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Abstract
Numerous cardioprotective interventions have been reported to reduce myocardial infarct size (IS) in pre-clinical studies. 
However, their translation for the benefit of patients with acute myocardial infarction (AMI) has been largely disappointing. 
One reason for the lack of translation is the lack of rigor and reproducibility in pre-clinical studies. To address this, we have 
established the European IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) pig AMI network with 
centralized randomization and blinded core laboratory IS analysis and validated the network with ischemic preconditioning 
(IPC) as a positive control. Ten sites in the COST Innovators Grant (IG16225) network participated in the IMPACT network. 
Three sites were excluded from the final analysis through quality control of infarct images and use of pre-defined exclusion 
criteria. Using a centrally generated randomization list, pigs were allocated to myocardial ischemia/reperfusion (I/R, N = 5/
site) or IPC + I/R (N = 5/site). The primary endpoint was IS [% area-at-risk (AAR)], as quantified by triphenyl-tetrazolium-
chloride (TTC) staining in a centralized, blinded core laboratory (5 sites), or IS [% left-ventricular mass (LV)], as quantified 
by a centralized, blinded cardiac magnetic resonance (CMR) core laboratory (2 sites). In pooled analyses, IPC significantly 
reduced IS when compared to I/R (57 ± 14 versus 32 ± 19 [%AAR] N = 25 pigs/group; p < 0.001; 25 ± 13 versus 14 ± 8 [%LV]; 
N = 10 pigs/group; p = 0.021). In site-specific analyses, in 4 of the 5 sites, IS was significantly reduced by IPC when compared 
to I/R when quantified by TTC and in 1 of 2 sites when quantified by CMR. A pig AMI multicenter European network with 
centralized randomization and core blinded IS analysis was established and validated with the aim to improve the reproduc-
ibility of cardioprotective interventions in pre-clinical studies and the translation of cardioprotection for patient benefit.
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Introduction

Despite advances in the management and treatment of acute 
myocardial infarction (AMI) by reperfusion, the 1-year mor-
tality is still high. The 1-year mortality rate is below < 10% 
in clinical trials [19, 42, 47, 55]. However, in large Euro-
pean registries, which may more accurately reflect real-
world conditions, the mortality rate varies and may range 
up to 15–21%. [4, 31, 57]. Thus, there is still a need for new 
cardioprotective interventions beyond timely reperfusion to 
reduce myocardial infarct size (IS), prevent the development 
of heart failure, and improve clinical outcomes [26, 29]. 
Intensive investigation and elucidation of the mechanisms 
underlying acute myocardial ischemia/reperfusion (I/R) 
injury have resulted in the identification of a large number 
of cardioprotective targets and interventions [2, 9, 10, 16, 
17, 21, 24, 27, 40]. Although many of these treatments have 
been demonstrated to reduce IS in pre-clinical animal stud-
ies [24], their translation into the clinical setting for patient 
benefit has been largely disappointing [18, 24, 25, 30].

Obvious differences exist between the pre-clinical ani-
mal studies, clinical trials, and clinical practice [22, 25, 
31], and several reasons have been proposed to explain the 
translational failure of cardioprotection into the clinic. These 
include age and comorbidities (such as diabetes, hyperten-
sion, and hyperlipidemia) and concomitant medications 
(such as anti-platelet agents and statins) which are present in 
AMI patients and may interfere with cardioprotective sign-
aling and efficacy [7, 13, 37]. In many pre-clinical studies, 
these have not been taken into account in the study design. 
Similarly, the lack of rigor and reproducibility in the design 
and conduct of the pre-clinical animal studies may play a 
role [5, 6, 22, 45, 53].

To address the latter, the EU-CARDIOPROTECTION 
COST Action (CA16225) network has published guidelines 
to improve the rigor and robustness of pre-clinical cardio-
protection studies [8] and proposed the IMproving Preclini-
cal Assessment of Cardioprotective Therapies (IMPACT) 
criteria and step-by-step framework [45]. The use of pigs 
has been proposed as the most appropriate species in this 
translation pathway because of their high anatomical and 
physiological similarity to humans, i.e., comparable hemo-
dynamics and spatial and temporal evolution of recent AMI 
[8, 32]. As in AMI patients, IS should be used as the most 
relevant endpoint for assessing cardioprotective efficacy. IS 
should be quantified by histochemistry as a fraction of the 
area-at-risk (AAR) via triphenyl-tetrazolium-chloride (TTC) 
staining and AAR demarcation with sodium fluorescein or 
a blue dye—the gold-standard setup for pre-clinical models 
[8] and/or by cardiac magnetic resonance imaging (CMR), 
the latter reflecting the gold-standard approach for assessing 
IS in AMI patients [8, 28, 34]. A key aspect of the IMPACT 

criteria is to establish a network of research centers capable 
of conducting multicenter pig AMI studies in a centralized, 
randomized, blinded manner, similar to the design of rand-
omized-controlled clinical trials [45].

The realization of how important such a network is for 
improving translation and the idea of setting up such a net-
work is not novel. Two similar networks have been initiated. 
The National Heart, Lung, and Blood Institute (NHLBI)-
funded, Consortium for preclinicAl assESsment of cAR-
dioprotective interventions (CAESAR) research network 
of 3 sites performed AMI in mice, rabbits, and pigs and 
evaluated previously established pharmacological cardiopro-
tective strategies (i.e., sildenafil, sodium nitrite, and chlo-
ramphenicol succinate). The network failed to demonstrate 
cardioprotection with these pharmacological treatments but 
did manage to show a reduction in IS with ischemic precon-
ditioning (IPC) [5, 35, 44, 46]. Due to lack of funding, the 
CAESAR consortium is no longer functioning, but it did 
succeed in demonstrating the utility of a multicenter network 
for evaluating the reproducibility of novel cardioprotective 
interventions. More recently, the Spanish CIBER-CLAP 
(CIBERCV Cardioprotection Large Animal Platform) was 
set up to undertake pig AMI multicenter studies for evaluat-
ing cardioprotective therapies [50], but no results have yet 
been published.

We here aimed to establish a European pig AMI multi-
center network with centralized randomization and blinded 
core laboratory analysis of IS by TTC and CMR. To validate 
this network, we used IPC as the cardioprotective stimu-
lus, which has been established as the strongest and most 
robust stimulus for cardioprotection [24]. To increase the 
translational value of our multicenter study, pigs of differ-
ent breeds and with different housing conditions, male and 
female as well as juvenile and adult pigs were included. The 
experimental protocol, e.g., anesthesia and/or the duration 
of ischemia, was also not standardized and the different 
sites used the protocol established at their sites. With this 
approach, we aimed to reproduce the heterogeneous condi-
tions in the clinical setting. After initiation of the network, 
but prior to the start of the studies, we subjected each site to 
rigorous quality control (QC) of the TTC and CMR infarct 
images by core laboratories (in Germany and Spain) within 
a predetermined time frame.

Materials and methods

Study design

The IMPACT pig AMI multicenter network was centrally 
coordinated by a working group comprising: (1) the prin-
cipal investigator and team members from each of the 
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participating sites; (2) the IMPACT centralized core labo-
ratories for IS analysis by triphenyl-tetrazolium-chloride 
(TTC; University of Duisburg-Essen, Essen, Germany) and 
CMR (CNIC, Madrid Spain); and (3) the IMPACT central 
statistical core (Duke-NUS/NHCS, Singapore) who provided 
the central randomization lists to the sites and undertook all 
statistical analyses.

The experimental protocols conformed to the EU direc-
tive 2010/63EU on the protection of animals used for sci-
entific purposes and the Animal Research: Reporting of 
In Vivo Experiments (ARRIVE) guidelines [49]. The experi-
mental protocols were formally approved by the appropriate 
national or institutional ethics committees.

Ten participants of the COST Innovators Grant (IG16225) 
network agreed to participate in establishing the IMPACT 
pig AMI network: 5 from Spain, 2 from Austria, 1 from 
Germany, 1 from the Netherlands, and 1 from Hungary 
(Table 1). All participating sites had previously established a 
pig AMI model in their laboratories (for references, see Data 
sheet experimental design). Prior to the onset of the studies 
for the IMPACT network, each site underwent rigorous QC 
assessment of their TTC and CMR infarct images by the 
core laboratories in a predetermined time frame, with indi-
vidual feedback provided to each site for optimization of the 
infarct images (see QC checklist in the Suppl. Table 1, and 
the overall process in Fig. 1). One site did not pass the QC 
within the predetermined time frame and was excluded from 
the actual study (Fig. 1). After passing QC, the IMPACT 
central statistical core generated central randomization lists 
for each site to assign pigs to I/R or IPC + I/R. Finally, N = 5 
I/R and N = 5 IPC + I/R experiments per site were performed 
(Fig. 1). The selection of 5/5 animals per site was based on 
a recent study of one of the participating sites, which was 
based on a power analysis [38]. If an animal died during the 
experiment or was excluded due to the pre-defined criteria, 
further experiments were conducted to reach a total of 5 pigs 
per site. Only one exclusion criterion applied to all sites; 
conspicuous, unhealthy pigs were not included. For all other 
site-specific exclusion criteria, please see the Suppl. Data 
sheet experimental design.

Study procedures

All participating sites used procedures which were estab-
lished in their laboratories for cardioprotection research in 
the pig AMI model. Thus, there was limited standardization 
of experimental conditions and study protocols. Site-specific 
details of these parameters are provided in Table 1 and the 
Suppl. Data sheet experimental design. All sites used juve-
nile farm pigs (different breeds), except for one site which 
used adult minipigs. Five sites included only female pigs, 
2 sites only male pigs, and 2 sites both female and male 
pigs (Table 1). Pigs were anesthetized with inhalational 

anesthesia (6 sites) or intravenous anesthesia (3 sites, 
Table 1). Barbiturates, opioids, or non-opioid analgesics 
were used for analgesia (Table 1). Two sites performed an 
open-chest AMI preparation, one site used colored micro-
spheres to quantify post-mortem the regional myocardial 
blood flow [43], and the other site measured coronary flow 
online via a Doppler coronary flow probe [1]. A high blood 
flow during ischemia and a low blood flow during reper-
fusion were used as a-priori inclusion criteria; for details, 
see Suppl. Data sheet experimental design. Eight sites used 
a closed-chest AMI preparation and only these sites used 
anti-arrhythmic drugs (Table 1). The left anterior descend-
ing (LAD) coronary artery was the standard occlusion site. 
For TTC measurement, the duration of coronary occlusion 
targeted for an IS of 40–50 [%AAR], and sites with an IS 
substantially less than 40% of AAR were excluded from fur-
ther analysis.

The duration of ischemia ranged between 45 and 90 min. 
Three cycles of I/R prior to the index ischemia were stand-
ardized as the IPC maneuver. Two sites used 5/10 min cycles 
and the other 8 sites used 5/5 min cycles (Table 1). The dura-
tion of reperfusion ranged from 3 h up to 7 days (Table 1). 
Fibrillation episodes and defibrillation shocks used during 
IPC + I/R and I/R protocols are listed in Suppl. Table 2. TTC 
protocols and the CMR acquisition protocols were not stand-
ardized across sites (Suppl. Data sheet experimental design).

Study endpoints

The primary endpoint was myocardial IS as fraction of the 
AAR [%AAR] as measured via TTC or as fraction of the 
left-ventricular (LV) mass as measured via CMR [%LV]. 
IS was analyzed by the TTC core laboratory (University of 
Duisburg-Essen, Essen, Germany) or by the CMR core labo-
ratory (CNIC, Madrid, Spain).

The TTC staining protocol was not standardized, and 
the sites used their established protocols (for details, please 
see the Suppl. Data sheet experimental design). Although 
TTC staining is considered to be the gold-standard setup 
for pre-clinical models [8], staining with TTC sometimes 
gives ambiguous results, i.e., areas that are neither white/
yellow nor bright red, but “pink”. Here, we quantified all 
areas that were not clearly red, i.e., vital areas, as infarct 
(for examples see Suppl. Figure 1). TTC staining was used 
to quantify IS not only after short reperfusion times (hours) 
but also after longer reperfusion times (days); for details, 
please see the Suppl. Data sheet experimental design. TTC 
staining has only been validated for reperfusion times of 
minutes/hours [15], and we did not validate the quality of 
TTC staining further by histologic staining in our present 
study. TTC images were quantified using digital planim-
etry (ImageJ 1.54d; National Institutes of Health). Using 
the scale present in each original image, the following areas 
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were calculated and averaged for both sides of each slice: 
total area of the LV, the AAR (stained with sodium fluo-
rescein or a blue dye), and the area of TTC-negative tissue 
(infarcted). The AAR was calculated as fraction of the LV 
[%LV], and the IS was calculated as a fraction of the AAR 
[%AAR] and the LV [%LV], respectively [8]. All TTC analy-
ses were performed by investigators who were blinded to the 
treatment allocation.

Baseline CMR scans were performed 0–4 days before 
coronary occlusion, and scans were repeated at 6–7 days 
post-infarction before sacrifice (Suppl. Data sheet experi-
mental design). The end-diastolic and end-systolic phases 
of the cardiac cycle were defined as those in the frames of 
maximum and minimum LV diameter, respectively. For 
intracardiac LV volume measurements, the endocardial 
border of the sub-valvular zone to the apex was manually 
traced, excluding trabeculae and papillary muscles, which 
remained within the blood pool. For the determination of 
cardiac LV mass [ml volume], the epicardial border was 
traced in all slices during the end-diastolic phase, which is 
more reliable for accurate determination. Left-ventricular 
ejection fraction (LVEF) was calculated as the difference 
between end-systolic and end-diastolic volumes as fraction 

of end-diastolic volume [%]. For IS determination [%LV], 
the endo- and epicardial borders were delineated in a mid-
diastolic phase at the late gadolinium enhancement (LGE) 
sequence. By placing a region of interest in the non-infarcted 
remote area, the scar was semi-automatically established as 
anything deviating by 6 or more standard deviations from 
the histogram. Extension of edema [%LV] was similarly 
measured to LGE but in the T2-weighted sequence, using 
a threshold of 6 standard deviations in intensity compared 
to the remote area. Since the conventional CMR sequences 
traditionally used for measuring the AAR in the experimen-
tal setting may be affected by post-infarct stages and the use 
of cardioprotective therapies [14], the AAR was determined 
using contrast computed tomography [34] for the CNIC, 
Madrid, Spain group and the Bypass Angioplasty Revascu-
larization Investigation Myocardial Jeopardy (BARI) score 
from angiography [48] for the Budapest, Hungary group. 
CMR images were analyzed by dedicated IntelliSpace Por-
tal software (Philips, the Netherlands) to ensure QC of all 
sequences. For the enhanced sequences, analysis was con-
ducted semi-automatically. All CMR analyses were per-
formed by investigators who were blinded to the treatment 
allocation.

Fig. 1   Study flow of IMPACT pig acute myocardial infarction mul-
ticenter network. Ten sites agreed to participate in the IMproving 
Preclinical Assessment of Cardioprotective Therapies (IMPACT) pig 
acute myocardial infarction network. One site was excluded as it did 
not pass the QC. Central randomization lists were provided to 9 sites 
to undertake I/R and IPC + I/R studies. Six sites used TTC images 
for central blinded core laboratory quantification of IS [%AAR] and 
3 sites used CMR for central blinded core laboratory quantification 

of infarct size [% LV]. One TTC site was excluded as the AAR was 
smaller than the pre-defined criterion and one CMR site was excluded 
as it did not follow the central randomization list. Five TTC sites and 
2 CMR sites underwent final analysis of infarct size data. AAR​ area-
at-risk, CMR cardiac magnetic resonance imaging, IPC ischemic pre-
conditioning, I/R ischemia/reperfusion, IS infarct size, LV left ventri-
cle, QC quality control
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Central randomization and statistical analyses

The IMPACT central statistics laboratory provided the cen-
tral randomization list to each site, performed data unblind-
ing following completion of all experiments, and under-
took the statistical analysis for all data. The sequence of 
treatments (I/R or IPC + I/R) was randomly permuted, and 
a list was generated for each site to use up to 16 animals 
(N = 8 I/R, N = 8 IPC + I/R), thus allowing for exclusions 
and mortality. Myocardial AAR [%LV], IS [%AAR], and IS 
[%LV] were analyzed separately. Data were tested for nor-
mal distribution using the Shapiro–Wilk test. AAR and IS 
were analyzed using the Wilcoxon rank-sum test, and for the 
pooled data analysis, a two-way ANOVA in STATA (Stata-
Corp. 2023. Stata Statistical Software: Release 18. College 
Station, StataCorp LLC, Texas, USA) was used. Statistical 
significance was set at p < 0.05.

The intraclass correlation coefficient (ICC) among sites 
was calculated with R (software version 4.3.2; The R Foun-
dation for Statistical Computing, Vienna, Austria) using the 
‘icc’ package (Gamer et al., 2012. icc: Various Coefficients 
of Interrater Reliability and Agreement. R package version 
0.84.1). Effect sizes and type II errors on IS data from each 
site and the pooled IS data were calculated using G-Power 
3.1.9.7 (University of Düsseldorf, Germany, 2020).

Results

Study exclusions and mortality 
during the experimental procedure

Details of animal exclusions based on pre-defined criteria 
and the death of animals during the experimental proce-
dure are listed in Suppl. Table 3. One site was excluded 
from TTC analysis (Fig. 1), as IS was substantially less than 
40 [%AAR], the mean value was 17 ± 14 [%AAR] (Suppl. 
Figure 2B). Another site was excluded from CMR analysis, 
because the site did not follow the central randomization list 
due to logistical reasons (Fig. 1).

Cardioprotective efficacy of IPC assessed by TTC​

In the pooled analysis of 5 TTC sites, there were no signifi-
cant differences in AAR between I/R and IPC + I/R (24 ± 7 
vs. 24 ± 7 [%LV], respectively; p = ns; Fig. 2A). Evaluation 
of AAR from the individual sites revealed no significant dif-
ferences among the 5 sites (Fig. 2B). In the pooled analysis 
of 5 TTC sites, IPC reduced IS by 44% versus I/R (57 ± 14 
vs. 32 ± 19 [%AAR]; p < 0.001; Fig. 3A). In terms of IS from 
the individual sites, 4 sites achieved significant cardiopro-
tection with IPC, whereas one site did not (Fig. 3B). When 
the IS was calculated as fraction of the LV, IPC reduced IS 

Fig. 2   Pooled and site-specific analysis of area-at-risk from the 5 
sites providing triphenyl-tetrazolium-chloride images. A Pooled 
analysis of AAR quantified by histochemistry (fluorescein or blue 
dye) was comparable between I/R (open squares) and IPC + I/R (filled 
squares). B Site-specific analysis of AAR was comparable between 

the 5 sites. Data are presented as minimum and maximum (whisk-
ers), interquartile range from 25 to 75% (box), mean (square), median 
(line), and outlier (x) in a box plot and as intra-individual single data 
points. AAR​ area-at-risk, ANOVA analysis of variance, IPC ischemic 
preconditioning, I/R ischemia/reperfusion, LV left ventricle
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also by 43% versus I/R (14 ± 5 vs. 8 ± 5 [%LV], respectively; 
p = 0.014; Suppl. Figure 3A), and 2 sites achieved cardiopro-
tection with IPC, whereas 3 sites did not (Suppl. Figure 3B). 
As mentioned above, one of the TTC sites was excluded due 
to the pre-defined exclusion criterion of small IS with I/R. 
In Suppl. Figure 2A–D, we show the pooled and individual 
site data of IS, including the excluded site.

Cardioprotective efficacy of IPC assessed by CMR

In the pooled analysis of 2 CMR sites, IPC reduced IS by 
44% versus I/R (25 ± 13 vs. 14 ± 8 [%LV], respectively; 
p = 0.021; Fig. 4A). In terms of IS, one site achieved car-
dioprotection with IPC, the other site did not (Fig. 4B). In 
the pooled analysis of 2 CMR sites, there was no signifi-
cant difference in AAR between I/R and IPC + I/R (Suppl. 
Figure 4A), although the AAR was significantly different 
between the 2 sites (18 ± 3 vs. 32 ± 5 [%LV]; p < 0.0001; 
Suppl. Figure 4B). In the pooled analysis of 2 CMR sites, 
there was no reduction in myocardial edema with IPC + I/R 
versus I/R (Suppl. Figure 4C), and there was no difference 
between the 2 sites (Suppl. Figure 4D). In the pooled analy-
sis of the 2 CMR sites, there was no significant difference 
in edema between I/R and IPC + I/R (Suppl. Figure 4E), and 
there was no significant difference in LVEF between the 2 
sites (Suppl. Figure 4F). As mentioned previously, one of 

the CMR sites was excluded, because it did not follow the 
central randomization list. In Suppl. Figure 5A–D, we show 
the pooled and individual site data of IS, AAR, myocardial 
edema, and LVEF, including the excluded site.

Type II error for TTC and CMR data

Again, the pooled data for IS, assessed by TTC and CMR, 
revealed a statistically significant difference (type I error α) 
between IR and IPC + I/R. While the effect size was largely 
comparable between the TTC and CMR data (1.5 versus 
1.05), the type II error (β) was low for the TTC data (< 1%) 
but not for the CMR data (27%, Table 2). Among the single 
sites, the effect sizes (Cohen’s d) ranged between 2.63 and 
0.08, while the type II error for single sites on the statistical 
comparison of I/R vs. IPC + I/R with statistical significance 
ranged between 2 and 29% (Table 2).

Discussion

In the present study, we have established a pig AMI mul-
ticenter network for evaluating the potential efficacy of 
cardioprotective interventions using centralized randomi-
zation and centralized blinded core laboratory analysis 

Fig. 3   Pooled and site-specific analysis of infarct size from the 5 sites 
providing triphenyl-tetrazolium-chloride images. A Pooled analysis 
of IS quantified by TTC revealed a significant reduction in IS with 
IPC (closed squares) when compared to I/R (open squares). B Site-
specific analysis of IS revealed significant reduction in IS with IPC in 
4 sites and no reduction in IS with IPC at one site. Data are presented 

as minimum and maximum (whiskers), interquartile range from 25 to 
75% (box), mean (square), median (line), and outlier (x) in a box plot 
and as intra-individual single data points. AAR​ area-at-risk, ANOVA 
analysis of variance, IPC ischemic preconditioning, I/R ischemia/rep-
erfusion, IS infarct size, TTC​ triphenyl-tetrazolium-chloride
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of IS by both TTC (the gold-standard method for ex vivo 
IS quantification in pre-clinical models) and CMR (the 
gold-standard clinical method for in vivo IS quantifica-
tion). Using IPC as a positive control, IS was reduced in 
our pooled data analysis, thereby validating our pig AMI 
multicenter network.

The establishment of the IMPACT pig AMI multicenter 
network operated in parallel to our IMPACT small animal 
AMI multicenter network [20] and completes the trans-
lational pathway highlighted in the IMPACT criteria for 
improving the translation of cardioprotective interven-
tions for patient benefit [45]. According to the step-by-step 

Fig. 4   Pooled and site-specific analysis of infarct size from the 2 sites 
providing cardiac magnetic resonance images. A Pooled analysis of 
IS quantified by CMR revealed a significant reduction in IS with IPC 
(closed squares) when compared to I/R (open squares). B Site-spe-
cific analysis of IS quantified by CMR revealed significant reduction 
in IS with IPC at one site but no reduction in IS at the other site. Data 

are presented as minimum and maximum (whiskers), interquartile 
range from 25 to 75% (box), mean (square), median (line), and outlier 
(x) in a box plot and as intra-individual single data points. ANOVA 
analysis of variance, CMR cardiac magnetic resonance imaging, IPC 
ischemic preconditioning, I/R ischemia/reperfusion, IS infarct size, 
LV left ventricle

Table 2   Type I error, effect size, 
type II error, and the estimated 
total n value per site and for the 
pooled data from those sites 
which assessed IS by TTC and 
CMR

CBR Center for Basic Research, CNIC Centro Nacional de Investigaciones Cardiovasculares Carlos III, 
CMR cardiac magnetic resonance imaging, IIB-Sant Pau Sant Pau Biomedical Research Institute, IS infarct 
size, TTC​ triphenyl-tetrazolium-chloride

Participating sites Type I error (α) Effect size 
(Cohen’s d)

Type II error (β) Estimated 
total
N value for 
1-β > 0.9

Vall d´Hebron, Barcelona, Spain  < 0.001 2.62 0.0017 8
Essen, Germany 0.044 1.53 0.2867 18
CBR, Vienna, Austria 0.104 1.11 –/– 30
Utrecht, The Netherlands 0.015 1.76 0.1861 14
IIB-Sant Pau, Barcelona, Spain 0.013 1.63 0.2400 16
Pooled data IS assessed by TTC​  < 0.001 1.50 0.0002 18
Budapest, Hungary 0.918 0.08 –/– 5080
CNIC, Madrid, Spain 0.003 2.10 0.0835 10
Pooled data IS assessed by CMR 0.021 1.05 0.2727 34
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IMPACT criteria, once the efficacy of the cardioprotective 
intervention has been demonstrated in a pig AMI study at 
a single site, one should consider evaluating the cardiopro-
tective intervention in a multicenter pig AMI study using 
centralized randomization and centralized blinded core 
laboratory analysis of IS to demonstrate the robustness of 
the finding from the single original site. In this regard, the 
IMPACT pig AMI network, which has been established 
in the present study, would be suitable for this purpose.

Again, a multicenter network for undertaking in vivo pre-
clinical evaluation of novel cardioprotective therapies was 
first demonstrated by the CAESAR research network where 
3 sites performed AMI in mice, rabbits, and pigs, and IPC 
was reported to reduce IS [35]. CIBER-CLAP also used IPC 
as positive control [50]; however, results of this network 
have not yet been published. Of importance, our IMPACT 
pig AMI multicenter network differs from the CAESAR 
consortium and CIBER-CLAP in several important aspects. 
With our pan-European multicenter network, in which ten 
sites agreed to participate, we overcome all logistical chal-
lenges associated with implementation of a large multisite 
pre-clinical study across national borders. Whereas the two 
prior networks enforced a strict approach to standardization 
of study procedures (including species, the IPC and I/R pro-
tocols, anesthetics and analgesics, and histological sample 
preparation) which for the CAESAR consortium extended to 
the animal husbandry protocols (e.g., with the animal diets 
and housing conditions), our IMPACT network did not. We 
did not standardize the pig breeds, age, sex, diets, and hous-
ing conditions, the study protocol, the analgesia and anes-
thesia, the use of anti-arrhythmic drugs, the experimental 
preparation (open versus closed chest), and the IPC proto-
col. Of course, these different conditions and the variability 
between sites prevented us from comparing IS, its reduc-
tion by IPC, and the statistical power between sites. Despite 
these wide differences in study conditions across the sites, 
the pooled and most site-specific analyses demonstrated car-
dioprotection with IPC when compared to I/R, underscoring 
the robustness of IPC-induced cardioprotection in pig AMI 
models. Although this lack of homogeneity in experimental 
procedures has often been cited as one of the reasons for the 
lack of reproducibility in animal studies [51, 54], our results 
suggest that in a multicenter network, non-standardization 
of study protocols may be preferable and more accurately 
reflect the real-world setting of AMI patients. More pragmat-
ically, this approach also allows each laboratory to use local 
study protocols established at that particular site. Although 
we did not standardize the study conditions, we performed 
an intensive and strict QC to standardize infarct images for 
both TTC and CMR analyses by central core laboratories 
to ensure the accurate and high-quality quantification of IS. 
This process was challenging, and some centers had to per-
form additional experiments to optimize the preparation of 

hearts for TTC. We excluded one site due to a low IS with 
I/R, and this small IS may explain why IPC did not reduce IS 
further at this site (Suppl. Figure 2D). To follow up, this site 
undertook a new series of pig AMI studies, and this time, 
the site did not use pre-medication with the anti-arrhythmic 
drug amiodarone, and found an increase in IS with I/R and 
reduced IS with IPC when compared to I/R (Suppl. Fig-
ure 6B). The use of amiodarone has been reported to reduce 
IS per se [11].

Since the type II error for the IS data of the individual 
sites was up to 29%, statements about the reduction in IS in 
some sites but not in others must be treated with great cau-
tion. Nevertheless, IS was reduced in tendency at all sites, 
and for 4 of 5 sites which used TTC for IS assessment (as 
proportion of AAR), this reduction was statistically signifi-
cant. However, when IS was calculated as a proportion of 
LV, IPC reduced IS at only 2 of 5 sites with statistical sig-
nificance. The most robust endpoint of experimental cardio-
protection studies is the reduction in IS as a proportion of 
AAR [8]. In contrast, in clinical trials using imaging tech-
niques, IS is often calculated as a proportion of LV because 
of an inability to accurately measure the AAR [34]. Also, 
the proportion of the LV that is salvaged from infarction 
is probably more important for the long-term prognosis of 
AMI patients [22].

One site failed to observe any IS reduction with IPC 
assessed by CMR; remarkably, there was not even a trend 
toward an IS reduction. These results illustrate the limita-
tions in reproducibility of cardioprotection studies despite 
strict QC and the reasons for this failure are not clear. For 
this CMR site, AAR and IS with I/R were smaller than at 
the other sites (Suppl. Figure 4B, 5D). Myocardial damage 
is primarily determined by the AAR, and again, the smaller 
the damage, the smaller the possible protection that can be 
induced [29]. For this reason, we agreed before the start 
of the study that a small IS as fraction of the AAR would 
be an exclusion criterion for the TTC sites. Since the gold 
standard for quantification of AAR by imaging techniques 
is contrast computed tomography, which was not available 
at all sites, and the BARI score is less accurate [34], this 
exclusion criterion was not used for the CMR sites. This 
aspect should be considered more carefully in future studies. 
However, differences in animal strains, the I/R protocol, the 
anesthesia or analgesia regimens or individual genetically 
determined, and primordial non-responsiveness of the myo-
cardium to cardioprotection [28, 33, 52, 61] could also be of 
importance here. The pig breed at this specific site may have 
had a genetic variant that made it more resistant to IPC, and 
indeed, in the previous studies, this site had already pub-
lished neutral results on cardioprotective maneuvers in pigs 
[3]. The use of inbred pig strains definitely does not reflect 
the human situation, and genetic heterogeneity by the use 
of different pig breeds in this multicenter network may thus 
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better reflect human reality. In fact, the robust protection 
by IPC reflected through the published literature may not 
correspond to reality, neutral studies are definitively under-
reported in pre-clinical studies [53].

To aid the design of future pig AMI cardioprotection 
studies in terms of prospective calculation of required sam-
ple size, we used the present data to estimate the effect size 
for a hypothetical experimental design with 3 groups (I/R, 
IPC + I/R, and a novel cardioprotective strategy + I/R). We 
additionally assumed that the IS reduction induced by the 
novel cardioprotective strategy is only of half the magnitude 
of that by IPC. A recurrent inclusion of an IPC + I/R group 
as a positive control appears reasonable if not mandatory, 
since some sites were unable to demonstrate a reduction in 
IS with IPC using their experimental setup, and it must be 
assumed that other cardioprotective strategies also may fail 
there. IPC can then be used not only as a positive control, 
but also for QC and scaling of results against the relatively 
large data variability between sites. Using the tool G-Power 
3.1, we estimated the effect size to compute the required n 
value for an ANOVA analysis (fixed effects, one-way) given 
α = 0.05, power 1-β = 0.9, as recommended previously [8]. 
When using the pooled TTC data, effect size was f = 0.7, 
requiring a total number of 39 experiments (≙ n = 13 per 
group, to be covered by the participating sites); when the 
pooled CMR data were used, the calculated effect size was 
f = 0.48, requiring a total number of 75 experiments (≙ 
n = 25 per group). However, these calculations do not take 
into account that there are obvious differences in IS and IS 
reduction by IPC between the sites. We therefore calculated 
the ICC (one-way random effects, absolute agreement, and 
single rater per measurement) [41] and corrected the previ-
ously determined effect size by 1-ICC [60]. As ICC of I/R 
was substantially larger than that of IPC + I/R (0.175 vs. 
0.047), we used only the ICC of I/R for the effect size cor-
rection. This correction increased the total required number 
of experiments from 39 to 54 when using the TTC data and 
from 75 to 111 for the CMR data. However, when using the 
TTC data from each single site for the same hypothetical 
design above, the total number of experiments required is 
considerably lower with n = 15, 30, 33, or 36 (except for 
n = 66 for that site which did not show significant IS reduc-
tion with IPC). To provide potential users of our current 
network (e.g., pharmaceutical companies) with an under-
standing of the resources and costs associated with conduct-
ing cardioprotection studies, we have developed a diagram 
(Fig. 5) illustrating the required number of animals based 
on the observed variabilities in the IMPACT network for 
a given intervention and α ≤ 0.05 and a power 1-β of ≥ 0.9 
for the target effect size, both with and without the ICC 
correction. This estimate is based on the IPC + I/R versus 
I/R IS from this IMPACT network. Prior to testing a novel 
cardioprotective strategy, however, this comparison must be 

repeated to obtain an up-to-date scaling for an established 
cardioprotective measure.

The current multicenter approach revealed challenges of 
QC, a high variability of results, and the need for a high 
number of experiments but also revealed that such mul-
ticenter approach resembling a real-life clinical trial can 
identify significant cardioprotection, while individual stud-
ies may show neutral outcomes. Given these challenges, it 
remains open whether any company will be interested in a 
network such as ours.

Study limitations

Our strategic decision not to use highly standardized settings 
across the sites has two implications. On the one hand, this 
approach aims to recapitulate the varied conditions found 
in the clinical setting and reduces errors in protocol adher-
ence by simplifying local study logistics. On the other hand, 
using pigs of different breeds, age, and sex, and the different 
experimental protocols, including reperfusion time and TTC 
staining procedures will also increase variability in IS as 
the primary outcome parameter and accordingly the num-
ber of animals needed for robust results. However, in our 
rather liberally designed IMPACT approach, the observed 
coefficient of variance (CV) of IS (as % AAR by TTC) was 
very similar to that observed in the CAESAR network [35] 
using the same endpoint but with a high standardization of 
all experimental settings across the three sites (CV with I/R: 
24% IMPACT and 25% CAESAR network; with IPC + I/R: 
60% IMPACT and 52% for CAESAR research network).

In the present study, we focused only on IS as the pri-
mary endpoint, but as outlined in the IMPACT criteria, it is 
increasingly recognized that coronary microvascular injury 
is a manifestation of AMI and therefore an additional target 
for cardioprotection [17, 23, 28]. Both histochemistry, e.g., 
with use of thioflavin staining [38], and CMR [64] allow for 
the study of microvascular damage (microvascular obstruc-
tion, hemorrhage), and it should therefore be included in the 
design of future studies as a secondary outcome. Only two 
sites quantified IS using the clinical gold standard of CMR, 
and future trials should ensure more laboratories with CMR 
capabilities [28].

Notably, in the present study, the effect size for the CMR 
data was smaller, and the type II error was remarkably 
higher than for the TTC data. However, the CMR data on IS 
reduction by IPC came from only two sites, and for one site, 
there was not even a trend toward an IS reduction. Again, 
this site had already failed to reproduce otherwise estab-
lished cardioprotective maneuvers in pigs [3]. IS reduction 
in humans where CMR is the gold standard may be more 
difficult and require larger sample sizes than with TTC in 
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animals. Nevertheless, we are confident that our current data 
do not argue against the use of CMR in cardioprotection 
studies.

With I/R, IS as fraction of LV was smaller, when assessed 
by TTC than by CMR (Suppl. Figure 3A vs. Figure 4A). In 
the literature, however, the overall assessment of IS by TTC 
and CMR appears to be comparable [36], although there are 
notable differences in methodology. TTC stains myocardium 
in the presence of intact dehydrogenase enzyme systems red, 
while dead tissue without intact dehydrogenase enzyme sys-
tems remains unstained [15]. The late gadolinium enhance-
ment sequence correlates with the amount of contrast 

retained in the extracellular myocardial space, which may 
be distributed between clusters of cardiomyocytes that are 
not completely dead [34]. In addition, CMR typically over-
estimates IS when edema and inflammation have not fully 
resolved after myocardial infarction. To avoid this first wave 
of dynamic post-reperfusion edema, days 5–7 of reperfusion 
are used as the gold standard for quantification of IS [34]. 
On the other hand, TTC staining has only been validated 
for reperfusion times of minutes/hours [15]. Given these 
methodological differences, it is reasonable to assume that 
there may be a discrepancy in measured IS between the two 
techniques. However, there are no data available comparing 

Fig. 5   Total number of animals required for testing a novel cardio-
protective strategy when using our IMPACT network with infarct size 
quantified with TTC (A) or CMR (B). The Y-axis depicts the total 
number of animals and the X-axis depicts the relative reduction in 
infarct size. Calculations are based on the observed IMPACT network 

IS data with I/R and IPC + I/R and α ≤ 0.05 with statistical power 1-β 
of ≥ 0.9. AAR​ area-at-risk, CMR cardiac magnetic resonance imaging, 
ICC intraclass correlation coefficient, IPC ischemic preconditioning, 
I/R ischemia/reperfusion, IS infarct size, LV left ventricle, TTC​ triphe-
nyl-tetrazolium-chloride
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IS quantification by TTC and CMR or even validating it with 
histologic staining in the reperfusion time frame used here.

We used juvenile/young (except for one site) healthy 
animals free of comorbidities and comedications which are 
known to confound cardioprotection [7, 13, 37]. Although 
challenging, testing of cardioprotective interventions in a 
pig model which is closer to the human situation would be 
ideal to improve translation and it is usually required by 
the regulatory authorities in case of drug or medical device 
development. There are pig models developing hypercho-
lesterolemia [62] after special diet or hypercholesterolemia 
in combination with diabetes mellitus (induced via strep-
tozotocin) [58]. However, none of these models develop a 
full metabolic syndrome as seen in patients. The feral pig 
breed Ossabaw minipigs develop the full metabolic syn-
drome, including obesity, glucose intolerance, insulin resist-
ance, hypertension, and dyslipidemia after consumption of 
a hypercaloric and atherogenic diet. Ossabaw minipigs are 
characterized by vascular dysfunction [12], and develop dif-
fuse coronary atherosclerosis, including plaque instability 
and subsequent thrombosis on a polygenic background [56, 
65]. Unfortunately, however, these minipigs do not respond 
to IPC with IS reduction [39]. There are novel, clinically 
relevant experimental strategies in pigs, such as P2Y12 

inhibitor preloading as used in AMI patients [63], which we 
also did not consider except for 1 site.

We did not register our study on platforms such as the 
recently established PCT (https://​precl​inica​ltria​ls.​eu/), which 
corresponds to established clinical registries. Prior registra-
tion of the study hypothesis and protocol not only creates 
transparency throughout the scientific community, but also 
raises awareness of bias reduction measures such as rand-
omization and blinding. Finally, registration of pre-clinical 
studies also increases the comparability with clinical studies 
[59].

Another minor limitation of the present study relates 
to the lack of utilization of a unified database (e.g., RED-
Cap), as seen in other types of multi-center trials in human 
patients. Although both core laboratories performed data 
collection for TTC and CMR studies, the use of unified data-
bases allows for validation and complete auditing of all data 
collection, exportation, and analysis in a centralized manner. 
Obviously, this limitation does not jeopardize or penalize the 
results of the current study, but from an organizational and 
methodological standpoint, it would be beneficial to include 
them whenever possible.

Finally, no external advisors were consulted in the 
design of the present network study, as is usual in clinical 

Fig. 6   The multicenter network evaluated the cardioprotective effect 
of IPC as the decrease in infarct size measured ex vivo by TTC and 
in  vivo by CMR. CMR cardiac magnetic resonance imaging, IPC 

ischemic preconditioning, I/R ischemia/reperfusion, LAD left anterior 
descending coronary artery, TTC​ triphenyl-tetrazolium-chloride. Cre-
ated with BioRender.com

https://preclinicaltrials.eu/
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multi-center trials. During the QC process, it became obvi-
ous that the involvement of such advisors would further 
improve the quality of our multicenter networks.

Conclusion

Despite the fact that not all sites demonstrated cardioprotection 
with IPC, there was a significant reduction in IS with IPC in 
the pooled analyses, emphasizing the high value of the mul-
ticenter network approach in this field. Thus, we here have 
established and validated a new IMPACT pig AMI multicenter 
European network with centralized randomization and cen-
tral QC as well as core blinded IS analysis by TTC and CMR 
(Fig. 6). This pig AMI network can be used to improve the 
rigor and robustness of pre-clinical studies evaluating the effi-
cacy of cardioprotective interventions and may increase the 
likelihood of translation of cardioprotection for patient benefit.
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