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Abstract

This paper investigates the achievable region of a K-user discrete memoryless (DM) multiple access

wiretap (MAC-WT) channel, where each user transmits both secret and open (i.e., non-confidential)

messages. All these messages are intended for the legitimate receiver (Bob), while the eavesdropper (Eve)

is only interested in the secret messages. In the achievable coding strategy, the confidential information

is protected by open messages and also by the introduction of auxiliary messages. When introducing an

auxiliary message, one has to ensure that, on one hand, its rate is large enough for protecting the secret

message from Eve and, on the other hand, the resulting sum rate (together with the secret and open

message rate) does not exceed Bob’s decoding capability. This yields an inequality structure involving

the rates of all users’ secret, open, and auxiliary messages. We provide such a structure and give the

general proof. Note that for a case with a few users, the result can be proven by direct application of the

Fourier-Motzkin elimination procedure. However, this direct approach becomes extremely intractable as

the number of users increases and does not generalize to the model at hand with an arbitrary number of

users. We prove the result in full generality through the combined use of Fourier-Motzkin elimination

procedure and mathematical induction. This paper adopts the strong secrecy metric, characterized by

information leakage. To prove the achievability under this criterion, we analyze the resolvability region
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of a K-user DM-MAC channel (not necessarily a wiretap channel). In addition, we show that users

with zero secrecy rate can play different roles and use different strategies in encoding their messages.

These strategies yield non-redundant (i.e., not mutually dominating) rate inequalities. By considering

all possible coding strategies, we provide a new achievable region for the considered channel, and show

that it strictly improves those already known in the existing literature by considering a two-user binary

adder channel.

Index Terms

Discrete memoryless (DM) multiple access wiretap (MAC-WT) channel, strong secrecy, secret and

open messages, achievable rate region, binary adder channel.

I. INTRODUCTION

Information theoretic security, also known as physical layer security, is an alternative to cryp-

tographic security that may be attractive in cases where generating, distributing, and managing

cryptographic keys is difficult, or if advances in quantum computing will make systems based

on classical computational cryptography intrinsically insecure. Physical layer security techniques

exploit the randomness of the transmission channel and particular code constructions to prevent

the eavesdroppers (Eves) from wiretapping, and do not rely on Eves’ limited computational

capability assumptions. After the first seminal works on the single-user wiretap channel [2]–[5],

the research on physical layer security considered various network topologies such as multiple

access (MAC) wiretap channels [6]–[18], broadcast channels [19]–[22], interference channels

[23]–[26], and relay-aided channels [27]–[30].

This paper focuses on the MAC wiretap (MAC-WT) channel. To put our work in context, we

review the main related literature below. In [6]–[8], two-user discrete memoryless (DM) MAC-

WT systems were studied, where [6] developed inner and outer bounds for a channel with a

weaker Eve, and [7] and [8] studied a channel where two users communicate with a common

receiver and see each other as an Eve. In [10]–[15], the more general scenario with an arbitrary

number K of users was investigated. Specifically, [10] and [11] developed achievable regions for

DM MAC-WT channels, and [12] studied a Gaussian MAC-WT system with a weaker Eve seeing

a degraded channel. Reference [13] extended the work of [12] to the non-degraded Gaussian

MAC and Gaussian two-way wiretap channels, where each user has, in addition to confidential

information, also an open (i.e., non-confidential) message for the legitimate receiver. Achievable

regions were derived, the sum secrecy rate was maximized by power control, and cooperative
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jamming was also proposed to enhance the secrecy. Note that in some papers, “open message” is

also called “private message” [31]. In [14] and [15], the achievable regions of MAC-WT systems

with open and secret messages were further studied, and it was shown that by introducing open

messages to wiretap channels, the system spectral efficiency can be significantly increased while

the secrecy performance remains unchanged.

The literature mentioned above considered the weak secrecy criterion, characterized by the

information leakage rate. It should be noted that a vanishing information leakage rate does not

imply that a vanishing number of information bits of the secret message are leaked, because

the length of the message in bits grows linearly with the block length n. To address this issue,

strong secrecy was introduced in [32], [33], by considering directly the information leakage in

terms of the multi-letter mutual information between messages and Eve’s received signal, without

normalization by n. A comprehensive discussion on different secrecy metrics can be found in

[34]. Under strong secrecy, [16]–[18] have studied the standard DM MAC-WT channel with only

secret messages. Specifically, by analyzing the output statistics in terms of average variational

distance and applying random coding, an achievable region was provided in [16]. In [17], the

MAC-WT system with a DM main channel and different wiretapping scenarios was studied.

Both [16] and [17] considered the two-user case. In [18], a K-user DM MAC-WT channel was

investigated and the results in [10] and [11] were strengthened subject to the strong secrecy

metric. However, by checking the two-user case and comparing [18, (14)] with [16, Theorem 1],

it can be seen that the achievable region given in [18] includes only the region R1 in [16] but

not R2 and R3, indicating that even for the MAC-WT channel with only secret messages, there

is still space for improvement of the achievable region.

In this paper, we study the information-theoretic secrecy problem for a K-user DM MAC-WT

channel where users have both secret and open messages for the intended receiver (Bob) while

preserving the confidentiality of the secret messages with respect to Eve. Eve aims to wiretap

the confidential information of all users and the users do not care if their open messages may

be decoded by Eve. The main contributions of this work are summarized below.

• In wiretap channels, typical achievability strategies are based on introducing auxiliary

messages to protect the confidential information. When introducing an auxiliary message,

one has to ensure that, on one hand, its rate is large enough for protecting the secret

message from Eve and, on the other hand, the resulting sum rate (together with the secret

and open message rate) does not exceed Bob’s decoding capability. This yields an inequality
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structure involving the rates of all users’ secret, open, and auxiliary messages. In Theorem 1

we provide such structure and also give the conditions under which this structure can be

satisfied. An essential step in the proof of Theorem 1 is provided by Lemma 1. A two-

user case of Lemma 1 was proven in [15, Lemma 7] by direct application of the Fourier-

Motzkin elimination procedure [35, Appendix D]. However, as K grows, this direct proof

becomes unmanageable due to the excessively large number of inequalities. To exemplify

the complexity of the direct Fourier-Motzkin application, we provided the case K = 3 in

the unpublished research note [36], from which we see that even in this relatively simple

case, over 130 inequalities are generated in the direct elimination procedure. Besides the

extremely high complexity, another disadvantage of the direct elimination strategy is that it

can be applied in principle only if the number of users K is fixed so that all inequalities

can be listed. This makes the direct proof approach inappropriate for Lemma 1, since it

is stated for general K, which can take any value. In Appendix A, we circumvent this

problem and provide a general proof of Lemma 1 through the combined use of Fourier-

Motzkin elimination procedure and mathematical induction. Then, using this lemma, the

general proof of Theorem 1 follows. We prove the achievability under the strong secrecy

metric. To this end, we analyze the resolvability region for a K-user standard DM-MAC

channel (not necessarily a wiretap channel) in Theorem 2.1

• In this paper, the confidential information is protected by open messages and also by the

introduced auxiliary messages. In general, the sum rate of these messages should exceed a

certain amount such that the confidential information can be perfectly protected. However, a

novel observation and main contribution of this paper is that if a user has no secret message,

this may no longer be necessary and may even limit the resulted achievable region. In this

case, the user can play different roles and has two options: 1) introducing an additional

auxiliary message such that the sum rate of its messages is beyond Eve’s decoding capability;

2) simply encoding and transmitting its open message as in a standard MAC channel with

no wiretapping. We show that both these two options can guarantee the secrecy, but yield

non-redundant (i.e., not mutually dominating) rate inequalities. Therefore, by considering

the union over all options, i.e., all coding strategies for the users with zero secret rates,

1One may refer to [34], [37], and [38] for the notion of resolvability and resolvability region, and their relationship with

secrecy.
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we obtain a larger achievable region (Theorem 3) than previously known. Interestingly, by

simply letting the open message rate of all users be zero, we obtain an achievable region for

the standard DM MAC-WT channel with only secret messages directly from Theorem 3.

This region is strictly larger than that provided in [18], and generalizes the region for K = 2

provided in [16].

• To compare the proposed new achievable region with that provided in [15], we consider

a two-user binary adder channel with Bernoulli-distributed noise. For such a channel, all

bounds in the derived achievable region can be computed. Considering a given noise distribu-

tion and depicting the region given in [15] and also partial of the achievable region proposed

in this paper over all input distributions, we obtain two convex hulls. For convenience, we

call them old and new convex hulls, respectively. The numerical results show that there exist

channels with given noise distribution such that the two convex hulls have non-overlapping

areas. In addition, we can find points in the new convex hull that can be linearly separated

from the old convex hull using a support vector machine (SVM). These points are thus not

included in the old convex hull. These results indicate that the achievable region proposed

in this paper can strictly improve that provided in [15].

The rest of this paper is organized as follows. In Section II we introduce the K-user DM

MAC-WT channel model and give the definition of “achievability”. In Section III we give the

main results. The achievability proof of the new region is provided in Section IV. In Section V,

the proposed new region is compared with the region in the existing literature in a two-user binary

adder channel. Section VI points out some concluding remarks. Auxiliary technical results are

given in the appendices.

Notations: We use upper and lower case letters to denote random variables and their real-

izations, e.g., X , x. PX(·) denotes the probability mass function (pmf) 2 of X in the sense that

PX(·) ≜ {PX(x) : x ∈ X} where PX(x) = Pr{X = x}. For two different distributions P̂X(·)

and P̃X(·) on the same alphabet X , their total variational distance is defined as the ℓ1 norm

of the difference of the corresponding pmfs, i.e.,
∥∥∥P̂X(·)− P̃X(·)

∥∥∥
1
=

∑
x∈X

∣∣∣P̂X(x)− P̃X(x)
∣∣∣.

We use calligraphic capital letters to denote sets, |X | indicates the cardinality of a set X , and

X1 \ X2 denotes set subtraction, and X1 × X2 is the Cartesian product set. We use line over a

calligraphic letter to indicate it is the complement of a set, e.g., K′ = K \ K′ if K′ ⊆ K, and

2Loosely referred to as “distributions” in the following.
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Fig. 1. Block diagram of a K-user DM MAC-WT channel with secret (i.e., confidential) and open (i.e., non-confidential)

messages. Both secret and open messages are intended for Bob, while Eve is interested only in the secret messages.

calligraphic subscript to denote the set of elements whose indexes take values from the subscript

set, e.g., XK = {Xk : k ∈ K}. Finally, we use [·]+ ≜ max(·, 0).

II. CHANNEL MODEL AND PROBLEM DEFINITION

Fig. 1 shows the considered DM MAC-WT channel with K transmitters, a legitimate receiver

(Bob), and an eavesdropper (Eve). Let K = {1, · · · , K} denote the set of all users. The DM

MAC-WT channel is defined by
(
XK, PY,Z|XK ,Y ,Z

)
(in short PY,Z|XK), where Xk, Y , and Z are

finite alphabets, xk ∈ Xk is the channel input of user k, and y ∈ Y and z ∈ Z are respectively

channel outputs at Bob and Eve. Each user k ∈ K has a secret (i.e., confidential) message M s
k and

also an open (i.e., non-confidential) message M o
k intended for Bob. Both messages carry useful

information for Bob, and therefore must be reliably decoded by Bob. Eve attempts to overhear

the secret messages and is not interested in the open messages, although it may decode (some

of) them as part of an eavesdropping strategy. User k encodes its information into a codeword

Xn
k and then transmits it over the channel. Upon receiving the sequence Y n, Bob decodes the

messages of all users. To avoid leakage of confidential information to Eve, the secret messages

of all users, i.e., M s
K, should be protected.

Let Rs
k and Ro

k denote the rate of user k’s secret and open messages. Then, a secrecy code

for the considered DM MAC-WT channel consists of

• Secret and open message sets: Ms
k =

[
1 : 2nR

s
k

]
and Mo

k =
[
1 : 2nR

o
k

]
,∀k ∈K. Messages

M s
k and M o

k are uniformly distributed over the corresponding sets Ms
k and Mo

k.

• K randomized encoders: the encoder of user k maps the message pair (M s
k,M

o
k) ∈ Ms

k×Mo
k

to a (possibly random) codeword Xn
k .
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• A decoder at Bob which maps the received noisy sequence Y n to the message estimate(
M̂ s

k, M̂
o
k

)
∈ Ms

k ×Mo
k,∀k ∈ K.

Next, we define the criteria for achievability. These criteria are defined in an operational sense,

i.e., in terms of the behavior of the error probability at Bob and information leakage at Eve.

Definition 1. A rate-tuple (Rs
1, R

o
1, · · · , Rs

K , R
o
K) is said to be achievable if there exists a

sequence of
(
2nR

s
1 , 2nR

o
1 , · · · , 2nRs

K , 2nR
o
K , n

)
codes such that

lim
n→∞

Pr
{(

M̂ s
K, M̂

o
K

)
̸= (M s

K,M
o
K)
}
= 0, (1)

lim
n→∞

I(M s
K;Z

n) = 0, (2)

can be satisfied. ♢

Given an ensemble of coding strategies, the corresponding achievable region R for the DM

MAC-WT is the convex closure of all rate-tuples (Rs
1, R

o
1, · · · , Rs

K , R
o
K) ∈ R2K

+ satisfying

Definition 1 under such coding strategies. The determination of the largest possible achievable

region (i.e., the capacity region) requires also the proof of a converse result. Converses (i.e.,

matching outer bounds) for the DM MAC-WT are generally yet an open problem even in the

case of zero open message rates, while of course they are well-known in the case of zero secret

message rates [39]. Focusing on achievability, in the following we provide a new achievable

region which is generally larger than what was known in the existing literature.

III. MAIN RESULTS

In this section, we provide an achievable region for the considered DM MAC-WT channel

under strong secrecy and show that it improves the one in [15, Lemma 1]. Using the result,

a new achievable secrecy rate region can be directly obtained for the standard DM MAC-WT

channel with only secret messages. Before giving the regions, we first provide some auxiliary

results that are important for the achievability proof.

A. Auxiliary Results

We shall consider achievability strategies where users may introduce auxiliary messages to

protect the confidential information, and use superscript “a” to distinguish from the secret and

open messages. Let M a
k denote the auxiliary message introduced for user k and Ra

k denote its

rate. Note that in this paper, there are three types of messages, i.e., secret, open, and auxiliary
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messages. As we have explained at the beginning of Section II, both the secret and open messages

are intended for Bob, while Eve is only interested in the secret messages. Note that the auxiliary

messages are not intended for either Bob or Eve. They are introduced only to add dummy

randomness to protect or “hide” the secret messages. As explained in the introduction, there

should be a relationship or structure for Rs
k, Ro

k, and Ra
k,∀k ∈ K such that the sum rate of the

messages does not exceed Bob’s decoding capability and the confidential information can be

protected. In the following theorem, we construct such a structure (see (5)) and also give the

conditions (see (3) and (4)) under which this structure can be satisfied.

Theorem 1. Let (XK, Y, Z) ∼
∏K

k=1 PXk
PY,Z|XK . For a given subset K′ ⊆ K, if

I(XS ;Y |XS , XK′)− I(XS ;Z|XK′) ≥ 0,∀S ⊆ K′, (3)

then, for any rate-tuple (Rs
1, R

o
1, · · · , Rs

K , R
o
K) satisfying

Rs
k = 0,∀k ∈ K′,∑

k∈S
Rs

k +
∑

k∈S\S′
Ro

k +
∑
k∈T

Ro
k ≤ I(XS , XT ;Y |XS , XT )− I(XS′ ;Z|XK′),

∀S ⊆ K′,S ′ ⊆ S, T ⊆ K′,

(4)

there exist Ra
k,∀k ∈ K′ such that

Ra
k ≥ 0,∀k ∈ K′,∑

k∈S
(Rs

k +Ro
k +Ra

k) +
∑
k∈T

Ro
k ≤ I(XS , XT ;Y |XS , XT ),∀S ⊆ K′, T ⊆ K′,∑

k∈S
(Ro

k +Ra
k) ≥ I(XS ;Z|XK′),∀S ⊆ K′,

(5)

where K′ = K \ K′, S = K′ \ S , and T = K′ \ T .

Proof: In the following Lemma 1 and Appendix A, we give a special case of Theorem 1 with

K′ = K and its proof. Then, we prove Theorem 1 in Appendix B by using Lemma 1. □

For any K′ ⊆ K, using the chain rule and non-negativity of mutual information, we have

I(XS , XT ;Y |XS , XT ) = I(XS ;Y |XS , XK′) + I(XT ;Y |XS , XT )

≥ I(XS ;Y |XS , XK′),∀S ⊆ K′, T ⊆ K′,

I(XS ;Z|XK′) = I(XS′ , XS\S′ ;Z|XK′)

= I(XS′ ;Z|XK′) + I(XS\S′ ;Z|XS′ , XK′)

≥ I(XS′ ;Z|XK′),∀S ⊆ K′,S ′ ⊆ S. (6)
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If (3) holds, due to (6), we have

I(XS , XT ;Y |XS , XT )− I(XS′ ;Z|XK′) ≥ 0,∀S ⊆ K′,S ′ ⊆ S, T ⊆ K′, (7)

i.e., each upper bound in (4) is non-negative. On the other hand, by setting S ′ = S and T = ϕ

in (7), we can obtain (3) directly from (7). Hence, (3) and (7) are actually equivalent.

For each K′ ⊆ K, Theorem 1 gives the existence conditions of Ra
k,∀k ∈ K′ in (3) and

(4). To apply the coding scheme provided in the next section, it is also necessary to know

how to obtain Ra
k,∀k ∈ K′. This can be done efficiently as follows. For a given rate point

(Rs
1, R

o
1, · · · , Rs

K , R
o
K), if (3) and (4) can be satisfied, the linear inequalities in (5) define a

polytope as a feasible region of Ra
k,∀k ∈ K′. Then, we may apply Dantzig’s simplex algorithm

to obtain Ra
k,∀k ∈ K′ [40].

Now we consider the special case of Theorem 1 with K′ = K. The basic result is collected

in the following lemma.

Lemma 1. Let (XK, Y, Z) ∼
∏K

k=1 PXk
PY,Z|XK . If

I(XS ;Y |XS)− I(XS ;Z) ≥ 0,∀S ⊆ K, (8)

then, for any rate-tuple (Rs
1, R

o
1, · · · , Rs

K , R
o
K) satisfying∑

k∈S

Rs
k +

∑
k∈S\S′

Ro
k ≤ I(XS ;Y |XS)− I(XS′ ;Z),∀S ⊆ K,S ′ ⊆ S, (9)

there exist Ra
k,∀k ∈ K such that

Ra
k ≥ 0,∀k ∈ K,∑

k∈S
(Rs

k +Ro
k +Ra

k) ≤ I(XS ;Y |XS),∀S ⊆ K,∑
k∈S

(Ro
k +Ra

k) ≥ I(XS ;Z),∀S ⊆ K,

(10)

where S = K \ S.

Proof: See Appendix A. □

Remark 1. Lemma 1 is a direct extension of [15, Lemma 7] from a two-user case to the general

K-user case. For the simple system with a small K, e.g., K = 1 or K = 2, Lemma 1 can be

proven by eliminating Ra
k in (10) using the Fourier-Motzkin procedure [35, Appendix D] and

showing that (9) is the projection of (10) onto the hyperplane {Ra
k = 0,∀k ∈ K}. However,

when K increases, the number of inequalities resulted in the elimination procedure grows very
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quickly (doubly exponentially), making it quite difficult or even impractical to prove this lemma

by following this brute-force way. Besides the great complexity, another problem is that the direct

elimination strategy works in principle only if K is fixed so that all inequalities can be listed.

This makes the strategy inappropriate for the proof of Lemma 1, since it is stated for general

K, which can take any value.

In the research note [36], we consider a system with K = 3 and prove Lemma 1 by eliminating

Ra
1, R

a
2, and Ra

3 one by one. From (10) we first get 4 upper bounds and 5 lower bounds on Ra
1.

By pairing up these lower and upper bounds, we get 20 inequalities, based on which 8 upper

bounds and 7 lower bounds on Ra
2 are obtained. We then eliminate Ra

2 and get 56 inequalities,

most of which are redundant. Neglecting the redundant terms, we further get 9 upper bounds and

7 lower bounds on Ra
3, and 63 inequalities by pairing them up. Neglecting the redundant terms,

we show that the remaining inequalities construct (9). This unpublished note is mentioned here

and made public in [36] to illustrate how difficult the brute-force Fourier-Motzkin elimination

is, even in the simple case of 3 users. ♢

This paper employs the strong secrecy metric and proves the achievability based on the

resolvability theory of the MAC channel. The notion of channel resolvability was introduced

in [41] to approximate the output distribution of single-user channels by simulating an input

process. Then, in [42] and [43], it was further developed to study the randomness needed

for approximating the output distribution and the identification capacity for two-user MAC

channels, respectively. The resolvability theory has also been shown to be a powerful tool

in proving strong secrecy in wiretap channels [16], [34], [37], [44]. Specifically, in [34] and

[37], channel resolvability was leveraged to establish the secrecy-capacity region for single-user

wiretap channels under the strong secrecy metric. In [16] and [44], achievable regions of two-

user wiretap channels under different system settings and the strong secrecy metric were studied

based on channel resolvability. In this paper, we show that the resolvability theory can also be

applied to prove the strong secrecy for the considered system, where the users transmit both

secret and open messages. To this end, we first extend the resolvability result in [16] from a

two-user case to the K-user DM-MAC channel (not necessarily a wiretap channel) in Theorem 2.

In particular, we consider a DM-MAC channel (not necessarily a wiretap channel) with K users

and a receiver. Each user k has a message Mk at rate Qk, and Mk is uniformly distributed over
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Mk =
[
1 : 2nQk

]
. User k generates a codebook ck by randomly and independently generating

2nQk sequences xn
k(mk),∀mk ∈ Mk, each according to

∏n
i=1 PXk

(xki). Then, for a given

message mk ∈ Mk, user k transmits codeword xn
k(mk) over the channel PZ|XK .3 The observation

of the receiver is Zn. Let Ck denote the random choice of codebook ck and define the following

conditional output distribution

PZn(·|CK) =
∑

mK∈
∏

k∈K Mk

PMK(mK)PZn(·|CK,mK)

= 2−n
∑

k∈K Qk

∑
mK∈

∏
k∈K Mk

PZn

(
·| {Xn

k (mk)}k∈K
)
. (11)

In addition, for a given K′ ⊆ K, define

PZn(·|CK′) = 2−n
∑

k∈K′ Qk
∑

mK′∈
∏

k∈K′ Mk

PZn

(
·| {Xn

k (mk)}k∈K′

)
, (12)

where

PZn

(
·| {Xn

k (mk)}k∈K′

)
=

∑
xn
K′∈

∏
k∈K′ Xn

k

PXn
K′ (x

n
K′)PZn

(
·|xn

K′ , {Xn
k (mk)}k∈K′

)
. (13)

In the following theorem we show that when certain conditions are satisfied, using the coding

scheme provided above, the average variational distance between the output statistics PZn(·|CK)

and PZn(·|CK′) vanishes exponentially in n.

Theorem 2. For given distribution
∏K

k=1 PXk
PZ|XK and subset K′ ⊆ K, if

Qk = 0, ∀k ∈ K′,∑
k∈S

Qk > I(XS ;Z|XK′),∀S ⊆ K′,S ≠ ϕ, (14)

using the above coding scheme, there exists ε > 0 such that

E ∥PZn(·|CK)− PZn(·|CK′)∥1 ≤ e−nε, (15)

where the expectation is taken over the random codebooks.

Proof: See Appendix C. □

By a standard random coding argument, (15) implies that, if a rate-tuple (Q1, · · · , QK) satisfies

(14), there must exist codebooks cK such that

∥PZn(·|cK)− PZn(·|cK′)∥1 ≤ e−nε. (16)

3Note that the coding scheme considered here is instrumental to prove Theorem 2, and it is different from that in Section IV.
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Therefore, the region defined by (14) is the resolvability region of the DM-MAC channel with

input process XK ∼
∏

k PXk
[38]. Theorem 2 shows that if a rate point is in the resolvability

region, as the block length n goes to infinity, the induced output distribution PZn(·|CK) condi-

tioned on the codebooks approaches PZn(·|CK′), which is induced by the knowledge of some

codebooks and randomly guessing (with the given distribution
∏

k PXk
) the other input xn

K′ over

the whole alphabets
∏

k∈K′ X n
k . Our result in Theorem 2 for K = 2 and K′ = {1, 2} coincides

with that given by [16, Theorem 2].

B. Achievable Regions

In the following theorem we provide the new achievable region for the considered DM MAC-

WT channel with both secret and open messages.

Theorem 3. For given distribution
∏K

k=1 PXk
PZ|XK and subset K′ ⊆ K, any rate-tuple (Rs

1, R
o
1,

· · · , Rs
K , R

o
K) satisfying

Rs
k = 0,∀k ∈ K′,∑

k∈S
Rs

k +
∑

k∈S\S′
Ro

k +
∑
k∈T

Ro
k ≤ [I(XS , XT ;Y |XS , XT )− I(XS′ ;Z|XK′)]

+ ,

∀S ⊆ K′,S ′ ⊆ S, T ⊆ K′,

(17)

is achievable, where S, T , and K′ are defined in (5). Let R(XK,K′) denote the set of rate tuples

satisfying (17). Then, the convex hull of the union of R(XK,K′) over all
∏K

k=1 PXk
and K′ ⊆ K

is an achievable rate region of the DM MAC-WT channel.

Proof: The proof is provided in Section IV. □

It can be found that [15, Lemma 1] is a special case of Theorem 3 with K′ = K. In the

following remark, we explain why Theorem 3 can improve [15, Lemma 1].

Remark 2. The partitioning of K into K′ and K′ is very important in determining the achievable

region, where users in K′ have zero secrecy rate. We observe that if a user has no secret message,

it can play different roles and has two options: 1) introducing an additional auxiliary message

such that the sum rate of its messages is beyond Eve’s decoding capability; 2) simply encoding

and transmitting its open message as in a standard MAC channel with no wiretapping. The

achievability proof in the next section shows that both these two options have advantages and

disadvantages in determining the achievable regions. Using the first option, the signal of the
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user plays as noise to Eve and can thus weaken its wiretapping capability. However, more

constraints are imposed on the message rate, which is detrimental to determining the achievable

region. The advantage and disadvantage of the second option are exactly the opposite, i.e., fewer

constraints are imposed, but Eve has a stronger wiretapping capability. Therefore, to obtain a

larger achievable region, all 2K possible partitions K = K′ ∪ K′ should be taken into account.

In [15], only the K′ = K case was considered. Hence, Theorem 3 improves the region in [15,

Lemma 1]. ♢

Now we consider two special cases of Theorem 3 with respectively Rs
k = 0,∀k ∈ K and

Ro
k = 0,∀k ∈ K. First, if Rs

k = 0,∀k ∈ K, each user has only one open message, which

does not interest Eve. The system can then be seen as a normal DM-MAC channel with no

wiretapping. It can be proven that in this case, the region given in Theorem 3 becomes the

capacity region of the standard K-user DM-MAC channel with no Eve [35, Chapter 4]. Since

the proof is easy, for brevity, we do not provide the details here.

Next, we consider the case with Ro
k = 0,∀k ∈ K. In this case, the system reduces to the

conventional DM MAC-WT channel with only secret messages. The achievable regions of such

a channel have been investigated in [10], [16], [18]. In particular, [16] studied the two-user case

under strong secrecy, [10] considered the K-user case with weak secrecy, and [18] strengthened

the result in [10] subject to the strong secrecy measure. Though both [16] and [18] considered

strong secrecy, by checking the two-user case and comparing [18, (14)] with [16, Theorem 1],

it can be found that the achievable region given in [18] includes only R1 in [16] but not R2 and

R3, indicating that there is still space for improvement of the achievable region of the general

K-user MAC-WT channel. We show later that our results improve those in [10], [16], [18]. If

Ro
k = 0,∀k ∈ K, (17) becomes Rs

k = 0,∀k ∈ K′,∑
k∈S

Rs
k ≤ [I(XS , XT ;Y |XS , XT )− I(XS′ ;Z|XK′)]

+ ,∀S ⊆ K′,S ′ ⊆ S, T ⊆ K′,
(18)

which can be simplified as (19) due to (6). Then, we give the following lemma.

Lemma 2. If Ro
k = 0,∀k ∈ K, for each given K′ ⊆ K, any rate-tuple (Rs

1, · · · , Rs
K) satisfyingRs

k = 0,∀k ∈ K′,∑
k∈S

Rs
k ≤ [I(XS ;Y |XS , XK′)− I(XS ;Z|XK′)]

+ ,∀S ⊆ K′,
(19)
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is achievable. Let Rs(XK,K′) denote the set of rate tuples satisfying (19). Then, the convex hull

of the union of Rs(XK,K′) over all
∏K

k=1 PXk
and K′ ⊆ K is an achievable secrecy rate region

of the DM MAC-WT channel with only secret messages. □

Remark 3. It can be seen that [16, Theorem 1] and [18, Theorem 1] are special cases of

Lemma 2 by respectively setting K = 2 and considering only K′ = K. As shown in the next

section, for a given K′, we introduce auxiliary messages, whose rates satisfy (5), and then prove

the achievability of R(XK,K′) by providing a coding scheme. However, (5) can only be satisfied

if (3) is true. If it is not, the proof is no longer valid. As a matter of fact, this problem also

exists in [16] and [18] (by respectively checking [16, (7), (20)] and [18, (11), (13)]), but was

not considered, making the proof incomplete. In the next section we prove that if (3) is not true,

there always exists K′′ ⫋ K′ such that (3) becomes true for the reduced set K′′ and R(XK,K′)

is included in R(XK,K′′), which can then be proved to be achievable. Therefore, this paper not

only generalizes the results given by [16] and [18], but also “completes” the proofs in these

works. ♢

This paper studies wiretap channels. Hence, we are especially concerned about the maximum

achievable sum secrecy rate of the system. In addition, apart from the secret message, each user

also has an open message intended for Bob. Then, an interesting question is if all users transmit

their confidential information at the maximum sum secrecy rate, what is the maximum sum rate

at which they could encode their open messages. We give the answer in the following Theorem.

Theorem 4. For the considered DM MAC-WT channel and given
∏K

k=1 PXk
PZ|XK , the maximum

achievable sum secrecy rate
∑

k∈K Rs
k is

Rs(XK) = max
K′⊆K

{
[I(XK′ ;Y |XK′)− I(XK′ ;Z|XK′)]

+} . (20)

Let K′∗ denote the subset in K which achieves (20) and K′∗ = K \ K′∗. If Rs(XK) > 0 and all

users transmit their confidential messages at sum rate Rs(XK), the maximum achievable sum

rate at which users in K could send their open messages is given by4

Ro(XK) = I(XK′∗ ;Y ) + I(XK′∗ ;Z|XK′∗). (21)

4Here we assume Rs(XK) > 0 since otherwise we have Rs
k = 0, ∀k ∈ K, i.e., the system reduces to a standard DM-MAC

channel with no wiretapping.



15

Proof: See Appendix D. □

Theorem 4 shows that the channel can support a non-trivial additional open sum rate even if

the coding scheme is designed to maximize the sum secrecy rate.

IV. ACHIEVABILITY PROOF

In this section, we prove Theorem 3. We start from a special case with K′ = ϕ and K′ = K.

In this case, (17) becomes  Rs
k = 0,∀k ∈ K,∑
k∈T Ro

k ≤ I(XT ;Y |XT ),∀T ⊆ K.
(22)

The region R(XK, ϕ) defined above is included in the capacity region of a standard DM-MAC

channel with no wiretapping and its achievability proof is well known. One may refer to [35,

Chapter 4] for the detailed proof.

Next, we prove the achievability of R(XK,K′) for any non-empty subset K′ ⊆ K. Without

loss of generality (w.l.o.g.), we always assume

I(XS ;Y |XS) > 0,∀S ⊆ K,S ≠ ϕ, (23)

since otherwise users in S cannot communicate with Bob. Moreover, we assume

I(XS ;Y |XS , XK′)− I(XS ;Z|XK′) > 0,∀S ⊆ K′,S ≠ ϕ, (24)

which is (3) with strict “>”. If (24) can be satisfied, Theorem 1 can be applied for the achiev-

ability proof. Otherwise, we show later that the achievability could be proven by modifying the

proof steps.

A. Achievability Proof When (24) Holds

In this subsection, we show that with (24), any rate-tuple inside R(XK,K′) is achievable. This,

together with the standard time-sharing over coding strategies, suffices to prove the achievability

of R(XK,K′). If (24) can be satisfied, due to (6), we have

I(XS , XT ;Y |XS , XT )− I(XS′ ;Z|XK′) > 0,∀S ⊆ K′,S ′ ⊆ S, T ⊆ K′,S ≠ ϕ. (25)

Then, the rate tuples inside region R(XK,K′) satisfy
Rs

k = 0,∀k ∈ K′,∑
k∈S

Rs
k +

∑
k∈S\S′

Ro
k +

∑
k∈T

Ro
k < I(XS , XT ;Y |XS , XT )− I(XS′ ;Z|XK′)− ϵ,

∀S ⊆ K′,S ′ ⊆ S, T ⊆ K′,S ∪ T ̸= ϕ,

(26)
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where ϵ is an arbitrarily small positive number. For a given rate-tuple (Rs
1, R

o
1, · · · , Rs

K , R
o
K)

satisfying (26), it is known from Theorem 1 that there exist Ra
k,∀k ∈ K′ such that

Ra
k ≥ 0, ∀k ∈ K′,∑

k∈S
(Rs

k+Ro
k+Ra

k)+
∑
k∈T

Ro
k<I(XS , XT ;Y |XS , XT )−ϵ,∀S⊆K′, T ⊆K′,S ∪ T ≠ϕ,∑

k∈S
(Ro

k +Ra
k) > I(XS ;Z|XK′), ∀S ⊆ K′,S ≠ ϕ,

(27)

and Ra
k,∀k ∈ K′ can be found by applying Dantzig’s simplex algorithm [40]. Now we provide

a coding scheme and show that the metrics in Definition 1 can be satisfied.

1) Coding Scheme: Assume w.l.o.g. that 2nRs
k , 2n(Ro

k+Ra
k), 2nRa

k ,∀k ∈ K′, and 2nR
o
k ,∀k ∈ K′,

are integers.

s( ,1,1)n

k k
x m  

o
s( , 2 )knR

k k
c m

s( )
k k
c m

s( ,1)
k k
c m

g
s( ,1, 2 )knRn

k k
x m

o
s( , 2 ,1)knRn

k k
x m

o g
s( , 2 , 2 )k knR nRn

k k
x m

Fig. 2. A division of subcodebook ck(ms
k) of user k ∈ K′.

Codebook generation. For each message pair (ms
k,m

o
k) ∈ Ms

k × Mo
k of user k ∈ K′,

generate a sub-subcodebook ck(ms
k,m

o
k) by randomly and independently generating 2nR

a
k se-

quences xn
k(m

s
k,m

o
k,m

a
k),∀ma

k ∈ Ma
k, each according to

∏n
i=1 PXk

(xki). For a given secret

message ms
k, the sub-subcodebooks for all open messages constitute subcodebook ck(ms

k), i.e.,

ck(ms
k) =

⋃
mo

k∈M
o
k
ck(ms

k,m
o
k). Fig. 2 gives an example of subcodebook ck(ms

k). Then, as shown

in Fig. 3, these subcodebooks constitute the codebook of user k, i.e., ck =
⋃

ms
k∈M

s
k
ck(ms

k).

For each user k in K′, we apply the random coding scheme used in the standard MAC channel

with no wiretapping. In particular, user k ∈ K′ generate its codebook ck by randomly and

independently generating 2nR
o
k sequences xn

k(m
o
k),∀mo

k ∈ Mo
k, each according to

∏n
i=1 PXk

(xki).

The codebooks of all users are then revealed to all transmitters and receivers, including Eve.

Encoding. To send message pair (ms
k,m

o
k) ∈ Ms

k×Mo
k, encoder k ∈ K′ uniformly chooses a

codeword (with index ma
k) from sub-subcodebook ck(ms

k,m
o
k) and then transmits xn

k(m
s
k,m

o
k,m

a
k).

To send message mo
k ∈ Mo

k, encoder k ∈ K′ transmits xn
k(m

o
k).
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(1,1,1)n
k
x

o g( )2 k kn R R+

s

o g

,2

2 2,

(

)

k

k k

nR

nR nR

n

k
x

1 
(1)
k
c

s( )
k k
c m




s

(2 )knR
k
c

s

o g

( ,

, )

n

k k

k k

x m

m m

Fig. 3. Codebook ck of user k ∈ K′.

Decoding. The decoder at Bob uses joint typicality decoding to find an estimate of the mes-

sages and declares that (m̂s
K′ , m̂o

K′ , m̂o
K′) is sent if there exists m̂a

K′ ∈
∏

k∈K′ Ma
k such that (m̂s

K′ ,

m̂o
K′ , m̂a

K′ , m̂o
K′) is the unique message-tuple satisfying ({xn

k(m̂
s
k, m̂

o
k, m̂

a
k)}k∈K′ , {xn

k(m̂
o
k)}k∈K′ , yn)

∈ T (n)
ϵ (XK, Y ).

2) Analysis of the Probability of Error: Since users in K′ and K′ respectively transmit their

messages at rate Rk = Rs
k +Ro

k +Ra
k and Rk = Ro

k, and (see (27))∑
k∈S

(Rs
k+Ro

k+Ra
k)+

∑
k∈T

Ro
k < I(XS , XT ;Y |XS , XT )−ϵ,∀S ⊆ K′, T ⊆ K′,S ∪ T ̸= ϕ, (28)

the rate-tuple (R1, · · · , RK) is inside the capacity region of the MAC channel from all users to

Bob. Then, it can be proven by using the law of large numbers (LLN) and the packing lemma

that the average probability of error at Bob vanishes as n goes to infinity, i.e.,

lim
n→∞

Pr
{(

M̂ s
K, M̂

o
K, M̂

a
K

)
̸= (M s

K,M
o
K,M

a
K)
}
= 0, (29)

Note that for notational convenience, in (29), every user has M s
k, M o

k , and M a
k. For users in K′,

which have only open messages, M s
k and M a

k are actually constants and do not affect the value

of the probability term in (29). The proof of (29) follows exactly the same steps used in [35,

Subsection 4.5.1] and is omitted here. Since

Pr
{(

M̂ s
K, M̂

o
K, M̂

a
K

)
̸= (M s

K,M
o
K,M

a
K)
}
= Pr

{(
M̂ s

K, M̂
o
K

)
̸= (M s

K,M
o
K) or M̂ a

K ̸= M a
K

}
≥ Pr

{(
M̂ s

K, M̂
o
K

)
̸= (M s

K,M
o
K)
}
, (30)

we know that (1) is true.
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3) Analysis of the Information Leakage: Define the following total variational distance

d(CK,ms
K′ ,mo

K′)=
∥∥PZn

(
·|CK′ , {Ck(mo

k)}k∈K′

)
−PZn

(
·| {Ck(ms

k)}k∈K′ , {Ck(mo
k)}k∈K′

)∥∥
1
. (31)

As shown below, we can get an upper bound on the expectation of d(CK,ms
K′ ,mo

K′)

E
[
d(CK,ms

K′ ,mo
K′)

]
≤ E

∥∥PZn

(
·|CK′ , {Ck(mo

k)}k∈K′

)
− PZn

(
·| {Ck(mo

k)}k∈K′

)∥∥
1

+ E
∥∥PZn

(
·| {Ck(ms

k)}k∈K′ , {Ck(mo
k)}k∈K′

)
−PZn

(
·| {Ck(mo

k)}k∈K′

)∥∥
1

≤ 2−n
∑

k∈K′ Rs
k

∑
ms

K′∈
∏

k∈K′ Ms
k

E
∥∥PZn

(
·| {Ck(ms

k)}k∈K′ , {Ck(mo
k)}k∈K′

)
−PZn

(
·| {Ck(mo

k)}k∈K′

)∥∥
1

+ E
∥∥PZn

(
·| {Ck(ms

k)}k∈K′ , {Ck(mo
k)}k∈K′

)
− PZn

(
·| {Ck(mo

k)}k∈K′

)∥∥
1
, (32)

where the expectations are taken over the random codebooks, the first step follows from first

introducing PZn

(
·| {Ck(mo

k)}k∈K′

)
and then applying the triangular inequality, and the second

step holds by computing PZn

(
·|CK′ , {Ck(mo

k)}k∈K′

)
over all possible ms

K′ and also applying the

triangular inequality. In addition, it is known from the coding scheme provided above that there

are respectively 2n(R
a
k+Ro

k) codewords in Ck(ms
k),∀k ∈ K′ and one codeword in Ck(mo

k),∀k ∈ K′.

Letting Qk = log |Ck(mo
k)| = 0,∀k ∈ K′ and Qk = log |Ck(ms

k)| = Ro
k + Ra

k,∀k ∈ K′, since∑
k∈S(R

o
k+Ra

k) > I(XS ;Z|XK′), ∀S ⊆ K′,S ≠ ϕ (see (27)), we know that (14) can be satisfied.

Theorem 2 can then be applied and yields

E
∥∥PZn

(
·| {Ck(ms

k)}k∈K′ , {Ck(mo
k)}k∈K′

)
− PZn

(
·| {Ck(mo

k)}k∈K′

)∥∥
1

≤e−nε,∀ms
K′ ∈

∏
k∈K′

Ms
k. (33)

Based on (33), (32) can be further upper bounded as follows

E
[
d(CK,ms

K′ ,mo
K′)

]
≤ 2e−nε → 0. (34)
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Now we evaluate the information leakage over all codebooks as follows

I
(
M s

K′ ;Zn|M o
K′ , CK

)
= H

(
Zn|M o

K′ , CK
)
−H

(
Zn|M s

K′ ,M o
K′ , CK

)
= H

(
Zn|CK′ , {Ck(M o

k)}k∈K′

)
−H

(
Zn| {Ck(M s

k)}k∈K′ , {Ck(M o
k)}k∈K′

)
(a)
≤ 2−n(

∑
k∈K′ Rs

k+
∑

k∈K′ R
o
k)

∑
ms

K′∈
∏

k∈K′ Ms
k,

mo
K′∈

∏
k∈K′ Mo

k

∣∣H (
Zn|CK′ , {Ck(mo

k)}k∈K′

)

−H
(
Zn| {Ck(ms

k)}k∈K′ , {Ck(mo
k)}k∈K′

)∣∣
(b)
≤ 2−n(

∑
k∈K′ Rs

k+
∑

k∈K′ R
o
k)

∑
ms

K′∈
∏

k∈K′ Ms
k,

mo
K′∈

∏
k∈K′ Mo

k

E

[
d(CK,ms

K′ ,mo
K′) ln

|Z|n

d(CK,ms
K′ ,mo

K′)

]

(c)
≤ 2−n(

∑
k∈K′ Rs

k+
∑

k∈K′ R
o
k)

∑
ms

K′∈
∏

k∈K′ Ms
k,

mo
K′∈

∏
k∈K′ Mo

k

E
[
d(CK,ms

K′ ,mo
K′)

]
ln

|Z|n

E
[
d(CK,ms

K′ ,mo
K′)

]
≤ 2e−nε (n ln |Z|+ nε− ln 2) → 0, (35)

where (35a), (35b), and (35c) follow by respectively applying the triangular inequality, [45,

Lemma 2.7], and Jensen’s inequality, and the last step is obtained by using (34) and the fact

that u ln |Z|n
u

is an increasing function of u in (0, |Z|n
e
] and 0 < 2e−nε < 1

e
≤ |Z|n

e
(as n goes to

infinity). Using the chain rule and non-negativity of mutual information,

I
(
M s

K′ ;Zn|M o
K′ , CK

)
= I

(
M s

K′ ;Zn, CK|M o
K′

)
− I

(
M s

K′ ; CK|M o
K′

)
(a)
= I

(
M s

K′ ;Zn, CK|M o
K′

)
= I

(
M s

K′ ;Zn|M o
K′

)
+ I

(
M s

K′ ; CK|Zn,M o
K′

)
≥ I

(
M s

K′ ;Zn|M o
K′

)
, (36)

where (36a) holds since the choices of random messages at different users are independent of each

other and also independent of the choices of random codebooks, resulting in I
(
M s

K′ ; CK|M o
K′

)
= 0. It is known from (35) and (36) that

lim
n→∞

I
(
M s

K′ ;Zn|M o
K′

)
= 0. (37)

Since Rs
k = 0,∀k ∈ K′ and the messages of different users are independent, we have

I
(
M s

K′ ;Zn|M o
K′

)
≥ I (M s

K′ ;Zn)

= I (M s
K;Z

n) . (38)
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Then, it is known that (2) is true.

B. Achievability Proof When (24) does not Hold

For a given K′ ⊆ K, if (24) cannot be satisfied, then, there exists at least one non-empty set

S ⊆ K′ such that

I(XS ;Y |XS , XK′)− I(XS ;Z|XK′) ≤ 0. (39)

With (39), there are two possible cases, i.e.,

I(XK′ ;Y |XK′)− I(XK′ ;Z|XK′) ≤ 0, (40)

and

I(XK′ ;Y |XK′)− I(XK′ ;Z|XK′) > 0. (41)

In the following, we prove the achievability of R(XK,K′) when either (40) or (41) holds.

In the first case, i.e., when (40) holds, by setting S = K′, S ′ = S = K′ and T = ϕ in (17),

we get ∑
k∈K′

Rs
k ≤ [I(XK′ ;Y |XK′)− I(XK′ ;Z|XK′)]

+ = 0. (42)

Hence, Rs
k = 0, ∀k ∈ K′. Considering that Rs

k = 0,∀k ∈ K′ in (17), we have Rs
k = 0, ∀k ∈ K.

Then, in this case, (17) becomes
Rs

k = 0, ∀k ∈ K,∑
k∈S\S′

Ro
k +

∑
k∈T

Ro
k ≤ [I(XS , XT ;Y |XS , XT )− I(XS′ ;Z|XK′)]

+ ,

∀S ⊆ K′,S ′ ⊆ S, T ⊆ K′,

(43)

which is included in Rs
k = 0,∀k ∈ K,∑

k∈S
Ro

k +
∑
k∈T

Ro
k ≤ I(XS , XT ;Y |XS , XT ), ∀S ⊆ K′, T ⊆ K′,

(44)

since (44) consists of only partial inequalities in (43) (those with S ′ = ϕ). Note that (44) can

be seen as the capacity region of a standard DM-MAC channel PY |XK with no wiretapping and

K users, each transmitting at rate Ro
k. Hence, the achievability of (43) is obvious.

In the second case, i.e., when (41) holds, due to (39), there must exist at least one subset

K0 ⫋ K′ such that

I(XK0 ;Y |XK′\K0 , XK′)− I(XK0 ;Z|XK′) ≤ 0, (45)
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and

I(XK0∪V ;Y |XK′\(K0∪V), XK′)− I(XK0∪V ;Z|XK′) > 0, ∀V ⊆ K′ \ K0,V ̸= ϕ. (46)

The inequalities (45) and (46) indicate that K0 is the largest set in K′ which includes all users

in K0 and ensures (45). Adding any other users in K′ \ K0 to K0 results in (46). Note that if

there are multiple subsets in K′ making (45) and (46) hold, we let K0 be any of them. Let

K′′ = K′ \ K0

= K \ (K′ ∪ K0),

K′′ = K \ K′′

= K′ ∪ K0. (47)

Then, we give the following theorem.

Theorem 5. With K0, K′′, and K′′ defined above, we have

I(XV ;Y |XV , XK′′)− I(XV ;Z|XK′′) > 0,∀V ⊆ K′′,V ̸= ϕ, (48)

where V = K′′ \ V . In addition, if a rate-tuple (Rs
1, R

o
1, · · · , Rs

K , R
o
K) is in region R(XK,K′)

defined by Theorem 3 and has (45) as well as (46) met, then, it is also in region R(XK,K′′),

i.e., it satisfies
Rs

k = 0,∀k ∈ K′′,∑
k∈V

Rs
k +

∑
k∈V\V ′

Ro
k +

∑
k∈W

Ro
k ≤ I(XV , XW ;Y |XV , XW)− I(XV ′ ;Z|XK′′),

∀V ⊆ K′′,V ′ ⊆ V ,W ⊆ K′′,

(49)

where W = K′′ \W .

Proof: See Appendix E. □

It can be similarly proven as (7) that (48) is equivalent to

I(XV , XW ;Y |XV , XW)− I(XV ′ ;Z|XK′′) > 0, ∀V ⊆ K′′,V ′ ⊆ V ,W ⊆ K′′,V ∪W ≠ ϕ. (50)

[·]+ in (49) can thus be omitted. Note that to make it easier to read and explain, instead of S

and T , we use new notations V and W in Theorem 5 and Appendix E to respectively denote

subsets in K′′ and K′′.

Theorem 5 shows that if a rate-tuple (Rs
1, R

o
1, · · · , Rs

K , R
o
K) is in region R(XK,K′) and has

(45) as well as (46) met, it is also in region R(XK,K′′) and satisfies (50). Then, its achievability
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is immediately clear if we could prove that with (50), any rate-tuple in R(XK,K′′) is achievable.

Interestingly, this can be realized by using similar techniques provided in the previous subsection.

V. TWO-USER BINARY ADDER CHANNEL

In this section, we consider a two-user binary adder channel and show that the achievable

region proposed in Theorem 3 can strictly improve that provided in [15, Theorem 1].

A. Two-User DM MAC-WT Channel

When K = 2, by respectively letting K′ in (17) be {1, 2}, {1}, {2}, and ϕ, we obtain the

following four regions

R(XK, {1, 2})



Rs
1 +Ro

1 ≤ I(X1;Y |X2)

Rs
2 +Ro

2 ≤ I(X2;Y |X1)

Rs
1 +Ro

1 +Rs
2 +Ro

2 ≤ I(X1, X2;Y )

Rs
1 ≤ [I(X1;Y |X2)− I(X1;Z)]

+

Rs
2 ≤ [I(X2;Y |X1)− I(X2;Z)]

+

Rs
1 +Rs

2 ≤ [I(X1, X2;Y )− I(X1, X2;Z)]
+

Rs
1 +Ro

1 +Rs
2 ≤ [I(X1, X2;Y )− I(X2;Z)]

+

Rs
1 +Rs

2 +Ro
2 ≤ [I(X1, X2;Y )− I(X1;Z)]

+

, (51)

R(XK, {1})



Rs
2 = 0

Rs
1 +Ro

1 ≤ I(X1;Y |X2)

Ro
2 ≤ I(X2;Y |X1)

Rs
1 +Ro

1 +Ro
2 ≤ I(X1, X2;Y )

Rs
1 ≤ [I(X1;Y |X2)− I(X1;Z|X2)]

+

Rs
1 +Ro

2 ≤ [I(X1, X2;Y )− I(X1;Z|X2)]
+

, (52)

R(XK, {2})



Rs
1 = 0

Ro
1 ≤ I(X1;Y |X2)

Rs
2 +Ro

2 ≤ I(X2;Y |X1)

Ro
1 +Rs

2 +Ro
2 ≤ I(X1, X2;Y )

Rs
2 ≤ [I(X2;Y |X1)− I(X2;Z|X1)]

+

Ro
1 +Rs

2 ≤ [I(X1, X2;Y )− I(X2;Z|X1)]
+

, (53)
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R(XK, {ϕ})



Rs
1 = 0

Rs
2 = 0

Ro
1 ≤ I(X1;Y |X2)

Ro
2 ≤ I(X2;Y |X1)

Ro
1 +Ro

2 ≤ I(X1, X2;Y )

. (54)

For convenience, we denote the following convex hulls

Rnew = Conv
⋃

PX1
PX2

R(XK, {1, 2}) ∪ R(XK, {1}) ∪ R(XK, {2}) ∪ R(XK, ϕ),

Rold = R{1,2}
new = Conv

⋃
PX1

PX2

R(XK, {1, 2}),

R{1}
new = Conv

⋃
PX1

PX2

R(XK, {1}). (55)

It has been proven in [15, Theorem 1] that Rold is an achievable rate region of the two-user

DM MAC-WT channel. In Theorem 3 of this paper, we further propose a new achievable region

Rnew. In the following we prove that Rnew can strictly improve Rold. Noticing that Rold and R{1}
new

are both partial of Rnew, it is sufficient to prove the improvement if we could show that R{1}
new

contains achievable points that are not contained in Rold. We show below that this is possible.

Note that (51) and (52) respectively define a four-dimensional space for (Rs
1, R

o
1, R

s
2, R

o
2) and

a three-dimensional space for (Rs
1, R

o
1, R

o
2). For ease of explanation and to make the following

results easier to plot and understand, we let Ro
1 = Rs

2 = 0 in (51) and Ro
1 = 0 in (52), and

obtain two two-dimensional spaces for (Rs
1, R

o
2). In particular, if Ro

1 = Rs
2 = 0, it can be easily

checked that the 1st, 3rd, 5th, and 7th inequalities in (51) are redundant. By removing them,

(51) reduces to

R̂(XK, {1, 2})


Rs

1 ≤ min{[I(X1;Y |X2)−I(X1;Z)]
+ , [I(X1, X2;Y )−I(X1, X2;Z)]

+}

Ro
2 ≤ I(X2;Y |X1)

Rs
1 +Ro

2 ≤ [I(X1, X2;Y )− I(X1;Z)]
+

. (56)

If Ro
1 = 0, by removing the redundant inequalities, (52) reduces to

R̂(XK, {1})


Rs

1 ≤ [I(X1;Y |X2)− I(X1;Z|X2)]
+

Ro
2 ≤ I(X2;Y |X1)

Rs
1 +Ro

2 ≤ [I(X1, X2;Y )− I(X1;Z|X2)]
+

. (57)
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Denote the convex hulls of the union of R̂(XK, {1, 2}) and R̂(XK, {1}) over all PX1PX2 by

R̂old = R̂{1,2}
new = Conv

⋃
PX1

PX2

R̂(XK, {1, 2}),

R̂{1}
new = Conv

⋃
PX1

PX2

R̂(XK, {1}). (58)

Note that R̂(XK, {1, 2}) is the orthogonal projection of R(XK, {1, 2}) onto the hyperplane

Ro
1 = Rs

2 = 0. The convex hulls of them over all PX1PX2 , i.e., R̂old and Rold, thus contain

the same achievable set about (Rs
1, R

o
2). This ensures that if a rate tuple (Rs

1, R
o
1, R

s
2, R

o
2) is in

Rold, then, (Rs
1, R

o
2) is in R̂old. Reversely, if (Rs

1, R
o
2) is in R̂old, then, there must exist (Ro

1, R
s
2)

such that (Rs
1, R

o
1, R

s
2, R

o
2) is in Rold. Similarly, we know that R̂{1}

new and R{1}
new contain the same

achievable set about (Rs
1, R

o
2). It is thus sufficient to prove that Rnew can strictly improve Rold

by showing that R̂{1}
new contains achievable (Rs

1, R
o
2) that are not contained in R̂old.

B. Two-User Binary Adder Channel

User 1 𝑋! ∈ {0,1}

User 2 𝑋" ∈ {0,1}

𝑁! ∼ Bernoulli(𝑞!)

𝑁" ∼ Bernoulli(𝑞")

Bob 𝑌 ∈ {0,1,2,3}

Eve 𝑍 ∈ {0,1,2,3}

Fig. 4. Illustration of a two-user binary adder channel.

To make the upper bounds in (56) and (57) computable and comparable, as shown in Fig. 4, we

consider a two-user binary adder channel in this subsection. The channel has binary inputs X1 ∼

{0, 1} and X2 ∼ {0, 1}, and binary additive noise N1 ∼ Bernoulli(q1) and N2 ∼ Bernoulli(q2).

X1 and X2 take the value 1 with probabilities α and β, respectively, and the value 0 with

probabilities 1− α and 1− β. The received signals at Bob and Eve are given by

Y = X1 +X2 +N1,

Z = X1 +X2 +N2, (59)
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where Y and Z are both quaternary outputs that take values in the alphabet {0, 1, 2, 3}.

Now we compute the upper bounds in (56) and (57). First, based on (59), the mutual infor-

mation terms in (56) can be expressed as

I(X2;Y |X1) = H(Y |X1)−H(Y |X1, X2)

= H(Y |X1)−H(N1),

I(X1;Y |X2)− I(X1;Z) = H(Y |X2)−H(Y |X1, X2)−H(Z) +H(Z|X1)

= H(Y |X2)−H(N1)−H(Z) +H(Z|X1),

I(X1, X2;Y )− I(X1, X2;Z) = H(Y )−H(Y |X1, X2)−H(Z) +H(Z|X1, X2)

= H(Y )−H(N1)−H(Z) +H(N2),

I(X1, X2;Y )− I(X1;Z) = H(Y )−H(Y |X1, X2)−H(Z) +H(Z|X1)

= H(Y )−H(N1)−H(Z) +H(Z|X1), (60)

and the mutual information differences in (57) can be expressed as

I(X1;Y |X2)− I(X1;Z|X2) = H(Y |X2)−H(Y |X1, X2)−H(Z|X2) +H(Z|X1, X2)

= H(Y |X2)−H(N1)−H(Z|X2) +H(N2),

I(X1, X2;Y )− I(X1;Z|X2) = H(Y )−H(Y |X1, X2)−H(Z|X2) +H(Z|X1, X2)

= H(Y )−H(N1)−H(Z|X2) +H(N2). (61)

From (60) and (61) we know that to compute the upper bounds in (56) and (57), we need

to compute the entropies H(N1), H(N2), H(Y ), H(Y |X1), H(Y |X2), H(Z), H(Z|X1), and

H(Z|X2).

Since both N1 and N2 follow Bernoulli distribution with parameters q1 and q2, we have

H(N1) = −q1 log q1 − (1− q1) log(1− q1),

H(N2) = −q2 log q2 − (1− q2) log(1− q2). (62)

Based on the distributions of X1, X2, and N1, we list the values of PX1,X2,N1(x1, x2, n1) and Y
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TABLE I

PX1,X2,N1(x1, x2, n1) AND Y OVER DIFFERENT REALIZATIONS OF (X1, X2, N1).

PX1,X2,N1(x1, x2, n1) Y

(X1, X2, N1)

(0, 0, 0) (1− α)(1− β)(1− q1) 0

(0, 0, 1) (1− α)(1− β)q1 1

(0, 1, 0) (1− α)β(1− q1) 1

(0, 1, 1) (1− α)βq1 2

(1, 0, 0) α(1− β)(1− q1) 1

(1, 0, 1) α(1− β)q1 2

(1, 1, 0) αβ(1− q1) 2

(1, 1, 1) αβq1 3

over different realizations of (X1, X2, N1) in Table I, from which we have

PY (0) = (1− α)(1− β)(1− q1),

PY (1) = (1− α)(1− β)q1 + (1− α)β(1− q1) + α(1− β)(1− q1),

PY (2) = (1− α)βq1 + α(1− β)q1 + αβ(1− q1),

PY (3) = αβq1. (63)

Accordingly, the entropy of Y can be computed as

H(Y ) =−
∑

y∈{0,1,2,3}

PY (y) logPY (y)

=− (1− α)(1− β)(1− q1) log[(1− α)(1− β)(1− q1)]

− [(1− α)(1− β)q1 + (1− α)β(1− q1) + α(1− β)(1− q1)]

× log[(1− α)(1− β)q1 + (1− α)β(1− q1) + α(1− β)(1− q1)]

− [(1− α)βq1 + α(1− β)q1 + αβ(1− q1)] log[(1− α)βq1 + α(1− β)q1 + αβ(1− q1)]

− αβq1 log(αβq1). (64)

In Table II, we list the values of PX1,Y (x1, y) and PY |X1(y|x1) over different realizations of
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(X1, Y ), from which the conditional entropy H(Y |X1) can be computed as follows

H(Y |X1) =−
∑

x1∈{0,1}

∑
y∈{0,1,2,3}

PX1,Y (x1, y) logPY |X1(y|x1)

=− (1− β)(1− q1) log[(1− β)(1− q1)]

− [(1− β)q1 + β(1− q1)] log[(1− β)q1 + β(1− q1)]− βq1 log(βq1). (65)

TABLE II

PX1,Y (x1, y) AND PY |X1
(y|x1) OVER DIFFERENT REALIZATIONS OF (X1, Y ).

PX1,Y (x1, y) PY |X1
(y|x1)

(X1, Y )

(0, 0) (1− α)(1− β)(1− q1) (1− β)(1− q1)

(0, 1) (1− α)(1− β)q1 + (1− α)β(1− q1) (1− β)q1 + β(1− q1)

(0, 2) (1− α)βq1 βq1

(0, 3) 0 0

(1, 0) 0 0

(1, 1) α(1− β)(1− q1) (1− β)(1− q1)

(1, 2) α(1− β)q1 + αβ(1− q1) (1− β)q1 + β(1− q1)

(1, 3) αβq1 αq1

TABLE III

PX2,Y (x2, y) AND PY |X2
(y|x2) OVER DIFFERENT REALIZATIONS OF (X2, Y ).

PX2,Y (x2, y) PY |X2
(y|x2)

(X2, Y )

(0, 0) (1− α)(1− β)(1− q1) (1− α)(1− q1)

(0, 1) (1− α)(1− β)q1 + α(1− β)(1− q1) (1− α)q1 + α(1− q1)

(0, 2) α(1− β)q1 αq1

(0, 3) 0 0

(1, 0) 0 0

(1, 1) (1− α)β(1− q1) (1− α)(1− q1)

(1, 2) (1− α)βq1 + αβ(1− q1) (1− α)q1 + α(1− q1)

(1, 3) αβq1 αq1
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Similarly, H(Y |X2) can be calculated based on Table III as

H(Y |X2) =−
∑

x2∈{0,1}

∑
y∈{0,1,2,3}

PX2,Y (x2, y) logPY |X2(y|x2)

=− (1− α)(1− q1) log[(1− α)(1− q1)]

− [(1− α)q1 + α(1− q1)] log[(1− α)q1 + α(1− q1)]− αq1 log(αq1). (66)

Analogously, the entropies H(Z), H(Z|X1), and H(Z|X2) can be computed as follows

H(Z) =−
∑

z∈{0,1,2,3}

PZ(z) logPZ(z)

=− (1− α)(1− β)(1− q2) log[(1− α)(1− β)(1− q2)]

− [(1− α)(1− β)q2 + (1− α)β(1− q2) + α(1− β)(1− q2)]

× log[(1− α)(1− β)q2 + (1− α)β(1− q2) + α(1− β)(1− q2)]

− [(1− α)βq2 + α(1− β)q2 + αβ(1− q2)] log[(1− α)βq2 + α(1− β)q2 + αβ(1− q2)]

− αβq2 log(αβq2). (67)

H(Z|X1) =−
∑

x1∈{0,1}

∑
z∈{0,1,2,3}

PX1,Z(x1, z) logPZ|X1(z|x1)

=− (1− β)(1− q2) log[(1− β)(1− q2)]

− [(1− β)q2 + β(1− q2)] log[(1− β)q2 + β(1− q2)]− βq2 log(βq2). (68)

H(Z|X2) =−
∑

x2∈{0,1}

∑
z∈{0,1,2,3}

PX2,Z(x2, z) logPZ|X2(z|x2)

=− (1− α)(1− q2) log[(1− α)(1− q2)]

− [(1− α)q2 + α(1− q2)] log[(1− α)q2 + α(1− q2)]− αq2 log(αq2). (69)

By substituting (62) and (64) ∼ (69) to (60) and (61), the upper bounds in (56) and (57) can

be computed.
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C. Numerical Results

In this subsection, we depict the convex hulls R̂old and R̂{1}
new in (58) for the binary adder

channel with (q1, q2) = (0.5, 0.75), and show that R̂{1}
new contains points that are not in R̂old. The

Matlab code is provided in .... We first depict R̂old. For convenience, denote

a1 = min{[I(X1;Y |X2)− I(X1;Z)]
+ , [I(X1, X2;Y )− I(X1, X2;Z)]

+},

b = I(X2;Y |X1),

c1 = [I(X1, X2;Y )− I(X1;Z)]
+ , (70)

based on which R̂(XK, {1, 2}) in (56) can be rewritten as

R̂(XK, {1, 2})


Rs

1 ≤ a1

Ro
2 ≤ b

Rs
1 +Ro

2 ≤ c1

. (71)

Note that in the binary adder channel, the distributions of X1 and X2 are respectively determined

by α ∈ [0, 1] and β ∈ [0, 1]. Then, R̂old in (58) can be rewritten as

R̂old = Conv
⋃

α∈[0,1],β∈[0,1]

R̂(XK, {1, 2}). (72)

Using the definition and non-negativity of mutual information, we have

I(X1, X2;Y )− I(X1;Z) = I(X1;Y |X2) + I(X2;Y )− I(X1;Z)

≥ I(X1;Y |X2)− I(X1;Z),

I(X1, X2;Y )− I(X1;Z) ≥ I(X1, X2;Y )− I(X1;Z)− I(X2;Z|X1)

= I(X1, X2;Y )− I(X1, X2;Z). (73)

Combining (70) and (73), we know that c1 ≥ a1. Since (q1, q2) = (0.5, 0.75), if (α, β) is known,

the values of a1, b, and c1 can be computed based on the analysis given in the previous subsection.

As discussed below, R̂(XK, {1, 2}) has five possible shapes, depending on the values of a1, b,

and c1.

• Case 1: c1 = 0.

In this case, both Rs
1 and Rs

1 are 0. R̂(XK, {1, 2}) thus contains only one point (0, 0).

• Case 2: a1 = 0.

In this case, Rs
1 = 0 and R̂(XK, {1, 2}) is a line segment between (0, 0) and (0,min{b, c1}).
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𝑅!"(0,0) (𝑐!, 0)

(0, 𝑐!)

(𝑎!, 0)

(0, 𝑏)

𝑅#$

𝑅!"(0,0) (𝑐!, 0)

(0, 𝑐!)

(𝑎!, 0)

(0, 𝑏)

𝑅#$

(𝑎!, 𝑐! − 𝑎!)

(𝑐! − 𝑏, 𝑏)

𝑅!"(0,0) (𝑐!, 0)

(0, 𝑐!)

(𝑎!, 0)

(0, 𝑏)
𝑅#$

(𝑎!, 𝑐! − 𝑎!)

Case 3 Case 5Case 4

(𝑎!, 𝑏)

Fig. 5. Achievable region R̂(XK, {1, 2}) in different cases.

• Case 3: a1 > 0 and b ≤ c1 − a1.

As shown in Fig. 5, R̂(XK, {1, 2}) in this case is a rectangular region with four vertices

(0, 0), (a1, 0), (a1, b), and (0, b).

• Case 4: a1 > 0 and c1 − a1 < b ≤ c1.

As shown in Fig. 5, R̂(XK, {1, 2}) in this case is a pentagon region with five vertices (0, 0),

(a1, 0), (a1, c1 − a1), (c1 − b, b), and (0, b).

• Case 5: a1 > 0 and b > c1.

As shown in Fig. 5, R̂(XK, {1, 2}) in this case is a trapezoidal region with four vertices

(0, 0), (a1, 0), (a1, c1 − a1), and (0, c1).

To depict R̂old, we sample α and β in the range [0,1] with step δ = 0.01, record the corner

points of R̂(XK, {1, 2}) for each given (α, β), and then depict the convex hull consisting of all

these corner points using Matlab. In Fig. 6, the area encircled by the red line is R̂old.

Now we depict R̂{1}
new. For convenience, denote

a2 = [I(X1;Y |X2)− I(X1;Z|X2)]
+ ,

c2 = [I(X1, X2;Y )− I(X1;Z|X2)]
+ , (74)

based on which R̂(XK, {1}) in (57) and R̂old in (58) can be respectively rewritten as

R̂(XK, {1})


Rs

1 ≤ a2

Ro
2 ≤ b

Rs
1 +Ro

2 ≤ c2

, (75)

R̂{1}
new = Conv

⋃
α∈[0,1],β∈[0,1]

R̂(XK, {1}). (76)
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Fig. 6. Convex hulls R̂old and R̂{1}
new with (q1, q2) = (0.5, 0.75).
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Fig. 7. SVM-based separation of an extreme point in R̂{1}
new and

R̂old.

Since

I(X1, X2;Y )− I(X1;Z|X2) = I(X1;Y |X2) + I(X2;Y )− I(X1;Z|X2)

≥ I(X1;Y |X2)− I(X1;Z|X2), (77)

we have c2 ≥ a2. Then, R̂{1}
new can be depicted similarly as R̂old. We omit the details for brevity.

In Fig. 6, the area encircled by the blue line is R̂{1}
new.

From Fig. 6 we see that R̂old and R̂{1}
new have non-overlapping areas. In the following, we

choose a point in R̂{1}
new, and show that it is linearly separable from those in R̂old using a support

vector machine (SVM). This point is thus not included in R̂old. In particular, let J denote the

convex set of all corner points of R̂(XK, {1, 2}) collected in depicting R̂old for all (α, β), and J0

denote the set of all extreme points of J . Note that an extreme point of a convex set is a point

in the set that does not lie on any open line segment between any other two points of the same

set. Therefore, J0 is the minimal convex subset in J that has the same convex hull as J . Denote

the j-th extreme point in J0 by vj = [Rs
1(j), R

o
2(j)]

T . Similarly, we let L denote the convex set

of all corner points of R̂(XK, {1}) collected in depicting R̂{1}
new for all (α, β), and L0 denote the

set of all extreme points of L. We choose an extreme point v0 = [0.0148263, 0.440926]T in L0.

Now we show that v0 and the points in J0 are linearly separable, i.e., there exists a hyperplane

such that v0 and all points in J0 lie on different sides of the hyperplane. The hyperplane can
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Fig. 8. a1 versus α and β with R̂{1}
new with (q1, q2) = (0.5, 0.75)

and sampling size δ = 0.01.

Fig. 9. c1 versus α and β with R̂{1}
new with (q1, q2) = (0.5, 0.75)

and sampling size δ = 0.01.

be found by considering the following optimization problem

min
w,t

||w||22

s.t. wTv0 − t ≥ 1,

wTvj − t ≤ −1,∀j = 1, · · · , |J0|, (78)

where w ∈ R2×1 and t ∈ R are the optimization variables. Problem (78) is a linear SVM and

wTv − t = 0 is known as the maximum-margin hyperplane. Since (78) is a convex problem,

we solve it by CVX in matlab, and depict R̂old, R̂{1}
new, v0, and the maximum-margin hyperplane

wTv− t = 0 in Fig. 7. As we can see from this figure, v0 and all points in J0 can be separated

by the maximum-margin hyperplane. Since J0 consists of all the extreme points in J , we know

that all points in J can be separated from v0. Therefore, v0 is not in R̂old. Since it is in R̂{1}
new,

the proposed region Rnew can strictly improve Rold given in [15, Theorem 1].

Now we explain why for the considered binary adder channel with (q1, q2) = (0.5, 0.75), R̂old

and R̂{1}
new have non-overlapping areas, by depicting a1, c1, a2, c2, and b over α and β. In Fig. 8

and Fig. 9, we depict a1 and c1 versus α and β with sampling size δ = 0.01. It can be seen

from Fig. 8 that for most values of α and β, a1 = 0. Since a1 is the upper bound to Rs
1 in

R̂(XK, {1, 2}), we have is Rs
1 = 0 in these cases. Only when α is around 0.95 and β is close

to 0 or 1, will Rs
1 take on a relatively large value. However, in these cases, we see from Fig. 9

that c1 is small. Since c1 is the upper bound to Rs
1 + Ro

2 in R̂(XK, {1, 2}), it is impossible for
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Fig. 10. a2 versus α and β with R̂{1}
new with (q1, q2) =

(0.5, 0.75) and sampling size δ = 0.01.

Fig. 11. b versus α and β with R̂{1}
new with (q1, q2) = (0.5, 0.75)

and sampling size δ = 0.01.

Fig. 12. c2 versus α and β with R̂{1}
new with (q1, q2) = (0.5, 0.75) and sampling size δ = 0.01.

Ro
2 to take a large value in these cases. This explains why when Rs

1 is large, Ro
2 is small in R̂old

(see Fig. 6).

In Fig. 10, Fig. 11, and Fig. 12, we depict a2, b, and c2 versus α and β, respectively. Different

from a1, Fig. 10 shows that whatever the value of β, as long as α is around 0.95, a2 takes on a

relatively large value. When α and β are respectively 0.5 and 0.95, a2, b, and c2 are all relatively

large. Since a2, b, and c2 are respectively upper bounds to Rs
1, Ro

2, and Rs
1 + Ro

2, it is possible

for a point (Rs
1, R

o
2) in the region R̂(XK, {1}) to have both large Rs

1 and Ro
2. This explains why

R̂{1}
new has a non-overlapping area on the upper-right side of R̂old in Fig. 6.
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VI. CONCLUSIONS

In this paper, we studied the information-theoretic secrecy for a K-user DM MAC-WT channel,

where each user has both secret and open messages for the intended receiver. Auxiliary messages

were introduced to protect the confidential information. To ensure that the rate of auxiliary

messages is large enough for protecting the secret message from Eve and the resulting sum rate

(together with the secret and open message rate) does not exceed Bob’s decoding capability,

we developed an inequality structure involving the rates of all users’ secret, open, and auxiliary

messages, and also gave the general proof. We adopted strong secrecy, defined by the mutual

information between all confidential messages and the received signal at Eve, as the secrecy

metric. To prove the achievability under this criterion, we analyzed the output statistics in terms

of variational distance for the K-user standard DM-MAC channel. In addition, we showed that

users with zero secrecy rate may have different options in choosing their coding schemes. By

considering all possible options, we obtained a new achievable region for the considered channel

that enlarges previously known results, and the improvement has been verified by a two-user

binary adder channel. Considering the fact that even for the classical two-user DM MAC-WT

channel with only secret messages, the tight converse is still an open problem, this paper focused

on studying the achievable region for the K-user DM MAC-WT channel, and did not derive a

converse. We plan to study the converse from the two-user DM MAC-WT channel with only

secret messages in the future.

APPENDIX A

PROOF OF LEMMA 1

In this appendix, we prove Lemma 1 by showing that (9) is the projection of (10) onto the

hyperplane {Ra
k = 0,∀k ∈ K}. Note that due to (8), the polytope defined by (9) is non-empty.

Since as shown below we can successfully prove that (9) is the projection of (10), we know from

[35, Appendix D] that the polytope defined by (10) must be non-empty. As stated in Remark 1, it

is impossible to prove Lemma 1 by directly using the Fourier-Motzkin procedure to eliminate all

Ra
k in (10), not only because of its huge complexity but also due to the fact that the elimination

strategy works only if K is given. Hence, we adopt mathematical induction in the following to

prove Lemma 1.
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We first consider the base case with K = 1. By eliminating Ra
1 in (10) using the Fourier-

Motzkin procedure [35, Appendix D], it can be easily proven that (9) is the projection of (10)

onto the hyperplane {Ra
1 = 0}. Lemma 1 can thus be proven for this simple case.

Next, we consider the induction step. Assume that for any given positive integer K, (9) is the

projection of (10) onto the hyperplane {Ra
k = 0, ∀k ∈ K}. Then, by this assumption, it is possible

to obtain (9) by eliminating the variables Ra
k,∀k ∈ K using the Fourier-Motzkin procedure. For

convenience, in the following we refer to this assumption as the induction assumption. Under

the induction assumption, we shall prove that the statement of Lemma 1 holds for K +1 users.

With K + 1 users, (9) and (10) become∑
k∈S

Rs
k +

∑
k∈S\S′

Ro
k ≤ I(XS ;Y |XS)− I(XS′ ;Z),∀S ⊆ K ∪ {K + 1},S ′ ⊆ S, (79)

and 
Ra

k ≥ 0,∀k ∈ K ∪ {K + 1},∑
k∈S

(Rs
k +Ro

k +Ra
k) ≤ I(XS ;Y |XS),∀S ⊆ K ∪ {K + 1},∑

k∈S
(Ro

k +Ra
k) ≥ I(XS ;Z),∀S ⊆ K ∪ {K + 1}.

(80)

We need to show that (79) is the projection of (80) onto the hyperplane {Ra
k = 0,∀k ∈ K ∪

{K + 1}}, i.e., (79) can be obtained by eliminating Ra
k, ∀k ∈ K as well as Ra

K+1 in (80). For

this purpose, by separating user K + 1 from users in set K, we rewrite (79) equivalently as∑
k∈S

Rs
k +

∑
k∈S\S′

Ro
k ≤ I(XS ;Y |XS , XK+1)− I(XS′ ;Z), ∀S ⊆ K,S ′ ⊆ S, (81a)

∑
k∈S

Rs
k+Rs

K+1+
∑

k∈S\S′

Ro
k+Ro

K+1≤I(XS , XK+1;Y |XS)−I(XS′ ;Z), ∀S ⊆ K,S ′ ⊆ S, (81b)

∑
k∈S

Rs
k+Rs

K+1+
∑

k∈S\S′

Ro
k ≤ I(XS , XK+1;Y |XS)−I(XS′ , XK+1;Z),∀S ⊆ K,S ′ ⊆ S, (81c)
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and (80) as

Ra
k ≥ 0,∀k ∈ K, (82a)∑

k∈S

(Rs
k +Ro

k +Ra
k) ≤ I(XS ;Y |XS , XK+1),∀S ⊆ K, (82b)

∑
k∈S

(Ro
k +Ra

k) ≥ I(XS ;Z),∀S ⊆ K, (82c)

∑
k∈S

(Rs
k+Ro

k+Ra
k) ≤ I(XS , XK+1;Y |XS)−(Rs

K+1+Ro
K+1+Ra

K+1),∀S ⊆ K,S ≠ ϕ, (82d)

∑
k∈S

(Ro
k +Ra

k) ≥ I(XS , XK+1;Z)− (Ro
K+1 +Ra

K+1),∀S ⊆ K,S ≠ ϕ, (82e)

Ra
K+1 ≥ 0, (82f)

Rs
K+1 +Ro

K+1 +Ra
K+1 ≤ I(XK+1;Y |XK), (82g)

Ro
K+1 +Ra

K+1 ≥ I(XK+1;Z). (82h)

Note that in (82d) and (82e) we let S ≠ ϕ since otherwise they reduce to (82g) and (82h), which

do not contain Ra
k, ∀k ∈ K. In the following, we eliminate first Ra

k, ∀k ∈ K and then Ra
K+1.

A. Elimination of Ra
k,∀k ∈ K

To eliminate Ra
k,∀k ∈ K in (82), we focus on (82a) ∼ (82e) since only these inequalities

contain Ra
k,∀k ∈ K while (82f) ∼ (82h) do not. Since there are K different Ra

k, as stated above,

it is impractical to eliminate Ra
k one by one. Hence, instead of eliminating Ra

k,∀k ∈ K directly

from (82a) ∼ (82e), we divide these inequalities into 4 categories (see Fig. 13), which together

consider all possible upper and lower bound pairs on Ra
k,∀k ∈ K, and eliminate Ra

k, ∀k ∈ K in

each category using the induction assumption.

For convenience, we call the inequality system (IES) consisting of (82a) ∼ (82e) IES 1. As

we can see from (82), in IES 1, there are three lower bounds on Ra
k,∀k ∈ K, i.e., (82a), (82c),

and (82e), which are marked in blue color in Fig. 13, and two upper bounds on Ra
k,∀k ∈ K, i.e.,

(82b) and (82d), which are marked in red color. To eliminate Ra
k,∀k ∈ K in IES 1 based on the

induction assumption, as shown in Fig. 13, we first repeat the inequalities in IES 1 and obtain

IES 2. Since the repeated inequalities can neither expand nor shrink the region of IES 1, IES 1

and IES 2 are equivalent. Then, we change the order of the inequalities in IES 2 and obtain

IES 3. Obviously, IES 3 is equivalent to IES 2, and is thus also equivalent IES 1. Therefore,
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eliminating Ra
k,∀k ∈ K in IES 1 is equivalent to eliminating those in IES 3, which as we will

show below, can be realized by separately eliminating Ra
k,∀k ∈ K in each category using the

induction assumption.

(82a)
(82b)
(82c)
(82d)
(82e)

(82a), (82a), (82a), (82a)
(82b), (82b)
(82c), (82c)
(82d), (82d)
(82e), (82e)

Category 1: (82a), (82b), (82c)
Category 2: (82a), (82d), (82c)
Category 3: (82a), (82d), (82e)
Category 4: (82a), (82b), (82e)

IES 1 IES 2 IES 3

Fig. 13. Division of ISE 1.

1) Category 1: We include inequalities (82a), (82b), and (82c) in Category 1, and rewrite

them as follows for clarity
Ra

k ≥ 0,∀k ∈ K,∑
k∈S

(Rs
k +Ro

k +Ra
k) ≤ I(XS ;Y |XS , XK+1),∀S ⊆ K,∑

k∈S
(Ro

k +Ra
k) ≥ I(XS ;Z),∀S ⊆ K.

(83)

Note that (83) has a similar formulation as (10). Then, from the induction assumption it is known

that the projection of (83) onto the hyperplane {Ra
k = 0,∀k ∈ K} is∑

k∈S

Rs
k +

∑
k∈S\S′

Ro
k ≤ I(XS ;Y |XS , XK+1)− I(XS′ ;Z),∀S ⊆ K,S ′ ⊆ S, (84)

which is the same as (81a).

2) Category 2: In this category we include (82a), (82d), and (82c), and rewrite them as
Ra

k ≥ 0,∀k ∈ K,∑
k∈S

(Rs
k+Ro

k+Ra
k) ≤ I(XS , XK+1;Y |XS)−(Rs

K+1+Ro
K+1+Ra

K+1), ∀S ⊆ K,S ≠ ϕ,∑
k∈S

(Ro
k +Ra

k) ≥ I(XS ;Z), ∀S ⊆ K.

(85)

Note that though we let S ̸= ϕ in (82d), (85) still has a similar expression as (10). It can be

checked that if S = ϕ, the second inequality of (10) gives 0 ≤ 0, which can be omitted. Hence,
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we may also let S ≠ ϕ in (10) without changing its formulation. The induction assumption can

thus be used to eliminate Ra
k,∀k ∈ K in (85) and obtain∑

k∈S

Rs
k +

∑
k∈S\S′

Ro
k ≤ I(XS , XK+1;Y |XS)− (Rs

K+1 +Ro
K+1 +Ra

K+1)− I(XS′ ;Z),

∀S ⊆ K,S ≠ ϕ,S ′ ⊆ S, (86)

which contains Ra
K+1 and thus has to be considered in the next step when eliminating Ra

K+1.

3) Category 3: In Category 3 we include (82a), (82d), and (82e), and rewrite them as follows
Ra

k ≥ 0,∀k ∈ K,∑
k∈S

(Rs
k+Ro

k+Ra
k) ≤ I(XS , XK+1;Y |XS)−(Rs

K+1+Ro
K+1+Ra

K+1), ∀S ⊆ K,S ≠ ϕ,∑
k∈S

(Ro
k +Ra

k) ≥ I(XS , XK+1;Z)− (Ro
K+1 +Ra

K+1), ∀S ⊆ K,S ≠ ϕ.

(87)

Using the induction assumption to eliminate Ra
k, ∀k ∈ K, we have∑

k∈S

Rs
k +

∑
k∈S\S′

Ro
k

≤I(XS , XK+1;Y |XS)− (Rs
K+1 +Ro

K+1 +Ra
K+1)−

[
I(XS′ , XK+1;Z)− (Ro

K+1 +Ra
K+1)

]
,

=I(XS , XK+1;Y |XS)− I(XS′ , XK+1;Z)−Rs
K+1,∀S ⊆ K,S ≠ ϕ,S ′ ⊆ S,S ′ ̸= ϕ. (88)

By comparing (88) with (81c), it is known that (88) consists of partial inequalities in (81c) with

S ⊆ K,S ≠ ϕ,S ′ ⊆ S,S ′ ̸= ϕ.

4) Category 4: We include inequalities (82a), (82b), and (82e) in Category 4, and rewrite

them as follows
Ra

k ≥ 0, ∀k ∈ K,∑
k∈S

(Rs
k +Ro

k +Ra
k) ≤ I(XS ;Y |XS , XK+1), ∀S ⊆ K,∑

k∈S
(Ro

k +Ra
k) ≥ I(XS , XK+1;Z)− (Ro

K+1 +Ra
K+1),∀S ⊆ K,S ≠ ϕ.

(89)

The following projection of (89) can then be obtained from the induction assumption∑
k∈S

Rs
k +

∑
k∈S\S′

Ro
k ≤ I(XS ;Y |XS , XK+1)− I(XS′ , XK+1;Z) +Ro

K+1 +Ra
K+1,

∀S ⊆ K,S ≠ ϕ,S ′ ⊆ S,S ′ ̸= ϕ, (90)

which also contains Ra
K+1 and has to be considered in the next step when eliminating Ra

K+1.

Combining (82f) ∼ (82h), (84), (86), (88), and (90), we get a projection of (82) onto the

hyperplane {Ra
k = 0,∀k ∈ K}. To further get a projection of (82) onto the hyperplane {Ra

k =

0,∀k ∈ K ∪ {K + 1}}, we have to eliminate Ra
K+1.
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B. Elimination of Ra
K+1

In this subsection, we eliminate Ra
K+1 in (82). Note that in the previous step, we have

eliminated Ra
k,∀k ∈ K in (82a) ∼ (82e), and obtained (84), (86), (88), and (90), in which

(86) and (90) contain Ra
K+1. Therefore, when eliminating Ra

K+1, we should not consider all the

inequalities (82a) ∼ (82h) in (82). Instead, we consider part of them, i.e., (82f) ∼ (82h), and

also (86) and (90). From (82g) and (86), we get the following upper bounds on Ra
K+1

Ra
K+1 ≤ I(XK+1;Y |XK)− (Rs

K+1 +Ro
K+1), (91a)

Ra
K+1 ≤ I(XS , XK+1;Y |XS)− I(XS′ ;Z)−

(∑
k∈S

Rs
k +

∑
k∈S\S′

Ro
k +Rs

K+1 +Ro
K+1

)
,

∀S ⊆ K,S ≠ ϕ,S ′ ⊆ S. (91b)

Moreover, the following lower bounds on Ra
K+1 can be obtained from (82f), (82h), and (90)

Ra
K+1 ≥ 0, (92a)

Ra
K+1 ≥ I(XK+1;Z)−Ro

K+1, (92b)

Ra
K+1 ≥ −I(XS ;Y |XS , XK+1) + I(XS′ , XK+1;Z) +

∑
k∈S

Rs
k +

∑
k∈S\S′

Ro
k −Ro

K+1,

∀S ⊆ K,S ≠ ϕ,S ′ ⊆ S,S ′ ̸= ϕ. (92c)

Comparing these upper and lower bounds, we can eliminate Ra
K+1.

Firstly, we compare (91) with (92a), and get

Rs
K+1 +Ro

K+1 ≤ I(XK+1;Y |XK), (93a)∑
k∈S

Rs
k +

∑
k∈S\S′

Ro
k +Rs

K+1 +Ro
K+1 ≤ I(XS , XK+1;Y |XS)− I(XS′ ;Z),

∀S ⊆ K,S ≠ ϕ,S ′ ⊆ S. (93b)

The inequalities (93a) and (93b) can be integrated into one formula as follows∑
k∈S

Rs
k+

∑
k∈S\S′

Ro
k+Rs

K+1+Ro
K+1 ≤ I(XS , XK+1;Y |XS)−I(XS′ ;Z), ∀S ⊆ K,S ′ ⊆ S, (94)

which is the same as (81b).
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Secondly, we compare (91) with (92b), and get

Rs
K+1 ≤ I(XK+1;Y |XK)− I(XK+1;Z), (95a)∑

k∈S

Rs
k +

∑
k∈S\S′

Ro
k +Rs

K+1 ≤ I(XS , XK+1;Y |XS)− I(XS′ ;Z)− I(XK+1;Z),

∀S ⊆ K,S ≠ ϕ,S ′ ⊆ S. (95b)

By separately considering S ′ = ϕ and S ′ ̸= ϕ, we may divide (95b) into two formulas as below

∑
k∈S

(Rs
k +Ro

k) +Rs
K+1 ≤ I(XS , XK+1;Y |XS)− I(XK+1;Z),∀S ⊆ K,S ≠ ϕ,S ′ = ϕ, (96a)

∑
k∈S

Rs
k +

∑
k∈S\S′

Ro
k +Rs

K+1 ≤ I(XS , XK+1;Y |XS)− I(XS′ ;Z)− I(XK+1;Z),

∀S ⊆ K,S ≠ ϕ,S ′ ⊆ S,S ′ ̸= ϕ. (96b)

From (88), (95a), and (96a), it can be found that these inequalities can be integrated into one

formula as follows∑
k∈S

Rs
k+

∑
k∈S\S′

Ro
k+Rs

K+1≤I(XS , XK+1;Y |XS)−I(XS′ , XK+1;Z),∀S ⊆ K,S ′ ⊆ S, (97)

which is the same as (81c). Combining (84), (94), and (97), it is known that (81) or (79) has

already been obtained. All the other inequalities resulted from the elimination procedure should

be redundant if Lemma 1 is true. Hence, we have to prove that (96b) is redundant. Since XK+1

is independent of XS′ , (88) can be rewritten and relaxed as follows∑
k∈S

Rs
k +

∑
k∈S\S′

Ro
k +Rs

K+1

≤I(XS , XK+1;Y |XS)− I(XS′ , XK+1;Z)

≤I(XS , XK+1;Y |XS)− I(XS′ ;Z)− I(XK+1;Z),∀S ⊆ K,S ≠ ϕ,S ′ ⊆ S,S ′ ̸= ϕ, (98)

where the second inequality is the upper bound in (96b). This indicates that (88) sets a tighter

upper bond on
∑

k∈S R
s
k +

∑
k∈S\S′ Ro

k + Rs
K+1 than (96b). Since (88) is included in (97) or

(81c), (96b) is thus redundant.



41

Finally, we compare (91) with (92c), which results in∑
k∈S

Rs
k +

∑
k∈S\S′

Ro
k +Rs

K+1 ≤ I(XS ;Y |XS , XK+1) + I(XK+1;Y |XK)− I(XS′ , XK+1;Z),

∀S ⊆ K,S ≠ ϕ,S ′ ⊆ S,S ′ ̸= ϕ, (99a)∑
k∈S

Rs
k+

∑
k∈S\S′

Ro
k+

∑
k∈S1

Rs
k+

∑
k∈S1\S′

1

Ro
k+Rs

K+1 ≤ I(XS ;Y |XS , XK+1)− I(XS′ , XK+1;Z)

+ I(XS1 , XK+1;Y |XS1
)− I(XS′

1
;Z),∀S,S1 ⊆ K,S,S1 ̸= ϕ,S ′ ⊆ S,S ′ ̸= ϕ,S ′

1 ⊆ S1. (99b)

Note that when comparing (91b) with (92c), which gives (99b), we replace notations S and S ′

in (91b) with S1 and S ′
1, respectively, to avoid ambiguity. As stated after after (97), (99a) and

(99b) should be redundant if Lemma 1 is true. We prove the redundancy in the following.

We first prove that (99a) is redundant. Since Xk,∀k ∈ K ∪ {K + 1} are independent of each

other and S ⊆ K, we have

I(XS , XK+1;Y |XS)− I(XS′ , XK+1;Z)

=I(XS ;Y |XS) + I(XK+1;Y |XK)− I(XS′ , XK+1;Z)

≤I(XS ;Y |XS , XK+1)+I(XK+1;Y |XK)−I(XS′ , XK+1;Z),∀S⊆K,S ̸=ϕ,S ′⊆S,S ′ ̸=ϕ. (100)

By replacing the corresponding terms in (98) with (100), the redundancy of (99a) can be similarly

proven as that of (96b). Since the redundancy proof of (99b) is much more complicated than that

of (96b) and (99a), for the sake of clarity, we give the proof in the following separate subsection.

C. Redundancy Proof of (99b)

Note that the redundancy of an inequality can be proven by showing that this inequality or

a tighter bound can be obtained by linearly combining other inequalities. The most important

step in the proof is to know how to divide the sum rate, which in our case is the left-hand-side

term of (99b), into several terms such that combining upper bounds on these terms, we can get

either (99b) or a tighter bound. Now we show how to do this. We first rewrite the left-hand-side

term of (99b) as follows∑
k∈S

Rs
k +

∑
k∈S\S′

Ro
k︸ ︷︷ ︸

Term a

+
∑
k∈S1

Rs
k +

∑
k∈S1\S′

1

Ro
k +Rs

K+1︸ ︷︷ ︸
Term b

, (101)

which contains Term a and Term b. Note that adding the upper bounds on Term a and Term b

cannot prove the redundancy. Therefore, we have to divide (101) into several other terms. We
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Fig. 14. Sets S, S ′, S1, S ′
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Fig. 15. Sets U , U ′, U1, U ′
1 obtained from S, S ′, S1, S ′

1 based

on Criteria 1 ∼ 5.

show that it is enough for the proof to divide (101) into two terms. In particular, we exchange

the message rates Rs
k and Ro

k in Term a and Term b, and obtain two new terms, i.e., Term a′

and Term b′, whose upper bounds then help prove the redundancy. We set the following criteria

for the exchange process.

• Criterion 1. Term b′ contains as many secret message rates Rs
k as possible;

• Criterion 2. Term a′ contains as many open message rates Ro
k as possible;

• Criterion 3. Criterion 1 has a higher priority than Criterion 2;

• Criterion 4. For any k, there could be only one Rs
k or Ro

k in Term a′ or Term b′;

• Criterion 5. For any k, if Rs
k is not in Term a′ or Term b′, Ro

k cannot be in this term.

For ease of understanding, we give an example system with K = {1, 2, 3, 4}, S = {1, 3, 4},

S ′ = {4}, S1 = {1, 2, 4}, and S ′
1 = ϕ. In this case, (101) takes on form

Rs
1 +Ro

1 +Rs
3 +Ro

3 +Rs
4︸ ︷︷ ︸

Term a

+Rs
1 +Ro

1 +Rs
2 +Ro

2 +Rs
4 +Ro

4 +Rs
5︸ ︷︷ ︸

Term b

. (102)

Since Rs
3 is not included in Term b, according to Criterion 1 and Criterion 3, Rs

3 should be

moved into Term b. Note that Ro
3 has also to be moved into Term b since otherwise Criterion 5

is violated. Since both Term a and Term b contain Rs
4, while only Term b contains Ro

4, according

to Criterion 2, Ro
4 should be moved into Term a. Note that we may not move Ro

1 in Term b

into Term a since otherwise Criterion 4 is violated, and may not move Ro
2 into Term a since

otherwise Criterion 5 is violated. With these operations, (102) becomes

Rs
1 +Ro

1 +Rs
4 +Ro

4︸ ︷︷ ︸
Term a′

+Rs
1 +Ro

1 +Rs
2 +Ro

2 +Rs
3 +Ro

3 +Rs
4 +Rs

5︸ ︷︷ ︸
Term b′

. (103)

In the following, we first describe these operations mathematically and then prove the redun-

dancy of (99b). For convenience, we give an example of sets S, S ′, S1, S ′
1, and their divisions
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in Fig. 14. Let ∆ denote the set of user indexes which are in both S and S1, and ∆ denote the

set of indexes which are in S but not in S1, i.e.,

∆ = S ∩ S1,

∆ = S − S1. (104)

Let ∆1 denote the intersection of S ′ and ∆, and ∆2 denote the set of user indexes which are in

S ′ ∩∆ but not in S ′
1 ∩∆, i.e.,

∆1 = S ′ ∩∆,

∆2 = S ′ ∩∆− S ′
1 ∩∆. (105)

With the operations described above, let U , U ′, U1, and U ′
1, which respectively correspond to

S, S ′, S1, and S ′
1 in (101), denote the user indexes in Term a′ and Term b′. Then, according to

Criterion 1,

U = S \∆,

U1 = S1 ∪∆. (106)

The complementary sets of U and U1 are

U = K \ (S \∆)

= S ∪∆,

U1 = K \ (S1 ∪∆)

= S1 \∆, (107)

where S = K \ S and S1 = K \ S1. Moreover, according to Criterion 2, Criterion 4, and

Criterion 5, we have

U ′ = S ′ \ (∆1 ∪∆2),

U ′
1 = S ′

1 ∪ (∆1 ∪∆2). (108)
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Fig. 15 depicts the sets U , U ′, U1, U ′
1 obtained from S, S ′, S1, S ′

1 in Fig. 14. We thus have∑
k∈S

Rs
k +

∑
k∈S\S′

Ro
k︸ ︷︷ ︸

Term a

+
∑
k∈S1

Rs
k +

∑
k∈S1\S′

1

Ro
k +Rs

K+1︸ ︷︷ ︸
Term b

=
∑
k∈U

Rs
k +

∑
k∈U\U ′

Ro
k︸ ︷︷ ︸

Term a′

+
∑
k∈U1

Rs
k +

∑
k∈U1\U ′

1

Ro
k +Rs

K+1︸ ︷︷ ︸
Term b′

≤I(XU ;Y |XU , XK+1)− I(XU ′ ;Z) + I(XU1 , XK+1;Y |XU1
)− I(XU ′

1
, XK+1;Z)

=I(XS \X∆;Y |XS , X∆, XK+1)− I(XS′ \X∆1∪∆2 ;Z)

+I(XS1 , X∆, XK+1;Y |XS1
\X∆)− I(XS′

1
, X∆1 , X∆2 , XK+1;Z),

∀S,S1 ⊆ K,S,S1 ̸= ϕ,S ′ ⊆ S,S ′ ̸= ϕ,S ′
1 ⊆ S1, (109)

where the inequality results from (84) and (97). On the other hand, based on the definitions of

∆, ∆1, and ∆2, and the chain rule of mutual information, (99b) can be rewritten as follows∑
k∈S

Rs
k +

∑
k∈S\S′

Ro
k +

∑
k∈S1

Rs
k +

∑
k∈S1\S′

1

Ro
k +Rs

K+1

≤I(XS ;Y |XS , XK+1)− I(XS′ , XK+1;Z) + I(XS1 , XK+1;Y |XS1
)− I(XS′

1
;Z)

=I(XS \X∆, X∆;Y |XS , XK+1)− I(XS′ \X∆1∪∆2 , X∆1∪∆2 , XK+1;Z)

+I(XS1 , XK+1;Y |XS1
)− I(XS′

1
;Z)

=I(XS \X∆;Y |XS , X∆, XK+1) + I(X∆;Y |XS , XK+1)− I(XS′ \X∆1∪∆2 ;Z)

−I(X∆1 , X∆2 , XK+1;Z|XS′ \X∆1∪∆2) + I(XS1 , XK+1;Y |XS1
)− I(XS′

1
;Z),

∀S,S1 ⊆ K,S,S1 ̸= ϕ,S ′ ⊆ S,S ′ ̸= ϕ,S ′
1 ⊆ S1. (110)

In the following, we show that the upper bound in (109) is no larger and is thus tighter than that

in (110). Then, (110) is redundant. Neglecting the common terms I(XS \X∆;Y |XS , X∆, XK+1)

and I(XS′ \X∆1∪∆2 ;Z) in (109) and (110), we prove

I(XS1 , X∆, XK+1;Y |XS1
\X∆) ≤ I(X∆;Y |XS , XK+1) + I(XS1 , XK+1;Y |XS1

), (111)

and

I(XS′
1
, X∆1 , X∆2 , XK+1;Z) ≥ I(X∆1 , X∆2 , XK+1;Z|XS′ \X∆1∪∆2) + I(XS′

1
;Z). (112)
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From the definitions of ∆ and ∆ in (104), it is known that ∆ ∩ ∆ = ϕ and S = ∆ ∪ ∆.

Hence,

S = K \ S

= (K \∆) \∆. (113)

Moreover, since ∆ ⊆ S1,

S1 = K \ S1

⊆ K \∆. (114)

Based on (113) and (114), we have

S1 \∆ ⊆ (K \∆) \∆

= S. (115)

Using the chain rule of mutual information, (115), and the fact that Xk,∀k ∈ K ∪ {K + 1} are

independent of each other, we have

I(XS1 , X∆, XK+1;Y |XS1
\X∆) = I(X∆;Y |XS1

\X∆) + I(XS1 , XK+1;Y |XS1
)

≤ I(X∆;Y |XS , XK+1) + I(XS1 , XK+1;Y |XS1
). (116)

The inequation (111) is thus true. On the other hand, since S = ∆∪∆, ∆∩∆ = ϕ, and S ′ ⊆ S,

as shown in Fig. 14, S ′ can be divided into two disjoint parts as follows

S ′ = (S ′ ∩∆) ∪ (S ′ ∩∆)

= ∆1 ∪ (S ′ ∩∆), (117)

where we used the definition of ∆1 in (105). Hence,

S ′ ∩∆ = S ′ \∆1. (118)

Let ∆3 denote the set of user indexes which are in S1 but not in S , and ∆4 denote the intersection

of S ′
1 and ∆3, i.e.,

∆3 = S1 − S

= S1 \∆,

∆4 = S ′
1 ∩∆3. (119)
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It can then be similarly proven as (118) that

S ′
1 ∩∆ = S ′

1 \∆4, (120)

which can also be found from Fig. 14. From (118), (120), and the definition of ∆2 in (105), S ′

in (117) can be further divided into three disjoint parts as follows

S ′ = ∆1 ∪ (S ′ ∩∆)

= ∆1 ∪∆2 ∪
[
(S ′ ∩∆) ∩ (S ′

1 ∩∆)
]

= ∆1 ∪∆2 ∪ [(S ′ \∆1) ∩ (S ′
1 \∆4)]

= ∆1 ∪∆2 ∪ (S ′ ∩ S ′
1), (121)

where the last step holds since ∆1 ∩∆4 = ϕ. Accordingly, we have

S ′ \ (∆1 ∪∆2) = S ′ ∩ S ′
1

⊆ S ′
1. (122)

Then, using the chain rule of mutual information, (122), and the fact that Xk,∀k ∈ K∪{K+1}

are independent of each other, we have

I(XS′
1
, X∆1 , X∆2 , XK+1;Z) = I(X∆1 , X∆2 , XK+1;Z|XS′

1
) + I(XS′

1
;Z)

≥ I(X∆1 , X∆2 , XK+1;Z|XS′ \X∆1∪∆2) + I(XS′
1
;Z), (123)

i.e., (112) is true. Combining (109), (110), (116), and (123), it is known that (99b) is redundant.

So far we have shown that (79) (or (81)) can be obtained by eliminating Ra
k,∀k ∈ K∪{K+1}

in (80) (or (82)), and all the other inequalities resulted from the elimination procedure, i.e., (96b),

(99a), and (99b), are redundant. As a result, (79) is the projection of (80) onto the hyperplane

{Ra
k = 0,∀k ∈ K ∪ {K + 1}}. Lemma 1 is thus proven.

APPENDIX B

PROOF OF THEOREM 1

Since K′ has 2|K′| subsets, we may divide the inequality system (5) into 2|K′| subsystems with

each one corresponding to a subset T ⊆ K′. For any T ⊆ K′, the inequality subsystem is
Ra

k ≥ 0, ∀k ∈ K′,∑
k∈S

(Rs
k +Ro

k +Ra
k) +

∑
k∈T

Ro
k ≤ I(XS , XT ;Y |XS , XT ),∀S ⊆ K′,∑

k∈S
(Ro

k +Ra
k) ≥ I(XS ;Z|XK′), ∀S ⊆ K′.

(124)
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It is obvious that eliminating Ra
k,∀k ∈ K′ in (5) is equivalent to eliminating Ra

k, ∀k ∈ K′ in

(124) for all T ⊆ K′. Due to the assumption I(XS ;Y |XS , XK′) ≥ I(XS ;Z|XK′),∀S ⊆ K′ made

in Theorem 1, for a given T ⊆ K′, we have

I(XS , XT ;Y |XS , XT ) ≥ I(XS ;Y |XS , XK′)

≥ I(XS ;Z|XK′),∀S ⊆ K′. (125)

Then, by replacing I(XS ;Y |XS) in (10) with I(XS , XT ;Y |XS , XT )−
∑

k∈T Ro
k and I(XS ;Z)

with I(XS ;Z|XK′), we can eliminate Ra
k,∀k ∈ K′ in (124) based on Lemma 1 and get∑

k∈S

Rs
k+

∑
k∈S\S′

Ro
k≤I(XS , XT ;Y |XS , XT )−

∑
k∈T

Ro
k−I(XS′ ;Z|XK′),∀S ⊆ K′,S ′ ⊆ S. (126)

Combining the inequalities (126) for all T ⊆ K′, (4) can be obtained, and Theorem 1 is thus

proven.

APPENDIX C

PROOF OF THEOREM 2

For notational convenience, in this appendix, we use p(·) to denote the probability of a

variable’s realization. For example, in the following formulas (129) and (130),

p(xn
K′) = Pr

{
Xn

K′ = xn
K′

}
,

p(cK′) = Pr {CK′ = cK′} . (127)

In addition, if not specified, the realization of a variable in a
∑

or
∏

operator takes values from

the set consisting of all possible values. For example, in (129c),

xn
K′ ∈

∏
k∈K′

X n
k and zn ∈ Zn. (128)

Now we prove Theorem 2. First, the left-hand-side term of (15) can be rewritten as

E ∥PZn(·|CK)− PZn(·|CK′)∥1
(a)
= E

∥∥PZn(·|CK′ , Xn
K′)− PZn(·|Xn

K′)
∥∥
1

=
∑
xn

K′

p(xn
K′)E

∥∥PZn(·|CK′ , xn
K′)− PZn(·|xn

K′)
∥∥
1

(b)
=

∑
xn

K′

p(xn
K′)E

∥∥PZn(·|CK′ , xn
K′)− E

[
PZn(·|CK′ , xn

K′)
]∥∥

1

(c)
=

∑
xn

K′ ,z
n

p(xn
K′)E

∣∣PZn(zn|CK′ , xn
K′)− E

[
PZn(zn|CK′ , xn

K′)
]∣∣ ,(129)
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where (129a) holds since Qk = 0, ∀k ∈ K′ and each codebook Ck, ∀k ∈ K′ thus has only one

codeword Xn
k , (129b) holds since

E
[
PZn(·|CK′ , xn

K′)
]
=

∑
cK′

p(cK′)PZn(·|cK′ , xn
K′)

=
∑
cK′

PZn(·, cK′|xn
K′)

= PZn(·|xn
K′), (130)

and (129c) uses the definition of total variational distance. Since (see the definition in (11))

PZn(zn|CK′ , xn
K′) = 2−n

∑
k∈K′ Qk

∑
mK′∈

∏
k∈K′ Mk

PZn(zn|{Xn
k (mk)}k∈K′ , xn

K′), (131)

we divide it into two parts as follows based on whether {Xn
k (mk)}k∈K′ , xn

K′ , and zn are jointly

typical or not

P̂Zn(zn|CK′ , xn
K′) = 2−n

∑
k∈K′ Qk

∑
mK′∈

∏
k∈K′ Mk

{
PZn(zn|{Xn

k (mk)}k∈K′ , xn
K′)

×O({Xn
k (mk)}k∈K′ , xn

K′ , z
n)
}
,

P̃Zn(zn|CK′ , xn
K′) = 2−n

∑
k∈K′ Qk

∑
mK′∈

∏
k∈K′ Mk

{
PZn(zn|{Xn

k (mk)}k∈K′ , xn
K′)

× Õ({Xn
k (mk)}k∈K′ , xn

K′ , z
n)
}
, (132)

where

O({Xn
k (mk)}k∈K′ , xn

K′ , z
n) =

 1, if ({Xn
k (mk)}k∈K′ , xn

K′ , z
n) ∈ T (n)

ϵ ,

0, otherwise,
(133)

Õ({Xn
k (mk)}k∈K′ , xn

K′ , z
n) =

 1, if ({Xn
k (mk)}k∈K′ , xn

K′ , z
n) /∈ T (n)

ϵ ,

0, otherwise.
(134)

Using (132) and the triangular inequality, (129) can be upper bounded as follows

E∥PZn(·|CK)−PZn(·|CK′)∥1 ≤
∑

xn

K′ ,z
n

p(xn
K′)E

∣∣∣P̃Zn(zn|CK′ , xn
K′)−E

[
P̃Zn(zn|CK′ , xn

K′)
]∣∣∣

+
∑

(xn

K′ ,z
n)∈T (n)

ϵ

p(xn
K′)E

∣∣∣P̂Zn(zn|CK′ , xn
K′)−E

[
P̂Zn(zn|CK′ , xn

K′)
]∣∣∣. (135)
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Now we further upper bound (135) by separately evaluating its two summation terms. First,∑
xn

K′ ,z
n

p(xn
K′)E

∣∣∣P̃Zn(zn|CK′ , xn
K′)− E

[
P̃Zn(zn|CK′ , xn

K′)
]∣∣∣

≤2
∑

xn

K′ ,z
n

p(xn
K′)E

[
P̃Zn(zn|CK′ , xn

K′)
]

=2
∑

xn

K′ ,z
n

p(xn
K′)2

−n
∑

k∈K′ Qk

∑
mK′∈

∏
k∈K′ Mk

E
[
PZn(zn|{Xn

k (mk)}k∈K′ , xn
K′)Õ({Xn

k (mk)}k∈K′ , xn
K′ , z

n)
]

(a)
=2

∑
xn

K′ ,z
n

p(xn
K′)E

[
PZn(zn|Xn

K′ , xn
K′)Õ(Xn

K′ , xn
K′ , z

n)
]

(b)
=2

∑
(xn

K′ ,x
n

K′ ,z
n)/∈T (n)

ϵ

p(xn
K′)p(xn

K′)p(z
n|xn

K′ , xn
K′)

=2
∑

(xn
K,zn)/∈T (n)

ϵ

p(xn
K, z

n)

=2(1− Pr{(xn
K, z

n) ∈ T (n)
ϵ })

(c)
≤4

K∏
k=1

|Xk||Z|e−nϵ2µ, (136)

where (136a) follows from the symmetry in codebook generation, (136b) holds due to (134),

(136c) is obtained by using [46, Theorem 1.1], and µ is the smallest value of p(xK, z). Note

that in this appendix, we choose a sufficiently small ϵ such that 0 < ϵ < µ.

Next, we evaluate the second summation term of (135). To this end, we first bound each

expectation in the term. Specifically, for a given (xn
K′ , z

n) ∈ T (n)
ϵ ,

E
∣∣∣P̂Zn(zn|CK′ , xn

K′)−E
[
P̂Zn(zn|CK′ , xn

K′)
]∣∣∣ ≤ √

E
[(

P̂Zn(zn|CK′ , xn
K′)− E

[
P̂Zn(zn|CK′ , xn

K′)
])2

]
=

√
Var

(
P̂Zn(zn|CK′ , xn

K′)
)
, (137)

where the first step holds since for a convex function f(u) = u2, using Jensen’s inequality,

(E [u])2 ≤ E [u2]. Using the definition of P̂Zn(zn|CK′ , xn
K′), its variance in (137) can be computed
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as (138) given below

Var
(
P̂Zn(zn|CK′ , xn

K′)
)

=E
[(

P̂Zn(zn|CK′ , xn
K′)

)2
]
−

(
E
[
P̂Zn(zn|CK′ , xn

K′)
])2

=2−2n
∑

k∈K′ Qk

E

 ∑
mK′∈

∏
k∈K′ Mk

PZn(zn|{Xn
k (mk)}k∈K′ , xn

K′)O({Xn
k (mk)}k∈K′ , xn

K′ , z
n)


×

 ∑
m̂K′∈

∏
k∈K′ Mk

PZn(zn|{Xn
k (m̂k)}k∈K′ , xn

K′)O({Xn
k (m̂k)}k∈K′ , xn

K′ , z
n)


− E

 ∑
mK′∈

∏
k∈K′ Mk

PZn(zn|{Xn
k (mk)}k∈K′ , xn

K′)O({Xn
k (mk)}k∈K′ , xn

K′ , z
n)


×E

 ∑
m̂K′∈

∏
k∈K′ Mk

PZn(zn|{Xn
k (m̂k)}k∈K′ , xn

K′)O({Xn
k (m̂k)}k∈K′ , xn

K′ , z
n)


=2−2n

∑
k∈K′ Qk

∑
mK′

∑
m̂K′

{
E
[
PZn(zn|{Xn

k (mk)}k∈K′ , xn
K′)O({Xn

k (mk)}k∈K′ , xn
K′ , z

n)

× PZn(zn|{Xn
k (m̂k)}k∈K′ , xn

K′)O({Xn
k (m̂k)}k∈K′ , xn

K′ , z
n)
]

− E
[
PZn(zn|{Xn

k (mk)}k∈K′ , xn
K′)O({Xn

k (mk)}k∈K′ , xn
K′ , z

n)
]

×E
[
PZn(zn|{Xn

k (m̂k)}k∈K′ , xn
K′)O({Xn

k (m̂k)}k∈K′ , xn
K′ , z

n)
]}

=2−n
∑

k∈K′ Qk

∑
m̂K′

{
E
[
PZn(zn|{Xn

k (1)}k∈K′ , xn
K′)O({Xn

k (1)}k∈K′ , xn
K′ , z

n)

× PZn(zn|{Xn
k (m̂k)}k∈K′ , xn

K′)O({Xn
k (m̂k)}k∈K′ , xn

K′ , z
n)
]

− E
[
PZn(zn|{Xn

k (1)}k∈K′ , xn
K′)O({Xn

k (1)}k∈K′ , xn
K′ , z

n)
]

×E
[
PZn(zn|{Xn

k (m̂k)}k∈K′ , xn
K′)O({Xn

k (m̂k)}k∈K′ , xn
K′ , z

n)
]}

, (138)

in which the last step follows from the symmetry in codebook generation. Note that if none of

m̂k,∀k ∈ K′ in (138) is 1, i.e.,

m̂k ̸= 1,∀k ∈ K′, (139)

{Xn
k (m̂k)}k∈K′ is independent of {Xn

k (1)}k∈K′ . In this case, the expectation difference in the
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last step of (138) is 0, i.e.,

E
[
PZn(zn|{Xn

k (1)}k∈K′ , xn
K′)O({Xn

k (1)}k∈K′ , xn
K′ , z

n)

× PZn(zn|{Xn
k (m̂k)}k∈K′ , xn

K′)O({Xn
k (m̂k)}k∈K′ , xn

K′ , z
n)
]

−E
[
PZn(zn|{Xn

k (1)}k∈K′ , xn
K′)O({Xn

k (1)}k∈K′ , xn
K′ , z

n)
]

× E
[
PZn(zn|{Xn

k (m̂k)}k∈K′ , xn
K′)O({Xn

k (m̂k)}k∈K′ , xn
K′ , z

n)
]
= 0. (140)

As a result, to evaluate (138), we only need to consider those m̂K′ ∈
∏

k∈K′ Mk in which at

least one m̂k is 1, i.e., at least one user in K′ transmits the first codeword. Let A ⫋ K′ and

A = K′ \ A denote sets of users which respectively satisfy

m̂k ̸= 1,∀k ∈ A,

m̂k = 1,∀k ∈ A. (141)

Using (140) and (141), Var
(
P̂Zn(zn|CK′ , xn

K′)
)

in (138) can be upper bounded as

Var
(
P̂Zn(zn|CK′ , xn

K′)
)

=2−n
∑

k∈K′ Qk

∑
A⫋K′

∑
mA∈

∏
k∈A Mk\{1}

{
E
[
PZn(zn|{Xn

k (1)}k∈K′ , xn
K′)O({Xn

k (1)}k∈K′ , xn
K′ , z

n)

× PZn(zn|{Xn
k (m̂k)}k∈A, {Xn

k (1)}k∈A, xn
K′)O({Xn

k (m̂k)}k∈A, {Xn
k (1)}k∈A, xn

K′ , z
n)
]

− E
[
PZn(zn|{Xn

k (1)}k∈K′ , xn
K′)O({Xn

k (1)}k∈K′ , xn
K′ , z

n)
]

× E
[
PZn(zn|{Xn

k (m̂k)}k∈A, {Xn
k (1)}k∈A, xn

K′)O({Xn
k (m̂k)}k∈A, {Xn

k (1)}k∈A, xn
K′ , z

n)
]}

≤2−n
∑

k∈K′ Qk

∑
A⫋K′

∑
mA∈

∏
k∈A Mk\{1}

E
[
PZn(zn|{Xn

k (1)}k∈K′ , xn
K′)O({Xn

k (1)}k∈K′ , xn
K′ , z

n)

× PZn(zn|{Xn
k (m̂k)}k∈A, {Xn

k (1)}k∈A, xn
K′)O({Xn

k (m̂k)}k∈A, {Xn
k (1)}k∈A, xn

K′ , z
n)
]
, (142)

in which the last step holds since all non-negative subtrahends are omitted. We further bound
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each expectation term in the last step of (142) as follows

E
[
PZn(zn|{Xn

k (1)}k∈K′ , xn
K′)O({Xn

k (1)}k∈K′ , xn
K′ , z

n)

× PZn(zn|{Xn
k (m̂k)}k∈A, {Xn

k (1)}k∈A, xn
K′)O({Xn

k (m̂k)}k∈A, {Xn
k (1)}k∈A, xn

K′ , z
n)
]

=
∑

{xn
k (1)}k∈K′ ,{xn

k (m̂k)}k∈A:

({xn
k (1)}k∈K′ ,xn

K′ ,z
n)∈T (n)

ϵ ,

({xn
k (m̂k)}k∈A,{xn

k (1)}k∈A,xn

K′ ,z
n)∈T (n)

ϵ

[
p({xn

k(1)}k∈K′)p({xn
k(m̂k)}k∈A)p(zn|{xn

k(1)}k∈K′ , xn
K′)

× p(zn|{xn
k(m̂k)}k∈A, {xn

k(1)}k∈A, xn
K′)

]
=

∑
{xn

k (1)}k∈K′ ,{xn
k (m̂k)}k∈A:

({xn
k (1)}k∈K′ ,xn

K′ ,z
n)∈T (n)

ϵ ,

({xn
k (m̂k)}k∈A,{xn

k (1)}k∈A,xn

K′ ,z
n)∈T (n)

ϵ

p({xn
k(1)}k∈K′ , zn|xn

K′)p({xn
k(m̂k)}k∈A, zn|{xn

k(1)}k∈A, xn
K′)

(a)
≤

∑
{xn

k (1)}k∈K′ :

({xn
k (1)}k∈K′ ,xn

K′ ,z
n)∈T (n)

ϵ

p({xn
k(1)}k∈K′ , zn|xn

K′)

 ∑
{xn

k (m̂k)}k∈A

p({xn
k(m̂k)}k∈A, zn|{xn

k(1)}k∈A, xn
K′)


=

∑
{xn

k (1)}k∈K′ :

({xn
k (1)}k∈K′ ,xn

K′ ,z
n)∈T (n)

ϵ

p({xn
k(1)}k∈K′ , zn|xn

K′)p(z
n|{xn

k(1)}k∈A, xn
K′)

(b)
≤2−nH(Z|XA,XK′ )(1−ϵ)

∑
{xn

k (1)}k∈K′

p({xn
k(1)}k∈K′ , zn|xn

K′)

=2−nH(Z|XA,XK′ )(1−ϵ)p(zn|xn
K′)

≤2−n[H(Z|XK′ )+H(Z|XA,XK′ )](1−ϵ), (143)

where (143a) holds since in contrast to the previous step, {xn
k(m̂k)}k∈A no longer has to

satisfy ({xn
k(m̂k)}k∈A, {xn

k(1)}k∈A, xn
K′ , z

n) ∈ T (n)
ϵ , and (143b) holds since, on one hand, for

any ({xn
k(1)}k∈A, xn

K′ , z
n) ∈ T (n)

ϵ ,

p(zn|{xn
k(1)}k∈A, xn

K′) ≤ 2−nH(Z|XA,XK′ )(1−ϵ), (144)

and on the other hand, {xn
k(1)}k∈K′ no longer has to satisfy ({xn

k(1)}k∈K′ , xn
K′ , z

n) ∈ T (n)
ϵ as in
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the previous step. Substituting (143) into (142), we have

Var
(
P̂Zn(zn|CK′ , xn

K′)
)
≤ 2−n

∑
k∈K′ Qk

∑
A⫋K′

∑
mA∈

∏
k∈A Mk\{1}

2−n[H(Z|XK′ )+H(Z|XA,XK′ )](1−ϵ)

(a)
=

∑
A⫋K′

∏
k∈A

(
2nQk − 1

)
2−n[

∑
k∈K′ Qk+H(Z|XK′ )+H(Z|XA,XK′ )](1−ϵ)

≤
∑
A⫋K′

2n
∑

k∈A Qk2−n[
∑

k∈K′ Qk+H(Z|XK′ )+H(Z|XA,XK′ )](1−ϵ)

=
∑
A⫋K′

2−n[
∑

k∈A Qk+H(Z|XK′ )+H(Z|XA,XK′ )](1−ϵ), (145)

where (145a) holds since for any k ∈ A, m̂k has 2nQk − 1 possible values. Combining (137)

and (145), we have

E
∣∣∣P̂Zn(zn|CK′ , xn

K′)−E
[
P̂Zn(zn|CK′ , xn

K′)
]∣∣∣≤√∑

A⫋K′

2−n[
∑

k∈A Qk+H(Z|XK′ )+H(Z|XA,XK′ )](1−ϵ)

≤
∑
A⫋K′

2−
n
2 [

∑
k∈A Qk+H(Z|XK′ )+H(Z|XA,XK′ )](1−ϵ). (146)

Accordingly, the second summation term of (135) can be upper bounded as follows∑
(xn

K′ ,z
n)∈T (n)

ϵ

p(xn
K′)E

∣∣∣P̂Zn(zn|CK′ , xn
K′)− E

[
P̂Zn(zn|CK′ , xn

K′)
]∣∣∣

≤2nH(XK′ ,Z)(1+ϵ)2−nH(XK′ )(1−ϵ)
∑
A⫋K′

2−
n
2 [

∑
k∈A Qk+H(Z|XK′ )+H(Z|XA,XK′ )](1−ϵ)

=
∑
A⫋K′

2−
n
2 [(

∑
k∈A Qk−I(XA;Z|XK′ ))(1−ϵ)−3ϵH(XK′ ,Z)]. (147)

For any A ⫋ K′, we know that A ⊆ K′ and A ≠ ϕ. Then, it is known from (14) that∑
k∈A

Qk − I(XA;Z|XK′) > 0. (148)

Since ϵ is an arbitrarily small positive number, we have[∑
k∈A

Qk − I(XA;Z|XK′)

]
(1− ϵ)− 3ϵH(XK′ , Z) > 0. (149)

Then, the upper bound (147) vanishes exponentially in n. Substituting (136) and (147) into (135),

Theorem 2 can be proven.
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APPENDIX D

PROOF OF THEOREM 4

We first prove (20). As we have shown in Lemma 2, if Ro
k = 0,∀k ∈ K, (17) becomes (19),

which can be divided into Rs
k = 0,∀k ∈ K′,∑

k∈S
Rs

k ≤ [I(XS ;Y |XS , XK′)− I(XS ;Z|XK′)]
+ , ∀S ⫋ K′,

(150)

and ∑
k∈K′

Rs
k ≤ [I(XK′ ;Y |XK′)− I(XK′ ;Z|XK′)]

+ . (151)

(151) shows that for any rate-tuple in R(XK,K′), the sum secrecy rate
∑

k∈K′ Rs
k is no larger than

[I(XK′ ;Y |XK′)− I(XK′ ;Z|XK′)]
+. We now show that this upper bound is achievable. To this

end, we only need to prove that the inequality (151) is not redundant, i.e., any linear combination

of inequalities in (150) does not generate (151) or a tighter upper bound to
∑

k∈K′ Rs
k. In [15,

Appendix E], we have provided the proof for the case with K′ = K. When K′ ⫋ K, we could

complete the proof by following similar steps. We omit the details here for brevity. Note that

for a given K′ ⊆ K, Rs
k = 0,∀k ∈ K′. Hence, the achievable upper bound on

∑
k∈K Rs

k given by

(150) and (151) is [I(XK′ ;Y |XK′)− I(XK′ ;Z|XK′)]
+. Then, considering all possible K′ ⊆ K,

the maximum achievable sum secrecy rate
∑

k∈K Rs
k is

Rs(XK) = max
K′⊆K

{
[I(XK′ ;Y |XK′)− I(XK′ ;Z|XK′)]

+} . (152)

(20) is thus true.

Let K′∗ denote the subset in K which achieves (152) and assume

I(XK′∗ ;Y |XK′∗)− I(XK′∗ ;Z|XK′∗) > 0, (153)

since otherwise we have Rs
k = 0,∀k ∈ K, i.e., the system reduces to a standard DM-MAC

channel with only open messages. Before proving the second part of Theorem 4, i.e., (21), we

first show that with K′∗ defined above, we have

I(XS ;Y |XS , XK′∗)− I(XS ;Z|XK′∗) ≥ 0,∀S ⫋ K′∗. (154)

(154) can be proven by reductio ad absurdum. If (154) is not true, then there exist subsets in

K′∗ such that the corresponding inequalities in (154) do not hold. W.l.o.g., we assume that there

exists only one subset S0 in K′∗ such that

I(XS0 ;Y |XS0
, XK′∗)− I(XS0 ;Z|XK′∗) < 0. (155)
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Using the chain rule of mutual information and the fact that Xk,∀k ∈ K are independent of

each other, the left-hand side term of (153) is upper bounded by

I(XK′∗ ;Y |XK′∗)− I(XK′∗ ;Z|XK′∗)

=I(XK′∗\S0 , XS0 ;Y |XK′∗)− I(XK′∗\S0 , XS0 ;Z|XK′∗)

=I(XK′∗\S0 ;Y |XS0 , XK′∗)− I(XK′∗\S0 ;Z|XK′∗) + I(XS0 ;Y |XK′∗)− I(XS0 ;Z|XK′∗\S0 , XK′∗)

≤I(XK′∗\S0 ;Y |XS0 , XK′∗)− I(XK′∗\S0 ;Z|XK′∗) + I(XS0 ;Y |XS0
, XK′∗)− I(XS0 ;Z|XK′∗)

<I(XK′∗\S0 ;Y |XS0 , XK′∗)− I(XK′∗\S0 ;Z|XK′∗), (156)

where the last step holds due to (155). Then, K′ = K′∗ \ S0 and K′ = K′∗ ∪S0 result in a larger

value in (152) than K′∗, i.e., Rs(XK) can be increased. This is contradicted to the assumption

that K′∗ achieves (152). When there are more subsets in K′∗ such that the inequalities in (154)

do not hold, we may prove by following similar steps that Rs(XK) can be further increased. As

a result, if K′∗ ⊆ K achieves (152) and (153) is true, we have (154).

Now we show that if users in K′∗ transmit their confidential messages at sum rate Rs(XK),

the maximum achievable sum rate at which users in K could send their open messages is given

by (21). We divide the users in K into two classes, i.e., K′∗ and K′∗, and separately consider

their maximum sum open message rate.

First, if ({Rs
k, R

o
k}k∈K′∗ , {Rs

k = 0, Ro
k}k∈K′∗) is a rate-tuple in region R(XK,K′∗) defined by

Theorem 3 and
∑

k∈K′∗ Rs
k = Rs(XK), which is assumed to be positive, by setting S = K′∗,

S ′ = ϕ, and T = ϕ in (17), we get∑
k∈K′∗

Ro
k ≤ I(XK′∗ ;Y |XK′∗)−Rs(XK) = I(XK′∗ ;Z|XK′∗), (157)

indicating that the sum rate at which users in K′∗ can encode their open messages is no larger

than I(XK′∗ ;Z|XK′∗). Then, we prove that this rate is achievable. Since the rate-tuple is in region

R(XK,K′∗), with inequalities (153) and (154), we could use Theorem 1 and find Ra
k,∀k ∈ K′∗

such that
Ra

k ≥ 0,∀k ∈ K′∗,∑
k∈S

(Rs
k +Ro

k +Ra
k) +

∑
k∈T

Ro
k ≤ I(XS , XT ;Y |XS , XT ),∀S ⊆ K′∗, T ⊆ K′∗,∑

k∈S
(Ro

k +Ra
k) ≥ I(XS ;Z|XK′∗),∀S ⊆ K′∗.

(158)
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From (158) it is known that if
∑

k∈K′∗ Ro
k < I(XK′∗ ;Z|XK′∗), we can always split partial rate

in Ra
k to Ro

k, and get R̂a
k as well as R̂o

k, such that

R̂a
k ≥ 0,∀k ∈ K′∗,

R̂o
k + R̂a

k = Ro
k +Ra

k,∀k ∈ K′∗, (159)

and ∑
k∈K′∗

R̂o
k = I(XK′∗ ;Z|XK′∗). (160)

With (159), it can be verified that the new rate-tuple ({Rs
k, R̂

o
k, R̂

a
k}k∈K′∗ , {Rs

k = 0, Ro
k}k∈K′∗)

is in the region defined by (158), i.e., it satisfies all inequalities in (158). Since R(XK,K′∗)

can be obtained by projecting (158) onto hyperplane {Ra
k = 0,∀k ∈ K′∗}, then, according

to the property of Fourier-Motzkin elimination [35, Appendix D], we know that rate-tuple

({Rs
k, R̂

o
k}k∈K′∗ , {Rs

k = 0, Ro
k}k∈K′∗) is in region R(XK,K′∗). Due to (160), with this rate-tuple,

users in K′∗ could send their open messages at sum rate I(XK′∗ ;Z|XK′∗).

So far we have shown that the maximum achievable sum secrecy rate is Rs(XK), and if∑
k∈K′∗ Rs

k = Rs(XK), the maximum achievable sum rate
∑

k∈K′∗ Ro
k is I(XK′∗ ;Z|XK′∗). Now

we show that if ∑
k∈K′∗

Rs
k = Rs(XK),

∑
k∈K′∗

Ro
k = I(XK′∗ ;Z|XK′∗), (161)

the maximum achievable sum rate
∑

k∈K′∗ Ro
k is I(XK′∗ ;Y ). Setting S = K′∗, S ′ = ϕ, and

T = K′∗ in (17), we have∑
k∈K′∗

Ro
k ≤ I(XK′∗ , XK′∗ ;Y )−

∑
k∈K′∗

(Rs
k +Ro

k)

= I(XK′∗ , XK′∗ ;Y )−Rs(XK)− I(XK′∗ ;Z|XK′∗)

= I(XK′∗ ;Y ). (162)

Note that from the perspective of Bob, we are considering a DM-MAC channel with K users.

Then, it is known from [35, Chapter 4] that (162) can hold with equality. This can be realized

by letting Bob treat the signal of users in K′∗ as noise and decode the information of users

in K′∗. Hence, the maximum achievable sum rate at which users in K′∗ could send their open

messages is I(XK′∗ ;Y ). Combining (161) and (162) (with equality), it is known that (21) is true.

Theorem 4 is thus proven.
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APPENDIX E

PROOF OF THEOREM 5

We first prove (48). Using the chain rule of mutual information, the left-hand-side term of

(46) is upper bounded by

I(XK0∪V ;Y |XK′\(K0∪V), XK′)− I(XK0∪V ;Z|XK′)

=I(XK0 , XV ;Y |XK′\(K0∪V), XK′)− I(XK0 , XV ;Z|XK′) (163a)

=I(XK0 ;Y |XK′\K0 ,XK′)−I(XK0 ;Z|XK′)+I(XV ;Y |XK′\(K0∪V),XK′)−I(XV ;Z|XK′∪K0
) (163b)

≤I(XV ;Y |XK′\(K0∪V), XK′)− I(XV ;Z|XK′∪K0
) (163c)

≤I(XV ;Y |XK′\(K0∪V), XK′∪K0
)− I(XV ;Z|XK′∪K0

) (163d)

=I(XV ;Y |XV , XK′′)− I(XV ;Z|XK′′),∀V ⊆ K′′,V ≠ ϕ, (163e)

where (163c) follows by using (45), (163d) holds by adding XK0 and using the fact that Xk,∀k ∈

K are independent of each other, and the last step follows by using the definitions of K′′ and V

in (47) and (48). Combining (46) and (163), we know that (48) is true.

Next, we show that for any rate-tuple in region R(XK,K′) defined by Theorem 3, if (45)

and (46) can be satisfied, it is also in region R(XK,K′′). If (Rs
1, R

o
1, · · · , Rs

K , R
o
K) is in region

R(XK,K′) and satisfies (45), by setting S = K0, S ′ = S = K0 and T = ϕ in (17), we get∑
k∈K0

Rs
k ≤

[
I(XK0 ;Y |XK′\K0 , XK′)− I(XK0 ;Z|XK′)

]+
= 0. (164)

Hence, Rs
k = 0,∀k ∈ K0. Considering that Rs

k = 0,∀k ∈ K′ in (17), we have

Rs
k = 0,∀k ∈ K′′, (165)

which is required by (49). To prove that (Rs
1, R

o
1, · · · , Rs

K , R
o
K) is also in region R(XK,K′′), we

need to further verify the upper bounds on
∑

k∈V R
s
k +

∑
k∈V\V ′ Ro

k +
∑

k∈W Ro
k for all possible

set choices given in (49). To this end, we separately prove∑
k∈V

Rs
k +

∑
k∈V\V ′

Ro
k +

∑
k∈W

Ro
k ≤ I(XV , XW ;Y |XV , XK′′\W)− I(XV ′ ;Z|XK′′),

∀V ⊆ K′′,V ′ ⊆ V ,W ⊆ K′, (166)
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and ∑
k∈V

Rs
k +

∑
k∈V\V ′

Ro
k +

∑
k∈W

Ro
k ≤ I(XV , XW ;Y |XV , XK′′\W)− I(XV ′ ;Z|XK′′),

∀V ⊆ K′′,V ′ ⊆ V ,W ⊆ K′′,W ∩K0 ̸= ϕ. (167)

Since in (49), W ⊆ K′′ ≜ K′ ∪ K0, (166) together with (167) takes into account all possible

choices of W in (49).

We first prove (166). Since Rs
k = 0, ∀k ∈ K0,∑

k∈V

Rs
k +

∑
k∈V\V ′

Ro
k +

∑
k∈W

Ro
k

=
∑

k∈V∪K0

Rs
k +

∑
k∈V∪K0\(V ′∪K0)

Ro
k +

∑
k∈W

Ro
k (168a)

≤I(XV∪K0 , XW ;Y |XK′\(V∪K0), XK′\W)− I(XV ′∪K0 ;Z|XK′) (168b)

=I(XK0 ;Y |XK′\K0 , XK′)− I(XK0 ;Z|XK′) (168c)

+I(XV , XW ;Y |XK′\(V∪K0), XK′\W)− I(XV ′ ;Z|XK′∪K0
) (168d)

≤I(XV , XW ;Y |XK′\(V∪K0), XK′\W)− I(XV ′ ;Z|XK′∪K0
) (168e)

=I(XV , XW ;Y |XV , XK′\W)− I(XV ′ ;Z|XK′′) (168f)

≤I(XV , XW ;Y |XV , XK′\W , XK0)− I(XV ′ ;Z|XK′′), (168g)

=I(XV , XW ;Y |XV , XK′′\W)− I(XV ′ ;Z|XK′′),∀V ⊆ K′′,V ′ ⊆ V ,W ⊆ K′, (168h)

where (168b) is obtained by using the fact that (V ∪K0) ⊆ K′, W ⊆ K′, (Rs
1, R

o
1, · · · , Rs

K , R
o
K)

is in region R(XK,K′), and setting S = V ∪ K0, S ′ = V ′ ∪ K0, and T = W in (17). In

addition, (168e) follows from using (45), (168f) is true since V = K′′ \ V = K′ \ (V ∪ K0) and

K′′ = K′ ∪ K0, and (168g) is obtained by adding XK0 and using the fact that Xk,∀k ∈ K are

independent of each other. (166) is thus proven.

Next we prove (167), in which W ⊆ K′′ ≜ K′ ∪ K0 and W ∩K0 ̸= ϕ. Obviously, W can be

divided into two disjoint subsets, W1 and W2, with W1 ⊆ K′ and W2 ⊆ K0. Then,∑
k∈W2

Ro
k =

∑
k∈W2

Rs
k +

∑
k∈W2

Ro
k (169a)

≤ I(XW2 ;Y |XK′\W2 , XK′) (169b)

= I(XW2 ;Y |XK′′ , XK′ , XK0\W2), (169c)
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where (169a) holds since W2 ⊆ K0 and Rs
k = 0,∀k ∈ K0 (see (165)), and (169c) is true

since K′ = K′′ ∪ K0. Note that as defined in (45), K0 ⫋ K′, making W2 ⊆ K′. In addition,

(Rs
1, R

o
1, · · · , Rs

K , R
o
K) is in region R(XK,K′) and thus satisfies (17). Hence, (169b) is obtained

by setting S = W2, S ′ = ϕ, and T = ϕ in (17). Then,∑
k∈V

Rs
k +

∑
k∈V\V ′

Ro
k +

∑
k∈W

Ro
k

=
∑
k∈V

Rs
k +

∑
k∈V\V ′

Ro
k +

∑
k∈W1

Ro
k +

∑
k∈W2

Ro
k (170a)

≤I(XV , XW1 ;Y |XV , XK′\W1
)− I(XV ′ ;Z|XK′′) + I(XW2 ;Y |XK′′ , XK′ , XK0\W2) (170b)

≤I(XV , XW1 ;Y |XV , XK′\W1
, XK0\W2)−I(XV ′ ;Z|XK′′)+I(XW2 ;Y |XK′′ , XK′ , XK0\W2) (170c)

=I(XV , XW1 , XW2 ;Y |XV , XK′\W1
, XK0\W2)− I(XV ′ ;Z|XK′′) (170d)

=I(XV , XW ;Y |XV , XK′′\W)−I(XV ′ ;Z|XK′′),∀V⊆K′′,V ′⊆V ,W⊆K′′,W∩K0 ̸= ϕ, (170e)

where (170b) follows from using (168f) (since W1 ⊆ K′) and (169), and (170c) is obtained by

adding XK0\W2 and using the fact that Xk,∀k ∈ K are independent of each other. Combining

(165), (166), and (167), it is known that (Rs
1, R

o
1, · · · , Rs

K , R
o
K) satisfies (49) and is thus also in

R(XK,K′′). Theorem 5 is then proven.
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