ = Ω− (D2 + γD3)Θ, the matrix
−(D2+γD3) can be shown to have complex eigenvalues with
non-positive real part, resulting in the emergence of damped
oscillations (see Ref. 65, Appendix A), as depicted in Fig. 10.
Equation (112), named local Dirac synchronization65, dis-
plays explosive synchronization transitions and stable hystere-
sis loops. As an example, for K = 2, we can write Eq. (112)
explicitly

θ̇(0) = ω(0)−σ↑B1 sin(D0θ(0)+L1
↓θ(1))

θ̇(1) = ω(1)−σ
↓D0 sin(B1

θ(1)−L0
↑θ(0))

−σ
↑B2 sin(D1

θ(1)−L2
↓θ(2))

θ̇(2) = ω(2)−σ↓D1 sin(B2θ(2)+L1
↑θ(1))

. (114)

From a more general point of view, if we now define a frustra-
tion Al = (α

l
(0),α

l
(1), . . . ,α

l
(K)

) (possibly dependent on Θ) we
can generalize the single-order frustrated simplicial Kuramoto
model (Eq. (85)) as

Θ̇ = Ω−dsin(δΘ+A↑)−δ sin(dΘ+A↓) . (115)

In addition, if we introduce the total lift operators V =
diag(V 0,V 1, . . .V K), U = diag(U0,U1, . . .UK), we have an
orientation independent version, akin to Eq. (89) but in the
Dirac framework as

Θ̇ = Ω−
(
dV>

)−
sin(VδΘ+UA↑)

−
(
δV>

)−
sin(VdΘ+UA↓) . (116)

In contrast to Eq. (115), being orientation independent, this
system couples both the simplicial orders and the Hodge sub-
spaces.

It follows that the local Dirac synchronization dynamics of
Eq. (112) is the application of the simple Θ-dependent frustra-
tions A↑ = −zγL↑Θ, A↓ = −zγL↓Θ. This fact, together with
the gradient system formulation of the Dirac model, gives us
a common framework to build and study multiple variants of
the model. It would be natural, for example, to consider an
analogous model where the local frustration is introduced in
an orientation-independent fashion. Finally, we did not con-
sider here possible extensions of the results on equilibrium
solutions but left it for future works. It should be possible to
extend some of the theorems of this work due to the similar
structure between a single simplicial Kuramoto model and the
Dirac-based formulation.

VII. APPLICATION TO FUNCTIONAL CONNECTIVITY
RECONSTRUCTION

Neural oscillations and frequencies are fundamental to our
understanding of brain function102–105, and contributes to the
emergence of brain functional networks106. In this context,
oscillator models, and the node Kuramoto model in particular,
have been extensively used in computational neuroscience, as
they offer simple yet powerful and flexible phenomenological
framework for studying simplified versions of the dynamics of
neuronal or brain networks with various degrees of complex-
ity4,107–111. By treating neurons or brain regions as oscillators
that interact with each other, these models can capture signif-
icant features of brain activity observed in experiments, such
as the presence of rhythms and oscillations. While oscilla-
tor models have been widely used to study brain dynamics, it
is important to note that most of these have focused on pair-
wise interactions between neurons or brain regions. This is
due in part to the fact that pairwise interactions are simpler
to model or analyze and that anatomically it is more realis-
tic to consider the dynamics taking place on networks rather
than higher-order systems. However, recent studies have sug-
gested that higher-order interactions may also play an impor-
tant role in brain dynamics, both functionally112,113 and struc-
turally43,95. These interactions involve three or more elements
and can give rise to emergent phenomena that cannot be ex-
plained by pairwise interactions alone. Given the potential
importance of these higher-order interactions, it is natural to
apply models of higher-order synchronization to brain data.
These models might offer a more comprehensive framework
for studying the dynamics of large-scale brain networks and
have the potential to give us new insights into the mechanisms
underlying cognition and behavior.

To test this hypothesis, we study how well simplicial Ku-
ramoto models of various orders could reproduce brain cor-
relation patterns. Following the methodology proposed in
Refs. 109 and 110, we run simulations of 5 different variants
of the simplicial Kuramoto model on a real structural connec-
tome, the network that describes the connectivity structures
between regions of the human cerebral cortex, and we inves-
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FIG. 10. Local Dirac Synchronization (Eq. (114)) on nodes, edges, and triangles of the small simplicial complex depicted in Fig. 8a, with
Ω = 0. We simulate the dynamics for different values of z and see how the coupling it induces disrupts synchronization and results in the
emergence of damped oscillations.

tigate how well each model can reproduce the resting-state
functional activity experimentally measured.

The structural connectome is encoded in a group-averaged
weighted structural connectivity matrix (Fig. 11a), obtained
by diffusion imaging and tractography, by parcellating the
brain into N = 200 regions, which here take the role of
nodes connected by M = 6040 weighted edges. From the
network adjacency matrix, we derive the incidence matrix
B1 ∈ {−1,1}N×M by choosing randomly edges orientations.
To achieve consistency with Ref. 109, the connection weights
K1, . . . ,KM are included, after being inverted, as weights on
the edges W1 = diag( 1

K1
, . . . , 1

KM
) and the tract lengths are en-

coded in an edge frustration vector α ∈ RM . The natural fre-
quencies for both node-based and edge-based models are sam-
pled independently from a Gaussian distribution with a mean
of 2π 40 and a standard deviation of 2π 0.1. We compare the
following five models:

1. Orientation independent node Kuramoto-Sakaguchi
model (Node OI). This is, by construction, the clas-
sical Kuramoto-Sakaguchi model of Eq. (84), used in
Ref. 109

θ̇i = ωi−σ

200

∑
j=1

Ki j sin(θi−θ j +αi j) . (117)

2. Edge Simplicial Kuramoto (Edge). The simplest possi-
ble simplicial Kuramoto model defined on the edges

θ̇ = ω−σB>1 sin(B1W−1
1 θ) . (118)

3. The Orientation Independent Edge Sakaguchi-
Kuramoto (Edge OI)

θ̇ = ω−σ

(
B>1 (V

0)>
)−

sin
(
V 0B1W−1

1 θ −U0B1W−1
1 α

)
.

(119)

The explosive simplicial Kuramoto model (Eq. (79)) cannot
be directly used as it requires nodes, edges, and triangles for
its interaction terms to be nonzero. Triangles are not present
in the structural connectivity network and thus, to avoid in-
jecting arbitrary structure into the analysis, we will not use
it. As a proxy for its behavior, however, we propose the sim-
ilar order-modulated model (OM), derived by multiplying σ

by the order parameter. In other words, the OM model is the
gradient system of the square order parameter.

θ̇ = ω +
1
2

CkWk∇θ R2
k(θ) . (120)

We simulate two different OM models.

5. The Order-modulated node Kuramoto-Sakaguchi
(Node OM)

θ̇ = ω−σR0(θ)(B1W−1
1 (V 1)>)− sin(V 1B>1 θ −U1

α) .
(121)

6. The Order-modulated edge simplicial Kuramoto (Edge
OM)

θ̇ = ω−σR1(θ)B>1 sin(B1W−1
1 θ) . (122)
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FIG. 11. a. Structural connectivity matrix representing the weighted network onto which we simulate the dynamics. The color represents
the logarithm of the weight. b. The empirical functional connectivity matrix. c. We simulate 5 different variants of the simplicial Kuramoto
model and compute the correlation matrices of their post-processed trajectories as simulated FC matrices. d. The coupling strength σ is tuned
for each model by scanning 20 values between 100 and 500. e. Pearson correlations between the empirical FC and the simulated FCs for the
6 models, over 10 simulations.

Models 2, 3, and 5 are defined on the edges of the network.
Given that we want to simulate a node-wise functional con-
nectivity matrix, we consider the projections of their phases
onto the nodes θ (−) to get node-wise trajectories. For this rea-
son, notice that it is not necessary to numerically solve all the
M equations on the edges, but it is enough to directly integrate
the projected dynamics.

A. Simulations

Following Ref. 109, the simulations are run for a total of
T = 812 seconds with a time resolution of δ t = 1ms (using
MATLAB ode45), and the first 20 seconds are discarded to
allow the dynamics to reach stationarity. We then take the tra-
jectories, convert them into downsampled BOLD signals, fil-
ter them with a lowpass cutoff of c = 0.25Hz, and use them to
compute N×N pairwise Pearson correlation matrices. These
simulated functional connectivity matrices (Fig. 11b) are then
compared to the experimental resting-state functional connec-
tivity (FC) matrix (Fig. 11c) using Pearson correlation (by
correlating the vectorized upper triangular matrix). We repeat
this process multiple times for each model by varying the cou-
pling strength in order to tune it. We scan 20 σ values rang-
ing from 100 to 500, and select the optimal one w.r.t Pearson
correlation (Fig. 11e). Given the optimal coupling strength
for each model, we then perform 10 simulations for each one
of them with different random starting phases and natural fre-
quencies and confront them with the empirical FC matrix. The
results are shown in Fig. 11d, where it is easy to see how the

two non-frustrated edge-based models outperform the node
ones, achieving an average of r = 0.27 correlation against the
r = 0.2 of the standard node Sakaguchi-Kuramoto. The result
is statistically confirmed by an ANOVA test, which achieves
p-values lower than 10−3. The effect size against the node
Kuramoto model is 0.0757 for the edge model and 0.0692 for
the edge OM.

Our findings suggest that an edge-based description of the
dynamics might provide a better fit to the experimental data,
both outperforming the node-based models and without re-
sorting to additional parameters or internal mechanisms, as
for example edge flickering110 (which was shown to obtain a
slightly lower correlation than our edge Kuramoto model). In
fact, arguably edge-based simplicial Kuramoto models might
provide a better fit to the observed FC correlation structure
exactly because the variables are defined on the connections
that link different nodes together, rather than on the nodes
themselves114. That is, the observed activity of brain regions
might be better explained as the result of the information in-
tegration taking place via the structural fibers linking the re-
gions, rather than by looking at the brain regions in them-
selves115, and display interesting parallels with neural fre-
quency mixing behaviors116,117. Naturally, these results are
preliminary and intended as a simple demonstration of the po-
tential of simplicial (and more generally, higher-order) oscil-
lator models in the context of computational neurobiological
models.
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Standard Frustrated OI Frustrated Explosive

Single order Dirac Single order Dirac Single order Dirac Single order Dirac

Equation (13) (101) (85) (115)/(112) (89) (116) (79) (110,111)
Hodge coupling no no no no/yes yes yes yes yes
Order Coupling - no - no/yes - no - yes

TABLE I. Taxonomy of the simplicial Kuramoto models presented in this work. OI stands for orientation independent.

VIII. SUMMARY AND OUTLOOK

Simplicial Kuramoto models, where oscillators are defined
on simplices rather than on nodes, have grown in numbers,
yielding a wide variety of different and interesting dynamics.
Here, we have attempted to provide a more unified view, akin
to a taxonomy, of this simplicial Kuramoto zoo. Our descrip-
tion has relied heavily on topology and discrete differential
geometry because the simplicial structure of these models nat-
urally lends itself to a topological and geometrical language,
including boundary operators and the Hodge Laplacian.

We have shown that these models can be divided into three
main categories (see Table I):

• “simple” models, which can all be rewritten in a sin-
gle framework: that of gradient systems, encoded in
Eq. (36) for a single order, and Eq. (102) for all orders.
These models do not have couplings across orders or
frustration;

• “Hodge-coupled” models, in which different Hodge
components of the dynamics are coupled; These include
explosive models, which can be rewritten in a simi-
lar gradient system framework (Eq. (82)) as the simple
models, but also include other models that require addi-
tional ingredients, in our case two flavors of frustration
(Eq. (89)).

• “order-coupled” (Dirac) models, in which oscillators
are coupled across different orders with or without frus-
trations (Eq. (112)).

This unified view in terms of just two ingredients—gradient
systems and frustrations—compresses this model taxonomy
to a lower-dimensional space of models and has allowed us to
describe the general properties of these models.

A first example is the possibility to derive a set of bounds
on the value of the coupling strength that are necessary or suf-
ficient to obtain synchronization for “simple” models, thanks
to their simplicity. This gave us a general description of the
space of equilibria and their relative degree of reachability
as a function of the coupling strength. Additionally, using
this taxonomy, it is possible to investigate when two mod-
els are genuinely different or not: we demonstrated that the
simple simplicial Kuramoto model is strictly equivalent to the
standard Kuramoto model on (pairwise) networks if the un-
derlying simplicial complex structure is manifold-like (Theo-
rem 1). More specifically, by mapping the oscillators defined
on simplices of order k to nodes in an effective (pairwise) net-
work, the effective dynamics reduce to a standard Kuramoto

model. This is a powerful result that bridges the simplicial
models and the well-known standard Kuramoto model and
shows that the simplicial models are of most interest on non-
manifold-like simplicial complexes.

More generally, we showed that the simplicial models can
be related to another important class of higher-order Ku-
ramoto models: those where oscillators are defined only on
nodes and interact across hypergraphs48,49,53,59,118,119. In-
deed, a simplicial model on a generic complex can be rewrit-
ten as a node Kuramoto model with group interactions oc-
curring on an effective dual hypergraph. There is one im-
portant difference, however: the models obtained this way do
not have the properties usually desired for models defined on
nodes, that is, the coupling functions do not vanish when all
phases are equal. As a consequence, contrary to these other
models, the standard 1-cluster synchronization solution is not
guaranteed to exist and the equations are not invariant under
a uniform phase shift. Instead, in the models considered here,
the harmonic space provides a new invariance symmetry of
the system, which is potentially bigger than that generated by
1. This peculiarity of the simplicial model can be looked at
under the perspective of resonance. In fact, we showed how
the simplicial Kuramoto coupling functions can be obtained
from a general system of higher-order interacting oscillators
in a near-resonant regime. The resonance condition, more-
over, is obtained under the assumption of the natural frequen-
cies belonging to the harmonic space and is thus connected
with the topology of the simplicial complex. We performed
this derivation of the simplicial Kuramoto model only in the
“simple” Kuramoto model as an illustration, but other sim-
plicial models could be interpreted in a similar way. Inter-
estingly, we also observed that, although the coupling func-
tions of the present models are not phase shift-invariant, simi-
lar couplings are observed in some settings of node Kuramoto
models like in Ref. 86 for interacting communities of oscilla-
tors. We have thus revealed explicit bridges between the sim-
plicial Kuramoto models and the more traditional node Ku-
ramoto models. Future work in that direction has the potential
to help us better understand simplicial models from what we
know of node models and, vice versa, to use topological in-
sights from simplicial models to better understand node mod-
els in appropriate instances.

Furthermore, the formalism and results presented here, of
course, refer to the case of synchronization, but we expect
them to be rather straight-forwardly generalizable to more
general dynamics, such as consensus33,120 or diffusion29,30,
and structures, such as cell complexes75.

Finally, we provided a simple example of application to the
reconstruction of brain functional connectivity from a struc-
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tural connectome, a common and still open task in computa-
tional neuroscience121,122, finding that vanilla models of sim-
plicial edge Kuramoto models are competitive or even out-
perform more complex node-based models110. We suspect
that this might be related to the fact that, when edge phases
are projected down to node dynamics, they behave akin to
time-evolving temporal delays across node signals, an element
that has been recognized as crucial in brain dynamical simu-
lations123. Similar considerations however are relevant also
for many other types of real-world complex systems, such as
spiking neurons124,125, network traffic126–128 and power grid
balancing129,130.

Overall, we believe that the proposed framework provides
a starting point to shed new light and further research on a
number of interlaced theoretical and practical topics across
the broader community of complex dynamical systems.
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Appendix A: Kuramoto model expressed with the boundary matrices

We prove here how the Kuramoto model on a graph with N nodes and set of edges E ,

θ̇i = ωi−σ

N

∑
j=1

Ai j sin(θi−θ j),

can be rewritten using the boundary matrices as

θ̇ = ω−σB1 sin(B>1 θ).

First, compute the action of B>1 on the phases vector. For any edge ε

(B>1 θ)ε =
N

∑
i=1

(B>1 )εiθi =
N

∑
i=1

(B1)iε θi = θh(ε)−θt(ε),

where h(ε), t(ε) give respectively the head and tail node of edge ε . It follows that, for any node i,[
B1 sin(B>1 θ)

]
i
= ∑

ε∈E
(B1)iε sin(B>1 θ)ε = ∑

ε∈E
(B1)iε sin(θh(ε)−θt(ε))

= ∑
ε:h(ε)=i

sin(θi−θt(ε))− ∑
ε:t(ε)=i

sin(θh(ε)−θi)

= ∑
ε:h(ε)=i

sin(θi−θt(ε))+ ∑
ε:t(ε)=i

sin(θi−θh(ε))

= ∑
j∈N (i)

sin(θi−θ j) =
n

∑
j=1

Ai j sin(θi−θ j),

where N (i) is the neighborhood of node i.

Appendix B: Dynamic and geometric conditions for equilibrium

Reformulated with our notation, the dynamic condition for equilibrium of Ref. 90 consists in the existence of an edge cochain
S∈C1(∆) such that ω−σB1S = 0 with ‖S‖

∞
≤ 1. This, in a co-rotating frame where we remove the harmonic part of ω resulting

in ω ∈ ImB1, is equivalent to writing

ω−σB1S = 0 ⇐⇒ S =
1
σ
(B1)†

ω + x =
β (+)

σ
+ x, (B1)

for some cycle x ∈ kerB1 such that

‖S‖
∞
=

∥∥∥∥∥β (+)

σ
+ x

∥∥∥∥∥
∞

≤ 1. (B2)

This, we now see, exactly corresponds to the existence of an admissible cycle x as in Definition 4.
Given S satisfying the dynamic condition, the geometric condition requires the existence of θ ∈C0(∆) such that S = sin(D0θ).

If we invert the sine function and apply the dynamic condition of Equation (B1), we equivalently get

D0
θ = (−1)s� arcsin(S)+ sπ +2πm (B3)

= (−1)s� arcsin
(

β
(+)/σ + x

)
+ sπ +2πm (B4)

for some s ∈ {0,1}n1 and m ∈ Zn1 . This system of equations admits solution if and only if its right-hand side belongs to ImD0,
i.e. if it is a reachable equilibrium (Definition 6).
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Appendix C: Proof of Theorem 5

For simplicity, we prove the result only for the (−) projection. The (+) case can be easily recovered by replacing Lk−1
↑ with

Lk+1
↓ , ω(−) with ω(+) and σ↓ with σ↑.

The idea of the proof, inspired by Ref. 11, is to find the dynamics of the coefficients of θ (−) w.r.t to a basis of the subspace
ImLk−1

↑ , rewrite its equilibrium equation as a fixed-point equation and then find conditions to apply Brouwer’s fixed-point
theorem.

First, as Lk−1
↑ is the matrix representation of a self-adjoint, positive semidefinite operator, we can consider its eigendecompo-

sition

Lk−1
↑ =V ΛV ∗ , (C1)

where V is a unitary matrix (V ∗V =V ∗V = Ink−1 ) and Λ is diagonal with non-negative elements. Recall that V ∗ =Wk−1VW−1
k−1,

which will later ensure that the inner product on the eigenspace is compatible with the original inner product from Wk−1. Let us
assume that the zero eigenvalues of Λ are the last ones in the diagonal, so that

Λ = diag(λ1, . . . ,λr,0, . . . ,0) ,

where r = rank(Lk−1
↑ ).

The columns of V provide a basis of Rnk−1 . We want however to restrict ourselves to the subspace ImLk−1
↑ . To do that, we

drop the columns associated with zero eigenvalues (which span kerLk−1
↑ ) and consider the compact eigendecomposition

Lk−1
↑ = Ṽ Λ̃Ṽ ∗ , (C2)

Ṽ consists of the first r columns of V , Ṽ ∗ is made by the first r rows of V ∗ and Λ̃ = diag(λ1, . . . ,λr). The columns of Ṽ are a
basis of the reachable subspace ImLk−1

↑ .

In order to carry out the proof, we need to show that Ṽ ∗ is the adjoint matrix to Ṽ with respect to a particular choice of
“natural” inner product on the space of coefficients Rr. To do that we need some preliminary definitions and results. We first
define the truncation matrix 

Ia,b =

(
Ib

0a−b,b

)
if a > b

Ia,b = I>b,a if a < b

Ia,b = Ia if a = b

which, truncates the columns or rows of a matrix when multiplied respectively on the right or left. It follows that

Ṽ =V Ink−1,r and Ṽ ∗ = Ir,nk−1V ∗ , (C3)

from which we have

Lemma 2. Ṽ ∗Ṽ = Ir.

Proof.

Ṽ ∗Ṽ = Ir,nk−1V ∗V Ink−1,r = Ir,nk−1 Ink−1,r = Ir

as r < nk−1.

Moreover, one can see that, if A ∈ Rnk−1,nk−1 is diagonal, then

Ir,nk−1A = ÃIr,nk−1 , (C4)

where

Ã = diag(a1, . . . ,ar).

It is now simple to prove that the truncation of the inverse weight matrix W̃−1
k−1

def
= diag

(
1

wk−1
1

, . . . , 1
wk−1

r

)
is the natural inner

product of the coefficients space.
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Lemma 3. Ṽ ∗ is the adjoint matrix to Ṽ w.r.t to the inner product W̃−1
k−1 i.e. Ṽ ∗ = Ṽ ∗.

Proof.

Ṽ ∗ = Ir,nk−1V ∗ = Ir,nk−1Wk−1V>W−1
k−1 = W̃k−1Ir,nk−1V>W−1

k−1 = W̃k−1Ṽ>W−1
k−1 = Ṽ ∗.

because of Eq. (C4).

With a slight abuse of notation, in the following we will denote the norm on the coefficient space with ‖c‖wk−1 , keeping in
mind the fact that

‖c‖2
wk−1 = 〈c,c〉wk−1 =

〈
Ṽ ∗Ṽ c,c

〉
wk−1

=
〈

Ṽ c,Ṽ c
〉

wk−1
=
∥∥∥Ṽ c

∥∥∥2

wk−1
. (C5)

We can now rewrite the simplicial Kuramoto dynamics of the (−) projection in the basis Ṽ , θ (−) = Ṽ c:

d
dt

Ṽ c = ω
(−)−σ

↓Lk−1
↑ sin(Ṽ c) = ω

(−)−σ
↓Ṽ Λ̃Ṽ ∗ sin(Ṽ c) . (C6)

With this formulation, we are naturally restricting θ (−) to lie in the reachable subspace. We find the dynamics of the coefficients
c by left multiplying by Ṽ ∗ and using Ṽ ∗Ṽ = I

ċ = Ṽ ∗ω(−)−σ
↓
Λ̃Ṽ ∗ sin(Ṽ c), (C7)

The coefficients c are associated to a reachable equilibrium configuration if and only if ċ = 0, i.e.

Ṽ ∗
ω(−)

σ↓
= Λ̃Ṽ ∗ sin(Ṽ c) . (C8)

We want to reduce this equation to a fixed point equation, of the form f (c) = c for some function f . First, we write

Ṽ ∗
ω(−)

σ↓
= Λ̃Ṽ ∗ sin(Ṽ c) ⇐⇒ Λ̃

−1Ṽ ∗
ω(−)

σ↓
= Ṽ ∗S(c)Ṽ c

where we defined S(c) def
= diag(sinc(Ṽ c)) with sinc(x) = sin(x)/x. We then have the fixed point equation

c = (Ṽ ∗S(c)Ṽ )−1
Λ̃
−1Ṽ ∗

ω(−)

σ↓
def
= f (c) , (C9)

which make sense only if the matrix Ṽ ∗S(c)Ṽ is invertible.

Lemma 4 (Invertibility of Ṽ ∗S(c)Ṽ ). If S(c) has strictly positive elements, then Ṽ ∗S(c)Ṽ is invertible.

Proof. First, notice that S is diagonal which, together with the inner product matrix being diagonal, means that S(c) is a Hermitian
matrix (S(c)∗ = S(c)), and so is its square root. We get the following

Ṽ ∗S(c)Ṽ = (S
1
2 (c)Ṽ )∗(S

1
2 (c)Ṽ )

def
= A∗A.

Given that kerA∗ = (ImA)⊥, we deduce that A∗A is invertible if and only if A = S
1
2 (c)Ṽ has trivial kernel. Moreover, we know

that the columns of Ṽ are a basis and thus Ṽ c = 0 ⇐⇒ c = 0. If S
1
2 (c) is invertible, then, its kernel will be trivial and, by

extension, the same will hold for A.

This result on the invertibility of Ṽ ∗S(c)Ṽ hence translates to a condition on S(c).

Lemma 5 (Positive definiteness of S). For any γ ∈ (0,π/2), if the coefficients c are such that∥∥∥Ṽ c
∥∥∥

wk−1
≤ γ√

maxi(wk−1
i )

, (C10)

then S(c) has positive diagonal elements.



33

Proof. Under the hypothesis of the lemma it holds that

∥∥∥Ṽ c
∥∥∥

∞

≤
∥∥∥Ṽ c

∥∥∥
2
=
√

∑
i
(Ṽ c)2

i =

√
∑

i
wk−1

i
1

wk−1
i

(Ṽ c)2
i ≤

√
max

i
(wk−1

i )
∥∥∥Ṽ c

∥∥∥
wk−1
≤ γ, (C11)

meaning that every component of Ṽ c will belong to the interval [−γ,γ]. The sinc function, which is applied component-wise to
Ṽ c, is strictly positive in [−γ,γ] when γ ∈ (0,π/2), hence the positive definiteness of S(c) = diag(sinc(Ṽ c))).

We now want to prove that the left-hand side of the equilibrium fixed point Eq. (C9) is a continuous map from the set

B =

c : ‖c‖wk−1 =
∥∥∥Ṽ c

∥∥∥
wk−1
≤ γ√

maxi(wk−1
i )

 (C12)

to itself. First, one has the following inequality.

‖ f (c)‖wk−1 =

∥∥∥∥∥(Ṽ ∗S(c)Ṽ )−1
Λ̃
−1Ṽ ∗

ω(−)

σ↓

∥∥∥∥∥
wk−1

≤ 1
σ↓

∥∥∥(Ṽ ∗S(c)Ṽ )−1
∥∥∥

wk−1

∥∥∥Λ̃
−1Ṽ ∗ω(−)

∥∥∥
wk−1

, (C13)

where the first term is the matrix norm induced by the wk−1 vector norm. Let us look at the two terms of Eq. (C13) separately,
starting from the right one.

Lemma 6. If c ∈B then ∥∥∥Λ̃
−1Ṽ ∗ω(−)

∥∥∥
wk−1

=
∥∥∥β

(−)
∥∥∥

wk−1
. (C14)

Proof. ∥∥∥Λ̃
−1Ṽ ∗ω(−)

∥∥∥
wk−1

=
∥∥∥Ṽ ∗Ṽ Λ̃

−1Ṽ ∗ω(−)
∥∥∥

wk−1
=
∥∥∥Ṽ ∗(Lk−1

↑ )†
ω

(−)
∥∥∥

wk−1
=
∥∥∥Ṽ ∗β (−)

∥∥∥
wk−1

.

Moreover, by definition of the (k−1) norm,∥∥∥Ṽ ∗β (−)
∥∥∥2

wk−1
=
〈

Ṽ ∗β (−),Ṽ ∗β (−)
〉

wk−1
=
〈

ṼṼ ∗β (−),β (−)
〉

wk−1
,

but, as ṼṼ ∗ is the orthogonal projection operator onto Im(Lk−1
↑ ) and β (−) ∈ Im(Lk−1

↑ ), ṼṼ ∗β (−) = β (−), and we have the
result.

Let us now analyze the first term of Eq. Eq. (C13) and bound it from above.

Lemma 7. If c ∈B then ∥∥∥(Ṽ ∗S(c)Ṽ )−1
∥∥∥

wk−1
≤ γ

sin(γ)
= sinc−1(γ). (C15)

Proof. When c ∈B then Lemma 5 tells us that S(c) is positive definite and therefore we can write∥∥∥(Ṽ ∗S(c)Ṽ )−1
∥∥∥

wk−1
=
∥∥(A∗A)−1∥∥

wk−1 ,

with A = S
1
2 (c)Ṽ , for which it holds that

1
‖(A∗A)−1‖wk−1

= min
‖v‖wk−1=1

‖A∗Av‖wk−1 . (C16)

We apply here the Cauchy-Schwarz inequality

|〈A∗Ac,v〉| ≤ ‖A∗Av‖‖v‖

and find that the right-hand side of Eq. (C16) can be bounded from below
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min
‖v‖wk−1=1

‖A∗Av‖wk−1 ≥ min
‖v‖wk−1=1

|〈A∗Av,v〉wk−1 |= min
‖v‖wk−1=1

‖Av‖2
wk−1

=

(
min

‖v‖wk−1=1

∥∥∥S
1
2 (c)Ṽ v

∥∥∥
wk−1

)2

=

(
min

‖Ṽ v‖wk−1=1

∥∥∥S
1
2 (c)Ṽ v

∥∥∥
wk−1

)2

=

(
min

‖θ‖wk−1=1,θ∈Im(Lk−1
↑ )

∥∥∥S
1
2 (c)θ

∥∥∥
wk−1

)2

≥

(
min

‖θ‖wk−1=1

∥∥∥S
1
2 (c)θ

∥∥∥
wk−1

)2

=

(∥∥∥S−
1
2 (c)

∥∥∥2

wk−1

)−1

,

where the last equality comes from Eq. (C16). We have proven that

1
‖(A∗A)−1‖wk−1

≥ 1∥∥∥S−
1
2 (c)

∥∥∥2

wk−1

,

or, equivalently, ∥∥(A∗A)−1∥∥
wk−1 ≤

∥∥∥S−
1
2 (c)

∥∥∥2

wk−1
. (C17)

This term can be further rewritten as∥∥∥S−
1
2 (c)

∥∥∥2

wk−1
=
∥∥∥(Wk−1)

− 1
2 S−

1
2 (c)(Wk−1)

1
2

∥∥∥2

2
=
∥∥∥S−

1
2 (c)

∥∥∥2

2
= max

i
sinc−1(Ṽ c)i =

∥∥∥sinc−1(Ṽ c)
∥∥∥

∞

,

because S(c) is diagonal with positive diagonal elements. We now remove the dependency on c by taking a maximum over B∥∥∥S−
1
2 (c)

∥∥∥2

wk−1
≤max

c∈B

∥∥∥sinc−1(Ṽ c)
∥∥∥

∞

≤ max
x∈[−γ,γ]

sinc−1(x) = sinc−1(γ) =
γ

sin(γ)
. (C18)

Thus we have that ∥∥∥(Ṽ ∗S(c)Ṽ )−1
∥∥∥

wk−1
≤
∥∥∥S−

1
2 (c)

∥∥∥2

wk−1
≤ sinc−1(γ) .

Applying lemmas 6 and 7 to Eq. (C13), we have

‖ f (c)‖wk−1 =

∥∥∥∥∥(Ṽ ∗S(c)Ṽ )−1
Λ̃
−1Ṽ ∗

ω(−)

σ↓

∥∥∥∥∥
wk−1

≤ 1
σ↓

γ

sin(γ)

∥∥∥β
(−)
∥∥∥

wk−1
, (C19)

which means that f (c) ∈B if and only if

‖ f (c)‖wk−1 ≤
γ√

maxi(wk−1
i )

(C20)

which holds if

1
σ↓

γ

sin(γ)

∥∥∥β
(−)
∥∥∥

wk−1
≤ γ√

maxi(wk−1
i )

⇐⇒ σ
↓ ≥

√
maxi(wk−1

i )

sin(γ)

∥∥∥β
(−)
∥∥∥

wk−1
. (C21)
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This proves that, under the condition of the theorem, f (c) maps the closed ball B to itself and so Brouwer’s theorem ensures
the existence of a fixed point (i.e. a reachable equilibrium) θ

(−)
eq = Ṽ ceq with ceq ∈B.

The asymptotic stability of θ
(−)
eq can be seen by computing the Jacobian of the reachable dynamics Eq. (C7)

J(−)(ceq) =−σ
↓
Λ̃Ṽ ∗ diag(cos(θ (−)

eq ))Ṽ , (C22)

which has the same nonzero eigenvalues as

J̃(−)(ceq) =−σ
↓
Λ̃

1
2 Ṽ ∗ diag(cos(θ (−)

eq ))Ṽ Λ̃
1
2 .

If ceq ∈B and γ ∈ (0,π/2), then∥∥∥θ
(−)
eq

∥∥∥
wk−1
≤ γ√

maxi(wk−1
i )

=⇒
∥∥∥θ

(−)
eq

∥∥∥
∞

≤ γ =⇒ cos
(

θ
(−)
eq

)
> 0 ,

when γ ∈ (0,π/2), and thus

J̃(−)(ceq) =−σ
↓
(

diag
(

cos
(

θ
(−)
eq

)) 1
2

Ṽ Λ̃
1
2

)∗(
diag

(
cos
(

θ
(−)
eq

)) 1
2

Ṽ Λ̃
1
2

)
=−σ

↓A∗A ,

which is trivially negative definite as A = diag
(

cos(θ (−)
eq )

) 1
2

Ṽ Λ̃
1
2 has trivial kernel and σ↓ > 0.

Appendix D: Proof of Theorem 6

The proof is a direct extension of the proof of Theorem 5 written in Appendix C. Let us first write Eq. (79) as

θ̇
(+) = ω

(+)−σ
↑R−k (θ

(−))Lk+1
↓ sin(θ (+))

θ̇
(−) = ω

(−)−σ
↓R+

k (θ
(+))Lk−1

↑ sin(θ (−)) ,
(D1)

for which we can write equilibrium conditions as fixed point equations Eq. (C9):

c =
(

Ṽ ∗S(c)Ṽ
)−1

Λ̃
−1Ṽ ∗

ω(+)

σ↑R−k (V
′c′)

def
= f (+)(c,c′)

c′ =
(

Ṽ ′
∗
S′(c′)Ṽ ′

)−1
Λ̃′
−1

Ṽ ′
∗ ω(−)

σ↓R+
k (V c)

def
= f (−)(c,c′) .

(D2)

Here c,c′ are respectively the coefficients of θ (+),θ (−) w.r.t the orthonormal bases Ṽ ,Ṽ ′ of ImLk+1
↓ ,Lk−1

↑ . The configurations
θ (+) =V c,θ (−) =V ′c′ will be reachable equilibria for the dynamics of Eq. (D1) if and only if

c = f(c) , (D3)

where

f(c) def
=

(
f (+)(c,c′)
f (−)(c,c′)

)
and c def

=

(
c
c′

)
. (D4)

Again we want to prove that f is a continuous function which maps the convex set B×B′ to itself, with

B =

c :
∥∥∥Ṽ c

∥∥∥
wk+1
≤ γ(+)√

maxi(wk+1
i )

 , B′ =

c′ :
∥∥∥Ṽ ′c′∥∥∥

wk−1
≤ γ(−)√

maxi(wk−1
i )

 . (D5)

To prove this, we just need to show that

c ∈B×B′ =⇒ f (+) ∈B, f (−) ∈B′ .
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Repeating the same steps performed in Appendix C we get

∥∥∥ f (+)(c,c′)
∥∥∥

wk+1
≤ 1

σ↑
C(−)

k∣∣∣1>W−1
k−1 cos(Ṽ ′c′)

∣∣∣ γ(+)

sin(γ(+))

∥∥∥β
(+)
∥∥∥

wk+1

∥∥∥ f (−)(c,c′)
∥∥∥

wk−1
≤ 1

σ↓
C(+)

k∣∣∣1>W−1
k+1 cos(Ṽ c)

∣∣∣ γ(−)

sin(γ(−))

∥∥∥β
(−)
∥∥∥

wk−1
.

(D6)

The terms at the denominator can be further bounded with a term that does not depend on c,c′. In fact,

1

C(−)
k

∣∣∣1>W−1
k−1 cos(Ṽ ′c′)

∣∣∣= 1

C(−)
k

∣∣∣∣∣∑i

1
wk−1

i
cos(Ṽ ′c′)i

∣∣∣∣∣≥ 1

C(−)
k

∣∣∣∣∣∑i

1
wk−1

i
cos(γ(−))

∣∣∣∣∣= cos(γ(−))

for γ ∈ (0, π

2 ), as c′ ∈B′ =⇒ ‖c′‖
∞
≤ γ(−) =⇒ γ(−) ≥ cos(γ(−)). With the same bound for the other term we arrive at

∥∥∥ f (+)(c,c′)
∥∥∥

wk+1
≤ 1

σ↑
γ(+)

sin(γ(+))cos(γ(−))

∥∥∥β
(+)
∥∥∥

wk+1∥∥∥ f (−)(c,c′)
∥∥∥

wk−1
≤ 1

σ↓
γ(−)

sin(γ(−))cos(γ(+))

∥∥∥β
(−)
∥∥∥

wk−1
,

(D7)

from which the thesis easily follows by repeating the steps in Eq. (C21).

Appendix E: Proof of stability in Theorem 7

Let us prove the stability part of Theorem 7 for the projection onto higher dimensional simplices θ (+).
Following the proof in Appendix C, we write the dynamics of the coefficients c of θ (+) in the orthonormal basis of the

reachable subspace given by the matrix Ṽ . We have

ċ = Ṽ ∗ω(+)−σ
↑
Λ̃Ṽ ∗ sin(Ṽ c+αk+1) , (E1)

whose Jacobian matrix is given as

J̃(+)(c) =−σ
↑
Λ̃Ṽ ∗diag

(
cos
(

Ṽ c+αk+1

))
Ṽ . (E2)

We then evaluate the Jacobian the equilibrium solution θ
(+)
∗ = Ṽ c∗ and replace the value of αk+1 prescribed by the theorem,

that is αk+1 = arcsin
(

β (+)

σ↑

)
−Ṽ c∗, resulting in

J(+)(c∗) =−σ
↑
Λ̃Ṽ ∗diagcos

(
arcsin

(
β (+)

σ↑

))
Ṽ =−σ

↑
Λ̃Ṽ ∗diag

√
1−

(
β (+)

σ↑

)2

Ṽ . (E3)

This matrix has the same eigenvalues as

J̃(+) =−σ
↑
Λ̃

1
2 Ṽ ∗diag

√
1−

(
β (+)

σ↑

)2

Ṽ Λ̃
1
2 , (E4)

which is Hermitian and negative definite, as Ṽ c = 0 ⇐⇒ c = 0 because the columns of Ṽ are a basis of ImDk, and√
1− (β

(+)
i /σ↑)2 > 0 because, by hypothesis, σ↑ >

∥∥∥β (+)
∥∥∥

∞

.
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