
Chapter 8
Genetically Improved Software

William B. Langdon, Computer Science, University College, London

Abstract Genetic programming (GP) can dramatically increase computer pro-
grams’ performance. It can automatically port or refactor legacy code written by
domain experts and specialist software engineers. After reviewing SBSE research
on evolving software we describe an open source parallel StereoCamera image pro-
cessing application in which GI optimisation gave a seven fold speedup on nVidia
Tesla GPU hardware not even imagined when the original state-of-the-art CUDA
GPGPU C++ code was written.
Sources and data sets are available on line.

Fig. 8.1 Top: left and right stereo images. Bottom: Discrepancy between images, which can be
used to infer distances.
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8.1 Introduction

As other chapters in the book show, genetic programing [Koza, 1992; Banzhaf et
al., 1998; Poli et al., 2008] has been very widely applied1. For example in mod-
elling [Kordon, 2010], prediction [Langdon and Barrett, 2004; Podgornik et al.,
2011; Kovacic and Sarler, 2014], classification [Freitas, 1997], design [Lohn and
Hornby, 2006] (including algorithm design [Haraldsson and Woodward, 2014]), and
creating art [Reynolds, 2011; Jacob, 2001; Langdon, 2004; Romero et al., 2013].
Here we concentrate upon application of genetic programming to software itself
[Arcuri and Yao, 2014]. We start by briefly summarising research which evolved
complete software but mostly we will concentration on newer work which has very
effectively side stepped, what John Koza referred to as the S-word in artificial intel-
ligence, the scaling problem, by using genetic programming not to create complete
software but rather to enhance existing (human written) software.

The next section describes early successes with using GP to evolve real, albeit
small, code and for automatically fixing bugs and then Sections 8.3–8.6 describe re-
cent success in which GP improved substantial (human written) C or C++ programs.
The last part of the chapter (Section 8.7 onwards) describes in detail one of these. It
shows how genetic programming was used to automatically evolve an almost seven
fold speedup in parallel graphics code for extracting depth from stereoscopic image
pairs. (See Figure 8.1.)

8.2 Background

8.2.1 Hashes, Caches and Garbage Collection

Three early examples of real software being evolved using genetic programming are:
hashing, caching and garbage collection. Each has the advantages of being small,
potentially of high value and difficult to do either by hand or by theoretically uni-
versal principles. In fact there is no universally correct optimal answer. Any imple-
mentation which is good in one circumstance may be bettered in another use case
by software deliberately designed for that use case. Thus there are several exam-
ples where not only can GP generate code but for particular circumstances, it has
exceeded the state-of-the art human written code. Whilst this is not to say a human
could not do better. Indeed they may take inspiration, or even code, from the evolved
solution. It is that to do so, requires a programmer skilled in the art, for each new
circumstance. Whereas, at least in principle, the GP can be re-run for each new use
case and so automatically generate an implementation specific to that user.

1 Genetic programming bibliography http://www.cs.bham.ac.uk/˜wbl/biblio/ gives details of more
than nine thousand articles, papers, books, etc.

http://www.cs.bham.ac.uk/~wbl/biblio/
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Starting with [Hussain and Malliaris, 2000] several teams have evolved good
hashing algorithms ([Berarducci et al., 2004], [Estebanez et al., ] and [Karasek et
al., 2011]).

Paterson showed GP can create problem specific caching code [Paterson and
Livesey, 1997]. [O’Neill and Ryan, 1999] used their Grammatical Evolution [O’Neill
and Ryan, 2001; O’Neill and Ryan, 2003] approach also to create code. Whilst
[Branke et al., 2006] looked at a slightly different problem: deciding which (vari-
able length) documents to retain to avoid fetching them again across the Internet.
(Following [Handley, 1994] several authors have sped up genetic programming it-
self by caching partial fitness evaluations, including me [Langdon, 1998]. However
here we are interested in improving software in general rather than just improving
genetic programming.)

Many languages allow the programmer to allocate and free chunks of memory
as their program runs, e.g. C, C++ and Java. Typically the language provides a dy-
namic memory manager, which frees the programmer of the tedium of deciding ex-
actly which memory is used and provides some form of garbage collection whereby
memory that is no longer in use can be freed for re-use. Even with modern huge
memories, memory management can impose a significant overhead. [Risco-Martin
et al., 2010] showed the GP can generate an optimised garbage collector for the
C language.

8.2.2 Mashups, Hyper-heuristics and Multiplicity Computing

The idea behind web services is that useful services should be easily constructed
from services across the Internet. Such hacked together systems are known as
web mashups. A classic example is a travel service which invokes web servers
from a number of airlines and hotel booking and car hire services, and is thus
able to provide a composite package without enormous coding effort in itself.
Since web services must operate within a defined framework ideally with rigid
interfaces, they would seem to be ideal building blocks with which genetic pro-
gramming might construct high level programs. Starting with Rodriguez-Mier,
several authors have reported progress with genetic programming evolving com-
posite web services [Rodriguez-Mier et al., 2010; Fredericks and Cheng, 2013;
Xiao et al., 2012].

There are many difficult optimisation problems which in practise are efficiently
solved using heuristic search techniques, such as genetic algorithms [Holland, 1992;
Goldberg, 1989]. However typically the GA needs to be tweaked to get the best
for each problem. This has lead to the generation of hyper-heuristics [Burke et al.,
2013], in which the GA or other basic solver is tweaked automatically. Typically
genetic programming is used. Indeed some solvers have been evolved by GP com-
bining a number of basic techniques as well as tuning parameters or even re-coding
GA components, such as mutation operators [Pappa et al., 2014].
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A nice software engineering example of heuristics is compiler code generation.
Typically compilers are expected not only to create correct machine code but also
that it should be in some sense be “good”. Typically this means the code should
be fast or small. [Mahajan and Ali, 2008] used GP to give better code generation
heuristics in Harvard’s MachineSUIF compiler.

Multiplicity computing [Cadar et al., 2010] seeks to over turn the current soft-
ware mono-culture where one particular operating system, web browser, software
company, etc., achieves total dominance of the software market. Not only are such
monopolies dangerous from a commercial point of view but they have allowed
widespread problems of malicious software (especially computer viruses) to pros-
per. Excluding specialist areas, such as mutation testing [DeMillo and Offutt, 1991;
Langdon et al., 2010], so far there has been only a little work in the evolution of mas-
sive numbers of software variants [Feldt, 1998]. Only software automation (perhaps
by using genetic programming) appears a credible approach to N-version program-
ming (with N much more than 3). N-version programming has also been proposed
as a way of improving predictive performance by voting between three or more clas-
sifiers [Imamura and Foster, 2001; Imamura et al., 2003] or using other non-linear
combinations to yield a higher performing multi-classifier [Langdon and Buxton,
2001; Buxton et al., 2001].

Other applications of GP include: creating optimisation benchmarks which demon-
strate the relative strengths and weaknesses of optimisers [Langdon and Poli, 2005]
and first steps towards the use of GP on mobile telephones [Cotillon et al., 2012].

8.2.3 Genetic Programming and Non-Function Requirements

Andrea Arcuri was in at the start of inspirational work on GP showing it can create
real code from scratch. Although the programs remain small, David White, he and
John Clark [White et al., 2011] also evolved programs to accomplish real tasks such
as creating pseudo random numbers for ultra tiny computers where they showed a
trade off between “randomness” and energy consumption.

The Virginia University group (see next section) also showed GP evolving Pareto
optimal trade offs between speed and fidelity for a graphics hardware display pro-
gram [Sitthi-amorn et al., 2011]. Evolution seems to be particularly suitable for ex-
ploring such trade-offs [Feldt, 1999; Harman et al., 2012] but (except for the work
described later in this chapter) there has been little research in this area.

[Orlov and Sipper, 2011] describe a very nice system, Finch, for evolving Java
byte code. The initial program to be improved is typically a Java program, which is
compiled into byte code. Effectively the GP population instead of starting randomly
[Lukschandl et al., 1998] is seeded [Langdon and Nordin, 2000] with byte code
from the initial program. The Finch crossover operator acts on Java byte code to
ensure the offspring program area also valid java byte code. Large benefits arise
because there is no need to compile the new programs. Instead the byte code can be
run immediately. As Java is a main stream language, the byte code can be efficiently
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executed using standard tools, such as Java virtual machines and just in time (JIT)
compilers. Also after evolution, standard java tools can be used to attempt to reverse
the evolved byte code into Java source code.

[Archanjo and Von Zuben, 2012] present a GP system for evolving small business
systems. They present an example of a database system for supporting a library of
books.

[Ryan, 1999] and [Katz and Peled, 2013] provide interesting alternative visions.
In genetic improvement the performance, particularly the quality of the mutated
program’s output, is assessed by running the program. Instead they suggest each
mutation be provably correct and thus the new program is functionally the same as
the original but in some way it is improved, e.g. by running in parallel. [Katz and
Peled, 2013] suggests combining GP with model checking to ensure correctness.

[Zhu and Kulkarni, 2013] suggest using GP to evolve fault tolerant programs.
[Schulte et al., 2014a] describes a nice system which can further optimise the low
level Intel X86 code generated by optimising compilers. They show evolution can
reduce energy consumption of non-trivial programs. (Their largest application con-
tains 141 012 lines of code.)

8.2.4 Automatic Bug Fixing

As described in the previous two sections, recently genetic programming has been
applied to the production of programs itself, however so far relatively small pro-
grams have been evolved. Nonetheless GP has had some great successes when
applied to existing programs. Perhaps the best known work is that on automatic
bug fixing [Arcuri and Yao, 2008]. Particularly the Humie award winning2 work of
Westley Weimer (Virginia University) and Stephanie Forrest (New Mexico) [For-
rest et al., 2009]. This has received multiple awards and best paper prizes [Weimer
et al., 2009; Weimer et al., 2010]. GP has been used repeatedly to automati-
cally fix most (but not all) real bugs in real programs [Le Goues et al., 2012a].
Weimer and Le Goues have now shown GP bug fixing to be effective on sev-
eral millions of lines of C++ programs. Once GP had been used to do the im-
possible others tried [Wilkerson and Tauritz, 2010; Bradbury and Jalbert, 2010;
Ackling et al., 2011] and it was improved [Kessentini et al., 2011] and also peo-
ple felt brave enough to try other techniques, e.g. [Nguyen et al., 2013; Kim et al.,
2013]. Indeed their colleague, Eric Schulte, has shown GP can even work at abstrac-
tion levels other than source code. In [Schulte et al., 2010] he showed bugs can be
fixed at the level of the assembler code generated by the compiler or even machine
code [Schulte et al., 2013]. After Weimer and co-workers showed that automatic
bugfixing was not impossible, people studied the problem more openly. It turns out,
for certain real bugs, with modern software engineering support tools, such as bug
localisation (e.g. [Yoo, 2012]), the problem may not even be hard [Weimer, 2013].

2 Human-competitive results presented at the annual GECCO conference http://www.genetic-
programming.org/combined.php

http://www.genetic-programming.org/combined.php
http://www.genetic-programming.org/combined.php
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Formal theoretical analysis [Cody-Kenny and Barrett, 2013] of evolving sizable
software is still thin on the ground. Much of the work presented here is based on
GP re-arranging lines of human written code. In a very large study of open source
software [Gabel and Su, 2010] showed that excluding white space, comments and
details of variable names, any human written line of code has probably been written
before. In other words, given a sufficiently large feedstock of human written code,
current programs could have been written by re-using and re-ordering existing lines
of code. In many cases in this and the following sections, this is exactly what GP
is doing. [Schulte et al., 2014b] provides a solid empirical study which refutes the
common assumption that software is fragile. (See also Figure 8.2). While a single
random change may totally break a program, mutation and crossover operations can
be devised which yield populations of offspring programs in which some may be
very bad but the population can also contains many reasonable programs and even
a few slightly improved ones. Over time the Darwinian processes of fitness selec-
tion and inheritance [Darwin, 1859] can amplify the good parts of the population,
yielding greatly improved programs.

8.3 Auto Porting Functionality

The Unix compression utility gzip was written in C in the days of Digital Equip-
ment Corp.’s mini-computers. It is largely unchanged. However there is one proce-
dure (of about two pages of code) in it, which is so computationally intensive that
it has been re-written in assembler for the Intel 86X architecture (i.e. Linux). The
original C version is retained and is distributed as part of Software-artifact Infras-
tructure Repository sir.unl.edu [Hutchins et al., 1994]. SIR also contains a test suite
for gzip. In Genetic Improvement, as with Le Goues’ bug-fixing work, we start with
an existing program and a small number of test cases. In the case of the gzip func-
tion, we showed genetic programming could evolve a parallel implementation for
an architecture not even dreamt of when the original program was written [Langdon
and Harman, 2010]. Whereas Le Goues uses the original program’s AST (abstract
syntax tree) to ensure that many of the mutated programs produced by GP com-
pile, we have used a BNF grammar. In the case of [Langdon and Harman, 2010] the
grammar was derived from generic code written by the manufacture of the parallel
hardware. Note that it had nothing special to do with gzip. The original function in
gzip was instrumented to record its inputs and its outputs each time it was called
(see Figure 8.3). When gzip was run on the SIR test suite, this generated more than
a million test cases, however only a few thousand were used by the GP3. Essentially
GP was told to create parallel code from the BNF grammar which when given a
small number of example inputs returned the same answers. The resulting parallel
code is functionally the same as the old gzip code.

3 Later work used even fewer tests.

http://sir.unl.edu
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8.4 Bowtie2GP Improving 50 000 lines of C++

As Figure 8.4 shows, genetic programming produces populations of programs which
may have different abilities on different scales. While Figure 8.4 shows speed ver-
sus quality, other tradeoffs have been investigated ([Harman et al., 2012], see also
[Schulte et al., 2014a]). For example it may be impossible to simultaneously min-
imise execution time, memory foot print and energy consumption. Yet, convention-
ally human written programs choose one trade-off between multiple objectives and
it becomes infeasible to operate the program with another trade-off. For example,
consider approximate string matching.

Finding the best match between (noisy) strings is the life blood of Bioinformatics.
Huge amounts of people’s time and computing resources are devoted every day to
matching protein amino acid sequences against databases of known proteins from
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Fig. 8.2 C++ is not fragile. Performance versus speed for random mutations of Bowtie2. The
horizontal axis shows the change in quality of Bowtie2 output, whilst the vertical axis (note non-
linear scale) shows the change in the number of lines of code executed. As expected some mutations
totally destroy the program, e.g. they fail to compile or abort (not plotted) or reduce the quality of
the answer enormously (e.g. -36). Some are slower (lower half) and some are faster (top). However
a large number have exactly the same quality as the original code (plotted above “0”). These may
be either slower or faster. The rectangle of dots attempts to emphasise the 18% that are identical (in
terms of quality of answer and run time) to the original code. To the right of the “0”, there are even
a few random programs which produce slightly better answers than the original code. It is these
Darwinian evolution selects and breeds the next generation from. Total 10000 random program
runs. Failed runs are not plotted.
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Instrumented gzip
(PC)

Evolved moduleModule to be replaced

Record data flows

graphics card
CUDA kernel on

Fig. 8.3 Auto porting a program module to new hardware (a GPU). The original code is instru-
mented to record the inputs (upper blue arrows) to the target function (red) and the result (lower
blue arrows) it calculates. Its inputs and outputs are logged every time every time it is called. These
become the test suite and fitness function for the automatically evolved replacement module run-
ning on novel hardware. By inspecting the evolved CUDA code automatically generated by GP we
can see that it is functionally identical to the C code inside gzip. Also it has been demonstrated
by running back-to-back with the original code more than a million times [Langdon and Harman,
2010].

all forms of life. The acknowledge gold standard is the BLAST program [Altschul
et al., 1997] which incorporate heuristics of known evolutionary rates of change. It
is available via the web and can lookup a protein in every species which has been
sequences in a few minutes. Even before the sequencing of the human genome,
the volume of DNA sequences was exploding exponentially at a rate like Moore’s
Law [Moore, 1965]. With modern NextGen sequencing machines throwing out 100s
of millions (even billions) of (albeit very noisy) DNA base-pair sequences, there is
no way that BLAST can be used to process this volume of data. This has lead to
human written look up tools for matching NextGen sequences against the human
genome. Wikipedia list more than 140 programs (written by some of the brightest
people on the planet) which do some form of Bioinformatics string matching.

The authors of all this software are in a quandary. For their code to be useful
the authors have to chose a point in the space of tradeoffs between speed, ma-
chine resources, quality of solution and functionality, which will: 1) be impor-
tant to the Bioinformatics community and 2) not be immediately dominated by
other programs. In practise they have to choose a target point when they start,
as once basic design choices (e.g. target data sources and computer resources)
have been made, few people or even research teams have the resources to dis-
card what they have written and start totally from scratch. Potentially genetic pro-
gramming offers them a way of exploring this space of tradeoffs [Feldt, 1999;
Harman et al., 2012]. GP can produce many programs across the trade-off space
and so can potentially say “look here is a trade-off which you had not considered”.
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This could be very useful to the human, even if they refuse to accept machine gen-
erated code and insist on coding the solution themselves.

We have made a start by showing GP can transform human written DNA se-
quence matching code, moving it from one tradeoff point to another. In our exam-
ple, the new program is specialised to a particular data source and sequence problem
for which it is on average more than 70 times faster. Indeed on this particular prob-
lem, we were fortunate that not only is the variant faster but indeed it gives a slight
quality improvement on average [Langdon and Harman, 2015].

8.5 Merging Boolean Satisfiability Code Written by Experts

The basic GI technique has also been used to create an improved version of C++
code from multiple versions of a program written by different authors. Boolean
Satisfiability is a problem which appears often. MiniSAT is a popular SAT solver.
The satisfiability community has advanced rapidly since the turn of the century. This
has been due in part to a series of competitions. These include the “MiniSAT hack
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Fig. 8.4 Example of automatically generated Pareto tradeoff front [Harman et al., 2012]. Genetic
programming used to improve 2D Stereo Camera code [Stam, 2008] for modern nVidia GPU
[Langdon and Harman, 2014b]. Left (above 0) many programs are faster than the original code
written by nVidia’s image processing expert (human) and give exactly the same answers. Many
other automatically generated programs are also faster but give different answers. Some (cf. dotted
blue line) are faster than the best zero error program.
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track”, which is specifically designed to encourage humans to make small changes
to the MiniSAT code. The new code is available after each competition. MiniSAT
and a number of human variants were given to GI and it was asked to evolve a
new variant specifically designed to work better on a software engineering problem
(interaction testing) [Petke et al., 2014b]. At GECCO 2014 it received a Human
Competitive award (HUMIE) [Petke et al., 2014a].

8.6 Babel Pidgin: Creating and Incorporating New Functionality

Another prize winning genetic programing based technique has been shown to be
able to extend the functionality of existing code [Harman et al., 2014]. GP, including
human hints, was able to evolved new functionality externally and then search based
techniques [Harman, 2011] were used to graft the new code into an existing program
(pidgin) of more than 200 000 lines of C++.

8.7 Improving Parallel Processing Code Written by Experts

There is increasing use of parallelism both in conventional computing but also in
mobile applications. At present the epitome of parallelism are dedicated multi-core
machines based on gaming graphics cards (GPUs). Although originally devised for
the consumer market, they are increasingly being used for general purpose com-
puting on GPUs (GPGPU) [Owens et al., 2008] with several the world’s fastest
computers being based on GPUs. However, although support tools are improving,
programming parallel computers continues to be a challenge [Langdon, 2012] and
simply leaving code generation to parallel compilers is often insufficient. Instead
experts, e.g. [Merrill et al., 2012], have advocated writing highly parametrised par-
allel code which can then be automatically tuned. Unfortunately this throws the
load back on to the coder [Langdon, 2011]. In the rest of the chapter we explain
how genetic programming (see Figure 8.5) was able to automatically update for to-
day’s GPUs software written specifically by nVidia’s image processing expert to
show off the early generations of their graphics cards [Stam, 2008]. While origi-
nally [Langdon and Harman, 2014b] we considered six types of hardware, in the
interests of brevity we shall concentrate on the most powerful (Tesla K20c). Per-
formance of the other five GPUs and more details can be found in [Langdon and
Harman, 2014b] and technical report [Langdon and Harman, 2014a]. GP gave more
than a six fold performance increase relative to the original code on the same hard-
ware. (Each Tesla K20c contains 2496 processing elements, arranged in 13 blocks
of 192 and running at 0.71GHz. Bandwidth to its on board memory is 140Gbytes
per second. See Figure 8.6.)

In another example a combination of manual and automated changes to produc-
tion 3D medical image processing code lead to the creation of a version of a perfor-
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Fig. 8.6 Tesla K20c contains 13 SMX multiprocessors (each containing 192 stream processors),
a PCI interface to the host PC, thread handling logic and 4800 MBytes of on board memory.

mance critical kernel which (on a Tesla K20c) is more than 2000 times faster than
the production code running on an 2.67GHz CPU [Langdon et al., 2014].

The next sections briefly gives the StereoCamera CUDA code. This is fol-
lowed by descriptions of the stereo images (page 193), and the code tuning process
(pages 195–204). The changes made specifically for the K20c Tesla are described
in Section 8.16 (page 205) whilst the Appendix (pages 218–221) holds the com-
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plete CUDA source code for the K20c Tesla. The code is also available in Stereo
Camera v1 1c.zip.

8.8 Source Code: StereoCamera

The StereoCamera system was written by nVidia’s stereo image processing expert
Joe Stam [Stam, 2008] to demonstrate their 2007 hardware and CUDA. StereoCam-
era was the first to show GPUs could give real time stereo image processing (> 30
frames per second). StereoCamera V1.0b was downloaded from SourceForge but,
despite the exponential increase in GPU performance, it had not been updated since
2008 (except for my bugfix). In the six years after it was written, nVidia GPUs
went through three major hardware architectures whilst their CUDA software went
through five major releases.

StereoCamera contains three GPU kernels plus associated host code. We shall
concentrate upon one, stereoKernel which contains the main stereo image algo-
rithm. For each pixel in the left image, GPU code stereoKernel reports the number
of pixels the right image has to be shifted to get maximal local alignment (see Fig-
ure 8.7). [Stam, 2008] notes that the parallel processing power of the GPU allows
the local discrepancy between the left and right images to be calculated using the
sum of squares of the difference (SSD) between corresponding pixels and this sum
is taken over the relatively large 11× 11 area. It does this by minimising the sum
of squares of the difference (SSD) between the left and right images in a 11× 11
area around each pixel. Once SSD has been calculated, the grid in the right hand
image is displaced one pixel to the left and the calculation is repeated. Although the
code is written to allow arbitrary displacements, in practice the right hand grid is
move a pixel at a time. SSD is calculated for 0 to 50 displacements and the one with
the smallest SSD is reported for each pixel in the left hand image. In principle each
pixel’s value can be calculated independently but each is surrounded by a “halo” of
five others in each direction.

Even on a parallel computer, considerable savings can be made by reducing
the total number of calculations by sharing intermediate calculations [Stam, 2008,
Fig. 3]. Each SSD calculation (for a given discrepancy between left and right im-
ages) involves summing 11 columns (each of 11 squared discrepancy values). By
saving the column sums in shared memory adjacent computational threads can cal-
culate just their own column and then read the remaining ten column values calcu-
lated by their neighbouring threads.

After one row of pixel SSDs have been calculated, when calculating the SSD of
the pixels immediately above, ten of the eleven rows of SSD values are identical.
Given sufficient storage, the row values could be saved and then 10 of them could be
reused requiring only one row of new square differences to be calculated. However
fast storage was scare on GPUs and instead Stam compromised by saving the total
SSD (rather than the per row totals). The SSD for the pixel above is then the total
SSD plus the contribution for the new row minus the contribution from the lowest
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Fig. 8.7 Schematic of stereo disparity calculation. Top: left and right stereo images. Bottom:
output. Not to scale. For each pixel stereoKernel calculates the sum of squared differences (SSD)
between 11×11 regions centred on the pixel in the left image and the same pixel in the right hand
image. This is the SSD for zero disparity. The right hand 11×11 region is moved one place to the
left and new SSD is calculated (SSD for 1 pixel of disparity). This is repeated 50 times. Each time a
smaller SSD is found, it is saved. Although the output pixel (bottom) may be updated many times,
its final value is the distance moved by the 11× 11 region which gives the smallest SSD. I.e. the
distance between left and right images which gives the maximum similarity between them (across
an 11× 11 region). This all has to be done for every pixel. Real time performance is obtained by
parallel processing and reducing repeated calculations.

row (which is no longer included in the 11×11 area). Stam took care that the code
avoids rounding errors. The more rows which share their partial results, the more
efficient is the calculation but then there is less scope for performing calculations
in parallel. To avoid re-reading data it is desirable that all the image data for both
left and right images (including halos and discrepancy offsets) should fit within the
GPU’s texture caches. The macro ROWSperTHREAD (40) determines how many
rows are calculated together in series. The macro BLOCK W (64) determines how
the image is partitioned horizontally (see Figures 8.8 and 8.9). To fit the GPU archi-
tecture BLOCK W will often be a multiple of 32. In practise all these factors interact
in non-obvious (and sometimes undocumented) hardware dependent ways.

8.9 Example Stereo Pairs from Microsoft’s I2I Database

Microsoft have made available for image processing research thousands of images.
Microsoft’s I2I database contains 3010 stereo images. Figure 8.7 (top) is a typical
example. Many of these are in the form of movies taken in an office environment.
Figure 8.1 shows the first pair from a typical example.
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STEREO_MAXD

ROWSperTHREAD

BLOCK_W

Fig. 8.8 The left and right images (solid rectangle) are split into BLOCK W×ROWSperTHREAD
tiles. The dashed lines indicate the extra pixels outside the tile which must be read to calculate
values for pixels in the tile. The right hand image is progressively offset by between zero and
STEREO MAXD pixels (50, dotted lines).

STEREO_MAXD BLOCK_W

ROWSperTHREAD

Fig. 8.9 An example of the part of the right hand of a stereo image pair which is processed by a
block of CUDA threads. The area covered in the right image is eventually shifted STEREO MAXD
(50) pixels to the left. For most GPUs the original code did not use the optimal shape, see Fig-
ure 8.10. Although the width (BLOCK W, 64) was correct, the height (ROWSperTHREAD) should
be reduced from 40 to 5.

We downloaded i2idatabase.zip4 (1.3GB) and extracted all the stereo image pairs
and converted them to grey scale. Almost images all are 320×240 pixels. We took
(up to) the first 200 pairs for training leaving 2810 for validation. Notice we are
asking the GP to create a new version of the CUDA stereoKernel GPU code which is
tuned to pairs of images of this type. As we shall see (in Section 8.15) the improved
GPU code is indeed tuned to 320×240 images but still works well on the other I2I
stereo pairs.

4 http://research.microsoft.com/en-us/um/people/antcrim/data i2i/i2idatabase.zip

http://research.microsoft.com/en-us/um/people/antcrim/data_i2i/i2idatabase.zip
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8.10 Host Code and Baseline Kernel Code

The supplied C++ code is designed to read stereo images from either stereo web-
cams or pairs of files and using OpenGL, to display both the pair of input images
and the calculated discrepancy between them on the user’s monitor (see Figure 8.1).
This was adapted to both compare answers generated by the original code with those
given by the tuned GP modified code and to time execution of the modified GPU
kernel code. These data are logged to a file and the image display is disabled.

The original kernel code is in a separately compiled file to ensure it is not affected
by GP specified compiler options (particularly -Xptxas -dlcm, Table 8.1). For each
pixel it generates a value in the range 0.0,1.0,2.0 . . .50.0 being the minimum dis-
crepancy between the left and right images. If a match between the left and right
images cannot be found (i.e. SSD ≥ 500000) then it returns -1.0.

8.11 Pre- and Post- Evolution Tuning and Post Evolution
Minimisation of Code Changes

In initial genetic programming runs, it became apparent that there are two parame-
ters which have a large impact on run time but whose default settings are not suit-
able for the GPUs now available. Since there are few such parameters and they each
have a small number of sensible values, it is feasible to run StereoCamera on all
reasonable combinations and simply choose the best for each GPU. Hence the re-
vised strategy is to tune ROWSperTHREAD and BLOCK W before running the GP.
(DPER, Section 8.12.2, is not initially enabled.) Figure 8.10 shows the effect of tun-
ing ROWSperTHREAD and BLOCK W for the GTX 295. As with [Le Goues et al.,
2012b] and our GISMOE approach [Langdon and Harman, 2015], after GP has run
the best GP individual from the last generation is cleaned up by a simple one-at-
a-time hill climbing algorithm. [Langdon and Harman, 2015] (Section 8.11) and
finally ROWSperTHREAD, BLOCK W and DPER are tuned again. (Often no further
changes were needed.)

For each combination of parameters, the kernel is compiled and run. By recom-
piling rather than using run time argument passing, the nVidia nvcc C++ compiler is
given the best chance of optimising the code (e.g. loop unrolling) for these parame-
ters and the particular GPU.

BLOCK W values were based on sizes of thread blocks used by nVidia in the
examples supplied with CUDA 5.0. (They were 8, 32, 64, 128, 192, 256, 384 and
512.) All small ROWSperTHREAD values or values which divide into the image
height (240) exactly were tested. (I.e., 1, . . . 18, 20, 21, 24, 26, 30, 34, 40, 48, 60,
80, 120 and 240.) Autotuning reduced ROWSperTHREAD (see Figure 8.9) from 40
to 5 before the GP was run. For the Tesla K20c, this gave a speed up of 2.373 ± 0.03
fold.
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Fig. 8.10 The effect of changing the work done per thread (ROWSperTHREAD) and the block size
(BLOCK W) on CUDA kernel speed before it was optimised by GP. For all but one of the GPUs,
stereoKernel is fastest at 5,64 (the default is 40,64).

The best GP individual in the last generation is minimised by starting at its be-
ginning and progressively removing each individual mutation and comparing the
performance of the new kernel with the evolved one. For simplicity this is done on
the last training stereo image pair. Unless the new kernel is worse the mutation is
excluded permanently. To encourage removal of mutations with little impact, those
that make less than 1% difference to the kernel timing are also removed.

In the after evolution tuning, if GP had enabled DPER (Section 8.12.2) then as
well as tuning BLOCK W and ROWSperTHREAD the autotuner tried values 1, 2, 3
and 4 for DPER. (In the case of the Tesla K20c, GP enabled DPER but its default
value, 2, turned out to be optimal.)

8.12 Alternative Implementations

8.12.1 Avoiding Reusing Threads: XHALO

As mentioned in Section 8.8 each row of pixels is extended by five pixels at both
ends. The original code reused the first ten threads of each block to calculate these
ten halo values. Much of the kernel code is duplicated to deal with the horizontal
halo. GPUs have a special type of parallel architecture which means many identical
operations can be run in parallel but if the code branches in different directions part
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of the hardware becomes idle. (This is known as thread divergence.) Thus diverting
ten threads to deal with the halo causes all the remaining threads in the warp to
become idle. (Each warp contains 32 threads.) Option XHALO allows GP to use
ten additional threads which are dedicated to the halo. Thus each thread only deals
with one pixel. In practise the net effect of XHALO is to disable the duplicated code
so that instead of each block processing vertical stripes of 64 pixels, each block only
writes stripes 54 pixels wide.

8.12.2 Parallel of Discrepancy offsets: DPER

The original code (Section 8.8) steps through sequentially 51 displacements of the
right image with respect to the left. Modern GPUs allow many more threads and
often it is best to use more threads as it allows greater parallelism and may im-
prove throughput by increasing the overlap between computation and I/O. Instead
of stepping sequentially one at a time through the 51 displacements, the DPER op-
tion allows 2, 3 or 4 displacement SSD values to be calculated in parallel. As well
as increasing the number of threads, the amount of shared memory needed is also
increased by the same factor. Nevertheless only one (the smallest) SSD value per
pixel need be compared with the current smallest, so potentially saving some I/O.
Although the volume of calculations is little changed, there are also potential saving
since each DPER block uses almost the same data.

8.13 Parameters Accessible to Evolution

The GISMOE GP system [Langdon and Harman, 2015] was extended to allow not
only code changes but also changes to C macro #defines. The GP puts the evolved
values in a C #include .h file, which is complied along with the GP modified
kernel code and the associated (fixed) host source code.

Table 8.1 shows the twelve configuration parameters. Every GP individual chro-
mosome starts with these 12, which are then followed by zero or more changes to
the code. Figure 8.16 page 206 contains an example GP individual, whereas Fig-
ures 8.12 page 202, 8.13 and 8.14 contain simplified schematics of GP individuals.

8.13.1 Fixed Configuration Parameters

8.13.1.1 OUT TYPE

The return value should be in the range -1 to 50 (Section 8.10). Originally this is
coded as a float. OUT TYPE gives GP the option of trying other types. Notice,
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Table 8.1 Evolvable configuration macros and constants

Name Default Options Purpose
Cache preference None None, Shared, L1, Equal L1 v. shared memory
-Xptxas -dlcm ‘ ’, ca, cg, cs, cv nvcc cache options
OUT TYPE float float, int, short int,

unsigned char
C type of output

STORE disparityPixel GLOBAL GLOBAL, SHARED, LOCAL
STORE disparityMinSSD GLOBAL GLOBAL, SHARED, LOCAL
DPER disabled Section 8.12.2
XHALO disabled Section 8.12.1

mul24(a,b) mul24 mul24, * fast 24-bit multiply
GPtexturereadmode Normalized

Float
NormalizedFloat,
ElementType, none

Section 8.13.1.4

texturefilterMode Linear Linear, Point
textureaddressMode Clamp, Mirror, Wrap
texturenormalized 0, 1

since the data will probably be used on the GPU, we do not use the fact that the
smaller data types take less time to transfer between GPU and host. (I.e. all fitness
times, Section 8.14.5.2, are on the GPU.)

8.13.1.2 STORE disparityPixel and STORE disparityMinSSD

disparityPixel and disparityMinSSD are major arrays in the kernel. Stam coded them
to lie in the GPU’s slow off chip global memory. These configuration options give
evolution the possibility of trying to place them in either shared memory or in local
memory. Where the compiler can resolve local array indexes, e.g. as a result of
unrolling loops, it can use fast registers in place of local memory.

8.13.1.3 mul24

For addressing purposes, older GPU’s included a fast 24 bit multiply instruction,
which is heavily used in the original code. It appears that in the newer GPUs mul24
may actually be slower than ordinary (32 bit) integer multiply. Hence we give GP
the option of replacing mul24 with ordinary multiply.

8.13.1.4 Textures

CUDA textures are intimately linked with the GPU’s hardware and provide a
wide range of data manipulation facilities (normalisation, default values, control
of boundary effects and interpolation) which the original code does not need but is
obliged to use. The left and right image textures are principally used because they
provide caching (which was not otherwise available on early generation GPUs.) We
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allowed the GP to investigate all texture options, including not using textures. Some
combinations are illegal but the host code gives sensible defaults in these cases.

Unfortunately it is tricky to ensure access directly to the data and via a texture
produce identical answers. Once cause of differences is there can be a 1

2 pixel dis-
crepancy between direct access (which treats the images as 2D arrays) and textures
where reference point is the centre of the pixel. This leads to small differences be-
tween direct access and the original code. Whilst such slight differences make little
difference to the outputs’ appearance, even so such GP individuals are penalised by
the fitness function (Section 8.14.5). This may have inhibited GP exploring all the
data access options.

8.14 Evolvable Code

Following the standard GISMOE approach [Langdon and Harman, 2015], the evo-
lutionary cycle is amended so that we start by creating a BNF grammar from the
supplied source code and the GP evolves linear patches to the code (applied via
the grammar) rather than trees, cf. Figure 8.5 page 191. The source code, including
XHALO and DPER (Sections 8.12.1 and 8.12.2), is automatically translated line by
line into the grammar (see Figure 8.11). Notice the grammar is not generic, it rep-
resents only one program, stereoKernel, and variants of it. The grammar contains
424 rules, 277 represent fixed lines of C++ source code. There are 55 variable lines,
27 IF and 10 of each of the three parts of C for loops. There are also five CUDA
specific types:

1. #pragma unroll allows GP to control the nvcc compiler’s loop unrolling.
pragma rules are automatically inserted before each for loop but rely on GP to
enable and set their values. Using the type constraints GP can either: remove it,
set it to #pragma unroll, or set it to #pragma unroll n (where n is 1
to 11).

2. optvolatile CUDA allows shared data types to be marked as volatile which
influences the compiler’s optimisation. As required by the CUDA compiler,
the grammar automatically ensures all shared variables are either flagged as
volatile or none are.
The remaining three CUDA types apply to the kernel’s header.

3. optconst Each of kernel’s scalar inputs can be separately marked as const.
4. optrestrict All of the kernel’s array arguments can be marked with restrict

This potentially helps the compiler to optimise the code. On the newest GPUs
(SM 3.5) optrestrict allows the compiler to access read only arrays via a read
only cache. Since both only apply if all arrays are marked restrict , the
grammar ensures they all are or none are.

5. launchbounds is again a CUDA specific aid to code optimisation. By default
the compiler must generate code that can be run with any numbers of threads.
Since GP knows how many threads will be used, specifying it via launch
bounds gives the compiler the potential of optimising the code. launch
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bounds takes an optional second argument which refers to the number of
blocks that are active per streaming multiprocessor SMX. How it is used is again
convoluted, but the grammar allows GP to omit it, or set it to 1, 2, 3, 4 or 5.

8.14.1 Initial Population

Each member of the initial population is unique. They are each created by selecting
at random one of the 12 configuration constants (Table 8.1) and setting it at random
to one of its non-default values. As the population is created it becomes harder
to find unique mutations and so random code changes are included as well as the
configuration change. Table 8.2 summarises the GP parameters.

Table 8.2 Genetic programming parameters for improving stereoKernel

Representation: Fixed list of 12 parameter values (Table 8.1) followed by variable list of replace-
ments, deletions and insertions into BNF grammar

Fitness: Run on a randomly chosen 320×240 monochrome stereo image pair. Compare
answer & run time with original code and time its execution. See Sections 8.14.5
and 8.14.6.

Population: Panmictic, non-elitist, generational. 100 members. New randomly chosen training
sample each generation.

Parameters: Initial population of random single mutants heavily weighted towards the kernel
header and shared variables. 50% truncation selection. 50% crossover (uniform
for fixed part, 2pt for variable). 50% mutation 25% mutation random change to
fixed part. 25% add code mutation (one of: delete, replace, insert, each equally
likely). No size limit. Stop after 50 generations.

8.14.2 Weights

Normally each line of code is equally likely to be modified. However, only as part of
creating a diverse initial population, the small number of rules in the kernel header
(i.e. launchbounds, optrestrict, optconst and optvolatile) are 1000 times more likely
to be changed than the other grammar rules. (Forcing each member of the GP pop-
ulation to be unique is also only done in the initial population.) In future, it might
be worthwhile ensuring GP does not waste effort changing CUDA code which can
have no effect by setting the weights of lines excluded by conditional compilation
to zero.
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<KStereo.cuh_52> ::= "__attribute__((global)) " <launchbounds_KStereo.cuh_52>
" void KERNEL(\n"

#kernel
<launchbounds_KStereo.cuh_52> ::= ""
<launchbounds_K0> ::= "\n" "#ifdef DPER\n" "__launch_bounds__(BLOCK_W*dperblock)\n"

"#else\n" "__launch_bounds__(BLOCK_W)\n" "#endif /*DPER*/\n"
...

<launchbounds_K5> ::= "\n" "#ifdef DPER\n" "__launch_bounds__(BLOCK_W*dperblock,5)\n"
"#else\n" "__launch_bounds__(BLOCK_W,5)\n" "#endif /*DPER*/\n"

<optrestrict_KStereo.cuh_52> ::= " __restrict__ "
#kernelarg
<KStereo.cuh_53> ::= "OUTYPE *" <optrestrict_KStereo.cuh_52> "disparityPixel,\n"
<KStereo.cuh_54> ::= <optconst_KStereo.cuh_54> "size_t out_Pitch,\n"
<optconst_KStereo.cuh_54> ::= "const "
<KStereo.cuh_55> ::= "#ifdef GLOBAL_disparityMinSSD\n"
<KStereo.cuh_56> ::= "int *" <optrestrict_KStereo.cuh_52> "disparityMinSSD,\n"
<KStereo.cuh_57> ::= "#if OUT_TYPE != float_ && OUT_TYPE != int_\n"
<KStereo.cuh_58> ::= <optconst_KStereo.cuh_58> "size_t out_pitch,\n"
<optconst_KStereo.cuh_58> ::= "const "
<KStereo.cuh_59> ::= "#endif\n"
<KStereo.cuh_60> ::= "#endif /*GLOBAL_disparityMinSSD*/\n"

...
<KStereo.cuh_72> ::= ")\n"

...
<KStereo.cuh_141> ::= " if" <IF_KStereo.cuh_141>

" extra_read_val = BLOCK_W+threadIdx.x;\n"
#"if
<IF_KStereo.cuh_141> ::= "(threadIdx.x < (2*RADIUS_H))"

...
<KStereo.cuh_158> ::= <pragma_KStereo.cuh_158> "for("

<for1_KStereo.cuh_158> ";" "OK()&&"
<for2_KStereo.cuh_158> ";"
<for3_KStereo.cuh_158> ") \n"

#for
<pragma_KStereo.cuh_158> ::= ""
#pragma
<pragma_K0> ::= "#pragma unroll \n"
<pragma_K1> ::= "#pragma unroll 1\n"

...
<pragma_K11> ::= "#pragma unroll 11\n"
<for1_KStereo.cuh_158> ::= "i = 0"
<for2_KStereo.cuh_158> ::= "i<ROWSperTHREAD && Y+i < height"
<for3_KStereo.cuh_158> ::= "i++"
<KStereo.cuh_159> ::= "{\n"
<KStereo.cuh_160> ::= "" <_KStereo.cuh_160> "\n"
#other
<_KStereo.cuh_160> ::= "init_disparityPixel(X,Y,i);"
<KStereo.cuh_161> ::= "" <_KStereo.cuh_161> "\n"
<_KStereo.cuh_161> ::= "init_disparityMinSSD(X,Y,i);"
<KStereo.cuh_162> ::= "}\n"

Fig. 8.11 Fragments of BNF grammar used by GP. Most rules are fixed but rules starting with
< , <IF , <for1 , <pragma , etc. can be manipulated using rules of the same type to produce
variants of stereoKernel. Lines beginning with # are comments.
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8.14.3 Mutation

Half of mutations are made to the configuration parameters (Table 8.1). In which
case one of the 12 configuration parameters is chosen uniformly at random and its
current value is replaced by another of its possible values again chosen uniformly
at random, see Figure 8.12. The other half of the mutations are made to the code. In
which case the mutation operator appends an additional code patch to the parent (see
Figure 8.13). There are three possible code mutations: delete a line of code, replace
a line and insert a line. The replacement and inserted lines of code are copied from
stereoKernel itself (via the grammar). Notice GP does not create code. It merely
rearranges human written code.

1 SHARED Float_ Linear Clamp Float_ 1 LOCAL cgNone Variable number of code patches

1 LOCAL Float_ Linear Clamp Float_ 1 LOCAL cgNone Variable number of code patches

Fig. 8.12 Example of mutation to the configuration part at the start of a GP individual. Top: parent
Bottom: offspring. The 12 configuration parameters are given in Table 8.1

<284>+<194> <247><186><180><231>volitile <358><154> <288>+<161><174>+<176>

<284>+<194> <247><186><180><231>volitile <358><154> <174>+<176>

Fig. 8.13 Example of mutation to the variable length part of a GP individual. Patch
<288>+<161> is appended to parent (top) causing in the child (bottom) a copy of source line
161 to be inserted before line 288 in the kernel source code. (For clarity the left hand part omitted
and full grammar rule names simplified, e.g. to just the line numbers.)

8.14.4 Crossover

Crossover creates a new GP individual from two different members of the better half
(Section 8.14.6) of the current population. The child inherits each of the 12 fixed
parameters (Table 8.1) at random from either parent (uniform crossover [Syswerda,
1989], see Figure 8.14). Whereas in [Langdon and Harman, 2015] we used append
crossover which deliberately increases the size of the offspring, here, on the variable
length part of the genome, we use an analogue of Koza’s tree GP crossover [Koza,
1992]. Two crossover points are chosen uniformly at random. The part between the
two crossover points of the first parent is replaced by the patches between the two
crossover points of the second parent to give a single child. On average, this gives
no net change in length.
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1 SHARED Linear 1Shared <284>+<194> <261>+<166> volatile <186>+<247><168>#5Float_ Clamp float_ GLOBAL cg <288><257><359>#3<IF307><IF358><IF281><IF154>

1 SHARED Linear 1Equal <300>+<240>Float_ Clamp float_ GLOBAL cg

1 SHARED Linear 1Equal <261>+<166> <359>#3 <212>+<273><300>+<240>Float_ Mirror int_ GLOBAL cv <158>#11<262>#11<IF307><IF358> volatile <224><176>

<359>#3 volatile <212>+<273><158>#11 <224><176><261>+<166><IF307><IF358>

<for3_307>
<for3_158>

Fig. 8.14 Example of crossover. Parts of two above median parents (top and middle) recombined
to yield a child (bottom).

8.14.5 Fitness

To avoid over fitting and to keep run times manageable, each generation one of the
two hundred training images pairs is chosen [Langdon, 2010]. Each GP modified
kernel in the population is tested on that image pair.

8.14.5.1 CUDA memcheck and Loop Overruns

Normally each GP modified kernel is run twice. The first time it is run with CUDA
memcheck and with loop over run checks enabled. If no problems are reported by
CUDA memcheck and the kernel terminates normally (i.e. without exceeding the
limit on loop iterations) it is run a second time without these debug aids. Both mem-
check and counting loop iterations impose high overheads which make timing infor-
mation unusable. Only in the second run are the timing and error information used
as part of fitness. If the GP kernel fails in either run, it is given such a large penalty,
that it will not be a parent for the next generation.

When loop timeouts are enabled, the GP grammar ensures that each time a C++
for loop iterates a per thread global counter is incremented. If the counter exceeds
the limit, the loop is aborted and the kernel quickly terminates. If any thread reaches
its limit, the whole kernel is treated as if it had timed out. The limit is set to 100×
the maximum reasonable value for a correctly operating good kernel.

8.14.5.2 Timing

Each of the streaming multiprocessor (SMXs) within the GPU chip has its own
independent clock. On some GPUs cudaDeviceReset() resets all the clocks,
this is not the case with the C2050. To get a robust timing scheme, which applies to
all GPUs, each kernel block records both its own start and end times and the SMX
unit it is running on. After the kernel has finished, for each SMX, the end time of
the last block to use it and the start time of the first block to use it are subtracted to
give the accurate duration of usage for each SMX. (Note to take care of overflow
unsigned int arithmetic is used.) Whilst we do not compare values taken from
clocks on different SMXs, it turns out to be safe to assume that the total duration of
the kernel is the longest time taken by any of the SMXs used. (As a sanity check
this GPU kernel time is compared to the, less accurate, duration measured on the
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host CPU.) The total duration taken by the GP kernel (expressed as GPU clock tics
divided by 1000) is the first component of its fitness.

8.14.5.3 Error

For each pixel in the left image the value returned by the GP modified kernel is
compared with that given by the un-modified kernel. If they are different a per pixel
penalty is added to the total error which becomes the second part of the GP individ-
ual’s fitness.

If the unmodified kernel did not return a value (i.e. it was -1.0, cf. Section 8.10)
the value returned by the GP kernel is also ignored. Otherwise, if the GP failed to
set a value for a pixel, it gets a penalty of 200. If the GP value is infinite or otherwise
outside the range of expected values (0..50) it attracts a penalty of 100. Otherwise
the per pixel penalty is the absolute difference between the original value and the
GP’s value.

For efficiency, previously [Langdon and Harman, 2010] we batched up many GP
generated kernels into one file to be compiled in one go. For simplicity, since we
are using a more advanced version of nVidia’s nvcc compiler, and GP individuals in
the same population may need different compiler options, we did not attempt this.
Typically it takes about 3.3 seconds to compile each GP generated kernel. Whereas
to run the resulting StereoCamera program (twice see Section 8.14.5.1) takes about
2.0 seconds,

8.14.6 Selection

At the end of each generation we compare each mutant with the original kernel’s
performance on the same test case and only allow it to be a parent if it does well. In
detail, it must be both faster and be, on average, not more than 6.0 per pixel differ-
ent from the original code’s answer. However mostly the evolved code passes both
tests. At the end of each generation the population is sorted first by their error and
then by their speed. The top 50% are selected to be parents of the next generation.
Each selected parent creates one child by mutation (Section 8.14.3) and another by
crossover with another selected parent (Section 8.14.4). The complete GP parame-
ters are summarised in Table 8.2.

8.15 Results

The best individual from the last generation (50) was minimised to remove un-
needed mutations which contributed little to its overall performance and retuned
(Section 8.11). This reduced the length of the GP individual from 29 to 10. On



8 Genetically Improved Software 205

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0  500  1000  1500  2000  2500  3000

S
pe

ed
 u

p 
of

 C
U

D
A

 5
 k

er
ne

l K
20

c 
T

es
la

I2I Database

Training

  240x320

  Chairs 640x480 

Toys 500x140   

Plant  

  Book 506x380

320x240
240x320
640x480

Fig. 8.15 Performance of GP improved K20c Tesla kernel on all 3010 stereo pairs in Microsoft’s
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pairs used in training. The evolved kernel is always much better, especially on images of the same
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the Tesla K20c, on average, across all 2516 I2I 320×240 stereo image pairs, GP
sped up the original StereoCamera code almost seven fold. (The mean speed up is
6.837 ± 0.04.) By reducing ROWSperTHREAD from the original 40 to 5, pretun-
ing (Section 8.11) itself gave a factor of 2.4 fold speed up. The original value of
BLOCK W (64) and the default value of DPER (2) were optimal for the Tesla K20c.
I.e. the GP code changes gave another factor of almost three on top of the parameter
tuning. The speedup of the improved K20c kernel on all of the I2I stereo images is
given in Figure 8.15. The speed up for the other five GPUs varied in a similar way
to the K20c. Finally, notice typically there is very little difference in performance
across the images of the same size and shape as the training data

8.16 Evolved Tesla K20c CUDA Code

The best of generation 50 individual changes 6 of the 12 fixed configuration param-
eters (Table 8.1) and includes 23 grammar rule changes. After removing less useful
components (Section 8.11) four configuration parameters were changed and there
were six code changes. See Figures 8.16 and 8.17. The complete code is given in
the appendix (pages 218–221).
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DPER=1 STORE disparityMinSSD=SHARED XHALO=1 STORE disparityPixel=SHARED
<pragma KStereo.cuh 359><pragma K3> < KStereo.cuh 161>+< KStereo.cuh 224>
< KStereo.cuh 348> <optvolatile KStereo.cuh 86>
<pragma KStereo.cuh 262><pragma K11> <IF KStereo.cuh 326><IF KStereo.cuh 154>

Fig. 8.16 Best GP individual in generation 50 of K20c Tesla run after minimising, Section 8.11,
removed less useful components. (Auto-tuning made no further improvements.) Top line (normal
font) are four non-default values for the 12 fixed configuration parameters. Six code changes shown
in tt font.

int * restrict disparityMinSSD, //Global disparityMinSSD not kernel argument
volatile extern __attribute__((shared)) int col_ssd[];
volatile int* const reduce_ssd = &col_ssd[(64 )*2 -64];
#pragma unroll 11
if(X < width && Y < height) replaced by if(dblockIdx==0)

syncthreads();
#pragma unroll 3

Fig. 8.17 Evolved changes to K20c Tesla StereoKernel. (Produced by GP grammar changes in
Figure 8.16). Highlighted code is inserted. Code in italics is removed. For brevity, except for the
kernel’s arguments, disparityPixel and disparityMinSSD changes from global to shared memory
are omitted. The appendix, pages 218–221, gives the complete source code.

The evolved configuration parameters mean that DPER is enabled and the new
kernel calculates two disparity values in parallel (Section 8.12.2), disparityPixel and
disparityMinSSD are stored in shared memory (Section 8.13.1.2) and XHALO is
enabled (Section 8.12.1).
The final code changes, Figure 8.17, are:

• disable volatile, Section 8.14.
• insert #pragma unroll 11 before the for loop that steps through the

ROWSperTHREAD - 1 other rows (Section 8.8).
• insert #pragma unroll 3 before the for loop that writes each of the ROWS
perTHREAD rows of disparityPixel from shared to global memory. Its not clear
why evolution chose to ask the nvcc compiler to unroll this loop (which is always
executed 5 times) only 3 times. But then when nvcc decides to do loop unrolling
is obscure anyway.

• Mutation < KStereo.cuh 161>+< KStereo.cuh 224> causes line 224
to be inserted before line 161. Line 224 potentially updates local variable ssd,
however ssd is not used before the code which initialises it. It is possible that
the compiler spots that the mutated code cannot affect anything outside the kernel
and simply optimises it away. During minimisation removing this mutation gave
a kernel whose run time was exactly on the removal threshold.

• Mutation <IF_KStereo.cuh_326><IF_KStereo.cuh_154> replaces
X < width && Y < height by dblockIdx==0. This replace a compli-
cated expression by a simpler (and so presumably faster) expression, which it-
self has no effect on the logic since both are always true. In fact, given the way
if(dblockIdx==0) is nested inside another if, the compiler may optimise
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it away entirely. I.e. GP has found a way of improving the GPU kernel by remov-
ing a redundant expression.
The original purposed of if(X < width && Y < height) was to guard
against reading outside array bounds when calculating SSD. However the array
index is also guarded by i < blockDim.x

• delete syncthreads() on line 348. syncthreads() forces all threads
to stop and wait until all reach it. Line 348 is at the end of code which may up-
date (with the smaller of two disparities values) shared variables disparityPixel
and disparityMinSSD. In effect GP has discovered it is safe to let other threads
proceed since they will not use the same shared variables before meeting other
syncthreads() elsewhere in the code. As well as reducing the number of

instructions, removing synchronisation calls potentially allows greater overlap-
ping of computation and I/O leading to an overall saving.

8.17 Discussion

Up to Intel’s Pentium, Moore’s Law [Moore, 1965] had applied not only to the
doubling of the number of transistors on a silicon chip but also to exponential
rises in clock speeds. Since 2005 mainstream processor clock speeds have re-
mained fairly much unchanged. However Moore’s Law continues to apply to the
exponential rise in the number of available logic circuits. This has driven the
continuing rise of parallel multi-core computing. In mainstream computing, GPU
computing continues to lead in terms of price v. performance. However GPGPU
computing [Owens et al., 2008] (and parallel computing in general) is still held
back by the difficulty of high-performance parallel programming [Langdon, 2011;
Merrill et al., 2012].

When programming the GPU, in addition to the usual programming tasks, there
are other hardware specific choices, e.g. where to store data. Even for the expert
it is difficult to find optimal choices for these while simultaneously programming.
[Merrill et al., 2012] propose heavy use of templates in kernel code in an effort to
separate algorithm coding for data storage etc. However templates are in practise
even harder to code and current versions of the compiler cannot optimally make
choices for the programmer. As Section 8.11 shows, it can be feasible to remove the
choice of key parameters (typically block size) from the programmer. Instead their
code is run with all feasible values of the parameter and the best chosen. There are
already tools to support this. Such enumerative approaches are only feasible with a
small number of parameters. The GP approach is more scalable and allows mixing
both parameter tuning and code changes. To be fair, we should say at present all the
approaches are still at the research stage rather than being able to assist the average
graphics card programmer.

Future new requirements of StereoCamera might be dealing with: colour, moving
images (perhaps with time skew), larger images, greater frame rates and running on
mobile robots, 3D telephones, virtual reality gamesets or other low energy portable
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devices. We can hope our GP system could be used to automatically create new
versions tailored to new demands and new hardware.

In some cases modern hardware readily gives on line access to other important
non-functional properties (such as power or current consumption, temperature and
actual clock speeds). Potentially these might also be optimised by GP. [White et al.,
2008] showed it can be possible to use GP with a cycle-level power level simulator
to optimise small programs for embedded systems. ([Schulte et al., 2014a] recently
extended this to large open source every day programs.) Here we work with the real
hardware, rather than simulators, however real power measurements are not readily
available with all our GTX and Tesla cards.

Many computers, including GPUs, and especially in mobile devices, now have
variable power consumption. Thus reducing execution time can lead to a propor-
tionate reduction in energy consumption and hence increase in battery life, since as
soon as the computation is done the computer can revert to its low power idle hi-
bernating state. [Yao et al., 1995; Han et al., 2010; Radulescu et al., 2014] consider
other ways of tuning of the processor’s clock speed (which might be combined with
software improvements).

Another promising extension is the combined optimisation for multiple func-
tional and non-functional properties [Colmenar et al., 2011]. Initial experiments
hinted that NSGA-II [Deb et al., 2002; Langdon et al., 2010] finds it hard to main-
tain a complete Pareto front when one objective is much easier than the others. Thus
a population may evolve to contain many fast programs which have lost important
functionality while slower functional program are lost from the population. Newer
multi-objective GAs or alternative fitness function scalings may address this.

The newer versions of CUDA also include additional tools (e.g. CUDA race
check) which might be included as part of fitness testing.

The supplied kernel code contains several hundred lines of code. It may be
that this only just contains enough variation for GP’s cut-and-past operations (Sec-
tion 8.14.3). We had intended to allow GP to also use code taken from the copious
examples supplied by nVidia with CUDA (see Section 8.5) but so far this has not
been tried.

nVidia and other manufactures are continuing to increase the performance, econ-
omy and functionality of their parallel hardware. There are also other highly parallel
and low power chips with diverse architectures (e.g. multicore CPUs, FPGAs, Intel
Xeon Phi, mobile and RFID devices [Andreopoulos, 2013]). These trends suggest
the need for software to be ported [Langdon and Harman, 2010] or to adapt to new
parallel architectures will continue to increase.

One of the great success for modular system design has been the ability to keep
software running whilst the underlying hardware platforms have gone through sev-
eral generations of upgrades. In some cases this has been achieved by freezing the
software, even to the extent of preserving binaries for years. In practise this is not
sufficient and software that is in use is under continual and very expensive mainte-
nance. There is a universal need for software to adapt.
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8.18 Conclusions

We have reviewed published work on using genetic programming on software. Ini-
tially we showed examples where genetic programming was able to evolve real soft-
ware from scratch. In some cases, e.g. by automatically creating bespoke applica-
tions tailored to particular tasks, the GP generated code improves on generic human
written code.

Even now, code evolved from scratch tends to be small. The GGGP (grow and
graft) system, described in Section 8.6, is a potential way around the problem.
GGGP still evolves small new components but also uses GP to graft them into much
bigger human written codes, thus create large hybrid software.

Similarly the CUDA gzip example (Section 8.3) showed small but valuable units
of code can be effectively automatically ported by evolving new code to match
the functionality of the existing code, even if it is written in a different language
or executes on different hardware. Indeed auto bugfixing (Section 8.2.4), Bowtie2,
NiftyReg and StereoCamera also use the existing code as the de facto specification
of the functionality of the to be evolved software.

The work on miniSAT (Section 8.5) shows GP can potentially scavenge not just
code from the program it is improving but code from multiple programs by multi-
ple authors. This GP plastic surgery [Barr et al., 2014] created in a few hours an
award winning version of miniSAT tailored to solving an import software engineer-
ing problem, for which it was better than generic versions of miniSAT which has
been optimised by leading SAT solving experts for years.

Another promising area is evolving software to meet multiple conflicting require-
ments. Indeed GP’s potential ability to present the software designer with a Pareto
trade-off front of different measures of code performance [Harman et al., 2012],
may be one avenue that leads most quickly to the wide spread adoption of genetic
programming for software improvement. One can imagine a system which shows
a range of programs with different speed versus memory requirements, which in-
vites the software designer to choose a suitable trade-off before any manual coding
starts. Few, if any projects, once the location of their implementation on the trade
off space is known, i.e. coding is almost complete, can afford to reject their initial
design choices and start again from scratch. Instead typically only relatively small
performance changes can be made within the straight jacket of the original design.
Further the GP system could consider not only conventional alternatives (e.g. speed
v. memory) but also aspects required by mobile computing, such as network band-
width, power, battery life, and even quality of solutions. It would be very useful to
be able to see credible results of design decisions before implementation starts, even
if the machine generated code is totally discarded and the designer insists on human
coding.

GI is definitely a growth area with the first international event on Genetic Im-
provement, GI-2015, being held in Madrid along side the main evolutionary com-
putation conference, GECCO, and GI papers being well represented in the SSBSE
software engineering conference series as well as gaining best paper prizes in the
top software engineering conference and human competitive awards.
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Mostly we have described in detail an application of our BNF grammar based
GP system, in which a population of code patches is automatically evolved to create
new versions of parallel code to run on graphics hardware. The evolving versions
are continuously compared with the original, which is treated as the de facto specifi-
cation, by running regression tests on both and frequently changing the example test
used. The fitness function penalises deviation from the original but rewards faster
execution. The GP evolves code which exploits the abilities of the hardware the
code will run on. The StereoCamera system was specifically written by nVidia’s
image processing expert to show off their hardware and yet GP is able to improve
the code for hardware which had not even been designed when it was originally
written yielding almost a seven fold speed up in the graphics kernel.

Sources and Datasets

Le Goues’ bug fixing system (Section 8.2.4) is available on line: http://
genprog.cs.virginia.edu/ The grammar based genetic programming sys-
tems for gzip (Section 8.3), Bowtie2 (Section 8.4), StereoCamera (Section 8.7 on-
wards) and 3D Brain scan registration (NiftyReg Section 8.7 page 190) are available
on line via ftp.cs.ucl.ac.uk. (For the MiniSAT genetic improvement code,
Section 8.5, please contact Dr. Petke directly.) The StereoCamera code is in file
genetic/gp-code/StereoCamera 1 1.tar.gz and training images are
in StereoImages.tar.gz The new code is available in StereoCamera
v1 1c.zip.
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puter Science, pages 127–134, Jyväskylä, Finland, 30 May - 3 June 1999. John Wiley & Sons.

O’Neill and Ryan, 2001. Michael O’Neill and Conor Ryan. Grammatical evolution. IEEE Trans-
actions on Evolutionary Computation, 5(4):349–358, August 2001.

O’Neill and Ryan, 2003. Michael O’Neill and Conor Ryan. Grammatical Evolution: Evolution-
ary Automatic Programming in a Arbitrary Language, volume 4 of Genetic programming.
Kluwer Academic Publishers, 2003.

Orlov and Sipper, 2011. Michael Orlov and Moshe Sipper. Flight of the FINCH through the Java
wilderness. IEEE Transactions on Evolutionary Computation, 15(2):166–182, April 2011.

Owens et al., 2008. John D. Owens, Mike Houston, David Luebke, Simon Green, John E. Stone,
and James C. Phillips. GPU computing. Proceedings of the IEEE, 96(5):879–899, May 2008.
Invited paper.

Pappa et al., 2014. Gisele L. Pappa, Gabriela Ochoa, Matthew R. Hyde, Alex A. Freitas, John
Woodward, and Jerry Swan. Contrasting meta-learning and hyper-heuristic research: the role
of evolutionary algorithms. Genetic Programming and Evolvable Machines, 15(1):3–35, March
2014.

Paterson and Livesey, 1997. Norman Paterson and Mike Livesey. Evolving caching algorithms
in C by genetic programming. In John R. Koza et al., editors, Genetic Programming 1997:
Proceedings of the Second Annual Conference, pages 262–267, Stanford University, CA, USA,
13-16 July 1997. Morgan Kaufmann.

Petke et al., 2014a. Justyna Petke, Mark Harman, William B. Langdon, and Westley Weimer. Us-
ing genetic improvement & code transplants to specialise a C++ program to a problem class.
11th Annual Humies Awards 2014, 14 July 2014. Winner Silver.

Petke et al., 2014b. Justyna Petke, Mark Harman, William B. Langdon, and Westley Weimer. Us-
ing genetic improvement and code transplants to specialise a C++ program to a problem class.
In Miguel Nicolau et al., editors, 17th European Conference on Genetic Programming, volume
8599 of LNCS, pages 137–149, Granada, Spain, 23-25 April 2014. Springer.

Podgornik et al., 2011. Bojan Podgornik, Vojteh Leskovsek, Miha Kovacic, and Josef Vizintin.
Analysis and prediction of residual stresses in nitrided tool steel. Materials Science Forum, 681,
Residual Stresses VIII:352–357, March 2011.

Poli et al., 2008. Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A field
guide to genetic programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008. (With contributions by J. R. Koza).

Radulescu et al., 2014. Vlad Radulescu, Stefan Andrei, and Albert M. K. Cheng. A heuristic-
based approach for reducing the power consumption of real-time embedded systems. In Franz
Winkler, editor, 16th International Symposium on Symbolic and Numeric Algorithms for Scien-
tific Computing (SYNASC 2014), Timisoara, 22-25 September 2014. Pre-proceedings.

Reynolds, 2011. Craig Reynolds. Interactive evolution of camouflage. Artificial Life, 17(2):123–
136, Spring 2011.

Risco-Martin et al., 2010. Jose L. Risco-Martin, David Atienza, J. Manuel Colmenar, and Oscar
Garnica. A parallel evolutionary algorithm to optimize dynamic memory managers in embedded

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Mahajan_2008_ieeeICCI.html
http://dx.doi.org/10.1109/InPar.2012.6339597
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Nguyen_2013_ICSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Nguyen_2013_ICSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/oneill_1999_AGCA.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/oneill_2001_TEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/oneill_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Orlov_2011_ieeeTEC.html
http://dx.doi.org/10.1109/JPROC.2008.917757
http://dx.doi.org/10.1109/JPROC.2008.917757
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Pappa_2013_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Paterson_1997_ecacGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2014_humie.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Podgornik_2011_MSF.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_fieldguide.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Reynolds_2011_ALife.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/RiscoMartin2010572.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/RiscoMartin2010572.html


216 W. B. Langdon

systems. Parallel Computing, 36(10-11):572–590, 2010. Parallel Architectures and Bioinspired
Algorithms.

Rodriguez-Mier et al., 2010. Pablo Rodriguez-Mier, Manuel Mucientes, Manuel Lama, and
Miguel I. Couto. Composition of web services through genetic programming. Evolutionary
Intelligence, 3(3-4):171–186, 2010.

Romero et al., 2013. Juan Romero, Penousal Machado, and Adrian Carballal. Guest editorial:
special issue on biologically inspired music, sound, art and design. Genetic Programming and
Evolvable Machines, 14(3):281–286, September 2013. Special issue on biologically inspired
music, sound, art and design.

Ryan, 1999. Conor Ryan. Automatic Re-engineering of Software Using Genetic Programming,
volume 2 of Genetic Programming. Kluwer Academic Publishers, 1 November 1999.

Schulte et al., 2010. Eric Schulte, Stephanie Forrest, and Westley Weimer. Automated program
repair through the evolution of assembly code. In Proceedings of the IEEE/ACM international
conference on Automated software engineering, pages 313–316, Antwerp, 20-24 September
2010. ACM.

Schulte et al., 2013. Eric Schulte, Jonathan DiLorenzo, Westley Weimer, and Stephanie Forrest.
Automated repair of binary and assembly programs for cooperating embedded devices. In Pro-
ceedings of the eighteenth international conference on Architectural support for programming
languages and operating systems, ASPLOS 2013, pages 317–328, Houston, Texas, USA, March
16-20 2013. ACM.

Schulte et al., 2014a. Eric Schulte, Jonathan Dorn, Stephen Harding, Stephanie Forrest, and West-
ley Weimer. Post-compiler software optimization for reducing energy. In Proceedings of the 19th
International Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS’14, pages 639–652, Salt Lake City, Utah, USA, 1-5 March 2014. ACM.

Schulte et al., 2014b. Eric Schulte, Zachary P. Fry, Ethan Fast, Westley Weimer, and Stephanie
Forrest. Software mutational robustness. Genetic Programming and Evolvable Machines,
15(3):281–312, September 2014.

Sitthi-amorn et al., 2011. Pitchaya Sitthi-amorn, Nicholas Modly, Westley Weimer, and Jason
Lawrence. Genetic programming for shader simplification. ACM Transactions on Graphics,
30(6):article:152, December 2011. Proceedings of ACM SIGGRAPH Asia 2011.

Stam, 2008. Joe Stam. Stereo imaging with CUDA. Technical report, nVidia, V 0.2 3 Jan 2008.
Syswerda, 1989. Gilbert Syswerda. Uniform crossover in genetic algorithms. In J. David Schaf-

fer, editor, Proceedings of the third international conference on Genetic Algorithms, pages 2–9,
George Mason University, 4-7 June 1989. Morgan Kaufmann.

Weimer et al., 2009. Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest.
Automatically finding patches using genetic programming. In Stephen Fickas, editor, Interna-
tional Conference on Software Engineering (ICSE) 2009, pages 364–374, Vancouver, May 16-24
2009.

Weimer et al., 2010. Westley Weimer, Stephanie Forrest, Claire Le Goues, and ThanhVu Nguyen.
Automatic program repair with evolutionary computation. Communications of the ACM,
53(5):109–116, June 2010.

Weimer, 2013. Westley Weimer. Advances in automated program repair and a call to arms. In
Guenther Ruhe and Yuanyuan Zhang, editors, Symposium on Search-Based Software Engineer-
ing, volume 8084 of Lecture Notes in Computer Science, pages 1–3, Leningrad, August 24-26
2013. Springer. Invited keynote.

White et al., 2008. David R. White, John Clark, Jeremy Jacob, and Simon M. Poulding. Search-
ing for resource-efficient programs: low-power pseudorandom number generators. In Maarten
Keijzer et al., editors, GECCO ’08: Proceedings of the 10th annual conference on Genetic and
evolutionary computation, pages 1775–1782, Atlanta, GA, USA, 12-16 July 2008. ACM.

White et al., 2011. David R. White, Andrea Arcuri, and John A. Clark. Evolutionary improvement
of programs. IEEE Transactions on Evolutionary Computation, 15(4):515–538, August 2011.

Wilkerson and Tauritz, 2010. Josh L. Wilkerson and Daniel Tauritz. Coevolutionary automated
software correction. In Juergen Branke et al., editors, GECCO ’10: Proceedings of the 12th an-
nual conference on Genetic and evolutionary computation, pages 1391–1392, Portland, Oregon,
USA, 7-11 July 2010. ACM.

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Rodriguez-Mier_2010_EI.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Rodriguez-Mier_2010_EI.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Romero_2013_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ryan_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/schulte10__autom_progr_repair_evolut_assem_code.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2013_ARB_2451116_2451151.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/schulte2014optimization.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/schulte2014optimization.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2014_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tog_Sitthi-amornMWL11.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tog_Sitthi-amornMWL11.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2009_ICES.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2010_ACM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2013_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/White2_2008_gecco.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/White_2011_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Wilkerson_2010_gecco.html


8 Genetically Improved Software 217

Xiao et al., 2012. Liyuan Xiao, Carl K. Chang, Hen-I Yang, Kai-Shin Lu, and Hsin yi Jiang. Au-
tomated web service composition using genetic programming. In 36th Annual IEEE Computer
Software and Applications Conference Workshops (COMPSACW 2012), pages 7–12, Izmir, 16-
20 July 2012.

Yao et al., 1995. Frances Yao, Alan Demers, and Scott Shenker. A scheduling model for reduced
cpu energy. In 36th Annual Symposium on Foundations of Computer Science, pages 374–382.
IEEE, Oct 1995.

Yoo, 2012. Shin Yoo. Evolving human competitive spectra-based fault localisation techniques.
In Gordon Fraser et al., editors, 4th Symposium on Search Based Software Engineering, volume
7515 of Lecture Notes in Computer Science, pages 244–258, Riva del Garda, Italy, September
28-30 2012. Springer.

Zhu and Kulkarni, 2013. Ling Zhu and Sandeep Kulkarni. Synthesizing round based fault-tolerant
programs using genetic programming. In Teruo Higashino et al., editors, Proceedings of the
15th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS
2013), volume 8255 of Lecture Notes in Computer Science, pages 370–372, Osaka, Japan,
November 13-16 2013. Springer.

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Xiao_2012_COMPSACW.html
http://dx.doi.org/10.1109/SFCS.1995.492493
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Yoo_2012_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/conf_sss_ZhuK13.html


218 W. B. Langdon

8.19 StereoKernel tuned for K20c Tesla

In addition to the complete Stereo Camera system StereoCamera v1 1c.zip
contains the following CUDA kernel. The modifications to the openVidia CUDA
Stereo Camera code distributed by SourceForge are also described in Section 8.16
(pages 205 to 207).

/*******
stereoKernel
Now for the main stereo kernel: There are four parameters:
disparityPixel points to memory containing the disparity value (d)
for each pixel.
width & height are the image width & height, and out_pitch specifies
the pitch of the output data in words (i.e. the number of floats
between the start of one row and the start of the next.).
disparityMinSSD removed by GP

*********/

__attribute__((global)) void stereoKernel(
// pointer to the output memory for the disparity map
float * __restrict__ disparityPixel,
// the pitch (in pixels) of the output memory for the disparity map
const size_t out_pitch,
const int width,
const int height,
unsigned int * __restrict__ timer, //For GP timing only
int * __restrict__ sm_id //For GP timing only

)
{
FIXED_init_timings(timer,sm_id); //For GP timing only
extern __attribute__((shared)) float disparityPixel_S[];

int* const disparityMinSSD = (int*)&disparityPixel_S[ROWSperTHREAD*BLOCK_W];
// column squared difference functions

int* const col_ssd = &disparityMinSSD[ROWSperTHREAD*BLOCK_W];
float d; // disparity value
float d0,d1;
float dmin;

int diff; // difference temporary value
int ssd; // total SSD for a kernel
float x_tex; // texture coordinates for image lookup
float y_tex;
int row; // the current row in the rolling window
int i; // for index variable
const int dthreadIdx = threadIdx.x % BLOCK_W;
const int dblockIdx = threadIdx.x / BLOCK_W;

//bugfix force subsequent calculations to be signed
const int X = (__mul24(blockIdx.x,(BLOCK_W-2*RADIUS_H)) + dthreadIdx);
const int ssdIdx = threadIdx.x;
int* const reduce_ssd = &col_ssd[(BLOCK_W )*dperblock-BLOCK_W];
const int Y = (__mul24(blockIdx.y,ROWSperTHREAD));
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//int extra_read_val = 0; no longer used
//if(dthreadIdx < (2*RADIUS_H)) extra_read_val = BLOCK_W + ssdIdx;

// initialize the memory used for the disparity and the disparity difference
//Uses first group of threads to initialise shared memory
if(threadIdx.x<BLOCK_W-2*RADIUS_H)
if(dblockIdx==0)
if(X<width )
{
for(i = 0;i<ROWSperTHREAD && Y+i < height;i++)
{

// initialize to -1 indicating no match
disparityPixel_S[i*BLOCK_W +threadIdx.x] = -1.0f;
//ssd += col_ssd[i+threadIdx.x];
disparityMinSSD[i*BLOCK_W +threadIdx.x] = MIN_SSD;

}
}
__syncthreads();

x_tex = X - RADIUS_H;
for(d0 = STEREO_MIND;d0 <= STEREO_MAXD;d0 += STEREO_DISP_STEP*dperblock)
{
d = d0 + STEREO_DISP_STEP*dblockIdx;
col_ssd[ssdIdx] = 0;

// do the first row
y_tex = Y - RADIUS_V;
for(i = 0;i <= 2*RADIUS_V;i++)
{

diff = readLeft(x_tex,y_tex) - readRight(x_tex-d,y_tex);
col_ssd[ssdIdx] += SQ(diff);
y_tex += 1.0f;

}
__syncthreads();

// now accumulate the total
if(dthreadIdx<BLOCK_W-2*RADIUS_H)
if(X < width && Y < height)
{

ssd = 0;
for(i = 0;i<=(2*RADIUS_H);i++)
{

ssd += col_ssd[i+ssdIdx];
}

}
if(dblockIdx!=0) reduce_ssd[threadIdx.x] = ssd;
__syncthreads();

//Use first group of threads to set ssd to smallest SSD for d1<d0+dperblock
if(threadIdx.x<BLOCK_W-2*RADIUS_H)
if(X < width && Y < height)
{

dmin = d;
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d1 = d + STEREO_DISP_STEP;
for(i = threadIdx.x+BLOCK_W;i < blockDim.x;i += BLOCK_W) {

if(d1 <= STEREO_MAXD && reduce_ssd[i] < ssd) {
ssd = reduce_ssd[i];
dmin = d1;

}
d1 += STEREO_DISP_STEP;

}
//if ssd is smaller update both shared data arrays
if( ssd < disparityMinSSD[0*BLOCK_W +threadIdx.x])
{
disparityPixel_S[0*BLOCK_W +threadIdx.x] = dmin;
disparityMinSSD[0*BLOCK_W +threadIdx.x] = ssd;

}
}
__syncthreads();

// now do the remaining rows
y_tex = Y - RADIUS_V; // this is the row we will remove
#pragma unroll 11
for(row = 1;row < ROWSperTHREAD && (row+Y < (height+RADIUS_V));row++)
{

// subtract the value of the first row from column sums
diff = readLeft(x_tex,y_tex) - readRight(x_tex-d,y_tex);
col_ssd[ssdIdx] -= SQ(diff);

// add in the value from the next row down
diff = readLeft(x_tex, y_tex + (float)(2*RADIUS_V)+1.0f) -

readRight(x_tex-d,y_tex + (float)(2*RADIUS_V)+1.0f);
col_ssd[ssdIdx] += SQ(diff);
y_tex += 1.0f;
__syncthreads();

if(dthreadIdx<BLOCK_W-2*RADIUS_H)
if(X<width && (Y+row) < height)
{

ssd = 0;
for(i = 0;i<=(2*RADIUS_H);i++)
{

ssd += col_ssd[i+ssdIdx];
}

}
if(dblockIdx!=0) reduce_ssd[threadIdx.x] = ssd;
__syncthreads();

//Use 1st group threads to set ssd/dmin to smallest SSD for d1<d0+dperblock
if(threadIdx.x<BLOCK_W-2*RADIUS_H)
if(dblockIdx==0)
{

dmin = d;
d1 = d + STEREO_DISP_STEP;
for(i = threadIdx.x+BLOCK_W;i < blockDim.x;i += BLOCK_W) {

if(d1 <= STEREO_MAXD && reduce_ssd[i] < ssd) {
ssd = reduce_ssd[i];
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dmin = d1;
}
d1 += STEREO_DISP_STEP;

}
//if smaller SSD found update shared memory
if(ssd < disparityMinSSD[row*BLOCK_W +threadIdx.x])
{

disparityPixel_S[row*BLOCK_W +threadIdx.x] = dmin;
disparityMinSSD[row*BLOCK_W +threadIdx.x] = ssd;

}
}//endif first group of thread

}// for row loop
}// for d0 loop

//Write answer in shared memory to global memory
if(threadIdx.x<BLOCK_W-2*RADIUS_H)
if(dblockIdx==0)
if(X < width) {
#pragma unroll 3
for(row = 0;row < ROWSperTHREAD && (row+Y < height);row++)
{

disparityPixel[__mul24((Y+row),out_pitch)+X] =
disparityPixel_S[row*BLOCK_W +threadIdx.x];

}
}
FIXED_report_timings(timer,sm_id); //For GP timing only
}
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