

Figure 1: Flowchart detailing study selection. dDBS = Directional Deep Brain Stimulation, PD = Parkinson's Disease. Made with BioRender

Study	N	Moon	80		Mean dif	f. Cl
Side Effect Threshold	IN	wear	30		with 95%	
Daval et al	4	35	18		0 35 [-1 60	2 301
Nauvon ot al	4	.55	.10		0.33[-1.03,	0.041
Pollo et al	11	.21	.51	I	0.21[-0.42,	0.04)
Schnitzler et al	224	.20	1.20		0.59 [0.35,	0.91]
Dembek et al	10	.50	62	I	0.58[0.50,	1 361
Steinenvald et al	17	1 12	1.46	· ·	1 12 [0 14	2 101
Bouthor et al.	20	60	00	1	0.69 [0.17	1 101
Hotorogonaity: $\tau^2 = 0.00$	1 ² - 0	.00 лл% ц	² - 1.00		0.00[0.17,	0.721
Toot of $A = 0$: $z = 6.21$ m	- 0.00	00%, H	- 1.00	•	0.50[0.58,	0.75]
1651 01 0 = 0. 2 = 0.21, p	- 0.00					
Therapeutic Current						
Dembek et al.	10	.11	.23	+	0.11 [-0.33,	0.55]
Koivu et al.	53	.3	1.3	+	0.30 [-0.07,	0.67]
Dayal(2) et al.	21	.6	1.7	-+-	0.60 [-0.34,	1.54]
Pinter et al.*	52	.4	.6	+	0.40 [0.08,	0.72]
Schnitzler et al.	234	.72	1	+	0.72 [0.49,	0.95]
Dayal et al.	21	.5	.6	+	0.50 [0.11,	0.89]
Shao et al.*	7	.17	.13	+	0.17 [0.02,	0.32]
Nguyen et al.	28	.511	.22	+	0.51 [0.25,	0.77]
Rammo	57	.43	.11	+	0.43 [0.40,	0.46]
Heterogeneity: $\tau^2 = 0.02$, I ² = 68	8.16%, I	H ² = 3.14		0.41 [0.27,	0.54]
Test of θ = 0: z = 5.82, p	= 0.00					
Therapeutic Window						
Dembek et al.	10	-1.13	.91	-+-	-1.13 [-1.93,	-0.33]
Schnitzler et al.	234	.4	1.5	+	0.40 [0.14,	0.66]
Steigerwald et al.	17	.56	1.36		0.56 [-0.37,	1.49]
Sasagawa et al.	2	.87	1.38	•	0.87 [-1.49,	3.23]
Dayal(2) et al.	21	1.06	.5	-+	1.06 0.14,	1.98]
Dayal et al.	21	1.1	1.4	-+-	1.10 0.50,	1.70]
Pollo et al.	11	1.6	.42	-+	1.60 [0.76,	2.44]
Shao et al.*	7	1.6	.5	+	1.60 [1.16,	2.04]
Rammo	57	.32	.12	+	0.32 [0.29,	0.35]
Heterogeneity: T ² = 0.58	, I ² = 94	4.03%, I	$H^2 = 16.75$	•	0.70 0.13,	1.26]
Test of θ = 0: z = 2.41, p	= 0.02			-		
				-2 0 2	4	

Figure 2: Overall comparison of stimulation parameters such as side effect threshold, therapeutic current and therapeutic window in dDBS compared to conventional. Positive indicates in favor of dDBS. .*Studies include data on conventional omnidirectional electrodes.

Figure 3. Percentage change in UPDRS III in directional DBS compared to omnidirectional in the medication OFF condition. Dashed lines indicate mean and 95 % confidence interval for conventional DBS. When computed comparing raw changes in UPDRS III, there were significant differences, favoring dDBS (p<0.001). However, when taking baseline UPDRS III score into account, these differences disappeared (p=0.39)

Random-effects REML model

Random-effects REML model

Figure 4: Comparison of changes in LEDD in dDBS compared to oDBS in percentage (A) and in absolute values converted to LEDD in mg (B). LEDD = Levodopa equivalent daily dosage. *Studies comparing dDBS to conventional omnidirectional electrodes.

Table 1: Su	Table 1: Summary of all studies included.												
Study	dLeads/patients (conventional leads/patients)	Mean F/U	Target	тw	TEED	SET	тс	Clinical outcomes	Other aspects	Summary			
Asahi, T et al. 2019[1]	12/6	1 y	STN	N/A	N/A	N/A	N/A	UPDRS-III, LEDD	Side effects	The mean UPDRS-III score improved significantly (p =0.03) with directional stimulation. There was an insignificant reduction in the LEDD (p=0.1).			

										There was a greater improvement in stimulation-
Bouthour, W										induced dyskinesia with directional stimulation
et al.								LEDD		with anti-bradykinetic effects and alleviation of
2019 [2]	20/10	12 m	STN	N/A	N/A	N/A	N/A	UPDRS-III	Side effects	dyskinesia maintained at 1-year follow up.
										Directional steering combined with shorter pulse
										width significantly improved stimulation-induced
										dyskinesia (p=<0.001), dysarthria (p=0.005) and
									Side	pyramidal adverse effects (p=0.015) acutely and
Dayal, V et									effects,	at follow up compared to omnidirectional steering
al. 2020[3]	64/32	6 m	STN	+	N/A	+	N/A	UPDRS-III	utilisation	and at larger pulse width.
De-Marco, R										At follow-up, there was a 62.65% improvement in
et al. 2020[4]	64/32	6 m	STN	N/A	N/A	N/A	N/A	UPDRS-III	N/A	the UPDRS-III
Debove, I et								UPDRS III,		At follow-up, there was a 74% improvement in
al. 2023[5]	104/52	5-9 m	STN	N/A	N/A	N/A	N/A	LEDD	N/A	the LEDD and 45% in UPDRS-III
										Directional steering led to significantly larger
										TWs (p=0.09) and higher SET
										(p=0.01) compared to omnidirectional
										stimulation. At follow-up, there was a 56%
Dembek, TA								UPDRS III,		improvement in UPDRS III and a 48% reduction
et al. 2017[6]	20/10	3-6 m	STN	+	N/A	+	+	LEDD	N/A	in LEDD.
										Directional stimulation yielded better side effect
Hurt, C et al.										thresholds than ring stimulation (P=0.001). This
2023[7]	31/31	1 m	STN	N/A	N/A	+	N/A	N/A	Side effect	mildly correlated with motor improvement.

		3 12							Side effects	The number of patients on a directional mode
Karl, J et al.		24, 36							batterv life.	Reasons were better symptom control.
2022[8]	104/56	m	STN/GPi/ViM	N/A	N/A	N/A	N/A	N/A	utilisation	reduction of side-effects or both.
Koivu, M et		6, 12,							Battery life,	There was significant reduction in the therapeutic current with single contact stimulation (p=0.001- 0.05) compared to two segment activation and ring mode. And reduction in the LEDD at follow- up (p=0.013). Battery consumption was not significant between dDBS and oDBS at 6, 12
al. 2022[9]	106/53	18 m	STN	N/A	N/A	N/A	+	LEDD	utilisation	and 18 months.
Maciel, R et al. 2021[10]	25/14	3 m	STN	N/A	N/A	N/A	N/A	UPDRS-III, LEDD	Side- effects, battery life, utilisation	69.2% of the patients initially on ring mode required directionality due to stimulation-induced side-effects. All side-effects improved with steering. Battery consumption was comparable.
Mishra, A et al. 2022[11]	45/28	12m	STN, GPi	N/A	N/A	N/A	N/A	LEDD	Adverse events, utilisation	There was a 4% increase in the number of patients on a directional mode throughout the follow-up period. DBS led to a significant reduction in the LEDD, although there was no difference between oDBS and dDBS.
Nguyen, TA et al 2019[12]	56/28	4-6 m	STN	N/A	N/A	-	+	N/A	N/A	There was significant reduction in therapeutic current with directional stimulation compared to omnidirectional stimulation (p=0.004) with no significant difference in side-effect threshold.

										Directional stimulation led to a comparable
										symptomatic improvement as conventional
										stimulation but greater improvement in HR-QoL
										and greater reduction in the LEDD and total dose
Pinter, D et								UPDRS-III,	Adverse	of antiparkinson medication. TEED was
al. 2023[13]	104/52 (114/57)	12 m	STN	N/A	N/A	N/A	N/A	LEDD	events	comparable.
										Directional stimulation led to a significant
Rammo, R										reduction in TEED (P=<0.05) and therapeutic
et al.		4w,								current (p=0.0001) and an insignificant
2022[14]	105/57	12m	STN	+	+	N/A	N/A	UPDRS-III	Utilisation	improvement in the TW.
Sabourin, S										
et al.										No significant difference in the UPDRS III was
2020[15]	17/9	2-19 m	STN	N/A	N/A	N/A	N/A	UPDRS III	N/A	seen between directional or ring mode.
Sasagawa,										Directional stimulation of structures adjacent to
A. et al										the STN led to reduction of some parkinsonian
2020[16]	2/4	1 m	STN	+	N/A	N/A	N/A	UPDRS-III	N/A	symptoms.
										Directional stimulation led to a significantly
										higher TW, SET and lower TC compared to
										omnidirectional. Clinical outcomes were
										comparable. More adverse events and
									Utilisation,	stimulation-induced side effects occurred during
Schnitzler, A									side	the first three months when oDBS was used.
et al.		3 and 6							effects,	More subjects and clinicians preferred the
2016[17]	468/234	m	STN	+	N/A	+	+	UPDRS-III	battery life	directional period.
Shao, M et									Utilisation	Motor outcomes and reduction in LEDD at 6
al. 2020[18]	14/7 (14/7)	6m	STN	+	N/A	N/A	N/A	UPDRS-III	Side effects	months was comparable between directional and

										conventional leads. The therapeutic window was significantly greater in the directional system whether or not directionality was used.
Shub, A et al. 2020[19]	29/18	N/A	STN, GPi	N/A	N/A	N/A	N/A	LEDD	N/A	Directional stimulation led to a significant reduction in the LEDD (P=0.008) amongst patients implanted with directional leads.
Steigerwald, F et al. 2016[20]	14/7	7 d, 4m	STN	+	N/A	+	N/A	N/A	Utilisation	A higher TW was seen in dDBS. At follow-up, all patients remained on directional mode with none reporting stimulation-induced side effects.
Steffen, J et al. 2020[21]	7/7	3-11m	VIM	N/A	N/A	+	N/A	Tremor Rating Scale	N/A	In patients with tremor dominant PD and VIM DBS, a significantly higher SE threshold was seen on directional or bipolar settings compared to monopolar omnidirectional (p=0.0063) settings. Additional benefit was seen with directional bipolar stimulation.
Wu, C et a. 2021[22]	n/a / 386 (n/a / 2,127)	3, 12, 24 m	N/A	N/A	N/A	N/A	N/A	N/A	Adverse events	Lead complications attributable to mispositioned electrodes or lack of therapeutic effect were less likely to occur in directional leads. Rates of infection or hardware malfunction were comparable between directional and omnidirectional systems.
Zitman, F et. al 2021[23]	59 / 30	6-23m	STN	N/A	N/A	N/A	N/A	N/A	Utilisation	At median 15 months follow up, 20% of electrodes in PD patients were on a directional mode.

Legend:

+, improvement with directional stimulation reported; -, no improvement with directional stimulation reported.

Abbreviations:

TW - therapeutic window, TEED - total electrical energy delivered, S/E - side-effect, SET - side-effect threshold, TC - therapeutic current, F/U - follow-up, STN - subthalamic nucleus, LEDD - Levodopa equivalent dose, UPDRS - Unified Parkinson's Disease Rating Scale, I/O - intra-operative, GPi - Globus Pallidus internus, ViM - ventral intermediate nucleus, NA - not available

Study	dLeads / pts (cLeads/ pts)	Target	Length of f/u (proportion on directional settings)	Effect of dDBS on side effects compared to ring mode	Adverse events (%leads)	Battery life (length of f/u)
Asahi, T et al. 2019[1]	12/6	STN	n/a	n/a	n/a	n/a
Bouthour, W et al. 2019 [2]	20/10	STN	3m (90% patients) 12m (90% patients)	Dyskinesia +	n/a	n/a
Dayal, V et al. 2020[3]	64 / 32	STN	Initial (97% leads) 6m (90% leads)	Dyskinesia +# Dysarthria +# Pyramidal +#	n/a	n/a
Karl, J et al. 2022[8]	91 / n/a	STN	3m (22% leads) 12m (25% leads) 24m (27% leads) 36m (60% leads)	n/a*	n/a	n/a*
Koivu, M et al. 2022[9]	106 / 53	STN	Initial (93% leads) 6m (75% leads)	n/a	Lead replacement (n= 1)	- (6, 12, 18m)

Table 2: Summary of studies reporting on Side effects, other aspects and battery life

			18m (70.5% leads)		Superficial wound infection requiring	
					antibiotics (n= 4)	
					Severe dDBS system-related	
					infections (0%)	
					Intracranial hemorrhage (0%)	
Maciel, R et al	25/14	STN	3m (76% leads)	Dyskinesia +/-	n/a	- (3m)
2021[10]				Dysarthria +#		
				Pyramidal +		
Mishra et al.	45 / 28	STN	Initial (60% leads)	n/a*	Revision due to malpositioned leads	n/a
2022[11]			14m (64% leads)		(22% of leads at 6 m)	
Pinter, D et al.	104/52	STN	n/a	n/a	Intracranial infections (0%)	n/a
2023[13]	(114/57)				Intracranial hemorrhage (0%)	
Rammo, R et al.	105 / 57	STN	Initial (65% patients)	n/a	n/a	n/a
2022 [14]			12m (75% patients)			
Schnitzler, A et al.	468 / 234	STN	6m (52.8% leads)	n/a*	Intracranial infection (0%)	n/a***
2022[17]					Intracranial hemorrhage (0%)	
					5.5% device or procedure related	
					adverse events:	
					- Battery depletion (n =1)	
					- Extension breakage (n=1)	
					- Lead fracture (n=1)	
					- Lead migration (n=1)	
					- Lead malpositioning (n=1)	
					- Cognitive impairment (n=1)	
					- Edema at site of lead (n=1)	
					-Erosion (n=2)	
					- Undesirable changes in stimulation	
					(n=1)	
					- High impedance (n=1)	
					- Impaired wound healing (n=1)	
					- Skull discoloration (n=1)	
Shao, M et al. 2020[18]	14 / 7	STN	6m (36% leads)	Dyskinesia +	n/a	n/a
Steigerwald, F et	14 / 7	STN	Initial (100% leads)	Dysarthria +	n/a	n/a
al. 2016[20]			4m (100% leads)	Pyramidal +		

				Dysesthesia +		
Wu, C et a. 2021[22]	n/a / 2127 (n/a / 386)	N/A**	n/a	n/a	No difference in infection rate or hardware malfunction; higher revision rate in conventional group.	n/a
Zitman, F et al. 2021[23]	59 / 30	STN	15m (27% leads)	n/a*	n/a ***	n/a

Legend:

+, improvement with directional stimulation reported; -, no improvement with directional stimulation reported.

* Subjective comments provided without quantitative data

** do not specify the target

***mentioned in relation to patients who were withdrawn from the study

required changes in additional stimulation parameters (e.g. pulse with)

Abbreviations:

dLeads - directional leads, cLeads - conventional leads, oDBS - omnidirectional DBS, F/U - follow up, S/E - side-effects, A/E - adverse events, n/a - not

applicable, TC – therapeutic current.

		Treatm	ent			Effect Size (Chang	e in UPDRS
Study	Ν	Mean	SD			with 95%	CI
Directional							
Schnitzler et al.	195	1.2	4.964169	•		1.20 [0.50,	1.90]
Steigerwald et al.	7	1.285714	5.495824	•	i i	1.29 [-2.79,	5.36]
Pinter et al.*	52	1.4	15.9	•	4	1.40 [-2.92,	5.72]
Dayal et al.	32	2.4	3.339193			2.40 [1.24,	3.56]
Debove et al.	52	2.59	3.345689	•	i i	2.59 [1.68,	3.50]
Bouthour et al.	20	4.7	.988854		1 1	4.70 [4.27,	5.13]
Sabourin et al.	9	6.375	11.61828		•	- 6.38 [-1.22,	13.97]
Shao et al.*	7	8.05	2.516771			8.05 [6.19,	9.91]
Heterogeneity: T ²	= 5.07	, I ² = 94.539	%, H ² = 18.27	i 🔶	i i	3.39 [1.59,	5.19]
Test of θ = 0: z = 3	3.70, p	0.00 = 0.00		1			
Omnidirectional							
Pinter et al.*	57	3	11.1		4 1	3.00 [0.12,	5.88]
Schnitzler et al.	212	4.2	5.175009	•		4.20 [3.50,	4.90]
Shao et al.*	7	10.0827	2.2865		· -•-	10.08 [8.39,	11.78]
Heterogeneity: T ²	= 13.2	9, I ² = 95.32	2%, H ² = 21.35			5.82 [1.55,	10.09]
Test of $\theta = 0$: $z = 2$	2.67, p	0 = 0.01					
				ļ			
Test of group diffe	rences	s: Q _b (1) = 1.	.05, p = 0.30				
		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	-5	0 5	10	15	

Random-effects REML model

Supplementary Figure 1. Difference in total UPDRS III in dDBS compared to oDBS in the medication ON condition. Dashed lines indicate mean and 95 % confidence interval for conventional DBS. *Studies on conventional omnidirectional electrodes.

			Dem	ograp	hic Var	iables	BASELINE				OFF MEI			
First author	FU-Time (months)	Number of participants (n)	Female (n)	Male (n)	Age (years)	(SD)	Disease duration (years)	(SD)	UPDRS III ON Medication Pre OP	UPDRS III OFF medication	UPDRS L- Dopa Challenge	Improvement during L- Dopa Challenge (% Change Off/On	OFF STIM UPDRS- III	(SD)
Aman[24]	1-1.5	3	2	1	58.3	4.6	7.7	1.7	*	47.7	*		47.7	3.9
Asahi[1]		6	5	1	66.2	8.2	9.3	3	*	30.2	*		30.2	11.7
Bouthour[2]	12	20	7	13	60.4	2	9.2	2.2	14.5	46.8	13.7	70.72	46.8	3.6
Contarino[25]	IR	8	3	5	56.2	7.8	10.8	4.4	*	35.3	*		35.3	7.5
Dayal[3]	6	32	12	20	60.1	8.3	-	-	16.5	47	***		47	13.5
De Marco[4]	6	32	9	23	57		-	-	**	-	**		-	-
Debove[5]	5-9	52	17	35	62.1	9.4	11.4	4.6	13.9	40.5	***		40.5	13.3
Dembek[6]	3-6	10	4	6	61.5	9.16	9.7	3	****	44.2	22.7	48.64	44.2	17.5
Hidding#[26]	4-10	6	0	6	70.8	10.4	6.3	2.7	8.6	10.4	***		10.14	1.35
Hurt[7]	1	32	10	22			8.3	3.3	25.4	49.2	* * *		49.2	13.1
Karl[8]		56	20	45	65	9	10	6	28	49	***		49	14
Koivu[9]	6	63	28	35	61.6	1.1	11.1	3.9	15	34.6	* * *		34.6	-
Maciel[10]	3	7	1	6	60	9.1	-	-	****	37.9	11.1	70.71	37.9	6.9
Nguyen[12]	6	28	9	19	63	9	-	-	*	38.6	*		38.6	14.6

Pinter[13]	12	52	19	33	60.3	7.5	9.7	4.4	25.6¤	¤	¤		-	-
Rammo[14]	1	57	28	36	64	8	-	-	*	37	*		37	17
Sabourin[15]	2-19	9	0	9	66.4	1.69	13.3	1.98	****	46	22.9	50.22	46	5.3
Sasagawa[16]	1	2	1	1	59	0	4	2	*	11	*		11	0
Schnitzler[17]	3	234	77	157	61.7	8.4	11.7	7.6	18.6	35.3	***		35.3	-
Shao[18]	6	7	3	4	64.3	8.2	-	-	16.9	37.4	* * *		32	10.8
Steigerwald[20]	7 days	7	2	5	-	-	-	-	19	42	***		42	-
Mean/Total		725	257	484	61.9	7.9	10.8	6.2	19.1	39			39	14.7
# Tremor														

* No data on baseline ON medication /L-Dopa Challenge reported

** Compares OFF medication with ON stimulation. so baseline is OFF med OFF Stim and follow-up is OFF med ON Stim

*** Does NOT contain data on L-Dopa challenge

**** Only contains baseline L-dopa challenge

x Refers to "best" ON medication. but doesn't define this further or specify L-Dopa challenge

Supplementary table 1

1. Asahi T, Ikeda K, Yamamoto J, Tsubono H, Sato S. Pilot Study for Considering Subthalamic Nucleus Anatomy during Stimulation Using Directional Leads.

2. Bouthour W, Béreau M, Kibleur A, Zacharia A, Tomkova Chaoui E, Fleury V, et al. Dyskinesia-inducing lead contacts optimize outcome of subthalamic stimulation in Parkinson's disease.

3. Dayal V, De Roquemaurel A, Grover T, Ferreira F, Salazar M, Milabo C, et al. Novel Programming Features Help Alleviate Subthalamic Nucleus Stimulation-Induced Side Effects.

4. De Marco R, Bhargava D, Macerollo A, Osman-Farah J. Could ZI have a role in DBS for Parkinson's Disease? An observational study to optimize DBS target localization.

5. Debove I, Petermann K, Nowacki A, Nguyen TK, Tinkhauser G, Michelis JP, et al. Deep Brain Stimulation: When to Test Directional?

6. Dembek TA, Reker P, Visser-Vandewalle V, Wirths J, Treuer H, Klehr M, et al. Directional DBS increases side-effect thresholds-A prospective, doubleblind trial. Mov Disord. 2017;32(10):1380-8. doi: 10.1002/mds.27093.

7. Hurt CP, Kuhman DJ, Guthrie BL, Olson JW, Nakhmani A, Wade M, et al. Pointing in the right direction: Motor improvements with directional versus circular DBS.

8. Karl JA, Joyce J, Ouyang B, Verhagen Metman L. Long-Term Clinical Experience with Directional Deep Brain Stimulation Programming: A Retrospective Review.

9. Koivu M, Scheperjans F, Eerola-Rautio J, Resendiz-Nieves J, Marjamaa J, Kivisaari R, et al. The outcome of directional subthalamic deep brain stimulation in advanced Parkinson's disease.

10. Maciel R, Soh D, Munhoz RP, Poon YY, Kalia SK, Hodaie M, et al. Programming Directional Deep Brain Stimulation in Parkinson's Disease: A Randomized Prospective Trial Comparing Early versus Delayed Stimulation Steering. Stereotact Funct Neurosurg. 2021;99(6):484-90. doi: 10.1159/000517054.

11. Mishra A, Unadkat P, McBriar JD, Schulder M, Ramdhani RA. An Institutional Experience of Directional Deep Brain Stimulation and a Review of the Literature.

12. Nguyen TAK, Nowacki A, Debove I, Petermann K, Tinkhauser G, Wiest R, et al. Directional stimulation of subthalamic nucleus sweet spot predicts clinical efficacy: Proof of concept.

13. Pintér D, Járdaházi E, Balás I, Harmat M, Makó T, Juhász A, et al. Antiparkinsonian Drug Reduction After Directional Versus Omnidirectional Bilateral Subthalamic Deep Brain Stimulation.

14. Rammo RA, Ozinga SJ, White A, Nagel SJ, Machado AG, Pallavaram S, et al. Directional Stimulation in Parkinson's Disease and Essential Tremor: The Cleveland Clinic Experience. Neuromodulation. 2022;25(6):829-35. doi: 10.1111/ner.13374.

15. Sabourin S, Khazen O, DiMarzio M, Staudt MD, Williams L, Gillogly M, et al. Effect of Directional Deep Brain Stimulation on Sensory Thresholds in Parkinson's Disease.

16. Sasagawa A, Enatsu R, Kitagawa M, Mikami T, Nakayama-Kamada C, Kuribara T, et al. Target Selection of Directional Lead in Patients with Parkinson's Disease.

17. Schnitzler A, Mir P, Brodsky M, Verhagen L, Groppa S, Alvarez R, et al. Directional deep brain stimulation in subthalamic nucleus for Parkinson's disease: Results of a multicenter, prospective, blinded, crossover study.

18. Shao MM, Liss A, Park YL, DiMarzio M, Prusik J, Hobson E, et al. Early Experience With New Generation Deep Brain Stimulation Leads in Parkinson's Disease and Essential Tremor Patients.

19. Shub A, Bezchlibnyk YB, Smith DA, Malapira T, Wai Miller W, Huang Y, et al. Clinical outcomes from directional deep brain stimulation in Parkinson's disease patients: A retrospective analysis.

20. Steigerwald F, Müller L, Johannes S, Matthies C, Volkmann J. Directional deep brain stimulation of the subthalamic nucleus: A pilot study using a novel neurostimulation device. Mov Disord. 2016;31(8):1240-3. doi: 10.1002/mds.26669.

21. Steffen JK, Reker P, Mennicken FK, Dembek TA, Dafsari HS, Fink GR, et al. Bipolar Directional Deep Brain Stimulation in Essential and Parkinsonian Tremor. Neuromodulation. 2020;23(4):543-9. doi: 10.1111/ner.13109.

22. Wu C, Potter-Nerger M, Agarwal R, Rosenberg S, Connolly A, Cheeran B, et al. Directional DBS is Associated with Fewer Surgical Revisions than Traditional DBS: A Nationwide Real-World Study.

23. Zitman F, Janssen A, Vander Gaag N, Hoffmann C, Zutt R, Contarino M. The actual use of directional steering and shorter pulse width in selected patients undergoing deep brain stimulation.

24. Aman JE, Johnson LA, Sanabria DE, Wang J, Patriat R, Hill M, et al. Directional deep brain stimulation leads reveal spatially distinct oscillatory activity in the globus pallidus internus of Parkinson's disease patients. Neurobiol Dis. 2020;139:104819. doi: 10.1016/j.nbd.2020.104819.

25. Contarino MF, Bour LJ, Verhagen R, Lourens MA, de Bie RM, van den Munckhof P, et al. Directional steering: A novel approach to deep brain stimulation.

26. Hidding U, Schaper M, Gulberti A, Buhmann C, Gerloff C, Moll CKE, et al. Short pulse and directional thalamic deep brain stimulation have differential effects in parkinsonian and essential tremor.