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Abstract 

Global efforts to reach net zero emissions targets rely heavily on Carbon Capture 

Utilisation and Storage (CCUS) for decarbonising unabated coal power stations and 

industrial emissions sources such as refineries, cement and steel making industries. An 

essential element of the CCUS chain involves the large-scale transportation of the 

captured CO2 for permanent geological storage or as a feedstock for utilisation to 

produce chemicals or fuels. Pressurised pipelines are widely considered as the safest 

and most economical CO2 transport option. By 2050, the amount of captured CO2 is 

expected to increase significantly reaching ca. 7.6 Gt, requiring a vast network of 

200,000 to 550,000 km of CO2 pipelines. Given that CO2 is increasingly toxic at 

concentrations over 7% vol/vol, and the large amounts involved, the failure of CO2 

pipelines poses serious risks of fatalities, environmental damage, and economic losses. 

As such, ensuring the safe operation of such pipelines is of paramount importance to 

the public acceptability of CCUS as a viable means for tackling climate change. Central 

to the above is the reliable quantification of the risks posed by such pipelines in the 

event of an accidental failure. In essence the above involves three main steps namely, 

1) modelling pipeline decompression to predict the outflow characteristics following 

failure, 2) performing quantitative risk assessment to evaluate the failure consequences, 

and 3) implementing emergency response planning strategies to mitigate the failure 

consequences to as low as reasonably practicable. 

This thesis presents the development and assessment of rigorous mathematical 

techniques for conducting such work. These include the development of a 

computationally efficient pressurised pipeline decompression model, an analytical 

approach for estimating pipe failure hole size distribution probability and a probabilistic 

Multi-Objective Optimisation (MOO) technique for optimising inline Emergency 

Shutdown Valve (ESDV) configuration. 
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The computationally efficient pressurised pipeline decompression model is developed 

as a fundamental extension of a previously developed analytically based Vessel 

Blowdown Model (VBM) for simulating the transient outflow following the accidental 

failure of high-pressure pipelines. Based on the modification of the standard vessel 

discharge equations through incorporating additional inflow terms, the extended model 

addresses the fundamental limitations of VBM in handling un-isolated releases and 

fluid/wall heat exchanges. The new model is successfully tested against the results 

obtained using an extensively validated but computationally demanding numerical 

pipeline decompression model by simulating the failure of a hypothetical pressurised 

methane pipeline initially at 21 bar and 300 K. The verification tests include various 

feed flow rates (1 to 7.5 kg/s), pipe lengths (100 to 5,000 m) and puncture to pipe 

internal diameter ratios (0.2 to 0.8), producing a maximum disagreement of ca. ±7% 

between the two models’ predictions. 

The reliability of pipeline failure hole size probability distribution estimation heavily 

relies upon the availability of sufficiently large pool of historical data. Currently, this is 

an issue for CO2 pipelines given their relatively small number in operation. In this part 

of the thesis, the development of an analytical approach capable of addressing the above 

issue is presented. The procedure involves fitting statistical probability distributions to 

the historical failure hole size data using the maximum likelihood estimator, 

complemented by using bootstrapping method to improve the estimation confidence. 

The application of the above technique to both pressurised CO2 and hydrocarbon 

pipelines indicates that compared to the latter, CO2 pipelines, with at least 80% of their 

failures corresponding to punctures smaller than 50 mm, are more likely to experience 

smaller puncture failures, thus resulting in smaller magnitude but more prolonged 

releases. This directly impacts the preventive and emergency response planning as well 

as failure detection techniques required especially in the case of buried CO2 pipelines 

where small leaks can remain undetected for long periods. 
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The final part of this thesis deals with the development and application of a probabilistic 

MOO technique for selecting the optimal inline ESDV configuration for pressurised 

CO2 pipelines by, for the first time, accounting for operational and failure uncertainties 

as probabilistic variables. Based on a case study for a 300 km, 309.6 mm internal 

diameter CO2 pipeline that operates at 129 bar and 307.24 K for a real CCS project, the 

MOO technique is applied and assessed to ascertain its effectiveness in curbing the risks 

identified from the case study while minimising ESDV costs. Starting with modelling 

the uncertainties in the important pipeline characteristics and operating conditions using 

standard Probability Density Functions (PDFs), a Monte Carlo simulation involving the 

random sampling from these PDFs is performed to obtain the probability distribution 

of the risk associated with pipeline failure. Based on the obtained probability 

distribution, the risks are mapped onto the objective function space to create a 

probabilistic solution plane for the decision makers to determine the optimal ESDV 

configuration. The efficacy of the proposed technique is demonstrated using a 

comparative study where the risk is treated deterministically as the worst-case scenario. 

The findings reveal that more cost-effective risk mitigation solutions can be attained 

when the risk is taken probabilistically, highlighting the importance of incorporating 

operational and failure uncertainties as part of the decision-making process when 

configuring in-line ESDVs for CO2 pipelines.  
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Impact Statement 

This thesis proposed an advanced safety analysis approach for pressurised CO2 

transmission pipelines. Three techniques addressing the principal challenges involving 

the critical facets of the safety analysis process were developed. These include an 

analytically based pipeline decompression model dealing with the high computational 

costs usually associated with numerically based models, a robust method to reliably 

estimate the failure hole size probability distribution with the presence of limited 

pipeline failure statistics, and a probabilistic multi-objective optimisation technique to 

optimise the emergency shutdown valve configuration as part of the risk mitigation 

planning for pressurised pipelines. 

As Carbon Capture Utilisation and Storage being extensively deployed globally as a 

key solution to combat global warming, and with hydrocarbons expected to maintain 

their significance in ensuring energy security during the global quest to net zero carbon 

emissions, significant amounts of CO2 and hydrocarbons will be transported via high-

pressure pipeline networks. Given that CO2 is an asphyxiant at high concentrations and 

hydrocarbons are highly flammable and explosive, their safe operation is thus of 

paramount importance. The approach developed can be directly employed to the 

quantitative failure consequence assessment of the transmission pipelines. 

In addition to the above, this proposed approach offers a novel and fundamental insight 

into the probabilistic assessment of risks associated with pressurised pipeline failures, 

contrasting with traditional quantitative risk assessments which typically perceive risks 

deterministically, therefore providing guidelines for more cost-effective emergency 

planning and mitigation measures for pressurised pipelines.  
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Chapter 1: Introduction 

1.1 Climate Change and Carbon Capture and Storage 

The intensive use of fossil fuels (i.e. oil, gas and coal) has produced excessive CO2 

emissions worldwide, giving rise to global warming and climate change. Driven by an 

extremely rapid economic recovery since the Covid-19 pandemic, the global CO2 

emissions from the energy sector reached 36.3 gigatonnes (Gt) in 2021, representing 

the highest annual level in history (IEA, 2022). According to Intergovernmental Panel 

on Climate Change (IPCC, 2013), signals of climate change are already visible: the 

amounts of snow and ice in the Northern Hemisphere have diminished; atmosphere and 

oceans have warmed up, and sea level has risen since 1950. The speed of the observed 

changes is unprecedented and will continue to grow if not dealt with imminently, 

leading to irreversible impacts. 

One of the key technologies destined to address the issue is Carbon Capture Utilisation 

and Storage (CCUS), which involves capturing the excessive CO2 emissions from large 

emission sources such as fossil fuel power plants and industrial operations such as 

cement and steel making for the subsequent geological storage or utilisation. 

According to International Energy Agency (IEA, 2021), it is estimated that some 100 

Gt of CO2 is expected to be captured and stored between 2025 and 2050. A failure to 

develop CCUS at large scale would significantly delay the progress on meeting the net 

zero emission targets and would require $ 15 trillion of additional investment in other 

low-carbon technologies (e.g. solar, wind, hydro) to achieve the same level of emissions 

reduction. 

According to the latest figures, there are already 133 commercial CCUS projects in 

operation or under development (GCCSI, 2022). Table 1.1 summarises the commercial 
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CCUS facilities in operation as of 2022. Also included are the country-specific project 

distribution and the respective industry-specific counts for each country. Historically, 

CCUS projects tend to be vertically integrated, that is a capture plant is usually built 

along with its own dedicated downstream transport system. This favours large-scale 

projects, where economies of scale make downstream costs more tangible. Recently, 

there has been a trend towards projects sharing CO2 Transport and Storage (T&S) 

infrastructure. The use of shared T&S systems means that smaller projects can also 

benefit from economies of scale, thus accelerating the extensive deployment of CCUS 

technology. According to Global Carbon Capture and Storage (CCS) Institute (GCCSI, 

2021), 12 countries now have CCS networks in operation or under development. These 

countries, along with their respective largest network by capture capacity are 

summarised in table 1.2. 

An essential element of the CCS chain is the transportation of the captured CO2 to the 

storage sites. As can be read from both tables 1.1 and 1.2, almost all the operating CCUS 

facilities and planned major CCS networks adopt pipeline as the main transport mode. 

As of now, the CCUS projects in operation involves over 8,000 km of CO2 pipelines, 

almost entirely for enhanced oil recovery and mostly located in the United States (IEA, 

2021). According to International Energy Agency (IEA, 2010), the demand in CO2 

pipeline infrastructure is expected to grow to an estimated length of about 200,000 to 

550,000 km by 2050 depending on the uptake of CCUS. In Europe, the CO2 

infrastructure network is projected to range from 5,000 to 15,000 km in 2030 and from 

11,000 to 20,000 km in 2050, depending on the availability of storage locations and 

number of CCUS units installed (Haszeldine et al., 2010; Morbee et al., 2012). 

Apart from the above, in order to ensure sustained economic growth and secure energy 

supplies, the transition away from fossil fuels as part of the quest for reducing CO2 

emissions requires the continued use of fossil fuels. This is underlined by the fact that 

the proportion of hydrocarbon resources in the global energy mix is estimated to amount 
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to c.a. 76% of the total by 2035 (BP, 2020). As a result, the existing hydrocarbon 

pipeline networks (over 4.4 million km in length (CIA, 2021)) are expected to remain 

in operation for the coming decades. China, as the world’s largest energy consumer, for 

example, plans to expand oil and gas productions as part of its future energy reforms 

(SCIO, 2020). 

In essence, pressurised pipelines are destined to play a major role both as a means of 

ensuring energy supply as well as tackling CO2 emissions in the foreseeable future. 
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Table 1.1: Summary of commercial CCUS facilities in operation as of 2022 (GCCSI, 2022). 

Country 

(Project count) 

Industry  

(Project count) 
Facility name 

Operation 

year 

CO2 capture 

capacity (Mt/y) 

Transport 

mode 

Storage 

type 

US (12) 

Natural gas processing (4) 

Shute Creek Gas Process Plant 1986 7.0 Pipe EOR 

Century Plant 2010 5.0 Pipe EOR 

Terrell Natural Gas Plant (formerly Val Verde) 1972 0.4 to 0.5 Pipe EOR 

Core Energy CO2 EOR 2003 0.35 Pipe EOR 

Ethanol production (3) 

Illinois Industrial CCS 2017 0.55 to 1 Pipe Dedicated 

Arkalon CO2 Compression Facility 2009 0.23 to 0.29 Pipe EOR 

Bonanza Bio-energy CCUS EOR 2012 0.1 Pipe EOR 

Fertiliser production (3) 

Coffeyville Gasification Plant 2013 0.9 Pipe EOR 

PCS Nitrogen CCS 2013 0.2 to 0.3 Pipe EOR 

Enid Fertiliser 1982 0.1 to 0.2 Pipe EOR 

Synthetic natural gas (1) Great Plains Synfuels Plant (Weyburn/Midale) 2000 1.0 to 3.0 Pipe EOR 

Hydrogen production (1) Air Products Steam Methane Reformer 2013 1.0 Pipe EOR 

Canada (4) 

Hydrogen production (2) 
ACTL with NWR Sturgeon Refinery 2020 1.3 to 1.6 Pipe EOR 

Quest 2015 1.2 Pipe Dedicated 

Power generation (1) Boundary Dam 3 CCS facility 2014 0.8 to 1 Pipe Various 

Fertiliser production (1) ACTL with Nutrien 2020 0.2 to 0.3 Pipe EOR 
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Table 1.1: Summary of commercial CCUS facilities in operation as of 2022 (GCCSI, 2022) (continued). 

Country 

(Project count) 

Industry  

(Project count) 
Facility name 

Operation 

year 

CO2 capture 

capacity (Mt/y) 

Transport 

mode 

Storage 

type 

China (4) 

Natural gas processing (2) 
CNPC Jilin Oil Field CO2 EOR 2018 0.35 to 0.6 Pipe EOR 

CNOOC South China Sea Offshore CCS 2021 0.3 N/A Dedicated 

Chemical production (1) Sinopec Zhongyuan CCUS 2006 0.12 Truck EOR 

Methanol production (1) Karamay Dunhua Oil Technology CCUS EOR 2015 0.1 Truck EOR 

Norway (2) Natural gas processing (2) 
Sleipner CO2 Storage 1996 1.0 Pipe Dedicated 

Snøhvit CO2 Storage 2008 0.7 Pipe Dedicated 

Brazil (1) Natural gas processing (1) Petrobras Santos Basin Oil Field CCS 2011 4.6 
Direct 

reinjection 
EOR 

Australia (1) Natural gas processing (1) Gorgon CO2 Injection 2019 3.4 to 4 Pipe Dedicated 

Qatar (1) Natural gas processing (1) Qatar LNG CCS 2019 2.1 Pipe Dedicated 

UAE (1) Iron & steel production (1) Abu Dhabi CCS with Emirates Steel 2016 0.8 Pipe EOR 

Saudi Arabia (1) Natural gas processing (1) Uthmaniyah CO2 EOR 2015 0.8 Pipe EOR 

Hungary (1) Natural gas processing (1) MOL Szank Field CO2 EOR 1992 0.059 to 0.157 N/A EOR 

Iceland (1) Direct air capture (1) Orca 2021 0.004 N/A Dedicated 
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Table 1.2: Selected major CCS networks (GCCSI, 2021). 

Country Largest network by capture capacity Network status 
CO2 capture 

capacity (Mt/y) 
Transport type Primary storage type 

US Houston Ship Channel CCS Innovation Zone Early development 100.0 Pipe EOR 

Netherlands Aramis Early development 20.0 Pipe, Ship Dedicated 

UK Zero Carbon Humber Advanced development 18.3 Pipe Dedicated 

Canada Canada ACTL In operation 14.6 Pipe EOR 

France Dartagnan Early development 10.0 Pipe, Ship Dedicated 

Belgium  Antwerp@C Advanced development 9.0 Pipe Dedicated 

UAE Abu Dhabi Cluster In operation 5.0 Pipe EOR 

Australia CarbonNet Advanced development 5.0 Pipe Dedicated 

Norway Langskip Advanced development 5.0 Pipe, Ship Dedicated 

Italy Ravenna Hub Advanced development 4.0 Pipe Dedicated 

Denmark Greensand Advanced development 3.5 Pipe, Ship Dedicated 

China Xinjiang Junggar Basin CCS Hub In operation 3.0 Pipe, Truck EOR 
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1.2 Pressurised Pipeline Safety 

Both pressurised CO2 and hydrocarbon pipelines may fail for a number of reasons such 

as external interference, corrosion, ground movement or material defect (Mahgerefteh 

et al., 2012a). Given that CO2 is toxic at concentrations above 7% vol/vol (Kruse and 

Tekiela, 1996) and hydrocarbons are highly flammable and explosive, the failure of 

such pipelines, especially near populated areas, can lead to catastrophic consequences, 

resulting in loss of valuable inventory, damage to property, environmental pollution, or 

injuries & fatalities. For example, on 23 February 2020, a 24-inch pipeline transporting 

pressurised CO2 owned by Denbury Enterprises ruptured near a highway close to the 

village of Satarita in Mississippi, US. The unhindered escape of the CO2 resulted in the 

evacuation of over 300 residents, among which 46 were hospitalised. The incident in 

total caused nearly $ 4 million economic losses. A failure investigation conducted by 

US Department of Transportation showed that the incident resulted from heavy rains 

which caused a landslide creating axial strain on the pipe and led to a full 

circumferential girth weld failure (Mathews, 2022). According to official records, the 

US, known for its stringent pipeline safety regulations among developed nations, has 

documented 12,794 pipeline loss of containment incidents over the past two decades, 

involving various fluid types (e.g. CO2, oil, gas) and severity levels. These in total have 

caused 276 fatalities, 1,144 injuries and over $ 10 billion worth of damage (PHMSA, 

2022). Given the above, the safety of pressurised pipelines must be ensured during their 

operations. 

Central to the above is the safety assessment of pressurised pipelines which usually 

consists of three key steps, as follows: 

1) Pipeline decompression models are developed to predict the outflow and 

decompression characteristics in the event of pipeline failure, including the time-

varying mass discharge rate, pressure, temperature, and phase composition. 
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2) Using the outflow data obtained from the pipeline decompression models, the 

Quantitative Risk Assessment (QRA) involving calculation of the magnitude of the 

failure consequences and the occurrence probability of the failure events is 

performed to determine the individual and societal risk levels. 

3) Based on the calculated individual and societal risk levels from QRA, appropriate 

control and emergency mitigation planning measures are proposed to reduce the 

failure consequences to as low as reasonably practicable in the event of pipeline 

failure. 

Given the above, the development of accurate, robust, and computationally efficient 

approaches to handle these key steps has been the focus of considerable attention. Their 

main features and limitations are discussed in the following. 

As the starting point, the development of pipeline decompression models has been the 

focus of considerable attention. Several numerically based pipeline decompression 

models have been developed over the years (see for example Brown et al., 2013; Chen 

et al., 1995; Mahgerefteh et al., 1999; Oke et al., 2003). Given that in principle the 

mathematical problem addressed involves solving the conservation equations of mass, 

momentum and energy which are a set of coupled, non-linear and high-order partial 

differential equations usually containing terms that are not analytically solvable, their 

solutions are sought using numerical techniques (Flatt, 1986). Previous attempts 

include a Finite Difference Method (FDM) (see for example Bendiksen et al., 1991; 

Chen, 1993), a Finite Element Method (FEM) (see for example Bisgaard et al., 1987; 

Lang, 1991) and the Method of Characteristic (MOC) (see for example Chen et al., 

1992; Olorunmaiye and Imide, 1993). Given that these methods invariably involve the 

numerical discretisation of the pipe fluid flow field into several small elements, they all 

share the fundamental drawback of long computational runtimes (Mahgerefteh et al., 

2011). For a typical 100 km length, 800 mm internal diameter (i.d.) natural gas pipeline 
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experiencing a 20 mm puncture, for example, the CPU time for simulating its complete 

decompression typically ranges from days to weeks depending on the computer 

processing speed employed. 

To address the above problem, many workers have proposed simplistic pipeline 

decompression models. Some notable attempts include a unified outflow model (Norris, 

1994; Norris and Puls, 1993), a quasi-steady state model (Webber et al., 1999) and a 

Vessel Blowdown Model (VBM) (Mahgerefteh et al., 2011). These models were 

developed mainly based on steady state flow assumption for which analytical solutions 

can be obtained, largely addressing the issue of long computational runtimes associated 

with numerically based techniques (e.g. FEM, FDM and MOC) used for simulating 

pipeline failure. However, these models are mostly suitable only for specific failure 

scenarios, displaying limited applicability. 

Turning to the second step where the QRA is involved, two types of studies are usually 

performed, with one type being modelling the failure consequences such as dense-gas 

dispersions (see for example Ermak, 1990; Ott and Nielsen, 1996; Witlox and A. Holt., 

1999), fires (see for example Chamberlain, 1987; Johnson et al., 1994; van den Bosh 

and Weterings, 1997), or explosions (see for example Wiekema, 1980), and the other 

based on collecting historical pipeline incident statistics and developing corresponding 

techniques to estimate the pipeline failure frequencies (see for example Chaplin, 2017; 

Duncan and Wang, 2014, 2014; Miao and Zhao, 2012). 

Nevertheless, despite the fact that the failure hole size, usually expressed in terms of 

the failure modes (e.g. leak, puncture, or Full Bore Rupture (FBR)), directly affects the 

magnitude of the failure consequences and hence the results of QRA, little attention has 

been paid to their probability of occurrence. The above requires the use of sufficiently 

large failure statistics data to reliably derive the corresponding failure hole size 

probability distribution. In previous studies, the most popular method is based on 



                                   DEPARTMENT OF CHEMICAL ENGINEERING 

- 10 - 

 

deriving the corresponding histograms using existing pipeline failure statistics (see for 

example Duncan and Wang, 2014; Medina et al., 2012; Nyborg et al., 2011; Rusin and 

Stolecka, 2015). This involves first segmenting the entire range of failure hole sizes 

into a series of intervals (bins) and then counting how many values fall into each bin. 

Despite its simplicity, this method accounts for no information regarding the statistical 

significance of the samples being used to derive the histogram. Whether the size or 

quality of the samples suffices for a reliable histogram remains largely unclear. This 

issue is particularly challenging for CO2 pipelines given their 1) relatively low number 

currently in operation and hence the small pool of failure statistics, and 2) different 

operating conditions compared to hydrocarbon pipelines and therefore the uncertainties 

in drawing analogies. 

Based on the results of QRA, one can subsequently propose safety measures to mitigate 

the failure consequences in the event of pipeline failure. In the case of pressurised 

pipelines, inline Emergency Shutdown Valves (ESDVs) are extensively employed as a 

front-line mitigation tool (Martynov et al., 2018a). Configuring the ESDVs along the 

pipe length which involves determining their type, number, operation settings and 

strategic positioning that minimise the valve costs whilst reducing the risks to as low 

as reasonably practicable presents significant decision-making challenges. The 

solutions to such challenges are usually sought using the Multi-Objective Optimisation 

(MOO) technique. 

The efficacy of applying MOO in finding the optimal ESDV configurations heavily 

depends on the accuracy of the metrics used to define the risk of pipeline failure. 

Nevertheless, in most of the relevant studies (see for example Brown et al., 2014; Yu et 

al., 2022), such metrics are defined relatively simply, that is, based on the QRA of one 

customised failure scenario (usually FBR for representing the worse-case scenario) 

assuming 100% occurrence probability. Nevertheless, given that uncertainties and 

variations exist in pipe characteristics and operating conditions (e.g. failure hole size, 
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failure location, fluid pressure), the failure scenario can vary greatly from one accident 

to the next, impacting the magnitudes of the failure consequences and the subsequent 

solution to the MOO problem. For example, Koornneef et al. (2009) performed a 

sensitivity analysis to evaluate the impact of the uncertainties in the input parameters 

on the results of QRA for a 20 km length, 406 mm i.d. pressurised CO2 pipeline as the 

case study. The results showed that the predicted safe distance could vary largely from 

0 to 204 m.  

1.3 Research Aims and Objectives 

The aim of this thesis is to develop advanced tools for the safety assessment of 

pressurised CO2 and hydrocarbon pipelines, as part of the global quest to zero carbon 

emissions. The research focuses on addressing critical limitations in the three key steps 

of the assessment process involving pipeline decompression modelling, QRA and 

emergency mitigation planning. Given the above, the main objectives of this thesis are 

to develop, test, and assess: 

1) A computationally efficient Modified Vessel Blowdown Model (MVBM) 

addressing the fundamental limitations of VBM in handling un-isolated releases 

and fluid/wall heat exchanges. 

2) An analytical approach to reliably estimate the failure hole size probability 

distribution for pressurised CO2 pipelines accounting for the statistical significance 

of the failure data being employed. 

3) A probabilistic MOO technique to optimise the ESDV configuration for pressurised 

CO2 pipelines accounting for the uncertainties in the pipe characteristics and 

operating conditions. 

The following presents an overview of each of the proceeding chapters: 
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In Chapter 2, a comprehensive review of pressurised pipeline safety is presented. This 

chapter is divided into two parts. The first part focuses on the modelling of pressurised 

pipeline decompression. It commences with a detailed description of the background 

theory of the modelling approaches, mainly including the fluid flow dynamics, 

constitutive relations for fluid/wall interactions and physical property calculations. This 

is followed by a review of the applications of the Homogeneous Equilibrium Mixture 

(HEM) model for predicting pipeline decompression. The second part focuses on 

configurating ESDVs for pressurised pipeline. This part starts with a review of the QRA 

for pressurised CO2 pipelines summarising the methods for modelling dense gas 

dispersion, calculating pipe failure frequency, and evaluating individual and societal 

risk levels. This is followed by a detailed description of the theoretical basis for the 

MOO technique covering the mathematical formulation of a MOO problem and the 

solution methods. Next, a review focusing on the applications of MOO in optimising 

the ESDV configuration and the design for pressurised pipelines is presented. 

Chapter 3 presents the development and testing of the MVBM addressing the 

fundamental limitations of VBM in handling un-isolated releases and fluid/wall heat 

exchanges. The modified model is tested and compared against the results obtained 

using the VBM as well as an extensively validated but computationally demanding 

University College London (UCL) pipeline decompression model. The chapter 

commences with a detailed description of the background theory of the UCL model and 

VBM. Following this, the theoretical basis of the MVBM mainly including the fluid 

flow dynamics, physical properties, algorithm as well as the initial and boundary 

conditions is described. This is followed by its verification against the UCL model and 

VBM. The tests cover a wide range of hypothetical nevertheless realistic failure 

scenarios spanning various puncture diameters, feed flow rates and pipe lengths. Finally, 

an analysis of the computational runtimes is given. 

In Chapter 4, the development and application of the analytical approach to estimate 
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the failure hole size probability distribution accounting for the data sample statistical 

significance is given. This chapter starts with an initial selection of the historical 

pipeline failure statistics suitable for the purpose of this study, followed by the 

description of the methodology employed to obtain a reliable failure hole size 

probability distribution using the selected statistics. Next, using the proposed 

methodology, the failure hole size probability distribution for pressurised CO2 is 

derived. Comparative data for natural gas and crude oil pipelines are also presented and 

discussed. 

Chapter 5 presents the development and application of the probabilistic MOO technique 

for optimising the inline ESDV configuration for pressurised CO2 pipelines accounting 

for the uncertainties in the pipe characteristics and operating conditions. The above is 

based on treating the risk associated with pipeline failure as a probabilistic variable. 

The approach employed for modelling the parameter uncertainties is first presented 

together with the mathematical modelling of the failure consequences and the methods 

for evaluating the associated risk. This is followed by the description of the optimisation 

problem, detailing the optimisation variables and objective functions being considered. 

The optimisation results are next presented based on a case study involving a 300 km 

length, 309.6 mm i.d. pipeline transporting CO2 initially at 129 bar and 307.24 K. 

Finally, a comparative study where the risk is taken deterministically as that resulting 

from the worst-case scenario is performed to demonstrate the effectiveness of the 

developed technique. 

Chapter 6 presents a summary of the main conclusions of this thesis, followed by 

recommendations for future work. 
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Chapter 2: Literature Review 

In this chapter, a comprehensive review of the key aspects of pressurised pipeline safety 

assessment, including modelling pressurised pipeline decompression and configuring 

inline Emergency Shutdown Valves (ESDVs) as a front-line tool for risk reduction is 

presented. 

2.1 Modelling Pressurised Pipeline Decompression 

2.1.1 Introduction 

In essence, the quantitative consequence assessment for pipeline failures requires the 

development of rigorous mathematical relations encapsulating all the important 

physical processes taking place during pipeline decompression as well as employing 

appropriate mathematical techniques for their solutions. 

The following section reviews the modelling of pressurised pipeline decompression and 

is organised as follows. First, the background theory of pipeline decompression 

modelling is described, chiefly focusing on the formulation of fluid dynamics 

phenomena accounting for multi-phase flows. Next, selected examples of the 

applications of Homogenous Equilibrium Mixture (HEM) assumption in pipeline 

decompression modelling are presented and reviewed. 

2.1.2 Background Theory 

2.1.2.1 General Conservation Equations for Fluid Dynamics 

For any type of flow, a generic form of the conservation equations of mass, momentum 

and energy describing the fluid dynamics of the 𝑘th fluid phase within an arbitrary 

flow control volume with a control surface can be written as (Zheng, 2018): 
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𝜕𝛼𝑘𝜌𝑘̿̿ ̿

𝜕𝑡
+ ∇ ∙ (𝛼𝑘𝜌𝑘̿̿ ̿𝒖𝑘) + 𝐼𝑘 = 0 2.1 

𝜕𝛼𝑘𝜌𝑘̿̿ ̿𝒖𝑘

𝜕𝑡
+ ∇ ∙ (𝛼𝑘𝜌𝑘̿̿ ̿𝒖𝑘𝒖𝑘) + ∇ ∙ (𝛼𝑘𝑃𝑘

̿̿ ̿𝑰) − ∇ ∙ 𝛼𝑘(𝝉𝑘
𝑡𝑏 + 𝝉𝑘̿̿ ̿) + 𝐼𝑘

𝒖𝑘 − 𝛼𝑘𝑭𝑘
̿̿̿̿ = 0 2.2 

𝜕𝛼𝑘𝜌𝑘̿̿ ̿𝐸𝑘

𝜕𝑡
+ ∇ ∙ (𝛼𝑘𝜌𝑘̿̿ ̿𝒖𝑘𝐸𝑘) + ∇ ∙ (𝛼𝑘𝑃𝑘

̿̿ ̿𝑰 ∙ 𝒖𝑘) − ∇ ∙ (𝛼𝑘𝝉𝑘̿̿ ̿ ∙ 𝒖𝑘) + ∇ ∙ 𝛼𝑘(𝒒𝑘
𝑡𝑏 + 𝒒𝑘̿̿ ̿)

+ 𝑃𝑘
̿̿ ̿

𝜕𝛼𝑘

𝜕𝑡
+ 𝐼𝑘

𝐸𝑘∗
− 𝛼𝑘 (𝑭𝑘

̿̿̿̿ ∙ 𝒖𝑘 + 𝑄̇𝑘
̿̿̿̿ ) = 0 

2.3 

where the subscript, 𝑘  denotes the 𝑘th  fluid phase present in the flow. The 

superscript, 𝑡𝑏  denotes the turbulence. The scalars, 𝛼𝑘 , 𝜌𝑘 , 𝑃𝑘 , 𝐸𝑘  and 𝑄̇𝑘  are 

respectively the volume fraction, density, pressure, total energy (defined as 𝐸𝑘 = 𝑒𝑘 +

|𝒖𝑘|
2/2 , where 𝑒𝑘  is the internal energy and |𝒖𝑘|

2/2  is the kinetic energy) and 

added heat per volume of the 𝑘th  fluid phase. The vectors, 𝒖𝑘 , 𝑭𝑘  and 𝒒𝑘 

respectively represent the velocity, body force and heat flux. 𝝉𝑘 on the other hand, 

denotes the stress tensor. The interface mass, momentum and energy interaction terms 

are respectively represented by 𝐼𝑘, 𝐼𝑘
𝒖𝑘 and 𝐼𝑘

𝐸𝑘∗
. 𝑰 refers to the identity matrix. The 

averaging operators,    ̿  and      represent phase- and mass-weighted time-averaging, 

respectively. 

2.1.2.2 Pipe Flow Modelling 

Given the fact that the above conservation equations of mass, momentum, and energy 

(equations 2.1 to 2.3) are a set of highly coupled, non-linear and high-order Partial 

Differential Equations (PDEs), an analytical solution for these equations is not possible 

(Hoffman and Zucrow, 1976). 

For most engineering problems involving pipe flows, the flow is usually assumed to be 

one-dimensional (see for example Mahgerefteh et al., 1999; Martynov et al., 2018b; 
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Oke et al., 2003). This assumption is considered appropriate given the fact that most 

pipe flows are dominated by convective effect (Saha, 1997). This means the variation 

of fluid properties along the streamline is much more significant than that across the 

pipe cross-section area. As a result, the latter can be neglected. 

To account for the viscous effect resulting from the internal friction between the 

adjacent fluid layers (i.e. fluid/fluid friction), the viscid-inviscid interaction model 

(Batchelor, 1967) dividing the flow field into two separate regions is usually adopted 

in modelling pipe flows. This model assumes that the viscous effect is confined to a 

thin boundary layer near the pipe wall, thus passing the fluid/fluid friction to fluid/wall 

friction. The bulk flow, on the other hand, is assumed to be inviscid. Apart from the 

above, the momentum diffusion, energy diffusion and turbulence are usually neglected 

in modelling pipe flows (see for example Mahgerefteh et al., 1999; Oke et al., 2003). 

Modifying equations 2.1 to 2.3 based on the above and dropping all the averaging 

operators, the resulting conservation equations of mass, momentum and energy 

describing pipe flow of the 𝑘th fluid phase read: 

𝜕𝛼𝑘𝜌𝑘

𝜕𝑡
+

𝜕

𝜕𝑥
𝛼𝑘𝜌𝑘𝑢𝑘 + 𝐼𝑘 = 0 2.4 

𝜕𝛼𝑘𝜌𝑘𝑢𝑘

𝜕𝑡
+

𝜕

𝜕𝑥
(𝛼𝑘𝜌𝑘𝑢𝑘

2 + 𝛼𝑘𝑃𝑘) + 𝐼𝑘
𝑢𝑘 − 𝛼𝑘𝐹𝑘 = 0 2.5 

𝜕𝛼𝑘𝜌𝑘𝐸𝑘

𝜕𝑡
+

𝜕

𝜕𝑥
(𝛼𝑘𝜌𝑘𝑢𝑘𝐸𝑘 + 𝛼𝑘𝑢𝑘𝑃𝑘) + 𝑃𝑘

𝜕𝛼𝑘

𝜕𝑡
+ 𝐼𝑘

𝐸𝑘∗
− 𝛼𝑘(𝐹𝑘𝑢𝑘 + 𝑄̇𝑘) = 0 2.6 

2.1.2.3 Multi-phase Flow Modelling 

Multi-phase flows are often encountered during pipeline decompression as a result of 

liquid evaporation due to low pressure or vapour condensation due to low temperature 
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(Saha, 1997; Zheng, 2018). Therefore, modelling the fluid dynamics for pipe flows 

usually requires two or more sets of the conservation equations 2.4 to 2.6 explicitly 

describing each constituent phase. 

In real pipes, the constituent phases present in the flows have different degrees of mass, 

momentum and energy interactions, resulting in varying flow characteristics and 

leading to different phasic thermodynamic and mechanical properties. To describe the 

multi-phase flow phenomena, various modelling approaches generally divided into four 

groups have been developed (Munkejord et al., 2016; Pham and Rusli, 2016). These 

include Homogeneous Equilibrium Mixture (HEM) model, Homogeneous Relaxation 

Mixture (HRM) model, Drift Flux Mixture (DFM) model and Two Fluid Mixture (TFM) 

model. The four models each represent a different level of sophistication in describing 

the interphase interactions.  

The highest level of sophistication is the TFM model where both thermodynamic and 

mechanical non-equilibria between the constituent phases are taken into consideration. 

Given this, the model is considered the most physically relevant and complete among 

the four models, and therefore can be applied to a wide range of flows. The next level 

includes the HRM and DFM models, both capable of partially handling the non-

equilibrium effects resulting from limited interphase interactions. The HRM model is 

developed to account for thermodynamic non-equilibrium as a result of the delayed 

phase transition during pipeline decompression. The DFM model, on the other hand, is 

usually employed to model pipe flows experiencing mechanical non-equilibrium effects 

such as phase slip. The HEM model, which represents the lowest level of sophistication, 

assumes both thermodynamic and mechanical equilibria (i.e. instantaneous mass, 

momentum and energy exchanges) between the constituent phases, that is, the phasic 

pressures, temperatures or velocities are identical across phases. 

Based on the above multi-phase flow models, modifying accordingly the general 



                                   DEPARTMENT OF CHEMICAL ENGINEERING 

- 18 - 

 

conservation equations for pipe flows (equations 2.4 to 2.6) will give model-specific 

forms of these conservation equations. 

In the case of the HEM model, since the corresponding mass, momentum and energy 

exchanges between fluid phases are instantaneous, the interface interaction terms, 𝐼𝑘, 

𝐼𝑘
𝑢𝑘  , and 𝐼𝑘

𝐸𝑘∗
  in equations 2.4 to 2.6 can be ignored and the corresponding HEM 

model-specific conservation equations for pipe flows are given by: 

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥
𝜌𝑢 = 0 2.7 

𝜕𝜌𝑢

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑢2 + 𝑃) − 𝐹 = 0 2.8 

𝜕𝜌𝐸

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑢𝐸 + 𝑃𝑢) − (𝐹𝑢 + 𝑄̇) = 0 2.9 

where 𝐹  represents the body force usually including the fluid/wall friction and 

gravitational force. 𝑄̇  on the other hand, refers to the fluid/wall heat transfer. The 

constitutive relations for these terms will be given in later sections. 

Despite its simplicity, the HEM model is most frequently employed in modelling pipe 

flows (see for example Buaprommart et al., 2019; Chen et al., 1995; Martynov et al., 

2014) due to its capability in delivering accurate simulation results with relatively low 

computational costs. 

Comparably, the applications of the HRM, DFM and TFM models in pipe flows are 

less frequently reported in open literature. Apart from their increased mathematical 

complexity, they are found to perform just as equally well as the HEM model in the 

case of pipeline decompression (see for example Brown et al., 2014a, 2013; Munkejord 

and Hammer, 2015). The mathematical formulations of the HRM, DFM and TFM 
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model conservation equations are out of the scope of this thesis and their details can be 

found elsewhere (Bendiksen et al., 1991; Brown et al., 2013; Hibiki and Ishii, 2003). 

2.1.2.4 Constitutive Relations 

As mentioned above, in modelling pipeline decompression, the volumetric terms in the 

above conservation equations 2.8 and 2.9 usually include the gravitational force, 

fluid/wall heat transfer and friction. In the following section, the constitutive relations 

typically employed for defining these terms are summarised. 

2.1.2.4.1 Fluid/wall Friction 

The fluid/wall friction force, 𝐹𝑤 is usually defined in the below form (Mahgerefteh et 

al., 1999; Oke et al., 2003): 

𝐹𝑤 = −
2𝜌𝑢|𝑢|𝑓𝑤

𝐷𝑖𝑛
 2.10 

where 𝐷𝑖𝑛 is the pipe internal diameter and 𝑓𝑤 is the Fanning friction factor. 

The Fanning friction factor is typically determined by empirical relations depending on 

the Reynolds number, 𝑅𝑒 of the flow. 

For laminar pipe flow (𝑅𝑒 < 2300), the Fanning friction factor is independent of the 

pipe roughness and can be given by (Rohsenow et al., 1998): 

𝑓𝑤 =
16

𝑅𝑒
 2.11 

For transitional and turbulent flows (4000 < 𝑅𝑒 < 4×108) in rough pipes, the Fanning 

friction factor can be calculated using Chen’s correlation (Chen, 1979), given by: 
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1

√𝑓𝑤
= 3.48 − 1.7372 ln (

𝜀

𝐷𝑖𝑛/2
−

16.2446

𝑅𝑒
ln𝐾) 2.12 

where 𝜀 is the pipe wall roughness, and: 

𝐾 =
(𝜀/(𝐷𝑖𝑛/2))

1.0198

6.0983
+ (

7.149

𝑅𝑒
)
0.8981

 2.13 

For transitional and turbulent flows in smooth pipes, the corresponding Fanning friction 

factor can be given by (Rohsenow et al., 1998): 

1

√𝑓𝑤
= 1.7372 ln (

𝑅𝑒

1.694𝑅𝑒 − 3.8215
) 

 
2.14 

2.1.2.4.2 Fluid/wall Heat Transfer 

The fluid/wall heat transfer, 𝑄̇ is usually modelled based on Newton’s cooling law, 

given by: 

𝑄̇ =
4

𝐷𝑖𝑛
𝑈(𝑇𝑤 − 𝑇𝑓) 2.15 

where 𝑇𝑤 and 𝑇𝑓 respectively represent the pipe wall and fluid temperatures. 𝑈 on 

the other hand, denotes the overall heat transfer coefficient. 

In modelling the wall temperature during pipeline decompression, the pipe wall density, 

𝜌𝑤 and isobaric specific heat capacity, 𝐶𝑃,𝑤 are usually assumed to be constant and 

the wall temperature gradient is usually neglected. Following this, the resulting time-

varying wall temperature is given by: 
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𝐶𝑃,𝑤𝜌𝑤

4

𝐷𝑖𝑛

𝑑𝑇𝑤

𝑑𝑡
= 𝑄̇𝐴̃ 2.16 

where 𝐴̃ is the available heat transfer area per unit volume given by: 

𝐴̃ =
4𝐷𝑖𝑛

𝐷𝑒𝑥𝑡
2 − 𝐷𝑖𝑛

2  2.17 

where 𝐷𝑒𝑥𝑡 is the pipe external diameter. 

The overall heat transfer coefficient on the other hand is usually determined based on 

the following empirical correlations. 

For forced convection heat transfer, the Dittus-Boelter equation (Green and Southard, 

2019) can be adopted: 

𝑁𝑢 = 0.023𝑅𝑒0.8𝑃𝑟0.4 2.18 

where 𝑁𝑢 and 𝑃𝑟 are respectively the Nusselt number and Prandtl number. 

For boiling heat transfer, the most widely used correlation is the Rohsenow correlation 

(Rohsenow, 1952), given by: 

𝑄̇ = 𝜇𝑙ℎ𝑙,𝑙 (
𝑔(𝜌𝑙 − 𝜌𝑔)

𝜎𝑙
)(

𝐶𝑃,𝑙(𝑇𝑤 − 𝑇𝑓)

0.013ℎ𝑙,𝑙𝑃𝑟𝑙
1 )

3

 2.19 

where 𝜌𝑙 and 𝜌𝑔 are respectively the densities of the liquid and vapour phases. 𝜇𝑙, 

𝜎𝑙 , ℎ𝑙,𝑙 , 𝑃𝑟𝑙  and 𝐶𝑃,𝑙  respectively refer to the viscosity, surface tension, specific 

latent heat, Prandtl number and isobaric specific heat capacity of the liquid phase. 𝑔 

on the other hand is the gravitational acceleration. 
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Besides the above, in some engineering practices, the overall heat transfer coefficient 

can be obtained simply based on expert judgments. For example, 5 W/m2 is usually 

recommended for insulated, sub-sea or buried pipelines (Mahgerefteh, 1997). 

2.1.2.4.3 Gravitational Force 

To describe the fluid flow dynamics for flows in inclined pipes, the gravitational force, 

𝐹𝑔 needs to be introduced as part of the volumetric terms in the above conservation 

equations 2.8 and 2.9. Mathematically, the gravitational force is expressed as: 

𝐹𝑔 = 𝜌𝑔 sin 𝜃̇ 2.20 

where 𝜃̇ refers to the pipe inclination angle relative to the horizontal plane. 

2.1.2.5 Physical Properties 

2.1.2.5.1 Equation of State 

The fluid thermodynamic properties and phase equilibrium data can be computed using 

an appropriate Equation of State (EoS). In modelling CO2 pipeline decompression, the 

Peng-Robinson EoS (PR EoS) (Peng and Robinson, 1976) is the most adopted EoS 

given its established applicability and high computational efficiency (see for example 

Teng et al., 2016; Zhao and Li, 2014). Mathematically, it can be expressed as: 

𝑃 =
𝑅𝑇

𝑉𝑚 − 𝑏𝑝
−

𝑎𝑝𝛼𝑝

𝑉𝑚
2 + 2𝑏𝑝𝑉𝑚 − 𝑏𝑝

2
 2.21 

where 𝑉𝑚 denotes the molar volume of the fluid and: 

𝑎𝑝 = 0.45724
𝑅2𝑇𝑐

2

𝑃𝑐
 2.22 
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𝑏𝑝 = 0.07780
𝑅𝑇𝑐

𝑃𝑐
 2.23 

𝛼𝑝 = (1 + (0.37464 + 1.54226𝜔 − 0.26992𝜔2)(1 − 𝑇𝑟
0.5))

2
 2.24 

where 𝑅 , 𝜔 , 𝑇𝑐  and 𝑃𝑐  are respectively the gas constant, acentric factor, critical 

temperature, and critical pressure. 𝑇𝑟 on the other hand, is defined as: 

𝑇𝑟 =
𝑇

𝑇𝑐
 2.25 

It should be however noted that the use of PR EoS is not limited to CO2. Its use can be 

also extensively found in the case of modelling hydrocarbon pipeline decompression 

(see for example Mahgerefteh et al., 1999; Oke et al., 2003; Yu et al., 2022). 

2.1.2.5.3 Speed of Sound 

The local speed of sound, 𝑐  of the fluid needs to be calculated as part of the 

thermodynamic properties. For single-phase fluids, the local speed of sound can be 

determined analytically using: 

𝑐2 =
𝛾

𝜅𝜌
 2.26 

where 𝛾 is the ratio of specific heats and 𝜅 is the isothermal coefficient of volumetric 

expansion, given by: 

𝜅 = −𝜌 (
𝜕𝑉

𝜕𝑃
)

𝑇
 2.27 

For two-phase mixtures, defining 𝛾 becomes complicated (Mahgerefteh et al., 1999). 
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As such, the corresponding speed of sound is evaluated numerically by: 

𝑐2 =
∆𝑃

𝜌(𝑇, 𝑃)𝑠 − 𝜌(𝑇∗, 𝑃 − ∆𝑃)𝑠
 2.28 

where the subscript, 𝑠 denotes the isentropic condition. ∆𝑃 on the other hand, is the 

infinitesimal change in pressure and 𝑇∗  refers to the corresponding temperature 

obtained from pressure-entropy flash calculation. 

2.1.3 Applications of the HEM Model in Modelling Pipeline 

Decompression 

In the preceding section, the mathematical modelling of multi-phase pipe flows together 

with the associated constitutive relations and physical property correlations are 

summarised. In particular, four groups of multi-phase flow models usually applied for 

pipe flows are discussed, with a focus on the HEM model given its established 

applicability in pipe flows and relatively low computational demand.  

In modelling pipeline decompression, there are generally two types of HEM models 

based on how their fluid flow dynamics is constructed. The first type, also being the 

most popular type, is the numerically based models. The numerically based models are 

considered physically relevant and are therefore widely adopted in academic research. 

Nevertheless, given that the fluid flow dynamics for this type of models is usually 

formulated based on the conservation equations of mass, momentum and energy which 

are a set of coupled and non-linear PDEs, seeking their solutions requires the use of 

numerical techniques (e.g. finite different method, finite element method) and hence 

can be computationally demanding. 

The second type, often developed to reduce the computational costs associated with the 

first type of models, is called the analytically based models. In this type, assumptions 
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are often made to simplify the fluid flow equations to a set of Ordinary Differential 

Equations (ODEs) to reduce the complexity of the mathematical problem involved and 

thus improve the computational efficiency. However, given usually the strong 

assumptions involved, this type of models has limited applicability. Table 2.1 

summarises the features and examples of the numerically and analytically based models. 

Table 2.1: Summary of the top-level features and examples of the numerically and 

analytically based models. 

Type Feature Example 

Numerically 

based model 

 PDE-based 

 Physically relevant 

 High applicability 

 High computational costs 

Mahgerefteh et al. (1999), Oke 

et al. (2003), Martynov et al. 

(2014), Zheng et al. (2017) 

Analytically 

based model 

 ODE-based 

 Limited applicability 

 Low computational costs 

Norris and Puls (1993), Norris 

(1994), Webber et al. (1999), 

Mahgerefteh et al. (2011) 

In the following section, one typical example for each of the two types of the HEM 

model in pipeline decompression modelling is reviewed, including their background 

theory, performance, and computational efficiency.  

2.1.3.1 University College London (UCL) Model 

The University College London (UCL) model is the most validated among the 

numerically based models reported in open literature. It was initially developed by 

Mahgerefteh et al. (1999) for the quantitative failure consequence assessment for the 

Full Bore Rupture (FBR) failures of pressurised pipelines containing two-phase 

hydrocarbon mixtures. This was followed by a fundamental extension to accounting for 

pipeline punctures (Oke et al., 2003). Other important features of this model include 

the simulations of emergency shut-down valve dynamics (Mahgerefteh et al., 2000, 
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1997), pipe inclination (Mahgerefteh et al., 2008), pipe networks (Mahgerefteh et al., 

2006a), brittle and ductile fractures (Mahgerefteh et al., 2016, 2010), as well as shale 

gas production well blowout (Buaprommart et al., 2019). 

2.1.3.1.1 Theory 

The model adopted the HEM assumption (equations 2.7 to 2.9) to describe the fluid 

flow dynamics. The volumetric terms including the fluid/wall friction and heat transfer 

were modelled using the standard correlations described in Section 2.1.2.4. The 

resulting mass, momentum and energy conservation equations can be given by 

(Mahgerefteh et al., 1999): 

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥
𝜌𝑢 = 0 2.29 

𝜕𝜌𝑢

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑢2 + 𝑃) = 𝛽𝑥 − 𝜌𝑔 sin 𝜃̇ 2.30 

𝜕𝜌𝐸

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑢𝐸 + 𝑃𝑢) = 𝛽𝑥𝑢 − 𝜌𝑢𝑔 sin 𝜃̇ + 𝑄̇ 2.31 

where 𝛽𝑥 refers to the fluid/wall friction, which was defined by equation 2.10 (see 

Section 2.1.2.4.1). The fluid/wall Fanning friction factor, 𝑓𝑤 was modelled based on 

the Moody approximation (Massey, 1983) to Colebrooke’s equation. To account for real 

fluid behaviour, the PR EoS (Peng and Robinson, 1976) was adopted to compute the 

fluid thermodynamic properties and phase equilibrium data. An interpolation grid 

(Mahgerefteh et al., 2007), serving as a look-up table for computing fluid 

thermodynamic properties, was employed to reduce the computational runtimes for 

flash calculations. 
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2.1.3.1.2 Numerical Method 

The above flow equations 2.29 to 2.31 were solved based on the Method of 

Characteristics (MOC) (Hoffman and Zucrow, 1976). The MOC is based on resolving 

the system of PDEs into a set of ODEs, also known as compatibility equations, through 

a particular co-ordinate change. These co-ordinates represent curves (characteristic 

lines) in the space-time domain along which the compatibility equations hold. The 

method is well suited to handling fast transient flow where each disturbance is captured 

along the propagating characteristic lines. The implementation of the MOC for the 

solution to equations 2.29 to 2.31 is outlined below. 

Step 1: Discretisation of the Flow Field 

The method of specified time intervals (Flatt, 1986) was first adopted to discretise the 

flow field. In this method, the location of the solution points in the space-time domain 

was specified in advance and the characteristic lines were traced backwards in time to 

their origin in the previous points. A Compound Nested Grid System (CNGS) applying 

finer numerical grids near the rupture plane where the transients were most rapid was 

then employed to reduce the computational costs. The schematic representation 

displaying the CNGS-MOC grid setting employed for the UCL model is presented in 

figure 2.1. 
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Figure 2.1: Schematic representation of the CNGS-MOC grid setting employed for 

the UCL model (Mahgerefteh et al., 1999). 

Step 2: Conversion of PDEs into ODEs 

Equations 2.29 to 2.31 which are a set of PDEs were converted into a set of 

compatibility equations (ODEs) along three characteristics lines in the space-time 

domain namely the path line (𝐶0), positive Mach line (𝐶+) and negative Mach line (𝐶−). 

The resulting compatibility equations are respectively given by: 

Along the path line characteristic: 

𝑑0𝑃

𝑑0𝑡
− 𝑐2

𝑑0𝜌

𝑑0𝑡
= 𝜓 2.32 

Along the positive Mach line characteristic: 

𝑑+𝑃

𝑑+𝑡
+ 𝜌𝑐

𝑑+𝑢

𝑑+𝑡
= (𝜓 + 𝑐𝛽𝑥)𝛽𝑥 2.33 
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Along the positive Mach line characteristic: 

𝑑−𝑃

𝑑−𝑡
− 𝜌𝑐

𝑑−𝑢

𝑑−𝑡
= (𝜓 − 𝑐𝛽𝑥)𝛽𝑥 2.34 

where the subscripts, 0, + and − respectively correspond to path line, positive and 

negative characteristics. 𝜓 on the other hand, is the non-isentropic term incorporating 

heat exchange and friction. All other symbols have been previously defined in Section 

2.1.2. 

The positive and negative Mach lines govern the propagating speed of expansion and 

compression waves, while the path line dictates the flow rate through any given point 

along the pipe. 

Step 3: Solution of Compatibility Equations 

As previously mentioned, the solution of the compatibility equations requires the 

tracing of the characteristic lines in a discretised space-time domain. A schematic 

representation of these lines in the space-time domain is shown in figure 2.2. 

 

Figure 2.2: Schematic representation of the path line (𝐶0), positive Mach line (𝐶+) 

and negative Mach line (𝐶−) characteristics at a grid point in the space-time domain 

(Saha, 1997). 
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The fluid properties were assumed to be already known at the grid points 𝑖 − 1, 𝑖 and 

𝑖 + 1. The initial conditions at the foot of each characteristic line (i.e. points 𝑝, 𝑜 and 

𝑛) were evaluated by linear interpolation. The fluid conditions at the solution point, 𝑗 

were then computed by solving compatibility equations 2.32 to 2.34 based on the Euler 

predictor-corrector finite approximation technique (Hoffman and Zucrow, 1976). This 

involved transforming these equations into finite difference form using first- and 

second-order approximations. 

In the predictor step, the first-order approximation was employed. The resulting path 

line, positive Mach line and negative Mach line compatibility equations in the finite 

difference form are respectively given by: 

𝑃𝑗 − 𝑃𝑜 − 𝑐𝑜
2(𝜌𝑗 − 𝜌𝑜) = 𝜓𝑜(𝑡𝑗 − 𝑡𝑜) 2.35 

𝑃𝑗 − 𝑃𝑝 + (𝜌𝑐)𝑝(𝑢𝑗 − 𝑢𝑝) = (𝜓 + 𝑐𝛽)𝑝(𝑡𝑗 − 𝑡𝑝) 2.36 

𝑃𝑗 − 𝑃𝑛 − (𝜌𝑐)𝑛(𝑢𝑗 − 𝑢𝑛) = (𝜓 − 𝑐𝛽)𝑛(𝑡𝑗 − 𝑡𝑛) 2.37 

Solving equations 2.35 to 2.37 simultaneously gave an initial estimation of the solution 

point pressure, 𝑃𝑗, density, 𝜌𝑗 and velocity, 𝑢𝑗 . 

To improve the estimation accuracy, the corrector step involving the second-order 

approximation was performed. The corresponding compatibility equations along the 

path line, positive Mach line and negative Mach line characteristics are respectively 

given by: 

𝑃𝑗 − 𝑃𝑜 −
1

2
(𝑐𝑜

2 + 𝑐𝑗
2)(𝜌𝑗 − 𝜌𝑜) =

1

2
(𝜓𝑜 + 𝜓𝑗)(𝑡𝑗 − 𝑡𝑜) 2.38 
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𝑃𝑗 − 𝑃𝑝 +
1

2
((𝜌𝑐)𝑝 + (𝜌𝑐)𝑗)(𝑢𝑗 − 𝑢𝑝)

=
1

2
((𝜓 + 𝑐𝛽)𝑝 + (𝜓 + 𝑐𝛽)𝑗)(𝑡𝑗 − 𝑡𝑝) 

2.39 

𝑃𝑗 − 𝑃𝑛 +
1

2
((𝜌𝑐)𝑛 + (𝜌𝑐)𝑗)(𝑢𝑗 − 𝑢𝑛)

=
1

2
((𝜓 − 𝑐𝛽)𝑛 + (𝜓 − 𝑐𝛽)𝑗)(𝑡𝑗 − 𝑡𝑛) 

2.40 

Solving equations 2.38 to 2.40 simultaneously, an improved estimation of the pressure, 

density and velocity at the solution point was obtained. The above estimation process 

was repeated until a certain tolerance for the results was reached. 

To ensure the numerical stability for the above process, the Courant-Friedrich-Lewy 

criterion (Courant et al., 1928) was satisfied. It is given by: 

∆𝑡 ≤
∆𝑥

|𝑢 + 𝑐|𝑚𝑎𝑥
 2.41 

where ∆𝑡 and ∆𝑥 are respectively the time and space intervals defining the space-

time domain. 

2.1.3.1.3 Validation 

The UCL model has been validated against the Isle of Grain LPG pipeline 

decompression tests (Richardson and Saville, 1996). The tests consisted of two parallel 

100 m length, 154 mm internal diameter (i.d.) carbon steel pipelines containing 

commercial LPG (95 mol% propane, 5 mol% n-butane). For both pipelines, the pressure, 

temperature and inventory mass during decompression were respectively measured 

using pressure transducers, thermocouples and load cells installed along the pipe. 

Two tests, coded as P40 and P45 respectively referring to puncture and FBR failures of 
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the pipelines, were performed. These tests were initiated by rupture of a disc at the 

downstream end of the test pipes. A summary of the initial conditions for these tests 

prior to disc rupture is presented below in table 2.2. 

Table 2.2: Initial conditions for Isle of Grain LPG pipeline depressurisation tests 

P40 and P45 (Richardson and Saville, 1996). 

Parameter P40 P45 

Failure mode 154 mm FBR 75 mm puncture 

Initial pressure (bar) 21.6 11.4 

Initial temperature (℃) 20.0 15.9 

Ambient temperature (℃) 19.1 16.7 

Wind speed (m/s) 8.8 6.5 

Pipe length (m) 100 100 

Pipe internal diameter (mm) 154 154 

Pipe roughness (mm) 0.05 0.05 

Pipe wall thickness (mm) 7.3 7.3 

Figures 2.3 and 2.4 show the comparison between the simulated and measured data for 

pressure- and temperature-time profiles at both the pipe open and intact ends during 

P40 decompression test. Figure 2.5 on the other hand presents the total line inventory 

mass profile as a function of time for the same test.  
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Figure 2.3: Pressure-time profiles at closed and open ends for the Isle of Grain P40 

FBR test. Curve A: Field data (open end); Curve B: Field data (closed end); Curve 

C: UCL model predictions (open end); Curve D: UCL model predictions (closed 

end). (Mahgerefteh et al., 1999). 

 

Figure 2.4: Temperature-time profiles at closed and open ends for the Isle of Grain 

P40 FBR test. Curve A: Field data (open end); Curve B: Field data (closed end); 

Curve C: UCL model predictions (open end); Curve D: UCL model predictions 

(closed end). (Mahgerefteh et al., 1999). 
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Figure 2.5: Total line inventory mass-time profiles for the Isle of Grain P40 FBR 

test. Curve A: UCL model predictions; Curve B: Field data. (Oke et al., 2003). 

As can be observed from figure 2.3, the simulated pressure profiles in general present 

close agreement to the measured data at both open and intact ends of the test pipe 

throughout decompression. The initial sudden pressure drops as a result of the 

instantaneous phase-transition from liquid to two-phase mixture are accurately 

predicted. Referring to figure 2.4 for the temperature-time profiles, the experimental 

data are also well predicted by the model. The maximum discrepancy observed between 

the measured and predicted temperature is less than ca. 5 °C. With regards to figure 2.5 

where the inventory mass-time profiles are presented, the model gives very similar 

predictions as compared to the experimental data. As expected, the amount of inventory 

declines monotonically with time. 

Turning to test P45 which involves a 75 mm puncture failure (see table 2.2), the 

corresponding simulated and measured pressure variations as a function of time is 

shown in figure 2.6.  
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Figure 2.6: Pressure-time profiles for the Isle of Grain P45 puncture test. Curve A: 

Field data; Curve B: UCL model predictions. (Mahgerefteh et al., 2011). 

As may be observed, again, relatively good agreement between the measured and 

simulated data is evident, well demonstrating the model’s capability in simulating 

puncture failures. 

Apart from hydrocarbon pipelines, the UCL model has been also validated against the 

field data from a series of CO2 pipeline decompression tests as part of the COOTRANS 

project undertaken by National Grid UK (Cosham et al., 2012). These tests were carried 

out for CO2 and CO2-rich mixtures in order to understand the decompression wave 

behaviour in single- and two-phase flows. Among these tests, test 6, which was a 

pipeline FBR decompression test, consisted of a 144 m length, 150 mm. i.d., 11 mm 

pipe wall thickness heavily insulated ASTM A333 Grade 6 low carbon steel seamless 

pipe filled with gaseous mixtures of CO2, N2 and SO2. The pertinent test conditions are 

summarised in table 2.3. 
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Table 2.3: Pertinent test conditions for COOTRANS CO2 pipeline decompression 

test 6 (Mahgerefteh et al., 2012b). 

Feed compositions 

Feed 

temperature 

(℃) 

Feed 

pressure 

(bar) 

Ambient 

temperature 

(℃) 

95.97 mol% CO2 + 4.03 

mol% N2 
5.3 37.9 20.4 

The test pipe was equipped with multiple pressure and temperature transducers along 

its entire length to monitor transient variations in both parameters. Additionally, by 

comparing the recorded pressure-time profiles from adjacent pressure transducers 

(placed at a known distance apart), the decompression wave speed was determined and 

presented in the form of a fan diagram (a plot of pressure versus decompression wave 

speed). 

Turning to validating the UCL model, the predicted decompression wave speed was 

compared to the corresponding measurement. The results are presented in figure 2.7. 
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Figure 2.7: Fan diagram at pressure transducers P13 to P16 following FBR for test 

6. Curve A and B: UCL model predictions; Curve C: measured data. (Mahgerefteh 

et al., 2012b). 

As can be seen in figure 2.7, a pressure plateau is observed at ca. 34 bar, corresponding 

to vapour condensation, where the speed of sound, and thus the decompression wave 

speed, significantly decrease (by ca. 50 m/s in both cases). The wave speed eventually 

reaches zero when the local flow (between transducers P13 to P16) becomes sonic 

(choked). With regards to the model performance, the UCL model predictions 

demonstrate good overall agreement with the data across the testing domain. 

In addition to the above, the UCL model has been also successfully validated against 

other large-scale high-pressure pipeline decompression tests for both CO2 and 

hydrocarbons, such as CO2PipeHaz project (Woolley et al., 2014) and CO2QUEST 

project (Brown et al., 2014b), demonstrating broad capabilities. 
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2.1.3.1.4 Computational Runtimes 

Mahgerefteh et al. (1999) performed a study to investigate the computational efficiency 

of the UCL model. This involved 1) performing simulation tests using three different 

numerical grid settings, and 2) comparing the corresponding CPU times and simulation 

accuracies. For the case study, the Piper Alpha tragedy (Cullen, 1990) involving the 

FBR failure of a 54 km length, 419.1 mm i.d. pipeline transporting natural gas initially 

at 117 bar and 283 K, was adopted. 

Figure 2.8 presents the simulation test results, demonstrating the effect of using 

different grid settings on the simulation accuracy. Curve A shows the test results using 

a Simple Grid System (SGS) with a uniform grid size of only 10 m. The SGS employs 

the finest grid size among the tested grid settings and is therefore taken as a reference 

for accuracy. Curves B and C on the other hand are the results for the CNGS-MOC grid 

settings using respectively 500 and 250 m coarse grids. The details of the three tested 

grid settings and the corresponding test CPU times are summarised in table 2.4. All the 

simulations were performed using a DEC Alpha server 8400 5/440. 
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Figure 2.8: Predicted Piper Alpha FBR release rate-time profiles for three tested 

grid settings. Curve A: SGS (Grid size = 10 m); Curve B: second order CNGS-

MOC (Grid size = 500 m); Curve C: second order CNGS-MOC (Grid size = 250 

m). (Mahgerefteh et al., 1999). 

Table 2.4: Summary of the three tested grid settings and the corresponding test 

CPU times (Mahgerefteh et al., 1999). 

Test no. Grid settings CPU time (h) 

1 SGS; Uniform grid size = 10 m 250 

2 Second order CNGS-MOC; Coarse grid size = 500 m 3.75 

3 Second order CNGS-MOC; Coarse grid size = 250 m 12.2 

From figure 2.8, it can be observed that both CNGS-MOC settings deliver good 

agreements with the reference data. Turning to table 2.4, the CPU times for both test 2 

(3.75 h) and 3 (12.2 h) adopting the CNGS-MOC grid settings are orders of magnitude 

lower than that of the reference test (250 h). The level of reduction on the other hand is 
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dependent on the grid size employed. The above suggests that the use of the UCL model 

applying the CNGS-MOC solution method can lead to significant CPU time reduction 

while retaining high-level simulation accuracy. Nevertheless, as the simulated pipeline 

becomes longer, the CNGS-MOC method unavoidably requires finer numerical 

discretisation of the flow field to retain simulation accuracy, therefore leading to 

drastically increased computational runtimes. The above makes the use of the UCL 

model unattractive in practice especially when multiple simulations may be required or 

where high-speed data processing computing power may not be readily available. 

2.1.3.2 Vessel Blowdown Model (VBM) 

The VBM developed by Mahgerefteh et al. (2011) is considered the most recent 

analytically based model aimed at addressing the issue of long computational runtimes 

associated with numerically based models. Reconstructing the fluid flow dynamics by 

assuming a pipeline as a vessel, the model has the capability of delivering exceptionally 

low computational workloads. In the following, the detailed background theory, 

verification and computational runtimes of the VBM are reviewed. 

2.1.3.2.1 Theory 

The VBM approximated the transient outflow from a punctured pipeline as that 

emanating from a zero-dimensional vessel through an orifice, where the momentum of 

the fluid upstream the release point was neglected. Hence, in the mathematical 

formulation of the fluid dynamics, the momentum equation was dropped. Adopting 

HEM assumption, the corresponding mass and energy conservation equations are 

respectively written as: 

𝑑𝑀

𝑑𝑡
+ 𝐺 = 0 2.42 
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1

2
𝑑(𝑢2) + 𝑔𝑑𝑧 + 𝑑ℎ = 𝛿𝑞 − 𝛿𝑊𝑆 2.43 

where 𝑀, 𝐺, 𝑢 and 𝑔 are respectively the mass, mass discharge rate, fluid velocity 

and gravitational acceleration. 𝑧 , ℎ,  𝑞  and 𝑊𝑆  denote the elevation, fluid specific 

enthalpy, net heat flux into the pipe and shaft work, respectively. 

Neglecting the fluid momentum, however, renders the VBM unable to handle un-

isolated release scenarios which are highly plausible in real engineering practices. 

To calculate the fluid thermodynamic properties and phase equilibrium data, the PR-

EoS (Peng and Robinson, 1976) was adopted. The straw method (Morin et al., 2012) 

involving establishing an energy balance across the orifice was applied to evaluate the 

releasing flow conditions. 

In solving the fluid flow equations, the following assumptions were made: 

 Sufficiently small puncture diameter; 

 Constant bulk fluid temperature during decompression 

 No initial feed flow; 

 Static bulk fluid during decompression; 

 Isentropic expansion across the releasing point. 

Based on the above assumptions, the simulation of the depressurisation process was 

then carried out using pressure intervals involving a series of equal pressure reductions. 

2.1.3.2.2 Verification 

The VBM was verified against the simulation data produced using the extensively 
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validated numerically based UCL model (see Section 2.1.3.1) based on the failures of 

a hypothetical pipeline for two types of inventories. These included a permanent gas 

consisting of 100 mol% methane and a two-phase mixture containing 50 mol% methane 

and 50 mol% n-pentane. An extensive range of failure cases varying pipe length and 

puncture to pipe internal diameter ratio, 𝑑/𝐷 were simulated to provide an in-depth 

examination of the model performance. The relevant prevailing conditions, pipeline 

characteristics and the range of parameters used in the verification are presented in table 

2.5. 

Table 2.5: Prevailing conditions and pipeline characteristics of the hypothetical 

pipeline failure cases used for the VBM verification (Mahgerefteh et al., 2011). 

Parameter Value 

Pipe length (m) 100; 1000; 5000 

Pipe internal diameter (mm) 300 

Pipe wall thickness (mm) 10 

Pipe roughness (m) 0.00005 

Pipe wall material Carbon steel 

Initial pressure (bar) 21 

Initial temperature (K) 300 

Ambient pressure (K) 283 

Puncture location Mid length 

Discharge coefficient 1 

Puncture to pipe internal diameter ratio, 𝑑/𝐷 0.1; 0.2; 0.3; 0.4 

Figures 2.9 (a) and (b) respectively show the predicted cumulative mass released-time 

profiles for the permanent gas and two-phase mixture following puncture with different 

puncture to pipe internal diameter ratios, 𝑑/𝐷 ranging from 0.1 to 0.4. The data were 

produced for a 100 m length pipeline. The dotted lines show the simulated results of 

the UCL model. The solid lines show those of the VBM. 
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(a) 

 

(b) 

Figure 2.9: Comparison of cumulative mass released-time profiles based on the 

UCL model (data points) and VBM (solid lines) predictions for different 𝑑/𝐷 for 

100 mol% methane (a) and 50 mol% methane & 50 mol% n-pentane (b) 

(Mahgerefteh et al., 2011). 

As may be observed, for both inventories, the VBM produces excellent agreement with 

the predictions of the UCL model. The largest discrepancies reported are ca. +4.3% for 

the permanent gas and +1.5% for the two-phase mixture. The better performance of the 

VBM in the two-phase mixture may be attributed to its smaller Joule-Thomson 

expansion coefficient, rendering the isothermal bulk fluid assumption (see Section 

2.1.3.2.1) more applicable.  
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Nevertheless, the authors pointed out that the degree of disagreement between the two 

models increased with increasing 𝑑/𝐷 and when the ratio exceeded 0.4, the VBM 

predictions became notably inaccurate. The authors suggested that this was due to that, 

when the ratio increased, the static bulk fluid assumption (see Section 2.1.3.2.1) became 

increasingly inapplicable because of the increased upstream fluid velocity. Ignoring the 

corresponding upstream kinetic energy was therefore the most likely cause of the 

observed discrepancy between the predictions of the two models. 

2.1.3.2.3 Computational Runtimes 

Mahgerefteh et al. (2011) reported the computational runtimes for simulating the 

complete depressurisation of a pipeline for both UCL model and VBM. Their 

comparison is given in table 2.6. The results were produced for three different pipe 

lengths including 100, 1000 and 5000 m (see table 2.5). The selected 𝑑/𝐷 was 0.4 and 

all simulations were performed using a 2.66 GHz, 3.0 GB RAM computer. 

Table 2.6: Comparison in CPU times between the UCL model and VBM 

(Mahgerefteh et al., 2011). 

Inventory Pipe length (m) 
CPU time 

UCL model VBM 

100 mol% methane 

100 4 min 2 s 0.321 s 

1000 35 min 2 s 0.322 s 

5000 4 h 12 min 33 s 0.320 s 

50 mol% methane & 

50 mol% n-pentane 

100 2 h 15 min 5 s 1.022 s 

1000 5 h 34 min 33 s 1.022 s 

5000 12 h 18 min 33 s 1.019 s 

As may be seen, in all tested cases, the computational runtimes for the VBM are orders 

of magnitude smaller than those for the UCL model. This is due to the fact that the 

mathematical formulation of the fluid dynamics for the VBM treats the whole pipeline 
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as a single numerical cell, thereby requiring no numerical discretisation in solving the 

flow equations as in the UCL model. The number of calculations involved is therefore 

significantly reduced, resulting in negligible computational runtimes. 

2.1.3.3 Concluding Remarks 

In the above review, the effectiveness of the numerically and analytically based HEM 

models and their limitations in simulating pipeline decompression have been 

demonstrated. Of the two types of solution techniques, the numerically based models 

are well suited for handling a wide range of failure scenarios such as different failure 

modes (e.g., FBR, puncture), emergency shut-down valve closure dynamics and pipe 

elevation. Nevertheless, they have the fundamental drawback of long computational 

runtimes. In addition, employing iterative methods for evaluating the fluid 

thermodynamic properties, the numerically based models can become increasingly 

computationally demanding for simulating long pipelines, especially for multiple 

simulations or where high-speed data processing computing powers are not readily 

available. The above makes the use of numerically based models unattractive in practice. 

In light of addressing the above issue, several analytically based pipeline 

decompression models such as Norris and Puls (1993), Norris (1994), Webber et al. 

(1999) and VBM (Mahgerefteh et al., 2011) whose fluid flow equations are constructed 

based on ODEs have been developed. Apart from their exceptionally low computational 

workloads, in some specific cases, they perform equally well as the numerically based 

models. Despite the above, however, the analytically based models generally have 

limited applicability due to their pertaining simple assumptions such as constant bulk 

fluid temperature. As such, further study can be performed to improve their 

applicability to practical engineering problems. 
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2.2 Configuring Emergency Shutdown Valves for Pressurised 

Pipelines 

2.2.1 Introduction 

As mentioned in Chapter 1, the failure of pressurised pipeline can lead to the release of 

large amounts of hazardous inventories, posing significant risks to life, environment, 

and property. To mitigate such risks, inline Emergency Shutdown Valves (ESDVs) are 

extensively employed as a front-line mitigation tool. Configuring the ESDVs along the 

pipe length considering their type, number, operational settings and positioning for 

striking a balance between the risk reduction against valve costs presents significant 

decision-making challenges. To determine the optimal ESDV configuration, a two-step 

process first involving performing a Quantitative Risk Assessment (QRA) study for 

pressurised pipeline and subsequently solving a carefully defined Multi-Objective 

Optimisation (MOO) problem based on the results of QRA may be adopted. 

In light of the above, the following review has been split into three parts. The first part 

comprises a detailed review of the key building blocks for QRA with a focus on CO2 

pipelines, mainly including the methods for calculating the pipeline failure probability, 

models typically employed for determining the magnitude of the failure consequences 

and how the above two are combined to evaluate the risk levels. The second part 

presents an in-depth description of the background theory of MOO. This part chiefly 

includes how an MOO problem can be defined and solved according to the subjective 

preferences of decision makers. Finally, case example studies focusing on the 

application of MOO in configuring ESDVs and in optimising the design for e.g. the 

network and compressor of pressurised pipelines are presented. 

2.2.2 Quantitative Risk Assessment for Pressurised CO2 Pipelines 

Quantitative Risk Assessment (QRA) is a formal and systematic risk analysis tool to 
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estimate the likelihood and consequences of hazardous events, and expressing the 

results quantitatively as risk to people, environment, property or business. QRA also 

assesses the robustness and validity of quantitative results, by identifying critical 

assumptions and risk driving elements. QRA studies are typically required for 

production, processing, transportation, and storage facilities. They contribute to 

improved decision-making by highlighting the accident scenarios that contribute most 

to the overall risk. This is carried out in order to demonstrate if the risk acceptability 

criteria have been met and that the residual risks are as low as reasonably practicable. 

A general QRA process (given in figure 2.10) can be summarised as follows.  

 

Figure 2.10: A typical QRA process (Smith, 2021). 

Hazard Identification (HAZID) 

study

Safety Integrity Level (SIL) 

determination

Failure frequency 

calculations

Consequence 

analysis

Individual and societal risk 

calculations

Risk tolerable?

Risk reduction measures
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First, a Hazard Identification (HAZID) study is performed to identify a series of 

potential hazardous scenarios that could lead to significant adverse consequences. 

Second, the Safety Integrity Level (SIL) of the facility under consideration is 

determined using SIL techniques such as calibrated risk graph and layers of protection 

analysis. These techniques typically involve 1) estimating the frequencies of the 

identified hazardous scenarios that can lead to loss of containment and 2) calculating 

the magnitude of the corresponding consequences using relevant consequence models. 

Third, the calculated frequencies and magnitude of consequences are combined to 

assess the individual and societal risk levels. Finally, the results are compared with the 

tolerable risk levels of the decision makers to determine the safe distances and to decide 

if further safety measures need to be taken. 

QRA enables the investigation of possible failure scenarios accounting for their 

interactions, hence providing an in-depth and systematic understanding of the system 

failure (Apostolakis, 2004). Nevertheless, lack of data and constraints in data quality, 

time, personnel, or resources may render QRA unreliable (Coleman and Marks, 1999). 

In recent years, the growing uptake of Carbon Capture Utilisation and Storage (CCUS) 

worldwide has led to the extensive deployment of pressurised CO2 pipelines. As such, 

QRA has been extensively applied to improve the safety for their operations (see for 

example Lisbona et al., 2014; Teng et al., 2021; Vianello et al., 2016). Albeit unlikely, 

loss of containment events do occur in CO2 pipelines leading to toxic atmospheric 

dispersion at concentrations greater than 7% vol/vol, resulting in adverse effects to the 

population near the failed pipe, such as headache, breathing problems, and even death, 

depending on the concentration presented and duration of exposure (Rusin and Stolecka, 

2015). The use of QRA enables pipeline operators to rationally manage inspection and 

preventive maintenance and is hence important in allocating risk mitigation resources. 

Generally, a reliable QRA for CO2 pipelines requires 1) a robust model to describe the 
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CO2 dispersion process following pipeline failure; 2) the accurate estimation of the 

pipeline failure frequency and 3) appropriately defined failure scenarios for the 

subsequent risk evaluation. These points largely form the basis for the accuracy of the 

risk levels to be assessed and the effectiveness of the subsequent risk mitigation 

strategies to be implemented. 

In view of the above three points, the following section presents a comprehensive 

review consisting of three parts. The modelling approaches for CO2 dispersion are 

briefly summarised in the first part. This is followed by a detailed review of the methods 

for estimating the pipeline failure frequency, given its direct relevance to the current 

work. In the last part, an overview for undertaking the subsequent risk evaluation with 

a focus on defining the failure scenarios is given. 

2.2.2.1 Dispersion Modelling 

The release of CO2 from pressurised pipelines produces a gas cloud that is denser than 

air. The dominant physical effects occurring during the dispersion of the dense gas 

usually include those (e.g. turbulence damping and gravity spreading) that are not 

observed in the case of neutrally or positively buoyant gases (Koopman et al., 1989; 

Markiewicz, 2012). As such, specific models need to be developed to describe the 

atmospheric dense-gas dispersion. 

Generally, four categories of dispersion models with varying physical completeness and 

mathematical complexity are reported in open literature. These include advanced 

models, similarity profile models, empirical models, and modified Gaussian plume 

models. Table 2.7 summarises their top-level features and examples. 
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Table 2.7: Summary of the top-level features and examples of common categories 

of dense-gas dispersion model. 

Category Feature Example 

Advanced 

models 

1) Conservation equations treated 

explicitly in three dimensions; 

2) Computationally expensive;  

3) Full applicability 

SIGMET (England et 

al., 1978), CFX 

(ANSYS, 2011), FLACS 

(GexCon, 2013) 

Similarity 

profile models 

1) Conservation equations 

simplified by averaging cloud 

properties over crosswind plane;  

2) Computationally efficient;  

3) High applicability 

SLAB (Ermak, 1990), 

SLAM (Ott and Nielsen, 

1996), UDM (Witlox 

and Holt, 1999) 

Empirical 

models 

1) Derived based on field test 

observations;  

2) Limited applicability 

McQuaid and Britter 

(1988), VDI (1990) 

Modified 

Gaussian plume 

models 

1) Modified from the conventional 

Gaussian plume model for 

neutrally buoyant gases;  

2) Limited applicability 

Burgess and Zabetakis 

(1973), Clancey (1976) 

Among the above dense-gas dispersion models, two similarity profile models including 

UDM (Witlox and Holt, 1999) and SLAB (Ermak, 1990) are frequently adopted in 

modelling the dispersion of CO2 following pipeline failure (see for example Brown et 

al., 2014c; Dixon et al., 2012; Gant et al., 2014; Papanikolaou et al., 2011; Rusin and 

Stolecka, 2015; Vianello et al., 2016; Woolley et al., 2014). They are relatively 

physically complete, computationally efficient, and commercially accessible, hence 

being capable of delivering reliable QRA within reasonable timeframe. 
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2.2.2.2 Pipeline Failure Frequency Calculation 

The pipeline failure frequency can be defined as the probability of pipeline failure in 

the unit time following the period of normal functioning of the pipe (Woo, 2020). It 

usually adopts the unit of the number of failures per year per unit pipe length (Jo and 

Ahn, 2005). Mathematically, it can be expressed as (Li et al., 2019): 

𝜆0(𝑡) =
𝑑𝑃𝑓(𝑡)

(1 − 𝑃𝑓(𝑡)) 𝑑𝑡
 2.44 

where, 𝜆0(𝑡)  denotes the pipeline failure frequency in times/(km·year). 𝑡  refers to 

the working time of the pipeline. 𝑃𝑓(𝑡) on the other hand, is the failure probability of 

the pipeline of length, 𝐿 at time 𝑡, which is given by: 

𝑃𝑓(𝑡) = 1 − 𝑒−∫ 𝜆0(𝑡)𝐿𝑑𝑡
𝑡
0  2.45 

Existing methods for estimating the pipeline failure frequency can be generally divided 

into three categories, namely the historical failure data analysis, structural reliability 

analysis and expert judgement. Of these methods, the most robust and reliable one is 

historical failure data analysis. This method, however, requires large datasets of real 

incidents, which is often practically problematic for pipelines. To address this, one may 

turn to the other two methods which are both suitable for situations where sufficiently 

detailed and validated historical failure data are not readily available.  

The following presents an elaborated review of the above three methods. 

2.2.2.2.1 Historical Failure Data Analysis 

Where possible, the most commonly adopted method to estimate the failure frequency 
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for pressurised pipelines is based on analysing a large number of historical incident data 

from pipe failure databases. This method involves two major steps.  

The first step is to identify a well-established pipeline failure database where the key 

aspects associated with pipeline failure including the number of incidents, risk exposure 

milage and incident-specific information (e.g. failure cause, failure mode, pipe fluid, 

pipe characteristics) are recorded. Such databases frequently reported in open literature 

include those by: 

 Concawe (Concawe, 2011), EU 

 European Gas Pipeline Incident Data Group (EGIG, 2018), EU 

 United Kingdom Onshore Pipeline Operator's Association (Lyons et al., 2020), UK 

 Pipeline and Hazardous Materials Safety Administration (PHMSA, 2020), US 

 National Energy Board (NEB, 2010), Canada 

 Transpetro (Alves et al., 2018), Brazil 

Other institutions such as PetroChina and Mexican Petroleum Institute have also 

involved in the development of pipeline incident databases (Wang et al., 2013). But 

given that as compared to the above, these databases have relatively poor accessibility 

(some of them are for corporate internal use only), they are in general less popular. 

Once an appropriate database is identified, the second step is to compute the pipeline 

failure frequency by dividing the total number of incidents recorded in the database by 

the total risk exposure time: 

𝜆 =
Total number of incidents

Total risk exposure time
 2.46 
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However, equation 2.46 only gives the overall pipeline failure frequency. Usually in 

QRA practices, the failure frequencies for specific pipelines or failure parameters, such 

as those for a specific failure cause or a pipe section routing through a specific area, are 

needed. The approach to calculate such failure frequencies is similar as that given by 

equation 2.46, that is, dividing the number of incidents recorded for the specific 

parameters of interest by the corresponding risk exposure time data. In practice, the 

most commonly studied parameter of interest is the cause of pipeline failure, typically 

categorised into external interference, corrosion, construction defect, ground movement 

and others/unknown factors (EGIG, 2018). Among these, external interference, also 

referred to as third-party damage, is observed as the most prevalent cause for holes and 

ruptures. In contrast, for pinhole/crack leaks which are comparably smaller scale failure 

modes, corrosion remains the primary cause. 

The resulting data of specific parameters can be further processed to derive easy-to-use 

equations where the specific failure frequency is expressed as a baseline value 

multiplied by several correction factors accounting for the various aspects associated 

with pipeline failure (e.g. pipe internal diameter, failure type). The failure frequency 

can be thus adjusted easily according to the questions at hand. Typical examples of such 

equations include Thomas (1981), de Stefani and Carr (2010) and Li et al. (2019). 

As mentioned above, the validity of the historical failure data analysis method in 

estimating the pipeline failure frequency largely depends on the number of incidents 

being recorded. Apart from this, whether the statistics is detailed enough is also crucial, 

especially when case-specific data are required. It is therefore fundamentally important 

for the failure statistics collecting bodies to record their data in a detailed manner. 

2.2.2.2.2 Structural Reliability Analysis 

The structural reliability analysis method relies on fracture mechanics to determine the 

pipe wall material’s reaction to stresses that are imparted on it. The method usually 
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involves analysing the mechanism of a hazardous event (e.g. corrosion, excavating 

machinery) that will threaten the mechanical integrity of the pipe and potentially lead 

to its failure. A typical process of employing the method to calculate the pipeline failure 

frequency comprises the following steps (Chaplin, 2015a; Li et al., 2019). 

First, well-established statistical models (e.g. normal, Weibull) are applied to capture 

the randomness of the parameters (e.g. operating pressure, pipe wall thickness, pipe 

wall material yield strength) that may affect the failure of a pipe. In this step, the 

probability distribution of each associated parameter is first determined. Second, a limit 

state function (see for example Chaplin, 2017; Melchers, 2005; Pesinis and Tee, 2017) 

providing criteria for determining whether the pipe will fail is defined. A limit state 

function for pipeline failure is usually a mathematical expression used to describe the 

conditions under which a pipeline transitions from a safe state to a failure state. It 

typically defines the boundary between acceptable performance and failure by 

comparing the demand (e.g., applied stress, pressure) with the capacity (e.g., material 

strength, resistance) of the pipeline based on the hazardous event being studied. Third, 

Monte Carlo method is adopted to randomly generate a large number of sets of values 

of the parameters from their corresponding probability distributions. Fourth, each value 

set which corresponds to a specific failure case is applied to the defined limit state 

function to examine the state of the pipe (i.e. whether it fails or not) in this specific case. 

Fifth, the number of cases where the pipe is considered in the state of failure is divided 

by the total number of Monte Carlo iteration performed to obtain the pipe failure 

probability. The resulting failure probability is then multiplied with the hazardous event 

occurrence rate to obtain the pipeline failure frequency. 

The above method can be used without any reference to real failure statistic. But its use 

requires the mathematical modelling of several processes taking place during pipeline 

failure. The method is hence not suitable for handling cases where the pipe failure 

mechanisms are not well understood. 
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2.2.2.2.3 Expert Judgement Method 

The expert judgement method, in its literal sense, refers to estimating the pipeline 

failure frequency based on expert knowledge and experiences. Common methods in 

this category include the Kent grading method (Muhlbauer, 1996), fault tree analysis 

(Watson, 1961), analytic hierarchy process (Saaty, 1977), elimination et choice 

translation reality (Benayoun et al., 1966) and fuzzy comprehensive evaluation based 

on fuzzy mathematics (Zadeh, 1965). 

These methods are essentially a group of decision-making supporting tools usually 

applied in pipeline QRA to assist the estimation of the pipeline failure frequency. 

Typical applications in pipeline failure frequency calculation include those by Wang et 

al. (2008), Yuhua and Datao (2005), Yazdi et al., (2017), Badida et al. (2019), Li et al. 

(2016), Brito et al. (2010) and Miao and Zhao (2012). 

Among these methods, the fault tree analysis is the most extensively adopted one in 

pipeline QRA. Although there is a vast array of literature on the pipeline failure fault 

tree, the details of the fault trees produced by different researchers can be different. 

Even for the same problem, fault trees can differ greatly, hence delivering varied failure 

frequency calculations.  

A common limitation of the expert judgement method is that its use is heavily subjective. 

As such, to properly use the method takes highly trained personnel, hence limiting its 

applicability. The method is usually regarded as an alternative in the case of lacking 

historical failure statistics. 

2.2.2.3 Risk Evaluation 

Two popular measures to evaluate the risk following pipeline failure are individual risk 

and societal risk (Uijt de Haag et al., 2001). The former is usually shown on a risk 

contour plot while the latter is always presented with a Frequency-Number (F-N) curve. 
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Typical examples of the risk contour plot and F-N curve are respectively shown in 

figures 2.11 and 2.12. 

 

Figure 2.11: An example of the risk contour plot (Teng et al., 2021). 

 

Figure 2.12: An example of the F-N curve (Haszeldine et al., 2010). 

2.2.2.3.1 Individual Risk 

The individual risk is defined as the probability of a person becoming a fatality (i.e. 

probability of death) at a given location within a year. It can be estimated by the addition 

of the failure frequency of a failure scenario multiplied by the corresponding probability 

of human death for all possible pipe failure scenarios, given by (Jo and Ahn, 2005):  
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IR = ∑ 𝜆𝑖𝑃𝑑,𝑖
𝑖

 2.47 

where IR refers to the individual risk. The subscript, 𝑖 on the other hand denotes the 

failure scenarios. 𝜆𝑖 and 𝑃𝑑,𝑖 are respectively the overall pipeline failure frequency 

and probability of death for failure scenario, 𝑖. 

The failure frequency is usually determined using the methods reviewed in Section 

2.2.2.2. For CO2 pipelines, despite the fact that their number of incidents are small due 

to the relatively shorter operational experience as compared to hydrocarbon pipelines 

(Gale and Davison, 2004), their failure frequencies are usually calculated based on 

historical failure data analysis where a large number of real incident data are required 

(see Section 2.2.2.2.1). The failure statistics for CO2 pipelines however is often not used 

directly to perform the analysis. Instead, in many studies, those of natural gas pipelines 

are adopted as a proxy (Duncan and Wang, 2014b). The reason for such an analogy 

between CO2 and natural gas pipelines is mainly based on the fact that they both: 

1) use the same grade of carbon steels (typically API 5 X55 to X70 or higher) as pipe 

wall materials (Spinelli and Prandi, 2012); 

2) are welded and installed using the same techniques (Akselsen et al., 2010); 

3) use similar internal and external coatings (Sørensen et al., 2009); 

4) are subject to the same corrosion issues involving the formation of carbonic and 

other acid (e.g. sulfuric, nitric) due to the presence of water and other acid forming 

impurities such as H2S, NO2 (Sim et al., 2014); 

5) use the same cathodic protection for external corrosion mitigation. 

The probability of death corresponding to a given failure scenario is usually obtained 
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using the Probit function, which defines the relationship between the consequence of a 

failure scenario and the corresponding lethality taking into account the human exposure 

duration (Koornneef et al., 2009). The use of the Profit function varies depending on 

the type of fluid being transported in the pipe and how in the event of pipeline failure, 

the escaping material will cause fatalities. In the case of CO2 pipeline failure, the fatality 

is usually the result of people being exposed to high-concentration CO2 in the 

surrounding air (Mahgerefteh et al., 2012b; Martynov et al., 2013; Woolley et al., 2014). 

The corresponding Probit function is hence linked to the CO2 concentration and may 

take the form (McGillivray and Wilday, 2009): 

𝑃𝑟 = −90.80 + 1.01 ln(𝐶8𝑡) 2.48 

where 𝑃𝑟 refers to the Probit value. 𝐶 is the CO2 concentration which can be obtained 

from the dispersion models reviewed in Section 2.2.2.1. 𝑡, on the other hand, is the 

human exposure time. Once the Probit value is obtained, the probability of death for a 

given failure scenario, 𝑃𝑑,𝑖  can then be determined using the curve shown below 

(figure 2.13). 

 

Figure 2.13: Relationship between the Probit value and probability of death (Teng 

et al., 2021). 
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For computational purposes, the use of the curve in figure 2.12 is not convenient. Hence, 

an analytical expression for the curve can be adopted (Crowl and Louvar, 2011): 

𝑃𝑑,𝑖 =
1

√2𝜋
∫ 𝑒−

𝑥2

2

𝑃𝑟−5

−∞

𝑑𝑥 2.49 

2.2.2.3.2 Societal Risk 

In comparison to the individual risk, the societal risk is defined from the societal point 

of view. It concerns the number of fatalities in a given populated area following an 

incident. It is often expressed in the form of a F-N curve where the cumulative failure 

frequency of the failure scenario with 𝑁 or more fatalities is plotted against 𝑁. 

The number of fatalities for a given failure scenario, 𝑁𝑖  is usually calculated by 

integrating the product of probability of death and population density over the area 

affected by pipeline failure, given by (Jo and Ahn, 2005): 

𝑁𝑖 = ∫ 𝜌𝑝𝑃𝑑,𝑖𝑑
 

𝐴𝑖

𝐴𝑖 2.50 

where, 𝜌𝑝 is the population density and 𝐴𝑖 is the affected area. 

The cumulative failure frequency on the other hand is determined by: 

𝐹𝑐 = ∑ 𝜆𝑖𝑢(𝑁𝑖 ≥ 𝑁)
𝑖

 2.51 

where, 𝐹𝑐 represents the cumulative failure frequency of the failure scenario with 𝑁 

or more fatalities. 𝑢(𝑁𝑖 ≥ 𝑁) is the unit function which is equal to 1 if 𝑁𝑖 is greater 

than 𝑁 and 0 if otherwise. 

The societal risk is considered more important than the individual risk (Jo and Ahn, 
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2005). Many regulative requirements for risk acceptability criteria are expressed in the 

form of societal risk (F-N curve). A typical example is illustrated in figure 2.14. 

 

Figure 2.14: Typical F-N curve and UK/Dutch societal risk criteria for a process 

facility (Neunert and Kaufmann, 2012). 

As may be observed from figure 2.14, the societal risk can be ‘acceptable’, ‘intolerable’ 

or ‘tolerable but not acceptable’, depending on the regulative requirement. In the latter 

case, the risk needs to be mitigated according to the as low as reasonably practicable 

principle, that is, the cost involved in reducing the risk further would be grossly 

disproportionate to the benefit gained. 

2.2.2.3.2 Defining Failure Scenarios 

A major challenge facing the risk evaluation for pipeline QRA is defining the failure 

scenarios following pipeline failure. Many associated parameters such as the hole size 

on the pipe, meteorological conditions etc. may vary greatly at the time of pipeline 

failure, leading to different possible failure scenarios (Jo and Ahn, 2005). Whether all 
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these scenarios are reasonably covered in the risk evaluation process is hence 

fundamentally important for the reliability of QRA. 

Key to the above is that the randomness of the associated parameters is properly 

modelled, which requires the use of well-established probability distribution models. 

Below reviews some of the most used ones. 

Normal Distribution 

The normal distribution, also known as the Gaussian distribution, is a type of 

continuous distribution for a real-valued random variable, 𝑥 ∈ ℝ. It is usually denoted 

by N (𝜇, 𝜎2) . The general form of its Probability Density Function (PDF) and 

Cumulative Distribution Function (CDF) are respectively given by (Ahsanullah et al., 

2014): 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒−

1
2
(
𝑥−𝜇
𝜎

)
2

 2.52 

𝐹(𝑥) =
1

2
+

1

2
erf (

𝑥 − 𝜇

√2
) 2.53 

where 𝑓(𝑥) and 𝐹(𝑥) respectively denote the PDF and CDF. 𝜇 and 𝜎 on the other 

hand are respectively the mean and standard deviation of the distribution. erf refers to 

the error function which is given by: 

erf(𝑥) =
2

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡
𝑥

0

 2.54 

The graph of the PDF of normal distribution is a symmetric and bell-shaped curve. The 

normal distribution is suited for modelling parameters whose values are practically 

default but with certain levels of variations, such as the pipe internal pressure, internal 
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diameter, or wall thickness (Chaplin, 2015a). 

Weibull Distribution 

The Weibull distribution (Weibull, 1951), denoted by Wei (𝛼, 𝛽) , is a continuous 

probability distribution for a random variable, 𝑥 ∈ [0,+∞). It is commonly used to 

model failure in engineering applications. Its PDF and CDF respectively take the form 

(Rinne, 2008):  

𝑓(𝑥) = {
𝛽

𝛼
(
𝑥

𝛼
)
𝛽−1

𝑒−(
𝑥
𝛼
)
𝛽

𝑥 ≥ 0

0 𝑥 < 0

 2.55 

𝐹(𝑥) = {1 − 𝑒−(
𝑥
𝛼
)
𝛽

𝑥 ≥ 0
0 𝑥 < 0

 2.56 

where 𝛼  is the scale parameter that stretches or squeezes the Weibull distribution 

graph and 𝛽 is the shape parameter that determines the general shape of the graph. 

Unlike the normal distribution whose graph is symmetric, the Weibull distribution is 

quite flexible and can be used to model both left- and right-skewed data. The Weibull 

distribution has been used to model the probability distribution of the defect length on 

pipe walls in many studies (see for example Chaplin, 2015b; Goodfellow et al., 2012). 

Lognormal Distribution 

The lognormal distribution, usually denoted by ln N (𝜇, 𝜎2) , is a continuous 

probability distribution for a random variable, 𝑥 ∈ (0,+∞)  whose logarithm is 

normally distributed. Its PDF and CDF can be respectively written as (Kissell and 

Poserina, 2017): 
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𝑓(𝑥) =
1

𝜎√2𝜋𝑥
𝑒

−
1
2
(
ln𝑥−𝜇

𝜎
)
2

 2.57 

𝐹(𝑥) =
1

2
+

1

2
erf (

ln 𝑥 − 𝜇

𝜎√2
) 2.58 

Similar as the Weibull distribution, the lognormal distribution has high flexibility, thus 

capable of handling both left- and right-skewed data. The lognormal distribution has 

been used to represent the probability distribution of the yield stress of the pipe wall 

material in the HSE’s PIPIN code for determining the failure frequencies of major 

hazard pipelines (Chaplin, 2015a). 

Continuous Uniform Distribution 

The continuous uniform distribution, or rectangular distribution describes a function 

where a continuous random variable, 𝑥 has an equal probability of occurrence within 

a certain boundary whose lower and upper limits are usually defined respectively by 

parameters, 𝑎 and 𝑏. The distribution is often denoted by U (𝑎, 𝑏) and its PDF and 

CDF respectively take the form (Jabeen and Zaka, 2020): 

𝑓(𝑥) = {
1

𝑏 − 𝑎
𝑎 ≤ 𝑥 ≤ 𝑏

0 otherwise

 2.59 

𝐹(𝑥) = {

0 𝑥 < 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
𝑎 ≤ 𝑥 ≤ 𝑏

1 𝑥 > 𝑏

 2.60 

The continuous uniform distribution is a family of symmetric probability distributions 

whose graphs are symmetric curves. In studying pipeline failures, variables which have 
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an infinite number of equally likely values such as the pipe failure location can be 

described using the continuous uniform distribution. 

2.2.3 Multi-Objective Optimisation 

The optimal solution to a problem can be found via an optimisation process using one 

or more objectives (Gunantara, 2018). Optimisation processes involving finding the 

optimal solution values of more than one desired objective are referred to as Multi-

Objective Optimisation (MOO). In solving MOO problems, the objectives are often 

conflicting. Therefore, the solutions to the problems are usually sought in the presence 

of trade-offs between some contradictory issues. In MOO, there is usually no single 

best solution for all objectives, but rather several solutions. Most real-world 

optimisation problems in mathematics, science or engineering are multi-objective, 

involving multiple criteria to be considered simultaneously (Bechikh et al., 2015). 

MOO technique has found extensive applications in investigating pipeline failures, 

mainly focusing on the reliability-based and risk-informed design, operation, 

maintenance, and regulation of pipe systems (Yu, 2021). Few of such studies, however, 

can be found for CO2 pipelines despite the significantly growing interest in them as part 

of the CCUS chain. 

In the following section, a review of the fundamental theory of the MOO technique is 

presented, with a focus on how an MOO problem can be formulated and solved. 

2.2.3.1 Mathematical Formulation of an MOO Problem  

Mathematically, an MOO problem can be defined as (Coello et al., 2007): 
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Min/Max 𝒇(𝒙) =

[
 
 
 
 
 
𝑓1(𝒙)

𝑓2(𝒙)
⋮

𝑓𝑖(𝒙)
⋮

𝑓𝑛(𝒙)]
 
 
 
 
 

 2.61 

where, 𝑛  is the number of objectives reflected in the 𝑛  objective functions in the 

MOO problem being solved. 𝑓𝑖(𝒙)  is the 𝑖th  objective function and 𝒇(𝒙)  is the 

vector function formed by the 𝑛  objective functions. 𝒙  on the other hand, is the 

vector of optimisation variables, which is given by: 

𝒙 =

[
 
 
 
 
 
𝑥1

𝑥2

⋮
𝑥𝑗

⋮
𝑥𝑘]

 
 
 
 
 

 

Subject to: 𝑥𝑗 ∈ 𝛺 

2.62 

where, 𝑘  is the number of optimisation variables being considered in the MOO 

problem and 𝑥𝑗  denotes the 𝑗th  optimisation variable. 𝛺  on the other hand, 

corresponds to the universe of the optimisation variable, 𝑥𝑗. 

In most MOO problems, there are always restrictions imposed (e.g., physical 

limitations, time restrictions, etc.) in order to consider a certain solution acceptable. All 

these restrictions in general are referred to as constraints. These constraints are usually 

expressed in the form of either mathematical inequalities (Coello et al., 2007): 

𝑔𝑖(𝒙) ≤ 0   𝑖 = 1,2, … ,𝑚 2.63 
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or equalities: 

ℎ𝑗(𝒙) = 0   𝑗 = 1,2, … , 𝑝 2.64 

where 𝑚 and 𝑝 are respectively the numbers of inequality and equality constraints. 

Note that 𝑝 must be less than the number of optimisation variables, 𝑘, because if 𝑝 ≥

𝑘, there are no degrees of freedom left to be optimised and the problem is said to be 

over-constrained. 

2.2.3.2 Solution Methods 

As mentioned above, given the conflicting nature of the objective functions, there is no 

single solution to an MOO problem that is optimal with respect to all objectives 

simultaneously, but rather many different solutions which are optimal may exist. The 

solution methods of an MOO problem can be generally divided into three groups based 

on when the decision makers provide their preferences, including (Coello et al., 2007): 

1) non-interactive methods where the preference information is given before the 

optimisation process (a priori articulation of preferences); 

2) generating methods where the preference information is given after the optimisation 

process (a posteriori articulation of preferences); 

3) interactive methods where the preference information is given during the 

optimisation process (progressive articulation of preferences). 

A detailed review of these solution methods is given below. 

2.2.3.2.1 Non-interactive Methods 

The idea behind the non-interactive methods is to make the MOO problem create a 

single solution by assigning the decision makers’ preference information a priori, i.e. 
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before the results of the optimisation process are known. The preference information is 

thus integrated into the mathematical formulation of the MOO problem itself. Many 

approaches have been developed for the above purpose. The major ones include 

weighing the objective functions (Yang, 1996), changing the dominance definition 

(Molina et al., 2009), formulating a utility function (Malakooti, 1988), and ranking the 

objective functions by priorities (Yang, 2000). 

Among these approaches, the most widely reported in the open literature is weighing 

the objective functions (de Weck, 2004), where the MOO problem is solved by 

translating it back to a single objective problem by aggregating all the objective 

functions being considered in the problem based on the weights assigned to them before 

the optimisation process. The resulting aggregated objective function can be expressed 

as (Murata et al., 1996): 

𝑓𝑎(𝒙) = ∑𝑤𝑖𝑓𝑖(𝒙)

𝑛

𝑖=1

 2.65 

where 𝑓𝑎(𝒙)  denotes the aggregated function. 𝑤𝑖  on the other hand, is the weight 

assigned to objective function 𝑓𝑖(𝒙) . The weight of an objective function will 

determine the solution to 𝑓𝑎(𝒙) and shows the performance priority (Dodgson et al., 

2009). Objective functions that are assigned with larger weights have higher priorities. 

In general, there are three approaches to assign the wights, namely the equal weighing, 

Rank Order Centroid (ROC) weighing and Rank Sum (RS) weighing (Jia et al., 1998). 

Equal weighing, in its literal sense, means that the weights are assigned equally between 

objective functions. Mathematically, it can be expressed as (Dawes and Corrigan, 1974): 

𝑤𝑖 =
1

𝑛
 2.66 
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ROC weighing on the other hand, is normally used in the situation where the rank order 

of the true weights is known but no other quantitative information between the weights 

is further given. This approach assumes that the weights are uniformly distributed on 

the simplex of rank order weights, 𝑤1 ≥ 𝑤2 ≥ ⋯ ≥ 𝑤𝑛 ≥ 0  where ∑ 𝑤𝑖𝑖 = 1 , and 

are hence calculated using (Barron and Barrett, 1996): 

𝑤𝑖 =
1

𝑛
∑

1

𝑘

𝑛

𝑘=1

 2.67 

RS weighing is adopted when the quantitative information about the weights is known. 

Accordingly, it puts each objective in a proportional position and the corresponding 

weight is calculated using (Einhorn and McCoach, 1977): 

𝑤𝑖 =
2(𝑛 + 1 − 𝑖)

𝑛(𝑛 + 1)
 2.68 

The interactive methods are considered relatively simple but a major limitation of theirs 

is that the decision makers do not necessarily know the possibility of the problem, thus 

leading to inaccurate or even misleading results (Corne and Knowles, 2007). 

2.2.3.2.2 Generating Methods 

In contrast to the interactive methods, the generating methods do not require prior 

preference information from the decision makers. Instead, the preference is given a 

posteriori i.e. after the feasible solutions to the MOO problem are generated. 

This group of methods keeps the elements of the solution vectors independent during 

the optimisation process and will consequently give multiple feasible solutions. These 

solutions are usually plotted in the space of objective functions and are usually 

differentiated using the concept of dominance (Gunantara, 2018). Dominance is defined 
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as follows (Bechikh et al., 2015; de Weck, 2004): 

Let 𝒖 = (𝑢1, 𝑢2, … , 𝑢𝑛)  and 𝒗 = (𝑣1, 𝑣2, … , 𝑣𝑛)  be two vectors and 𝒖  is said to 

dominate 𝒗 if and only if: 

𝒖 ≼ 𝒗 2.69 

if the MOO problem involved is minimisation and: 

𝒖 ≽ 𝒗 2.70 

if the MOO problem involved is maximisation. 

where the symbols ≼ and ≽ respectively denote ‘partially smaller and greater than’. 

In other words, ≼  means ∀ 𝑚 ∈ {1, 2, … ,𝑀}  𝑢𝑚 ≤ 𝑣𝑚  and ∃ 𝑚 ∈ {1, 2, … ,𝑀} 

where 𝑢𝑚 < 𝑣𝑚 . Conversely, ≽  means ∀ 𝑚 ∈ {1, 2, … ,𝑀}  𝑢𝑚 ≥ 𝑣𝑚  and ∃ 𝑚 ∈

{1, 2, … ,𝑀} where 𝑢𝑚 > 𝑣𝑚. 

Following the above definition, a solution is considered dominated if in the objective 

space, there exists another solution whose objective function dominates that of the said 

solution. If otherwise, the solution is non-dominated. The non-dominated solutions are 

achieved when improving one objective function can only be done by compromising at 

least another one, hence presenting the optimal trade-offs between the different 

objectives. These solutions are also called Pareto optimal solutions. 

In mathematical terms, a solution 𝒙 ∈ 𝛺 is said to be Pareto optimal with reference to 

𝛺  if and only if there exists no other solution 𝒙′ ∈ 𝛺  for which 𝒇(𝒙′)  dominates 

𝒇(𝒙).  

The collection of Pareto optimal solutions is called Pareto set which is mathematically 
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defined as: 

𝒫∗ ≔ {𝒙 ∈ 𝛺|¬∃ 𝒙′ ∈ 𝛺 𝒇(𝒙′) ≼ 𝒇(𝒙)} 2.71 

where 𝒫∗ denotes the Pareto set. 

When plotted in the objective space, the set of Pareto optimal solutions is collectively 

referred to as the Pareto front. Mathematically, the Pareto front can be defined as: 

𝒫ℱ∗ ≔ {𝒇(𝒙)|𝒙 ∈ 𝒫∗} 2.72 

where 𝒫𝐹∗ denotes the Pareto front. 

Once the set of Pareto optimal solutions is obtained, preference criteria of the decision 

makers can be imposed to generate the region of interest on the Pareto front, which 

essentially represents the set of optimal solutions preferred by the decision makers. 

An illustration of a typical solution space using the generating methods based on two 

objective functions (two-dimensional) is demonstrated in figure 2.15, showing the 

Pareto front and dominated & non-dominated (Pareto optimal) solutions. Also 

presented in the figure is the Utopia point which is an infeasible solution point that 

optimises all the objective functions individually. 



                                   DEPARTMENT OF CHEMICAL ENGINEERING 

- 71 - 

 

 

Figure 2.15: Illustration of Pareto front for two objective functions (Gunantara, 

2018). 

Mathematically, the Utopia point, denoted by 𝓏𝑈 = (𝓏1
𝑈, 𝓏2

𝑈, … , 𝓏𝑖
𝑈, … , 𝓏𝑛

𝑈) , is 

expressed as: 

𝓏𝑖
𝑈 = Min

𝒙∈𝛺
𝑓𝑖(𝒙)    𝑖 = 1,2, … , 𝑛 2.73 

The Utopia point can be used for locating the optimal solution on the Pareto front if no 

region of interest is designated. This is usually done by finding the point on the Pareto 

front that is closest to the Utopia point in the Euclidian-distance sense (Ozçelebi, 2006). 

The main goal of the generating methods is to find the Pareto front or a well-converged 

and well-distributed approximation of it from which the decision makers can select the 

optimal solution based on their subjective preferences. Using this group of methods, 

the decision makers usually have a clearer understanding of the trade-offs between the 

objectives. Nevertheless, as the objectives number increases, solving the corresponding 

MOO problem can be increasingly computationally expensive (Khare et al., 2003). 

Typically, most of the evolutionary MOO algorithms belong to this group (Yu, 2021). 
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2.2.3.2.3 Interactive Methods 

Methods where the preference information is expressed during the optimisation process 

represent a third, albeit less well-developed group. In this group of methods, the 

decision makers are able to participate and direct the optimisation process by modifying 

their preferences based on the domain knowledge acquired. These methods usually 

operate in the following three stages: 1) finding a non-dominated solution; 2) getting 

the reaction of decision makers regarding this non-dominated solution and modifying 

the preferences of the objectives, accordingly; 3) repeating steps 1) and 2) until the 

decision makers are satisfied or no further improvement is possible. 

In comparison with the non-interactive and generating methods, the interactive methods 

are in general less computationally demanding as only those Pareto optimal solutions 

that the decision makers are interested in are generated during the optimisation process 

(Wang et al., 2017). Typical examples of this group include the probabilistic trade-off 

development method (Goicoechea et al., 1979a), STEP method (Goicoechea et al., 

1979b), and sequential multi-objective problem solving method (Monarchi et al., 1973). 

2.2.4 Applications of MOO for Pressurised Pipelines 

In the preceding sections, comprehensive reviews focusing on 1) the key building 

blocks for CO2 pipeline QRA and 2) the mathematical formulation & solution methods 

of an MOO problem are presented. In the following section, selected examples for the 

applications of MOO in configurating ESDVs and for optimising the design for 

pressurised pipeline are reviewed and discussed. 

2.2.4.1 Brown et al. (2014c) 

Brown et al. (2014c) proposed an MOO methodology for optimising the ESDV spacing 

for CO2 pipelines as a trade-off between the risk reduction against the valve installation 

and maintenance costs. Mathematically, the MOO problem is summarised as: 
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Min
𝑑∈𝐷

𝐽1(𝑑), 𝐽2(𝑑) 2.74 

where, 𝑑  refers to the ESDV spacing. 𝐽1(𝑑)  is the objective function for the risk 

associated with a pipeline failure, and 𝐽2(𝑑)  on the other hand is the objective 

functions defined for the valve installation and maintenance costs. 

In defining 𝐽1(𝑑), the failure scenario was assumed to be the FBR of a hypothetical 96 

km length, 571.2 mm i.d. pipeline transporting dense-phase CO2 initially at 151 bar and 

303 K. Other pipeline characteristics and fluid conditions are summarised in table 2.8. 

To obtain the FBR failure consequences, the pipeline decompression model developed 

by Mahgerefteh et al. (1999) coupled with the SLAB model (Ermak, 1990) for dense-

gas dispersion was employed. 𝐽1(𝑑) was then defined as the area bounded by the 7% 

vol/vol concentration contour of the dispersing CO2. 

Table 2.8: Pipeline characteristics and fluid conditions for the FBR failure scenario 

(Brown et al., 2014c). 

Parameter Value 

Pipe external diameter (mm) 610 

Pipe wall thickness (mm) 19.4 

Pipe wall roughness (mm) 0.005 

Pipe length (km) 96 

Pipe angle Horizontal 

Pipe upstream condition Reservoir (Constant pressure) 

Pipe downstream condition No back flow 

Feed pressure (bar) 151 

Feed temperature (K) 303 

Ambient temperature (K) 283 



                                   DEPARTMENT OF CHEMICAL ENGINEERING 

- 74 - 

 

𝐽2(𝑑) on the other hand, was calculated using the following equation (Seider et al., 

2004): 

𝐽2(𝑑) =
𝑉𝑃𝑁𝑟𝑑(1 + 𝑟𝑑)𝑦𝑟𝐿

((1 + 𝑟𝑑)𝑦𝑟+1)𝑑
 2.75 

where, 𝑉𝑃𝑁 is the present net value of a single ESDV cost. 𝑟𝑑 is the discount rate. 𝑦𝑟 

is the average lifetime of the ESDV and 𝐿 is the overall length of the pipe. 

To solve the MOO problem described above, 30 different ESDV spacings, ranging from 

5 to 40 km were sampled. The ESDVs were assumed to close 900 s following pipeline 

failure at a rate of 1.904 cm/s. The values used for 𝐽2(𝑑) were respectively 𝑉𝑃𝑁 =

15,556 €, 𝑟𝑑 = 0.035 and 𝑦𝑟 = 10, following Medina et al. (2012). 

Figure 2.16 shows the variation of the shape of the 7% vol/vol CO2 concentration 

contour with time following pipeline failure. Figure 2.17 on the other hand presents the 

Pareto front of the MOO problem showing the variation of normalised risk, 𝐽1 as a 

function of normalised ESDV costs, 𝐽2. 

 

Figure 2.16: Variation of the shape of the 7% vol/vol CO2 concentration contour 

with time following pipeline failure (Brown et al., 2014c). 
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Figure 2.17: Pareto front of the MOO problem showing the variation of normalised 

𝐽1 as a function of normalised 𝐽2 (Brown et al., 2014c). 

As can be observed from figure 2.16, from 180 to 2340 s following the pipeline failure, 

the size of the dispersing CO2 cloud varies greatly. The half width of the cloud increases 

from ca. 10 to 30 m, while its downwind length decreases from ca. 170 to 90 m. As the 

release continues, the area of the cloud bounded by the 7% vol/vol concentration 

contour will gradually shrink with time, corresponding to decreasing risk levels. 

Turning to figure 2.17, the variation of the normalised risk, taken as the area spanned 

by the 7% vol/vol concentration contour, is observed to experience an unexpected 

increase (from ca. 0.65 to 0.95 ) as the normalised costs increase from 0 to ca. 0.1. The 

authors reported that this was not due to real effects but a result of the model integration 

which led to numerical noise observed throughout. Following the unexpected increase, 

the normalised risk decreases hyperbolically to ca. 0.2 at a normalised cost of ca. 0.5 

and approaches 0 at a normalised area of 1, as expected. The results imply that the 

hazard reduction obtained by increasing the number of valves becomes marginal above 

a certain range, indicating the existence of a threshold beyond which decreasing valve 

spacing provides little protection with substantial costs. 
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2.2.4.2 Yu et al. (2022) 

The methodology proposed by Brown et al. (2014c) only considered the valve spacing 

as the optimisation variable. However, apart from valve spacing, other essential 

parameters of ESDVs such as their type and operational settings must also be 

considered for a valve optimisation problem. Inevitably, considering more optimisation 

variables leads to increased mathematical complexity whilst making solutions difficult 

to visualise and analyse. To overcome this limitation, variable reduction techniques can 

be adopted to identify the redundant optimisation variables that can be omitted. 

In light of the above, Yu et al. (2022) developed an MOO methodology incorporating 

variable reduction techniques for selecting the optimal inline ESDV configuration for 

high-pressure pipelines for striking a balance amongst three objectives, namely, the 

ESDV capital cost, ESDV failure rate and risk associated with pipeline failure. 

The MOO problem involved can be written as: 

Min
𝒙∈𝛺

𝐽1(𝒙), 𝐽2(𝒙), 𝐽3(𝒙) 2.76 

where, 𝒙 is the vector of the independent optimisation variables representing the inline 

ESDV configuration.  

Using variable reduction techniques enabled the proposed methodology to handle 

multiple optimisation variables simultaneously. In this study, six optimisation variables 

including the ESDV type, activation pressure, combination, quantity & spacing and the 

failure location were considered for the MOO problem. The objective functions, 𝐽1(𝒙), 

𝐽2(𝒙) and 𝐽3(𝒙) on the other hand were respectively defined as follows. 

𝐽1(𝒙), representing the risk associated with a pipeline failure, was defined as the total 

inventory escaping prior to complete valve closure following pipeline failure. 
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Mathematically, it is given by: 

𝑀𝑡𝑜𝑡𝑎𝑙 = ∫ 𝐺𝑑𝑡
𝑡𝑐

0

+ 𝐴𝑃 ∫ 𝜌(𝑥, 𝑡𝑐)𝑑𝑥
𝑑

0

 2.77 

where, 𝑀𝑡𝑜𝑡𝑎𝑙 denotes the total inventory loss. 𝐺, 𝑡𝑐, 𝑑 and 𝐴𝑃 are respectively the 

transient mass discharge rate, valve closure time, ESDV spacing and pipe cross-section 

area. 𝑀𝑡𝑜𝑡𝑎𝑙  was computed using the pipeline decompression model developed by 

Mahgerefteh et al. (1997) accounting for the impact of the valve closure dynamics. 

𝐽2(𝒙), is the total annual cost of ESDVs, which was calculated using the same equation 

adopted by Brown et al. (2014c), given by equation 2.75. 

𝐽3(𝒙), referring to the failure rate of the ESDV system installed along the pipe, was 

expressed as the total unavailability of the ESDV system. In the study, the failure 

scenario was assumed to be the FBR of a real 555 km length, 1016 mm i.d. natural gas 

transmission pipeline planned by China Petroleum Pipeline Engineering Corporation 

(CPPEC, 2012). The pipeline passes through several highly populated regions in China 

and the study focused on the first section of the line, from Harbin to Dehui, spanning a 

total length of 150.2 km. The detailed pipeline characteristics and prevailing conditions 

for this section are summarised in table 2.9. 
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Table 2.9: Pipeline characteristics and prevailing conditions for the CPPEC planned 

Harbin-Dehui natural gas transmission pipeline (Yu et al., 2022). 

Parameter Value 

Pipe outer diameter (mm) 1051 

Pipe wall thickness (mm) 17.5 

Pipe roughness (mm) 0.005 

Pipe length (km) 150.2 

Feed pressure (bar) 80 

Feed temperature (K) 307.24 

Heat transfer coefficient (kW/m2K) 5 

Pipe upstream condition Reservoir (Constant pressure) 

Pipe downstream condition Closed 

Ambient pressure (bar) 1 

Ambient temperature (K) 293.15 

In solving the above MOO problem, the principal component analysis, one of the most 

frequently reported variable reduction techniques in open literature, was first applied to 

discard the redundant optimisation variables. This involved 1) converting the set of 

inter-related optimisation variables into a set of uncorrelated variables known as 

Principal Components (PCs) via orthogonal transformation process; 2) computing the 

eigenvectors and eigenvalues of the PCs measuring the amount of variance carried in 

each PC and 3) based on the variances computed from 2), determining the number of 

PCs preserving sufficient information contained in the original variables based on the 

90% total variance criterion, that is, the number of PCs is considered sufficient if their 

variances combined account for more 90% of the variances of all PCs. Mathematically, 

the criterion is given by (Cadima and Jolliffe, 2001): 
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𝑃𝑟𝑘 =
∑ Variance𝑖

𝑘
𝑖=1

∑ Variance𝑖
𝑘
𝑖=1

=
∑ Variance𝑖

𝑘
𝑖=1

tr(𝐶𝑜𝑣)
≥ 90% 2.78 

where 𝑃𝑟𝑘 denotes the cumulative proportion of the variance explained by 𝑘 PCs. 𝑘 

is the number of selected PCs that preserve enough information contained in the original 

variables. 𝐶𝑜𝑣 on the other hand, is the covariance matrix of the original variables. 

Based on the selected number of PCs, Yanai’s Generalised Coefficient of Determination 

(GCD) criterion (Ramsay et al., 1984) was then employed to select the best subset of 

the original variables for the subsequent multivariate analysis. Briefly, the GCD is 

defined as the cosine of the angle between the matrices of orthogonal projections on 

two subspaces, in which the degree of similarity between those subspaces is measured. 

The GCD criterion adopts the following algebraic form (Cadima and Jolliffe, 2001): 

GCD =
1

𝑘
∑(𝑟𝑚)𝑖

2

𝑘

𝑖=1

 2.79 

where (𝑟𝑚)𝑖  is the multiple correlations between the 𝑖th  PC and the 𝑘  selected 

variables.  

Combining the above, the best suited subset of the original variables was then 

determined by 1) computing the GCD criteria for all possible subsets of the original 

variables for a given 𝑘 ; 2) calculating the corresponding cumulative variance 

proportion, 𝑃𝑟𝑘 for the subset that presents the maximum GCD criterion value; and 3) 

increasing the value of 𝑘 and repeating steps 1) and 2) until 𝑃𝑟𝑘 reaches 90%. 

Table 2.10 presents the variable selection results based on maximising the GCD 

criterion. The cumulative variance proportion, 𝑃𝑟𝑘, GCD criteria and corresponding 

original optimisation variables described in table 2.8 are summarised. 
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Table 2.10: Variable selection results based on maximising the GCD criterion given 

by equation 2.79 (Yu et al., 2022). 

𝒌 
GCD 

criterion 
Original optimisation variable 𝑷𝒓𝒌 (%) 

2 0.829 ESDV type, spacing 83.27 

3 0.929 ESDV type, spacing, quantity 93.26 

4 0.963 ESDV type, combination, activation pressure, spacing 97.25 

5 0.999 
Failure location, ESDV type, quantity, activation 

pressure, combination 
99.98 

As can be observed from table 2.10, the variance proportion of 3 PCs in total account 

for 93.26% of the total variance of all PCs, surpassing the 90% criterion given by 

equation 2.78. As such, the number of selected PCs, 𝑘 = 3 was then determined in 

this study for the subsequent variable selection process. As clearly shown in the table, 

when 𝑘 = 3 , the GCD is 0.929 and the corresponding best subset of the original 

optimisation variables are the ESDV type, spacing and quantity. 

The three selected optimisation variables were then applied to the MOO problem. 

Figure 2.18 presents the corresponding MOO results showing the variation of the 

normalised total inventory loss (𝐽1 ) and ESDV failure rate (𝐽3 ) as a function of the 

normalised total annual valve cost (𝐽2 ). The data points each represent one ESDV 

configuration (i.e. ESDV type, spacing and quantity). 
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Figure 2.18: ESDV MOO results: Variation of the normalised total inventory loss 

(𝐽1) with normalised total annual valve cost (𝐽2). The colour of each data point 

represents ESDV total failure rate (𝐽3) (Yu et al., 2022). 

As can be observed, with the increase in the annual valve cost, the total inventory loss 

decreases as expected while the ESDV system failure rate increases in general. This 

indicated that lowering the pipeline failure risks by increasing the capital investment in 

valves was essentially at the cost of compromising the valve system availability. Such 

a finding can guide the decision makers to select the optimal ESDV configuration based 

on their subjective preferences for the tolerable risk, cost and valve system reliability. 

The authors also mentioned that though demonstrated only for hydrocarbon pipelines, 

the MOO technique proposed in this study could be easily employed for CO2 pipelines. 

2.2.4.3 Demissie (2015) 

Demissie (2015) employed MOO to find the optimal pipeline and compressor design 

for a natural gas pipe system accounting for two objectives: 1) minimising the power 

consumption and 2) maximising the delivery flow rate. In this study, linear, branched 
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and looped topologies for the design were considered. For each topology, a 

corresponding MOO problem involving unique descriptions of the optimisation 

variables, objectives and constraints was established (see table 2.11). 

Table 2.11: Summary of the studied topologies and the key information of the 

corresponding MOO problems (Demissie, 2015). 

Topology Topology description 

No. of 

optimisation 

variables 

No. of 

constraints 

Linear 

A single supply-delivery network: 2 

compressor stations, each with 6 identical 

compressors arranged in parallel 

8 23 

Branched 
A branched network: 7 pipelines + 3 

compressor stations 
14 40 

Looped 

A single loop network: 6 pipelines + 2 

compressor stations, each with 5 identical 

compressors arranged in parallel 

10 30 

Figures 2.19 (a), (b) and (c) respectively present the MOO results showing the Pareto 

fronts for minimising power consumption and maximising delivery flow rate for linear 

(a), branched (b) and looped (c) topologies. 
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(a) 

 

(b) 

 

(c) 

Figure 2.19: Pareto fronts for minimising power consumption and maximising 

delivery flow rate for linear (a), branched (b) and looped (c) topologies (Demissie, 

2015). 
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As may be observed, for all three studied topologies, the delivery flow rates grow nearly 

logarithmically as the power consumptions increase. The points on the Pareto front 

represent all acceptable optimal design solutions among which, as pointed out by the 

author, the decision makers may select the best one based on their insights regarding 

the network operation and the associated costs. 

2.2.4.4 Concluding Remarks 

A typical MOO problem consists of three major components, namely the optimisation 

variables, objective functions, and constraints. From the above review, it is evident that 

considerable progress has been made to handle complex optimisation problems 

involving a large number of optimisation variables and constraints. In particular, the 

capability of simultaneously considering these variables and constraints has been 

significantly improved. 

However, in the case of configuring ESDVs, the objective functions for representing 

the risk following pipeline failure are usually defined relatively simply. The metrics 

postulated for the above are usually based on the worst-case scenario of pipeline failure 

(i.e. FBR) while the much more probable, but nevertheless smaller magnitude failure 

releases (e.g. leak, puncture) are not considered in the risk estimation, therefore 

rendering the recommendations for ESDV configurations unreliable. As such, to further 

improve the degree of confidence in making such recommendations, how the MOO 

technique can be implemented to account for various failure scenarios (e.g. leak, 

puncture, FBR etc.) in configuring ESDVs needs to be studied. 
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Chapter 3: An Analytically Based Pressurised 

Pipeline Decompression Model 

3.1 Introduction 

As mentioned in Chapter 1, to address the long computational runtimes associated with 

simulating fluid decompression following pressurised pipeline failures using 

numerically based models, several analytically based decompression models such as a 

unified outflow model (Norris, 1994; Norris and Puls, 1993) and a quasi-steady state 

model (Webber et al., 1999) have been developed. However, it was shown that the range 

of applicability of the unified outflow model remains unclear and that the quasi-steady 

state model was limited to simulating pure components. 

The Vessel Blowdown Model (VBM) (Mahgerefteh et al., 2011) (reviewed in Section 

2.1.3.2) presents the most recent attempt to address the above limitations. In this model, 

the transient outflow from a punctured pipeline was approximated as that emanating 

from a vessel. The model adopted the classic vessel discharge equations (Coulson et al., 

1999) to simulate the fluid flow dynamics. This essentially defined the decompression 

from a pipe as a solely time-dependent process requiring no numerical discretisation of 

the flow field for seeking solutions to the flow equations. Given this, the CPU times 

were drastically reduced to a negligible level. For example, the simulation of the 

complete depressurisation of a 5 km length, 300 mm internal diameter (i.d.) pipeline 

containing equi-molar methane and pentane following a 120 mm puncture took ca. 1 s 

on a 2.66 GHz, 3.0 GB RAM computer (Mahgerefteh et al., 2011). However, despite 

its exceptionally low computational costs, the VBM has two major limitations. 

First, it cannot handle the highly plausible pipeline failure scenario involving un-

isolated releases where pumping of the pressurised inventory continues despite 

puncture. Second, the VBM becomes unreliable when simulating punctures larger than 
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40% of the pipe internal diameter. This is thought to be as a result of its static bulk flow 

assumptions, limiting its applicability. 

In light of the above, this chapter describes the development and testing of a Modified 

Vessel Blowdown Model (MVBM) addressing the above limitations of the VBM. The 

proposed model approximates the transient outflow from an un-isolated pipeline as the 

blowdown from a vessel with inflow. The fluid flow equations are modified from the 

standard vessel discharge equations (Coulson et al., 1999) by incorporating additional 

mass and energy terms accounting for the effect of inflow. The fluid/wall friction effect 

is accounted for by a correlation used for calculating the pressure drop for isothermal 

steady state flow (Mahgerefteh et al., 1999). This, along with the assumption that the 

flow inside the pipe remains quasi-steady state during decompression, is employed to 

evaluate the flow conditions upstream the failure plane which in turn serve as the 

boundary conditions for modelling the transient mass discharge rate following pipeline 

failure.  

The model is tested against the extensively validated but computationally demanding 

numerically based University College London (UCL) model (reviewed in Section 

2.1.3.1) based on simulating the un-isolated releases of a hypothetical pipeline 

containing pure methane initially at 21 bar and 300 K. Using the same case study, the 

MVBM is also applied to simulate isolated releases. The results for isolated releases 

are verified against the predictions by both UCL model and VBM. The simulation runs 

for the above are based on a mid-way puncture covering a wide range of pipeline failure 

scenarios varying inflow rate (1 to 7.5 kg/s), pipe length (100 to 5000 m) and puncture 

to pipe internal diameter ratio (0.2 to 0.8). Following the testing, the CPU times of the 

MVBM for simulating the above failure scenarios are compared against those obtained 

using the UCL model.  

This chapter is organised as follows. The theoretical basis for the development of the 
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MVBM, including the fluid flow dynamics, physical properties, initial & boundary 

conditions, and algorithm is first presented in Section 3.2. This is followed by the results 

for the verification of the MVBM against both UCL model and VBM in Section 3.3. In 

Section 3.4, the computational runtimes of the MVBM are analysed. Conclusions are 

drawn in Section 3.5. 

3.2 Theory 

The UCL model and VBM employed in the verification tests have been respectively 

reviewed in detail in Sections 2.1.3.1 and 2.1.3.2. As such, the description of their 

theories is omitted here. In the following section, the theoretical development of the 

MVBM is detailed. 

3.2.1 The Discharge Model 

A schematic representation of the outflow from a horizontal pressurised pipeline is 

given in figure 3.1, indicating the pertinent fluid properties used in the mathematical 

development of the new analytically based pipeline decompression model. 

 

Figure 3.1: Schematic representation of the outflow from a horizontal pressurised 

pipeline indicating the pertinent fluid properties required for the mathematical 

development of the MVBM. The symbols are defined in Sections 3.2.1 to 3.2.5. 
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To avoid numerical discretisation in solving the flow equations to maintain a high level 

of computational efficiency, the standard analytically based vessel discharge equations 

adapted for the HEM assumption (Martynov et al., 2014) are employed to describe the 

outflow from a horizontal pressurised pipeline following its failure. Written in integral 

form, the corresponding mass and energy conservation equations are given by: 

𝑑𝑀𝑜

𝑑𝑡
= −𝐺𝑜𝑟𝑖 3.1 

𝑑𝑀𝑜𝑒𝑜

𝑑𝑡
= −𝐺𝑜𝑟𝑖ℎ𝑜𝑟𝑖 + 𝑄̇ 3.2 

where 𝑀 and 𝑒 are respectively the mass and specific energy. 𝐺 and ℎ on the other 

hand are respectively the mass discharge rate and specific enthalpy. The subscripts, 𝑜 

and 𝑜𝑟𝑖 respectively denote the pipe bulk fluid and orifice fluid conditions (see figure 

3.1). 𝑄̇ on the other hand, refers to the fluid/wall heat transfer, which is defined using 

the Newton’s cooling law (reviewed in Section 2.1.2.4.2, Chapter 2). 

To account for pipe inflow, additional mass and energy terms are incorporated into 

equations 3.1 and 3.2, giving: 

𝑑𝑀𝑜

𝑑𝑡
= 𝐺𝑖𝑛 − 𝐺𝑜𝑟𝑖 3.3 

𝑑𝑀𝑜𝐸𝑜

𝑑𝑡
= 𝐺𝑖𝑛𝐻𝑖𝑛 − 𝐺𝑜𝑟𝑖𝐻𝑜𝑟𝑖 + 𝑄̇ 3.4 

where the subscript, 𝑖𝑛 denotes the inlet fluid condition (see figure 3.1). 𝐸 and 𝐻 

are respectively the specific total energy and specific total enthalpy respectively defined 

by: 
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𝐸 = 𝑒 +
𝑢2

2
 3.5 

𝐻 = ℎ +
𝑢2

2
 3.6 

Using the following thermodynamic relations: 

𝑑ℎ = 𝑇𝑑𝑠 + 𝑉𝑑𝑃 3.7 

ℎ = 𝑒 + 𝑃𝑉 3.8 

where 𝑇, 𝑃, 𝑠 and 𝑉 are respectively the temperature, pressure, specific entropy and 

specific volume. 

And replacing the pipe inventory mass with the product of the density of the pipe bulk 

fluid, 𝜌𝑜 and pipe volume, 𝑉𝑜: 

𝑀𝑜 = 𝜌𝑜𝑉𝑜 3.9 

Equations 3.3 and 3.4 then become: 

𝑉𝑜

𝑑𝜌𝑜

𝑑𝑡
= 𝐺𝑖𝑛 − 𝐺𝑜𝑟𝑖 3.10 

𝜌𝑜𝑉𝑜𝑇𝑜

𝑑𝑠𝑜

𝑑𝑡
= 𝐺𝑖𝑛(𝐻𝑖𝑛 − 𝐻𝑢𝑝) + 𝐺𝑜𝑟𝑖(𝐻𝑢𝑝 − 𝐻𝑜𝑟𝑖) + 𝑄̇ 3.11 

3.2.2 Physical Properties 

The fluid thermodynamic properties and phase equilibrium data are computed using the 
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Peng-Robinson Equation of State (PR EoS) (Peng and Robinson, 1976), the details of 

which are reviewed in Section 2.1.2.5.1, Chapter 2 and are again presented below: 

𝑃 =
𝑅𝑇

𝑉𝑚 − 𝑏𝑝
−

𝑎𝑝𝛼𝑝

𝑉𝑚
2 + 2𝑏𝑝𝑉𝑚 − 𝑏𝑝

2
 3.12 

𝑎𝑝 = 0.45724
𝑅2𝑇𝑐

2

𝑃𝑐
 3.13 

𝑏𝑝 = 0.07780
𝑅𝑇𝑐

𝑃𝑐
 3.14 

𝛼𝑝 = (1 + (0.37464 + 1.54226𝜔 − 0.26992𝜔2)(1 − 𝑇𝑟
0.5))

2
 3.15 

𝑇𝑟 =
𝑇

𝑇𝑐
 3.16 

The number of the fluid phases present in the flow during pipeline decompression is 

determined by the stability test based on the Gibbs tangent plane criterion (Michelsen, 

1982). The properties of a two-phase mixture are handled based the Homogeneous 

Equilibrium Mixture (HEM) assumption, that is, the pressure, temperature and velocity 

are identical across phases. The pseudo properties including the heat capacity, specific 

volume, energy, and entropy of two-phase mixtures are calculated based on mass-

averaged pure liquid and pure gas properties obtained from PR EoS: 

𝜙𝑓 = 𝜙𝑔𝜒 + 𝜙𝑙(1 − 𝜒) 3.17 

where 𝜙𝑓, 𝜙𝑔 and 𝜙𝑙 are the mass-specific properties of a two-phase mixture and its 

constituent saturated vapour and liquid phases, respectively. 𝜒 on the other hand, is 

the fluid quality. 
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The local speed of sound, 𝑐 and 𝜑 are calculated either analytically or numerically, 

depending on the number of phases presented in the flow. For single-phase fluids, the 

speed of sound is determined analytically using (Groves et al., 1978; Picard and Bishnoi, 

1988):  

𝑐2 =
𝛾

𝜅𝜌
 3.18 

𝜑 =
𝜌𝜉𝑇𝑐2

𝐶𝑃
 3.19 

where 𝛾  and 𝐶𝑃  are the ratio of specific heats and isobaric specific heat capacity, 

respectively. 𝜅 is the isothermal coefficient of volumetric expansion, given by (Walas, 

1985): 

𝜅 = −𝜌 (
𝜕𝑉

𝜕𝑃
)

𝑇
 3.20 

𝜉 on the other hand, is the isobaric coefficient of volumetric expansion, which is given 

by: 

𝜉 =
1

𝑉
(
𝜕𝑉

𝜕𝑃
)

𝑇
 3.21 

The term (
𝜕𝑉

𝜕𝑃
)

𝑇
, which is the differentiation of the PR EoS, is given by: 

(
𝜕𝑉

𝜕𝑃
)

𝑇
= (

𝑅𝑇

(𝑉𝑚 − 𝑏𝑝)
2 −

2𝑎𝑝𝛼𝑝(𝑉𝑚 + 𝑏𝑝)

(𝑉𝑚
2 + 2𝑏𝑝𝑉𝑚 − 𝑏𝑝

2)
2)

−1

 3.22 

For two-phase mixtures, defining 𝛾 and 𝐶𝑝 becomes complicated (Mahgerefteh et al., 
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1999) and the speed of sound, 𝑐 and 𝜑 are evaluated numerically: 

𝑐2 =
Δ𝑃

𝜌(𝑇, 𝑃)𝑠 − 𝜌(𝑇∗, 𝑃 − Δ𝑃)𝑠
 3.23 

𝜑 = 𝜌2 (
Δ𝑇

Δ𝜌
)
𝑠

 3.24 

Equation 3.23 is solved for 𝑇∗  iteratively using Newton-Raphson method with the 

following objective function: 

𝜔(𝑛) = 𝑠(𝑇, 𝑃)𝑠 − 𝑠(𝑇∗(𝑛), 𝑃 − Δ𝑃)𝑠 3.25 

where 𝑛 denotes the iteration level. 

3.2.3 Initial Conditions 

Due to fluid/wall friction, the presence of inflow leads to pressure drop inside the pipe 

resulting in the variation of fluid properties along the pipe (Menon, 2005). As a result, 

the fluid conditions upstream the orifice vary at different failure locations. Such 

conditions finally govern the orifice conditions during the release and therefore are 

fundamentally important for the subsequent outflow assessment. Given this, frictional 

losses must be accounted for, especially for long pipelines where the pressure drop is 

significant. 

In the present study, to maintain a coherent analytical scheme, an analytically based, 1-

D, isothermal, steady state model following Mahgerefteh et al. (1999) is employed to 

evaluate the fluid conditions prior to pipeline failure. The corresponding pressure drop 

between two given locations along the pipe, respectively denoted by 1 and 2, is given 

by: 
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𝑃2 = 𝑃1 +
𝛽𝑥,1

[1 −
𝑢2

𝑍𝑅𝑇]
1

(𝑥2 − 𝑥1) 
3.26 

where 𝑍 is the compressibility factor. 𝛽𝑥 on the other hand, is the fluid/wall friction 

which is defined as: 

𝛽𝑥 = −
2𝜌𝑢|𝑢|𝑓𝑤

𝐷𝑖𝑛
 3.27 

The Fanning friction factor, 𝑓𝑤 is determined based on the Reynold’s number: 

𝑅𝑒 =
𝜌𝑢𝐷𝑖𝑛

𝜇𝑓
 3.28 

where, 𝜇𝑓 is the fluid viscosity, which is determined as follows. 

For single-phase flows, the fluid viscosity is calculated using the Ely and Hanley 

scheme for gas and the Dymond and Assael scheme for liquid (Massey, 1983). For two-

phase mixtures, the viscosity is determined based on mass-averaged pure liquid and 

pure gas properties (Mahgerefteh et al., 1999): 

1

𝜇𝑓
=

𝜒

𝜇𝑔
+

(1 − 𝜒)

𝜇𝑙
 3.29 

where the subscripts, 𝑔 and 𝑙 respectively denote the vapour and liquid phases. 

Turning back to the Fanning friction factor, for transition and turbulent flows (4000 < 

𝑅𝑒 < 4×108), it is calculated using Chen’s correlation (Chen, 1979) given its simple 

analytical form and high accuracy when compared to Colebrook correlation (Colebrook, 

1939) which is accepted as the benchmark in Fanning friction factor predictions 
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(Ouyang and Aziz, 1996). For laminar pipe flow (𝑅𝑒 < 2300), the friction factor is 

computed using a standard correlation given by Rohsenow et al. (1998). 

The details of both correlations are reviewed in in Section 2.1.2.4.1, Chapter 2. 

3.2.4 Boundary Conditions 

The flow inside the pipe is assumed to be quasi-steady state following pipeline failure, 

that is: 

𝐺𝑢𝑝 = 𝐺𝑖𝑛 3.30 

where, 𝐺𝑢𝑝 is the mass flow rate upstream the orifice. 

By assuming quasi-steady state flow inside the pipe, equations 3.26 adopted for the 

initial condition calculation (see Section 3.2.3) can then be applied to calculate the 

instantaneous fluid conditions upstream the orifice during pipeline decompression. The 

same assumption was adopted by Webber et al. (1999) in the development of a two-

phase discharge model for pipeline FBR and was found to have good validity following 

the model’s validation against Isle of Grain P40 test (Richardson and Saville, 1996). It 

should be noted that by adopting this assumption, the bulk fluid temperature along the 

pipe is unchanged during decompression. 

The orifice flow conditions are determined using the steady state ‘straw method’ (Morin 

et al., 2012). This method essentially involves establishing an energy balance across the 

orifice assuming isentropic fluid expansion. Mathematically, the energy balance and 

isentropic condition can be respectively expressed as: 

ℎ𝑢𝑝 +
1

2
𝑢𝑢𝑝

2 = ℎ𝑜𝑟𝑖 +
1

2
𝑢𝑜𝑟𝑖

2 3.31 
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𝑠𝑜𝑟𝑖 = 𝑠𝑢𝑝 3.32 

where the subscript, 𝑢𝑝 denotes the condition of the fluid upstream the orifice (see 

figure 3.1). 

For choked flows, equation 3.31 is solved iteratively using the Brent method (Press, 

1992). This involves guessing and updating the choked pressure based on the isentropic 

expansion assumption until equation 3.31 is satisfied. Once a solution is obtained, other 

fluid conditions at the orifice are determined by performing a corresponding pressure-

entropy flash calculation. In this case, the orifice choked fluid velocity, 𝑢𝑜𝑟𝑖  in 

equation 3.31 is equal to the local speed of sound: 

𝑢𝑜𝑟𝑖 = 𝑐 3.33 

For unchoked flows, no iterations are required to determine the fluid conditions at the 

orifice. Here, the orifice pressure, 𝑃𝑜𝑟𝑖 is equal to the pipe external (ambient) pressure, 

𝑃𝑒𝑥𝑡, that is: 

𝑃𝑜𝑟𝑖 = 𝑃𝑒𝑥𝑡 3.34 

Knowing the above, equation 3.31 is then directly solved for 𝑢𝑜𝑟𝑖 . Other fluid 

conditions are computed following a corresponding pressure-entropy flash calculation 

based on the isentropic expansion assumption (equation 3.32). 

A detailed calculation algorithm for evaluating the orifice flow conditions is presented 

in figure 3.2. 
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Figure 3.2: Calculation algorithm for evaluating the orifice flow conditions. 

The inlet condition on the other hand is assumed to correspond to the fluid being 

pumped at a constant flow rate during depressurisation, that is: 

𝐺𝑖𝑛 = 𝑐𝑜𝑛𝑠𝑡 3.35 

3.2.5 Non-isentropic Effect 

The resistance posed by the orifice plane and the fluid/pipe wall heat transfer introduce 
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irreversibility leading to non-isentropic conditions. As a result, the exiting flow will 

undergo a contraction in its area and its actual flow rate is expected to be smaller than 

that under the isentropic condition. The contracted flow is often known as Vena 

Contracta. This effect can be particularly significant in the case of puncture failures. In 

calculating the mass discharge rate, the discharge coefficient is introduced to account 

for the non-isentropic effect, that is: 

𝐺𝑜𝑟𝑖 = 𝐶𝐷𝜌𝑜𝑟𝑖𝑢𝑜𝑟𝑖𝐴𝑜𝑟𝑖 3.36 

where 𝜌𝑜𝑟𝑖 and 𝐴𝑜𝑟𝑖 are the orifice fluid density and orifice area, respectively. 𝐶𝐷 

on the other hand, is the discharge coefficient, given by: 

𝐶𝐷 =
Area of Vena Contracta

Area of orifice
 3.37 

3.2.6 Algorithm 

The calculation algorithm for simulating the pipeline decompression process using the 

MVBM is presented in detail in figure 3.3. 
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Figure 3.3: Detailed calculation algorithm for simulating the pipeline 

decompression process using the MVBM. 
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The decompression process calculation algorithm as presented in figure 3.3 is described 

as follows: 

1) Set up the pipe inlet fluid conditions, 𝑃𝑖𝑛 , 𝑇𝑖𝑛 , 𝐺𝑖𝑛 , vessel geometry, 𝑉𝑜  and 

decompression time, 𝑡. 

2) For a given pipeline failure location, calculate the fluid conditions upstream the 

orifice using equation 3.26. 

3) Calculate the orifice pressure, 𝑃𝑜𝑟𝑖  using equation 3.31 and other orifice fluid 

conditions by performing a corresponding pressure-entropy flash calculation based 

on the isentropic expansion assumption (equation 3.32). 

4) Update the bulk fluid conditions using equations 3.10 and 3.11. 

5) Use the updated bulk fluid conditions from step 4) to update the fluid conditions 

upstream the orifice using equation 3.26 based on the quasi-steady state flow 

assumption (see Section 3.2.4). 

6) Go to step 3) and terminate the calculation until the decompression time, 𝑡  is 

reached. 

3.3 Verification 

3.3.1 Case Study 

The efficacy of the MVBM is tested against the rigorously validated UCL model 

(reviewed in Section 2.1.3.1) and the analytically based VBM (reviewed in Section 

2.1.3.2) using a hypothetical 300 mm i.d. thermally insulated pipeline. The pipeline is 

assumed to contain pure methane. The relevant pipeline characteristics and prevailing 

conditions are summarised in table 3.1. The failure location is assumed to be mid-way 

along the pipe. The tests involve simulating both un-isolated and isolated releases 
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covering several realistic failure scenarios. For the simulations using the numerically 

based UCL model, an automatic nested grid system (Mahgerefteh et al., 1999) applying 

finer numerical discretisation near the orifice plane is used. For simplicity, a discharge 

coefficient of unity is assumed. 

Table 3.1: Pipeline characteristics and prevailing conditions used for the simulation 

tests for examining the efficacy of the MVBM. 

Parameter Value 

Pipe characteristics 

Pipe internal diameter (mm) 300 

Pipe wall thickness (mm) 10 

Pipe roughness (mm) 0.05 

Heat transfer coefficient (W/m2K) 5 

Inlet conditions 

Feed composition (mol%) Methane 100 

Feed pressure (bar) 21 

Feed temperature (K) 300 

Failure parameters 
Failure location Mid-length 

Discharge coefficient 1 

Ambient conditions 
Ambient pressure (bar) 1.01 

Ambient temperature (K) 290 

3.3.2 Simulation of Un-isolated Releases 

In this section, the efficacy of the MVBM in handling un-isolated releases is tested. The 

simulation runs are based on a range of pipeline failure scenarios varying the feed flow 

rate (1 to 7.5 kg/s), pipe length (100 to 5000 m) and puncture to pipe internal diameter 

ratio (0.2 to 0.8). The simulated mass discharge rate-time profiles from both UCL model 

and the MVBM are compared. 
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3.3.2.1 Impact of Feed Flow Rate 

Figure 3.4 shows the simulated mass discharge rate variation with time predicted by 

both models. The data points and solid lines are respectively the predictions of the UCL 

model and MVBM. The simulated results are produced for pipeline feed rates ranging 

from 1 to 7.5 kg/s. A puncture to pipe internal diameter ratio of 0.2 (puncture diameter 

= 60 mm) is chosen. Other pipeline characteristics and prevailing conditions used for 

the simulations are summarised in table 3.1. 

 

Figure 3.4: Comparison of the mass discharge rate variation with time at the orifice 

based on the UCL model (data points) and MVBM (solid lines) predictions for 

different inflow rates (puncture to pipe internal diameter ratio: 0.2; pipe length: 100 

m). 

As can be observed from figure 3.4, the MVBM produces generally good agreement 

with the UCL model predictions indicating minor discrepancies throughout for all 

tested feed flow rates. As the decompression continues, the mass discharge rate 

decreases more slowly with time in the case of a higher inflow rate. A reason for this is 

that a higher inflow rate provides more compensation to the inventory during 
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decompression. This would essentially maintain the pressure inside the pipe at a higher 

level, therefore leading to a slower rate of decompression. It should be noted that the 

mass discharge rate will eventually reach the initial inflow rate as the depressurisation 

proceeds. 

Table 3.2: Average % error in the mass discharge rate for the MVBM predictions at 

different inflow rates. 

Inflow rate (kg/s) Average % error 

1 2.02 

2.5 1.66 

5 1.09 

7.5 0.97 

Table 3.2 presents the corresponding average % error in the mass discharge rate for the 

MVBM predictions at different inflow rates. As may be observed, as the feed flow rate 

increases, the error in the MVBM predictions decreases. As mentioned earlier, this may 

be attributed to the fact that during decompression, a larger feed flow rate replenishes 

the inventory to a greater extent and hence the upstream fluid conditions will be less 

affected by the rapid fluid expansion near the failure orifice. As a result, the quasi-

steady state flow assumption (see Section 3.2.4) becomes increasingly applicable. 

3.3.2.2 Impact of Pipe Length  

The following examines the efficacy of the MVBM in handling un-isolated flow as a 

function of pipeline length. Figure 3.5 shows the mass discharge rate variation with 

time predicted by both models. The data points and solid lines are respectively the 

predictions of the UCL model and MVBM. The results are determined for different pipe 

lengths: 500, 1000, 2500 and 5000 m. A feed flow rate of 2.5 kg/s is assumed in all 

simulation runs. The puncture to pipe internal diameter ratio on the other hand is taken 

as 0.2 (i.e. puncture diameter = 60 mm). Other pipeline characteristics and prevailing 
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conditions used for the simulations are summarised in table 3.1. 

 

Figure 3.5: Comparison of the mass discharge rate variation with time at the orifice 

based on the UCL model (data points) and new model (solid lines) predictions for 

different pipe lengths (puncture to pipe internal diameter ratio: 0.2; inflow rate: 2.5 

kg/s). 

Once again, relatively good agreement between the predictions of the UCL model and 

the MVBM is obtained for all pipe lengths tested. The profiles display a similar pattern 

with those in figure 3.4. As the pipe length increases, the mass discharge rate tends to 

decrease more slowly with time. Given that a longer pipeline contains a larger amount 

of inventory, it is therefore capable of maintaining the pressure inside the pipe for a 

longer duration following pipeline failure. This in turn would lead to a slower 

decompression rate as compared to that for a shorter pipeline. 

 

 

 



                                   DEPARTMENT OF CHEMICAL ENGINEERING 

- 104 - 

 

Table 3.3: Average % error in the mass discharge rate for the MVBM predictions as 

compared to the UCL model predictions at different pipe lengths. 

Pipe length (m) 

Average % error in the mass discharge rate 

between the UCL model and MVBM 

predictions  

500 1.33 

1000 0.83 

2500 0.62 

5000 0.43 

Table 3.3 presents the corresponding average % error in the mass discharge rate for the 

MVBM predictions at different pipe lengths. As may be observed, the MVBM delivers 

better performances for longer pipelines. The reason for the above is similar as that 

discussed for the study of different inflow rates (see Section 3.3.2.1). Given the larger 

inventory in a longer pipeline, the quasi-steady state flow assumption (see section 3.2.4) 

becomes more applicable. 

3.3.2.3 Impact of Puncture to Pipe Internal Diameter Ratios 

This section primarily investigates the capability of the MVBM in handling different 

puncture to pipe internal diameter ratios. The failure scenarios investigated involve 60, 

120, 180 and 240 mm punctures, respectively corresponding to 0.2, 0.4, 0.6 and 0.8 

puncture to pipe internal diameter ratios. Figures 3.6 (a), (b), (c) and (d) respectively 

present the simulated mass discharge rate-time profiles from both models for 0.2, 0.4, 

0.6 and 0.8 puncture to pipe internal diameter ratios. The data points and solid lines are 

respectively the predictions of the UCL model and MVBM. The results are determined 

for a 100 m length methane pipe with 2.5 kg/s inflow rate. Other pipeline characteristics 

and prevailing conditions used for the simulations are included in table 3.1. Table 3.4 

on the other hand, shows the corresponding average % error in the mass discharge rate 
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for the MVBM predictions as compared to the UCL model predictions at different 

puncture to pipe internal diameter ratios. 

  

(a) (b) 

  

(c) (d) 

Figure 3.6: Comparison of the mass discharge rate variation with time at the orifice 

based on the UCL model (data points) and MVBM (solid lines) predictions for 0.2 

(a), 0.4 (b), 0.6 (c) and 0.8 (d) puncture to pipe internal diameter ratios (pipe length: 

100 m; feed flow rate: 2.5 kg/s). 

As may be observed from figure 3.6, for all investigated values of puncture to pipe 

internal diameter ratio, generally good agreement can be observed between the two 

model predictions. The above is considered a substantial improvement to the VBM 

where, as mentioned in Section 3.1, punctures larger than 40% of the pipe internal 

diameter cannot be handled (Mahgerefteh et al., 2011). This limitation of the VBM 
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could be due its isothermal bulk flow assumption, which ignores the fluid/wall heat 

exchanges during pipeline decompression. When the puncture diameter increases, such 

an assumption becomes increasingly inapplicable given the much quicker 

decompression involved which leads to rapid cooling inside the pipe. 

Table 3.4: Average % error in the mass discharge rate for the MVBM predictions at 

different puncture to pipe internal diameter ratios. 

Puncture to pipe internal diameter ratio  

Average % error in the mass 

discharge rate between the UCL 

model and MVBM predictions 

0.2 1.66 

0.4 1.71 

0.6 2.63 

0.8 6.88 

Despite the generally good agreement observed for all the puncture to pipe internal 

diameter ratios investigated, turning to the average % error in the predictions as shown 

in table 3.4, it is noteworthy that discrepancy between the predictions of the UCL model 

and MVBM increases with increasing puncture to pipe internal diameter ratio. The 

above is probably due to the different magnitudes of fluid/wall friction involved. A 

larger puncture leads to a higher acceleration of the fluid upstream the orifice thus 

resulting in increase in the frictional losses. However, given the present model assumes 

quasi-steady flow, such frictional losses and hence the corresponding energy losses are 

not taken into consideration. Consequently, the above assumption becomes increasingly 

inapplicable with increase in puncture diameter thus leading to increased computational 

errors. 

3.3.3 Simulation of Isolated Releases 

Isolated pipeline releases, where there is no feed flow, are also simulated using the 
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MVBM. The simulation results are verified against the predictions of the UCL model 

and VBM. The simulations involve two puncture diameter scenarios including 60 and 

120 mm, respectively corresponding to 0.2 and 0.4 puncture to pipe internal diameter 

ratios. The results are determined for a 100 m length isolated pipeline. Other pipeline 

characteristics and prevailing conditions used for the simulations are summarised in 

table 3.1. 

Figures 3.7 and 3.8 show the simulated variations of the mass discharge rate, pressure 

and temperature with time predicted by the three models for 0.2 and 0.4 puncture to 

pipe internal diameter ratios respectively. The data points, dashed lines and solid lines 

respectively represent the simulated results from the UCL model, VBM and MVBM. 
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(a) 

 

(b) 

 

(c) 

Figure 3.7: Comparison of the mass discharge rate (a), pressure (b) and 

temperature (c) variations with time at the rupture plane based on the UCL model 

(data points), VBM (dashed lines) and MVBM (solid lines) predictions for 0.2 

puncture to pipe internal diameter ratio (pipe length: 100 m; feed flow rate: 0 kg/s). 



                                   DEPARTMENT OF CHEMICAL ENGINEERING 

- 109 - 

 

 

(a) 

 

(b) 

 

(c) 

Figure 3.8: Comparison of the mass discharge rate (a), pressure (b) and 

temperature (c) variations with time at the rupture plane based on the UCL model 

(data points), VBM (dashed lines) and MVBM (solid lines) predictions for 0.4 

puncture to pipe internal diameter ratio (pipe length: 100 m; feed flow rate: 0 kg/s). 
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As can be observed from figures 3.7 and 3.8 for both puncture to pipe internal diameter 

ratio values investigated, the MVBM produces better agreement with the UCL model 

as compared to the VBM predictions throughout the decompression process. The reason 

for the improved performance is most likely a consequence of the fact that as opposed 

to the VBM, the MVBM accounts for fluid/wall heat exchange where isothermal flow 

assumption adopted in the former case is based on infinite fluid/wall heat transfer which 

is unrealistic. 

Turning to the temperature-time profiles (see figures 3.7 (c) and 3.8 (c)), the MVBM 

also produces better agreement with the UCL model as compared to the VBM 

predictions throughout the decompression process. The simulated temperature profile 

using the VBM displays a marginal increase in temperature with time during the 

decompression process. The MVBM, on the other hand, performs reasonably well in 

reproducing the temperature-time history as compared to the UCL model where, the 

fluid temperature initially declines due to rapid decompression, and gradually recovers 

as a result of the finite heat transfer from the warmer surrounding ambient through the 

pipe wall. 

It is noteworthy that the performance of the MVBM in predicting the temperature-time 

profiles is generally worse than those in predicting the mass discharge rate and pressure-

time profiles. This may be due to the quasi-steady state flow assumption employed (see 

Section 3.2.4). As a consequence of this assumption, the MVBM considers a uniform 

temperature along the pipe length during decompression. As a result, the expansion-

induced Joule Thomson cooling effect at rupture plane, which leads to much lower 

temperatures in the vicinity of the puncture as compared to the rest of the pipeline, is 

not taken into consideration. 

3.3.4 Source of Errors 

The quasi-steady state flow assumption made in the development of the MVBM (see 
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Section 3.2.4) can invariably induce errors in the simulations. These errors will be 

eventually reflected on the evaluation of the LHS of equation 3.31, which is the energy 

balance prescribed for the boundary condition calculations, as rewritten below: 

ℎ𝑢𝑝 +
1

2
𝑢𝑢𝑝

2 = ℎ𝑜𝑟𝑖 +
1

2
𝑢𝑜𝑟𝑖

2 3.31 

The first term on the LHS of the equation represents the upstream enthalpy. The second 

term on the other hand, is the upstream kinetic energy. Their summation is often referred 

to as the total upstream enthalpy, denoted by 𝐻𝑢𝑝 . Whether this term is calculated 

accurately determines the accuracy of the predictions for the orifice flow conditions. 

Based on the previous discussion for the simulations of both un-isolated and isolated 

releases (see Sections 3.3.2 and 3.3.3), there could be two sources of errors in 

computing 𝐻𝑢𝑝. These are: 

1) Errors incurred by ignoring the bulk fluid acceleration upstream the failure location, 

which will lead to the underprediction of the corresponding upstream kinetic energy, 

1

2
𝑢𝑢𝑝

2 in equation 3.31; 

2) Errors incurred by assuming uniform bulk fluid temperature along the pipe length, 

which ignores the expansion-induced cooling effect to the bulk fluid upstream of 

the failure location that will in turn result in the inaccurate prediction of the 

upstream enthalpy, ℎ𝑢𝑝 in equation 3.31. 

In the following, the importance of the two sources of errors outlined above will be 

assessed by studying their contribution to the upstream total enthalpy, 𝐻𝑢𝑝 based on 

simulating different failure scenarios involving various puncture diameters. 

Figure 3.9 presents the results for investigating the importance of the sources of errors, 

showing the variation of the upstream kinetic energy to total upstream enthalpy ratio 
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(
1

2
𝑢𝑢𝑝

2/𝐻𝑢𝑝) with time following pipeline failures. The data are generated using the 

UCL model for different puncture diameters including 60, 120, 180 and 240 mm 

respectively corresponding to 0.2, 0.4, 0.6 and 0.8 puncture to pipe internal diameter 

ratios. A 100 m length, 2.5 kg/s feed flow rate pipeline is simulated as an example. 

Other pipeline characteristics and prevailing conditions used for the simulations are 

summarised in table 3.1. 

 

Figure 3.9: Results for investigating the importance of the sources of errors, 

showing the variation of the kinetic energy/total enthalpy ratio (
1

2
𝑢𝑢𝑝

2/𝐻𝑢𝑝) with 

time at the upstream of the orifice for 60, 120, 180 and 240 mm puncture diameters. 

As can be observed, an increase in puncture diameter results in a corresponding increase 

in the upstream kinetic energy to total upstream enthalpy ratio. This means that as the 

puncture diameter increases, the contribution of the kinetic energy to the total enthalpy 

will increase. This is consistent with the observation from table 3.4 that as the puncture 

diameter increases, the simulation errors will increase. However, despite this, the 

kinetic energy/total enthalpy ratios for all puncture diameters are small in absolute 

terms, with the largest value observed being only ca. 0.4%. This means even for very 
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large punctures, the impact of the first source of errors on the simulation results can be 

very limited.  

The above indicates that for the investigated scenarios, the upstream enthalpy, ℎ𝑢𝑝 

dominates the total upstream enthalpy, 𝐻𝑢𝑝. As a result, assuming uniform bulk fluid 

temperature along the pipe length (the second source of errors) could have a much more 

substantial impact on the simulation results than ignoring the bulk fluid acceleration 

upstream the failure location (the first source of errors).  

3.4 Computational Runtimes 

Table 3.5 presents the comparison of the computational runtimes between the UCL 

model and MVBM for simulating various pipeline failures. The simulations involve the 

complete decompression of isolated pipelines with lengths corresponding to 100, 1000 

and 5000 m. The selected puncture diameter for these simulations is 60 mm, 

corresponding to 0.2 puncture to pipe internal diameter ratio. All other input conditions 

used are summarised in table 3.1. These simulations are performed using a 3.80 GHz, 

16.0 GB RAM computer. 

Table 3.5: Comparison of the computational runtimes between UCL model and 

MVBM. 

Pipe length (m) 
Computational runtimes 

UCL model MVBM % reduction 

100 1 min 41 s 6.6 s 93.44 

1000 16 min 37 s 55.9 s 94.39 

5000 2 hr 34 min 59 s 4 min 6 s 97.35 

As can be observed from table 3.5, the computational runtimes using the MVBM are 

significantly lower than those based on the UCL model for all pipe lengths simulated. 

Such reductions are even more notable in the case of longer pipelines. This makes the 
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application of the MVBM to simulating long pipelines particularly attractive. 

3.5 Concluding Remarks 

In this chapter, the development and testing of a computationally efficient analytically 

based MVBM for predicting the outflow pressurised pipeline decompression model 

was described. The developed model addresses the fundamental limitations of the VBM 

in handling un-isolated releases and punctures with relatively large puncture to pipe 

internal diameter ratios. It should be noted that, though tested on hydrocarbon pipelines, 

the MVBM was developed for general-purposed use and therefore can be readily 

implemented to simulate CO2 pipeline failures. 

Based on the results and analysis presented in this chapter and the ranges of the 

parameters tested, the following key conclusions may be made: 

 The MVBM has been successfully extended to simulate un-isolated releases and 

punctures with relatively large puncture to pipe internal diameter ratios, presenting 

a substantial improvement as compared to the VBM; 

 The accuracy of the MVBM decreases with the increase in puncture to pipe internal 

diameter ratio. This could be due to the increasing incapability of the quasi-steady 

state assumption employed, which ignores the growing influence of fluid/wall 

frictional effects in the vicinity of the puncture as its diameter increases; 

 The MVBM performs generally better as the feed flow rate or the pipe length 

increases. This may be attributed to the fact that a larger feed flow rate or a longer 

pipeline usually comes with a larger pipe inventory that will render the quasi-steady 

state flow assumption of the MVBM increasingly applicable during decompression; 

 Ignoring the bulk fluid acceleration upstream of the failure location, and assuming 

isothermal flow along the pipe length were respectively postulated to be the two 
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main sources of simulation errors in the MVBM. An analysis of both factors showed 

that the isothermal flow assumption introduced the bigger source of error; 

 An analysis of the computational runtimes showed that using the MVBM, the 

computational runtimes in simulating pipeline puncture failures could be 

significantly reduced by over 90% as compared to using the numerically based UCL 

model. Such reductions were even more notable for longer pipelines, making the 

application of the MVBM in simulating long pipelines particularly attractive. 
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Chapter 4: An Analytical Approach to Estimate 

Failure Puncture Size Probability Distribution for 

Pressurised CO2 Pipelines 

4.1 Introduction 

As highlighted in Chapter 1, an important part of the Quantitative Risk Assessment 

(QRA) of pressurised pipelines is calculating the probability of loss of containment 

events. Such information is in turn employed to estimate the individual and social risk 

levels (Goodfellow et al., 2012) forming the basis for appropriate control and 

emergency mitigation planning. 

Given that the failure hole size directly affects the magnitude of failure consequences 

and hence the results of QRA, a reliable technique for estimating the puncture size 

failure frequency must be established. The efficacy of such techniques is largely 

dependent on ensuring that a ‘sufficiently’ large number of real incident data points is 

available to be representative. This is however problematic in the case of CO2 pipelines 

given their relatively low number. Another important issue to address is how such a 

probability distribution of CO2 pipelines compares to that for hydrocarbon pipelines. 

To obtain the puncture size probability distribution, a histogram using existing pipeline 

failure data is constructed by first segmenting the entire range of puncture sizes into a 

series of intervals (bins) and then counting how many values fall into each bin. Duncan 

and Wang (2014) employed the above technique to approximate the occurrence 

probability distribution of puncture diameters for CO2 pipelines using the incident data 

from the Pipeline and Hazardous Material Safety Administration (PHMSA) database. 

In their study, puncture diameters ranging between 0 and 380 mm were divided into 6 

bins. The analysis showed that the most prevailing puncture diameters were between 
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50 to 100 mm, whereas medium-sized punctures (150 to 200 mm) had the lowest 

probability of occurrence. 

The resulting histogram can be parameterised and extended to a smooth probability 

distribution function. The validity of such functions is largely dependent on the size of 

the sample employed to derive the underlying histograms. Despite their usefulness, 

based on the review of the existing literature, methods to reliably handle ‘small’ samples 

sizes are not well-established.  

Given the above limitation, in most risk assessment studies for pressurised pipelines, 

the puncture size is usually assumed to be a discrete variable as opposed to a continuous 

variable, as is the case in reality. In many of these studies, as shown below, only a 

limited number of representative puncture sizes are used to cover the whole size 

spectrum and as a result the predicted failure risk levels can only present rough 

estimations, rendering the subsequent strategies for risk mitigation uncertain. 

Medina et al. (2012) for example, used only two representative pipeline puncture sizes 

of 10 and 40 mm and Full Bore Rupture (FBR) to calculate the expected cost of pipeline 

failure consequences for a risk-based optimisation of emergency shut down valve 

spacing for on-shore pipelines. Rusin and Stolecka (2015) on the other hand, used the 

same approach to calculate the frequency of the various failure modes for CO2 pipelines 

for optimising inline emergency isolation valve spacing. In this study, the through-wall 

failure was simply assumed to be either puncture or rupture with the ratio of 

puncture/rupture occurrence probability taken as 9:1. 

Considering the above limitations, this chapter presents the development of a statistical 

analytical technique for determining reliable failure hole size probability distribution 

for pressurised CO2 pipelines using the limited historical failure data. The above 

involves a) using the Maximum Likelihood Estimator (MLE) to fit statistical 

distribution functions to historic failure data for estimating the unknown fitting 
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parameters that characterise these statistical distribution functions, and b) performing a 

Monte Carlo simulation test to assess the quality (statistical significance) of the MLE 

based on the data sample size. When the MLE ‘quality’ is low, a bootstrapping method, 

which can artificially inflate the sample size, is employed to calculate the MLE 

confidence intervals. 

The chapter proceeds as follows. Section 4.2 commences with a brief introduction, 

filtering and processing of the pipelines failure historic data used for this study, 

followed by the description of the methodology employed to obtain a credible 

probability distribution of the puncture size. In Section 4.3, the ‘quality’ of MLE is first 

evaluated based on Monte Carlo simulation tests involving calculating the 

corresponding mean squared error of the MLE. Next, failure puncture size probability 

distributions derived from the filtered and processed historic fault data alongside the 

recommended fitting parameters for CO2 pipelines are presented and compared against 

those for natural gas and crude oil pipelines. Conclusions are given in Section 4.4. 

4.2 Methodology 

4.2.1 Data Review 

Several bodies collecting and publishing the failure statistics for CO2 and hydrocarbon 

pipelines exist (e.g. Concawe, EGIG, PHMSA, UKOPA, see Section 2.2.2.2.1, Chapter 

2) but few provide detailed information on the size of through-wall puncture. This study 

adopts the PHMSA database where such information is available. The failure puncture 

size, assumed to be oval, is expressed in terms of Equivalent Puncture Diameter (EPD) 

given by (Koch, 2008): 

EPD = 1.55
𝐴𝑝

0.625

𝑃𝑝
0.25  4.1 
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where 𝐴𝑝  and 𝑃𝑝  are respectively the oval puncture area and perimeter calculated 

based on the circumferential and longitudinal lengths of the puncture recorded in the 

database. 

The PHMSA database holds data on the loss of containment incidents for federal- and 

state-regulated CO2 and hydrocarbon pipelines operating in the US since 1970s. These 

incidents are documented in a very detailed manner, mainly including failure-specific 

information (e.g. incident year, incident pressure, failure mode), pipeline characteristics 

(e.g. pipe material, pipe diameter, fluid type), and operator details. Whilst the focus is 

on CO2 pipelines, this study also examines natural gas and crude oil pipelines for 

comparison purposes. 

In much of the databases spanning over 50 years, the records are of varying quality and 

level of detail for the various incidents. So, it is necessary to review and filter such data 

before use. The PHMSA updates its reporting criteria for pipeline incidents every 10 to 

20 years for the past 5 decades. This study employs the data since 2010, when the 

reporting criteria were last updated to include both the longitudinal and circumferential 

measurements of the pipe opening in pipeline failure incidents. From 2010 to present, 

6495 loss of containment incidents have been recorded but not all are relevant for this 

study for the following reasons. 

First, a large proportion of the loss of containment incidents reported are for leaks from 

pipeline auxiliary equipment (e.g. relief valves, compressors, connectors) rather than 

those from the pipeline itself (i.e. pipe wall). Second, the failure puncture size 

information along with the pipe internal diameter is reported for selected incidents only. 

Accounting for the above limitations leads to a remaining total of 1906 useful EPD data 

points employed in the current work, covering CO2, oil and gas pipelines. 
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4.2.2 Statistical Distribution Models 

The probability distribution of a continuous variable is often expressed as the 

Cumulative Distribution Function (CDF). In this study, we employ the Weibull (Weibull, 

1951) and lognormal distributions as the potential statistical functions to represent the 

CDF of the failure hole size. Both functions are widely used in reliability engineering 

for the assessment of pipeline failures (see for example Chaplin, 2015a; Goodfellow et 

al., 2012). Other possible distributions such as the gamma and exponential distributions 

have been used to a much lesser extent and hence are not considered here. The CDF of 

the Weibull distribution is reviewed in Section 2.2.2.3.2, Chapter 2 and is repeated 

below: 

𝐹(𝑥) = {1 − 𝑒−(
𝑥
𝛼
)
𝛽

𝑥 ≥ 0
0 𝑥 < 0

 4.2 

The CDF of the lognormal distribution, also reviewed in Section 2.2.2.3.2, Chapter 2, 

is once again presented: 

𝐹(𝑥) =
1

2
+

1

2
erf (

ln 𝑥 − 𝜇

𝜎√2
) 4.3 

where erf is the error function which is defined as: 

erf(𝑥) = −
2

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡
∞

𝑥

 4.4 

4.2.3 Distribution Fitting 

The selected failure puncture size sample data described in Section 4.2.1 are fitted to 

both Weibull and lognormal distributions to acquire the fitting parameters. The 
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Maximum Likelihood Estimator (MLE) is used for this purpose to best characterise the 

probability distribution of the sample data. The MLE is a widely adopted method for 

estimating the parameters of an assumed probability distribution for a given set of 

observed data, by finding the parameter values that will most likely generate the 

observed data. Mathematically, the MLE can be defined as: 

𝜃 ≝ argmax
𝜃

𝐹𝐿(𝜃; 𝑋) 4.5 

where 𝜃 is the unknown parameter characterising the assumed probability distribution 

and 𝜃  refers to the MLE of 𝜃 . 𝑋,  denotes the data sample that contains 𝑛 

observations (𝑥1, 𝑥2, …, 𝑥𝑖, …, 𝑥𝑛) of the data population. 𝐹𝐿, on the other hand, is 

called the likelihood function which calculates the product of the probability densities 

of each value in 𝑋, mathematically expressed as: 

𝐹𝐿(𝜃; 𝑋) = ∏𝑓(𝑥𝑖; 𝜃)

𝑛

𝑖=1

 4.6 

In essence, the process of maximum likelihood estimation is to find the estimator that 

maximises the likelihood function (equation 4.6). 

According to Ginos (2009), the MLE is among the most dependable statistical 

estimators for parameter estimation. Some appealing features of the MLE include it 

being consistent, efficient, and asymptotically normal (Ji, 2020; Long and Freese, 2006). 

However, these properties have been only proven to hold if the number of data being 

used in the estimation process approaches infinity (Ji, 2020). This is an issue in the case 

of CO2 pipelines, where relatively small sample sizes are available thus limiting the 

applicability of MLE for the present study. Given this, whether the sample size can 

suffice for a high-quality MLE needs to be determined. 
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Eliason (1993) suggested a sample size of more than 60 is usually large enough for 

estimating no more than 5 parameters using MLE. Long and Freese (2006) on the other 

hand, suggest it is risky to use MLE with sample sizes smaller than 100, while sample 

sizes over 500 are presumed adequate. However, most of the literature dealing with 

MLE do not provide specific sample size guidelines. In general, there are no rules of 

thumb, and the appropriate sizes heavily depend on the question at hand. 

In this study, to determine the appropriate sample size, the MLE quality is assessed by 

examining the mean squared error which is the averaged square difference between the 

estimated and the actual values (Ryan, 2007). The use of mean squared error is very 

common in the study of MLE (see for example Ginos, 2009; Nielsen, 2011), and it is 

considered an excellent general-purpose error metric for numerical predictions (Neill 

and Hashemi, 2018). Mathematically, the mean squared error of the MLE, 𝜃  to an 

unknown parameter, 𝜃 is defined as the addition of the variance and bias squared: 

MSE(𝜃̂) = Variance(𝜃) + Bias2(𝜃, 𝜃) 4.7 

where MSE denotes the mean squared error. The variance and bias are respectively 

given by: 

Variance(𝜃) = 𝐸 [(𝜃 − 𝐸[𝜃])
2
] 4.8 

Bias(𝜃, 𝜃) = 𝐸[𝜃] − 𝜃 4.9 

where, 𝐸 denotes the expected value. 

In the present study, Monte Carlo simulation tests are performed to investigate the 

quality of MLE based on computing the mean squared errors for different sample sizes. 
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The tests involve, i) determining the Weibull and lognormal distribution parameters and 

sample sizes being tested; ii) for a given sample size, 𝑁, calculating the corresponding 

MLE using 𝑁 data randomly sampled from the Weibull and lognormal distributions 

determined in step i); iii) repeating step ii) for a sufficiently large number of times 

(typically over 1,000 times) and computing the corresponding mean squared error. 

4.2.4 Determination of Probability Distribution 

Following the above Monte Carlo simulation tests, the sample size sufficing for a high-

quality MLE is obtained. For sufficiently large samples, the resulting high-quality MLE 

can be used with confidence to characterise the probability distribution of the failure 

hole size. However, given that two distribution models (i.e. Weibull and lognormal) are 

employed in this study, the one-sample Kolmogorov-Smirnov (K-S) goodness-of-fit 

test (Kolmogorov, 1933) involving comparing the sample data with the predictions of 

both models is further employed to determine which model provides a statistically 

better fit representing the sample population. 

The test process involves, i) specifying a null hypothesis; ii) computing the K-S statistic 

and critical value at a chosen significance level and iii) accepting the null hypothesis if 

the K-S statistic is smaller than the critical value or rejecting the null hypothesis if 

otherwise.  

The K-S statistic is computed based on quantifying the greatest vertical distance 

between the empirical CDF (the sample data) and the CDF of the reference distribution, 

that is (Conover, 1999): 

𝐷 = sup𝑥|𝐹𝑛(𝑥) − 𝐹(𝑥)| 4.10 

where, 𝐷  is the K-S statistic. sup  stands for supremum which means the greatest 

value. 𝐹𝑛(𝑥), on the other hand, is the empirical CDF for 𝑛 ordered sample data points 
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(𝑥1<𝑥2<…<𝑥𝑛), which is a step function jumping up by 1/𝑛 at each of the 𝑛 data 

points. 

The critical value, on the other hand, is usually determined using a K-S test critical 

value table, which can be easily obtained from several literatures, such as Massey Jr 

(1951). In particular, for n≥40, the critical value is computed based on a specific 

equation depending on the chosen significance level. In the current study, a significance 

level of 0.01 is chosen for the K-S test and the corresponding equation for calculating 

the critical value is given by: 

Critical value =
1.63

√𝑛
 4.11 

To deal with the small sample sizes, the bootstrapping method, which can artificially 

inflate the sample size by random sampling with replacement is employed to calculate 

the MLE confidence interval. The methodology was first introduced by Efron (1979) 

for making inferences from data without making strong distributional assumptions and 

was later employed by many authors for enhancing the confidence in using MLE when 

the sample size is too small. Wei and Li (2019), for example, presented a bootstrapping 

estimation for Weibull distribution parameters using samples containing only 10 to 30 

data points. Tsagkanos (2008), on the other hand, developed a bootstrapping enhanced 

MLE for improving the accuracy of the classical MLE for Logit model in the presence 

of small samples. Unlike the case for sufficiently large samples where a single value of 

the MLE is acquired, the bootstrapping process produces a range of values where the 

MLE is expected to lie. It should be noted that for small samples which may not be 

statistically representative of the population being considered, the aforementioned K-S 

test cannot accurately reflect the goodness-of-fit between the model predictions and the 

data. Given this, the probability distributions derived based on either Weibull or 

lognormal models are considered statistically valid for the purpose of this study if the 
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bootstrapping method is employed. 

The bootstrapping process for calculating the confidence interval of the MLE is shown 

in figure 4.1. 

 

Figure 4.1: Schematic description of the steps in the bootstrapping process for 

calculating the confidence interval of the MLE (Haukoos and Lewis, 2005). 

The bootstrapping process comprises the following steps. First, the bootstrap samples 

are generated. This involves resampling the original data sample with replacement to 

create a resampled dataset (also known as a bootstrap sample) that have the same size 

(𝑁) as the original sample. Second, the MLE of each bootstrap sample is computed 

based on equations 4.6 and 4.7. Third, the above first and second steps are repeated for 

a sufficiently large number of times to obtain a distribution for the possible values of 

the MLE. Fourth, the MLE confidence interval is calculated based on the distribution 

obtained from the third step. 

For the fourth step, several options including the normal approximation method, 

percentile method, bias-corrected method etc. can be adopted to calculate the MLE 
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confidence interval. In this study, the percentile method, which is considered suitable 

for small samples (Jung et al., 2019; Wei and Li, 2019), is employed. The MLE 

confidence interval based on the percentile method can be given as follows (Jung et al., 

2019): 

[𝜃lower limit, 𝜃upper limit] = [𝜃𝑗 , 𝜃𝑘] 4.12 

where 𝑗 and 𝑘 respectively refer to the jth and kth quantiles of the collection of the 

possible MLE values ordered from lowest to highest. Here, 𝑗 and 𝑘 are respectively: 

𝑗 =  
𝛼𝑠

2
× 𝐵 4.13 

𝑘 = (1 −
𝛼𝑠

2
) × 𝐵 4.14 

where 𝛼𝑠  is the level of significance and 𝐵  is the number of bootstrap samples 

generated in the bootstrapping process. 

4.3 Results and Discussion 

4.3.1 Monte Carlo Simulation Results 

4.3.1.1 Simulation Setup 

In this section, four tests following the Monte Carlo simulation steps described in 

Section 4.2.3 are performed. Based on investigating several assumed distributions, tests 

1 to 4 respectively examine the MLE quality as a function of sample size for Weibull 

scale parameter, Weibull shape parameter, lognormal mean, and lognormal standard 

deviation (see equations 4.3 and 4.4). Each test examines three pairs of parameters 
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varying the value of the tested parameter whereas fixing that of the non-tested parameter. 

The chosen values of the parameters for the four tests are summarised in table 4.1. 

These investigated values are selected given the fact that small pipeline punctures are 

far more frequent than ‘large’ ruptures (Lydell, 2000).  

For each pair of examined parameter values, the mean squared error of the MLE is 

calculated for a wide range of sample sizes, 𝑁 = 10, 20, …, 100, 200, …, 500. The 

following details how the Monte Carlo simulation steps described in Section 4.2.3 are 

implemented for a give 𝑁. 

First, 𝑁  data are randomly selected from the distribution characterised by the 

examined value pair using a random value generator. Second, using the selected 𝑁 

data, the MLE to the examined parameter is computed based on equations 4.5 and 4.6. 

Third, in order to accurately approximate the mean squared error of the examined MLE, 

10,000 MLEs to the examined parameters are generated by repeating the above steps. 

The mean squared error of these MLEs is then computed based on equation 4.7.  

The above process is executed for each investigated sample size. The resulting mean 

squared errors are then plotted against the corresponding 𝑁. As such, a figure showing 

the variation of the MLE mean squared error as a function of the sample size is obtained. 

Table 4.1: Weibull and lognormal distribution parameter values examined in the 

four Monte Carlo simulation tests for investigating the quality of MLE. 

Test 

no. 
Distribution Tested parameter Non-tested parameter 

1 Weibull Scale parameter, 𝛼 =1, 1.5, 2 Shape parameter, 𝛽 =2 

2 Weibull Shape parameter, 𝛽 =1.5, 2, 2.5 Scale parameter, 𝛼 =1 

3 Lognormal Mean, 𝜇 =0, 0.5, 1 Standard deviation, 𝜎 =1 

4 Lognormal Standard deviation, 𝜎 =1, 1.5, 2 Mean, 𝜇 = 0.25 
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4.3.1.2 Simulation Results 

Figure 4.2 presents the simulation results for tests 1 to 4 described in Table 4.1, 

respectively showing the variations of the MLE mean squared error as a function of the 

sample size for the Weibull scale parameter, Weibull shape parameter, lognormal mean, 

and lognormal standard deviation. Figure 4.3 on the other hand shows the same results 

plotted in logarithmic scale to aid visualisation. 

  

(a) (b) 

  

(c) (d) 

Figure 4.2: Simulation results for tests 1 to 4 described in Table 4.1 showing the 

variations of the MLE mean squared error as a function of the sample size, 𝑁 for 

the Weibull scale parameter (a), Weibull shape parameter (b), lognormal mean (c), 

and lognormal standard deviation (d). 
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(a) (b) 

  

(c) (d) 

Figure 4.3: Simulation results for tests 1 to 4 presented in Table 4.1 showing the 

logarithmic variations of the MLE mean squared error as a function of the sample 

size, 𝑁 for the Weibull scale parameter (a), Weibull shape parameter (b), 

lognormal mean (c), and lognormal standard deviation (d). 

As may be observed from both figures 4.2 and 4.3, three distinct regions for the 

behaviour of the mean squared error variation with sample size may be identified. 

Initially, when the sample size is smaller than ca. 100, the mean squared error drops 

significantly indicating that the MLE quality is highly sensitive to the sample size and 

therefore the MLE should be used with caution in this region. At sample sizes between 

100 to 200, the rate of decrease in mean squared error slows down, indicating that using 

samples with more than 100 data points will substantially improve the MLE quality. In 
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the third region where the sample size surpasses 200, the rate of decrease in mean 

squared error further slows down, meaning that further increasing the sample size 

provides limited improvement in the MLE quality. 

The above indicates that the minimum acceptable sample size sufficing for acquiring a 

reliable MLE is at least 100 while with ideally more than 200 data points, sufficiently 

reliable statistical representation of the puncture size data population may be obtained. 

Figure 4.3 provides a closer look at the mean square error for large sample sizes. Here, 

for all tested parameters, the mean squared error drops almost linearly when the sample 

size is increased from 100 to 200, suggesting minimal marginal increase in the MLE 

quality. When the sample size exceeds 200, the mean squared error tends to converge 

between the 0.001 to 0.01 range, again indicating that further increasing the sample size 

provides limited improvement in the MLE quality. This further strengthens the 

conclusion drawn from Figure 3 that 100 is the minimum acceptable sample size 

sufficing for acquiring a reliable MLE while more than 200 is ideal. 

4.3.2 Failure Size Probability Distribution Results 

The following section presents the application of the methodology presented in Section 

4.2 to obtain the probability distribution of the equivalent puncture diameter data from 

the PHMSA database (PHMSA, 2020). Here, the 1906 data points (see Section 4.2.1) 

are divided into three groups based on the pipeline inventories, covering natural gas, 

crude oil, and CO2. The corresponding failure data counts, and parameter estimation 

methods determined based on the results of the Monte Carlo simulation tests as 

described in Section 4.2.3 are summarised in table 4.2. 
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Table 4.2: Summary of the failure data counts from the PHMSA database and 

parameter estimation methods employed for deriving the probability distributions 

of the relative hole diameter for natural gas, crude oil, and CO2 pipelines. 

Pipe inventory Failure count Parameter estimation method 

Natural gas 1072 MLE with K-S test 

Crude oil 816 MLE with K-S test 

CO2 18 MLE with bootstrapping 

As can be observed from Table 4.2, the failure counts for both natural gas and crude oil 

pipelines exceed the minimum acceptable sample size (i.e. 100; see Section 4.3.1.2) for 

acquiring a reliable MLE. As a result, their puncture size probability distribution 

parameters can be estimated confidently using MLE and therefore a further 

bootstrapping step is not necessary. For CO2 pipelines on the other hand, the 

corresponding failure count of 18 is far less than the 100 threshold and therefore the 

bootstrapping technique is employed to enhance the MLE confidence. 

4.3.2.1 Natural Gas Pipelines 

Figure 4.4 presents the comparison of the variation of the cumulative failure probability 

versus equivalent puncture diameter for the field data against the predictions by the 

Weibull and lognormal Cumulative Distribution Functions (CDFs) for natural gas 

pipelines. The parameters for the Weibull and lognormal CDFs and the corresponding 

K-S test results including the null hypotheses, K-S test statistics and critical values are 

summarised in table 4.3. The critical value used for accepting or rejecting the null 

hypothesis in the K-S test (see Section 4.2.4) is calculated using equation 4.11. 
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Figure 4.4: Comparison of the variation of cumulative failure probability versus 

equivalent puncture diameter for the field data (data points) against predictions by 

the Weibull (solid line) and lognormal (dashed line) CDFs for natural gas pipelines. 

 

Table 4.3: Summary of the parameters of the predicted Weibull and lognormal 

CDFs and the corresponding K-S test results including the null hypotheses, K-S test 

statistics and critical values for natural gas pipelines. 

Distribution Parameter Value 

Weibull 

Scale parameter, 𝛼 99.475 

Shape parameter, 𝛽 0.562 

Null hypothesis “Data are from a Weibull distribution.” 

K-S statistic 0.213 

Critical value 0.053 

Lognormal 

Mean, 𝜇 3.812 

Standard deviation, 𝜎 1.422 

Null hypothesis “Data are from a lognormal distribution.” 

K-S statistic 0.173 

Critical value 0.053 
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The K-S test results in Table 4.3 show that the K-S statistics for both Weibull and 

lognormal CDFs are greater than their critical values, meaning the null hypotheses are 

rejected (see Section 4.2.4). This indicates that both CDFs are not statistically good fits 

to the field data. However, visually, the lognormal CDF appears to be a better fit overall 

as it more closely mirrors the recorded data throughout. The lognormal CDF can hence 

be recommended to represent the probability distribution of the equivalent puncture 

diameter for natural gas pipelines, with the lognormal mean and standard deviation 

respectively being 3.812 and 1.422. 

As can be observed from the recommended Weibull CDF in figure 4.4, as the equivalent 

puncture diameter increases, the rate of increase in the cumulative failure probability 

generally slows down. The steepest rise is observed when the equivalent puncture 

diameter increases from 0 to ca. 100 mm, meaning that relatively smaller punctures 

have a higher probability of occurrence for natural gas pipeline failures. Specifically, 

around 70% of such failures are in the form of punctures smaller than 100 mm. On the 

other hand, punctures smaller than 50 mm account for ca. 45% of the failures while 

those equal to or over 150 mm only account for 20%. 

4.3.2.2 Crude Oil Pipelines 

Figure 4.5 shows the comparison of the variation of the cumulative failure probability 

versus equivalent puncture diameter for the field data against the predictions by Weibull 

and lognormal CDFs for crude oil pipelines. The parameters of the Weibull and 

lognormal CDFs and the corresponding K-S test results including the null hypotheses, 

K-S test statistics and critical values are summarised in table 4.4. The critical value used 

for accepting or rejecting the null hypothesis in the K-S test (see Section 4.2.4) is 

calculated using equation 4.11. 
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Figure 4.5: Comparison of the variation of cumulative failure probability versus 

equivalent puncture diameter for the field data (data points) against predictions by 

Weibull (solid line) and lognormal (dashed line) CDFs for crude oil pipelines. 

 

Table 4.4: Summary of the parameters of the predicted Weibull and lognormal 

CDFs and the corresponding K-S test results including the null hypotheses, K-S test 

statistics and critical values for crude oil pipelines. 

Distribution Parameter Value 

Weibull 

Scale parameter, 𝛼 1.259 

Shape parameter, 𝛽 0.777 

Null hypothesis “Data are from a Weibull distribution.” 

K-S statistic 0.284 

Critical value 0.073 

Lognormal 

Mean, 𝜇 2.984 

Standard deviation, 𝜎 0.801 

Null hypothesis “Data are from a lognormal distribution.” 

K-S statistic 0.065 

Critical value 0.073 
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As can be seen from figure 4.5, in general both Weibull and lognormal data show good 

agreement with the field data. However, the K-S test results in table 4.4 suggest 

differently. The K-S statistic for the test of Weibull distribution is greater than the 

critical value while that for the test of lognormal distribution is otherwise smaller. This 

means that the null hypothesis for Weibull distribution is rejected while that for 

lognormal distribution can be accepted. The above indicates that the data are more 

likely to be drawn from the lognormal CDF. Visually, the lognormal CDF more closely 

follows the field data covering the most prevalent pipeline failures (equivalent puncture 

diameter < 100 mm, accounting for ca. 90% of the failures), whence best represents the 

probability distribution of the equivalent puncture diameter for crude oil pipelines, with 

the lognormal mean and standard deviation respectively being 2.984 and 0.801. 

Comparing to the recommended failure CDF for natural gas pipelines (see figure 4.4), 

it is obvious that the equivalent puncture diameter is more concentrated at smaller 

values (< 100 mm) in the corresponding CDF for crude oil pipelines, indicating that 

small punctures are more frequent in crude oil pipelines. This may be attributed to the 

fact that in the PHMSA database records, more natural gas pipeline failures are initiated 

by mechanisms (e.g. excavations and natural forces) that are more likely to result in 

catastrophic failures. 

4.3.2.3 CO2 Pipelines 

In the case of CO2 pipelines, only 18 equivalent puncture diameter data (see table 4.2) 

are available; far less than the 100 sample size threshold required for obtaining a 

reliable Maximum Likelihood Estimator (MLE) (see Section 4.3.1.2). The 

bootstrapping method described in Section 4.2.4 is therefore employed to calculate the 

MLE confidence interval. To specify, the bootstrapping process which involves creating 

resampled datasets that have the same size as the original one, is first implemented to 

generate a number of bootstrap samples for CO2 pipelines, each containing 18 
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equivalent puncture diameter data points. The resampling is performed with 

replacement and thus the resulting bootstrap samples may or may not be identical to the 

original dataset. To ensure that a sufficiently large number of the possible bootstrap 

samples are accounted for, 20,000 iterations of the resampling of the original dataset 

are carried out, corresponding to 20,000 bootstrap samples. Once all the bootstrap 

samples are obtained, the data points for each bootstrap sample are fitted to both 

Weibull and lognormal distributions following the distribution fitting process based on 

equations 4.5 and 4.6. The resulting 20,000 MLEs are then segmented into 50 equi-

distance bins by their values to generate a distribution of the possible values of the MLE. 

Using the distribution, the corresponding confidence interval can then be calculated 

based on equation 4.12. The chosen level of significance, 𝛼𝑠  for obtaining the 

confidence interval (see equations 4.13 and 4.14) is 0.05, corresponding to 95% 

confidence. 

Figure 4.6 demonstrates an example bootstrapping result for the MLE of the lognormal 

mean, 𝜇. 

 

Figure 4.6: The bootstrapping result for the lognormal mean, 𝜇, showing the 

Confidence Interval (CI) and arithmetic mean of the MLE. 
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As may be observed, the possible values of MLE are normally distributed, varying from 

ca. 2.5 to 3.5. The arithmetic mean of the MLE (i.e. the mean of the resulting normal 

distribution) is 2.927. The lower and upper bounds of the 95% confidence interval 

covering the majority of the possible values are respectively 2.659 and 3.227. Similar 

distribution of the MLE is also observed for the Weibull scale & shape parameters and 

the lognormal standard deviation. The corresponding arithmetic means and 95% 

confidence intervals of the MLEs for these investigated parameters are summarised in 

table 4.5. 

Table 4.5: Summary of the arithmetic means and 95% confidence intervals (dashed 

lines) of the MLEs for the Weibull scale & shape parameters and the lognormal 

mean & standard deviation. 

Distribution Parameter 
95% confidence 

interval 
Arithmetic mean 

Weibull 
Scale parameter, 𝛼 [17.808, 36.976] 26.217 

Shape parameter, 𝛽 [1.171, 2.247] 1.559 

Lognormal 
Mean, 𝜇 [2.659, 3.227] 2.927 

Standard deviation, 𝜎 [0.354, 0.791] 0.593 

The confidence intervals summarised in table 4.5 essentially represent the tolerable 

uncertainties in the prediction of the MLE. As such, any CDF characterised by the MLE 

in these intervals can be used with confidence to represent the probability distribution 

of the relative hole diameter for CO2 pipelines.  

Figure 4.7 presents the resulting Weibull and lognormal CDF ranges derived from these 

intervals showing the variation of the cumulative failure probability versus equivalent 

puncture diameter for CO2 pipelines. The lower and upper bounds of the ranges are 

noted in the figure. The corresponding recommended CDFs for natural gas and crude 

oil pipelines (see respectively Sections 4.3.2.1 and 4.3.2.2) are also presented for 
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comparison purposes. 

As discussed in Section 4.2.4, given that the sample size involved in deriving the above 

results is small, the K-S test cannot accurately reflect the goodness-of-fit between the 

model predictions and the data and hence, both Weibull and lognormal predictions are 

considered statistically valid for the purpose of this study. 

 

Figure 4.7: Weibull and lognormal CDF ranges derived from the Confidence 

Intervals (CIs) summarised in table 4.5 showing the variation of the cumulative 

failure probability versus equivalent puncture diameter for CO2 pipelines. The 

corresponding recommended CDFs for natural gas and crude oil pipelines 

respectively obtained in Sections 4.3.2.1 and 4.3.2.2 are also presented for 

comparison purposes. 

As can be observed from both lower and upper bound CDFs in figure 4.7, it is estimated 

that punctures smaller than 50 mm account for ca. 80% to 99% of the failures for CO2 

pipelines. In comparison, only ca. 45% of the failures for natural gas pipelines are in 

the form of punctures smaller 50 mm. The corresponding number for crude oil pipelines 

is ca. 90% which is lower than the upper bound value of the estimated range for CO2 
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pipelines. The above suggests that small punctures are generally more common in CO2 

pipelines. This may be attributed to the fact that in the PHMSA database records, a 

major proportion of the CO2 pipeline failures resulted from corrosions (internal and 

external) which are more likely to initiate small but continuous releases rather than 

catastrophic failures. The presence of even small amounts of water (ca. > 650 ppm; 

Connell, 2005) as a common impurity in CO2 pipelines also makes them more prone to 

corrosion. It should be noted that the above conclusions are drawn based on the data 

currently being held in the PHMSA database. The pipelines from which these data were 

extracted were mostly constructed before 2010, some even dating back to several 

decades ago when the pipe construction criteria were different from current ones. While 

corrosion may remain a major failure cause for next generation CO2 pipelines due to 

unavoidably the presence of corrosive impurities (e.g. water, H2S) in the CO2 stream, 

other failure mechanisms such as external interference and ground movement etc. 

which are likely to cause more catastrophic releases should not be ignored. With the 

expected growing number of deployed CO2 pipelines, failures due to such external 

mechanisms may become increasingly dominant. In addition, the continued 

improvement in pipeline design standards, as well as cathodic protection techniques 

will render failures resulting from corrosion and material defects less probable. The 

above may change the puncture size profile for future CO2 pipeline failures. 

Nevertheless, the technique developed here can serve as a powerful tool complimented 

with the growing wealth of failure data. 

Using figure 4.7, decision makers can select from a range of credible CDFs based on 

their subjective preferences to represent the failure probability distribution of the 

equivalent puncture diameter for the design or/and risk assessment of CO2 pipelines. 

For example, the lower bound CDF can be taken as the worst-case scenario CDF for 

determining the risks associated with CO2 pipeline failures, as it represents the highest 

probability occurrence of larger puncture sizes among the possible CDFs. It should be 
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however noted that although the upper bound CDF is considered statistically valid, in 

practice, it is more reasonable to use the CDFs closer to the lower bound as they cover 

a wider range of puncture sizes, providing greater safety margins for quantitative risk 

assessment. 

4.4 Concluding Remarks 

The development of an analytical method for constructing credible probability 

distribution of the failure puncture size for CO2 pipelines was described in this chapter. 

Based on the results and analysis presented, the following key conclusions of practical 

significance may be made: 

 The results investigating the quality of the MLE determined by calculating the mean 

squared error as a function of the sample size indicated that a minimum of 100 

puncture size data points proved to be adequate for obtaining a reliable MLE while 

200 was ideal; 

 The 1072 and 816 field data points of the equivalent puncture diameter for natural 

gas and crude oil pipelines were more than what was required for obtaining a high-

quality MLE and therefore the K-S test was employed to decide which distribution 

model (Weibull or lognormal) provided a statistically better fit for representing the 

data. The results favoured the lognormal CDF parameterised by 𝜇 = 3.812 and 𝜎 

= 1.422 and the lognormal CDF parameterised by 𝜇 = 2.984 and 𝜎 = 0.801 as the 

probability distributions of the equivalent puncture diameter for respectively natural 

gas and crude oil pipelines. Comparing the two CDFs showed that larger punctures 

tended to occur in natural gas pipelines. This was thought to result from the fact that 

a higher proportion of the gas pipeline failures is caused by outside forces which 

tended to lead to catastrophic failures; 

 In the case of CO2 pipelines, the 18 equivalent puncture diameter data points 
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available were far insufficient for obtaining a high-quality MLE and therefore the 

bootstrapping method involving computing the 95% confidence interval of the 

MLE was employed to obtain a credible range of the MLE. Remarkably, the 

resulting ranges of CDF suggested that as compared to hydrocarbon pipelines, CO2 

pipelines are more likely to experience smaller puncture size failures (at least 80% 

of the failures being in the form of punctures smaller 50 mm), thus resulting in 

smaller magnitude but more prolonged releases. This directly impacts the 

preventive and emergency response planning required especially in the case of 

buried CO2 pipelines, where small leaks can remain undetected for long periods; 

Despite being a continuous highly random variable, in practice, the through-wall 

puncture size in pressurised pipelines is often taken as a discrete variable meaning that 

only limited range of representative puncture sizes are selected thus compromising the 

validity of the subsequent quantitative risk assessment performed. The present study 

fills this important gap by introducing a method for accurately predicting the puncture 

size failure probability distribution by treating it as a continuous function. 
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Chapter 5: A Probabilistic Multi-Objective 

Optimisation Technique to Optimise the Emergency 

Shutdown Valve Configuration for Pressurised CO2 

Pipelines 

5.1 Introduction 

As pointed out in Chapter 1, inline Emergency Shutdown Valves (ESDVs) are 

extensively employed as a front-line mitigation tool for minimising the risk associated 

with the failure of pressurised CO2 pipelines. Configuring the ESDVs along the pipe 

usually involves solving a corresponding Multi-Objective Optimisation (MOO) 

problem to determine the configurations that minimise the costs while reducing the 

risks to as low as reasonably practicable. The validity of such MOO studies heavily 

depends on the accuracy of the metrics used to define the hazard of pipeline failures. 

Given that uncertainties exist in pipe characteristics and operating conditions (e.g. 

failure hole size, failure location, fluid pressure), the failure scenario can vary greatly 

from one incident to the next, impacting the magnitudes of the failure consequences 

and the subsequent solution to the MOO problem. 

Nevertheless, the metrics used in most of such studies (see for example Brown et al., 

2014c; Yu et al., 2022) are relatively simple, that being the risk of a customised failure 

scenario (usually Full Bore Rupture (FBR) for representing the worse-case scenario). 

Given the above, the ability to account for such uncertainties and hence the varying 

nature of the hazard at the time of pipeline failure is highly desirable for the 

optimisation of ESDV configurations for pressurised pipelines. Central to the above is 

the accurate prediction of the failure risk profiles based on calculating the probability 

of occurrence of possible failure scenarios and the associated consequences. However, 
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despite the importance, very few studies can be found on accounting for such 

uncertainties for CO2 pipelines. 

In a recent attempt, Rusin and Stolecka (2015) presented a risk-based optimisation 

study for optimising the number of safety valves along the pipe against the annual death 

rate levels following the failure of a 50 km length pipeline transporting CO2 at 150 bar 

and 20 ℃. In the study, uncertainties in the failure mode and valve availability were 

accounted for based on treating these parameters as probabilistic variables. The failure 

mode was assumed to be either rupture or puncture with their occurrence probabilities 

being taken as 1:9. The valve availability, expressed as the probability of the normal 

operation of safety valves, was assumed to be 0.99. However, except for the above, 

uncertainties in other essential parameters such as the operating pressure and 

temperature were not considered. In addition, given that the data employed to account 

for the parameter uncertainties are based on relatively simple assumptions, the validity 

of using such data for the subsequent optimisation study remains unclear. 

In light of the above, this chapter presents the development and application of an MOO 

technique accounting for the uncertainties in the pipeline operational and failure 

parameters for selecting the optimal ESDV configurations for pressurised CO2 

pipelines. This involves describing such uncertainties using classical probability 

distribution models and performing a Monte Carlo simulation to obtain the probability 

distribution of the risk associated with pipeline failures. The technique is based on 

striking a balance between two important objective functions, namely the risk 

associated with CO2 pipeline failure and ESDV costs. 

The chapter is organised as follows. Section 5.2 starts with a brief description of the 

modelling of the parameter uncertainties using probability distribution models. This is 

followed by an introduction of the in-pipe fluid flow dynamics which accounts for the 

impact of valve closure dynamics. The modelling of the dispersion of the releasing CO2 
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along with the resulting risks are then presented. The section ends with describing how 

the proposed technique can be employed to determine the optimal ESDV configuration 

for CO2 pipelines. In Section 5.3, based on a case study for the design of a real Carbon 

Capture and Storage (CCS) project involving a 300 km length, 309.6 internal diameter 

(i.d.) pipeline transporting CO2 at 129 bar and 287 K, the effectiveness of the proposed 

MOO technique is demonstrated based on calculating the probability distribution of the 

resulting risks following the failure of the said pipeline. Conclusions are presented in 

Section 5.4. 

5.2 Methodology 

5.2.1 Parameter Uncertainties 

In this study, the uncertainties in several important pipeline operational and failure 

parameters are studied. The studied input parameters include the failure orifice size, 

failure pressure, fluid temperature, and ambient temperature. To account for their 

uncertainties, these parameters are treated as probabilistic variables. The Probability 

Density Functions (PDFs) representing the probability distribution for the possible 

values of each of the above parameters are hence defined. These variables are divided 

into three groups based on the probability distribution models employed.  

Following the finding in Chapter 4, the Weibull distribution model (Weibull, 1951) 

which is extensively employed within reliability engineering can be adopted to model 

the probability distribution of the failure orifice size. Recalling Section 2.2.2.3.2, 

Chapter 2, the PDF of the Weibull distribution is once again presented here: 

𝑓(𝑥) = {
𝛽

𝛼
(
𝑥

𝛼
)
𝛽−1

𝑒−(
𝑥
𝛼
)
𝛽

𝑥 ≥ 0

0 𝑥 < 0

 5.1 
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To model both operating and ambient temperatures, whose values are practically default 

but with certain levels of variations, the normal distribution model taking account for 

the standard deviation of a mean value can be employed. The PDF of the normal 

distribution is reviewed in Section 2.2.2.3.2, Chapter 2 and is repeated below: 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒−

1
2
(
𝑥−𝜇
𝜎

)
2

 5.2 

In practice, the failure pressure is dependent on the location of failure due to pressure 

drop along the pipe. The uncertainty in the failure pressure is therefore expressed as 

that of the failure location. In this study, it is assumed that the failure can occur 

anywhere along the pipe with uniform probability of occurrence. The continuous 

uniform distribution model where the value of the PDF remains constant throughout a 

given range of the random variable is therefore adopted to model the probability 

distribution of the failure location and hence the failure pressure. The PDF of the 

distribution model (reviewed in Section 2.2.2.3.2, Chapter 2) is given by: 

𝑓(𝑥) = {
1

𝑏 − 𝑎
𝑎 ≤ 𝑥 ≤ 𝑏

0 otherwise

 5.3 

5.2.2 Discharge Modelling 

To describe the transient outflow following CO2 pipeline failure, an extensively 

validated and computationally efficient 1-D outflow model accounting for the impact 

of the valve closure dynamics is employed. The details of this model are presented 

elsewhere (Mahgerefteh et al., 2000, 1997) and hence only a brief account is given here. 

The model assumes Homogeneous Equilibrium Mixture (HEM), where the constituent 

liquid and vapour phases are assumed to be at thermal and mechanical equilibrium. The 

resulting conservation equations of mass, momentum and energy are respectively given 
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by: 

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥
𝜌𝑢 = 0 5.4 

𝜕𝜌𝑢

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑢2 + 𝑃) = −

2𝜌𝑢2𝑓𝑤
𝐷𝑖𝑛

 5.5 

𝜕𝜌𝐸

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑢𝐸 + 𝑃𝑢) = −

2𝜌𝑢3𝑓𝑤
𝐷𝑖𝑛

+ 𝑄̇ 5.6 

where, 𝜌 , 𝑢 , 𝐸  and 𝑃  are respectively the fluid density, velocity, total specific 

energy, and pressure. 𝐷𝑖𝑛  on the other hand, is the pipeline internal diameter. 𝑄̇ 

denotes the fluid/wall heat transfer which is modelled using Newton’s cooling law 

(reviewed in Section 2.1.2.4.2, Chapter 2). 𝑓𝑤 refers the Fanning friction factor, which 

is determined using Chen’s correlation (Chen, 1979) (reviewed in Section 2.1.2.4.1, 

Chapter 2). 

The pertinent fluid thermal properties and phase equilibrium data for CO2 are calculated 

using the Peng-Robinson Equation of State (PR EoS) (Peng and Robinson, 1976) 

following Teng et al. (2016b). The number of fluid phases presented in the flow during 

pipeline decompression is determined by the stability test based on the Gibbs tangent 

plane criterion (Michelsen, 1982). For two-phase flows, the fluid properties are handled 

based on the HEM assumption; that is, the pressure, temperature and velocity are 

identical across vapour and liquid phases. Other mixture properties including the heat 

capacity, specific volume, energy, and entropy are determined based on mass-averaged 

pure liquid and pure gas properties obtained from the PR EoS. The local speed of sound 

is handled based on the methods reviewed in Section 2.1.2.5.3, Chapter 2. 

The above conservation equations 5.4 to 5.6 are solved numerically based on the 

method of characteristics (Hoffman and Zucrow, 1976), which is considered more 
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suitable than other numerical schemes (e.g. finite element method) in handling fast 

transient flows during pipeline decompression (Mahgerefteh et al., 1999). In this study, 

the flow prior to pipeline decompression is assumed to be isothermal steady state. The 

upstream and downstream ends of the pipe are assumed to be an infinite reservoir and 

closed, respectively.  

The ESDVs installed along the pipe are modelled as Remote Control Valve (RCV) 

given its practically wide application in pipeline facilities (Oland et al., 2012). The 

modelling of RCV closure dynamics is presented as follows. 

The area of the valve opening as a function of time, 𝐴𝑓(𝑡) assuming a constant closure 

rate is given by (Mahgerefteh et al., 1997): 

𝐴𝑓(𝑡) = 2

[
 
 
 
 
 

2𝜋𝑅𝑖𝑛
2 cos−1

(

  
 

𝑅𝑖𝑛 − (
2𝑅𝑖𝑛 − 𝑥𝑣(𝑡)

2
)

𝑅𝑖𝑛

360

)

  
 

− (𝑅𝑖𝑛 −
(2𝑅𝑖𝑛 − 𝑥𝑣(𝑡))

2
)(√𝑅𝑖𝑛

2 − (𝑅𝑖𝑛 −
(2𝑅𝑖𝑛 − 𝑥𝑣(𝑡))

2
)

2

)

]
 
 
 
 
 

 

5.7 

where 𝑅𝑖𝑛 is the pipe internal radius. 𝑥𝑣 on the other hand, is the distance traversed 

by the valve at time 𝑡, which is determined by: 

𝑥𝑣 = 𝑢𝑣𝑡 5.8 

where 𝑢𝑣 is the linear closure rate of the valve. 

The pressure drop across the valve at any time 𝑡 during closure, 𝑃𝑣(𝑡) is derived from 

(Mahgerefteh et al., 1997): 
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𝑄𝑣(𝑡) = 𝐶𝑑(𝑡)𝐴𝑓(𝑡)√
2∆𝑃𝑣(𝑡)

𝜌(𝑡)
 5.9 

where 𝑄𝑣 is the volumetric flow rate and 𝐶𝑑 on the other hand, denotes the valve 

discharge coefficient which is a function of the valve type and degree of opening, given 

by (Wylie et al., 1993): 

𝐶𝑑 = 𝐴0 + 𝐴1𝜔𝑣 + 𝐴2𝜔𝑣
2 + 𝐴3𝜔𝑣

3 + 𝐴4𝜔𝑣
4 5.10 

where, 𝜔𝑣 represents the percentage of the valve opening area. 𝐴0, 𝐴1, 𝐴2, 𝐴3 and 

𝐴4 are curve fitting constants and their values are given by: 𝐴0 = -0.00111888, 𝐴1 = 

0.001104507, 𝐴2 = 8.13E-05, 𝐴3 = -1.73E-06 and 𝐴4 = 1.81E-08. 

The valve activation time, 𝑡𝑎 is taken as the time lapsed for detecting the failure at the 

valve location plus the operator response/action time to initiate valve closure. 

5.2.3 Dispersion Modelling 

To predict the time-varying concentration of the dispersing CO2 following the 

accidental release from pressurised pipelines, the steady-state SLAB model (Ermak, 

1990) (see Section 2.2.2.1, Chapter 2) for simulating the atmospheric dispersion of 

dense-than-air releases is adopted. The model is developed based on solving a set of 

crosswind-averaged conservation equations of species, mass, momentum, and energy 

along with additional equations for cloud width and height. The concentration profiles 

in the crosswind direction are determined using the Gaussian distribution functions. 

The turbulent mixing of the dispersing gas cloud with the surrounding atmosphere is 

accounted for by using the air entrainment concept. The SLAB model simplifies the 3-

D cloud dispersion through crosswind-averaged cloud properties which only vary in the 

downwind direction whilst calculating both cloud width and height. It therefore has the 
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advantage of low computational costs. 

As input conditions for the SLAB model, the outflow data obtained using the model 

described in Section 5.2.2 are adopted. 

5.2.4 Risk Estimation 

In this study, the risk is defined as the annual human fatality due to CO2 exposure 

following a given pipeline failure scenario. The procedure for calculating the fatality 

risk is summarised as follows. 

First, the overall pipeline failure frequency, 𝜆 is calculated based on literature data. 

This involves multiplying the length of the pipe, 𝐿 with its failure frequency per year 

per unit length, 𝜆0, as given by: 

𝜆 = 𝜆0𝐿 5.11 

For CO2 pipelines, 𝜆0 is assumed to be 2.3×10E-4 per year per km (PHMSA, 2020), 

which is derived based on the historical failure data analysis method as given by 

equation 2.46. 

Second, the Probit function, 𝑃𝑟 measuring the probability of death as a function of the 

CO2 dosage is calculated. For the risk of human fatality due to high CO2 concentration, 

the Probit function is given in Section 2.2.2.3.1, Chapter 2 and is repeated below: 

𝑃𝑟 = −90.80 + 1.01 ln(𝐶8𝑡) 5.12 

Third, the annual human fatality, 𝑟 following a given pipeline failure scenario is then 

calculated based on the population density of the area affected by the dispersing CO2 

cloud: 
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𝑟 = ∫𝜆𝜌𝑝𝑃𝑑𝑑𝐴
 

𝐴

 5.13 

where 𝐴  is the fatal cloud area affected by the dispersion of CO2 and 𝜌𝑝  is the 

population density within the fatal cloud area. 𝑃𝑑 on the other hand, is the probability 

of death determined by the Probit value calculated based on equation 5.12. 

5.2.5 Risk Probability Distribution 

Due to the existence of uncertainties in the pipeline operational and failure parameters, 

the fatality risk is practically a probabilistic variable. To obtain the probability 

distribution of the fatality risk, a Monte Carlo simulation involving the random 

sampling of the input parameters described in Section 5.2.1 is performed. The Monte 

Carlo procedure can be summarised as follows. 

Initially, a set of values of the input parameters representing one possible failure 

scenario are randomly generated based on the PDFs described in Section 5.2.1. This 

step simulates the practical situations where due to the existence of uncertainties in the 

input parameters, the pipe and fluid conditions are random at the time of pipeline failure. 

Using the set of values obtained above, the corresponding annual human fatality for the 

specific failure scenario is calculated following the procedure described in Sections 

5.2.2 to 5.2.4. The above is repeated and terminated once a pre-determined iteration 

number, 𝑛 representing the number of failure scenarios being simulated is reached. 

The Monte Carlo procedure will give a set of 𝑛  data points for the annual human 

fatality, 𝑟1, 𝑟2,…, 𝑟𝑖,…, 𝑟𝑛. Using the collection of these data points, the probability 

distribution of the fatality risk is then obtained based on deriving the corresponding 

Empirical Cumulative Distribution Function (ECDF), which is given by: 
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𝐹̂(𝑥) =
1

𝑛
∑𝐼

𝑛

𝑖=1

(𝑟𝑖, 𝑥) 5.14 

where 𝐹̂(𝑥)  represents the ECDF and 𝐼 , on the other hand, denotes the indicator 

function which is given by: 

𝐼(𝑟𝑖, 𝑥) = {
1 if 𝑟𝑖 ≤ 𝑥
0 if 𝑟𝑖 > 𝑥

 5.15 

The ECDF is in essence the weighted count of samples, 𝑟𝑖 for which 𝑟𝑖 is below or 

equal to a threshold, 𝑥  and therefore is an approximation of the real CDF. How 

accurate is the approximation depends on the number of failure scenarios, 𝑛  being 

used to derive the ECDF. While it is obvious that a larger 𝑛  can result in a better 

approximation, simulating the physical problem involved as described in Sections 5.2.1 

to 5.2.4 can become increasingly computationally demanding. Hence, 𝑛  must be 

carefully determined to ensure the result accuracy while minimising the computational 

workload. 

To determine the appropriate 𝑛, the following test involving examining the quality of 

the ECDF for several values of 𝑛 is performed. First, for a given 𝑛, the corresponding 

ECDF is derived based on equation 5.14 using the 𝑛 data points randomly generated 

from an assumed test distribution. Second, the quality of the ECDF is assessed by the 

Doretzky-Kiefer-Wolfowitz inequality method. The method involves constructing a 

(1 − 𝛼)-confidence band as follows (Larry, 2004): 

𝑃𝐶𝐷𝐹(𝐿(𝑥) ≤ 𝐹(𝑥) ≤ 𝑈(𝑥) for all 𝑥) ≥ 1 − 𝛼 5.16 

where 𝐹(𝑥) denotes the real CDF. 𝛼 is the confidence level. 𝑃𝐶𝐷𝐹 on the other hand, 
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refers to the probability of the real CDF lying between the lower, 𝐿(𝑥) and upper, 

𝑈(𝑥) boundaries of the band which are respectively given by: 

𝐿(𝑥) = max{𝐹̂(𝑥) − 𝜀, 0} 5.17 

𝑈(𝑥) = min{𝐹̂(𝑥) + 𝜀, 1} 5.18 

where: 

𝜀 = √
1

2𝑛
log (

2

𝛼
) 5.19 

The resulting confidence band represents that the probability of 𝐹(𝑥) lying between 

the 𝐿(𝑥) and 𝑈(𝑥) is greater than or equal to 1 − 𝛼. The width of the band, therefore, 

implies the quality of the ECDF in representing the real CDF. 

5.2.6 Multi-objective Optimisation 

In this study, the MOO problem examines two objective functions encompassing the 

ESDV cost and risk associated with CO2 pipeline failure. For simplicity, the 

optimisation variable is taken as the number of ESDV, as it is considered one of the 

most important among all ESDV characteristics (Yu et al., 2022). 

Following the above, the resulting MOO problem may be summarised in the 

mathematical form below: 

Min
𝑑𝜖𝐷

𝐽1(𝑁), 𝐽2(𝑁) 5.20 

where 𝑁 is the ESDV number and the objective functions, 𝐽1 and 𝐽2 are defined as 
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follows. 

𝐽1 is the total annual cost of ESDVs, expressed as: 

𝐽1(𝑑) =
𝑉𝑃𝑁 ∙ 𝑟𝑑 ∙ (1 + 𝑟𝑑)𝑦𝑟

(1 + 𝑟𝑑)𝑦𝑟+1 − 1
𝑁 5.21 

where 𝑉𝑃𝑁 is the present net value of a single ESDV cost. 𝑟𝑑 and 𝑦𝑟 are respectively 

the discount rate and average lifetime of the ESDV. 

𝐽2 on the other hand, represents the risk associated with CO2 pipeline failure, here taken 

as the annual human fatality due to CO2 exposure, as described in Section 5.2.4. As 

such, 𝐽2 is a probabilistic variable and the resulting solutions of the multi-objective 

optimisation problem become probabilistic as well.  

Mapping the solutions based on the probability distribution of 𝐽2 on the coordinate 

system set up by 𝐽1 and 𝐽2, a probabilistic solution plane for selecting the optimal 𝑁 

will be constructed, from which the decision makers can determine a unique optimal 

solution according to their subjective preferences. 

To investigate how the solutions obtained based on taking the risk as a probabilistic 

variable can be different from those obtained by assuming the risk as a deterministic 

variable, a comparative study is performed. This involves solving the same MOO 

problem based on otherwise treating the risk deterministically. Here, instead of deriving 

the risk probability distribution, the risk is simply assumed to be the annual human 

fatality following the FBR of CO2 pipeline, representing the worst-case scenario. This 

is usually adopted in practice for an ESDV optimisation problem to account for the 

maximum safety margin when the information regarding the uncertainties in pipeline 

operational and failure parameters is not readily available. 
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5.3 Results and Discussion 

5.3.1 Case Study 

The case study is based on a proposed pipeline design for the GreenGen CCS project 

developed by China Huaneng Group (Gao et al., 2011). The project involves 

transporting 1.46 million tonnes per annum of CO2 from GreenGen IGCC power plants 

in Tianjin to Shenli oilfield in Shandong, China for enhanced oil recovery. The 300 km 

length, 309.6 i.d. pipeline runs through several heavily populated provinces located in 

the east coast of China. Based on the population density data published by National 

Bureau of Statistics of China, the average population density in the proximity of the 

pipeline is assumed to be 620 person/km2. 

For all the simulations for the outflow from the pipeline, an automatic nested grid 

system applying finer numerical discretisation near the failure location is employed 

(Mahgerefteh et al., 1999). 

Table 5.1 summarises the deterministic pipeline characteristics and prevailing 

conditions adopted to perform the simulations. 
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Table 5.1: Deterministic CO2 pipeline characteristics and prevailing conditions 

used for the case study. 

Parameter Value 

Pipe length (km) 300 

Pipe external diameter (mm) 309.6 

Pipe wall thickness (mm) 7.12 

Pipe roughness (mm) 0.005 

Pipe angle Horizontal 

Pipe elevation (m) 1 

Heat transfer coefficient (kW/m2K) 5 

Feed composition (mole %) CO2 100 

Pipe upstream condition Reservoir (Constant pressure) 

Feed flow rate (kg/s) 46.3 

Feed pressure (bar) 153 

Ambient pressure (bar) 1.01 

The determination of the remaining necessary input parameters including the failure 

orifice size, failure pressure, fluid temperature and ambient temperature depends on 

how the risk is quantified (see Section 5.2.6). For the case where the risk is taken as a 

probabilistic variable, the method discussed in Section 5.2.1 is adopted to describe these 

parameters. Table 5.2 summarises the probability distribution models and the 

corresponding distributional parameters for modelling the uncertainties for these input 

parameters. 
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Table 5.2: Summary of the probability distribution models and the corresponding 

distributional parameters for the probabilistic CO2 pipeline characteristics and 

prevailing conditions used for the case study. 

Input parameter 
Probability distribution 

model 

Distribution 

parameter 

Relative orifice size Weibull 
𝛼 = 0.137 

𝜌 = 1.573 

Fluid temperature (K) Normal 
𝜇 = 287 

𝜎 = 0.5 

Ambient temperature (K) Normal 
𝜇 = 283 

𝜎 = 1.3 

Failure location (m) Continuous uniform 
𝑎 = 0 

𝑏 = 300 

Here, the failure orifice size is expressed in relative terms as the ratio of the failure 

orifice diameter to pipe internal diameter, termed as relative orifice size. The 

corresponding Weibull distribution parameters are selected to reflect the fact that 

among CO2 pipeline failures, small punctures are statistically far more frequent than 

large ones (see Section 4.3.2.3, Chapter 4). 

For the fluid temperature whose variations are usually a result of operational changes 

such as variations in flow rate, the normal distribution parameters are determined based 

on the project design in the case study. The fluid temperature is set at 287 K assuming 

ca. ±1.5 K variations. 

For the ambient temperature which could affect the heat transfer in/out the pipe, its 

normal distribution parameters are selected based on that it is assumed to have a default 

value of 283 K varying ca. ±5 K.  

The failure pressure, which refers to the fluid pressure at the point of failure, is 
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expressed in relation to that location. The uniform distribution parameters are obtained 

based on the length of the studied pipeline. 

The resulting PDFs for the above discussed pipeline characteristics and prevailing 

conditions are presented in figure 5.1. 

  

(a) (b) 

  

(c) (d) 

Figure 5.1: PDFs of the relative hole size (a), failure location (b), fluid temperature 

(c) and ambient temperature (d) used in the case study. 

For the comparative study where the failure is assumed deterministically as an FBR, 

the undetermined input parameters are assumed to be fixed values taken from their 

respective PDFs from the above. The relative orifice size is taken as 1, representing 

FBR. The failure location is assumed to be the mid-length of the pipe. The fluid and 
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ambient temperatures on the other hand are taken as their default values. 

To optimise the ESDV number, 𝑁  for the pipeline in the case study, 11 different 

numbers varying from 0 to 10 are sampled for the MOO problem described in Section 

5.2.6. For each EDSV number sampled, the corresponding ECDF representing the 

probability distribution of the risk following pipeline failure is obtained following the 

procedure described in Section 5.2.5. All the ESDVs are assumed to be RCV with a 

closure rate of 2.54 cm/s and activation time of 50 s. The single ESDV cost, 𝑉𝑃𝑁 , 

discount rate, 𝑟𝑑  and average lifetime of each valve, 𝑦𝑟  (see equation 5.21) are 

respectively taken as £60,000, 0.035 and 10 years, following Yu et al. (2022). The 

ESDVs are assumed to be located at equal distance intervals. For comparison purposes, 

data obtained for the two objective functions, 𝐽1 and 𝐽2 are normalised before being 

fed into deriving the ECDF and the subsequent MOO problem. 𝐽1  is normalised 

against the maximum cost among the sampled ESDV values, corresponding to 10 

ESDVs, whereas 𝐽2 is normalised against the annual human fatality based on the FBR 

of a pipeline without ESDVs.  

5.3.2 Risk Probability Distribution Results 

To determine the appropriate number of failure scenarios to be simulated, 𝑛  for 

obtaining a reliable risk probability distribution, the test described in Section 5.2.5 

involving examining the quality of the ECDF for several values of 𝑛 is performed. 

The test distribution is assumed to be a Weibull distribution with the scale and shape 

parameters being respectively 0.25 and 1.5. A wide range of 𝑛s including 50, 100, 500, 

1,000, 2,000, 3,000 are examined. The confidence level, 𝛼  (see equation 5.16) for 

obtaining the confidence bands is set at 0.05. Figure 5.2 presents the resulting Weibull 

ECDF for each tested 𝑛, and the corresponding confidence bands measuring the quality 

of the obtained ECDF. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 5.2: The Weibull ECDFs and the corresponding confidence bands for n= 50 

(a), 100 (b), 500 (c), 1,000 (d), 2,000 (e), 3,000 (f). 

As can be observed from figure 5.2, with the increase in 𝑛, the ECDF is gradually 

smoothed out and the confidence band generally shrinks, suggesting improved quality 

of the ECDF. However, the rate of shrinking is only significant when 𝑛 is smaller than 

500. As 𝑛  further increases to 3,000, the marginal decrease in the width of the 
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confidence band decreases. The above means that beyond 𝑛 = 500, further increasing 

𝑛  becomes increasingly unfavourable in obtaining the ECDF as it provides limited 

improvement to the quality of the ECDF while significantly increasing the 

computational workload. As such, the number of failure scenarios to be simulated is 

determined as 500 in this study for the subsequent process of obtaining the risk 

probability distribution. 

Figure 5.3 presents the probability distributions (ECDFs) of the normalised annual 

human fatality, 𝐽2 for the 11 different values of ESDV number, 𝑁 (see Section 3.1) 

sampled for the multi-objective optimisation problem. 

 

Figure 5.3: Probability distributions (ECDFs) of the normalised annual human 

fatality, 𝐽2 for different ESDV numbers. 

As can be observed, with the increase in 𝑁, the range of 𝐽2 covered by the ECDF 

narrows down. As 𝑁 increases from 0 to 10, the maximum 𝐽2 value on the ECDF 

decreases from ca. 1 to merely ca. 0.07. This reflects the fact that increasing the number 

of ESDVs installed along the pipe will essentially help mitigate the risk associated with 

CO2 pipeline failure, as expected. 
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It is otherwise noteworthy that even for the case of no ESDV (𝑁  = 0) where the 

corresponding ECDF covers a full range of 𝐽2  (0 to 1), 𝐽2  mostly concentrates at 

relatively small values, with ca. 80% of the 𝐽2 smaller than 0.3 and over 90% smaller 

than 0.4. This indicates that the chance of the examined CO2 pipeline experiencing 

catastrophic failures is statistically low. As such, the likelihood of a failure scenario, 

remains practically important for quantifying the corresponding risk and should be 

considered for the subsequent optimisation for selecting the optimal ESDV number. 

5.3.3 Multi-objective Optimisation Results 

Based on the risk probability distributions (ECDFs) from figure 5.3, mapping all the 

possible failure scenarios according to their cumulative probabilities on the coordinate 

system set up by the objective functions 𝐽1 and 𝐽2, a probabilistic solution plane as 

described in Section 5.2.6 for the MOO problem for selecting the optimal ESDV 

number can be constructed. Figure 6 shows the constructed solution plane showing the 

variation of 𝐽2 as a function of 𝐽1. For simplicity, only typical failure scenarios are 

selected to be shown in the figure. The coloured data points each represent a failure 

scenario with a unique set of 𝐽1 and 𝐽2, with the corresponding cumulative probability 

being marked by the respective colour given in the vertical bar on the right. 
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Figure 5.4: The constructed probabilistic solution plane for the MOO problem, 

showing the variation of the normalised annual human fatality, 𝐽2 as a function of 

the normalised total annual ESDV cost, 𝐽1. The colour of each data point refers to 

the cumulative probability, as indicated in the vertical bar on the right. 

In essence, the colour of a data point representing the cumulative probability of the 

corresponding failure scenario can be translated to indicate the likelihood of lowering 

the risk below a certain level of annual human fatality on a given ESDV budget. For 

example, the colour of the data point with 𝐽1 = 0.4 and 𝐽2 = 0.2 corresponding to ca. 

0.9 on the vertical bar on the right means that the probability of limiting the risk lower 

than 0.2 using an ESDV budget equivalent to 0.4 is ca. 90%. 

Based on the above, the following demonstrates how figure 5.4 is employed to help the 

decision makers select the optimal ESDV number based on their subjective preferences. 

An example preference is considered: the averaged normalised annual human fatality 

needs to be limited below the level of 0.15 over the lifetime of the pipe. 

Figure 5.5 presents the MOO solution plane for selecting the optimal ESDV number, 
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𝑁  for the example decision makers’ subjective preference focusing on limiting the 

averaged normalised annual human fatality, 𝐽2 below the level of 0.15 over the lifetime 

of the pipe. The dashed horizontal line represents the 0.15 risk criterion. The expected 

values of 𝐽2  on the respective normalised total annual ESDV costs, 𝐽1  are also 

presented in the figure as references. The following discusses how the optimal 𝑁 is 

determined. 

 

Figure 5.5: MOO solution plane for selecting the optimal ESDV number, 𝑁 for 

the example decision makers’ subjective preference focusing on limiting the 

averaged normalised annual human fatality, 𝐽2 below the level of 0.15 over the 

lifetime of the pipe. The colour of each data point refers to the cumulative 

probability, as indicated in the vertical bar on the right. 

First and foremost, to lower the averaged risk below the 0.15 criterion, at least the 

expected value of 𝐽2, which is derived based on pipeline quantitative risk assessment 

and hence represents the statistically desired risk outcome, should be lower than 0.15. 

It is obvious from figure 5.5 that this only applies when 𝐽1 is equal to or greater than 



                                   DEPARTMENT OF CHEMICAL ENGINEERING 

- 164 - 

 

0.3, suggesting that 3 or more ESDVs are the plausible solutions for meeting the 

decision makers’ preference. Obviously, the above points to an optimal 𝑁 of 3. 

Nevertheless, analysing the corresponding cumulative probability for these plausible 

solutions, a different optimal solution may be obtained. To demonstrate, a further cost-

effectiveness analysis examining the probability of limiting 𝐽2  below 0.15 as a 

function of 𝑁 is performed. 

Figure 5.6 presents the results of the cost-effectiveness analysis showing the variation 

of the probability of limiting 𝐽2  below 0.15 as a function of 𝑁  for 𝑁  ≥ 3. Such 

probabilities are obtained based on the colours of the corresponding data points from 

figure 5.5. 

 

Figure 5.6: Cost-effectiveness analysis results showing the variation of the 

probability of limiting 𝐽2 below 0.15 as a function of the ESDV number, 𝑁. 

As can be seen from figure 5.6, the probability sharply increases from ca. 0.74 to 0.98 

as 𝑁 increases from 3 to 5 and turns almost plateaus afterward. This indicates that 

using more than 5 ESDVs can only lead to a minimal increase in the chance of limiting 
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the risk below the required level while substantially increasing the ESDV costs. As such, 

𝑁 = 5 is instead considered the optimal solution for the MOO problem. 

An important finding from the above analysis is that even though the expected value 

represents the statistically desired risk outcome, the solution obtained based on such a 

value is actually not cost-effective from a statistical point of view. 

5.3.4 Comparative Study Results 

Figure 5.7 presents the MOO results showing the variation of the normalised fatality 

risk as a function of the ESDV number, 𝑁 for the comparative study where the failure 

is taken deterministically as an FBR. Still, the preference of the decision makers is 

assumed to be the same as in Section 3.3, that being limiting the averaged normalised 

annual human fatality below the level of 0.15 over the lifetime of the pipe. 

 

Figure 5.7: MOO results for the comparative study where the failure scenario is 

taken deterministically as an FBR. 

As can be seen from figure 5.7, as 𝑁 increases, the normalised fatality risk generally 

decreases as expected and passes through the 0.15 risk criterion line at 𝑁 = 7. This 



                                   DEPARTMENT OF CHEMICAL ENGINEERING 

- 166 - 

 

suggests that the optimal 𝑁 for the MOO problem is 7, representing a 40% increase in 

the cost as compared to the results in Section 5.3.3 where 5 ESDVs are recommended. 

As discussed in Section 5.3.3, 𝑁 = 7 is in essence a less favourable solution given its 

low cost-effectiveness from a statistical point of view. It is therefore clear that if the 

risk is otherwise considered deterministically as the worst-case scenario rather than a 

probabilistic variable, the resulting optimal ESDV number will be larger, leading to 

significantly more money being spent on the risk mitigation while minimally improving 

the mitigation effect. 

5.4 Concluding Remarks 

This chapter presents the development and application of an MOO technique for 

identifying the optimal inline ESDV number for pressurised CO2 pipelines, accounting 

for the uncertainties in the pipeline operational and failure characteristics. Based on the 

studies presented in this chapter, the following significant findings that reveal the key 

capabilities of the proposed technique were found: 

 The risk probability distributions showed that the majority of the CO2 pipeline 

failures would only result in relatively small risks. The likelihood of a catastrophic 

CO2 pipeline failure is practically small and will become increasingly minimal with 

the increase in the number of ESDVs installed along the pipe; 

 The results of the MOO study revealed that the number of ESDVs installed along 

the pipe had a non-linear impact on the probability of limiting the risk below a 

decision-maker preferred level. There exists a threshold beyond which increasing 

the ESDV number provides little increase in the probability with substantially 

increased costs; 

 The optimal ESDV number obtained based on the expected value of the risk is 

actually not cost-effective from a statistical point of view; 
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 The comparative research revealed that if in the MOO problem, the risk was taken 

deterministically as the worst-case scenario, the resulting optimal solution could be 

statistically less favourable. This finding proves the efficacy of the proposed MOO 

technique in minimising the costs while yielding minimal loss of mitigation impacts. 
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Chapter 6: Conclusions and Future Work 

6.1 Conclusions 

Carbon Capture Utilisation and Storage (CCUS) which involves capturing CO2 and 

storing it in geological formations is considered to play a key role in decarbonising the 

power sector and heavy industries. 

An essential part of the CCUS chain involves the large-scale transportation of the 

captured CO2 to the storage site. Among various transportation modes (e.g. truck, ship, 

pipeline), high-pressure pipelines are widely recognised as the most practical and 

economical transport option. The high pressures involved, combined with the huge 

amount of inventory and its hazardous nature, poses significant risks to life, 

environment, and property in the event of pipeline failure. As such, ensuring the safe 

operation of such pipelines is of paramount importance. 

In light of the above, this thesis described the development, testing, and application of 

three techniques for the safety assessment of pressurised pipelines covering pipeline 

decompression modelling, Quantitative Risk Assessment (QRA) and risk mitigation 

planning as follows: 

 the extension of a computationally efficient Vessel Blowdown Model (VBM) to 

account for un-isolated releases and fluid/wall heat exchanges. 

 the development of an analytical approach for estimating the failure hole size 

probability distribution for pressurised CO2 pipelines as part of pipeline QRA, 

taking into account the statistical significance of the failure data being employed. 

 the development of a probabilistic Multi-Objective Optimisation (MOO) technique 

for selecting the optimal ESDV configurations for pressurised CO2 pipelines, taking 

into account the uncertainties in the pipe characteristics and operating conditions. 
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In the following, the main findings in each chapter are summarised. 

Chapter 2 presented a comprehensive review for the key steps in pressurised pipeline 

safety assessment. As the first step, the mathematical modelling of pressurised pipelines 

was described, mainly focusing on the governing equations for fluid flow dynamics, 

constituent relations for fluid/wall interactions and equation of state for predicting the 

fluid thermal properties and equilibrium data. This was followed by a review of relevant 

studies focusing on the applications of the Homogeneous Equilibrium Mixture (HEM) 

model for predicting pressurised pipeline decompression behaviours.  

For the second step, the QRA for pressurised CO2 pipelines was reviewed. This part 

summarised the important aspects involved in performing QRA, including the 

modelling of dense gas dispersion, calculation of pipe failure frequency, and evaluation 

of the corresponding individual and societal risk levels. Turning to the third step 

involving the risk mitigation planning, the application of the MOO technique, including 

its theoretical background and solution methods, in configuring inline Emergency 

Shutdown Valves (ESDVs) as the front-line mitigation tool for pressurised pipeline 

failures was presented. This was followed by a review of selected example studies for 

optimising the ESDV configuration and the design for pressurised pipelines. 

From the above review, the following key recommendations are made: 

 A broader range of failure scenarios such as large puncture failures and un-isolated 

releases should be included in the development and validation of analytically based 

pipeline decompression models; 

 More complex metrics for representing the risk following pipeline failure can be 

introduced in the development of MOO techniques for optimising ESDV 

configurations. 

In Chapter 3, the development and testing of a computationally efficient Modified 
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Vessel Blowdown Model (MVBM) for predicting the outflow characteristics in the 

event of pressurised pipeline failures was described. The developed model presented a 

fundamental extension to the VBM, addressing the major limitations of the VBM in 

handling un-isolated releases and fluid/wall heat exchanges. The model was developed 

based on incorporating additional mass and energy terms accounting for the inflow into 

the standard vessel discharge equations. Given that the resulting equations can be 

solved analytically, the fundamental drawback of long computational runtimes 

associated with numerically based pipeline decompression models has been addressed 

using the approach. 

The MVBM was first verified against the predictions using an extensively validated 

numerically based pipeline decompression model for simulating the un-isolated 

releases from a hypothetical methane pipeline following its failure. Based on the same 

case study, the MVBM was next tested against the VBM in simulating isolated releases. 

The simulation runs for the above involved a wide range of test scenarios varying 

inflow rate (1 to 7.5 kg/s), pipe length (100 to 5000 m) and puncture to pipe internal 

diameter ratio (0.2 to 0.8). 

The results showed that the MVBM generally produced good agreement with the 

numerical model predictions in simulating pipeline failure releases at a fraction of the 

computational runtime. It was also noteworthy that improved simulation results could 

be observed in the predictions by MVBM as compared to those by the VBM. 

A particularly interesting finding from the above tests was that the MVBM handled 

punctures with relatively large puncture to pipe internal diameter ratios with reasonable 

accuracy based on comparison with the VBM predictions. This was considered a 

substantial improvement to the VBM where only punctures smaller than 40% of the 

pipe internal diameter could be well handled. This improvement was thought to be a 

consequence of the fact MVBM accounted for fluid/wall heat exchanges which became 
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significant for large puncture to pipe diameter rations. However, the accuracy of the 

MVBM decreased with the increase in the puncture diameter. This could be due to the 

increasing incapability of the quasi-steady state assumption, which ignored the growing 

influence of fluid/wall frictional effects in the vicinity of the puncture as its diameter 

increased. 

Chapter 4 presented the development and application of a statistical analytical 

technique for determining the failure hole size probability distribution for pressurised 

CO2 pipelines. A particularly important feature was addressing the pressing dilemma of 

the relatively small pool of the recorded historical data available for CO2 pipelines to 

ascertain a reasonable prediction of their failure risks in the context of CCUS operations 

and how these are compared against those for hydrocarbon pipelines.  

The methodology involved fitting the Weibull and lognormal distributions to the 

puncture diameter data obtained from the PHMSA database using the Maximum 

likelihood Estimator (MLE) method in conjunction with either Kolmogorov-Smirnov 

(K-S) test if the sample size was deemed sufficiently large, or, bootstrapping if not. 

Whether the sample size being employed was statistically representative was 

determined by calculating the corresponding MLE quality using Monte Carlo 

simulation.  

Using the above method, the failure hole size probability distribution, expressed as the 

Cumulative Distribution Function (CDF) was determined for CO2 pipelines and 

compared against those for hydrocarbon (natural gas and crude oil) pipelines. 

Remarkably, the results obtained indicated that as compared to the latter, CO2 pipelines 

were most likely to experience smaller puncture size failures, thus resulting in smaller 

magnitude hence more prolonged releases. This observation directly impacts the 

preventive and emergency response planning required especially in the case of buried 

CO2 pipelines, where small leaks can remain undetected for long periods. Furthermore, 
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despite being a continuous variable, in practice, the through-wall failure hole size in 

pressurised pipelines is often taken as a discrete variable, which compromises the 

validity of the subsequent failure consequence assessment and risk mitigation planning. 

The developed technique addressed this important shortcoming. 

Chapter 5 described the development and application of a probabilistic MOO technique 

for selecting the optimal ESDV configurations for pressurised CO2 pipelines based on 

treating the risk associated with pipeline failure as a probabilistic variable. The above 

involved first describing the uncertainties in the pipeline operational and failure 

characteristics using classical Probability Distribution Functions (PDFs) followed by 

performing a Monte Carlo simulation involving the random sampling from the resulting 

PDFs to obtain the corresponding risk probability distribution. Based the obtained risk 

probability distribution, a plane mapping the risk in the space of the objective functions 

could be constructed for the decision makers to determine the optimal solution 

according to their subjective preferences. Such work is fundamentally important for 

configuring pipeline ESDVs given that in practice the failure scenario can vary greatly 

from one pipe incident to the next, depending on the failure initiation mechanism, as 

well as other relevant conditions such as the pipe wall material, thickness and cathodic 

protection employed to prevent corrosion.  

The developed technique was applied to study an industry-relevant case involving a 

300 km length, 309.6 mm internal diameter pipeline transporting CO2 initially at 129 

bar and 307.24 K. The efficacy of the proposed technique was then demonstrated based 

on selecting the optimal ESDV number that struck a balance between the risk associated 

with pipeline failure and ESDV costs. 

A key finding of this study was that there existed a threshold beyond which increasing 

the number of ESDVs installed along the pipe provided a marginal increase in the 

probability of limiting the risk below the decision maker preferred level at substantially 
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increased costs. The above important findings underlined the efficacy of the proposed 

technique as a valuable decision-making tool for selecting the optimal inline ESDV 

configurations that maintain the costs at a minimum or manageable level while yielding 

minimal loss of risk mitigation impacts. 

In conclusion, the work presented in this thesis provides the mathematical and 

computational basis for the efficient and accurate safety assessment of pressurised 

pipelines, addressing the key limitations in efficient pipeline decompression modelling, 

pressurised pipeline QRA and risk mitigation planning concerning the optimal 

configuration of inline ESDVs. The techniques developed in this work will benefit the 

safety design of pressurised CO2 pipelines, hence help to accelerate the large-scale 

deployment of CCUS as part of the global quest for reaching the ambitious net zero 

emission target. 

6.2 Suggestions for Future Work 

6.2.1 Extension of the MVBM to Accounting for Various Upstream 

Sources 

In Chapter 3, a computationally efficient MVBM was developed. It was shown to 

successfully address the fundamental limitation of the VBM in handling un-isolated 

releases. Nevertheless, the developed model is only limited to simulating constant feed 

flow rate whereas in reality, time-varying feed flow rate as a result of e.g. upstream 

pumps or reservoirs may be inevitable. Handling the above limitation, the introduction 

of the appropriate upstream boundary conditions would broaden the range of the 

applicability of the MVBM.  

6.2.2 Sample Quality Measurement 

In Chapter 4, as part of the methodology for obtaining reliable probability distributions 
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of the through-wall failure hole size, the statistical significance of the samples being 

employed to derive the distributions was assessed based on their sizes. However, 

whether the sample ideally covers, for example, a sufficiently wide range of operating 

conditions, or the entire range of puncture size was not investigated. Given this, future 

work should focus on investigating the sample statistical significance based on other 

sample features such as the sample quality. 

In addition to the above, the continuous recording of the failure statistics covering a full 

range of possible failure scenarios and classifying these statistics in a detailed manner 

are fundamentally important, especially for CO2 pipelines given their relatively short 

operational experience and small numbers, reinforced by their major role in CCS. The 

growing wealth of such statistics can be used to further improve the accuracy of the 

proposed method in predicting the failure hole size probability distributions for 

pressurised pipelines. The above can be in turn employed to estimate the pipeline failure 

rate. 

6.2.3 Modelling of Parameter Uncertainties using Complicated 

Methods 

In Chapter 5, a probabilistic MOO technique was developed to optimise the ESDV 

configurations for pressurised CO2 pipelines, accounting for the uncertainties in 

pipeline operational and failure parameters. The efficacy of this technique was 

demonstrated based on an industry-relevant case study. However, for some of the 

parameters considered in the study (e.g. fluid temperature, ambient temperature), their 

uncertainties were modelled relatively simply using normal distributions whereas in 

practice, they may have different behaviours. Given the above, future work should 

focus on collecting real operational data and subsequently deriving the corresponding 

probability distributions for reliably representing the parameter uncertainties using 

rigorous statistical methods.  
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