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Abstract

Three major challenges in reinforcement learn-
ing are the complex dynamical systems with
large state spaces, the costly data acquisition
processes, and the deviation of real-world
dynamics from the training environment de-
ployment. To overcome these issues, we study
distributionally robust Markov decision pro-
cesses with continuous state spaces under the
widely used Kullback–Leibler, chi-square, and
total variation uncertainty sets. We propose a
model-based approach that utilizes Gaussian
Processes and the maximum variance reduc-
tion algorithm to efficiently learn multi-output
nominal transition dynamics, leveraging
access to a generative model (i.e., simulator).
We further demonstrate the statistical sample
complexity of the proposed method for
different uncertainty sets. These complexity
bounds are independent of the number of
states and extend beyond linear dynamics,
ensuring the effectiveness of our approach
in identifying near-optimal distributionally-
robust policies. The proposed method can
be further combined with other model-free
distributionally robust reinforcement learning
methods to obtain a near-optimal robust
policy. Experimental results demonstrate the
robustness of our algorithm to distributional
shifts and its superior performance in terms
of the number of samples needed.
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1 INTRODUCTION

The use of reinforcement learning (RL) algorithms
is gaining momentum in various complex domains,
including robotics, nuclear fusion, and molecular
discovery. Data acquisition in such environments
can be a challenging and resource-intensive process.
Safety considerations may also limit the amount of
data that can be collected through interactions with
the environment. To address this issue, a commonly
adopted approach is to train RL policies using a
simulator (generative model) enabling RL agents to
learn from a simulated environment.

Dealing with complex applications that involve large
state spaces requires data-efficient learning, even when
a simulator is available. However, achieving optimal
policies using existing approaches often requires a
significant amount of training data, making data-
efficient learning an ongoing challenge. Additionally,
when deploying a policy to a real-world system, it
is crucial to ensure its performance remains reliable
despite mismatches between the simulator and the
real-world system. Such mismatches can arise from
approximation errors, time-varying system parameters,
or even due to adversarial influence. For example,
in self-driving, it is infeasible to precisely model all
possible variables, such as road conditions, brightness,
and tire pressure, which can all vary over time. The
resulting mismatch, known as the ’sim-to-real gap’,
can diminish the performance or impact the reliability
of RL algorithms trained on a simulator model.

In this work, we examine the use of a generative model
in distributionally-robust model-based reinforcement
learning. Our aim is to find a distributionally-robust
policy that is near-optimal by actively querying the sim-
ulator with a state-action pair selected by the learning
algorithm. To achieve this, we introduce the kernelized
Maximum Variance Reduction (MVR) algorithm,
which identifies a state-action pair with the highest un-
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certainty according to the model to learn the nominal
model dynamics. The algorithm produces a nominal
dynamics estimate that is utilized within the robust
Markov Decision Process (MDP) framework, where an
uncertainty set that includes all models close (accord-
ing to, e.g., Kullback–Leibler divergence) to the learned
one is considered. The overall protocol is summarized
in Figure 1. We provide a thorough characterization
of statistical sample complexity rates by utilizing the
learned model to generate a near-optimal robust policy.

Related Work: Reinforcement learning with a genera-
tive model, introduced in Kearns et al. (2002), assumes
access to a simulator that outputs the next state given
any state-action pair. It appears frequently in the
RL literature and is of significant practical relevance.
Kakade (2003) elucidate various uses for this generative
setting and analyze it in further detail. For the finite
MDP case, such a generative setting has been subse-
quently studied in various works such as Kakade (2003);
Gheshlaghi Azar et al. (2013); Li et al. (2020) and,
recently, by Agarwal et al. (2020) who provide minimax
optimality guarantees for the naive plug-in estimator
based algorithm. For large state spaces, generative RL
is typically combined with function approximation as
studied, e.g., by Abbasi-Yadkori et al. (2019); Shariff
and Szepesvári (2020); Lattimore et al. (2020); Li et al.
(2023). Recently, Mehta et al. (2021) consider gen-
erative RL in continuous state-action spaces from an
experimental perspective and showcase the relevance
of this setting to the nuclear fusion dynamics research.
Degrave et al. (2022) study the tokamak magnetic
control problem also using a generative simulator. In
addition, Li et al. (2023) present an active exploration
strategy that utilizes the least-squares value iteration.
Their approach aims to identify a near-optimal policy
across the entire state space, providing polynomial
sample complexity guarantees that remain unaffected
by the number of states. In contrast to these works,
we use generative RL to discover distributionally robust
policies through the modeling of unknown transition
dynamics, aiming to address the sim-to-real gap
considering the uncertainty in transition dynamics.

The local access simulator setting, introduced in Yin
et al. (2022), operates under a similar generative model
framework. However, the input state to the simulator
is restricted to the states already visited. In partic-
ular, Tkachuk et al. (2023) study such a setting and
employ a model-free approach, focusing on learning
the Q-function using an uncertainty-based algorithm.
In contrast, our method utilizes the kernel estimator
to construct a model of the transition dynamics, of-
fering approximation guarantees. These guarantees
are subsequently extended to ensure the robustness
of the policy. The novelty of our approach lies in the

proposed combination of employing the maximum vari-
ance reduction algorithm to learn transition dynamics
and constructing a robust policy based on the learned
transition dynamics resulting in sample efficiency.

In model-based reinforcement learning, the model
learned from a simulator encounters two issues well dis-
cussed in the literature, namely, the model-bias (Deisen-
roth and Rasmussen, 2019; Clavera et al., 2018) and
the simulation to reality (sim2real) gap (Andrychowicz
et al., 2020; Peng et al., 2018; Mankowitz et al., 2019;
Christiano et al., 2016; Rastogi et al., 2018; Wulfmeier
et al., 2017). To address this from the perspective of
distributional robustness, previous works (Zhou et al.,
2021; Panaganti and Kalathil, 2022; Yang et al., 2022)
have considered distributional robustness aspects in
the context of finite Markov decision processes (MDPs)
using the robust MDP framework from Iyengar (2005);
Nilim and El Ghaoui (2005). Various other works
utilize this robust MDP framework such as Xu and
Mannor (2010); Wiesemann et al. (2013); Yu and Xu
(2015); Mannor et al. (2016); Badrinath and Kalathil
(2021); Petrik and Russel (2019) for the planning prob-
lem, and provide asymptotic guarantees for tabular
and linear function approximators Lim et al. (2013);
Tamar et al. (2014); Roy et al. (2017); Wang and Zou
(2021). Our work is closely related to the recent works
on distributionally robust RL (Zhou et al., 2021; Pana-
ganti and Kalathil, 2022; Yang et al., 2022; Shi and Chi,
2022; Xu et al., 2023; Clavier et al., 2023; Shi et al.,
2024). However, unlike ours, the sample complexity
bounds established in these works rely on the number
of states and actions, making them impractical for large
or infinite state spaces.

A recent work (Blanchet et al., 2024) also consider
an infinite state space setup with kernelized function
approximation. They consider an offline setting, where
the data is already available with the partial coverage
assumption satisfied, while we propose to actively col-
lect data from the environment in the generative robust
MDPs. Note that the partial coverage assumption in-
troduces an additional variable (coverage coefficient) in
their guarantees. Moreover, they propose to utilize the
MLE method to estimate their model via offline data.
In comparison, we use the maximum variance reduc-
tion method to actively generate sample and estimate
the model, and demonstrate the sample complexity.
Further, their kernel-based transition model is different
since they model the transition probability as an inner
product between a feature map and a kernel function
while we assume that there is a ground truth unknown
function. Finally, unlike their work, we consider the
χ2 divergence as well, which invokes a different type of
reformulations and analysis. A similar work Ma et al.
(2022) deal with linear transition dynamics setup, i.e.,
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Figure 1: An illustration of distributionally robust RL with a generative model (simulator). Our proposed
algorithm MVR (Algorithm 1) queries the simulator and estimates the nominal model f̂n. Then, using the
estimated model f̂n together with a specified uncertainty set, a robust policy is obtained by using model-free
RL (e.g., Panaganti et al. (2022)). Finally, the robust policy is deployed in the real-world system.

its Assumption 4.1 is akin to the kernel-based transi-
tion dynamics assumption in Blanchet et al. (2024).
Still, it also does not involve active sampling.

In the model-free setting with finite state-action space,
Liu et al. (2022) propose a distibutionally robust Q-
learning algorithm based on access to a generative simu-
lator. Wang et al. (2023a,c) extend the distributionally
robust Q-learning framework by improving the design
and analysis of the estimation and provide finite sam-
ple complexity bounds for this framework. Liang et al.
(2023) consider the same problem in the online setting
with single trajectory data wherein one is not allowed to
sample repeatedly from a state but is allowed to choose
actions within that single trajectory. In the model-free
setting with large state space (though, still assumed to
be finite), Panaganti et al. (2022) study the problem of
distributionally robust RL in a function approximation
setup. They assume access to offline data from the nom-
inal transition dynamics and provide computational
sample complexity bounds in terms of the size of the hy-
pothesis space that is used to represent the set of state-
action value functions (Q-function). Other works such
as Pinto et al. (2017); Derman et al. (2020); Mankowitz
et al. (2019); Zhang et al. (2020) consider robustness
aspects in deep reinforcement learning, but these ap-
proaches lack theoretical guarantees. To the best of
our knowledge, our work is the first one to address the
distributionally robust RL problem in the generative
model setting with a model-based approach and large
state spaces. Moreover, we are the first to consider gen-
eral non-linear transition dynamics and derive provable
sample complexity guarantees for such a setting.

Similar to previous works, we utilize the kernelized
MDP framework from Chowdhury and Gopalan (2019)
to model transition dynamics with continuous states
and actions by assuming that the transition function
belongs to an associated Reproducing Kernel Hilbert
Space (RKHS). Such continuous MDP formulations
also appear in Curi et al. (2020, 2021), however,
these works consider finite horizon MDPs while in

our work we consider infinite horizon discounted
MDPs. In particular, Curi et al. (2021) propose an
adversarially robust upper-confidence algorithm to
optimize performance in the worst case. However,
their algorithm provides robustness guarantees against
adversarial perturbations to the transition dynamics.
Our work differs from this perspective as we consider
robustness w.r.t. distributional shifts of the transition
dynamics. Finally, in the related kernelized bandit
setting, model-based distributionally robust algorithms
are proposed in Kirschner et al. (2020); Bogunovic
et al. (2018); Nguyen et al. (2020).

We further summarize some recent advancements in dis-
tributionally robust reinforcement learning (RL) that
have emerged subsequent to our submission. Wang
et al. (2023b) focus on developing a comprehensive
theoretical framework for robust MDPs by expand-
ing upon existing formulations. Specifically, they ex-
plore various types of decision-makers and adversaries’
dynamics within the robust MDP framework, includ-
ing Markovian and history-dependent behaviors, and
examine conditions for the existence of the dynamic
programming principle. Yang et al. (2023) consider
the equivalent Lagrangian version of the robust MDP
problem and propose a model-free sample-efficient al-
gorithm to solve the same. Yu et al. (2024) propose
a computationally efficient solution for solving robust
MDPs with Wasserstein uncertainty set. Li and Shapiro
(2023) focus on delineating the connections between
static and game formulations of robust MDPs. Un-
like our work, the aforementioned works consider the
finite state-action space setting. Liu and Xu (2024)
study off-dynamics RL through the framework of ro-
bust MDPs under total variation uncertainty set and
propose a model-free algorithm to learn the robust
policy. Panaganti et al. (2023) incorporate techniques
from the distributionally robust learning framework to
solve the robust MDP problem in the offline RL setting.
Both works adopt the linear transition dynamics, dif-
fering from our non-linear transition dynamics in the
generative model setting with a model-based approach.



Distributionally Robust Model-based Reinforcement Learning with Large State Spaces

Main Contributions: We formalize a distributionally
robust reinforcement learning setting with continuous
state spaces and non-linear transition dynamics in
Section 2. In the generative model setting, we propose
(in Section 3) a model-based approach that utilizes
Gaussian Process models and the Maximum Variance
Reduction (MVR) principle to efficiently learn tran-
sition dynamics. We provide novel statistical sample
complexity guarantees in Section 4 for the proposed
method and widely used uncertainty sets. Our sample
complexity bounds are independent of the number of
states, ensuring the effectiveness of our approach in
identifying near-optimal distributionally robust policies
for large state spaces. In Section 5, our experimental
findings showcase the sample efficiency and robustness
of our algorithm in the face of distributional shifts
within popular RL-testing environments.

2 PROBLEM SETTING

A discounted Markov Decision Process (MDP) is a
tuple pS,A, P, r, γq, with S denoting the state space,
the action space A, and the probabilistic transition
dynamics P : S ˆ A Ñ ∆pSq. Here, ∆pSq denotes
the set of all probability distributions over S. The
reward function r : S ˆ A Ñ r0, 1s characterizes the
reward rps, aq the learner receives upon playing a P A
in s P S, and γ P r0, 1s denotes the discount factor.
The learner uses a policy π : S Ñ ∆pAq to select
a P A upon observing the state s P S. We define
the cumulative discounted reward as

ř8

t“0 γ
trpst, atq

for known initial state s0 and st „ P pst´1, at´1q for
t ą 0 and at „ πpstq. The value function Vπ and the
state-action value function Qπ are given as follows:

Vπpsq “ EP,π

”

8
ÿ

t“0

γtrpst, atq
ˇ

ˇ

ˇ
s0 “ s

ı

,

Qπps, aq “ rps, aq ` EP,π

”

8
ÿ

t“1

γtrpst, atq
ı

,

where at „ πpstq and st`1 „ P pst, atq. Finally, we
define the optimal policy π˚ corresponding to dynam-
ics P which yields the optimal value function, i.e.,
Vπ˚ psq “ maxπ Vπpsq for all s P S.

We assume the standard generative (or random) access
model, in which the learner can query transition data
arbitrarily from a simulator, i.e., each query to the
simulator pst, atq outputs a sample st`1 P Rd where
st`1 „ P pst, atq. In particular, we consider the follow-
ing frequently used transition dynamics model:

st`1 “ fpst, atq ` ωt, (1)

where ωt P Rd represents independent additive tran-
sition noise and follows a Gaussian distribution with
zero mean and covariance σ2I.

Regularity assumptions: We assume that f is
unknown and continuous for tractability reasons which
is a common assumption when dealing with continuous
state spaces (e.g., Chowdhury and Gopalan (2019); Curi
et al. (2020); Kakade et al. (2020)). Further on, we as-
sume that f resides in the Reproducing Kernel Hilbert
Space (RKHS). Considering the multi-output definition
of f and in line with the previous work (e.g., Chowdhury
and Gopalan (2019); Curi et al. (2020)), we define the
modified state-action space X (over which the RKHS is
defined) as X :“ S ˆAˆ rds, where the last dimension
i P t1, 2, . . . , du incorporates the index of the output
state vector, i.e., fp¨, ¨q “ pf̃p¨, ¨, 1q, . . . , f̃p¨, ¨, dqq where
f̃ : X Ñ R. In particular, we assume that f̃ belongs
to a space of well-behaved functions, denoted by H,
induced by some continuous, positive definite kernel
function k : X ˆ X Ñ R and equipped with an inner
product x¨, ¨yk. All functions belonging to an RKHS
H satisfy the reproducing property defined w.r.t. the
inner product x¨, ¨yk : xf̃ , kpx, ¨qy “ f̃pxq for f̃ P H.
We also make the following common assumptions:
(i) the kernel function k is bounded kpx, x1q ď 1 for
all x, x1 P X and X is a compact set (X Ă Rp), and
(ii) every function f̃ P H has a bounded RKHS norm
(induced by the inner product) }f̃}k ď B.

We refer to the simulator environment determined by
f as the nominal model Pf , while the true environment
encountered by the agent in the real world might
not be the same (e.g., due to a sim-to-real gap).
Consequently, we utilize the robust MDP framework
to tackle this by considering an uncertainty set
comprising of all models close to the nominal one.

Robust Markov Decision Process (RMDP):
We consider the robust MDP setting that addresses
the uncertainty in transition dynamics and considers
a set of transition models called the uncertainty
set. We use Pf to denote the uncertainty set that
satisfies the ps, aq–rectangularity condition Iyengar
(2005) (as defined in Equation (2)), an assumption
that is commonly used in the related literature
(e.g., Panaganti and Kalathil (2022); Panaganti et al.
(2022); Zhou et al. (2021)). Similar to MDPs, we
specify RMDP by a tuple pS,A,Pf , r, γq where the
uncertainty set Pf consists of all models close to a
nominal model Pf in terms of a distance measure D:

Pf
s,a “ tp P ∆pSq : Dpp||Pf ps, aqq ď ρu,

Pf “
â

ps,aqPSˆA
Pf
s,a. (2)

Here, D denotes some distance measure between
probability distributions, and ρ ą 0 defines the
radius of the uncertainty set. In this work, we
consider three probability distance measures, in-
cluding Kullback–Leibler (KL) divergence such that
KLpP ||Qq “

ş

logp dP
dQ qdP , Chi-Square (χ2) distance
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such that χ2pP ||Qq “
ş

p dP
dQ ´ 1q2dP for P being

absolutely continuous with respect to Q, and Total Vari-
ation (TV) distance such that TVpP ||Qq “ 1

2}P ´Q}1.

In the RMDP setting, the goal is to discover a policy
that maximizes the cumulative discounted reward
for the worst-case transition model within the given
uncertainty set. Concretely, the robust value function
V R
π,f corresponding to a policy π and the optimal

robust value function are given as follows:

V R
π,f psq “ inf

PPPf
EP,π

”

8
ÿ

t“1

γtrpst, atq
ˇ

ˇ

ˇ
s0 “ s

ı

,

V R
π˚,f psq “ max

π
V R
π,f psq @s P S. (3)

In fact, Iyengar (2005) shows that for any f , there
exists a deterministic robust policy π˚. Using the
definition of the robust value function, we also define
the robust Bellman operator (Iyengar, 2005) in terms of
the robust state-action value function QR

π,f as follows:

QR
π,f ps, aq “rps, aq ` γ inf

Dpp||Pf ps,aqqďρ
Es1„p

”

V R
π,f ps1q

ı

.

(4)

The goal of the learner is to discover a near-optimal
robust policy while minimizing the total number
of samples N , i.e., queries to the nominal model
(simulator). Concretely, for a fixed precision ϵ ą 0,
the goal is to output a policy π̂N after collecting N
samples, such that }V R

π̂N ,f ´ V R
π˚,f }8 ď ϵ.

3 SAMPLING ALGORITHM

In this section, we outline our methodology for address-
ing the problem described in Section 2. We begin by
discussing the Gaussian process (GP) model often used
in algorithms to learn RKHS functions (Rasmussen
and Williams, 2006; Kanagawa et al., 2018).

Multi-output Gaussian process: Under the as-
sumptions of Section 2, modeling uncertainty and
learning the transition model f can be performed via
the Gaussian process framework. A Gaussian process
GP pµp¨q, kp¨, ¨qq over the input domain X , is a collec-
tion of random variables pf̃pxqqxPX whose every finite
subset pf̃pxiqqni“1, n P N, follows multivariate Gaussian
distribution with mean Erf̃pxiqs “ µpxiq and covari-
ance Erpf̃pxiq ´ µpxiqqpf̃pxjq ´ µpxjqqs “ kpxi, xjq for
every 1 ď i, j ď n. Standard algorithms implicitly use
a zero-mean GP p0, kp¨, ¨qq as the prior distribution over
f̃ , i.e, f̃ „ GP p0, kp¨, ¨qq, and assume that the noise
variables are drawn independently across t from N p0, λq

with λ ą 0. Considering the multi-output definition of
fp¨, ¨q “ pf̃p¨, ¨, 1q, . . . , f̃p¨, ¨, dqq,we build d copies of the
dataset such that D1:n,l “ tpsi, ai, lq, si`1,lu

n
i“1 each

with n transitions from a particular state-action pair
ps, aq to component l of next state. For xi “ psi, aiq

and yi,l “ si`1,l, the posterior mean, covariance and
variance for f̃px, lq are given by:

µndpx, lq “kndpx, lqpKnd ` Indλq´1ynd, (5)

kndppx, lq, px1, lqq “kppx, lq, px1, lqq´

kndpx, lqpKnd ` Indλq´1kTndpx1, l1q,

σ2
ndpx, lq “kndppx, lq, px, lqq. (6)

Here Knd denotes the kernel matrix of dimen-
sions nd ˆ nd whose entries are kppxi, lq, pxj , l

1qq

with 1 ď i, j ď n and 1 ď l, l1 ď d.
kndpx, lq “ rkppx, lq, pxi, l

1qqs1ďiďn,1ďl1ďd denotes
the covariance vector and ynd “ ryi,ls1ďiďn,1ďlďd

denotes the output vector.

Correspondingly, the posterior mean and variance for
f would be

µnps, aq “ pµndps, a, 1q, ¨ ¨ ¨ , µndps, a, dqq, (7)
σnps, aq “ pσndps, a, 1q, ¨ ¨ ¨ , σndps, a, dqq. (8)

Maximum variance reduction: With certain
assumptions on the loss function (squared loss) and
noise distribution, the function estimation in RKHS is
analogous to the Bayesian Gaussian process framework
(Rasmussen and Williams, 2006). When used with the
same kernel function, this allows the construction of
mean and variance estimates of f̃ P H using Gaussian
processes (eq. (5) and eq. (6)). Based on these, one
can construct shrinking statistical confidence bounds
(used in our analysis in Appendix A.2) that hold with
probability at least 1 ´ δ, i.e., the following holds
|f̃pxq ´ µn´1pxq| ď βnpδqσn´1pxq for every n ě 1
and x P X . Here tβiu

n
i“1 stands for the sequence of

parameters that are suitably set (see Lemma 5) to
ensure the validity of the confidence bounds.

We use the maximum variance reduction (MVR) al-
gorithm (Algorithm 1) to learn about the nominal
model f . MVR works on the principle of reducing
the maximum uncertainty measured by the posterior
standard deviation of a GP model calculated by us-
ing previously collected data. At each iteration, MVR
queries a state-action pair that has the highest uncer-
tainty according to the model and uses the obtained
observation to update the GP posterior. The algorithm
outputs nominal dynamics estimate f̂n corresponding
to the final GP posterior mean µn.

To characterize the precision of the learned model, we
use the max. information gain (Srinivas et al., 2009)

ΓnpX q “ max
x1,...,xnPX

0.5 log detpIn ` λ´1Knq, (9)

a kernel-dependent quantity that is frequently used
in GP optimization. For many commonly used kernels,
Γn is sublinear in n, which implies that the predictive
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Algorithm 1 Maximum Variance Reduction (MVR)
for learning model dynamics

1: Require: Simulator f , kernel k, domain S ˆ A
2: Set µ0ps, aq “ 0, σ0ps, aq “ 1 for all ps, aq P S ˆA
3: for i “ 1, . . . , n do
4: psi, aiq “ argmaxps,aqPSˆA }σi´1ps, aq}2

5: Observe si`1 “ fpsi, aiq ` ωi

(i.e., sample si`1 from nominal Pf psi, aiq)
6: Update to µi and σi by using psi, ai, si`1q

according to Eq. (5) and Eq. (6)
7: end for
8: return The dynamics estimate f̂np¨, ¨q “ µnp¨, ¨q

uncertainties are shrinking sufficiently fast, and thus
f̂n is capable of generalizing well across the entire
domain. This is formalized in the following lemma.
Lemma 1. For βnpδq set as in Lemma 4 and Id de-
noting t1, 2, ¨ ¨ ¨ , du, the MVR algorithm (Algorithm 1)
outputs the dynamics estimate f̂np¨, ¨q “ µnp¨, ¨q such
that the following holds uniformly for all ps, aq P S ˆA
with probability at least 1 ´ δ,

}µnps, aq´fps, aq}2 ď O
´

βnpδq2ed
?
n

a

ΓndpS ˆ A ˆ Idq

¯

.

The preceding lemma asserts that we can effectively
estimate the unknown dynamics by utilizing the pure
exploration procedure and that the error in the model
reduces as we increase the number of samples. In the
subsequent section, we leverage this finding to establish
the minimum number of samples needed to obtain a
distributionally robust policy that is close to optimal.

4 SAMPLE COMPLEXITY

This section discusses the statistical sample complexity
of the proposed MVR algorithm in distributionally
robust MDPs. Specifically, given the optimal robust
policies π̂N and π˚ corresponding to the learned nomi-
nal dynamics f̂N by the MVR algorithm with N iter-
ations and the true nominal dynamics f , respectively,
we show the number of samples needed by the MVR
algorithm to ensure that the following holds:

|V R
π̂N ,f psq ´ V R

π˚,f psq| ď ϵ,@ s P S. (10)

Note that such an assumption on access to optimal
policy is widely used in the generalization litera-
ture (Kleywegt et al., 2002; Hu et al., 2020; Zhang
et al., 2024). Several model-free methods (Panaganti
et al., 2022; Derman et al., 2018; Mankowitz et al.,
2019) have studied how to learn an optimal robust
policy under KL, TV, and χ2 uncertainty set given
trajectory samples generated from a transition
dynamics. Thus, one can easily incorporate the MVR
algorithm with these model-free algorithms to find
an optimal π̂N using samples generated by f̂N . One

major benefit of our approach is that we do not need
access to samples from the more costly simulator f
when training the robust policy. Consequently, we
focus on the statistical sample complexity of the MVR
algorithm rather than designing algorithms to find π̂N .
Theorem 1. (Sample Complexity of MVR under KL
uncertainty set) Consider a robust MDP with nominal
transition dynamics f satisfying the regularity assump-
tions from Section 2 and with uncertainty set defined
as in Equation (2) w.r.t. KL divergence. For π˚ denot-
ing the robust optimal policy w.r.t. nominal transition
dynamics f and π̂N denoting the robust optimal pol-
icy w.r.t. learned nominal transition dynamics f̂N via
MVR (Algorithm 1), and δ P p0, 1q, ϵ P p0, 1

1´γ q, it
holds that maxs |V R

π̂N ,f psq ´ V R
π˚,f psq| ď ϵ with proba-

bility at least 1 ´ δ for any N such that

N “ O
´

e
2´γ

p1´γqαkl
γ2β2

N pδqd2ΓNd

p1´γq4ρ2ϵ2

¯

. (11)

Theorem 1 shows the number of samples required from
the nominal transition dynamics f (simulator) to con-
struct a robust optimal policy reliably with high proba-
bility. The complexity bound depends on the maximum
information gain ΓNd (Equation (9)), which is sublinear
in N for many commonly used kernels (Srinivas et al.,
2009), and on the confidence width β2

N pδq which also
exhibits a logarithmic dependence on N according to
the confidence bounds from Vakili et al. (2021). Specif-
ically, for the squared exponential kernel used in the
experiments, both ΓNd and βN depend only logarith-
mically on N , implying that a bound independent of N
remains the same up to extra multiplicative log factors.
An additional d factor that denotes the dimension of
the state space S in the obtained bound comes from uti-
lizing the multi-output (of dimension d) GP framework
to model the transition dynamics, which also appears
in the regret bounds of similar works (Chowdhury and
Gopalan, 2019; Curi et al., 2020, 2021). Finally, the
term αkl P p0, 1

2p1´γqρ q is a problem-dependent param-
eter that is independent of N , which similarly appears
in the guarantees of Panaganti and Kalathil (2022).

We can compare our guarantees with the existing
sample-complexity results in model-based distribution-
ally robust RL which, however, only consider finite
state-action spaces. In particular, when considering
KL uncertainty sets with infinite horizon, Panaganti
and Kalathil (2022) obtain sample complexity of order

O
´

e
αkl`2

αklp1´γq γ2
|S|

2
|A|

p1´γq4ρ2ϵ2

¯

up to logarithmic factors. No-
tably, the latter complexity bound explicitly depends
on the cardinality of the state and action spaces |S| and
|A|, thus scaling badly when S and A are large or con-
tinuous. Instead, the guarantee of Theorem 1 depends
on the state-action space only through ΓNd which re-
mains bounded even when these are continuous. This
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allows us to successfully extend the distributionally
robust framework to continuous state spaces. Other
terms in the bound of Theorem 1 such as γ (the discount
factor), ρ (radius of the uncertainty set) have similar
dependencies. Crucially, the dependence on the preci-
sion parameter ϵ remains the same when compared to
the guarantees provided for finite state-action setting.

We relegate the proof of Theorem 1 to Appendix B but
outline its main steps below:

Step (i): The first step is to bound the approx-
imation error of policy π̂n (i.e., the left-hand side
of Equation (10)) by the sum of two error terms:
|V R

π̂N ,f psq ´ V R
π̂N ,f̂N

psq| and |V R
π̂N ,f̂N

psq ´ V R
π˚,f |. Uti-

lizing the robust Bellman Equation (4), bounding such
errors boils down to bounding differences of the form:

max
s

ˇ

ˇ

ˇ
inf

KLpp||Pf ps,π̂N psqqqďρ
Es1„p

”

V R
π̂N ,f ps1q

ı

´ inf
KLpp||Pf̂n

ps,π̂N psqqqďρ
Es1„p

”

V R
π̂N ,f ps1q

ı
ˇ

ˇ

ˇ
. (12)

where Pf ps, aq denotes the Gaussian transition distri-
bution with mean fps, aq and covariance σ2I.

Step (ii): The major challenge of bounding Equa-
tion (12) lies in the inner infinite-dimensional minimiza-
tion problems over distributions. To overcome this, we
can reformulate such problems into single-dimensional
ones using duality (Hu and Hong, 2013; Zhou et al.,
2021; Panaganti and Kalathil, 2022) as follows:
Lemma 2. (Variant of Hu and Hong (2013)) For
random variable X and function V satisfying that V pXq

has a finite Moment Generating function, it holds for
all ρ ą 0 and P P tP : KLpP ||P0q ď ρu:

inf
P

EP rV pXqs “ sup
αě0

t´α logpEP0re
´V pXq

α sq ´ αρu.

Let HpV, P q :“ supαě0t´α logpEX„P re
´V pXq

α sq ´ αρu.
Thus, applying Lemma 2, we rewrite Equation (12)
as the difference of two single-dimensional convex
optimization problems with expectations over Pf and
Pf̂N

, respectively:

max
s

ˇ

ˇ

ˇ
HpV R

π̂N ,f , Pf ps, π̂N psqqq ´ HpV R
π̂N ,f , Pf̂N

ps, π̂N psqqq

ˇ

ˇ

ˇ

ď max
V p¨qPV

max
s,a

ˇ

ˇ

ˇ
HpV, Pf ps, aqq ´ HpV, Pf̂N

ps, aqq

ˇ

ˇ

ˇ

ď max
V p¨qPV

max
s,a

max
αPrα,αs

c
ˇ

ˇ

ˇ
Es1„Pfps,aq

re
´V ps1q

α s

´ Es1„Pf̂N ps,aq
re

´V ps1q

α s

ˇ

ˇ

ˇ
,

(13)

where c, α, α ą 0 are constants, V denotes the value
functional space, and the last inequality holds due to
certain structural properties of the single-dimensional
optimization problem in the RHS of Equation (13).

Step (iii): Finally, we bound Equation (13) using
the difference between the estimated model f̂N and
the true f , which is characterized by Lemma 1, in
Appendix B. Moreover, to address the outer maximum
over all value functions, states, and actions, we
incorporate a covering number argument.

Other uncertainty sets: We further obtain the
statistical sample complexities for χ2 distance and TV
distance uncertainty sets. We note that the analysis fol-
lows similar steps as the ones of Theorem 1. The major
difference lies in incorporating and handling the dual
forms of χ2/TV uncertainty sets in our analysis which
differ from the one of Lemma 2. For χ2 uncertainty set,
we utilize the dual formulation that appears in Duchi
and Namkoong (2021), while for TV uncertainty sets
we follow the approach of Yang et al. (2022). As before,
we can upper bound Equation (12) via covering number
arguments and the distance between the nominal
transition dynamics f and the learned transition
dynamics f̂N by using Lemma 1. Below, we outline the
statistical sample complexity in the case of χ2 and TV
uncertainty sets in Propositions 1 and 2, respectively.

Proposition 1. (Sample Complexity of MVR under
χ2 uncertainty set) Under the setup of Theorem 1 with
uncertainty set defined w.r.t. χ2 distance, it holds that
maxs |V R

π̂N ,f psq ´ V R
π˚,f psq| ď ϵ with probability at least

1 ´ δ for any N such that

N “ O
´´

1`2ρ
?
1`2ρ´1

¯4
γ4β2

N pδqd2ΓNd

p1´γq8ϵ4

¯

. (14)

Proposition 2. (Sample Complexity of MVR under
TV uncertainty set) Under the setup of Theorem 1 with
uncertainty set defined w.r.t. TV distance, it holds that
maxs |V R

π̂N ,f psq ´ V R
π˚,f psq| ď ϵ with probability at least

1 ´ δ for any N such that

N “ O
´

p2`ρq
2

ρ2

γ2β2
N pδqd2ΓNd

p1´γq4ϵ2

¯

. (15)

We relegate the proofs of Propositions 1 and 2 to Ap-
pendices C.1 and C.2. In comparison to the exponential
dependence on 1

1´γ for KL uncertainty set in Theo-
rem 1, we note that for both χ2/TV uncertainty sets,
we obtain polynomial dependence on 1

1´γ . In the con-
text of the TV uncertainty set, the dependency on ϵ in
Proposition 2 remains consistent with the finite state
case (Panaganti and Kalathil, 2022). However, in the
χ2 case, the bound presented in Proposition 1 exhibits
a worse dependence on ϵ compared to the result derived
in Panaganti and Kalathil (2022). This difference arises
because we refrain from utilizing the same dual reformu-
lation lemmas from Iyengar (2005), as they are applica-
ble exclusively to finite state-action settings. Improving
these rates is an interesting direction for future work.
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5 EXPERIMENTS

The aim of our experiments is to show the effectiveness
of the proposed distributionally-robust model-based ap-
proach. In particular, our goal is to evaluate the robust-
ness of our policies against different perturbations of the
environment’s parameters, and compare them with ex-
isting non-robust methods. Moreover, our experiments
focus on demonstrating the effectiveness of MVR to
smartly collect data from the environment rather than
using a sub-optimal/random policy to interact with
the environment and collect data. This significantly
reduces the number of samples required from the envi-
ronment to perform robustly. In addition, we compare
our approach with model-free methods (robust and non-
robust) which typically require a significantly larger
number of interactions with the nominal environment.

Environments: We consider the OpenAI’s
gym (Brockman et al., 2016) environments of swing-up
Pendulum, Cartpole and Reacher, respectively. Pendu-
lum has a 2-dimensional state space and scalar actions
(Mehta et al., 2021). For Cartpole, we consider a scalar
continuous action space as done in Mehta et al. (2021),
while states are 4-dimensional. Reacher, instead,
consists of a 2DOF robot arm with 8-dimensional
states. For each environment we test our approach
against various perturbations as outlined below.

Module 1: Learning the model. To learn the
nominal environment, we utilize a setup similar to
that of Mehta et al. (2021), but instead of considering
the ”EIGτ˚” which minimizes entropy of the optimal
trajectory τ˚ using model-predictive control, we use
the proposed MVR method (Algorithm 1). Similar to
Mehta et al. (2021), we use a GP prior with the squared
exponential kernel to model the transition dynamics
fps, aq (alternate models such as Neural Ensembles or
Bayesian neural networks can be used to model the
transition dynamics as done in, e.g., Curi et al. (2020,
2021)). As in continuous control problems the subse-
quent states are fairly close, we use our multi-output
GP to model the difference fpst, atq ´ st`1.

Module 2: Computing a robust policy. Given a
learned model f̂n, we compute the associated robust
policy π̂n using the Robust Fitted Q-Iteration (RFQI)
algorithm recently introduced in Panaganti et al. (2022)
(this effectively approximates our robust optimization
oracle). RFQI computes a robust policy from offline
data by alternated maximization of a dual-variable
function and a Q-function. We generate such offline
data by using a ϵ-greedy non-robust policy (using Soft
Actor-Critic (Haarnoja et al., 2018) or Model Predictive
Control (Camacho and Alba, 2013; Chua et al., 2018))
which we train on the learned model f̂n from Module 1
and let interact with it for 106 steps. Note that this is

Alg
Env Pendulum Cartpole Reacher

MVR+RFQI (ours) 60 150 2000
MVR+FQI 60 150 2000
SAC 104 - 106

MPC - 2250/step -
RFQI 106 ` 104 105 ¨ 2250 106 ` 106

FQI 106 ` 104 105 ¨ 2250 106 ` 106

Table 1: Number of interactions with the nominal
environment to obtain the results of Figure 2. For
MPC, a total of 2250 interactions are required at each
step for planning multiple rollouts and selecting the
best action. Both RFQI and FQI utilize 106 offline
data points generated by SAC or MPC.

crucially different from the vanilla RFQI (Panaganti
et al., 2022) where the true nominal environment was
used both for training such policy and for generating
offline data. Indeed, this would require a significantly
larger number of environment interactions.

Baselines: We compare our approach, which we
denote as MVR+RFQI, with the following baselines:

• MVR+FQI: A natural non-robust baseline that
consists of computing a non-robust policy via the Fit-
ted Q-Iteration (FQI) algorithm (Ernst et al., 2005)
on the same offline data used by MVR+RFQI,

• Soft Actor-Critic (SAC) (Haarnoja et al., 2018),
or Model Predictive Control (MPC) (Camacho
and Alba, 2013; Chua et al., 2018), as model-free
methods which compute non-robust policies
interacting with the nominal environment (in case
of MPC, the latter is used for planning),

• RFQI (Panaganti et al., 2022), which also requires
the nominal environment and uses 106 offline data
collected by SAC or MPC to train a robust policy,

• FQI (Ernst et al., 2005), which trains a non-robust
policy from the same data.

Training: Model-free methods are trained directly on
the nominal environments. In particular, for Pendulum
and Reacher we train SAC until convergence for
104 and 106 steps, respectively. On the continuous
actions Cartpole, instead, we run MPC following
the implementation of Pinneri et al. (2020); Mehta
et al. (2021) which requires a total of 2250 planning
interactions to select the optimal action at each step.
Depending on the environment, we utilize SAC or
MPC mixed with an ϵ-greedy rule to collect 106

offline data points. These are used to train the offline
methods RFQI and FQI as done in Panaganti et al.
(2022). For the model-based approaches, instead, we
first run MVR for a sufficiently informative number of
samples (60 for Pendulum, 150 for Cartpole and 2000

for Reacher) to obtain an estimated model f̂n. Then,
we use SAC (trained against model f̂n) or MPC to
collect 106 offline data on such estimated environment.
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(a) Pendulum (b) Cartpole (c) Reacher

Figure 2: Average performance (over 20 episodes) on the considered environments, as a function of different pertur-
bations: length perturbation for Pendulum, force magnitude perturbation for Cartpole, and perturbed joint stiffness
for Reacher. Unlike our MVR+RFQI and non-robust MVR+FQI, the other baselines are model-free and require
access to the true nominal environment for training. The proposed approach MVR+RFQI achieves comparable
performance to the model-free RFQI albeit requiring significantly fewer environment interactions (see Table 1).
Moreover, as the perturbation magnitude increases, MVR+RFQI outperforms the other non-robust baselines.

These data are then used to train MVR+RFQI
and MVR+FQI. We provide further implementation
details and hyperparameters in Appendix D.

Evaluation: For each environment, we evaluate the
computed policy against different perturbation types
and magnitudes. For Cartpole, we perturb the magni-
tude of the actuation force. Its nominal value is 10 and
we perturb up to 300%. Also, we consider perturbations
to gravity in the range of (-100%,100%) with the nom-
inal value being 9.82. For the Pendulum, we consider
perturbations to the length of the pendulum and action
perturbations (where a random action is chosen with ϵ
probability). Finally, in the case of Reacher we consider
perturbations to the joint’s stiffness (from 0 to 100)
coupled with perturbations of the joint’s equilibrium
position. Further details on the chosen perturbations
and hyperparameters used are provided in Appendix D.
We provide the code to reproduce the results.1

In Figure 2 we plot the average performance (over 20
episodes) of the baselines subject to different pertur-
bation types and magnitudes for each environment.
Results for other perturbations are relegated to Ap-
pendix D. In Table 1, we report the total number of
interactions with the nominal environment required
to compute the evaluated policies. We remark that
MVR+RFQI and MVR+FQI interact with the en-
vironment only to learn a GP model via the MVR
approach. Instead, the other model-free methods use
the nominal environment throughout the whole train-
ing and, in case of RFQI and FQI, even to gener-
ate offline data. Notably, the policy computed by
MVR+RFQI displays comparable performance to its
model-free counterpart RFQI which, as shown in Ta-
ble 1, requires a significantly larger number of samples.
This shows the sample-efficiency of MVR in acquir-

1https://github.com/rsshyam/MVR-RFQI

ing informative data. Moreover, as the perturbation
magnitude increases, MVR+RFQI achieves higher
performance compared to MVR+FQI and the other
non-robust methods, demonstrating the robustness of
the computed policies. Additionally, as similarly noted
e.g. by Kumar et al. (2021), we observe the offline
methods MVR+FQI and FQI to be generally more ro-
bust (although not explicitly computing robust policies)
than SAC and MPC.

6 CONCLUSIONS

We investigated distributionally robust RL with
continuous state spaces and non-linear transitions.
Specifically, we proposed a model-based approach in the
generative model setting, utilizing max. variance reduc-
tion to learn nominal transitions. Our results include
novel sample complexity guarantees for commonly
used uncertainty sets, required for identifying near-
optimal robust policies in large state spaces. Through
experiments conducted in popular RL-environments,
we demonstrated the sample efficiency and robustness
of our algorithm in the presence of distributional shifts.
An important avenue is the extension of our algorithm
to the online and offline RL settings.
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A Theoretical Guarantees of Maximum Variance Reduction (MVR)

We formally introduce the Gaussian process model in Appendix A.1. In Appendix A.2, we describe the confidence
bound results from Vakili et al. (2021) and adapt them to the case of multi-output GP models. Finally, in
Appendix A.3, we provide sample complexity guarantees for the MVR algorithm.

We recall the introduced notation X “ S ˆ A and remark that we use both psi, aiq and xi interchangeably in
this section.

A.1 Gaussian Process Model

Gaussian process (GP) is a non-parametric model that is often used to express uncertainty over functions on any
set (e.g., RKHS). They allow to tractably construct posterior distribution over functions in the set to estimate the
unknown non-linear function f̃ : X Ñ R given data containing samples from function f̃ . It follows the Bayesian
methodology of calculating posterior given the prior and assumes that the function values at any finite subset of
the domain X follow the multivariate Gaussian distribution. One specifies a GP by a prior mean function and a
covariance function usually defined using a kernel kpx, x1q where x, x1 P X .

Assuming that the samples of f̃ : X Ñ R are noisy measurements of the underlying true function f̃ with
i.i.d. Gaussian noise N p0, λq, the posterior mean and covariance function of the posterior distribution can be
explicitly calculated. In essence, for tx1, . . . , xNu P X and yn “ f̃pxnq ` ωn, the posterior mean, covariance and
variance are given by:

µnpxq “ knpxqpKn ` Inλq´1yn, (16)

knpx, x1q “ kpx, x1q ´ knpxqpKn ` Inλq´1kTn px1q,

σ2
npxq “ knpx, xq. (17)

Here Kn denotes the covariance matrix whose entries are rKnsi,j “ kpxi, xjq with xi, xj P tx1, ¨ ¨ ¨ , xNu and
knpxq “ rkpx, x1q, . . . , kpx, xN qs denotes the covariance vector whose entries are the covariance between x and
xj for all xj P tx1, . . . , xNu. The n ˆ n identity matrix is denoted as In.

We consider multi-output GPs to model the unknown function f that outputs states in Rd. (see Section 3).
Similar to Equation (16) and Equation (17), we get analogous expressions for the multi-output case in Equation (5)
and Equation (6).

A.2 Non-adaptive Multi-output Confidence Bounds

Our Algorithm 1 uses the maximum variance reduction rule to learn about the transition dynamics. As seen
in our analysis (see Theorem 2), we are interested in constructing confidence intervals for f only at the end of
n iterations (i.e., after taking n samples), and hence, we do not require anytime confidence bounds (e.g., as in
Srinivas et al. (2009)). Moreover, in our algorithm, the current decision psi, aiq does not depend on the previous
noise realizations. By focusing on the single-output case first, the following confidence lemma from Vakili et al.
(2021), can be used to construct confidence intervals with βpδq independent of n which holds w.h.p. for a fixed
x P X :

Lemma 3. Given n noisy observations of f̃ : X Ñ R with }f̃}k ď B where noise tω1, ¨ ¨ ¨ , ωnu is independent of
inputs tx1, ¨ ¨ ¨xnu, for βpδq “ B ` σ

λ

a

2 logp2{δq, and µn, σn as defined in Equation (16) and Equation (17), the
following holds for a fixed x P X with probability at least 1 ´ δ,

|f̃pxq ´ µnpxq| ď βpδqσnpxq.

To extend this result over the entire input set x P X , the authors in Vakili et al. (2021) use a discretization
assumption which ensures that there exists a discretization Dn such that f̃pxq ´ f̃prxsnq ď 1?

n
, where

rxsn “ argminx1PDn
}x ´ x1}2 and |Dn| ď CBdnd{2 for C being independent of n and B (RKHS norm bound).

Consequently, they obtain the following lemma providing uniform confidence bounds:

Lemma 4. ((Vakili et al., 2021, Theorem-3)) Given n noisy observations of f̃ : X Ñ R, X Ă Rd satisfying
}f̃}k ď B where noise tω1, ¨ ¨ ¨ , ωnu is independent of inputs tx1, ¨ ¨ ¨xnu Ă X and when there exists discretization



Shyam Sundhar Ramesh, Pier Giuseppe Sessa, Yifan Hu, Andreas Krause, Ilija Bogunovic

Dn of X with |Dn| ď CBdnd{2, for βpδq “ B ` σ
λ

a

2 logp2{δq and βnpδq “ 2B `βp δ
3CpB`

?
nβp2δ{3nqqdnd{2 q, µn, σn

as defined in Equation (16) and Equation (17), the following holds for all x P Dn with probability at least 1 ´ δ,

|f̃pxq ´ µnpxq| ď βnpδqσnpxq.

To extend this result to multiple dimensions as required in our work, we take the same discretization assumption
as in Vakili et al. (2021). But considering the multi-output definition of f , we define the modified state-action
space X . This is in line with Chowdhury and Gopalan (2019), which also has a similar multi-output setting. We
define the modified state-action space as X :“ S ˆ A ˆ t1, 2, ¨ ¨ ¨ , du where the last dimension i P t1, 2, ¨ ¨ ¨ , du

incorporates the index of the output vector, in the sense that fp¨, ¨q “ pf̃p¨, ¨, 1q, ¨ ¨ ¨ , f̃p¨, ¨, dqq where f̃ : X Ñ R.
We then detail the discretization assumption as in Vakili et al. (2021) w.r.t. f̃ (see also Section 2 for more details).

Assumption 1. For every n P N and f̃ P HkpS ˆ A ˆ Iq there exists a discretization DnpS ˆ Aq of S ˆ A
such that f̃ps, a, iq ´ f̃prs, asn, iq ď 1?

n
, where rs, asn “ argminps1,a1qPDnpSˆAq }ps, aq ´ ps1, a1q}2, i P I, and

|DnpS ˆ Aq| ď CBpnp{2 ( |DnpS ˆ A ˆ Iq| ď CBpnp{2d) for C being independent of n and B, and S ˆ A Ă Rp.

Assumption 1 allows us to provide bounds for }fps, aq ´ µnps, aq}2 for all ps, aq P S using Lemma 4. Note
that Assumption 1 does not discretize the modified state-action space (X “ S ˆ A ˆ t1, 2, ¨ ¨ ¨ , du) but instead
discretizes S ˆ A for each i P I. Hence, |DnpS ˆ A ˆ Iq| ď CBpnp{2d, and βnpδq will change accordingly. We
describe the following lemma detailing the same.
Lemma 5. Under Assumption 1 with βnpδq as in Lemma 4 and training a Gaussian process model on
observations up to iteration n (ts1, ¨ ¨ ¨ , snu) and their corresponding inputs (tps0, a0q, ¨ ¨ ¨ , psn´1, an´1qu), it
holds with probability at least 1 ´ δ,

}fps, aq ´ µnps, aq}2 ď βnpδq
?
d}σnprs, asnq}2 `

2d
?
n
,

uniformly for all ps, aq P S ˆ A and rs, asn “ argminps1,a1qPDnpSˆAq }ps, aq ´ ps1, a1q}2.

Proof. For any ps, aq P S ˆ A,

}fps, aq ´ µnps, aq}2

“

g

f

f

e

d
ÿ

i“1

pf̃ps, a, iq ´ µnps, a, iqq2 (18)

“

g

f

f

e

d
ÿ

i“1

|f̃ps, a, iq ´ f̃prs, asn, iq ` f̃prs, asn, iq ´ µnprs, asn, iq ` µnprs, asn, iq ´ µnps, a, iq|2

ď

d
ÿ

i“1

´

|f̃ps, a, iq ´ f̃prs, asn, iq| ` |f̃prs, asn, iq ´ µnprs, asn, iq| ` |µnprs, asn, iq ´ µnps, a, iq|

¯

(19)

ď

˜

d
ÿ

i“1

p|f̃prs, asn, iq ´ µnprs, asn, iq|q

¸

`
2d
?
n

(20)

ď βnpδq

˜

d
ÿ

i“1

pσnprs, asn, iqq

¸

`
2d
?
n

(21)

ď βnpδq
?
d

g

f

f

e

d
ÿ

i“1

pσnprs, asn, iqq2 `
2d
?
n

(22)

ď βnpδq
?
d}σnprs, asnq}2 `

2d
?
n
. (23)

In Equation (19), Equation (22) we use }x}2 ď }x}1 ď
?
d}x}2. And Equation (20) and Equation (21) follow from

Assumption 1 (since f̃ , µn P HkpS ˆ A ˆ Iq) and Lemma 4, respectively.
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A.3 Sample Complexity Guarantees

Our objective is to obtain a uniform upper bound on the model precision }µnps, aq ´ fps, aq}2 for all state-action
pairs (s,a) while accounting for the errors induced by discretization. Here, µnp¨, ¨q is obtained from Algorithm 1.
We achieve this by using Lemma 5 to obtain a bound in terms of maximum information gain (Equation (9)).

Lemma 1. For βnpδq set as in Lemma 4 and Id denoting t1, 2, ¨ ¨ ¨ , du, the MVR algorithm (Algorithm 1)
outputs the dynamics estimate f̂np¨, ¨q “ µnp¨, ¨q such that the following holds uniformly for all ps, aq P S ˆ A
with probability at least 1 ´ δ,

}µnps, aq ´ fps, aq}2 ď O
´

βnpδq2ed
?
n

a

ΓndpS ˆ A ˆ Idq

¯

.

Proof. From Lemma 5, it holds that with probability at least 1 ´ δ uniformly for all ps, aq P S ˆ A:

}µnps, aq ´ fps, aq}2 ď βnpδq
?
d}σnprs, asnq}2 `

2d
?
n

ď βnpδq
?
d max

ps,aqPSˆA
}σnps, aq}2 `

2d
?
n

ď βnpδq
?
d}σnpsn, anq}2 `

2d
?
n

ď
2d
?
n

`
βnpδq

n

?
d

n
ÿ

j“1

}σjpsn, anq}2

ď
2d
?
n

`
βnpδq

n

?
d

n
ÿ

j“1

}σjpsj , ajq}2 (24)

ď
βnpδq
?
n

?
d

g

f

f

e

n
ÿ

j“1

}σjpsj , ajq}22 `
2d
?
n

ď
βnpδq2ed

?
n

a

ΓndpS ˆ A ˆ Idq `
2d
?
n

(25)

“ O
´βnpδq2ed

?
n

a

ΓndpS ˆ A ˆ Idq

¯

. (26)

Here, Equation (24) follows from the decision rule in line-4 of Algorithm 1 and Equation (25) is obtained using
standard bound for the sum of variances in the case of multi-output GPs from Curi et al. (2021, Lemma-7) and
Chowdhury and Gopalan (2019, Lemma-11).
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B Sample Complexity Bounds for KL Uncertainty Sets

Theorem 2. (Sample Complexity of MVR under KL uncertainty set) Consider a robust MDP with nominal
transition dynamics f satisfying the regularity assumptions from Section 2 and with uncertainty set defined as in
Equation (2) w.r.t. KL divergence. For π˚ denoting the robust optimal policy w.r.t. nominal transition dynamics f

and π̂N denoting the robust optimal policy w.r.t. learned nominal transition dynamics f̂N via MVR (Algorithm 1),
and δ P p0, 1q, ϵ P p0, 1

1´γ q, it holds that maxs |V R
π̂N ,f psq ´ V R

π˚,f psq| ď ϵ with probability at least 1 ´ δ for any N
such that

N “ O
´

e
2´γ

p1´γqαkl
γ2β2

N pδqd2ΓNd

p1 ´ γq4ρ2ϵ2

¯

. (27)

Proof. Step (i): As detailed in the proof outline of Section 4, in order to bound |V R
π̂n,f

psq ´ V R
π˚,f psq|, we begin

by adding and subtracting V R
π̂n,f̂n

psq which is the robust value function w.r.t. the nominal transition dynamics f̂n
and its corresponding optimal policy π̂n. Then, we split the difference into two terms as follows:

|V R
π̂n,f psq ´ V R

π˚,f psq| “ |V R
π̂n,f psq ´ V R

π̂n,f̂n
psq|

looooooooooooomooooooooooooon

piq

` |V R
π̂n,f̂n

psq ´ V R
π˚,f psq|

looooooooooooomooooooooooooon

piiq

. (28)

In order to not disturb the flow of the proof we bound (i) and (ii) separately Lemma 6 and Lemma 7 respectively.
From Lemma 6, we obtain that

piq ď max
s

ˇ

ˇ

ˇ
V R
π̂n,f psq ´ V R

π̂n,f̂n
psq

ˇ

ˇ

ˇ

ď
γ

1 ´ γ
max

s

ˇ

ˇ

ˇ
inf

KLpp||Pf ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f ps1q

ı

´ inf
KLpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f ps1q

ı
ˇ

ˇ

ˇ
. (29)

And from Lemma 7, we obtain that

piiq ď max
s

ˇ

ˇ

ˇ
V R
π̂n,f̂n

psq ´ V R
π˚,f psq

ˇ

ˇ

ˇ

ď
γ

1 ´ γ
max

s

ˇ

ˇ

ˇ
inf

KLpp||Pf̂n
ps,π̂npsqqqďρ

Es1„p

”

V R
π˚,f ps1q

ı

´ inf
KLpp||Pf ps,π̂npsqqqďρ

Es1„p

”

V R
π˚,f ps1q

ıˇ

ˇ

ˇ
. (30)

Note that both these terms in Equations (29) and (30) are of the form mentioned in the Step (i) of Section 4.

Step (ii): Next, corresponding to Step (ii) of the proof outline in Section 4, we use Lemma 2 to bound
Equations (29) and (30). Denote M :“ 1

1´γ ě maxs V
R
π psq for convenience. Using Equation (29) and Lemma 9

(internally using Lemma 2), conditioned on the event of Lemma 9 holding true, it holds that

piq ď max
s

ˇ

ˇ

ˇ
V R
π̂n,f psq ´ V R

π̂n,f̂n
psq

ˇ

ˇ

ˇ

ď
1

1 ´ γ
max

s

ˇ

ˇ

ˇ
γ inf

KLpp||Pf ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f ps1q

ı

´ γ inf
KLpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f ps1q

ı
ˇ

ˇ

ˇ

ď max
s,a

˜

2γM2

ρ e
M
α max

αPrα,Mρ s

ˇ

ˇ

ˇ
Es1„Pf̂n

ps,aqre
´V R

π̂n,f ps1q

α s ´ Es1„Pf ps,aqre
´V R

π̂n,f ps1q

α s

ˇ

ˇ

ˇ

¸

. (31)

ď max
V p¨qPV

max
s,a

˜

2γM2

ρ e
M
α max

αPrα,Mρ s

ˇ

ˇ

ˇ
Es1„Pf̂n

ps,aqre
´V ps1q

α s ´ Es1„Pf ps,aqre
´V ps1q

α s

ˇ

ˇ

ˇ

¸

. (32)

We can bound (ii) similarly.

piiq ď max
s

ˇ

ˇ

ˇ
V R
π̂n,f̂n

psq ´ V R
π˚,f psq

ˇ

ˇ

ˇ
(33)

ď max
V p¨qPV

max
s,a

˜

2γM2

ρ e
M
α max

αPrα,Mρ s

ˇ

ˇ

ˇ
Es1„Pf̂n

ps,aqre
´V ps1q

α s ´ Es1„Pf ps,aqre
´V ps1q

α s

ˇ

ˇ

ˇ

¸

. (34)
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Step (iii): Next, we want to utilize the learning error bound (Equation (26)) that bounds the difference between
the means of true nominal transition dynamics Pf and learned nominal transition dynamics Pf̂n

to bound
Equations (32) and (34).

We begin by bounding the difference
ˇ

ˇ

ˇ
Es1„Pf̂n

ps,aqre
´V ps1q

α s ´Es1„Pf ps,aqre
´V ps1q

α s

ˇ

ˇ

ˇ
, by the difference in means of Pf

and Pf̂n
in Lemma 10. Since Equation (32) has a max over all value functions, we introduce a covering number

argument in Lemma 12 to reform it to a max over the functions in the ζ´covering set. We then use Lemma 10
to obtain bounds in terms of maximum information gain ΓNd (Equation (9)) and ζ. Further details regarding
the covering number argument are deferred to Lemma 12. Then, we apply the result of Lemma 12 with ζ “ 1
(defined in Lemma 12) on Equation (32). Then, it holds that

piq ď max
s

ˇ

ˇ

ˇ
V R
π̂n,f psq ´ V R

π̂n,f̂n
psq

ˇ

ˇ

ˇ
“ O

˜

2M2

ρ e
M
αkl e

1
αkl

βnpδq
?
2ed2Γnd

σ
?
n

¸

, (35)

where αkl is a problem-dependent constant denoting the minimum value of α defined in Lemma 9. A similar
constant also appears in the sample complexity bounds provided in Panaganti and Kalathil (2022); Zhou et al.
(2021). Note that βn, which appears in Lemma 3, has a logarithmic dependence on n. Similarly, from Equation (34)
and Lemmas 10 and 12, we obtain

piiq ď max
s

ˇ

ˇ

ˇ
V R
π̂n,f̂n

psq ´ V R
π˚,f psq

ˇ

ˇ

ˇ
“ O

´

2γM2

ρ e
M
αkl e

1
αkl

βnpδq
?
2ed2Γnd

σ
?
n

¯

. (36)

Note that we want to bound V R
π̂n,f

psq ´ V R
π˚,f psq “ piq ` piiq over all s P S. Using maxs

ˇ

ˇ

ˇ
V R
π̂n,f

psq ´ V R
π˚,f psq

ˇ

ˇ

ˇ
ď

maxs

ˇ

ˇ

ˇ
V R
π̂n,f̂n

psq ´ V R
π˚,f psq

ˇ

ˇ

ˇ
` maxs

ˇ

ˇ

ˇ
V R
π̂n,f̂n

psq ´ V R
π˚,f psq

ˇ

ˇ

ˇ
and substituting M by 1{p1 ´ γq, we obtain from

Equation (35) and Equation (36)

max
s

ˇ

ˇ

ˇ
V R
π̂n,f psq ´ V R

π˚,f psq

ˇ

ˇ

ˇ
“ O

´

γe
1

p1´γqαkl e
1

αkl
βnpδqd

?
2eΓnd

p1 ´ γq2ρσ
?
n

¯

.

Finally, to ensure that maxs |V R
π̂n,f

psq ´ V R
π˚,f psq| ď ϵ , it suffices to have

max
s

ˇ

ˇ

ˇ
V R
π̂n,f psq ´ V R

π˚,f psq

ˇ

ˇ

ˇ
“ O

´

γe
1

p1´γqαkl e
1

αkl
βnpδqd

?
2eΓnd

p1 ´ γq2ρσ
?
n

¯

“ ϵ.

By inverting the previously obtained result, we arrive at

n “ O
´

e
2

p1´γqαkl e
2

αkl
γ2β2

npδqd2Γnd

p1 ´ γq4ρ2ϵ2

¯

.

Lemma 6. (Simplification using robust Bellman equation) Denote piq :“
ˇ

ˇ

ˇ
V R
π̂n,f

psq ´ V R
π̂n,f̂n

psq| for V R
π̂n,f

being

the robust value function of policy π̂n w.r.t. true nominal transition dynamics f and V R
π̂n,f̂n

being the robust value
function of policy π̂n w.r.t. learned nominal transition dynamics f . Then the following holds,

piq “

ˇ

ˇ

ˇ
V R
π̂n,f psq ´ V R

π̂n,f̂n
psq

ˇ

ˇ

ˇ

ď max
s

ˇ

ˇ

ˇ
V R
π̂n,f psq ´ V R

π̂n,f̂n
psq

ˇ

ˇ

ˇ

ď
γ

1 ´ γ
max

s

ˇ

ˇ

ˇ
inf

Dpp||Pf ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f ps1q

ı

´ inf
Dpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f ps1q

ı
ˇ

ˇ

ˇ
. (37)

Proof. Since both the quantities are w.r.t. the same policy, using the definition of the robust Q-function and the
robust Bellman equation (see Equation (4)), we obtain:

piq “ |V R
π̂n,f psq ´ V R

π̂n,f̂n
psq| (38)
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“ |QR
π̂n,f ps, π̂npsqq ´ QR

π̂n,f̂n
ps, π̂npsqq|

“ |rps, π̂npsqq ´ rps, π̂npsqq

` γ inf
Dpp||Pf ps,π̂npsqqqďρ

Es1„p

”

V R
π̂n,f ps1q

ı

´ γ inf
Dpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f̂n

ps1q

ı

|

“ |γ inf
Dpp||Pf ps,π̂npsqqqďρ

Es1„p

”

V R
π̂n,f ps1q

ı

´ γ inf
Dpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f̂n

ps1q

ı

| (39)

Adding and subtracting γ inf
Dpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f

ps1q

ı

to Equation (39), we obtain the following two terms:

piaq “ |γ inf
Dpp||Pf ps,π̂npsqqqďρ

Es1„p

”

V R
π̂n,f ps1q

ı

´ γ inf
Dpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f ps1q

ı

|,

pibq “ |γ inf
Dpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f ps1q

ı

´ γ inf
Dpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f̂n

ps1q

ı

|.

Now, we use Lemma 8 to bound pibq. We have:

pibq “ |γ inf
Dpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f ps1q

ı

´ γ inf
Dpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f̂n

ps1q

ı

|

Lemma 8
ď γmax

s

ˇ

ˇ

ˇ
V R
π̂n,f psq ´ V R

π̂n,f̂n
psq

ˇ

ˇ

ˇ
pLemma 8q. (40)

Plugging Equation (40) into Equation (38) and using the fact that piq “ piaq ` pibq, we have

piq “ |V R
π̂n,f psq ´ V R

π̂n,f̂n
psq| (41)

ď piaq ` γmax
s

ˇ

ˇ

ˇ
V R
π̂n,f psq ´ V R

π̂n,f̂n
psq

ˇ

ˇ

ˇ

“ |γ inf
Dpp||Pf ps,π̂npsqqqďρ

Es1„p

”

V R
π̂n,f ps1q

ı

´ γ inf
Dpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f ps1q

ı

|

` γmax
s

ˇ

ˇ

ˇ
V R
π̂n,f psq ´ V R

π̂n,f̂n
psq

ˇ

ˇ

ˇ
.

(42)

Taking maximum over states in Equation (41) and Equation (42) we have

max
s

ˇ

ˇ

ˇ
V R
π̂n,f psq ´ V R

π̂n,f̂n
psq

ˇ

ˇ

ˇ

ď max
s

ˇ

ˇ

ˇ
γ inf

Dpp||Pf ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f ps1q

ı

´ γ inf
Dpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f ps1q

ı
ˇ

ˇ

ˇ

` γmax
s

ˇ

ˇ

ˇ
V R
π̂n,f psq ´ V R

π̂n,f̂n
psq

ˇ

ˇ

ˇ
.

Moving γmaxs

ˇ

ˇ

ˇ
V R
π̂n,f

psq ´ V R
π̂n,f̂n

psq

ˇ

ˇ

ˇ
to the LHS and dividing p1 ´ γq on both sides, it holds that

piq ď max
s

ˇ

ˇ

ˇ
V R
π̂n,f psq ´ V R

π̂n,f̂n
psq

ˇ

ˇ

ˇ

ď
γ

1 ´ γ
max

s

ˇ

ˇ

ˇ
inf

Dpp||Pf ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f ps1q

ı

´ inf
Dpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f ps1q

ı
ˇ

ˇ

ˇ
. (43)

Lemma 7. (Simplification using robust Bellman equation) Denote piiq :“
ˇ

ˇ

ˇ
V R
π̂n,f̂n

psq ´ V R
π˚,f psq

ˇ

ˇ

ˇ
for V R

π̂n,f̂n
being

the robust value function of policy π̂n w.r.t. learned nominal transition dynamics f̂n and V R
π˚,f being the robust

value function of policy π˚ w.r.t. true nominal transition dynamics f . Then the following holds,

piiq “

ˇ

ˇ

ˇ
V R
π̂n,f̂n

psq ´ V R
π˚,f psq

ˇ

ˇ

ˇ
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ď max
s

ˇ

ˇ

ˇ
V R
π̂n,f̂n

psq ´ V R
π˚,f psq

ˇ

ˇ

ˇ

ď
γ

1 ´ γ
max

s

ˇ

ˇ

ˇ
inf

Dpp||Pf̂n
ps,π̂npsqqqďρ

Es1„p

”

V R
π˚,f ps1q

ı

´ inf
Dpp||Pf ps,π̂npsqqqďρ

Es1„p

”

V R
π˚,f ps1q

ı
ˇ

ˇ

ˇ
. (44)

Proof. We first note that QR
π˚,f ps, π̂npsqq ď QR

π˚,f ps, π˚psqq as π˚ is the robust optimal policy for the nominal
transition dynamics f (see Equation (3)). As a result, we have

piiq “ |V R
π̂n,f̂n

psq ´ V R
π˚,f psq| (45)

“ |QR
π̂n,f̂n

ps, π̂npsqq ´ QR
π˚,f ps, π˚psqq|

ď |QR
π̂n,f̂n

ps, π̂npsqq ´ QR
π˚,f ps, π̂npsqq|

“ |rps, π̂npsqq ´ rps, π̂npsqq

` γ inf
Dpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f̂n

ps1q

ı

´ γ inf
Dpp||Pf ps,π̂npsqqqďρ

Es1„p

”

V R
π˚,f ps1q

ı

|.

“ |γ inf
Dpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f̂n

ps1q

ı

´ γ inf
Dpp||Pf ps,π̂npsqqqďρ

Es1„p

”

V R
π˚,f ps1q

ı

| (46)

Adding and subtracting γ inf
Dpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π˚,f ps1q

ı

to Equation (46), we obtain the following two terms:

piiaq “ |γ inf
Dpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f̂n

ps1q

ı

´ γ inf
Dpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π˚,f ps1q

ı

|,

piibq “ |γ inf
Dpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π˚,f ps1q

ı

´ γ inf
Dpp||Pf ps,π̂npsqqqďρ

Es1„p

”

V R
π˚,f ps1q

ı

|.

Now, we use Lemma 8 to bound piiaq . We have:

piiaq “ |γ inf
Dpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f̂n

ps1q

ı

´ γ inf
Dpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π˚,f ps1q

ı

|

ď γmax
s

ˇ

ˇ

ˇ
V R
π˚,f psq ´ V R

π̂n,f̂n
psq

ˇ

ˇ

ˇ
. (47)

Plugging Equation (47) into Equation (45) and using the fact that piiq “ piiaq ` piibq, we have

piiq “ |V R
π˚,f psq ´ V R

π̂n,f̂n
psq| (48)

ď piibq ` max
s

ˇ

ˇ

ˇ
V R
π˚,f psq ´ V R

π̂n,f̂n
psq

ˇ

ˇ

ˇ

“ |γ inf
Dpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π˚,f ps1q

ı

´ γ inf
Dpp||Pf ps,π̂npsqqqďρ

Es1„p

”

V R
π˚,f ps1q

ı

|

` γmax
s

ˇ

ˇ

ˇ
V R
π˚,f psq ´ V R

π̂n,f̂n
psq

ˇ

ˇ

ˇ
.

(49)

Taking maximum over states in Equation (48) and Equation (49) and following similar steps as in Equation (43),
we have

piiq ď max
s

ˇ

ˇ

ˇ
V R
π˚,f psq ´ V R

π̂n,f̂n
psq

ˇ

ˇ

ˇ

ď max
s

ˇ

ˇ

ˇ
γ inf

Dpp||Pf ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f ps1q

ı

´ γ inf
Dpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f ps1q

ıˇ

ˇ

ˇ

` γmax
s

ˇ

ˇ

ˇ
V R
π˚,f psq ´ V R

π̂n,f̂n
psq

ˇ

ˇ

ˇ

ď
γ

1 ´ γ
max

s

ˇ

ˇ

ˇ
inf

Dpp||Pf̂n
ps,π̂npsqqqďρ

Es1„p

”

V R
π˚,f ps1q

ı

´ inf
Dpp||Pf ps,π̂npsqqqďρ

Es1„p

”

V R
π˚,f ps1q

ı
ˇ

ˇ

ˇ
. (50)
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Lemma 8. (from Panaganti and Kalathil (2022, Lemma 1)) Let V1 and V2 be two value functions from
S Ñ r0, 1{p1 ´ γqs. Let D be any distance measure between probability distributions (e.g., KL-divergence, χ2´

divergence, or variation distance defined in Equation (2)). The following inequality (1-Lipschitz w.r.t. V ) holds true
ˇ

ˇ

ˇ
inf

Dpp||Pf̃ ps,aqqďρ
Es1„p

”

V1ps1q

ı

´ inf
Dpp||Pf̃ ps,aqqďρ

Es1„p

”

V2ps1q

ı
ˇ

ˇ

ˇ
ď max

s1
|V2ps1q ´ V1ps1q|.

Proof. We want to bound
ˇ

ˇ

ˇ
inf

Dpp||Pf̃ ps,aqqďρ
Es1„p

”

V1ps1q

ı

´ inf
Dpp||Pf̃ ps,aqqďρ

Es1„p

”

V2ps1q

ı
ˇ

ˇ

ˇ
.

Notice that

inf
Dpp||Pf̃ ps,aqqďρ

Es1„p

”

V1ps1q

ı

´ inf
Dpp||Pf̃ ps,aqqďρ

Es1„p

”

V2ps1q

ı

“ inf
Dpp||Pf̃ ps,aqqďρ

sup
Dpp1|Pf̃ ps,aqqďρ

Es1„p

”

V1ps1q

ı

´ Es1„p1

”

V2ps1q

ı

ě inf
Dpp||Pf̃ ps,aqqďρ

Es1„p

”

V1ps1q

ı

´ Es1„p

”

V2ps1q

ı

“ inf
Dpp||Pf̃ ps,aqqďρ

Es1„p

”

V1ps1q ´ V2ps1q

ı

,

where the inequality follows from the property of supremum. By the definition of inf, for any ϵ ą 0, there exists
some distribution q s.t. Dpq|Pf̃ ps, aqq ď ρ satisfying

Es1„q

”

V1ps1q ´ V2ps1q

ı

´ ϵ ď inf
Dpp||Pf̃ ps,aqqqďρ

Es1„p

”

V1ps1q ´ V2ps1q

ı

.

Then, we have

inf
Dpp||Pf̃ ps,aqqďρ

Es1„p

”

V2ps1q

ı

´ inf
Dpp||Pf̃ ps,aqqďρ

Es1„p

”

V1ps1q

ı

ď ´ inf
Dpp||Pf̃ ps,aqqďρ

Es1„p

”

V1ps1q ´ V2ps1q

ı

ď ´Es1„q

”

V1ps1q ´ V2ps1q

ı

` ϵ

ď Es1„q

”

V2ps1q ´ V1ps1q

ı

` ϵ

ď max
s1

|V2ps1q ´ V1ps1q| ` ϵ. (51)

Let ϵ Ñ 0, we obtain one side of the desired bound.

One can similarly bound infDpp||Pf̃ ps,aqqďρ Es1„p

”

V1ps1q

ı

´ infDpp||Pf̃ ps,aqqďρ Es1„p

”

V2ps1q

ı

by just interchanging
V1 and V2 everywhere. Combining this argument with Equation (51), we obtain

ˇ

ˇ

ˇ
inf

Dpp||Pf̃ ps,aqqďρ
Es1„p

”

V1ps1q

ı

´ inf
Dpp||Pf̃ ps,aqqďρ

Es1„p

”

V2ps1q

ı
ˇ

ˇ

ˇ
ď max

s1
|V2ps1q ´ V1ps1q|.

Lemma 9. (Simplification using Lemma 2 reformulation) For any value function V p¨q : S Ñ r0, 1{p1´ γqs, define
the event E as follows:

max
s

ˇ

ˇ

ˇ

ˇ

ˇ

inf
KLpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V ps1q

ı

´ inf
KLpp||Pf ps,π̂npsqqqďρ

Es1„p

”

V ps1q

ı

ˇ

ˇ

ˇ

ˇ

ˇ

ď

max
s,a

2M
ρ e

M
α max

αPrα,αs

ˇ

ˇ

ˇ
Es1„Pf̂nps,aq

re
´V ps1q

α s ´ Es1„Pf ps,aqre
´V ps1q

α s

ˇ

ˇ

ˇ
.
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Then, for any n ą tmaxs,a N
1pρ, Pf ps, aqq,maxs,a N

2pρ, Pf ps, aqqu where N 1pρ, Pf ps, aqq “ O
´

β2
npδq2ed2Γnd

p
κ´e´ρ

2 q2

¯

and

N2pρ, Pf ps, aqq “ O
´

4M2e
2M
α β2

npδq2ed2Γnd

pρτq2

¯

with α “ M
ρ , M “ 1

1´γ , κ defined in Equation (67), τ defined in
Equation (70), and α “ α˚{2 defined in Equation (56), the event E holds true with probability at least 1 ´ δ.

Proof. (A similar proof as in Zhou et al. (2021, Lemma-4)). First note that,

max
s

ˇ

ˇ

ˇ

ˇ

ˇ

inf
KLpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V ps1q

ı

´ inf
KLpp||Pf ps,π̂npsqqqďρ

Es1„p

”

V ps1q

ı

ˇ

ˇ

ˇ

ˇ

ˇ

ď

max
s,a

ˇ

ˇ

ˇ

ˇ

ˇ

inf
KLpp||Pf̂n

ps,aqqďρ
Es1„p

”

V ps1q

ı

´ inf
KLpp||Pf ps,aqqďρ

Es1„p

”

V ps1q

ı

ˇ

ˇ

ˇ

ˇ

ˇ

. (52)

Recall (Hu and Hong, 2013, Theorem-1) for distributionally robust optimization with a random variable X and
a random function H. One can rewrite an infinite-dimensional optimization problem as a scalar optimization
problem:

sup
P :KLpp||P0qďρ

EX„P rHpXqs “ inf
αě0

tα logpEX„P0
re

HpXq

α sq ` αρu. (53)

For now, we focus on bounding

ˇ

ˇ

ˇ

ˇ

ˇ

inf
KLpp||Pf̂n

ps,aqqďρ
Es1„p

”

V ps1q

ı

´ inf
KLpp||Pf ps,aqqďρ

Es1„p

”

V ps1q

ı

ˇ

ˇ

ˇ

ˇ

ˇ

for one particular

ps, aq. For brevity, we write Pf ps, aq and Pf̂n
ps, aq as Pf and Pf̂n

, respectively. By Equation (53), we have

inf
P :KLpp||Pf qďρ

Es1„P rV ps1qs “ max
αě0

t´α logpEs1„Pf
re

´V ps1q

α sq ´ αρu, (54)

inf
P :KLpp||P̂f̂n

qďρ
Es1„P rV ps1qs “ max

αě0
t´α logpEs1„Pf̂n

re
´V ps1q

α sq ´ αρu. (55)

For the finite state-action space setting, Zhou et al. (2021, Lemma-4) characterizes the property of the optimal
α˚. Following a similar proof strategy, we denote

α˚ “ argmax
αě0

t´α logpEs1„Pf
re

´V ps1q

α sq ´ αρu, (56)

and
α̂˚
n “ argmax

αě0
t´α logpEs1„Pf̂n

re
´V ps1q

α sq ´ αρu. (57)

To ensure that maxαě0t´α logpEs1„Pf
re

´V ps1q

α sq ´αρu ´maxαě0t´α logpEs1„Pf̂n
re

´V ps1q

α sq ´αρu is small enough,
we need to show that α˚ and α̂˚

n are close enough. For this, one considers two different cases, α˚ “ 0 and α˚ ą 0.

Case-1: In Case-1, we investigate the conditions for α̂˚
n “ 0 given that α˚ “ 0. According to (Hu and Hong,

2013, Proposition-2), for α˚ “ 0 to occur, the random variable Y :“ V ps1q where s1 „ N pfps, aq, σ2Iq must satisfy
three conditions namely, (i) Y must be bounded, (ii) Y must have finite mass at its essential infimum, and (iii)
the finite mass at essential infimum should be greater than e´ρ. So we want to verify whether these conditions
hold true for Ŷn :“ V ps1q where s1 „ N pf̂nps, aq, σ2Iq when Y satisfies these conditions.

We restate definition of the essential infimum for a real-valued random variable Y , denoted as ESIpY q.

ESIpY q “ suptt P R : PtY ă tu “ 0u. (58)

We first show that Y “ V ps1q where s1 „ N pfps, aq, σ2Iq and Ŷn “ V ps1q where s1 „ N pf̂nps, aq, σ2Iq have the
same essential infimum. By the definition of ESIpY q, for any ϵ ą 0, it holds that

PtESIpY q ď Y ă ESIpY q ` ϵu ą 0, PtY ă ESIpY qu “ 0. (59)



Shyam Sundhar Ramesh, Pier Giuseppe Sessa, Yifan Hu, Andreas Krause, Ilija Bogunovic

It implies for Y “ V ps1q and s1 „ N pfps, aq, σ2Iq that

Ps1„N pfps,aq,σ2Iqts1 P Rd : ESIpY q ď Y “ V ps1q ă ESIpY q ` ϵu ą 0, (60)

Ps1„N pfps,aq,σ2Iqts1 P Rd : Y “ V ps1q ă ESIpY qu “ 0. (61)

It further implies that, the set ts1 P Rd : ESIpY q ď V ps1q ă ESIpY q ` ϵu must have a Lebesgue measure greater
than 0 and ts1 P Rd : V ps1q ă ESIpY qu must have a Lebesgue measure equal to 0 since s1 „ N pfps, aq, σ2Iq is a
continuous distribution.

Due to this fact that the set ts1 P Rd : ESIpY q ď V ps1q ă ESIpY q ` ϵu has a Lebesgue measure greater than zero
and noting that N pf̂nps, aq, σ2Iq is also a continuous distribution with the same support as of N pfps, aq, σ2Iq

(i.e., the probability density function of N pf̂nps, aq, σ2Iq is positive whenever probability density function of
N pfps, aq, σ2Iq is positive), it holds that

Ps1„N pf̂nps,aq,σ2Iq
ts1 P Rd : ESIpY q ď Ŷn “ V ps1q ă ESIpY q ` ϵu ą 0. (62)

A similar argument follows for

Ps1„N pf̂nps,aq,σ2Iq
ts1 P Rd : Ŷn “ V ps1q ă ESIpY qu “ 0. (63)

In essence, Equations (62) and (63) imply,

PtESIpY q ď Ŷn ă ESIpY q ` ϵu “ 0, PtŶn ă ESIpY qu ą 0.

Hence, from the definition of ESIp¨q in Equations (58) and (59), we have ESIpY q “ ESIpŶnq.

As a result, for α˚ “ 0 to occur and for Y “ V ps1qps1 „ N pfps, aq, σ2Iqq to have finite mass at the essential
infimum (condition-(ii)), i.e, PtY “ ESIpY qu ą 0, it requires that

Ps1„N pfps,aq,σ2Iqts1 P Rd : Y “ V ps1q “ ESIpY qu ą 0.

This will further require that the set ts1 P Rd : Y “ V ps1q “ ESIpY qu must have a Lebesgue measure greater
than 0. Following a similar argument as to have obtained Equation (62) (the probability density function
of N pf̂nps, aq, σ2Iq is positive whenever probability density function of N pfps, aq, σ2Iq is positive), the set
ts1 P Rd : Y “ V ps1q “ ESIpY qu having Lebesgue measure greater than 0, will imply

Ps1„N pf̂nps,aq,σ2Iq
ts1 P Rd : Ŷn “ V ps1q “ ESIpY qu ą 0, (64)

and
PtŶn “ ESIpY qu ą 0 (65)

Since ESIpY q “ ESIpŶnq, Equations (64) and (65) imply

PtŶn “ ESIpŶnqu ą 0, (66)

Hence, if PtY “ ESIpY qu ą 0 holds true, it also holds that PtŶn “ ESIpŶnqu ą 0. This implies that whenever Y
has a finite mass at its essential infimum, Ŷn also has finite mass at its essential infimum (condition-(ii) satisfied).

But, recall that according to (Hu and Hong, 2013, Proposition-2) for α˚ “ 0 to occur, the finite mass which Y has
at its essential infimum should also be greater than e´ρ (condition-(iii)). Hence, one has to check if Y satisfies

Ps1„N pfps,aq,σ2Iqts1 P Rd : Y “ V ps1q “ ESIpY qu ą e´ρ, (67)

what is the condition that Yn satisfies

Ps1„N pf̂nps,aq,σ2Iq
ts1 P Rd : Ŷn “ V ps1q “ ESIpŶnqu ą e´ρ,

so that α̂˚
n “ 0 whenever α˚ “ 0. Denote κ :“ Ps1„N pfps,aq,σ2Iqts1 P Rd : Y “ V ps1q “ ESIpY qu, κn :“

Ps1„N pf̂nps,aq,σ2Iq
ts1 P Rd : Ŷn “ V ps1q “ ESIpŶnqu, and Smin :“ ts1 P Rd : V ps1q “ ESIpY q “ ESIpŶnqu. If

κ ą e´ρ and κ ´ κn ď κ´e´ρ

2 , then it will hold that κn ą e´ρ.

|κ ´ κn| “

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Smin

1
a

p2πσ2qd
pe´

}s1´fps,aq}2

σ2 ´ e´
}s1´f̂nps,aq}2

σ2 qdx

ˇ

ˇ

ˇ

ˇ

ˇ
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ď

ż

Smin

1
a

p2πσ2qd

ˇ

ˇ

ˇ

ˇ

ˇ

e´
}s1´fps,aq}2

σ2 ´ e´
}s1´f̂nps,aq}2

σ2

ˇ

ˇ

ˇ

ˇ

ˇ

dx

ď

ż

Rd

1
a

p2πσ2qd

ˇ

ˇ

ˇ

ˇ

ˇ

e´
}s1´fps,aq}2

σ2 ´ e´
}s1´f̂nps,aq}2

σ2

ˇ

ˇ

ˇ

ˇ

ˇ

dx

ď }fps, aq ´ f̂nps, aq}2 pLemma 10q

ď O
´βnpδq

?
2ed2Γnd

?
n

¯

,

We need O
´

βnpδq
?

2ed2Γnd
?
n

¯

ď κ´e´ρ

2 , which in turn requires n “ O
´

β2
npδq2ed2Γnd

p
κ´e´ρ

2 q2

¯

“ N 1pρ, Pf ps, aqq. Hence, for

n ą maxs,a N
1pρ, Pf ps, aqq with probability at least 1 ´ δ, it holds that

κn ą e´ρ,

for all ps, aq P S ˆ A whenever κ ą e´ρ, implying α˚
n “ 0 whenever α˚ “ 0.

Case-2: Consider the case of α˚ ą 0. The idea is to bound both α˚ and α̂˚
n by a set rα,αs and bound

maxαě0tp´α logpEs1„Pf ps,πpsqqre
´V ps1q

α sq ´αρq ´ p´α logpEs1„Pfps,π1psqq
re

´V ps1q

α sq ´αρqu for α taking values within
set rα, αs. We first provide a upper bound for α˚ as M

ρ where M “ 1
1´γ denoting the maximum value of V ps1q.

max
αě0

t´α logpEs1„Pf
re

´V ps1q

α sq ´ αρu ě lim
αÑ0

r´α logpEs1„Pf
re

´V ps1q

α sq ´ αρs

“ ESIpV ps1q|s1„Pf
q pLemma 11q

ě 0. (68)

Since maxs V psq ď M , we have

´α logpEs1„Pf
re

´V ps1q

α sq ´ αρ ď ´α logpe
´M
α q ´ αρ “ M ´ αρ.

It implies for α ą M
ρ that

´α logpEs1„Pf
re

´V ps1q

α sq ´ αρ ă 0. (69)

By Equation (68), since maxαě0t´α logpEs1„Pf
re

´V ps1q

α sq ´ αρu ě 0, argmaxαě0t´α logpEs1„Pf
re

´V ps1q

α sq ´ αρu

cannot be greater than M
ρ due to Equation (69) holding for all α ą M

ρ . Hence, we have α˚ ď M
ρ . A similar

argument holds for α̂˚
n and it holds that α̂˚

n ď M
ρ .

Denote α :“ α˚{2, α :“ M
ρ , and

τ :“ min
!

α logpEs1„Pf
re

´V ps1q

α sq ` αρ, α logpEs1„Pf
re

´V ps1q

α sq ` αρ
)

´ α˚ log
´

Es1„Pf
re

´V ps1q

α˚ s

¯

´ α˚ρ.

We first show that,

ˇ

ˇ

ˇ
logp

Es1„Pf̂n
re

´V ps1q

α s

Es1„Pf
re´

V ps1q

α s
q

ˇ

ˇ

ˇ
ď e

M
α |Es1„Pf̂n

re
´V ps1q

α s ´ Es1„Pf
re

´V ps1q

α s|. (70)

Consider 2 cases: Es1„Pf̂n
re

´V ps1q

α s ě Es1„Pf
re

´V ps1q

α s and Es1„Pf
re

´V ps1q

α s ą Es1„Pf̂n
re

´V ps1q

α s

Case-1: Es1„Pf̂n
re

´V ps1q

α s ě Es1„Pf
re

´V ps1q

α s:

| logp
Es1„Pf̂n

re
´V ps1q

α s

Es1„Pf
re´

V ps1q

α s
q| “ logp

Es1„Pf̂n
re

´V ps1q

α s

Es1„Pf
re´

V ps1q

α s
q
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“ logp1 `
Es1„Pf̂n

re
´V ps1q

α s ´ Es1„Pf
re

´V ps1q

α s

Es1„Pf
re´

V ps1q

α s
q

ď
Es1„Pf̂n

re
´V ps1q

α s ´ Es1„Pf
re

´V ps1q

α s

Es1„Pf
re´

V ps1q

α s

ď e
M
α pEs1„Pf̂n

re
´V ps1q

α s ´ Es1„Pf
re

´V ps1q

α sq.

Case-2: Es1„Pf̂n
re

´V ps1q

α s ă Es1„Pf
re

´V ps1q

α s:

| logp
Es1„Pf̂n

re
´V ps1q

α s

Es1„Pf
re´

V ps1q

α s
q| “ logp

Es1„Pf
re

´V ps1q

α s

Es1„Pf̂n
re´

V ps1q

α s
q

“ logp1 `
Es1„Pf

re
´V ps1q

α s ´ Es1„Pf̂n
re

´V ps1q

α s

Es1„Pf̂n
re´

V ps1q

α s
q

ď
Es1„Pf

re
´V ps1q

α s ´ Es1„Pf̂n
re

´V ps1q

α s

Es1„Pf̂n
re´

V ps1q

α s

ď e
M
α pEs1„Pf

re
´V ps1q

α s ´ Es1„Pf̂n
re

´V ps1q

α sq.

Hence, Equation (70) holds. Then, for α P rα, αs, we have

|pα logpEs1„Pf̂n
re

´V ps1q

α sq ` αρq ´ pα logpEs1„Pf
re

´V ps1q

α sq ` αρq| (71)

“ α| logp1 `
Es1„Pf̂n

re
´V ps1q

α s ´ Es1„Pf
re

´V ps1q

α s

Es1„Pf
re´

V ps1q

α s
q|

piq
ď αe

M
α |Es1„Pf̂n

re
´V ps1q

α s ´ Es1„Pf
re

´V ps1q

α s|

piiq
ď αe

M
α }fps, aq ´ f̂nps, aq} pLemma 10q

piiiq
ď O

´

αe
M
α βnpδq

c

2ed2Γnd

n

¯

pfromEquation (26)q. (72)

Here (i) holds from Equation (70), (ii) from Lemma 10 and (iii) from Equation (26).

We further show that α̂˚
n P rα, αs. The first step in achieving that is to restrict n ą N2pρ, Pf ps, aqq “

O
´

4
M2e

2M
α β2

npδq2ed2Γnd

pρτq2

¯

. It implies that if O
´

αe
M
α βnpδq

b

2ed2Γnd

n

¯

ă τ{2 and for n ą maxs,a N
2pρ, Pf ps, aqq

from Equation (72) with probability at least 1 ´ δ, for all ps, aq P S ˆ A, we have

max
α,α˚,α

|pα logpEs1„Pf̂n
re

´V ps1q

α sq ` αρq ´ pα logpEs1„Pf
re

´V ps1q

α sq ` αρq| ď τ{2. (73)

It further implies that

max
αPrα,αs

tp´α logpEs1„Pf̂n
re

´V ps1q

α sq ´ αρqu

piq
ě ´α˚ logpEs1„Pf̂n

re
´V ps1q

α˚ sq ´ α˚ρ

piiq
ě ´α˚ logpEs1„Pf

re
´V ps1q

α˚ sq ´ α˚ρ ´ τ{2

piiiq
ě maxt´α logpEs1„Pf

re
´V ps1q

α sq ´ αρ,´α logpEs1„Pf
re

´V ps1q

α sq ´ αρu ` τ{2
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pivq

ě maxt´α logpEs1„Pf̂n
re

´V ps1q

α sq ´ αρ,´α logpEs1„Pf̂n
re

´V ps1q

α sq ´ αρu. (74)

where (i) follows from the fact that α˚ P rα, αs, (ii) follows from Equation (73), (iii) follows from the definition of
τ in Equation (70) and (iv) again follows from Equation (73).

Thus α̂˚
n P rα, αs follows from Equation (74) and concavity of ´α logpEs1„Pf

re
´V ps1q

α sq ´αρ w.r.t. α. Note that α˚

also belongs in this set. We bound maxαě0t´α logpEs1„Pf
re

´V ps1q

α sq´αρu´maxαě0t´α logpEs1„Pf̂n
re

´V ps1q

α sq´αρu

only between α P rα, αs instead of all α ą 0. As a result, it holds that
ˇ

ˇ

ˇ

ˇ

ˇ

max
αPrα,αs

t´α logpEs1„Pf
re

´V ps1q

α sq ´ αρu ´ max
αPrα,αs

t´α logpEs1„Pf̂n
re

´V ps1q

α sq ´ αρu

ˇ

ˇ

ˇ

ˇ

ˇ

(75)

ď max
αPrα,αs

ˇ

ˇ

ˇ

ˇ

ˇ

t´α logpEs1„Pf
re

´V ps1q

α sq ´ αρu ´ t´α logpEs1„Pf̂n
re

´V ps1q

α sq ´ αρu

ˇ

ˇ

ˇ

ˇ

ˇ

.

“ max
αPrα,αs

α| logp1 `
Es1„Pf̂n

re
´V ps1q

α s ´ Es1„Pf
re

´V ps1q

α s

Es1„Pf
re´

V ps1q

α s
q|

ď max
αPrα,αs

2αe
M
α |Es1„Pf̂n

re
´V ps1q

α s ´ Es1„Pf
re

´V ps1q

α s|.

ď 2M
ρ e

M
α max

αPrα,αs
|Es1„Pf̂n

re
´V ps1q

α s ´ Es1„Pf
re

´V ps1q

α s|,

where the first inequality follows from Equation (70) and second inequality follows from the bounds of α. Taking
a maximum over all ps, aq gets the desired result.

Lemma 10. (Bound by difference between estimated model f̂n and true f) For any value function V ps1q : S Ñ

r0, 1{p1 ´ γqs and any α ą 0, it holds that

|Es1„Pf̂n
ps,aqre

´V ps1q

α s ´ Es1„Pf ps,aqre
´V ps1q

α s| ď σ´1}fps, aq ´ f̂nps, aq},

where Pf̂n
ps, aq “ N pf̂nps, aq, σ2Iq and Pf ps, aq “ N pfps, aq, σ2Iq.

Proof.

ˇ

ˇ

ˇ
Es1„Pf̂n

ps,aqre
´V ps1q

α s ´ Es1„Pf ps,aqre
´V ps1q

α s

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rd

1
a

p2πσ2qd
e

´V ps1q

α pe´
}x´fps,aq}2

2σ2 ´ e´
}x´f̂nps,aq}2

2σ2 q

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż

Rd

1
a

p2πσ2qd
e

´V ps1q

α

ˇ

ˇ

ˇ

ˇ

e´
}x´fps,aq}2

2σ2 ´ e´
}x´f̂nps,aq}2

2σ2

ˇ

ˇ

ˇ

ˇ

ď

ż

Rd

1
a

p2πσ2qd

ˇ

ˇ

ˇ

ˇ

e´
}x´fps,aq}2

2σ2 ´ e´
}x´f̂nps,aq}2

2σ2

ˇ

ˇ

ˇ

ˇ

(i)
ď 2 ¨ TVpPf̂n

ps, aq, Pf ps, aqq

(ii)
ď 2

b

KLpPf̂n
ps, aq, Pf ps, aqq{2

(iii)
ď 2

b

}fps, aq ´ f̂nps, aq}2{4σ2

ď }fps, aq ´ f̂nps, aq}{σ,

where (i) follows from the definition of Total Variation (TV) distance between any two multivariate Gaussians, (ii)
uses the Pinsker’s inequality, (iii) uses the formula for KL-divergence between multivariate Gaussian distributions.
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Lemma 11. (Proposition-2 in Hu and Hong (2013)) For any function V p¨q : S Ñ r0, 1{p1 ´ γqs and random
variable Y “ V ps1q for s1 „ Pf ps, aq, we have

lim
αÑ0

r´α logpEs1„Pf ps,aqre
´V ps1q

α sq ´ αρs “ ESIpY q,

where ESIpY q “ suptt P R : PtY ă tu “ 0u (essential infimum).

Proof. Consider the case when M ą ESIpY q. Let κM “ PpV ps1q ď Mq “
ş

s1 1pV ps1q ď Mqe´
}s1´fps,aq}2

σ2 . It holds
that

´ α log
´

Es1„Pf ps,aqre
´V ps1q

α s

¯

(76)

“ ´α log
´

Es1„Pf ps,aqr1pV ps1q ď Mqe
´V ps1q

α ` 1pV ps1q ą Mqe
´V ps1q

α s

¯

ď ´α log
´

Es1„Pf ps,aqr1pV ps1q ď Mqe
´V ps1q

α s

¯

ď ´α log
´

Es1„Pf ps,aqr1pV ps1q ď Mqe
´M
α s

¯

ď ´α log
´

κMe
´M
α s

¯

“ M ´ α logpκM q. (77)

Thus for any M ą ESIpY q, we have

lim
αÑ0

rt´α logpEs1„Pf ps,aqre
´V ps1q

α sq ´ αρs ď M.

Combining with the fact that limαÑ0rt´α logpEs1„Pf ps,aqre
´V ps1q

α sq ´αρs ě ESIpY q, we get the desired result.

Lemma 12. (ζ´cover construction) For V denoting the set of value functions from S Ñ r0, 1{p1´ γqs, α “ M{ρ,
α as defined in Lemma 9 we have with probability at least 1 ´ δ,

max
V PV

max
s,a

2αe
M
α max

αPrα,αs
|Es1„Pf̂n

ps,aqre
´V ps1q

α s ´ Es1„Pf ps,aqre
´V ps1q

α s|

ď O
´

2p
M

ρ
qe

M
αkl e

ζ
αkl

βnpδq
?
2ed2Γnd

?
n

¯

.

Proof. Let NVpζq be the ζ´ cover of the set V . By definition, there exists V 1 P NVpζq such that }V 1 ´ V } ď ζ for
every V P V.

|Es1„Pf̂n
ps,aqre´V ps1

q{αs ´ Es1„Pf ps,aqre´V ps1
q{αs|

ď |

ż

Rd

1
a

p2πσ2qd
e

´V ps1q

α pe´
}s1´fps,aq}2

σ2 ´ e´
}s1´f̂nps,aq}2

σ2 q|

ď

ż

Rd

1
a

p2πσ2qd
e

´V ps1q

α |e´
}s1´fps,aq}2

σ2 ´ e´
}s1´f̂nps,aq}2

σ2 |

ď

ż

Rd

1
a

p2πσ2qd
e

´V ps1q`V 1ps1q

α e
´V 1ps1q

α |e´
}s1´fps,aq}2

σ2 ´ e´
}s1´f̂nps,aq}2

σ2 |

piq
ď e

ζ
αkl

ż

Rd

1
a

p2πσ2qd
e

´V 1ps1q

α |e´
}s1´fps,aq}2

σ2 ´ e´
}s1´f̂nps,aq}2

σ2 |

ď max
V 1PNVpζq

max
s,a

max
αPrαkl,αs

e
ζ

αkl

ż

Rd

1
a

p2πσ2qd
e

´V 1ps1q

α |e´
}s1´fps,aq}2

σ2 ´ e´
}s1´f̂nps,aq}2

σ2 |. (78)

Here (i) is obtained using the fact that }V 1 ´ V } ď ζ and αkl is the minimum value of α as defined in Lemma 9.
Using Equation (78), we bound uniformly over all V P V, we have

max
V PV

max
s,a

2αe
M
αkl max

αPrαkl,αs
|Es1„Pf̂n

ps,aqre
´V ps1q

α s ´ Es1„Pf ps,aqre
´V ps1q

α s|
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ď max
V 1PNVpζq

max
s,a

max
αPrαkl,αs

2αe
M
αkl e

ζ
αkl

ż

Rd

1
a

p2πσ2qd
e

´V 1ps1q

α |e´
}s1´fps,aq}2

σ2 ´ e´
}s1´f̂nps,aq}2

σ2 |

ď max
V 1PNVpζq

max
s,a

max
αPrαkl,αs

2αe
M
αkl e

ζ
αkl

ż

Rd

1
a

p2πσ2qd
|e´

}s1´fps,aq}2

σ2 ´ e´
}s1´f̂nps,aq}2

σ2 | (79)

piq
ď max

s,a
4ασ´1e

M
αkl e

ζ
αkl }fps, aq ´ f̂nps, aq}

piiq
ď O

´

2p
M

ρ
qe

M
αkl e

ζ
αkl

βnpδq
?
2ed2Γnd

σ
?
n

¯

Here (i) follows from Lemma 10 and by the fact that none of the remaining terms inside max depend on V 1 or α.
And (ii) follows from α “ M

ρ and Equation (26).

C Other Uncertainty Sets

C.1 Chi-Square Uncertainty Set

The f-divergence (Ali and Silvey (1966); Csiszár (1967)) between probability measures P and P0 defined over
X for a convex function f : R Ñ R̄` “ R` Y t8u satisfying fp1q “ 0 and fptq “ 8 for any t ă 0 is defined as
follows:

Df pP ||P0q “

ż

f
´ dP

dP0

¯

dP0. (80)

Specifically Duchi and Namkoong (2021) considers the Cressie-Read family of f-divergences (Cressie and Read
(1984), see Appendix C.1) which includes χ2 divergence (k “ 2), etc. This family of f-divergences can be
parametrized by k P p´8,8qzt0, 1u with fkptq :“ tk´kt`k´1

kpk´1q
Using this, we state the reformulation result from

Duchi and Namkoong (2021, Lemma-1).

Lemma 13. For k P p1,8q, k˚ “ k{k ´ 1, any ρ ą 0 and ckpρq “ p1 ` kpk ´ 1qρq
1
k and X „ P0 where P0 is any

probability distribution over X with H : X Ñ R, we have

sup
P :Dfk

pP ||P0qďρ

EP rHpXqs “ inf
ηPR

tckpρqpEP0
rpHpXq ´ ηq

k˚

` sq
1

k˚ ` ηu. (81)

Theorem 3. (Sample Complexity under χ2 uncertainty set) Consider a robust MDP (see Section 2) with
nominal transition dynamics f and uncertainty set defined as in Equation (2) w.r.t. χ2 divergence. For π˚

denoting the robust optimal policy w.r.t. nominal transition dynamics f and π˚
N denoting the robust optimal

policy w.r.t. learned nominal transition dynamics f̂N via Algorithm 1, and δ P p0, 1q, ϵ P p0, 1
1´γ q,it holds that

maxs |V R
π˚
N ,f

psq ´ V R
π˚,f psq| ď ϵ with probability at least 1 ´ δ for any N ě Nχ2 , where

Nχ2 “ O
´´ 1 ` 2ρ

?
1 ` 2ρ ´ 1

¯4 γ4βnpδq2d2γnd
ϵ4p1 ´ γq8

¯

. (82)

Proof. Step (i): As detailed in the proof outline of Section 4, in order to bound V R
π̂n,f

psq ´ V R
π˚,f psq, we begin

by adding and subtracting V R
π̂n,f̂n

psq which is the robust value function w.r.t. the nominal transition dynamics f̂n
and its corresponding optimal policy π̂n. Then, we split the difference into two terms as follows:

V R
π̂n,f psq ´ V R

π˚,f psq “ V R
π̂n,f psq ´ V R

π̂n,f̂n
psq

loooooooooooomoooooooooooon

piq

`V R
π̂n,f̂n

psq ´ V R
π˚,f psq

loooooooooooomoooooooooooon

piiq

. (83)

In order to not disturb the flow of the proof we bound (i) and (ii) separately Lemma 6 and Lemma 7 respectively.
From Lemma 6, we obtain that

piq ď max
s

ˇ

ˇ

ˇ
V R
π̂n,f psq ´ V R

π̂n,f̂n
psq

ˇ

ˇ

ˇ



Shyam Sundhar Ramesh, Pier Giuseppe Sessa, Yifan Hu, Andreas Krause, Ilija Bogunovic

ď
γ

1 ´ γ
max

s

ˇ

ˇ

ˇ
inf

χ2pp||Pf ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f ps1q

ı

´ inf
χ2pp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f ps1q

ı
ˇ

ˇ

ˇ
. (84)

And from Lemma 7, we obtain that

piiq ď max
s

ˇ

ˇ

ˇ
V R
π̂n,f̂n

psq ´ V R
π˚,f psq

ˇ

ˇ

ˇ

ď
γ

1 ´ γ
max

s

ˇ

ˇ

ˇ
inf

χ2pp||Pf̂n
ps,π̂npsqqqďρ

Es1„p

”

V R
π˚,f ps1q

ı

´ inf
χ2pp||Pf ps,π̂npsqqqďρ

Es1„p

”

V R
π˚,f ps1q

ı
ˇ

ˇ

ˇ
. (85)

Note that both these terms in Equations (84) and (85) are of the form mentioned in the Step (i) of Section 4.

Step (ii): Next, corresponding to Step (ii) of the proof outline in Section 4, we use Lemma 13 to bound
Equations (84) and (85). Denote M :“ 1

1´γ ě maxs V
R
π psq and c2pρq :“

?
1 ` 2ρ for convenience. Using

Equation (84) and Lemma 14 (internally using Lemma 13), it holds that

piq ď max
s

ˇ

ˇ

ˇ
V R
π̂n,f psq ´ V R

π̂n,f̂n
psq

ˇ

ˇ

ˇ

ď
1

1 ´ γ
max

s

ˇ

ˇ

ˇ
γ inf

χ2pp||Pf ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f ps1q

ı

´ γ inf
χ2pp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f ps1q

ı
ˇ

ˇ

ˇ

ď max
s,a

˜

γ
?
1 ` 2ρ

1 ´ γ
sup

ηPr0,
c2pρqM
c2pρq´1 s

!
ˇ

ˇ

ˇ
EPf ps,aqrp´V R

π̂n,f ps1q ` ηq2`s ´ EPf̂n
ps,aqrp´V R

π̂n,f ps1q ` ηq2`s

ˇ

ˇ

ˇ

1
2

)

¸

. (86)

ď max
V p¨qPV

max
s,a

˜

γ
?
1 ` 2ρ

1 ´ γ
sup

ηPr0,
c2pρqM
c2pρq´1 s

!
ˇ

ˇ

ˇ
EPf ps,aqrp´V ps1q ` ηq2`s ´ EPf̂n

ps,aqrp´V ps1q ` ηq2`s

ˇ

ˇ

ˇ

1
2

)

¸

. (87)

We can bound (ii) similarly.

piiq ď max
s

ˇ

ˇ

ˇ
V R
π̂n,f̂n

psq ´ V R
π˚,f psq

ˇ

ˇ

ˇ
(88)

ď max
V p¨qPV

max
s,a

˜

γ
?
1 ` 2ρ

1 ´ γ
sup

ηPr0,
c2pρqM
c2pρq´1 s

!
ˇ

ˇ

ˇ
EPf ps,aqrp´V ps1q ` ηq2`s ´ EPf̂n

ps,aqrp´V ps1q ` ηq2`s

ˇ

ˇ

ˇ

1
2

)

¸

. (89)

Step (iii): Next, we want to utilize the learning error bound (Equation (26)) that bounds the difference between
the means of true nominal transition dynamics Pf and learned nominal transition dynamics Pf̂n

to bound
Equations (87) and (89).

We begin by bounding the difference
ˇ

ˇ

ˇ
EPf ps,aqrp´V ps1q ` ηq2`s ´ EPf̂n

ps,aqrp´V ps1q ` ηq2`s

ˇ

ˇ

ˇ
, by the difference in

means of Pf and Pf̂n
in Lemma 17. Since Equation (87) has a max over all value functions, we introduce a

covering number argument in Lemma 15 to reform it to a max over the functions in the ζ´covering set. We then
use Lemma 17 to obtain bounds in terms of maximum information gain ΓNd (Equation (9)) and ζ. Further details
regarding the covering number argument are deferred to Lemma 15. Then, we apply the result of Lemma 15 with
ζ “ 1 (defined in Lemma 15) on Equation (87). Then, it holds that

piq ď max
s

ˇ

ˇ

ˇ
V R
π̂n,f psq ´ V R

π̂n,f̂n
psq

ˇ

ˇ

ˇ
“ O

˜

´γpc2pρqq2M2

c2pρq ´ 1

¯´βnpδq
a

2ed2γnd
σ

?
n

¯
1
2

¸

. (90)

Note that βn, which appears in Lemma 3, has a logarithmic dependence on n. Similarly, from Equation (89), and
Lemmas 15 and 17, we obtain

piiq ď max
s

ˇ

ˇ

ˇ
V R
π̂n,f̂n

psq ´ V R
π˚,f psq

ˇ

ˇ

ˇ
“ O

˜

´γpc2pρqq2M2

c2pρq ´ 1

¯´βnpδq
a

2ed2γnd
σ

?
n

¯
1
2

¸

. (91)

Note that we want to bound V R
π̂n,f

psq ´ V R
π˚,f psq “ piq ` piiq over all s P S. Using maxs

ˇ

ˇ

ˇ
V R
π̂n,f

psq ´ V R
π˚,f psq

ˇ

ˇ

ˇ
ď

maxs

ˇ

ˇ

ˇ
V R
π̂n,f̂n

psq ´ V R
π˚,f psq

ˇ

ˇ

ˇ
` maxs

ˇ

ˇ

ˇ
V R
π̂n,f̂n

psq ´ V R
π˚
n ,f

psq

ˇ

ˇ

ˇ
and substituting M by 1{p1 ´ γq, we obtain from
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Equation (90) and Equation (91)

max
s

ˇ

ˇ

ˇ
V R
π̂n,f psq ´ V R

π˚,f psq

ˇ

ˇ

ˇ
“ O

˜

´γpc2pρqq2M2

c2pρq ´ 1

¯´βnpδq
a

2ed2γnd
σ

?
n

¯
1
2

¸

.

Finally, to ensure that maxs |V R
π̂n,f

psq ´ V R
π˚,f psq| ď ϵ , it suffices to have

max
s

ˇ

ˇ

ˇ
V R
π̂n,f psq ´ V R

π˚,f psq

ˇ

ˇ

ˇ
“ O

˜

´γpc2pρqq2M2

c2pρq ´ 1

¯´βnpδq
a

2ed2γnd
σ

?
n

¯
1
2

¸

“ ϵ.

Moving
?
n and ϵ to opposite sides and squaring both sides twice, we obtain

n “ O
´´ 1 ` 2ρ

?
1 ` 2ρ ´ 1

¯4 γ4βnpδq2d2γnd
σ2ϵ4p1 ´ γq8

¯

.

Lemma 14. (Simplification using Lemma 13 reformulation) For any value function V from S Ñ r0, 1{p1 ´ γqs,
it holds that

max
s

ˇ

ˇ

ˇ
inf

χ2pp||Pf̂n
ps,π̂npsqqqďρ

Es1„p

”

V ps1q

ı

´ inf
χ2pp||Pf ps,π̂npsqqqďρ

Es1„p

”

V ps1q

ı
ˇ

ˇ

ˇ
ď

max
s,a

c2pρq sup
ηPr0,

c2pρqM
c2pρq´1 s

t|EPf ps,aqrp´V ps1q ` ηq2`s ´ EPf̂n
ps,aqrp´V ps1q ` ηq2`s|

1
2 u, (92)

where c2pρq “
?
1 ` 2ρ and M “ 1{p1 ´ γq.

Proof. First note that,

max
s

| inf
χ2pp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V ps1q

ı

´ inf
χ2pp||Pf ps,π̂npsqqqďρ

Es1„p

”

V ps1q

ı

| ď

max
s,a

ˇ

ˇ

ˇ
inf

χ2pp||Pf̂n
ps,aqqďρ

Es1„p

”

V ps1q

ı

´ inf
χ2pp||Pf ps,aqqďρ

Es1„p

”

V ps1q

ı
ˇ

ˇ

ˇ
. (93)

Using Lemma 13 and focusing to bound right side of Equation (93) for one particular ps, aq state-action pair, we
obtain

ˇ

ˇ

ˇ
inf

χ2pp||Pf̂n
ps,aqqďρ

Es1„p

”

V ps1q

ı

´ inf
χ2pp||Pf ps,aqqďρ

Es1„p

”

V ps1q

ıˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
sup
ηPR

t´c2pρqpEPf ps,aqrp´V ps1q ´ ηq2`sq
1
2 ´ ηu ´ sup

ηPR
t´c2pρqpEPf̂n

ps,aqrp´V ps1q ´ ηq2`sq
1
2 ´ ηu

ˇ

ˇ

ˇ

piq
“

ˇ

ˇ

ˇ
sup
ηPR

t´c2pρqpEPf ps,aqrp´V ps1q ` ηq2`sq
1
2 ` ηu ´ sup

ηPR
t´c2pρqpEPf̂n

ps,aqrp´V ps1q ` ηq2`sq
1
2 ` ηu

ˇ

ˇ

ˇ
, (94)

where (i) is obtained by replacing η with ´η.
Let gχ2pη, Pf ps, aqq :“

´

´ c2pρqpEPf ps,aqrp´V ps1q ` ηq2`sq
1
2 ` η

¯

. Note that gχ2pη, Pf ps, aqq satisfies the following:
For η ď 0 (implying p´V ps1q ` ηq ď 0 and p´V ps1q ` ηq` “ 0),

gχ2pη, Pf ps, aqq “ η ď 0. (95)

And for η “
c2pρqM
c2pρq´1 ą 0,

gχp
c2pρqM
c2pρq´1 , Pf ps, aqq “ ´c2pρqpEPf ps,aqrp´V ps1q `

c2pρqM
c2pρq´1 q2`sq

1
2 `

c2pρqM
c2pρq´1

piq
ď

c2pρqM
c2pρq´1 ´ c2pρqpEPf ps,aqrp´M `

c2pρqM
c2pρq´1 q2`sq

1
2
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ď
c2pρqM
c2pρq´1 ´ c2pρqpEPf ps,aqrp M

c2pρq´1 q2`sq
1
2

ď
c2pρqM
c2pρq´1 ´

c2pρqM
c2pρq´1

“ 0, (96)

where (i) follows from the fact that the random variable V ps1q is bounded by M “ 1{1 ´ γ. A similar result can
be shown for gχ2pη, Pf̂n

ps, aqq (or for any P). Along with the convexity of η Ñ gχpη, P q (Duchi and Namkoong

(2021)), and infχ2pp||P qďρ Es1„p

”

V ps1q

ı

ě 0, Equation (95) and Equation (96) imply that the sup is attained

between r0, c2pρqM
c2pρq´1 s for both supηPR gχpη, Pf ps, aqq and supηPR gχpη, Pf̂n

ps, aqq. Using this in Equation (94) we
have,

ˇ

ˇ

ˇ
sup
ηPR

tgχpη, Pf ps, aqqu ´ sup
ηPR

tgχpη, Pf̂n
ps, aqqu

ˇ

ˇ

ˇ
(97)

“

ˇ

ˇ

ˇ
sup

ηPr0,
c2pρqM
c2pρq´1 s

tgpχη, Pf ps, aqqu ´ sup
ηPr0,

c2pρqM
c2pρq´1 s

tgχpη, Pf̂n
ps, aqquu

ˇ

ˇ

ˇ
(98)

ď sup
ηPr0,

c2pρqM
c2pρq´1 s

t|gχpη, Pf ps, aqq ´ gχpη, Pf̂n
ps, aqq|u (99)

ď sup
ηPr0,

c2pρqM
c2pρq´1 s

t|c2pρqpEPf ps,aqrp´V ps1q ` ηq2`sq
1
2 ´ c2pρqEPf̂n

ps,aqrp´V ps1q ` ηq2`sq
1
2 |u (100)

ď c2pρq sup
ηPr0,

c2pρqM
c2pρq´1 s

t|EPf ps,aqrp´V ps1q ` ηq2`s ´ EPf̂n
ps,aqrp´V ps1q ` ηq2`s|

1
2 u. (101)

The last step is obtained using the basic inequality |
?
a ´

?
b| ď

a

|a ´ b|.

Lemma 15. (ζ´cover construction) For V denoting the set of value functions from S Ñ r0, 1{p1 ´ γqs it holds
with probability at least 1 ´ δ,

max
V PV

max
s,a

sup
ηPr0,

c2pρqM
c2pρq´1 s

t|EPf ps,aqrp´V ps1q ` ηq2`s ´ EPf̂n
ps,aqrp´V ps1q ` ηq2`s|

1
2 u ď

O

˜

´ c2pρqM

c2pρq ´ 1

¯´βnpδq
a

2ed2γnd
σ

?
n

¯
1
2

¸

, (102)

where c2pρq “
?
1 ` 2ρ, M “ 1{p1 ´ γq.

Proof. Let NVpζq be the ζ´ cover of the set V. By definition, there exists V 1 P NVpζq such that }V 1 ´ V } ď ζ
for every V P V.

|EPf ps,aqrp´V ps1q ` ηq2`s ´ EPf̂n
ps,aqrp´V ps1q ` ηq2`s|

ď |EPf ps,aqrp´V ps1q ` ηq2`s ´ EPf ps,aqrp´V 1ps1q ` ηq2`s|

` |EPf ps,aqrp´V 1ps1q ` ηq2`s ´ EPf̂n
ps,aqrp´V 1ps1q ` ηq2`s|

` |EPf̂n
ps,aqrp´V 1ps1q ` ηq2`s ´ EPf̂n

ps,aqrp´V ps1q ` ηq2`s|.

(103)

piq
ď 4}V 1 ´ V }2 ` 4η}V 1 ´ V } ` |EPf ps,aqrp´V 1ps1q ` ηq2`s ´ EPf̂n

ps,aqrp´V 1ps1q ` ηq2`s|, (104)

where (i) follows from Lemma 16. Using Equation (104) we bound uniformly over all V P V,

max
V PV

max
s,a

sup
ηPr0,

c2pρqM
c2pρq´1 s

t|EPf ps,aqrp´V ps1q ` ηq2`s ´ EPf̂n
ps,aqrp´V ps1q ` ηq2`s|

1
2 u (105)
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ď max
V 1PNVpζq

max
s,a

sup
ηPr0,

c2pρqM
c2pρq´1 s

#

´

4}V 1 ´ V }2 ` 4η}V 1 ´ V } ` |EPf ps,aqrp´V 1ps1q ` ηq2`s

´ EPf̂n
ps,aqrp´V 1ps1q ` ηq2`s|

¯
1
2

+

piiq
ď max

V 1PNVpζq
max
s,a

sup
ηPr0,

c2pρqM
c2pρq´1 s

#

´

EPf ps,aqrp´V 1ps1q ` ηq2`s ´ EPf̂n
ps,aqrp´V 1ps1q ` ηq2`s

¯
1
2

+

`

b

4ζ2 ` 4ζ c2pρqM
c2pρq´1

piiiq
ď max

V 1PNVpζq
max
s,a

sup
ηPr0,

c2pρqM
c2pρq´1 s

#

´

c2pρqM
c2pρq´1

¯

b

2σ´1}fps, aq ´ f̂nps, aq}

+

`

b

4ζ2 ` 4ζ c2pρqM
c2pρq´1

pivq

ď O

˜

´

c2pρqM
c2pρq´1

¯´

βnpδq
?

2ed2γnd

σ
?
n

¯
1
2

¸

`

b

4ζ2 ` 4ζ c2pρqM
c2pρq´1 (106)

pvq

ď O

˜

´

c2pρqM
c2pρq´1

¯´

βnpδq
?

2ed2γnd

σ
?
n

¯
1
2

¸

, (107)

where (ii) follows from }V 1 ´V } ď ζ and η ď
c2pρqM
c2pρq´1 , (iii) follows from Lemma 17, (iv) follows from Equation (26),

and (v) follows from substituing ζ “ 1 (or any constant).

Lemma 16. For any two value functions V, V 1 from S Ñ r0, 1{p1 ´ γqs, it holds that
ˇ

ˇ

ˇ
EPf ps,aqrp´V 1ps1q ` ηq2`s ´ EPf ps,aqrp´V ps1q ` ηq2`s

ˇ

ˇ

ˇ
ď 2}V 1 ´ V }2 ` 2η}V 1 ´ V }. (108)

Proof. Let pPf ps,aqp¨q denote the probability density function of Pf ps, aq. Then,

EPf ps,aqrp´V 1ps1q ` ηq2`s ´ EPf ps,aqrp´V ps1q ` ηq2`s

ď

ż

s1„Pf ps,aq

´

1pV 1ps1q ă ηqp´V 1ps1q ` ηq2 ´ 1pV ps1q ă ηqp´V ps1q ` ηq2
¯

pPf ps,aqps1qds1.

ď

ż

s1„Pf ps,aq

´

1pV 1ps1q ă ηq ´ 1pV ps1q ă ηq

¯

p´V 1ps1q ` ηq2pPf ps,aqps1qds1

loooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooon

piq

`

ż

s1„Pf ps,aq

1pV ps1q ă ηq

´

p´V 1ps1q ` ηq2 ´ p´V ps1q ` ηq2
¯

pPf ps,aqps1qds1

looooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooon

piiq

.

(109)

where the last inequality is obtained by adding and subtracting 1pV ps1q ă ηqp´V 1ps1q ` ηq2.

We begin by bounding (ii). We have,

piiq “

ż

s1„Pf ps,aq

1pV ps1q ă ηq

´

p´V 1ps1q ` ηq2 ´ p´V ps1q ` ηq2
¯

pPf ps,aqps1qds1

“

ż

s1„Pf ps,aq

1pV ps1q ă ηq

´

´ V 1ps1q ` V ps1q

¯´

´ V 1ps1q ´ V ps1q ` 2η
¯

pPf ps,aqps1qds1

ď

ż

s1„Pf ps,aq

1pV ps1q ă ηq

´

1pV 1ps1q ă ηq ` 1pV 1ps1q ě ηq

¯´

´ V 1ps1q ` V ps1q

¯

´

´ V 1ps1q ´ V ps1q ` 2η
¯

pPf ps,aqps1qds1
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ď

ż

1pV ps1q, V 1ps1q ă ηqp´V 1ps1q ` V ps1qqp´V 1ps1q ´ V ps1q ` 2ηqpPf ps,aqps1qds1

loooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooon

pii´aq

`

ż

1pV ps1q ă η ď V 1ps1qqp´V 1ps1q ` V ps1qqp´V 1ps1q ´ V ps1q ` 2ηqpPf ps,aqps1qds1

loooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooon

pii´bq

.

(110)

Bounding pii ´ aq first, we have,

pii ´ aq “

ż

1pV ps1q, V 1ps1q ă ηqp´V 1ps1q ` V ps1qqp´V 1ps1q ´ V ps1q ` 2ηqpPf ps,aqps1qds1

paq

ď

ż

1pV ps1q, V 1ps1q ă ηq

ˇ

ˇ

ˇ
´ V 1ps1q ` V ps1q

ˇ

ˇ

ˇ
p´V 1ps1q ´ V ps1q ` 2ηqpPf ps,aqps1qds1

pbq

ď

ż

s1„Pf ps,aq

1pV ps1q, V 1ps1q ă ηq

ˇ

ˇ

ˇ
´ V 1ps1q ` V ps1q

ˇ

ˇ

ˇ

´

2η
¯

pPf ps,aqps1qds1

ď2η}V 1 ´ V }, (111)

where (a) and (b) follows from p´V 1ps1q ´ V ps1q ` 2ηq ą 0 as V ps1q, V 1ps1q ă η. And pii ´ bq can be bounded as,

pii ´ bq “

ż

1pV ps1q ă η ď V 1ps1qqp´V 1ps1q ` V ps1qqp´V 1ps1q ´ V ps1q ` 2ηqpPf ps,aqps1qds1

ď

ż

1pV ps1q ă η ď V 1ps1qq

ˇ

ˇ

ˇ
´ V 1ps1q ` V ps1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
´ V 1ps1q ´ V ps1q ` 2η

ˇ

ˇ

ˇ
pPf ps,aqps1qds1

pcq

ď

ż

1pV ps1q ă η ď V 1ps1qq

ˇ

ˇ

ˇ
´ V 1ps1q ` V ps1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
´ V ps1q ` V 1ps1q

ˇ

ˇ

ˇ
pPf ps,aqps1qds1

ď

ż

s1„Pf ps,aq

1pV ps1q ă η ď V 1ps1qq

ˇ

ˇ

ˇ
´ V 1ps1q ` V ps1q

ˇ

ˇ

ˇ

2

pPf ps,aqps1qds1

ď }V 1 ´ V }2, (112)

where (c) follows from η ď V 1ps1q. Bounding (i) similarly,

i “

ż

s1„Pf ps,aq

´

1pV 1ps1q ă ηq ´ 1pV ps1q ă ηq

¯

p´V 1ps1q ` ηq2pPf ps,aqps1qds1

ď

ż

s1„Pf ps,aq

´

1pV 1ps1q ă η ď V ps1qq

¯

p´V 1ps1q ` ηq2pPf ps,aqps1qds1

ď

ż

s1„Pf ps,aq

´

1pV 1ps1q ă η ď V ps1qq

¯

p´V 1ps1q ` V ps1qq2pPf ps,aqps1qds1

ď }V 1 ´ V }2. (113)

Using Equations (109) to (113) we get the desired result.

Lemma 17. (Bound by difference between estimated model f̂n and true f) For any value function V ps1q : S Ñ

r0, 1{p1 ´ γqs and any α ą 0, it holds that

|EPf ps,aqrp´V ps1q ` ηq2`s ´ EPf̂n
ps,aqrp´V ps1q ` ηq2`s| ď 2σ´1

´ c2pρqM

c2pρq ´ 1

¯2

}fps, aq ´ f̂nps, aq},

where Pf̂n
ps, aq “ N pf̂nps, aq, σ2Iq and Pf ps, aq “ N pfps, aq, σ2Iq, η P r0, c2pρqM

c2pρq´1 s, c2pρq “
?
1 ` 2ρ and

M “ 1{p1 ´ γq.

Proof.
ˇ

ˇ

ˇ
EPf ps,aqrp´V ps1q ` ηq2`s ´ EPf̂n

ps,aqrp´V ps1q ` ηq2`s

ˇ

ˇ

ˇ
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“

ˇ

ˇ

ˇ

ż

Rd

1
a

p2πσ2qd
p´V ps1q ` ηq2`pe´

}x´fps,aq}2

2σ2 ´ e´
}x´f̂nps,aq}2

2σ2 q

ˇ

ˇ

ˇ

ď

ż

Rd

1
a

p2πσ2qd
p´V ps1q ` ηq2`

ˇ

ˇ

ˇ
e´

}x´fps,aq}2

2σ2 ´ e´
}x´f̂nps,aq}2

2σ2

ˇ

ˇ

ˇ

piq
ď

´ c2pρqM

c2pρq ´ 1

¯2
ż

Rd

1
a

p2πσ2qd

ˇ

ˇ

ˇ
e´

}x´fps,aq}2

2σ2 ´ e´
}x´f̂nps,aq}2

2σ2

ˇ

ˇ

ˇ

(ii)
ď 2

´ c2pρqM

c2pρq ´ 1

¯2

¨ TVpPf̂n
ps, aq, Pf ps, aqq

(iii)
ď 2

´ c2pρqM

c2pρq ´ 1

¯2b

KLpPf̂n
ps, aq, Pf ps, aqq{2

(iv)
ď 2

´ c2pρqM

c2pρq ´ 1

¯2
b

}fps, aq ´ f̂nps, aq}2{4σ2

ď

´ c2pρqM

c2pρq ´ 1

¯2

}fps, aq ´ f̂nps, aq}{σ,

where (i) follows from p´V ps1q ` ηq2` ď

´

c2pρqM
c2pρq´1

¯2

as η ď

´

c2pρqM
c2pρq´1

¯

, (ii) follows from the definition of Total
Variation (TV) distance between any two multivariate Gaussians, (iii) uses the Pinsker’s inequality, and (iv) uses
the formula for KL-divergence between multivariate Gaussian distributions.

C.2 Total Variation Distance

Similar to lemma 13, we want a similar convex reformulation for the variation distance. We derive such a
reformulation starting from the dual reformulation from Shapiro (2017) and Ben-Tal et al. (2013) stated as
Proposition-1 in Duchi and Namkoong (2021).

Lemma 18. For X „ P0 where P0 is any probability distribution over X with H : X Ñ R , ρ ą 0 and, Df pP ||P0q

defined as in Equation (80) , it holds that

sup
P :Df pP ||P0qďρ

EP rHpXqs “ inf
λě0,ηPR

!

EP0

”

λf˚
´HpXq ´ η

λ

¯ı

` λρ ` η
)

. (114)

Note that the total variation distance between two probability distributions P and P0 is attained by substituting
fTVptq “ |t ´ 1| in Df pP ||P0q “

ş

f
´

dP
dP0

¯

dP0. The corresponding Fenchel conjugate f˚
TVpsq for fTVptq “ |t ´ 1|

would be

f˚
TVpsq “

$

’

&

’

%

´1, s ď ´1

s, s P r´1, 1s

8, s ą 1

(115)

As we require infP :TVpP ||P0qďρ EP rHpXqs, using Equation (114) and replacing η with ´η, we have

inf
P :TVpP ||P0qďρ

EP rHpXqs “ sup
λě0,ηPR

t´EP0

”

λf˚
TV

´

´HpXq ` η

λ

¯ı

´ λρ ` ηu. (116)

Using Equation (116), we derive a convex reformulation in Lemma 19

Lemma 19. (Reformulation for total variation distance based on Yang et al. (2022)) For ρ ą 0 and X „ P0

where P0 is any probability distribution over X with H : X Ñ R, for 0 ď Hpxq ď 1
1´γ and ESIpY q “ suptt P R :

PtY ă tu “ 0u (essential infimum), it holds that

inf
P :TVpP ||P0qďρ

EP rHpXqs “ sup
ηPr0,

p2`ρq

ρp1´γq
s

!

´ EP0r´HpXq ` ηs` ´
p´ESIpHpxqq ` ηq`

2
ρ ` η

)

. (117)
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where TV denotes the total variation distance.

Proof. Substituting Equation (115) in Equation (116) to obtain the reformulation for total variation distance, we
have

inf
P :TVpP ||P0qďρ

EP rHpXqs (118)

“ sup
λě0,ηPR, ´Hpxq`η

λ ď1

t´EP0

”

λmax
!

´HpXq ` η

λ
,´1

)ı

´ λρ ` ηu (119)

“ sup
λě0,ηPR, ´Hpxq`η

λ ď1

t´EP0

”

max
!

´ HpXq ` η,´λ
)ı

´ λρ ` ηu (120)

“ sup
λě0,ηPR, ´Hpxq`η

λ ď2

t´EP0

”

max
!

´ HpXq ` η ´ λ,´λ
)ı

´ λρ ` η ´ λu (121)

“ sup
λě0,ηPR, ´Hpxq`η

λ ď2

t´EP0

”

max
!

´ HpXq ` η, 0
)ı

´ λρ ` ηu (122)

“ sup
λě0,ηPR, ´Hpxq`η

λ ď2

t´EP0

”

´ HpXq ` η
ı

`
´ λρ ` ηu. (123)

Here Equation (121) is obtained by substituting η with η ´ λ. In order to optimize over λ, we need to choose the
minimum λ satisfying the constraints. We require λ ě

´Hpxq`η
2 which translates to λ ě

´ESIpHpxqq`η
2 (as this

constraint originates inside the expectation, points with zero mass, tt P R : PtY ă tu “ 0u, will have no effect).
Substituting this, we have

inf
P :TVpP ||P0qďρ

EP rHpXqs “ sup
ηPR

t´EP0

”

´ HpXq ` η
ı

`
´

p´ESIpHpxqq ` ηq`

2
ρ ` ηu. (124)

Denote the inner function in Equation (124), as

gTVpη, P0q “ ´EP0

”

´ HpXq ` η
ı

`
´

p´ESIpHpxqq ` ηq`

2
ρ ` η. (125)

Note that for η ď 0, the first two terms in gTVpη, P0q will be 0 if Hpxq ą 0 for all x. This implies

gTVpη, P0q “ η ď 0 @ η ď 0. (126)

Also, as Hpxq ď 1
1´γ , we substitute η “

2`ρ
ρp1´γq

in gTVpη, P0q, and bound it as follows:

gTV

´

p2 ` ρq

ρp1 ´ γq
, P0

¯

“ ´EP0

”

´ HpXq `
p2 ` ρq

ρp1 ´ γq

ı

`
´

p´ESIpHpxqq `
p2`ρq

ρp1´γq
q`

2
ρ `

p2 ` ρq

ρp1 ´ γq
(127)

“ EP0

”

HpXq

ı

´
p2 ` ρq

ρp1 ´ γq
´

p´ESIpHpxqq `
p2`ρq

ρp1´γq
q`

2
ρ `

p2 ` ρq

ρp1 ´ γq
(128)

“ EP0

”

HpXq

ı

´
p´ESIpHpxqq `

p2`ρq

ρp1´γq
q`

2
ρ (129)

“ EP0

”

HpXq

ı

´
p´ESIpHpxqq `

p2`ρq

ρp1´γq
q

2
ρ (130)

“ EP0

”

HpXq ´
1

1 ´ γ

ı

`
ρESIpHpxqq

2
´

ρ

2p1 ´ γq
(131)

“ EP0

”

HpXq ´
1

1 ´ γ

ı

`
ρ

2
pESIpHpxqq ´

1

p1 ´ γq
q (132)

ď 0. (133)

Here Equation (128), Equation (130) and Equation (133) are obtained from the fact that that Hpxq ď 1
1´γ

(´Hpxq`
p2`ρq

ρp1´γq
ą 0) and ESIpHpxqq ď 1

1´γ (´ESIpHpxqq`
p2`ρq

ρp1´γq
ą 0). Along with the convexity of gTVpη, P0q,

Equation (126) and Equation (133) imply that the supηPRtgTVpη, P0qu is attained in the η range r0, p2`ρq

ρp1´γq
s.
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Theorem 4. (Sample Complexity under TV uncertainty set) Consider a robust MDP (see Section 2) with
nominal transition dynamics f and uncertainty set defined as in Equation (2) w.r.t. TV distance. For π˚

denoting the robust optimal policy w.r.t. nominal transition dynamics f and π˚
N denoting the robust optimal

policy w.r.t. learned nominal transition dynamics f̂N via Algorithm 1, and δ P p0, 1q, ϵ P p0, 1
1´γ q,it holds that

maxs |V R
π˚
N ,f

psq ´ V R
π˚,f psq| ď ϵ with probability at least 1 ´ δ for any N ě NTV, where

NTV “ O
´

p2 ` ρq2γ2

ρ2p1 ´ γq4

βnpδq2d2γnd
ϵ2

¯

. (134)

Proof. Step (i): As detailed in the proof outline of Section 4, in order to bound V R
π̂n,f

psq ´ V R
π˚,f psq, we begin

by adding and subtracting V R
π̂n,f̂n

psq which is the robust value function w.r.t. the nominal transition dynamics f̂n
and its corresponding optimal policy π̂n. Then, we split the difference into two terms as follows:

V R
π̂n,f psq ´ V R

π˚,f psq “ V R
π̂n,f psq ´ V R

π̂n,f̂n
psq

loooooooooooomoooooooooooon

piq

`V R
π̂n,f̂n

psq ´ V R
π˚,f psq

loooooooooooomoooooooooooon

piiq

. (135)

In order to not disturb the flow of the proof we bound (i) and (ii) separately Lemma 6 and Lemma 7 respectively.
From Lemma 6, we obtain that

piq ď max
s

ˇ

ˇ

ˇ
V R
π̂n,f psq ´ V R

π̂n,f̂n
psq

ˇ

ˇ

ˇ

ď
γ

1 ´ γ
max

s

ˇ

ˇ

ˇ
inf

TVpp||Pf ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f ps1q

ı

´ inf
TVpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f ps1q

ı
ˇ

ˇ

ˇ
. (136)

And from Lemma 7, we obtain that

piiq ď max
s

ˇ

ˇ

ˇ
V R
π̂n,f̂n

psq ´ V R
π˚,f psq

ˇ

ˇ

ˇ

ď
γ

1 ´ γ
max

s

ˇ

ˇ

ˇ
inf

TVpp||Pf̂n
ps,π̂npsqqqďρ

Es1„p

”

V R
π˚,f ps1q

ı

´ inf
TVpp||Pf ps,π̂npsqqqďρ

Es1„p

”

V R
π˚,f ps1q

ı
ˇ

ˇ

ˇ
. (137)

Note that both these terms in Equations (136) and (137) are of the form mentioned in the Step (i) of Section 4.

Step (ii): Next, corresponding to step (ii) of the proof outline in Section 4, we use Lemma 19 to bound
Equations (136) and (137). Denote M :“ 1

1´γ ě maxs V
R
π psq for convenience. Using Equation (136) and

Lemma 20 (internally using Lemma 19), it holds that

piq ď max
s

ˇ

ˇ

ˇ
V R
π̂n,f psq ´ V R

π̂n,f̂n
psq

ˇ

ˇ

ˇ

ď
1

1 ´ γ
max

s

ˇ

ˇ

ˇ
γ inf

TVpp||Pf ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f ps1q

ı

´ γ inf
TVpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V R
π̂n,f ps1q

ı
ˇ

ˇ

ˇ

ď
γ

1 ´ γ
max
s,a

˜

sup
ηPr0,

p2`ρq

ρp1´γq
s

!
ˇ

ˇ

ˇ
pEPf ps,aqrp´V R

π̂n,f̂n
ps1q ` ηq`sq ´ EPf̂n

ps,aqrp´V R
π̂n,f̂n

ps1q ` ηq`sq

ˇ

ˇ

ˇ

)

¸

(138)

ď
γ

1 ´ γ
max
V p¨qPV

max
s,a

˜

sup
ηPr0,

p2`ρq

ρp1´γq
s

!
ˇ

ˇ

ˇ
pEPf ps,aqrp´V ps1q ` ηq`sq ´ EPf̂n

ps,aqrp´V ps1q ` ηq`sq

ˇ

ˇ

ˇ

)

¸

. (139)

We can bound (ii) similarly.

piiq ď max
s

ˇ

ˇ

ˇ
V R
π̂n,f̂n

psq ´ V R
π˚,f psq

ˇ

ˇ

ˇ
(140)

ď
γ

1 ´ γ
max
V p¨qPV

max
s,a

˜

sup
ηPr0,

p2`ρq

ρp1´γq
s

!
ˇ

ˇ

ˇ
pEPf ps,aqrp´V ps1q ` ηq`sq ´ EPf̂n

ps,aqrp´V ps1q ` ηq`sq

ˇ

ˇ

ˇ

)

¸

. (141)

Step (iii): Next, we want to utilize the learning error bound (Equation (26)) that bounds the difference between
the means of true nominal transition dynamics Pf and learned nominal transition dynamics Pf̂n

to bound
Equations (139) and (141).
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We begin by bounding the difference
ˇ

ˇ

ˇ
EPf ps,aqrp´V ps1q ` ηq`s ´ EPf̂n

ps,aqrp´V ps1q ` ηq`s

ˇ

ˇ

ˇ
, by the difference in

means of Pf and Pf̂n
in Lemma 21. Since Equation (139) has a max over all value functions, we introduce a

covering number argument in Lemma 22 to reform it to a max over the functions in the ζ´covering set. We then
use Lemma 21 to obtain bounds in terms of maximum information gain ΓNd (Equation (9)) and ζ. Further details
regarding the covering number argument are deferred to Lemma 22. Then, we apply the result of Lemma 22 with
ζ “ 1 (defined in Lemma 22) on Equation (139). Then, it holds that

piq ď max
s

ˇ

ˇ

ˇ
V R
π̂n,f psq ´ V R

π̂n,f̂n
psq

ˇ

ˇ

ˇ
“ O

˜

´

p2`ρqγ
ρp1´γq2

¯´

βnpδq
?

2ed2γnd

σ
?
n

¯

¸

. (142)

Note that βn, which appears in Lemma 3, has a logarithmic dependence on n. Similarly, from Equation (141),
and Lemmas 21 and 22, we obtain

piiq ď max
s

ˇ

ˇ

ˇ
V R
π̂n,f̂n

psq ´ V R
π˚,f psq

ˇ

ˇ

ˇ
“ O

˜

´

p2`ρqγ
ρp1´γq2

¯´

βnpδq
?

2ed2γnd

σ
?
n

¯

¸

. (143)

Note that we want to bound V R
π̂n,f

psq ´ V R
π˚,f psq “ piq ` piiq over all s P S. Using maxs

ˇ

ˇ

ˇ
V R
π̂n,f

psq ´ V R
π˚,f psq

ˇ

ˇ

ˇ
ď

maxs

ˇ

ˇ

ˇ
V R
π̂n,f̂n

psq ´ V R
π˚,f psq

ˇ

ˇ

ˇ
` maxs

ˇ

ˇ

ˇ
V R
π̂n,f̂n

psq ´ V R
π˚
n ,f

psq

ˇ

ˇ

ˇ
and substituting M by 1{p1 ´ γq, we obtain from

Equation (142) and Equation (143)

max
s

ˇ

ˇ

ˇ
V R
π̂n,f psq ´ V R

π˚,f psq

ˇ

ˇ

ˇ
“ O

˜

´

p2`ρqγ
ρp1´γq2

¯´

βnpδq
?

2ed2γnd

σ
?
n

¯

¸

.

Finally, to ensure that maxs |V R
π̂n,f

psq ´ V R
π˚,f psq| ď ϵ , it suffices to have

max
s

ˇ

ˇ

ˇ
V R
π̂n,f psq ´ V R

π˚,f psq

ˇ

ˇ

ˇ
“ O

˜

´

p2`ρqγ
ρp1´γq2

¯´

βnpδq
?

2ed2γnd

σ
?
n

¯

¸

“ ϵ.

Moving
?
n and ϵ to opposite sides and squaring both sides, we obtain

n “ O

˜

´

p2 ` ρq2γ2

ρ2p1 ´ γq4

¯´βnpδq22ed2γnd
σ2ϵ2

¯

¸

.

Lemma 20. (Simplification using Lemma 19 reformulation) Let V be a value function from S Ñ r0, 1{p1 ´ γqs.
Then, it holds that

max
s

| inf
TVpp||Pf̂n

ps,π̂npsqqqďρ
Es1„p

”

V ps1q

ı

´ inf
TVpp||Pf ps,π̂npsqqqďρ

Es1„p

”

V ps1q

ı

| ď

max
s,a

sup
ηPr0,

p2`ρq

ρp1´γq
s

t|pEPf ps,aqrp´V ps1q ` ηq`sq ´ EPf̂n
ps,aqrp´V ps1q ` ηq`sq|u.

Proof. First note that,

max
s

ˇ

ˇ

ˇ
inf

TVpp||Pf̂n
ps,π̂npsqqqďρ

Es1„p

”

V ps1q

ı

´ inf
TVpp||Pf ps,π̂npsqqqďρ

Es1„p

”

V ps1q

ı
ˇ

ˇ

ˇ
ď

max
s,a

ˇ

ˇ

ˇ
inf

TVpp||Pf̂n
ps,aqqďρ

Es1„p

”

V ps1q

ı

´ inf
TVpp||Pf ps,aqqďρ

Es1„p

”

V ps1q

ı
ˇ

ˇ

ˇ
(144)

Using Lemma 19 and focusing to bound right side of Equation (144) for one particular ps, aq state action pair, we
obtain

ˇ

ˇ

ˇ
inf

TVpp||Pf̂n
ps,aqqďρ

Es1„p

”

V ps1q

ı

´ inf
TVpp||Pf ps,aqqďρ

Es1„p

”

V ps1q

ı
ˇ

ˇ

ˇ
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“

ˇ

ˇ

ˇ
sup

ηPr0,
p2`ρq

ρp1´γq
s

t´EPf ps,aq

”

´ V ps1q ` η
ı

`
´

p´ESIPf ps,aqpV ps1qq ` ηq`

2
ρ ` ηu´

sup
ηPr0,

p2`ρq

ρp1´γq
s

t´EPf̂n
ps,aq

”

´ V ps1q ` η
ı

`
´

p´ESIPf̂n
ps,aqpV ps1qq ` ηq`

2
ρ ` ηu

ˇ

ˇ

ˇ

(145)

ď sup
ηPr0,

p2`ρq

ρp1´γq
s

t|pEPf ps,aqrp´V ps1q ` ηq`sq ´ EPf̂n
ps,aqrp´V ps1q ` ηq`sq|u. (146)

Here, Equation (146) is obtained using ESIPf ps,aqpV ps1qq “ ESIPf̂n
ps,aqpV ps1qq as shown in proof of Lemma 9

(Case-1).

Lemma 21. (Bound by difference between estimated model f̂n and true f) Let V be a value function from
S Ñ r0, 1{p1 ´ γqs. Then, it holds that

|EPf ps,aqrp´V ps1q ` ηq`s ´ EPf̂n
ps,aqrp´V ps1q ` ηq`s| ď

´

p2 ` ρq

ρp1 ´ γq

¯

σ´1}fps, aq ´ f̂nps, aq}, (147)

where Pf̂n
ps, aq “ N pf̂nps, aq, σ2Iq and Pf ps, aq “ N pfps, aq, σ2Iq and η P r0, p2`ρq

ρp1´γq
s.

Proof.
ˇ

ˇ

ˇ
EPf ps,aqrp´V ps1q ` ηq`s ´ EPf̂n

ps,aqrp´V ps1q ` ηq`s

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ż

Rd

1
a

p2πσ2qd
p´V ps1q ` ηq`pe´

}x´fps,aq}2

2σ2 ´ e´
}x´f̂nps,aq}2

2σ2 q

ˇ

ˇ

ˇ

ď

ż

Rd

1
a

p2πσ2qd
p´V ps1q ` ηq`

ˇ

ˇ

ˇ
e´

}x´fps,aq}2

2σ2 ´ e´
}x´f̂nps,aq}2

2σ2

ˇ

ˇ

ˇ

piq
ď

p2 ` ρq

ρp1 ´ γq

ż

Rd

1
a

p2πσ2qd

ˇ

ˇ

ˇ
e´

}x´fps,aq}2

2σ2 ´ e´
}x´f̂nps,aq}2

2σ2

ˇ

ˇ

ˇ

(ii)
ď 2

p2 ` ρq

ρp1 ´ γq
¨ TVpPf̂n

ps, aq, Pf ps, aqq

(iii)
ď 2

p2 ` ρq

ρp1 ´ γq

b

KLpPf̂n
ps, aq, Pf ps, aqq{2

(iv)
ď 2

p2 ` ρq

ρp1 ´ γq

b

}fps, aq ´ f̂nps, aq}2{4σ2

ď
p2 ` ρq

ρp1 ´ γq
}fps, aq ´ f̂nps, aq}{σ,

where (i) follows from p´V ps1q ` ηq2` ď
p2`ρq

ρp1´γq
as η ď

p2`ρq

ρp1´γq
, (ii) follows from the definition of Total Variation

(TV) distance between any two multivariate Gaussians, (iii) uses the Pinsker’s inequality, and (iv) uses the
formula for KL-divergence between multivariate Gaussian distributions.

Lemma 22. (ζ´cover construction) For V denoting the set of value functions from S Ñ r0, 1{p1 ´ γqs, with
probability at least 1 ´ δ it holds that

max
V PV

max
s,a

sup
ηPr0,

p2`ρq

ρp1´γq
s

t|EPf ps,aqrp´V ps1q ` ηq`s ´ EPf̂n
ps,aqrp´V ps1q ` ηq`s|u

ď O

˜

´

p2`ρq

ρp1´γq

¯´

βnpδq
?

2ed2γnd

σ
?
n

¯

¸

. (148)
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Proof. Let NVpζq be the ζ´ cover of the set V . By definition, there exists V 1 P NVpζq such that }V 1 ´ V } ď ζ for
every V P V.

|EPf ps,aqrp´V ps1q ` ηq`s ´ EPf̂n
ps,aqrp´V ps1q ` ηq`s|

ď |EPf ps,aqrp´V ps1q ` ηq`s ´ EPf ps,aqrp´V 1ps1q ` ηq`s|

` |EPf ps,aqrp´V 1ps1q ` ηq`s ´ EPf̂n
ps,aqrp´V 1ps1q ` ηq`s|

` |EPf̂n
ps,aqrp´V 1ps1q ` ηq`s ´ EPf̂n

ps,aqrp´V ps1q ` ηq`s|.

(149)

piq
ď 2}V 1 ´ V } ` |EPf ps,aqrp´V 1ps1q ` ηq`s ´ EPf̂n

ps,aqrp´V 1ps1q ` ηq`s|, (150)

where (i) follows from Lemma 23. Using Equation (150), we bound uniformly over all V P V . Using Equation (150)
we bound uniformly over all V P V,

max
V PV

max
s,a

sup
ηPr0,

p2`ρq

ρp1´γq
s

t|EPf ps,aqrp´V ps1q ` ηq`s ´ EPf̂n
ps,aqrp´V ps1q ` ηq`s|u (151)

ď max
V 1PNVpζq

max
s,a

sup
ηPr0,

p2`ρq

ρp1´γq
s

#

ˇ

ˇ

ˇ
2}V 1 ´ V } ` |EPf ps,aqrp´V 1ps1q ` ηq`s ´ EPf̂n

ps,aqrp´V 1ps1q ` ηq`s|

ˇ

ˇ

ˇ

+

piiq
ď max

V 1PNVpζq
max
s,a

sup
ηPr0,

p2`ρq

ρp1´γq
s

#

ˇ

ˇ

ˇ
EPf ps,aqrp´V 1ps1q ` ηq`s ´ EPf̂n

ps,aqrp´V 1ps1q ` ηq`s

ˇ

ˇ

ˇ

+

` 2ζ

piiiq
ď max

V 1PNVpζq
max
s,a

sup
ηPr0,

p2`ρq

ρp1´γq
s

#

´

p2`ρq

ρp1´γq

¯

σ´1}fps, aq ´ f̂nps, aq}

+

` 2ζ

pivq

ď O

˜

´

p2`ρq

ρp1´γq

¯´

βnpδq
?

2ed2γnd

σ
?
n

¯

¸

` 2ζ (152)

pvq

ď O

˜

´

p2`ρq

ρp1´γq

¯´

βnpδq
?

2ed2γnd

σ
?
n

¯

¸

, (153)

where (ii) follows from }V 1 ´ V } ď ζ , (iii) follows from Lemma 21, (iv) follows from Equation (26), and (v)
follows from substituing ζ “ 1 (or any constant).

Lemma 23. For any two value functions V, V 1 : S Ñ r0, 1
1´γ s, it holds that

|EPf ps,aqrp´V 1ps1q ` ηq`s ´ EPf ps,aqrp´V ps1q ` ηq`s| ď }V 1 ´ V }. (154)

Proof. Noting that both the distributions are w.r.t. the same distribution Pf ps, aq we have,

EPf ps,aqrp´V 1ps1q ` ηq`s ´ EPf ps,aqrp´V ps1q ` ηq`s

ď

ż

s1„Pf ps,aq

´

1pV 1ps1q ă ηqp´V 1ps1q ` ηq ´ 1pV ps1q ă ηqp´V ps1q ` ηq

¯

pPf ps,aqps1qds1. (155)

Adding and subtracting 1pV ps1q ă ηqp´V 1ps1q ` ηq to Equation (155), we obtain 2 terms,

i “

ż

s1„Pf ps,aq

´

1pV 1ps1q ă ηq ´ 1pV ps1q ă ηq

¯

p´V 1ps1q ` ηqpPf ps,aqps1qds1 (156)

ii “

ż

s1„Pf ps,aq

1pV ps1q ă ηq

´

p´V 1ps1q ` ηq ´ p´V ps1q ` ηq

¯

pPf ps,aqps1qds1. (157)

Bounding i first,

i “

ż

s1„Pf ps,aq

´

1pV 1ps1q ă ηq ´ 1pV ps1q ă ηq

¯

p´V 1ps1q ` ηqpPf ps,aqps1qds1 (158)
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“

ż

s1„Pf ps,aq

´

1pV 1ps1q ă η ď V ps1qq

¯

p´V 1ps1q ` ηqpPf ps,aqps1qds1

´

ż

s1„Pf ps,aq

´

1pV ps1q ă η ă V 1ps1qq

¯

p´V 1ps1q ` ηqpPf ps,aqps1qds1

(159)

ď

ż

s1„Pf ps,aq

´

1pV 1ps1q ă η ď V ps1qq

¯

p´V 1ps1q ` V ps1qqpPf ps,aqps1qds1

´

ż

s1„Pf ps,aq

´

1pV ps1q ă η ă V 1ps1qq

¯

p´V 1ps1q ` V ps1qqpPf ps,aqps1qds1

(160)

ď

ż

s1„Pf ps,aq

´

1pV 1ps1q ă η ď V ps1qq

¯

p´V 1ps1q ` V ps1qqpPf ps,aqps1qds1

`

ż

s1„Pf ps,aq

´

1pV ps1q ă η ă V 1ps1qq

¯

pV 1ps1q ´ V ps1qqpPf ps,aqps1qds1

(161)

ď }V 1 ´ V }. (162)

Similarly bounding ii,

ii “

ż

s1„Pf ps,aq

1pV ps1q ă ηq

´

p´V 1ps1q ` ηq ´ p´V ps1q ` ηq

¯

pPf ps,aqps1qds1 (163)

“

ż

s1„Pf ps,aq

1pV ps1q ă ηq

´

´ V 1ps1q ` V ps1q

¯

pPf ps,aqps1qds1 (164)

ď

ż

s1„Pf ps,aq

1pV ps1q ă ηq

ˇ

ˇ

ˇ
´ V 1ps1q ` V ps1q

ˇ

ˇ

ˇ
pPf ps,aqps1qds1 (165)

ď }V 1 ´ V }. (166)

Using Equations (162) and (166) we get the desired result.

D Additional Experiments and Details

In this section, we report additional experiments and discuss further details of our experimental setup. All
experiments were run with GPU clusters: 10xNVidia 32Gb Tesla V100 with Intel(R) processors (2 cores, 2.50
GHz) and 256Gb RAM. For all the experiments, we use the environment implementations of Mehta et al. (2021)
as done in https://github.com/fusion-ml/trajectory-information-rl/tree/main. Also, to learn the environment
transition model, we use the same corresponding GP hyperparameters proposed by Mehta et al. (2021). For the
offline RFQI/FQI algorithms we follow the implementation of Panaganti et al. (2022); Chen and Jiang (2019)
in https://github.com/zaiyan-x/RFQI. We use the same default hyperparameters as used in their code except
for training steps, batch size and robustness radius ρ (for RFQI) which we tune depending on the environment
as outlined next. For SAC in Pendulum experiments, we use the implementation and hyperparameters of
https://github.com/DLR-RM/rl-baselines3-zoo. Whereas, for SAC in Reacher experiments, we use the implemen-
tation and hyperparameters of https://github.com/fusion-ml/bac-baselines, https://github.com/IanChar/rlkit2
(as done in (Mehta et al., 2021)).

Pendulum: In Pendulum experiments, we construct the learned model using 60 samples from the true environment.
Then, we train a SAC policy on such a model for 2 ˚ 104 steps and use it (with the probability of choosing
a random action being 0.3 or 0.5) to generate 106 offline data (these are used both for MVR+RFQI and
MVR+FQI). For training steps and batch size we consider the following combinations: t12000 ´ 1001,1 5000 ´

1001,1 10000 ´ 1001,1 20000 ´ 1001,1 35000 ´ 1001,1 50000 ´ 1001,1 5000 ´ 5001,1 5000 ´ 10001u. We combine all these
combinations with the following values of ρ – t0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9u. For each algorithm, we pick the
best-performing combination in terms of average reward over 20 episodes for all (or most) perturbation values. We
do this separately for length perturbations and action perturbations. In the length perturbation, the pendulum’s
length is changed from its nominal value to a new value depending on the perturbation percentage. In the action
perturbation, a random action is chosen instead of the action chosen by the policy with various probabilities
ranging from r0, 1s. We detail the optimal hyperparameters we realized for each algorithm in Table 2 for the

https://github.com/fusion-ml/trajectory-information-rl/tree/main
https://github.com/zaiyan-x/RFQI
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/fusion-ml/bac-baselines
https://github.com/IanChar/rlkit2
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length and action perturbation, respectively. Moreover, we plot the average performance (over 20 episodes) of
the different baselines w.r.t. length and action perturbations in Figure 3. We notice that in the case of length
perturbation, the robust algorithms (RFQI and MVR+RFQI) outperform the corresponding non-robust baselines.
In the case of action perturbations, we observe all algorithms except for SAC achieve similar performance.

Training Steps Batch-Size ρ Random Action Probability (Dataset)

MVR+RFQI 5000 100 0.3 0.5
MVR+FQI 2000 100 - 0.5

RFQI 2000 100 0.9 0.5
FQI 5000 500 - 0.5

Training Steps Batch-Size ρ Random Action Probability (Dataset)

MVR+RFQI 20000 100 0.5 0.3
MVR+FQI 50000 100 - 0.3

RFQI 50000 100 0.1 0.5
FQI 5000 500 - 0.5

Table 2: Hyperparameters for Pendulum - length perturbation (top) and action perturbation (bottom).

Figure 3: Pendulum experiments.

Cartpole: In Cartpole experiments, we construct the learned model using 150 samples from the true environment.
Then, we run MPC on such a model following the implementation and hyperparameters of (Mehta et al.,
2021; Pinneri et al., 2020) requiring 2250 samples to calculate the optimal action at each step and use it
(with the probability of choosing a random action being 0.3) to generate 106 offline data for MVR+RFQI
and MVR+FQI. For training steps and batch size, we test the following combinations: t12000 ´ 1001,1 5000 ´

1001,1 10000 ´ 1001,1 20000 ´ 1001,1 35000 ´ 1001,1 50000 ´ 1001,1 5000 ´ 5001,1 5000 ´ 10001u, and consider radii ρ in
t0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9u. We consider perturbations of the force magnitude and the gravity, whereby
the actuation force/gravity is changed from its nominal value to a new value depending on the perturbation
percentage. We report the best-performing (average over 20 episodes) hyperparameters for each algorithm in
Table 3. Such parameters were observed to be a good choice for both perturbation types. Finally, we plot the
average performance (over 20 episodes) of the different baselines w.r.t. force magnitude and gravity perturbations
in Figure 4. We notice that in both perturbations, the robust algorithms (RFQI and MVR+RFQI) outperform
the corresponding non-robust baselines.

Reacher: In Reacher experiments, we construct the learned model using 2000 samples from the true environment.
Then, we train a SAC policy on such a model for 106 steps and use it (with the probability of choosing a random
action being 0.3) to generate 106 offline data for MVR+RFQI and MVR+FQI. For training steps and batch size,
we consider the following combinations: t110000´ 5001,1 20000´ 5001,1 40000´ 5001,1 80000´ 5001,1 160000´ 10001u,
while we consider radii ρ in t0.1, 0.3, 0.5, 0.7, 0.9u. We consider perturbations of the joint stiffness subject to
different equilibrium positions, the latter represented by the ’Springref’ parameter which we take to be 50 or 100.
In both perturbation types, the joint stiffness is changed from its nominal value of 0 to a new value depending on
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Training Steps Batch-Size ρ Random Action Probability (Dataset)

MVR+RFQI 5000 500 0.5 0.3
MVR+FQI 50000 100 - 0.3

RFQI 5000 100 0.3 0.3
FQI 10000 100 - 0.3

Table 3: Hyperparameters for Cartpole.

Figure 4: Cartpole experiments.

the perturbation magnitude. Best-performing hyperparameters’ configurations are reported in Table 4. We plot
the average performance (over 20 episodes) of the different baselines in Figure 5. Similar to the other environments,
we observe the robust algorithms (RFQI and MVR+RFQI) outperform the corresponding non-robust baselines.

Training Steps Batch-Size ρ Random Action Probability (Dataset)

MVR+RFQI 10000 500 0.5 0.3
MVR+FQI 20000 500 - 0.3

RFQI 40000 500 0.1 0.3
FQI 20000 500 - 0.3

Table 4: Hyperparameters for Reacher.

Figure 5: Reacher experiments with ’Springref’ parameter set to 50 (left) or 100 (right).
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