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1   |   INTRODUCTION

Physiological systems comprise multiple connected 
subsystems interacting to maintain homeostasis in an 
ever-changing environment. This interaction may be con-
veyed via direct anatomical connection or in most cases 

purely functional or physiological. Thus, disruption in 
the complexity or connectivity changes the unique and 
collective inherent ability of the system to adapt and re-
duces the complexity of various physiological variable 
(Gallagher & Appenzeller,  1999). This failure to adapt 
or respond appropriately can be transient and mild, or 
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Abstract
Decompensated liver disease is complicated by multi-organ failure and poor 
prognosis. The prognosis of patients with liver failure often dictates clinical man-
agement. Current prognostic models have focused on biomarkers considered as 
individual isolated units. Network physiology assesses the interactions among 
multiple physiological systems in health and disease irrespective of anatomical 
connectivity and defines the influence or dependence of one organ system on 
another. Indeed, recent applications of network mapping methods to patient data 
have shown improved prediction of response to therapy or prognosis in cirrhosis. 
Initially, different physical markers have been used to assess physiological cou-
pling in cirrhosis including heart rate variability, heart rate turbulence, and skin 
temperature variability measures. Further, the parenclitic network analysis was 
recently applied showing that organ systems connectivity is impaired in patients 
with decompensated cirrhosis and can predict mortality in cirrhosis independ-
ent of current prognostic models while also providing valuable insights into the 
associated pathological pathways. Moreover, network mapping also predicts re-
sponse to intravenous albumin in patients hospitalized with decompensated cir-
rhosis. Thus, this review highlights the importance of evaluating decompensated 
cirrhosis through the network physiologic prism. It emphasizes the limitations of 
current prognostic models and the values of network physiologic techniques in 
cirrhosis.
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it can be devastating, as with sepsis and multiple organ 
failure (Buchman,  2006; Ivanov,  2021). Reduced com-
plexity in physiological variables such as cardiac rhythm 
(Satti et  al.,  2019), blood oxygen saturation (Al Rajeh 
et al., 2021; Gheorghita et al., 2022), and skin or core body 
temperature (Bottaro et  al.,  2020; Mowery et  al.,  2011) 
is associated with increased mortality. Further, reduced 
functional connectivity between organ systems signifi-
cantly and independently predicts survival in cirrhosis 
(Oyelade et al., 2023; Zhang et al., 2022) or sepsis (Asada 
et al., 2016, 2019). Understanding the interaction between 
these units (and/or subunits) may help us to understand 
the dynamics of complex diseases and direct early inter-
vention to improve outcomes.

Simple models that assess organ systems in isolation 
remain the typical methods to estimate prognosis in many 
complex diseases such as decompensated cirrhosis (e.g., 
MELD, model for end-stage liver disease), sepsis (e.g., 
SOFA, sequential organ failure assessment score), and 
others. These models do not consider the complex interac-
tion between the individual units. Thus, many prognostic 
models fail to optimize their value.

The network method provides an alternative approach 
based on the complex interactions between individual 
organ systems within a physiological system, irrespective 
of anatomical connections. Network physiology identi-
fies the dynamics of connections between seemingly in-
dividual organ systems and improves clinical evaluation 
and assessment of prognosis (Bartsch et al., 2015; Bashan 
et al., 2012). Patients with decompensated cirrhosis or sep-
sis are at high risk of developing multi-organ dysfunction, 
failure, and death. Recent advances in network physiology 
have paved the way for the application of network map-
ping to physiological data with the hope of early inter-
vention and improved outcomes (Asada et al., 2016, 2019; 
Oyelade et al., 2023; Tan et al., 2020; Zhang et al., 2022).

Decompensated cirrhosis is a late stage of liver cirrho-
sis characterized by multiple organ dysfunction with pa-
tients developing ascites, hepatic encephalopathy, portal 
hypertension, kidney failure, cardiomyopathy, abnormal 
pulmonary function, immune dysfunction, or impair-
ment of circadian rhythms (D'Amico et  al.,  2022; Geng 
et  al.,  2022; Liu et  al.,  2022; Montagnese et  al.,  2010; 
Rodríguez-Roisin & Krowka,  2008). The development 
of hepatic decompensation marks a pivotal stage in the 
clinical evolution of cirrhosis and is associated with poor 
prognosis. The complex interaction between systems may 
generate unexpected outcomes with directed therapy 
(D'Amico, 2014; D'Amico et al., 2006; Ginés et al., 1987; 
Planas et al., 2006). For example, targeting nitric oxide to 
regulate the hyperdynamic circulation in patients with 
decompensated cirrhosis was expected to lead to clinical 
improvement and yet was associated with mental status 

deterioration with restlessness, confusion, and disorien-
tation (Cárdenas et  al.,  2007; Kalambokis et  al.,  2005). 
Likewise, the use of albumin plus terlipressin, a synthetic 
vasopressin analogue, to improve kidney function in pa-
tients with hepatorenal syndrome was unexpectedly ob-
served to be associated with pulmonary edema in some 
patients (Wong et  al.,  2021). In a recent multinational 
study aimed at targeted replacement of plasma albumin 
in patients hospitalized with decompensated cirrhosis and 
hypoalbuminemia, China et  al.  (2021) found no signifi-
cant benefit. However, a significant increase in pulmonary 
edema was observed in the treatment arm. This evidence, 
and others beyond the scope of this review, highlights the 
failure of isolated targeting of unique organ systems with-
out much consideration for the system-wide physiological 
context within which such organ system operates.

In the clinical course of cirrhosis, the compensated 
stage may last many years as the gradual breakdown in the 
liver's ability to perform its pivotal roles in maintaining ho-
meostasis is balanced by other organ systems. Untreated 
cirrhosis may then result in total breakdown in liver func-
tion following liver injury due to sepsis or other insults 
and being complicated by other secondary events such as 
variceal bleeding, ascites, or hepatic encephalopathy. In 
some, there may be sufficient recovery of liver function 
following cessation of alcohol consumption in the alco-
holic, treatment of hepatitis C in the patient with chronic 
viral hepatitis, or treatment of autoimmune liver disease 
by immunosuppression. However, once a patient passes 
the point of decompensation, the prognosis is often poor 
and the only definitive treatment option is limited to liver 
transplantation (Angeli et al., 2018; Gustot et al., 2015).

Regardless, it is important to have and develop accu-
rate scoring systems that predict survival. This is for the 
prioritization of liver transplantation and enhanced sur-
vival of the recipients. Until recently (2021), the MELD-
Sodium (MELD-Na) score was the gold standard for 
prognosis in patients with decompensated cirrhosis. The 
score comprises a calculation based on serum sodium, 
bilirubin, and creatinine, together with the prothrom-
bin time (international normalized ratio, INR) (Ruf 
et al., 2005). Currently, the MELD 3.0 has been proposed 
as a replacement for the MELD-Na (similar to UKELD) 
and includes gender, serum albumin, and statistical in-
teraction between albumin, creatinine, bilirubin, and 
serum sodium with superior prognostic discrimination 
in cirrhosis (Kim et al., 2021). Advances in our under-
standing of decompensated liver disease implicate other 
factors such as age, cholesterol, hospital length of stay, 
and white blood cell count as determinants of patients' 
outcome (Kartoun et al., 2017). Thus, as research con-
tinues to unravel the physiological depth of cirrhotic 
decompensation, it is becoming clearer that simply 



      |  3 of 21OYELADE et al.

considering a few surrogate biomarkers, especially as 
isolated independent variables, may not be sufficient 
for accurate prediction of clinical outcomes. Recent 
application of the “network approach” in cirrhosis has 
provided insight and sometimes surprising results be-
yond the ability of current models, suggesting that the 
network approach may enhance prognostic modeling in 
cirrhosis.

In this review, we discuss the central role of liver in 
the homoeostatic network. Recent advances in the use 
of network physiology in cirrhosis, especially in terms of 
prognosis and predicting the response to treatment, are 
described.

2   |   THE LIVER IS HIGHLY 
CENTRAL IN THE PHYSIOLOGICAL 
NETWORK HUB

The liver has direct and indirect synthetic, metabolic, 
and immune functions. The synthetic function of the 
liver makes it an essential modulator of microcircula-
tion (through the synthesis of albumin) and hemosta-
sis (through the synthesis of coagulation factors). The 
liver plays a crucial role in glucose/energy metabolism, 
and the hepatocytes' oscillatory clock gene expression 
modulates central circadian rhythms and behaviors 
(Delbès et al., 2023). The liver is an important systemic 
barrier and clears a variety of different endogenous 
(e.g., hormones) and exogenous compounds (e.g., xe-
nobiotics, gut-derived bacterial lipopolysaccharide en-
dotoxins) with implications in the pathophysiology of 
diseases. Aside, various recent works have established 
links between the liver and other organ systems, espe-
cially the enteric and nervous systems (the gut–brain 
axis). Indeed, the translocation of pathogen-associated 
molecular patterns (e.g., gut bacterial lipopolysaccha-
rides) into the systemic circulation (due to increased 
gut permeability or reduced hepatic clearance) remains 
one of the key drivers of decompensatory events (e.g., 
encephalopathy) and mortality in patients with liver 
failure (Arvaniti et al., 2010; Chen et al., 2015; Moreau 
et  al.,  2013; Nicoletti et  al.,  2019; Rainer et  al.,  2018). 
The crosstalk between the liver and the nervous system 
has been shown to regulate the hepatic metabolism of 
lipid and glucose as well as glycogen storage (Edwards 
& Silver,  1970; Imai & Katagiri,  2021; Shimazu & 
Fukuda,  1965). Furthermore, the contribution of gut 
microbiome dysbiosis to the development, prognosis, 
and treatment of liver disease has received significant 
attention in the recent years. Indeed, altered intestinal 
microbiomes have been linked with the development 
of various etiologies of liver disease (Bajaj, 2019; Yang 

et al., 2017). For instance, the development of metabolic 
associated steatotic liver disease (MASLD) and steato-
hepatitis was linked with dysregulation in the gut mi-
crobiota (Boursier & Diehl,  2015; Zhu et  al.,  2013) as 
well as other components of the gut–brain axis (Bhat & 
Mani, 2023).

While the communication between the gut and the 
liver is driven mainly by anatomical connections (e.g., 
directly via the portal vein and the enterohepatic circula-
tion) (Albillos et al., 2020; Wahlström et al., 2016), there 
are various complex communication pathways between 
the liver and brain including the neural pathways, hu-
moral signaling, circulating cytokine and monocyte-to-
brain signaling (D'Mello & Swain, 2011; Stasi, 2021). For 
instance, the vagal neural pathways, including the afferent 
and efferent vagal arms, can respectively communicate 
and trigger pathophysiological changes in the visceral or-
gans to maintain homeostasis (Eftekhari et al., 2014; Ek 
et  al.,  1998; Hajiasgharzadeh et  al.,  2014) or influence 
brain-derived motivational states and sickness behaviors 
(Harrison et al., 2009). Indeed, impaired metabolism and 
clearance of ammonium ions via disruption to the urea 
cycle (Wierling,  2014) and reduced enzymatic activities 
of the glutamine synthase (Tapper et  al.,  2015) due to 
reduced liver function or circulatory bypass via portosys-
temic shunting are hallmarks of decompensated cirrhosis 
(Deutsch-Link et al., 2022). The resulting hyperammonae-
mia combined with systemic accumulation of the gut-
derived false neurotransmitters (e.g., octopamine) (Lam 
et  al.,  1973) and endotoxins (Wright et  al.,  2007) play a 
role in impaired neural function observed in patients with 
cirrhosis.

Further, reduced clearance of gut-derived bacterial 
lipopolysaccharides seen in liver failure leads to a sys-
temic increase in circulating cytokines (IL-1β, IL-6, and 
TNFα) and may induce peripheral as well as cerebral 
endothelial cells to produce nitric oxide and prostaglan-
dins. The production of these mediators is linked with 
the activation of sickness behaviors as well as cogni-
tive and behavioral changes (de Paiva et al., 2010; Peng 
et al., 2012). Circulating cytokines may penetrate via the 
circumventricular organs of the brain, thereby influ-
encing nervous activities during systemic inflammation 
linked with liver disease (D'Mello et  al.,  2009; Miller 
& Raison,  2016). For instance, in a model of liver dis-
ease, circulating monocytes were observed to alter the 
excitability of neurons and initiate sickness behaviors 
(D'Mello et al., 2013). Evidence also shows that dysreg-
ulation in the gut–brain axis is significantly linked with 
increased alcohol cravings and decreased social cogni-
tion (Carbia et al., 2023) (Figure 1).

These complex interactions between the liver 
and other organ systems make it an attractive field 
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to be studied within the context of network science 
in general and network physiology in particular (see 
Appendix  A for more information about the princi-
ples of Network Science relevant to physiology). In 
this review, connectivity between organs is defined as 
“functional” connectivity, irrespective of anatomically 
direct links between such systems. Importantly, while 
these connections between various physiological sys-
tems have been inferred (both physiologically and 
statistically), significant uncertainty persist about the 
nature of these connections. For instance, it is unclear 
whether there are intermediate organ systems regulat-
ing or regulated by this connectedness or the strength 
and threshold of connectivity required to maintain 
a healthy state. These, among other rising questions 
regarding physiological connections, further under-
pin the aim of network physiologic methods such 
as functional and parenclitic network analyses (see 
Appendix  A). This connected role of the liver makes 
it a good model for network physiology, and continued 
research along this line is likely to open new frontiers 
of understanding regarding the critical communica-
tion axis or nodes that could be best pharmacologi-
cally or nonpharmacologically (e.g., through nerve 
stimulation, fractal-like ventilation; Nataj et al., 2018) 

targeted to improve the prognosis of patients with de-
compensated cirrhosis.

3   |   CIRRHOTIC 
DECOMPENSATION—A NETWORK 
PROBLEM

The ultimate outcome of chronic liver injury is cirrhosis, 
which is characterized by the replacement of normal liver 
tissue with scar tissue (fibrosis), leading to the loss of liver 
architecture and function. With approximately 2 million 
global annual deaths, chronic liver disease remains one 
of the major diseases of high epidemiological significance 
(Cheemerla & Balakrishnan,  2021). This number high-
lights the complexity of decompensated cirrhosis and the 
implication of this on clinical management. Indeed, this 
complexity also makes decompensated cirrhosis a prime 
candidate for network analysis especially due to its extra-
hepatic involvements.

The trigger for the decompensation of cirrhosis has 
been explained by various classical hypotheses includ-
ing the “vascular underfilling” and “overflow” theories 
(Lieberman et  al.,  1970), the “peripheral arterial vaso-
dilation” hypothesis (PAVH) (Schrier et  al.,  1988), and 

F I G U R E  1   The gut–liver–brain axis is closely connected via diverse pathways and regulates the activities of each other. Image created 
using Biorender.
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the “systemic inflammation” hypothesis (SIH) (Bernardi 
et  al.,  2015). Irrespective of this, the decompensation 
event remains a pivotal stage in the clinical history of 
cirrhosis and is associated with high mortality. While 
patients with compensated cirrhosis may survive for 
over 12 years, decompensation results in a significant 
reduction in survival time to approximately 2 years 
(D'Amico et al., 2006). Indeed, the risk of mortality has 
been shown to be significantly linked with the number 
of organ systems involved in cirrhotic decompensation 
(D'amico et al., 2014).

Accordingly, decompensation is mainly driven by a 
clinically significant increase in portal pressure and a de-
cline in liver function (D'Amico et  al.,  2001, 2006). This 
combined breakdown often results in jaundice, gastroin-
testinal bleeding, encephalopathy, and ascites, which are 
clinical hallmarks of the decompensatory phase of cir-
rhosis. These events may also herald other extrahepatic 
complications such as autonomic dysfunction, hepato-
renal syndrome, hepatopulmonary syndrome, cirrhotic 
cardiomyopathy, and rebleeding resulting finally in multi-
organ failure (Dümcke & Møller, 2008; Møller et al., 2010; 
Oyelade et al., 2020, 2021; Saunders et al., 1981). Curiously, 
most of the extrahepatic complications of decompensated 
cirrhosis are not associated with significant structural 
damage to the involved organ and have been reported to 
be reversible by liver transplantation (Kim et al., 2004; Liu 
et al., 2005; Saigal et al., 2013; Wong et al., 2015). These 
findings further support the need to focus more on organ 
systems interaction rather than the individual units.

Generally, decompensation is a critical stage of cirrho-
sis characterized by a cascading breakdown of multiple 
extrahepatic organ systems (Bajaj et al., 2014) (Figure 2). 
This often culminates in multiple organ failure and a 
significant increase in mortality risk (Bajaj et  al.,  2014; 
Møller & Bendtsen, 2015; Sarin et al., 2014). Indeed, recent 
studies have shown that decompensated cirrhosis is asso-
ciated with network disruption as shown in Figure 3. In 
this figure, statistical correlation analysis between pair of 
physiological and biochemical biomarkers shows higher 
correlations between biomarkers in patients with com-
pensated cirrhosis compared with those with decompen-
sated cirrhosis. Specifically, patients with compensated 
cirrhosis exhibit stronger correlations between albumin, 
prothrombin time, and bilirubin (representing different 
aspects of liver function). Intuitively, this correlation 
is expected in patients who have preserved compensa-
tory mechanisms. The lack of correlation between these 
components in decompensated patients might indicate 
uncoupling of physiological mechanisms or distinctive 
pathophysiology. For example, ammonia levels correlated 
well with the severity of hepatic encephalopathy (HE in 
Figure 3) in compensated cirrhosis, which aligns with the 

classical understanding of hepatic encephalopathy patho-
physiology. However, the lack of correlation between 
ammonia levels and hepatic encephalopathy in decom-
pensated patients indicates that other mechanisms, rather 
than hyperammonaemia, may play a role in cognitive 
dysfunction in these patients. These mechanisms might 
include neuroinflammation and systemic inflammation 
(Wright et al., 2007), which are not depicted in this pre-
liminary network analysis. Additionally, a connection 
between creatinine levels and the degree of hepatorenal 
syndrome in decompensated cirrhosis reflects the fact that 
in compensated cirrhosis, mechanisms effectively regu-
late vasodilation and blood pressure, maintaining nor-
mal ranges. However, in decompensated cirrhosis, these 
mechanisms may fail, leading to renal flow impairment 
and general deterioration (Ojeda-Yuren et al., 2021). The 
reason for the correlation between sodium level and he-
moglobin level in compensated patients with cirrhosis is 
not well understood. It might suggest that dilutional ane-
mia may play a role in the pathophysiology of anemia in 
these patients. However, this needs to be investigated in 
future studies. Overall, network mapping may provide 
insight into the pathophysiology of disease and pave the 
way for future investigations. Importantly, the loss of co-
ordination between organ systems was found to predict 
the survival of patients with decompensated cirrhosis in-
dependent of MELD (Tan et al., 2020; Zhang et al., 2022).

The exact mechanism for physiological network dis-
ruption in decompensated cirrhosis is not well under-
stood. However, evidence from experimental (in vitro, 
ex vivo, and in vivo) studies indicate impaired end organ 
responsiveness to physiologic signals in animal models of 
decompensated cirrhosis (Castro et al., 1993; Haddadian 
et al., 2013; Liu et al., 2022; Ostadhadi et al., 2015). For 
example, cardiomyocytes, cardiac pacemaker cells, and 
vascular smooth muscle cells exhibit a blunted response to 
adrenergic and cholinergic stimuli in experimentally de-
compensated cirrhosis (Jaue et al., 1997; Liu et al., 2000; 
Mani et  al.,  2009; Ostadhadi et  al.,  2015). Other reports 
support disruption of the physiological control in decom-
pensated cirrhosis by demonstrating reduced controlla-
bility of the physiological subsystems in decompensated 
cirrhosis using advanced statistical techniques used in 
the analysis of complex systems (Shirazi et  al.,  2013; 
Taghipour et al., 2016). For example, Shirazi et al. (2013) 
used a computational approach and showed that cardiac 
rhythm in patients with decompensated cirrhosis keeps 
a significantly longer memory about past decelerating 
events compared to those with compensated cirrhosis and 
healthy volunteers. Intuitively, it is more difficult to con-
trol a system that holds a long memory of its past, and 
thus, increased memory can make the physiological net-
work less adaptable to both environmental and intrinsic 
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changes (Ebadi et al., 2011). To confirm this finding, Satti 
et  al.  (2019) used an alternative method (the extended 
Poincare plot analysis of physiological signals) and 
showed a significantly longer autocorrelation and mem-
ory in patients with decompensated cirrhosis in compar-
ison with compensated cirrhosis and healthy individuals. 
These findings are in line with impaired physiological 
control and possibly network disruption in decompen-
sated cirrhosis. However, further investigations are re-
quired to determine the mechanism behind the transition 

from compensated to decompensated cirrhosis in terms of 
organ systems disconnection.

4   |   TRENDS IN PROGNOSTIC 
MODEL IN CIRRHOSIS

The trends in prognostic models for liver disease in the 
past decades provide a basis for a shift in paradigm to-
ward network physiologic and holistic approaches. Once 

F I G U R E  2   The decompensation stage of cirrhosis is heralded by extrahepatic organ involvement affecting various organ systems 
including the circulatory system (cirrhotic cardiomyopathy), the nervous system (hepatic encephalopathy and dysregulated autonomic 
cardiac regulation), the kidney (hepatorenal syndrome), the respiratory system (hepatopulmonary syndrome), digestive system (intestinal 
injury and increased permeability of the intestinal wall), blood coagulation, and immune system. Also, fluid buildup in the peritoneal cavity 
(ascites) may result from increased portal tension. Image created using Biorender.
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decompensation occurs, liver transplantation remains 
the definitive treatment option. However, due to scarcity, 
patients are prioritized based on the severity of liver dis-
ease and prediction of survival using prognostic models. 
The very first model used was the Child–Turcotte–Pugh 
(CTP) score, developed in 1964 primarily to predict sur-
vival in patients undergoing TIPS (transjugular intrahe-
patic portosystemic shunt) for variceal hemorrhage (Child 
& Turcotte, 1964; Pugh et al., 1973). CTP is based on five 
physiological variables, that is, ascites, hepatic encepha-
lopathy, bilirubin, serum albumin, and prothrombin time 
(previously nutritional status), which are individually 
graded and combined mathematically into three stages 
(Child A, B, and C) according to the magnitude of the 
variables.

The CTP score was dropped because of the subjectivity 
in the classification of some of the included markers such 
as ascites and hepatic encephalopathy as well as a lim-
itation regarding the “ceiling effect” since patients could 
not be classed above Child C even if they have relatively 
worse severity and prognosis (Tsoris & Marlar,  2019). 
Also, the CTP score does not include renal function, a 
crucial aspect of cirrhotic decompensation (Cholongitas 
& Burroughs,  2012). To overcome these limitations, the 
MELD (Model for End-stage Liver Disease) score was pro-
posed as the reference tool for prognostication in patients 
with liver disease and includes patients' INR (interna-
tional normalized ratio), total bilirubin, and serum creati-
nine levels (Malinchoc et al., 2000). However, limitations 
regarding interlaboratory variability in the measurement 
of creatinine level and INR as well as gender bias resulted 
in the proposal of modified MELD scores (Cholongitas 
et  al.,  2010). Importantly, modifications of the MELD 

score have been in the form of the inclusion of more bio-
markers shown to have independent prognostic values in 
the patient population. For instance, the United Kingdom 
Model for End-Stage Liver Disease (UKELD) score in-
corporates serum sodium into the MELD score with 
improved predictive accuracy (Neuberger et  al.,  2008). 
Further, Montagnese et  al.  (2015) showed a significant 
improvement in the prognosis value of MELD following 
the addition of the mean dominant frequency of the pa-
tient's electroencephalogram (EEG) and proposed the 
MELD-EEG model as a better alternative to MELD alone 
for predicting survival in patients with cirrhosis. MELD-
Plus score was proposed as a better prognostic model 
and adds albumin, sodium, white cell count (WCC), total 
cholesterol, age, and length of hospital stay to the tradi-
tional MELD variables (Kartoun et  al.,  2017). However, 
the MELD-plus fails to resolve the gender bias associated 
with the UKELD and does not incorporate all possible ex-
trahepatic decompensation events observed in critically ill 
patients with cirrhosis who develop acute on chronic liver 
failure (ACLF). Thus, Kim et  al. introduced the MELD 
3.0 in 2021 as the gold standard for short-term prognosis 
in decompensated cirrhosis. Specifically, the MELD 3.0 
adds gender and serum albumin levels to the MELD-Na 
(also UKELD) as well as statistical interactions between 
albumin-creatinine and bilirubin-sodium with a reported 
increase (~9%) in net reclassification and better discrimi-
nation especially reducing the gender disparity associated 
with MELD-Na (Kim et al., 2021). Further, for patients with 
ACLF, these models fail to account for the accompanying 
increase in the risk of mortality. ACLF is a syndrome asso-
ciated with a significantly poor short-term prognosis and 
is clinically characterized by multiple extrahepatic organ 

F I G U R E  3   Correlation network map of compensated (left panel) and decompensated (right panel) cirrhosis. Each link shows a 
statistically significant correlation between the two biomarkers. Alb, serum albumin; Bili, total bilirubin; Cre; serum creatinine; Hb, 
hemoglobin; HE, hepatic encephalopathy; Na, serum sodium; NH4, serum ammonia; PT, prothrombin time. There is more correlation 
between biomarkers in patients with compensated cirrhosis. Most of the correlation is lost in patients with decompensated cirrhosis. Data 
were extracted from 106 patients with cirrhosis referred to the University Hospital of Padova (Courtesy of Prof. Sara Montagnese and 
colleagues) as described in (Zhang et al., 2022). A Bonferroni-corrected p-value was used to identify statistically significant correlations for 
network mapping.
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failures in patients with acute decompensation of cirrho-
sis (Moreau et  al.,  2013). Consequently, the European 
Foundation for the Study of chronic liver failure (CLIF) 
developed the CLIF organ failure (CLIF-OF) score (Jalan 
et  al.,  2014), a derivative of the sequential organ failure 
assessment (SOFA) score (Ferreira et al., 2001) to capture 
the poorer prognosis due to the sequential breakdown 
in organ systems function characteristic of late stage de-
compensated cirrhosis (Engelmann et al., 2018). Recently, 
the CLIF-C MET prognostic model was also developed 
and positively validated by the CLIF group incorporating 
biomarkers from metabolomics analysis associated with 
systemic inflammation, mitochondrial dysfunction, and 
sympathetic nervous activation (Weiss et al., 2023).

The trends in prognostic models for patients with de-
compensated cirrhosis have followed the continued in-
clusion of more organ systems (through representative 
markers) and proportionately reflect the increasing ac-
ceptance of the multi-organ, extrahepatic implications of 
decompensated cirrhosis. However, current prognostic 
scores/models still consider the organ systems as separate, 
independent units instead of coordinated functioning 
parts constantly communicating as a network to maintain 
homeostasis.

5   |   OMICS AND SYSTEM BIOLOGY 
IN LIVER CIRRHOSIS

As more research continues to clarify the complex patho-
physiology of decompensated cirrhosis, attention is being 
gradually diverted toward a holistic view of prognosis. In 
recent years, scientists have successfully employed ma-
chine learning and artificial intelligence approaches for 
prognosis in liver disease (Briceño et  al.,  2014; Garcia 
et  al.,  2019; Nishida & Kudo,  2023; Nitski et  al.,  2021). 
Various omics analyses have been performed in cirrho-
sis resulting in new insights into the pathophysiology of 
cirrhosis as well as biomarkers of significant prognostic 
values. For instance, blood metabolomics of patients with 
decompensated and compensated cirrhosis revealed that 
mitochondrial dysfunction via systemic inflammation 
may drive organ failure in chronic liver disease (Moreau 
et al., 2020). Also, Clària et al. (2021) performed an untar-
geted lipidomic analysis of serum from patients with acute 
decompensation of cirrhosis with and without ACLF and 
reported novel lipid fingerprints associated with liver 
dysfunction and infection. In a metabolomic analysis of 
urine and serum samples from 211 participants, Bajaj 
et al. (2019) reported alteration in the bioenergetics, lipid, 
and protein metabolism in outpatients with cirrhosis. The 
use of proteomics in alcohol-related liver disease and viral 
hepatitis has also shown promising pathogenetic insights 

as well as prognostic values in various other studies (Niu 
et al., 2019, 2022; Safaei et al., 2020). Put together, as the 
pathophysiology of decompensated cirrhosis unravels, the 
extrahepatic involvement of the disease is beginning to be-
come more appreciated. As this happens, it is imperative 
that researchers and clinicians need a broader more ho-
listic outlook that could help make sense of the complex 
shift in physiological dynamics and coupling that possibly 
drives prognosis and treatment response.

6   |   PHYSIOLOGICAL SIGNALS 
VARIABILITY IN LIVER DISEASES

Classical physiological interpretation relies on the Cannon 
principle that human physiology is maintained in a “fairly 
constant or steady state” (Cannon, 1929). This principle, 
however, has been debunked due to the continuing dis-
covery that organ systems vary and interact in complex 
and nonlinear ways across time to achieve and maintain 
homeostasis in direct response to an ever-changing envi-
ronment (stressors) (Gallagher & Appenzeller, 1999; Seely 
& Macklem, 2004). Therefore, higher variability and com-
plexity of the time series of physiological variables have 
been interpreted as an outcome of increased organ sys-
tems engagement (coupling) with the appearance of regu-
larity linked with the isolation of a system and reduction 
in adaptability and survival (Pincus, 1994). Thus, various 
measures, including short- and long-term indexes of heart 
rate variability (HRV), represent the complex interplay 
between various spatiotemporal signals from nervous, res-
piratory, and circulatory systems as well as the regulators 
of circadian oscillation of core body temperature among 
others (Shaffer et al., 2014).

Heart rate variability can be computed from electrocar-
diogram and measures the variation in the time intervals 
between consecutive heartbeats (R–R interval duration, 
RRI) (Electrophysiology, Task Force of the European 
Society of Cardiology the North American Society of 
Pacing, 1996; Hon, 1965). Generally, higher HRV is linked 
with health and is interpreted as a higher influences of 
various organ systems on the heart rhythm. For instance, 
the short-term variation of heart rate indexed by the high 
frequency distribution of power in an ECG recording may 
be attributed to the coupling of respiration (vagally con-
trolled respiratory sinus arrhythmia) via the autonomic 
nervous systems with the cardiac cycle (Karemaker, 2009; 
Schwartz & Andrasik, 2017). Further, the long-term (24-h) 
influence on HRV is linked with the cardiac coupling with 
the baroreflex loop, renin-angiotensin pathway, core body 
temperature, and circadian rhythms (Shaffer et al., 2014). 
Indeed, recent works have shown a reduction in HRV indi-
ces in patients with cirrhosis, which is significantly linked 
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with survival (Miceli et  al.,  2023; Oyelade et  al.,  2021). 
Interestingly, long-term nonlinear indices of HRV (i.e., 
standard deviation parallel to Poincare's line of identity, 
SD2), which is strongly influenced by baroreflex loop and 
thermoregulation, significantly predicted survival in a 
study by Bhogal et al. (2019).

Mechanistically, the HRV reduction observed in cirrho-
sis has been linked with systemic inflammation. Although 
decompensated cirrhosis is linked with cirrhotic cardio-
myopathy, it is unclear whether this is associated with 
HRV change (Abid & Mani,  2022). This is based on the 
observation that pharmacological interventions (e.g., NO 
synthase inhibitors or n-acetylcysteine) restoring cirrhotic 
cardiomyopathy do not correct reduced HRV in rats with 
cirrhosis (Abid & Mani, 2022). Alternatively, HRV reduc-
tion in cirrhosis has been strongly linked with hepatic 
encephalopathy and was reported by Mani et  al. to cor-
relate with systemic levels of inflammatory biomarkers 
such as interleukins 6 (IL-6). Thus, inflammation remains 
the main driver of HRV reduction in cirrhosis possibly as 
a consequence of the associated organ system network 
disconnection (Abid & Mani,  2022; Mani et  al.,  2009; 
Williams et al., 2019) (Figure 4).

While HRV provides a relatively simple, noninvasive 
measure of cardiac connectivity to other organ systems, 

it is limited by the availability of clean ECG data with a 
high signal-to-noise ratio. This may be impossible in cir-
rhosis patients with abnormal heart cycles (e.g., due to 
premature ventricular beats) or those that are active. In 
such patients, heart rate turbulence (HRT), which indexes 
the autonomic and baroreflex regulation of heart rhythm 
following a premature ventricular contraction (Bauer 
et al., 2008; Schmidt et al., 1999), is a viable alternative. 
Indeed, the prognostic value of heart rate turbulence was 
recently investigated. Specifically, the turbulence onset 
was found to predict 12-month survival in patients with 
cirrhosis independent of MELD and CTP scores (Oyelade 
et al., 2020).

In addition, variation in the body (skin or core) tem-
perature is a complex process regulated by the nervous sys-
tem (the hypothalamic thermoregulatory center based on 
stimuli from thermoreceptors) in response mainly to the 
circadian rhythm and the environment. Body temperature 
variability is driven by the interplay between hormonal, 
autonomic, vascular, and metabolic systems as well as sys-
temic inflammatory response (Karthikeyan et  al.,  2012; 
Tansey & Johnson,  2015). Thus, body temperature vari-
ability may reflect the influence of disease state on the 
connectivity of the various systems involved in the ther-
moregulatory pathway (Mani et  al.,  2018). Indeed, body 

F I G U R E  4   Pathogenesis of reduced heart rate variability (HRV) in cirrhosis is linked with systemic inflammation resulting in 
disruption to the autonomic (vagal) nervous control of cardiac rhythm. Image created using Biorender.
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temperature analysis has been assessed in both patients 
with cirrhosis and animal models (Garrido et  al.,  2017; 
Mani et al., 2018; Satti et al., 2019). Similar to HRV anal-
ysis, the entropy of temperature signal fluctuations cor-
relates with the amount of information in temperature 
signals according to the basic concept of information the-
ory (Pincus,  1991). The physiological basis for informa-
tion processing within the context of thermoregulation 
involves maintaining a dynamic balance between heat 
loss (e.g., due to vasodilatation) and heat gain (e.g., me-
tabolism, thermogenesis), as well as circadian changes in 
core body temperature. Previous studies have shown that 
entropy analysis of body temperature fluctuations can dis-
tinguish the severity of diseases. For example, core tem-
perature fluctuation analysis in cirrhotic rats indicated 
that acute endotoxin injection significantly reduced core 
body temperature entropy and was associated with mor-
tality (Mani et  al.,  2018). According to Pincus, reduced 
entropy of a physiological signal may indicate partial un-
coupling of the regulatory control network (Pincus, 1994). 
Thus, reduction on core body temperature fluctuation 
entropy (i.e., increased temperature signal regularity) 
can be interpreted as reduced functional connectivity of 
thermoregulatory mechanisms. Studies on humans have 
shown similar results. Reduced body temperature entropy 
in critically ill patients is associated with poor survival 
(Drewry et al., 2013; Papaioannou et al., 2012). Likewise, 
in patients with cirrhosis, reduced short-term variability 
but not the absolute values of skin temperature in patients 
admitted with cirrhosis predicted 12-month survival in-
dependent of MELD and CTP scores (Bhogal et al., 2019; 
Bottaro et  al.,  2020). To fully elucidate the physiological 
interpretation of temperature variability, dynamic net-
work mapping (e.g., using transfer entropy analysis) can 
be carried out in the future.

Put together, time series of physiological variables such 
as heart rate and skin temperature vary nonlinearly in re-
sponse to various cues from various sources (via feedback 
loops) and remain reliable indices of the complex inter-
play between various organ systems coupling (or lack of).

7   |   NETWORK PHYSIOLOGY FOR 
PROGNOSIS IN LIVER CIRRHOSIS

The network analysis approaches have recently been suc-
cessfully applied to cirrhosis patients. For instance, Tan 
et al.  (2020) used correlation network mapping of organ 
system connectivity in cirrhosis to show that lack of cor-
relation between various biomarkers independently pre-
dicts 3, 6, and 12 months of survival. However, the model 
employed was built on network mapping at the popula-
tion level, limiting the interpretation of the findings for 

individual patients. To extend this observation further, 
Zhang et al. (2022) mapped the physiological network of 
individual patients with cirrhosis using parenclitic net-
work analysis. The parenclitic network technique was first 
introduced in 2014 by Zanin et al. (2014a) for assessment 
of gene expression analysis. This method measures the de-
viations of an individual patient's organ systems network 
map from expectations modeled on a reference population 
(e.g., survivors, responders, healthy volunteers). For in-
stance, pairwise correlations between various biomarkers 
(A, B, C, and D in Figure 5) from a reference population 
(e.g., healthy, matched participants, survivors, treatment 
responders, or patients that showed specific responses to 
treatment, etc.) are computed to establish a reference re-
gression line. The significantly correlated pairs based on 
Bonferroni-corrected p-values can then be combined into 
a network of correlated variables. The orthogonal devia-
tions of the individual patient's pair of biomarkers from 
the reference regression lines are then computed and used 
to weigh their overall parenclitic network map (Figure 5). 
Thus, the individual patient's parenclitic network map 
provides the measure of how “deviated” from the physi-
ological norm the patient is and may provide information 
regarding the health state (disease severity), prognosis, 
and likelihood to respond to specific treatment regimes.

Zhang et  al.  (2022) employed parenclitic network 
analysis of routine clinical variables in patients with cir-
rhosis and reported that such network mapping can in-
dependently predict one-year survival and provides novel 
insights into the pathophysiology of cirrhosis not captured 
by the MELD score. Specifically, patients' physiological 
deviations along the albumin-bilirubin and albumin-
prothrombin time significantly predict 12-month sur-
vival and improve the prognostic performance of MELD 
(Zhang et  al.,  2022). These findings go along with the 
idea that higher organ system discoordination is asso-
ciated with poorer outcomes in patients with cirrhosis. 
One method for detecting network connectivity involves 
utilizing network topology indices like network degree 
distribution (see Appendix  A), which assesses coordina-
tion among various systems based on the number of edges 
connected to each node. Alternatively, node importance 
(centrality) can measure network topology. For example, 
when centrality indices were applied to predict outcomes 
in cirrhosis, it was found that those patients with more 
important nodes in the network had a greater chance of 
survival (Zhang et al., 2022).

Further, these results are recently validated by apply-
ing the parenclitic network analysis to a larger and more 
diverse patient population of 777 hospitalized patients 
across the United Kingdom with decompensated cirrho-
sis (China et al., 2021). This study further confirms that 
parenclitic network analysis has prognostic values and 
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augments the predictive power of MELD. It was also 
found that this method can predict patients unlikely 
to benefit from increased short-term targeted albumin 
treatment. Specifically, the loss of coordination between 
inflammatory regulators (white blood cell count, WCC, 
and C-reactive proteins, CRP) was significantly more 
pronounced in patients that survived better following 
targeted albumin infusion. Generally, it is expected that 
the level of systemic CRP and WCC would be correlated 
in most patients due to the functional link between the 
two biomarkers. However, network mapping showed that 
this association is only intact in survivors and not in the 
non-survivors. Indeed, serum albumin level is generally 
reduced in patients with cirrhosis and has been shown to 
be an independent predictor of mortality (Bai et al., 2019). 
Interestingly, various studies have shown that increased 
albumin does not alter the risk of mortality in cirrhosis 
(China et  al.,  2021, 2022). However, network analysis 

identified that while increased targeted albumin infusion 
did not have a significant effect on mortality of patients 
with higher inflammatory system network isolation, pa-
tients with stronger coupling between their inflamma-
tory markers (CRP and WCC) were negatively impacted 
(Oyelade et al., 2023) (Figure 6). This observation is hy-
pothetically a result of a shift in the delicately balanced 
physiological homeostasis in patients hospitalized with 
decompensated cirrhosis possibly caused by increased al-
bumin infusion. Thus, the systemic compensatory mech-
anisms present in patients with better network coupling 
may have been disrupted by albumin replacement ther-
apy. On the contrary, as this coupling was already lost in 
the other group, albumin infusion was observed to have 
no significant effect on overall survival.

The result of this study provides further information on 
the critical role of inflammatory dysregulation in cirrhotic 
decompensation and patients' prognosis and corroborates 

F I G U R E  5   A schematic representation of the Parenclitic network mapping method. Top panel: The network mapping of the reference 
population (i.e., survivors) utilized correlations between biomarker pairs (e.g., A–B, A–C, B–C, and A–D). Individual reference data 
points are depicted as blue dots, while black regression lines represent the expected relationship models. Notably, r1, r2, r3 and r4 signify 
statistically significant correlation coefficients. Middle panel: For individual patient network mapping, a parenclitic approach was adopted. 
This method assesses how individual patients deviate from the anticipated relationships between variables within the reference population. 
Essentially, parenclitic deviation indicates the extent to which an individual's biomarker levels differ from the expected model. In this 
instance, the patient depicted in red exhibits closer alignment with the reference population compared with the green patient in terms of 
biomarker correlations. Consequently, the green patient displays a higher parenclitic deviation (δ) than the red patient. Lower panel: The 
parenclitic network map showcases nodes A, B, C, and D, with edges weighted (represented by thickness) based on the extent of deviations 
from the models for two individual patients (red and green). Thicker edges for the green patient indicate greater parenclitic deviation, 
reflecting reduced functional connectivity between biomarkers. Conversely, the red patient displays lesser parenclitic deviation, indicating a 
closer alignment with the reference model and heightened functional connectivity between biomarkers.



12 of 21  |      OYELADE et al.

classical works and findings about CRP and WCC. For 
instance, the role of CRP (as an acute phase protein) in 
acute inflammatory response is destabilized in cirrhosis 
with a relatively higher basal CRP level resulting in atten-
uated response during infection. The implication is that 
CRP, although a relatively good predictive biomarker of 
inflammation, is not suitable as such in patients with liver 
cirrhosis (Pieri et al., 2014). Indeed, in a recent study of 
140 patients with hepatitis B-related decompensated cir-
rhosis, Zhu et al. (2017) show that CRP predicted 1-month 
survival independent of MELD. However, in another 
study of mixed-etiology decompensated cirrhosis, while 
CRP was reported to be significantly linked with infec-
tion, only the neutrophil-to-lymphocyte ratio predicted 
survival in patients hospitalized for cirrhotic decompen-
sation (Kwon et al., 2015). In sum, these findings can help 
drive personalized treatment (e.g., targeted albumin ther-
apy) based on individual patient's network connectivity. 
Importantly, network mapping is very accessible as it can 
be constructed from routine clinical and laboratory data, 

which is available in most healthcare settings globally. 
Potentially, the mapping software could also be developed 
into a simple mobile application for bedside clinical use 
in the future. The application of network mapping in per-
sonalized therapy can be explored for other interventions, 
such as responders versus nonresponders to beta-blocker 
therapy for portal hypertension.

8   |   NETWORK PHYSIOLOGY IN 
OTHER DISEASES

Sepsis is often an important cause of deterioration and 
mortality in patients with cirrhosis. Assessment of organ 
systems connectedness has been applied in patients 
with sepsis as well as critically ill patients admitted to 
the ICU. For instance, to validate a previous study that 
showed a similar result (Grogan et al., 2004), Norris et al. 
assessed HRV and cardiac isolation in over 2000 patients 
admitted to the ICU and reported that reduced HRV and 

F I G U R E  6   According to the analysis of organ system connectivity using a parenclitic network, patients with lower network 
disconnection in the inflammatory pathways are more likely to be armed by increased albumin infusion compared with patients with higher 
inflammatory system isolation for which infused albumin did not result in a significant difference in mortality (see Oyelade et al. 2023, for 
more). Image created using Biorender.
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cardiac uncoupling is a strong predictor of all-cause mor-
tality. Indeed, cardiac isolation was also reported to be 
linked with systemic inflammation and multiple organ 
failure in these patients (Norris et  al.,  2006). Various 
HRV indices were used in patients admitted to the ICU 
specifically for sepsis and have been reported to predict 
septic shock (Ahmad et  al.,  2009; Chen & Kuo,  2007; 
de Castilho et  al.,  2017) as well as mortality (Bodenes 
et al., 2022; Chen et al., 2008; Garrard et al., 1993). In 
a systematic review by de Castilho et  al.  (2018) HRV 
was reported to be reduced in sepsis and predictive of 
mortality.

Further, variability (entropy) in oxygen saturation 
(SpO2) was recently assessed by Gheorghita et al.  (2022) 
in critically ill patients with sepsis showing that SpO2 en-
tropy can predict mortality independent of Age, SOFA 
score, and mean SpO2. This work corroborated a previ-
ous work by Bhogal and Mani (2017) which showed that 
variability in oxygen saturation carries information about 
organ systems uncoupling that possibly drives aging. 
Other authors have assessed variability in core body and 
skin surface temperature in patients with sepsis. Indeed, 
wavelets and multiscale entropy analysis of body surface 
temperature were reported to discriminate patients with 
systemic inflammatory response syndrome (SIRS), sepsis, 
and septic shock (Papaioannou et al., 2012).

Further, Asada et  al.  (2019) performed a correlation 
network analysis of clinical variables representing various 
organ systems to assess their connectivity and show that 
lack of correlation of the cardiovascular system with he-
patic and coagulation systems is linked with significantly 
poorer survival in critically ill patients admitted to inten-
sive care unit (ICU). In another study involving 570 ICU 
patients, the stability of organ systems network clusters 
was analyzed based on principle component analysis and 
showed a generally high organ system disconnection and 
systemic instability in critically ill patients that did not 
survive ICU stay (Asada et al., 2016).

In general, assessment of organ system uncoupling via 
variability measures of physiological variables or network 
mapping provides valuable insights regarding the course 
of complex diseases with multiple organ involvement. Of 
note, these insights are usually not available using tradi-
tional statistical methods or machine learning and artifi-
cial intelligence. Network physiology is an emerging field, 
and novel network mapping methods can expand the depth 
and magnitude of the interactions we can explore in phys-
iological systems. The number of systems assessed may 
depend on the methodology applied for network mapping, 
availability of data, and computational cost. While it is 
generally believed that assessing more systems provides a 
better physiological understanding of the interactions, the 
methodology of network mapping can identify the most 

significant interactions within the complex physiological 
network. For example, in parenclitic network mapping 
(Figure 5), the number of interactions can be reduced by 
setting a p-value on the correlation between physiological/
biochemical parameters (Zhang et al., 2022). Apart from 
methodology, data availability is also important for assess-
ing physiological network complexity. For example, if the 
data source is from metabolomic or transcriptomic anal-
ysis, rich data can expand network mapping. However, 
such rich data is not available for most cohorts, and thus, 
in this review, we only discussed studies on network map-
ping based on routine physiological signals (e.g., heart 
rate) and biomarkers (e.g., Albumin). It appears that mul-
tiple system interactions can also be expanded to multi-
layer complexity by connecting functional physio-markers 
with omics data. However, this needs to be carried out in 
future studies.

9   |   LIMITATIONS

Despite its usefulness, some universal limitations of the 
network approach to physiology have been highlighted. 
Firstly, quantification of the dimension and dynamics of 
network physiology relies heavily on the availability of 
relevant data (Barabási et  al.,  2011; Cohen et  al.,  2021). 
Although some of these data could be generated using the 
omics approach, the method is relatively expensive and 
may not be feasible in many clinical settings around the 
world. Thus, the current approach of using routine clini-
cal data for network analysis is a relatively simple, use-
ful, less expensive, and highly accessible method. For the 
assessment of organ systems connectivity using HRV, en-
tropy, and other measures of variability of physiological 
variables, the main limitation remains the heterogeneity 
of the methods used, which limits meaningful interpre-
tation, generalization, and clinical applicability (Oyelade 
et al., 2021).

Also, while static network approaches (e.g., correla-
tion and parenclitic), which provide a cross-section of 
the interaction at a single time point is feasible with rou-
tine data, dynamic network approach, which provides 
the network change across time based on causal links 
require relatively more sophisticated datasets not cur-
rently standard in most clinical settings. The assessment 
of dynamic networks is especially important since in-
teracting organ systems generate information at varying 
time scales (from milliseconds to hours) with associated 
differences in dynamic outputs (random, stochastic, os-
cillatory, etc.) with transient information sharing cor-
responding to internal and external challenges to the 
overall system (Bartsch & Ivanov,  2014; Ivanov,  2021). 
This “fleeting,” multiscale coupling may elucidate a 
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crucial juncture in the dynamic network of the system, 
which is important for proper understanding of the 
current physiological state as well as predicting future 
changes (Ivanov, 2021). Indeed, the use of causal indices 
based on mathematically more sophisticated methods 
may provide further insights and should be the focus of 
future research in the field. Most importantly, because 
the field of network physiology is still developing with 
application in various diseases (Berner et al., 2022; dos 
Santos et al., 2022; Hall et al., 2024; Legault et al., 2024; 
Lehnertz et  al.,  2023; Rizzo et  al.,  2023) and scenar-
ios including in sports and sleep analysis among oth-
ers (Antonacci et  al.,  2023; Difrancesco et  al.,  2023; 
Ganglberger et al., 2023; Mangalam et al., 2024; Marsh 
et al., 2023; Sides et al., 2023), the methods available for 
detecting physiological connectivity as well as for quan-
tifying such connectivity will depend on the nature of 
the research question being assessed, the type, quality, 
and quantity of data available as well as the technical 
repertoire at the disposal of researchers.

10   |   CONCLUSION AND 
PROSPECT: ALL ORGANS, ALL 
TIME

Despite current limitations associated with data avail-
ability and techniques, the clinical usefulness of network 
physiology in chronic diseases such as decompensated 
cirrhosis, sepsis, and critical illness is self-evident and 
provides new valuable insights to researchers. In fact, 
because of its ability to detect and quantify physiologi-
cal connections (or lack of), network physiology has 
provided quantitative evidence to support previously 
clinically reported but unexplained pathophysiologi-
cal observations as shown recently for CRP and WCC 
(Oyelade et  al.,  2023). Indeed, the focus of future work 
would be to further validate and standardize the network 
analysis based on models built on highly representative 
reference populations to accelerate translation into clini-
cal practice. Indeed, translation in the form of bedside 
mobile applications may augment clinical management 
of patients especially when considered in combination 
with other established clinical variables or prognostic 
models. The application of network analysis, especially 
the parenclitic network, which detects network deviation 
for individual patients may aid targeted and personalized 
treatment based on clinical disconnection along unique 
physiological axes.

Thus, as we march into the brave new world of big data, 
artificial intelligence, and personalized medicine, finding 
the pathophysiological needle in the complex haystack of 
dynamically interacting organ systems in decompensated 

cirrhosis and other complex diseases might be driven by a 
deep understanding of the network characteristics of the 
individual patients based on data from “all organs at all 
times.”

Irrespective of the current limitations, the future of di-
agnosis and prognosis in cirrhosis may be “network phys-
iologic” in nature.
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APPENDIX A

An Introduction to the Principles of Network 
Science for Application in Physiology

INTRODUCTION

Network physiology is an emerging interdisciplinary 
scientific field that investigates the topology of func-
tional interactions between various components of 
physiological systems in health and disease. In network 
physiology, physiological signals are used in conjunc-
tion with computational techniques to gain insights 
into the network of interactions between different 
physiological systems. This differs from the traditional 
reductionist approach in physiology, wherein subsys-
tems are typically studied in isolation. This approach 
is important as the human body is “an integrated net-
work where complex physiological systems, each with 
its own regulatory mechanisms, continuously interact, 
and where failure of one system can trigger a break-
down of the entire network” (Bashan et al., 2012). This 
approach has the advantage of facilitating the devel-
opment of methodologies that examine integrated 
physiological functions holistically for application in 
healthcare (Jiang et al., 2021). To fully take advantage 
of this approach, familiarity with the principles of net-
work science is helpful. This appendix provides a sum-
mary of the principles of network science relevant to 
network physiology.

PRINCIPLES OF NETWORK 
SCIENCE

Network science is a multidisciplinary field that studies 
complex networks such as social networks and physiolog-
ical networks. The following terminologies are essential 
for in-depth understating of network science:

https://doi.org/10.1016/j.clinph.2014.11.018
https://doi.org/10.1016/j.clinph.2014.11.018
https://doi.org/10.14814/phy2.16133
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Nodes and edges

Networks consist of nodes (or vertices) and edges (or 
links). Nodes represent entities, while edges represent the 
relationships or interactions between them. The figure 
below displays nodes (A, B, C, D, and E) in red and edges 
(a, b, c, d, and e) in blue.

Undirected versus directed networks

Undirected networks represent symmetric relationships 
where connections between nodes have no inherent di-
rection, while directed networks represent asymmetric 
relationships with edges indicating specific directional 
connections between nodes.

Degree

The degree of a node is the number of edges connected 
to it. In directed networks, there are in-degrees and 
out-degrees that count incoming and outgoing edges, 
respectively.

Path and distance

A path is a sequence of edges connecting a series of nodes. 
The distance between two nodes is the length of the short-
est path connecting them.

Centrality measures

These metrics determine the importance of a node 
within a network. There are different types of cen-
trality measures, such as degree centrality (i.e., the 
number of connections a node has) and closeness 
centrality (i.e., average shortest path length from a 
node), which are applied depending on the context of 
the network.

Network topology

The arrangement of nodes and edges in a network is called 
network topology. Different networks may exhibit diverse 
topologies, such as random networks (where the nodes 
are connected randomly), hierarchical networks (charac-
terized by its layered arrangement, where nodes at higher 
levels have overarching influence over nodes at lower lev-
els), and scale-free networks (where there are a few highly 
connected hubs and many nodes with few connections).

Network classes

Depends on the context that is presented by the network, 
networks can be categorised into different classes:

Physical networks

This type of network represent physical connections be-
tween nodes such as transport maps and network of ana-
tomical connections (e.g., anatomical neuronal network, 
vascular network, etc.).

Functional networks

This type of network represents interactions or connections 
between functional units, such as the network of informa-
tion transfer among members in social networks. For exam-
ple, in neuroscience, a functional brain network represents 
the connections between different brain regions based on 
patterns of activity or functional connectivity observed 
in neuroimaging data (e.g., fMRI or EEG) (van Diessen 
et al., 2015). Nodes correspond to brain regions, and edges 
represent statistical dependencies or correlations between 
their activities. Functional networks play a unique role in 
network physiology and have been used in different physi-
ological and pathological contexts (Jiang et al., 2021).

Parenclitic networks

A parenclitic network is a type of network that maps the 
deviations of individual data points from a reference model 
(Zanin et al., 2014). The parenclitic network approach al-
lows researchers to focus on abnormal deviations, providing 
insights that may be missed by traditional network analysis 
methods. It is particularly useful in identifying subtle but 
significant deviations that could be indicative of underlying 
health issues or other conditions. Application of parenclitic 
networks is discussed in this review (see Figure 3).
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