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Abstract
We introduce a new approach to learning la-
tent Markovian dynamical processes underly-
ing observed time series data: the recognition-
parametrised latent dynamical system (RP-LDS).
The RP-LDS resolves issues in two broad classes
of state-of-the-art latent time series models, while
maintaining expressivity through a complex neu-
ral network-based link between observations
and latents. As opposed to generative or auto-
encoding approaches, the RP-LDS does not learn
an explicit model reconstructing observations
from latents, thus allowing it to avoid parame-
ter bias and focus model capacity on recognition.
As opposed to contrastive approaches, the RP-
LDS utilises efficient message-passing to propa-
gate posterior uncertainty and achieve maximum-
likelihood learning. The RP-LDS matches the
performance of state-of-the-art methods on both
linear and nonlinear toy problems. We apply the
RP-LDS to video of a swinging pendulum with
background distractors and show that it is able to
recover the underlying latent system despite not
being in model class.

1. Introduction
Unsupervised representation learning from time series data
is crucial in many applications, such as reinforcement learn-
ing, robotics, navigation, or signal processing. Under strict
assumptions, learning and inference can be done exactly,
most famously via the EM algorithm with Kalman smooth-
ing (Kalman, 1960; Neal & Hinton, 1998). In more general
settings, approximations must be made.

One approach to time-series representation learning is gen-
erative, in which generative and recognition networks are
trained jointly. Recent years have seen an increase in the
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use of variational autoencoders (VAEs; Kingma & Welling,
2014) adjusted to handle time series data. One of the first
successful VAE-based methods was the Deep Kalman Filter
(DKF; Krishnan et al., 2015). The DKF parametrises the
variational posterior as a recurrent neural network (RNN)
that maps data to a distribution over latents. Another ap-
proach is the Structured VAE (SVAE; Johnson et al., 2016),
which learns a recognition network that returns conjugate
potentials that allow for exact message-passing inference.
The SVAE has recently been optimised for efficient training
on GPUs and shown to be successful across a range of tasks
(Zhao & Linderman, 2023).

Generative approaches learn explicit generative networks,
even though many downstream applications only require
recognition. This may lead to unnecessary error in the
model, as generative models that are sufficiently complex to
model real-world data do not admit exact inference and must
thus resort to approximations. Approximate methods can
yield biased parameter estimates (Turner & Sahani, 2011).
Flexible generative models can further degrade recognition
networks by compensating for approximations in the varia-
tional posterior (Cremer et al., 2018).

Another approach is contrastive. Contrastive models bypass
the need to train an explicit generative model and instead
learn a recognition network by contrasting “positive” data
points from “negative” ones, typically with regularisation to
avoid collapse. A commonly used contrastive approach for
time series data is InfoNCE (van den Oord et al., 2018).

However, by not performing maximum-likelihood in a con-
crete probabilistic model, contrastive methods are not able to
use variational tools from the probabilistic graphical model
literature and cannot provide principled posterior beliefs
over latent variables; a feature that is crucial to optimal
Bayesian decision making. Recent extensions of contrastive
methods do provide a form of posterior uncertainty, but not
in a maximum-likelihood framework (Kirchhof et al., 2023).
Despite success across many domains, contrastive methods
have been found to not be sufficiently expressive in some
applications, such as model-based reinforcement learning
(Hafner et al., 2020).

Recent work introduced a class of semi-parametric mod-
els called recognition-parametrised models (RPMs; Walker
et al., 2023), which do not learn an explicit generative model
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Figure 1: Left: RPM graphical model. Right: LDS graphi-
cal model.

but nonetheless offer consistent estimation for an implicit
likelihood (Author, 2021). RPMs were shown to be success-
ful in a range of settings. In this work, we aim to address
shortcomings of both generative and contrastive methods
for time series data by applying RPMs to latent dynamical
systems (summarised in Table 1).

Table 1: Properties of different methods.

Method Generation
not

required

Maximum
likelihood

Posterior
uncer-
tainty

RPM ✓ ✓ ✓
VAE ✗ ✓ ✓
NCE ✓ ✗ ✗

2. Background
We first introduce RPMs (Walker et al., 2023) in their most
general form, then detail the framework of latent dynamical
systems. We assume continuous latents throughout.

2.1. The Recognition-Parametrised Model

The RPM is a model for unsupervised representation learn-
ing that exploits conditional independence relationships be-
tween latent and observed variables. Given a graphical
model as in Figure 1 (left), the joint distribution between
latent and observed variables is

p(x, z) = p(z)

J∏
j=1

p(xj |z). (1)

The index j can be thought of as corresponding to multiple
modalities, e.g. image, sound, and text, generated by a
common latent state. We use bold font for the latent z
to emphasise that the latents can have arbitrary graphical
structure. The RPM avoids the explicit generative model
in Equation (1) by applying Bayes’ rule and approximating
the resulting terms:

pX(x, z) = p(z)

J∏
j=1

fϕj (z|xj)p0(xj)

Fϕj
(z)

, (2)

where:

• X = {xn
j }

J,N
j=1,n=1 is a dataset of N data points for

each modality j;

• p0 is the empirical distribution on X: p0(xj) =
1
N

∑N
n=1 δ(xj − xn

j );

• fϕj (z|xj) are parametrised recognition factors;

• Fϕj
(z) ensures that the RPM joint in Equation (2) is

normalised:

Fϕj (z) =

∫
fϕj (z|xj)p0(xj) dxj =

1

N

N∑
n=1

fϕj (z|xn
j ).

The RPM joint is subscripted by the dataset because the
joint is itself a function of the dataset through its depen-
dence on p0. We parametrise the prior with parameters η,
so that the total parameter set is θ := (η, {ϕj}Jj=1) and
the parametrised RPM joint is denoted by pθ,X(x, z). The
RPM is fit via the EM algorithm, corresponding to coordi-
nate ascent on the free energy of the RPM joint (Neal &
Hinton, 1998). In the case of continuous latent variables,
additional approximations must be made because Fϕj

(z)
is a mixture distribution, rendering the term ⟨logFϕj

(z)⟩
in the free energy intractable. We detail these further in
Section 3.

2.2. Latent Dynamical System Models

Latent dynamical system (LDS) models have graphical
structure as in Figure 1 (right). The joint distribution and
free energy are

pθ(x, z) = pθ(z1)

T∏
t=2

pθ(zt|zt−1)

T∏
t=1

pθ(xt|zt), (3)

F(q, θ) = ⟨log pθ(x, z)⟩q(z) +H(q), (4)

where H denotes the entropy of a distribution. Learning is
done via the EM algorithm. The E-step, which updates q
given fixed θ, can be computed in closed form in specific
cases. The most famous case consists of linear-Gaussian
transition and emission distributions, which is solved by
Kalman smoothing (Kalman, 1960).

3. Method
We assume a standard LDS graphical model as in Figure 1
(right) with a single emission xt at each time, although our
methods easily extend to multiple emissions at each time
conditionally independent of zt. The RPM joint and free
energy are

pθ,X(x, z) = pη(z1)

T∏
t=2

pη(zt|zt−1)

T∏
t=1

fϕ(zt|xt)p0(xt)

Fϕ(zt)
,

(5)
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F({qn}, θ) +c
=

N∑
n=1

[
H(qn) + ⟨log pη(z1)⟩qn(z1)

+

T∑
t=2

⟨log pη(zt|zt−1)⟩qn(zt,zt−1)

+

T∑
t=1

〈
log

fϕ(zt|xn
t )

Fϕ(zt)

〉
qn(zt)

]
. (6)

Although we parametrise the prior and recognition factors as
jointly Gaussian in z, the inclusion of arbitrarily nonlinear
links between observations and latents makes if possible to
model complex, real-world time series:

pη(z1) = N (z1|m1, Q1),

pη(zt|zt−1) = N (zt|Atzt−1 + bt, Qt),

fϕ(zt|xt) = N (zt|µϕ(xt),Σϕ(xt)).

We adapt approximations from Walker et al. (2023) to per-
form EM on the RPM free energy.

3.1. M-step

The terms Fϕ(zt) are mixtures of Gaussians, so
⟨logFϕ(zt)⟩qn(zt) are intractable. To resolve this we use the
interior variational bound (Walker et al., 2023): by Jensen’s
inequality,

−⟨logFϕ(zt)⟩qn(zt) ≥ −
〈
log

qn(zt)

f̃n(zt)

〉
qn(zt)

− log Γn
ϕ,t,

where the f̃n are arbitrary auxiliary factors and Γn
ϕ,t =∫

Fϕ(zt)f̃
n(zt) dzt. From Jensen’s inequality, the opti-

mal value of f̃n is f̃n(zt) ∝ qn(zt)/Fϕ(zt). We use
the ansatz Fϕ(zt) → pη(zt) (Walker et al., 2023) to set
f̃n(zt) ∝ qn(zt)/pη(zt). Finally, we decompose the recog-
nition factors into a time-invariant component f̄ϕ and a
potentially time-varying component given by the prior:
fϕ(zt|xt) ∝ pη(zt)f̄ϕ(zt|xt). This parametrisation alle-
viates the need to fit T separate recognition networks when
the latent dynamics are nonstationary. It also ensures that
all terms Γn

ϕ,t are finite, as shown in Appendix A.

The resulting lower bound on the free energy can be rewrit-
ten as

F̃({qn}, θ) =
N∑

n=1

[
T∑

t=1

{
log Γ̂n

θ,t − KL
(
qn(zt)

∣∣∣∣∣∣ f̂n
ϕ (zt)

)}
− KL (qn(z) || pη(z))

]
, (7)

where f̂n
ϕ (zt|xn

t ) ∝ f̄ϕ(zt|xn
t )q

n(zt) is a normalised dis-
tribution and the Γ̂n

θ,t are terms depending on f̄ϕ, pη, and
qn. A full derivation is given in Appendix A. The M-step
proceeds by gradient ascent of F̃ on θ.

3.2. E-step

The E-step is performed on an approximation of F , rather
than directly on F̃ . Noting the similarity between Equa-
tions (3) and (5), the E-step on F can be computed with
a Kalman smoother, but with the usual emissions p(xt|zt)
replaced by fϕ(zt|xt)/Fϕ(zt). As Fϕ(zt) is a mixture, com-
puting the smoothing messages is intractable. We approx-
imate Fϕ(zt) ≈ pη(zt) and use the parametrisation of fϕ
from the M-step to get fϕ(zt|xt)/Fϕ(zt) ≈ f̄ϕ(zt|xt). The
E-step can then be computed with a Kalman smoother with
emissions proportional to f̄ϕ(zt|xt). Crucially, because
f̄ϕ(zt|xt) is linear in zt, Kalman smoothing is exact, despite
a nonlinear neural network-based link between zt and xt.

4. Experiments
We demonstrate the effectiveness of the RP-LDS on simu-
lated problems of increasing difficulty. We begin with two
toy problems with linear ground-truth dynamical systems
and linear and nonlinear emission functions, respectively.
We then show that the RP-LDS is able to recover latent
variables describing pendulum motion, a fundamentally
nonlinear system, from image data. To highlight the ad-
vantage of not having an explicit generative model, we also
apply the RP-LDS to pendulum image data with background
distractors.

It is difficult to compare the RP-LDS to other methods via
free energy, as the RP-LDS free energy is a function of
the data and will in general vary when the data changes.
We instead measure performance by the R2 value of linear
regression between each model’s inferred latent variables
(posterior means) and the ground-truth latent variables.

We compare the RP-LDS to the SVAE (Johnson et al., 2016;
Zhao & Linderman, 2023) and the DKF (Krishnan et al.,
2015) with three different parametrisations of the variational
posterior family: two based on bidirectional RNNs and one
based on a CNN with convolutions over the time dimen-
sion. We refer to these parametrisations as DKF, DKF-MF,
and CNN, respectively. Full parametrisation and experi-
mental details can be found in Appendix B. Code for all
models and experiments is heavily inspired by that of Zhao
& Linderman (2023).

4.1. Linear Dynamical System with Linear Emissions

To test the performance of the RP-LDS in model class
we simulate latents and observations from random linear-
Gaussian systems:

z1 ∼ N (µ1, S1), (8)
zt|zt−1 ∼ N (Bzt−1, S), (9)
xt|zt ∼ N (Czt + d,R). (10)
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(a) Linear (b) Swiss roll (c) Pendulum (d) CIFAR-pendulum

Figure 2: (a): the RP-LDS maintains competitive performance on the linear system with linear emissions. Results are
averaged over three seeds and error bars indicate standard error. (b): the RP-LDS matches the performance of SVAE on the
linear system with Swiss roll emission. (c): the RP-LDS is the only method able to decode pendulum angular velocity when
data masking is not used. (d): the RP-LDS is the only method able to decode CIFAR-pendulum angular velocity, even when
other methods are trained with data masking.

As in Zhao & Linderman (2023), we test performance
on three pairs of latent and observation dimensionalities:
{(3, 5), (5, 10), (10, 20)}. As shown in Figure 2(a), the
RP-LDS shows comparable performance to state-of-the-art
methods across the three dimensionalities.

4.2. Linear Dynamical System with Nonlinear Emissions

In the second experiment, we take a latent system as in Equa-
tions (8) and (9) with two-dimensional latents, which are
mapped to three-dimensional observations via the “Swiss
roll” function (Tenenbaum et al., 2000) plus Gaussian noise.
A full description of the nonlinearity can be found in Ap-
pendix B.2. Results are shown in Figure 2(b); RP-LDS and
SVAE both achieve R2 very near to 1.

4.3. Pendulum Video Task

Next, we apply the RP-LDS to video data of a simulated
pendulum (Becker et al., 2019). The pendulum’s dynamics
are governed by angle and angular velocity, which consti-
tute a two-dimensional nonlinear dynamical system. This
task thus tests the ability to learn from images and to learn
from data with nonlinear latent dynamics. Whereas angle
can be decoded from individual frames, decoding angular
velocity requires both dynamics and recognition models to
be accurate.

To showcase that learning an explicit generative model
can sometimes be harmful, we also construct a dataset of
pendulum videos where each frame’s background is given
by a randomly chosen image from the CIFAR-10 dataset
(Krizhevsky & Hinton, 2009). A generative model would
aim to reconstruct the entire images, which is incredibly
difficult, especially as there are no structured temporal dy-
namics between the images.

We run all methods with three-dimensional latents. Fig-
ure 2(c-d) shows R2 values of linearly decoding angular
velocity in the pendulum and CIFAR-pendulum datasets,

respectively. Results for decoding angle are given in Ap-
pendix B.3. In both datasets, the RP-LDS is the only method
that can reliably linearly decode angular velocity. Zhao
& Linderman (2023) showed that the SVAE with three-
dimensional latents can decode angular velocity well, but
this crucially depends on masking a fraction of the data to
force the SVAE to learn a good dynamics model. When
data is not masked, as in Figure 2(c), the generative model
of the SVAE is so expressive that there is little incentive to
learn a good dynamics model. In contrast, the lack of gen-
erative model in the RP-LDS allows for a good dynamics
model to be learned. For the CIFAR-pendulum dataset we
train all methods other than RP-LDS with data masking as
in Zhao & Linderman (2023), but they are still unable to
linearly decode angular velocity due to the complex image
backgrounds.

5. Conclusion
We have introduced the recognition-parametrised latent dy-
namical system, a probabilistic method for learning and
inference in latent time series. The RP-LDS addresses
shortcomings of existing generative and contrastive meth-
ods: it has no explicit generative model, it is asymptotically
maximum-likelihood, and it provides principled posterior
uncertainty via efficient message-passing. We show that the
RP-LDS approximately matches the performance of existing
methods on simple toy problems with linear ground-truth
latent dynamics. On a problem with high-dimensional ob-
servations and nonlinear ground-truth latent dynamics, the
RP-LDS is able to simultaneously learn good dynamics and
recognition models without the need to mask data.

The RP-LDS is a promising method to learn latent dynamics
from time series, particularly for downstream tasks that do
not require data generation. Our results indicate that the
RP-LDS could be a very competitive method in problems
such as model-based reinforcement learning.
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A. Loss Derivation
We derive the lower bound in Equation (7) for general exponential family distributions.

Recall that the RPM free energy is

F({qn}, θ) +c
=

N∑
n=1

[
⟨log pη(z1)⟩qn(z1) +

T∑
t=2

⟨log pη(zt|zt−1)⟩qn(zt,zt−1)

+

T∑
t=1

(
⟨log fϕ(zt|xn

t )⟩qn(zt) − ⟨logFϕ(zt)⟩qn(zt)
)
+H(qn)

]
(A.1)

and the interior variational bound is

−⟨logFϕ(zt)⟩qn(zt) ≥ −
〈
log

qn(zt)

f̃n(zt)

〉
qn(zt)

− log Γn
ϕ,t. (A.2)

Omit parameter subscripts for clarity. Assume that f(zt|xn
t ), q

n(zt), and p(zt) all belong to the same exponential family
with natural parameters η(xn

t ), η
n
qt, and η0t, respectively:

fϕ(zt|xn
t ) = h(zt)e

η(xn
t )

⊤t(zt)−Φ(η(xn
t )),

qn(zt) = h(zt)e
(ηn

qt)
⊤t(zt)−Φ(ηn

qt),

p(zt) = h(zt)e
η⊤
0tt(zt)−Φ(η0t).

Let f̃n(zt) be a general factor with the same shape and its own natural parameter η̃nt :

f̃n(zt) = e(η̃
n
t )⊤t(zt).

Then the terms Γn
t from Equation (A.2) become

Γn
t =

1

N

N∑
n′=1

∫
h(zt)e

(
η
(
xn′
t

)
+η̃n

t

)⊤
t(zt)−Φ

(
η
(
xn′
t

))
dzt

=
1

N

N∑
n′=1

e
Φ
(
η
(
xn′
t

)
+η̃n

t

)
−Φ

(
η
(
xn′
t

))

Next, using Equation (A.2),〈
log

f(zt|xn
t )

F(zt)

〉
qn(zt)

≥

〈
log

f(zt|xn
t )f̃

n(zt)

qn(zt)

〉
qn(zt)

− log Γn
t .

Defining f̂n(zt) to belong to the same exponential family with natural parameter η(xn
t ) + η̃nt and adding and subtracting,〈

log
f(zt|xn

t )

F(zt)

〉
qn(zt)

≥

〈
log

f(zt|xn
t )f̃

n(zt)f̂
n(zt)

qn(zt)f̂n(zt)

〉
qn(zt)

− log Γn
t

= −KL
(
qn(zt)

∣∣∣∣∣∣ f̂n(zt)
)
+

〈
log

f(zt|xn
t )f̃

n(zt)

f̂n(zt)

〉
qn(zt)

− log Γn
t

= −KL
(
qn(zt)

∣∣∣∣∣∣ f̂n(zt)
)
− Φ(η(xn

t )) + Φ(η(xn
t ) + η̃nt )− log Γn

t

= log Γ̂n
t − KL

(
qn(zt)

∣∣∣∣∣∣ f̂n(zt)
)
+ logN,

where

Γ̂n
t =

eΦ(η(xn
t )+η̃n

t )−Φ(η(xn
t ))∑N

n′=1 e
Φ(η(xn′

t )+η̃n
t )−Φ(η(xn′

t ))
.
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The parametrisations detailed in Section 3.1 are equivalent to the following parametrisations in natural parameter space:

η(xn
t ) = η0t + η̄(xn

t ),

η̃nt = ηnqt − η0t,

where η̄(xn
t ) are the natural parameters corresponding to f̄(zt|xn

t ). This ensures that η(xn
t ) and η

(
xn′

t

)
+ η̃nt are valid

natural parameters for all n, n′ and t.

Applying this bound for all n and t, we obtain a lower bound to the free energy from Equation (A.1):

F({qn}, θ) ≥ F̃({qn}, θ)

=

N∑
n=1

[
T∑

t=1

{
⟨log p(zt|zt−1)⟩qn(zt,zt−1)⟩+ log Γ̂n

t − KL
(
qn(zt)

∣∣∣∣∣∣ f̂n(zt)
)}

+ ⟨log p(z1)⟩qn(z1) +H(qn)

]

=

N∑
n=1

[
T∑

t=1

{
log Γ̂n

t − KL
(
qn(zt)

∣∣∣∣∣∣ f̂n(zt)
)}

− KL (qn(z) || p(z))

]
.

B. Experimental Details
In all experiments we have a separate learning rate over prior parameters and the remaining model parameters, i.e.
for recognition and generative networks, as appropriate. We refer to these learning rates as prior and base learning rates,
respectively. Results are computed with a grid hyperparameter search over both learning rates taking values in {10−3, 10−2}.

We use a periodic cosine schedule for the prior learning rate and a linear warmup followed by constant schedule for the
base learning rate. All experiments are run with a batch size of 10 and a total of N = 100 sequences. Linear and Swiss roll
experiments are run with T = 200 and the pendulum experiments are run with T = 100.

The three DKF posterior families, which are the same as in Zhao & Linderman (2023), are described below.

• DKF:

qϕ(z1:T ) = N (z1|mϕ,1, Sϕ,1)

T∏
t=2

N (zt|Aϕtzt−1 +mϕ,t, Sϕ,t),

where {mϕ,t, Aϕ,t, Sϕ,t}Tt=1 are the outputs of a bidirectional RNN with weights ϕ applied to the data x1:T .

• DKF-MF:

qϕ(z1:T ) =

T∏
t=1

N (zt|mϕ,t, Sϕ,t),

where {mϕ,t, Sϕ,t}Tt=1 are the outputs of a bidirectional RNN with weights ϕ applied to the data x1:T .

• CNN: the same as DKF, but with the parameters {mϕ,t, Aϕ,t, Sϕ,t}Tt=1 given by the output of a CNN with temporal
convolutions applied to the data x1:T .

B.1. Linear

Inspired by Zhao & Linderman (2023), we define B to be a rotation matrix around a random axis, choose S1, S, and R to be
equal to 0.1I , and sample all components of C and d i.i.d. from N (0, 1).

B.2. Swiss Roll

In the Swiss roll experiment all recognition/generation networks are taken to be MLPs with ReLU nonlinearities. Results
are computed with a further grid search over the networks having 1 or 2 layers. In either case, the number of hidden neurons
in each layer is 5.
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The Swiss roll nonlinearity S : R2 → R3 is given by

S(x, y) =

u(x) sin(4πu(x))
u(x) cos(4πu(x))

u(y)

 ,

where u : R → R is given by

u(x) =
tanh(x/10) + 1

2
.

Figure 3 illustrates the Swiss roll nonlinearity without and with noise.

Figure 3: Left: the Swiss roll function image. Right: the Swiss function image plus Gaussian noise.

B.3. Pendulum

Figure 4 shows the linear R2 scores for decoding pendulum and CIFAR-pendulum angle across all methods. All methods
recover the angle well on the pendulum dataset, even without data masking (even though they fail to recover angular velocity
without masking; Figure 2). Only RP-LDS is able to identify the angle time series on the CIFAR-pendulum dataset, even
when other methods are trained with data masking.

(a) Pendulum (b) CIFAR-pendulum

Figure 4: (a): RP-LDS maintains competitive performance on linearly decoding pendulum angle. Other methods are trained
without data masking. (b): RP-LDS significantly outperforms other methods in linearly decoding pendulum angle when
CIFAR-distractors are present. Other methods are trained with data masking as per Zhao & Linderman (2023).

Figure 5 shows sample frames from the CIFAR-pendulum dataset.
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Figure 5: Each column shows frames 0, 10, . . . , 40 of a random video sequence from the CIFAR-pendulum dataset.
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