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Model-free decision-making underlies
motor errors in rapid sequential
movements under threat
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Our movements, especially sequential ones, are usually goal-directed, i.e., coupled with task-level
goals. Consequently, cognitive strategies for decision-making and motor performance are likely to
influence each other. However, evidence linking decision-making strategies and motor performance
remains elusive. Here, we designed a modified version of the two-step task, named the two-step
sequential movement task, where participants had to conduct rapid sequential finger movements to
obtain rewards (n = 40). In the shock session, participants received an electrical shock if theymade an
erroneousor slowmovement,while in the no-shock session, they only received zero reward.We found
that participants who prioritised model-free decision-making committed more motor errors in the
presence of the shock stimulus (shock sessions) than those who prioritised model-based decision-
making. Using amediation analysis, we also revealed a strong link between the balance of the model-
based and the model-free learning strategies and sequential movement performances. These results
suggested thatmodel-free decision-making producesmoremotor errors thanmodel-based decision-
making in rapid sequential movements under the threat of stressful stimuli.

In real life, the actions we carry out are often oriented towards achieving a
certain goal. This relationship indicates that the decisions we make and the
actions we execute to carry out those decisions are tightly coupled1,2. This
coupling is particularly important when one has to perform under pressure
or stress, such as in sport andmusic competitions, where an individualmust
make several decisions and perform precise actions during a short period of
time. In addition, motor tasks in such real-life situations involve a sequence
of actions where individual motor movements are assembled in a structure.
However, research in motor control has mainly focused on single-shot
actions, such as reaching andgenerating grip force3,4, andhasnot considered
decision-making strategies5–8.

Previous work in computational neuroscience has suggested two dis-
tinct mechanisms are employed to learn the value of actions from
outcomes9–11. The ‘model-based’ system builds an internal model of the
environment based on state-action transitions to prospectively compute the
best course of actions12–14. In contrast, the ‘model-free’ systemrelies solely on
accumulating past experiences for learning and utilises estimated action
values to make decisions15–17. Model-based learning is flexible to changes in
the environment, as it can update its ‘world model’, but it is also compu-
tationally costly owing to the prospective computation of all possible action
courses. On the other hand, model-free learning is inflexible to changes in

outcomes and state transitions but is computationally easy, as one can
simply choose the action with the highest value.

Multiple studieshave shownevidence for the coexistenceof bothmodel-
based and model-free learning mechanisms in human and animal
behaviour18–25. This naturally leads to the question: How does the brain
manage the trade-off between these two mechanisms? Past research has
suggested that an arbitration system in the brain allocates control to these two
systems9,26–29. Lee and colleagues reported that the brain arbitrates between
the two systems and uses them in conjunction based on the reliability of their
predictions30. A study by Kim et al. showed that individuals tend to prioritise
model-based learning strategies with increasing task complexity but resort to
model-free learning when task uncertainty and complexity are both high31.
Similarly, Lockwood and team found that individuals reliedmore onmodel-
free learning strategieswhen the task involved avoidingharmtoothers32.Otto
and colleagues showed that cold-pressure stress can decrease model-based
decisions with working memory capacity, contributing to the detrimental
impact of stress on decision-making33.

We are interested in whether the balance between model-based and
model-free decision-making influences the motor performance of actions
carried out to execute decisions, in particular when participants are under
the threat of stressful stimuli34–38. For instance, imagine driving a car on an
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icy road. One must constantly make decisions about what information to
use to decide when to take a turn and when to accelerate or apply brakes so
that the destination is reached without incident. Some drivers may actively
keep track of state transitions and predict future states, i.e. the model-based
strategy. Alternatively, other drivers may rely more on their previous
experience of driving in similar conditions, i.e. the model-free strategy.
Importantly, each decision strategy can be coupled with different sequences
of motor actions.

Our hypothesis in this study is that model-free/model-based decision-
making strategies have crucial influence on sequential motor performances,
particularly under the threat of stressful stimuli. To test this hypothesis, we
modified the two-step task, which was originally developed to dissociate
model-based and model-free decision-making14. Our two-step sequential
movement task requires participants tomake choices using rapid sequential
movements rather thana singlemovementunder timepressure. Participants
perform the task in two types of sessions. In the no-shock session, a motor
error results only in zero reward, while in the shock session, a motor error is
penalised by an electric shock and zero reward. Participants experienced two
no-shock sessions and a subsequent shock session.We compared the second
no-shock session and the shock session in our main analysis.

Methods
Participants
In total, 40 participants (24 male participants, 16 female participants, mean
age = 21.8 years, s.d. 2.09) were recruited from the Osaka University com-
munity. Participants were asked to self-report their sex. We did not collect
the participants’ race/ethnicity data. The participants gave informed con-
sent for participating in the experiments, and the experiments were
approved by the ethics committee at the National Institute of Information
andCommunicationsTechnology (NICT), Japan. Theywere paid ¥3000 on
top of the money they earned while performing the task. All experimental
procedures for eachparticipantwerefinishedon a single day. This studywas
not preregistered.

Learning of two motor sequences
In our study, both Sequence-A and Sequence-B comprised five button
presses, whichwere executed using the right index, middle, and ring fingers

on a 3-button keypad (Fig. 1B). The buttons on the keypad were labelled as
‘1’, ‘2’, and ‘3’ from left to right. In Sequence-A, participants were instructed
to press the buttons in the order 1-3-2-1-3 (which corresponded to the
respective button positions on the keypad). Similarly, in Sequence-B, the
button presses followed the order 2-3-1-3-2. Prior to the main experiment,
participants underwent extensive training on these two motor sequences.
During training, participants performed five blocks, with each block con-
sisting of 40 trials. Initially, participants approached the sequence execution
cautiously, pressing each button individually. However, as the training
progressed, their actions became more fluid, and by the end of the training
period, the learning of the motor sequences seemed to have plateaued
(Supplementary Fig. 1A, B).

Electric shock calibration and GSR setup
Electrodes from an electrical stimulator were placed on the participants’ left
forearms for the experiment. We administered a brief Gaussian burst of
electrical current (25ms) as a shock stimulus. Participantswere instructed to
close their eyes, and, starting from a minimal level, we gradually increased
the shock’s intensity until the participants reported feeling it on their skin.
Once the perceptible threshold was determined, participants were asked to
indicate the shock level at which they would feel anxious and scared. To
converge on this threshold, they were instructed to imagine a level that they
would not mind experiencing the shock once but would find distressing if
subjected to it three times in quick succession. Participantswere encouraged
to explore higher shock levels and then decrease the level if they felt
uncomfortable, ensuring they identified a level that genuinely induced
pressure. Following the calibration of the stimulator, electrodes for mea-
suring the galvanic skin response (GSR) were attached to the participant's
right index and middle fingers using BIOPAC Systems, Inc., equipment.

Two-step sequential movement task
Figure 1 illustrates the two-step sequential-movement task. The design of
the task is based on past studies14,26 and consists of two stages. In stage 1,
participants encounter one of two states: ‘Faces’ or ‘Objects'. The choices
made at stage 1 deterministically decide the subsequent state at stage 2,
which could be either ‘Body Parts’ or ‘Scenes'. Notably, the available choices
in the two states (Faces orObjects) in stage 1 are similar: selecting one of the

Fig. 1 | Task design of the two-step sequential
movement task. A Motor sequences used to select
the images at both stages in the two-step sequential
movement task. Sequence-A and Sequence-B were
used to select the image on the left and right side of
the screen, respectively. B A keypad was used to
enter the sequence. C The state transition structure
from stage 1 to stage 2 was deterministic such that
the two states (i.e. Faces and Objects) at stage 1 were
essentially equivalent. The face and tool depicted on
the left always resulted in the body part category,
while the face and tool shown on the right always led
to the scene category in stage 2. In the two no-shock
sessions, if there were any errors in the sequence
execution or if the participants timed out, no reward
was awarded. By contrast, in the subsequent shock
session, in such cases, along with no reward, an
electric shock was delivered. We compared the sec-
ond no-shock session and the shock session. The
faces used in the figure are taken from the Chicago
Face Database51.
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tools (depicted in Fig. 1Con the right) or one of the faces (depicted inFig. 1C
on the left) always results in the same set of Scenes, while choosing the other
tool or face leads to Body Parts. This equivalent structure helped us dis-
tinguish between model-based and model-free decision-making strategies,
as only model-based learners can generalise their experiences across
equivalent options at stage 1.Model-based learners utilise estimations of the
expected outcomes for each option in stage 2 to determine their respective
values in stage1.Consequently, the impact of each second-stage outcomeon
stage 1 preference in subsequent trials remains the same, irrespective of
whether the new trial begins with the same state as the previous one (e.g.,
faces followed by faces) or a different state (e.g., faces followed by objects). In
contrast, a model-free learner evaluates options based solely on their past
outcomes: the outcomes obtained fromone starting state does not influence
subsequent choices from the other starting state.

Tomake their choices, participants had sequence-A to select the image
on their left and sequence-B to select the image on their right at both stages.
The position of the images within each category varied randomly, but the
mapping of sequences with left and right positions remained fixed
throughout the task. We adopted this design to couple sequential motor
execution with decision-making, and the two sequences (A and B) were
selected so that their entropies were the same and the button positions were
sufficiently distinguishable.All participants (N=40)were extensively trained
in pressing the two sequences before the main experiment. Each option in
stage 2 was rewarded with a monetary reward. The reward distribution was
randomly initialisedwith either 30 points or 70 points for the images of both
states in stage 2. In order to incentivise learning throughout the experiment,
the reward values change slowly and independently according to aGaussian
random walk. The reward values underwent slow changes following a
Gaussian random walk process that reflected the boundaries at 1 and 100.
The random walk had a mean of 0 and a standard deviation of 20.

Participants completed a total of three sessions continually on the same
day, each consisting of 120 trials, in the two-step sequential movement task.
In the first session, participants had enough time to make their choice
(3 seconds). In the second session, the time available tomake the choice was
reduced from 3 seconds to 2 seconds in a linear manner so that the parti-
cipants became accustomed to the time pressure of the task. In the third and
last session, the time available for a decision at both stages was 2 seconds.
Notably, to induce strong pressure, participants were told that if they made
an error in executing the sequence (pressing an incorrect button in a
sequence) or if they were too slow inmaking a choice and executing it (time
threshold set to 2 seconds), they would receive an electric shock on their
arm.The intensity of the electrical shockwas individually calibrated for each
participant. The first session was intended for the participants to familiarise
themselves with the task and allow us to compare the last two sessions. For
the rest of the paper, we will call the second session the ‘no-shock session’
and the third session the ‘shock session’.

Participants were provided with feedback regarding the type of error
made during each trial. If their trial timed out, they were notified of a ‘Late’
error at the end of the trial. If they failed to enter either sequence correctly,
they were informed of a ‘ButtonMiss’ error. If an error occurred at stage 1 of
the sequential two-step task, participants were unable to progress to stage 2.
They were shown their error type, and they experienced the associated out-
come, including zero points and, during the shock session, an electric shock.

All three sessions were conducted on the same day, separated by a
5-minute break. The shock and no-shock conditions were not counter-
balanced because the participants were made to adjust for the time pressure
that steadily decreased in the second session (the last no-shock session) and
then kept fixed in the shock session to maximise stress.

We noticed that reaction times for executing sequences decreased over
sessions. This might be due to both learning and the progressively stricter
time limits set as sessions advanced. Additionally, the number of errors,
including late and incorrect button presses, increased from the first to the
second no-shock session, likely because of the stricter time limit in the latter
session. However, the number of errors significantly decreased from the
secondno-shock session to the shock session, an effect that can be attributed

both to learning and the threat of an electrical shock. Overall, these findings
suggest that sequence learning persisted across experimental sessions.
Supplementary Fig. 2A and 2B illustrate the number of errors and sequence
completion times across sessions.

Computational model
We utilised a hybrid reinforcement learning model that was adapted to our
task design. Choice data were fitted to this computational model for each
participant; themodel learns the values of actions by using a combination of
model-based and model-free approaches. At stage 2 of the two-step task,
learning from the outcomes is solely model-free, as there are no state
transitions following the choice that couldbe exploited. For eachof the states
s2 (body parts, scenes) at stage 2, state action valuesQ2 (Q values) are learnt
for both actions a2 2 fa2X; a2Yg (a2X; a2Y refer to the two available
choices at stage 2). Q2 are updated at each trial as per the following:

Q2ðs2t ; a2tÞ ¼ Q2ðs2t ; a2tÞ þ αδ2;t ð1Þ

where δ2;t is the reward prediction error at stage 2. Since there are no
subsequent stages after stage 2 in our task, the reward prediction error at
stage 2 is driven by the reward as follows:

δ2;t ¼ rt � Q2ðs2t ; a2tÞ ð2Þ

Here, α is a free parameter representing the learning rate that mod-
ulates the effect of the prediction error in outcomes on action values.

At stage 2, the estimation of theQ values is purely model-free, because
the Q values are computed based on the immediate reward. At stage 1,
however, both model-based and model-free strategies contribute to the
estimation of theQ values, since state transitions from stage 1 to stage 2 can
also be considered in the learning. According to model-free learning
(SARSA(λ)), the action values QMF are learnt for each action a1 for each
state s1 (faces, objects) at stage 1 as follows:

QMFðs1t ; a1tÞ ¼ QMFðs1t ; a1tÞ þ αδ1;t þ λαδ2;t ð3Þ

The reward prediction error at stage 2 (δ2;t) is used to update the Q
value at stage 1, and the size of the effect is controlled by the free parameter λ,
which is also known as the eligibility trace parameter.

The reward prediction error at stage 1 differs from that at stage 2, as
rewards are available only after a choice is made at stage 2. The prediction
error at stage 1 is calculated as follows:

δ1;t ¼ Q2ðs2t ; a2tÞ � QMFðs1t ; a1tÞ ð4Þ

As can be seen in the above equations, model-free learning does not
consider the fact that choices are equivalent regardless of the state at stage 1.
Themodel-free system separately learns the value of choosing actions in the
face state and the tool state according to their respective outcomes. On the
other hand, model-based learning uses this equivalence to compute the
value of actions in a prospective manner. For the current two-step task, this
means calculating for each action at stage 1 can estimate the rewards
available at stage 2 based on the choice made. The model-based Q
value, QMB, for each state s1 and action a1 is calculated as follows:

QMBðs1t ; a1tÞ ¼ maxa2ða2X;a2YÞQ2ðSðs1t ; a1tÞ; aÞ ð5Þ

Here, Sðs1t ; a1tÞ is the state at stage 2 that results in choosing action a1
in state s1.Given thatmodel-based learninguses information about the state
transitions in the task, Sðs1t ; a1tÞ generalises between the two states (Faces,
Objects) at stage 1. Thus the model-based Q value allows us to access
action a2 at stage 2 in stage 1.

Finally, to compute the value of actions at stage 1, the Q values
computed by the model-based approach and model-free approach are
combined by a free model-based weight w (w ¼ 1 for a purely model-
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based agent and w ¼ 0 for a pure model-free agent). The resultant Q
value at stage 1 ðQ1netÞ is:

Q1netðs1t ; a1tÞ ¼ wQMBðs1t ; a1tÞ þ ð1� wÞQMFðs1t; a1tÞ ð6Þ

To select the action using the Q values, we used the softmax decision
rule as follows:

pðai;t ¼ ajsi;tÞ ¼
expðβ½Q1netðsi;t ; aÞ þ π:repðaÞ þ ρ:respðaÞ�Þ

P
�aexpðβ½Q1netðsi;t ; �aÞ þ π:repð�aÞ þ ρ:respð�aÞ�Þ ð7Þ

Following the computational model used in a previous study26, in
addition to the standard inverse temperature parameter β, we added two
free parameters: π (choice stickiness parameter) and ρ (response stickiness).
The choice stickiness parameter is multiplied by repðaÞ (an indicator vari-
able, which is 1 if stage 1 action is the same as the one of the previous trial,
and zero otherwise) to capture the tendency to stick with the same choice or
to switch it. Since the position of the images is not fixed across trials but
randomly varied, participantsmay exhibit a tendency to repeat/alternate the
sequences (A and B). To account for this possibility, we added the term that
is a product of response stickiness (ρ) and resp(a) (is coded 1 if the same
sequence was entered as the previous trial and 0 otherwise).

We used the mfit toolbox39 to fit the choice data to our reinforcement
learning models and estimate the free parameters. We used a hierarchical
maximum a posteriori estimation using group priors based on previous
work39. Using both the Akaike Information Criterion (AIC) and Bayesian

Information Criterion (BIC), we checked whether including either of the
stickiness parameters (π and ρ) enabled better modelling of the observed
behaviour. Additionally, we used AIC and BIC to comparemodel fits of the
hybridmodel (including thewparameter) aswell as a puremodel-based and
a pure model-free model. We found that both AIC and BIC favoured the
hybrid model with both stickiness parameters (π and ρ) (Supplementary
Tables 1 and 2). We also ran the optimisation algorithm fifteen times for
each participant to avoid local optimum solutions and randomly selected
initialisations for every parameter of the model.

In our reported results, we calculated parameters separately for the
no-shock and shock sessions. To measure a shift in strategy, we computed
the difference between the model-based weights of the shock and no-shock
sessions. Finally, we have used the standard inferential statistical tests (such
as t-test and correlations) with an assumption that the data distribution of
parameters is normal, but this isn’t formally tested.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Participants showed both model-based and model-free
behaviour
We first examined how the combination of previous rewards and the
starting state affect the stay probability (choosing the same action as in the
previous trial) to differentiate the model-based and model-free strategies

Fig. 2 | Model-predicted and real behavioural data. A Behaviours of different
models conditioned on whether the previous trial led to a reward and whether the
state at stage 1 was the same as the previous trial. The behaviour depicted in the plots
is predicted for our task by generative reinforcement learning models.

B Participants’ (n = 40 participants) Stay vs. Switch behaviour plotted for no-shock
and shock sessions shows that the participants used both model-based and model-
free behaviour to make their choices. Error bars represent 95% confidence intervals.
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(Fig. 2). Simulating generative reinforcement learning agents for our task,
we observed that differences in model-based, model-free and mixture
reinforcement learning agents were characterised by an interaction between
the similarity in the start state and past reward, particularly in a decrease in
the stay probability in the rewarded and different conditions (Fig. 2A). We
can see that participants in our task qualitatively show amix ofmodel-based
and model-free learning in the no-shock and shock sessions (Fig. 2B).
Figure 2B also indicates that the contribution of the model-free strategy is
larger in the shock session than in the no-shock session. However, a precise
differentiation in arbitration between model-based and model-free strate-
gies should be conducted by estimating computational model parameters26.

We estimated such parameters for computational models of a pure-
model based agent, pure-model free agent and a hybrid learner using our
data. We performed model comparisons to check which model best cap-
tured the behaviour for both the no-shock and shock sessions. Such a trial-
by-trial analysis that captures individual choice preferences allowed us to
test whether either model or their combination best produced the beha-
viours. The Akaike information criteria (AIC) across participants revealed
that the hybridmodel provided a significantlymore accurate explanation of
behaviour than a purely model-free or purely model-based learner (Sup-
plementaryTable 1). In otherwords, we quantitatively showednot only that
a reward generalisation between equivalent starting states was significant
(model-based learning) but also that a larger effect of the rewards was
observed when the starting state remained the same (model-free learning).

The best-performing hybrid model included five parameters: learning
rate α inverse temperature β, which controls the randomness of the choice
selection; model-based weight w, which represents the relative balance
between the model-based and model-free strategies; choice-stickiness
parameter π, which captures the degree of stay versus switch at stage 1; and

response-stickiness parameter ρ, which represents the tendency of a parti-
cipant to repeat or alternate the motor sequences (see Methods for details).

Stressful stimuli Increased GSR
The threat of receiving an electric shock is likely to increase the stress level in
participants. We confirmed that the galvanic skin response (GSR) was
higher in the shock session than in the no-shock session (two-sample t-test
t(39) = 4.17, p < 0.001, d= 0.67, 95%CI = [0.62, 1.80]) (Fig. 3). This indicates
that participants were significantly more stressed due to the threat of
punishment in the shock session as compared to the no-shock session.

Model-free decision-making is associated with motor errors
under threat of stressful stimuli
We next examined whether a stressful stimulus affects motor performance.
Wemeasuredmotor performance by calculating the number of errors in the
sequence execution, i.e., incorrect or late button presses.

We first tested whether the relative contribution of the model-based
decision (vs. model-free decision) was associatedwith the number of motor
errors in both sessions. In the shock session, we found that themodel-based
weight and number of errors (shocks) were significantly correlated (r(38) =
−0.51, p< 0.001, 95%CI= [−0.74,−0.23], BF10 = 46.48) (Fig. 4A). In the no
shock session, the correlation between the number of errors and themodel-
basedweights did not reach statistical significance, nor did the BF provide at
leastmoderate evidence for or against a relationship (r(38)=−0.26,p=0.10,
95%CI = [−0.54, 0.05], BF10 = 0.73) (Fig. 4B). This finding suggests that
participants with a higher contribution of the model-free decision-making
strategymademore errors, particularly under the threat of stressful stimuli.
We also observed that participants performed better in the shock session
than in the no-shock session as they made less errors in the shock session
than in the no-shock session (two sample t-test T(39) = 2.79, p = 0.008, d =
0.44, 95%CI = [−6.63, −1.06]). This performance improvement could be
attributed to the learning effect alongside increased attention and risk
aversion prompted by the threat of shocks.

A potential alternative explanation of the correlation between model-
free decision-making and motor errors is that the participants whose
behaviour was mainly model-free were less engaged with the experiment
overall, making more errors and receiving more shocks. However, we
observed that themodel-based weight of participants changed from the no-
shock session to the shock session (Fig. 5). In other words, participants who
were mostly model-free in the no-shock sessions were not necessarily the
same participants in the shock session. We also checked whether more
model-free participants showed reduced learning of the motor sequences
thanmodel-based participants. To test this, we first checked for correlations
between the model-based weight and the accuracy of the motor sequence

Fig. 3 | Threat of shock affected stress. The Galvanic Skin Response (GSR) was
higher in the shock session than in the no-shock session (two sample t-test T(39) =
4.17, p < 0.001) (n = 38 participants). Error bars represent 95% confidence intervals.

Fig. 4 | Model-free decision-making underlies
motor errors. A The model-based weight in the
shock session was correlated (r(38) = −0.51, p<
0.001, 95%CI = [−0.74,−0.23], BF10 = 46.48) with
the number of motor errors in the shock session (n=
40 participants).B In the no-shock session, however,
we did not observe a significant correlation between
motor errors and the model-based weight (r(38) =
−0.26, p = 0.10, 95%CI = [−0.54, 0.05], BF10 = 0.73)
(n = 40 participants).
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learning. The accuracy of the sequence learning was calculated based on the
number of times a sequence was correctly executed in the last block of
training.We foundno significant correlation between the sequence learning
accuracy and model-based weight (Sequence-A: No-Shock Session, r(38) =
0.19, p = 0.25, 95%CI = [−0.14, 0.50], BF10 = 0.37; Shock Session, r(38) =
−0.05, p = 0.77, 95%CI = [−0.30, 0.25], BF10 = 0.2; Sequence-B: No-Shock
Session, r(38) = 0.07, p = 0.65, 95%CI = [−0.29, 0.40], BF10 = 0.22; Shock
Session, r(38) =−0.06, p=0.7, 95%CI= [−0.36, 0.24], BF10 = 0.21).We also
tested for associations between the model-based weight and the reaction
time of sequences towards the end of the sequence learning but found no
significant correlations (Sequence-A: No-Shock Session, r(38) =−0.09, p =
0.59, 95%CI = [−0.35, 0.20], BF10 = 0.23; Shock Session, r(38) =−0.24, p =
0.14, 95%CI = [−0.57, 0.01], BF10 = 0.57; Sequence-B: No-Shock Session,
r(38) = −0.09, p = 0.6, 95%CI = [−0.39, 0.23], BF10 = 0.22; Shock Session:
r(38) =−0.2, p=0.21, 95%CI = [−0.54, 0.14], BF10 = 0.42). The correlations
which yielded Bayes Factor less than 0.3 provide at least moderate support
for the absence of associations between model-based weight and sequence
learning measures.

We observed that participants changed the relative weight of their
model-based behaviour upon transitioning from the no-shock to the shock
session. We, therefore, examined whether this shift in decision-making
strategy can predict the vulnerability to making errors in motor execution
under pressure. We found that the shift in the model-based weight from the
no-shock session to the shock session towards model-free learning is posi-
tively correlated to the number of shocks (r(38) =−0.45, p = 0.003, 95%CI =
[−0.64,−0.23], BF10 = 12.1) received in the shock session. We also checked
for associations between the shift in the model-based weight and the dif-
ference in the number of motor errors between the two sessions. There was
no statistically significant linear correlation (r(38) =−0.01, p = 0.94, 95%CI =
[−0.41, 0.32], BF10 = 0.19), but this result is possibly because the number of
shocks is not a linearmeasure of performance.When the absolute number of
errors is high, each additional error may not correspond to a proportionate
decrease in performance, which led us to hypothesise that the relationship is
logarithmic. Indeed, the correlation between the shift in the model-based
weight and the difference in the logarithmic number of motor execution
errors was significant (r(38) = −0.33, p = 0.04, 95%CI = [−0.61, −0.01],
BF10 = 1.54). This suggests that shift in strategy towards model-based
learning is associated with less motor errors, but the relationship is not linear.

To examine the reliability of the estimation of themodel-basedweight,
we also calculated the split-half reliability of model-based weight in our task
by estimating separately for even and odd trials. We confirmed the overall
high internal consistency of the model-based weight with the split-half
reliability of 0.864.

Model-free decision-making is associated with slower move-
ment under threat of stressful stimuli
Our analysis so far revealed that the adoption of model-free decision-
making is associated with a decline in motor performance, resulting in a
higher occurrence of shocks in the shock session. Next, we sought to
understand the reason for errors in the motor sequence, which were the
result of wrong button presses and late button presses. (Note, slowly exe-
cuted sequences were accompanied by incorrect button presses (Supple-
mentary Fig. 3).)

We plotted the number of wrong button presses across the positions in
the five-element sequence (Fig. 6A). Notably, participants were most prone
to incorrectly press the button at the second and fourth positions. This could
be because both those presseswere executed using the ringfinger, which has
less dexterity than the otherfingers. To examine this possibility,we looked at
the time taken to press the button at positions 2 and 4 in the sequence
(button-2 reaction time and button-4 reaction time) and the number of
shocks received.We found that the participant’s button-2 reaction timewas
correlated with the number of shocks (r(38) = 0.37, p = 0.02, 95%CI = [0.11,
0.61], BF10 = 2.93) (Fig. 6B). (Note that the Bayes Factor value of 2.93
indicates a moderate evidence of the association). This effect was observed
for button-2 reaction times at both stages in the two-step sequential
movement task (Supplementary Fig. 4). We did not see a similar effect for
button-4 reaction times (r(38) = 0.2, p= 0.21, 95%CI = [−0.12, 0.57], BF10 =
0.42). We also tested for other button times but did not see a significant
correlation.We reason that the significant correlation for onlybutton-2may
arise because, in sequentialmotor tasks, only the first action is preplanned40.

The correlation between button time and number of shocks (errors)
seems to contradict the speed-accuracy trade-off atfirst glance,whichwould
predict an inverse relationship between the reaction time and number of
errors. On the other hand, it could also mean that people who are faster at
executing themotor sequences do not makemany errors because they have
learnt the sequences better. To understand this correlation further, we
examinedwhether it arose from the specific cognitive strategy (model-based
vs. model-free learning) adopted by the participants. We observed that in
the shock session, model-based participants had faster button-2 reaction
times than model-free participants by observing that the model-based
weight was negatively correlated with the button-2 reaction time (r(38) =
−0.5, p = 0.001, 95%CI = [−0.68, −0.25], BF10 = 35.59) (Fig. 6C). We did
not observe a similar correlation in the no-shock session (r(38) = −0.23,
p = 0.15, 95%CI = [−0.53, 0.04], BF10 = 0.53). This suggests that some
participants, in particular, model-free participants found it difficult to exe-
cute the early components of the motor sequences (at button-2).

To explain that result, we speculated thatmodel-basedparticipants had
less time to execute their decision due to the 2-second threshold to make a
decision and execute the sequence and that the model-based inference
might require more time. However, we found no correlation between the
model-based weight and the time taken to make the decision in the shock
session (r(38) = 0.19, p = 0.24, 95%CI = [−0.15, 0.48], BF10 = 0.38).

Arbitration between strategies impacts motor performance
To further examine the directional link between the cognitive strategy
(model-based and model-free learning) and the performance of the
sequential motor performance, we conducted a mediation analysis. Speci-
fically, we investigated whether the model-based weight mediates the rela-
tionship between the button-2 reaction time and the number of errorsmade
during the sequence execution. The results revealed that the model-based
weight significantly mediates the relationship between the sequence com-
pletion time and the number of errors made during the task (Fig. 7, Sup-
plementary Table 3). The directionality of the association between the
model-based weight and the number of shocks was further strengthened by
treating the button-2 reaction time as the outcome, number of shocks as the
primary predictor, and the model-based weight as the mediator. However,
we did not observe a significant mediation effect. This finding suggests that
individuals who exhibit a greater tendency towards model-based behaviour
have a more efficient strategy for completing the task, resulting in fewer

Fig. 5 | Model-based weights in no-shock and shock sessions.Upon the transition
from the no-shock session to the shock session, we found that participants (n = 40
participants) changed their model-based weight. Therefore, not all participants who
were mostly model-based (or model-free) in the no-shock sessions necessarily
remained that way in the shock session. Error bars represent 95% confidence
intervals.
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errors. Conversely, individuals who exhibit a greater tendency towards
model-free behaviour are more susceptible to making errors due to a less
efficient strategy for completing the task. Altogether, the present study
demonstrated that the balance between the model-based and model-free

strategies at the individual level underlies sequential motor performances
under pressure.

Discussion
Actions in our daily lives are rarely performed in isolation and are often
intertwined with decision-making that defines the goals of our actions. This
relationship leads to an intriguing question: To what extent does the
decision-making strategy influence theway the actions are executed andvice
versa, particularly when we are under pressure? In the present study, we
demonstrated that the detrimental effect of the threat of electrical shocks on
rapid sequential movements is tightly coupled with the decision-making
strategies that produce the actions. More specifically, we obtained com-
pelling evidence showing that the extent to which people employ model-
based or model-free strategies impacts the sequential movement perfor-
mance produced from the decision.

When we make decisions and motor actions under the threat of
stressful stimuli orwith an increasing complexity of environments, we could
use either a more deliberative, planned approach (model-based) or a more
computationally easy habitual approach (model-free). The balance between
the two strategies encompasses the inherent trade-off between meticulous
planning to avert aversive outcomes and the conservation of cognitive

Fig. 7 | Mediation Analysis.Amediation model examining the mediation effects of
the model-based weight on the association between the button-2 reaction time and
number of shocks (n = 40 participants). Numbers indicate standardised regression
coefficients. **p < 0.01. The model-based weight significantly mediated the rela-
tionship between the button-2 reaction time and the number of errors made during
the task. RT reaction time.

Fig. 6 | Model-free decision-making is associated with slower movement.
A Histogram of the wrong button presses across buttons in the five-element
sequences (n = 40 participants) Error bars represent 95% confidence intervals.
BThe button-2 reaction timewas correlatedwith the number of shocks (r(38) = 0.37,

p = 0.02, 95%CI = [0.11, 0.61], BF10 = 2.93) (n = 40 participants). C The negative
correlation with the model-based weight shows that model-based participants were
faster in their button-2 reaction time than model-free participants (r(38) = −0.5,
p = 0.001, 95%CI = [−0.68, −0.25], BF10 = 35.59) (n = 40 participants).
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resources. Our results revealed that under the threat of stressful stimuli,
people are more susceptible to a poorer motor performance when
they adopt or shift towards a model-free strategy compared to a model-
based strategy.

As an explanation for the performance deterioration under
pressure41–44, the self-focus theory proposed in the context of choking posits
that individuals focus toomuchattention on actions under pressure45–47. For
example, in domains such as sports and music, performers are extensively
and explicitly trained on a sequence of actions, with the assembly of actions
becoming increasingly implicit (automatic) with experience. At the begin-
ning of learning, performers are consciously aware of every step of a task. As
they learn and improve their performance of the task, their actions gradually
become automatic, and they become less conscious about each step of the
task. Once under the condition of pressure, however, they become anxious
aboutmaking errors and pay explicit attention to each step of the task again.
In other words, in the presence of pressure, explicit processes interfere with
the automatic control, which leads to poorer performance. The present
study suggested that the explicit and stepwise attentional shift in self-focus
theory is related to the shift towards model-free decision-making, which
does not consider long-term state transitions and is likely to make the
extent of attention narrower and treat sequential movements in a
more fragmented manner.

Consistent with this view, we observed that model-free participants
who suffered more shocks in the shock session used relatively more time to
execute the sequence after making a decision (i.e., after pressing the first
button of the sequence) than model-based participants. The slower execu-
tion of the sequence for model-free participants seems to contradict the
traditional concept of a model-free strategy at first glance, which is habitual
when one deploys a relatively inflexible but fast experience-based controller.
However, a recent study reported that humans can reduce mental effort by
using a model-based strategy alone48, suggesting that the model-based
strategy is not necessarily slow, and model-free decision-making can be
associated with slowermotor execution. Thus, the introduction of decision-
making into studies of motor control can deepen the understanding of
motor performances.

In addition, we observed slower button presses by model-free parti-
cipants for the time taken to press button-2 but not the other buttons. This
observation may be connected to a sequential moving task experiment
showing preplanning for the first movement and not subsequent
movements40. In our task, after making the decision and pressing the first
button in the sequence, the next action is to press button-2, possibly
explaining why errors made at button-2 are associated with the overall
motor performance in the shock session. However, we performed the same
analysis for the no-shock session and did not observe a significant corre-
lation between the button reaction time and the number of errors for any
buttons. Future research should examine why model-free decision-making
takes longer to upload motor sequence memory.

Limitations
It is known that well-designed verbal instructions can significantly shift
model-free decision-makers tomodel-based ones49. This effect suggests that
verbal instructions can also change decision-making strategies in goal-
oriented sequential movements and improve performance under pressure,
such as playing sports and music in competition. Investigating the effect of
verbal instructions on goal-oriented sequential movement performances
would be an interesting topic for future research. It may be useful, for
example, to emphasise longer structures or states in sequential movements.

Given that psychological pressure influenced the performance of
model-free participants more in the shock session, certain cognitive biases
and personality traits might also have influenced the tendency to use a
model-free strategy and bemore prone to the detrimental effect of pressure.
Personality scores such as the Big Five Personality Traits, and trait
anxiety scores should help contextualise and deepen the insights from
our findings50.

In our task, we calibrated the value of shock individually for partici-
pants but did not collect data of the absolute value of shock delivered. Future
studies can collect this data, and the value of shock could be introduced as a
covariate in the analysis.

Tomeasure the shift in strategy from the no-shock session to the shock
session, the present study calculated the raw difference of model-based
weights between the two sessions for each participant. However, the esti-
mation of this measure would be done more reliably and directly by using
hierarchal modelling.

Conclusion
Overall, the present study demonstrated that a balance between model-
based and model-free decision-making strategies impacts the performance
of rapid motor sequences for achieving a decision goal. Unlike previous
studies focusing either on motor performance or on decision-making
strategies, the present study sheds light on the interplay between the two and
exemplifies an interdisciplinary integration where an understanding of
decision-making strategies specifies the mechanism underlying motor
errors.

Data availability
All data for this study have been made publicly available in an anonymized
form at https://osf.io/6x2qt/.

Code availability
All the code used for task, model, and analysis has been made publicly
available at https://osf.io/6x2qt/.
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