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Abstract

Automated program repair (APR) enhances software quality by fixing bugs auto-

matically, but it faces challenges due to software complexity. The vast number of

possible patches makes exhaustive search impractical, and identifying correct patches

is difficult since tools may generate incorrect fixes that overfit test cases. Mitigating

these challenges involves leveraging the structure of code, which consists of a formal

channel (execution semantics) and a natural language channel (comments, variable

names). Machine learning excels at interpreting the natural language channel using

large datasets but struggles with generating semantically correct patches. Conversely,

program analysis provides detailed insights into program semantics. Combining

program analysis with machine learning can address these challenges, using program

analysis for execution specifics and machine learning for natural code aspects, like

identifiers and comments. This thesis consists of four different works:

• Chapter 3 advances semantic repair by synthesizing patches with side ef-

fects, employing symbolic execution with state merging and effective patch

prioritization to repair bugs in open-source projects.

• Chapter 4 reduces the search space by utilizing neural networks to learn

variable information, ranking variables and patch templates to improve accu-

racy and reduce test overfitting. This enhances existing approaches, allowing

them to repair previously unfixable bugs by leveraging program namespace

information.

• Chapter 5 leverages abstract interpretation and fuzzing to probabilistically

approximate reachable program states, focusing on high-probability states.
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PSP boosts performance in abstract interpretation, symbolic execution, and

patch prioritization, benefiting strategies discussed in Chapter 3 and Chapter 4.

• Chapter 6 addresses the challenge of identifying the most relevant facts, such as

test errors and angelic values, for constructing effective prompts for LLM based

APR. Extracted through program analysis, these facts build prompts whose

effectiveness varies across different bugs. We develop a strategy to select

facts tailored to each specific bug, significantly enhancing the effectiveness of

LLMs in APR.
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With the advent of Generative AI, much research has focused on directly applying

machine learning to various tasks, including automated program repair. While

machine learning based techniques excel at generating intuitive patches, they often

struggle to capture the relevant behavior during the execution of programs, especially

in large real-world codebases. Program analysis, on the other hand, is crucial for bug

fixing as it captures the semantic information of the program. This thesis leverages

the combined strengths of program analysis and machine learning to enhance bug-

fixing capabilities, creating a more robust and effective approach to automated

program repair.

Some of the work in this thesis has been published in notable conferences

and journals, including TSE, ICSE, and ASE. Notably, the research presented in

Chapter 4, which leverages Machine Learning with program analysis to prioritise

patches effectively, won the distinguished paper award at ICSE 2023.

Chapter 3 provides an efficient method of constructing a patch specification

without restricting the patch type. This method helps speed up the process of

validating a generated patch, making APR more efficient.

Chapter 4 provides a new representation of input structure for code. This

representation can efficiently prioritise the variables to pick for a patch; this can help

developers develop program repair tools or auto-complete tools for IDEs.

Chapter 5 improves program analysis, symbolic execution, and patch prioritisa-

tion in automated program repair by leveraging data obtained through fuzzing. This

technique can be integrated into existing program analysis techniques, APR, and

symbolic execution tools. The symbolic execution based optimisation was merged



Impact Statement 6

into a symbolic execution engine named Mythril, which consists of 908k downloads

and 3.8k stars to date.

The insights from Chapter 6, which explores the impact of different types of

information (e.g., error messages, class and scope information, variable values)

on bug fixing, can provide insights to developers who are interested in building

an automated program repair tool that relies on Generative AI by helping them to

understand which facts are important and help them select the most relevant facts for

prompts.

Meta and Bloomberg have deployed Automated Program Repair systems, and

companies such as Amazon, Uber, and Bytedance have been working on developing

Generative AI-based agents to help improve developer productivity. This thesis will

help provide insights to developers and researchers developing such APR tools.
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Chapter 1

Introduction

Bugs are intrinsic to software development, presenting a challenging problem due

to the inherent complexity of modern software. Large software projects often

involve numerous files and thousands of lines of code, developed and maintained

by multiple programmers over many years. This complexity is further amplified

by constantly evolving software requirements, leading to frequent updates and the

varying expertise levels of the programmers involved. As a result, identifying,

diagnosing, and resolving bugs can be a tedious and error-prone process. Manual

debugging demands substantial effort to understand the intricate interdependencies

within the codebase and accurately locate and fix the root causes of errors. Therefore,

Automated Program Repair (APR) tools can significantly improve both the efficiency

and the quality of life for developers. This need has driven the development of

various APR tools, such as Genprog [2], Prophet [3], and Angelix [4]. Moreover,

some of these tools have seen successful deployment in the industry, including

Getafix [5] at Meta and B-Assist [6] at Bloomberg.

A fundamental issue with Automated Program Repair (APR) is the vast number

of candidate patches that must be considered, making the search space overwhelm-

ingly large. Consider a simple program that checks if a number is within a certain

range: (x > 10 and x < 20). An APR tool might explore numerous modifi-

cations, such as changing > to >=, < to <=, or modifying and to or. Additionally, it

could add complex conditions, like (x > 10 and x < 20 or (y == 5)),

or introduce new logic. Each modification is a different candidate patch, and the com-
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binations quickly become unmanageable. In real-world programs with thousands of

lines of code, the number of candidate patches grows exponentially 1. This immense

search space makes the APR strategies relying on exhaustive search impractical,

highlighting the need for effective search strategies to prioritise promising patches.

Even if a patch passes the failing test case, which is used as the criteria for fixing

the bug, it may end up overfitting that specific test without fixing the underlying

problem. This issue is further elaborated in Section 2.1.4.

To effectively explore the search space, it is necessary to leverage the structure

of the code. Code consists of two different channels [7]: a formal channel dealing

with the execution semantics of the code and a natural language channel dealing with

the understandability of the code (i.e. identifier names, comments, and docstrings).

The formal channel can be interpreted through program analysis, which provides

insights into the program’s behavior and semantics. Conversely, the natural language

channel can be interpreted by employing machine learning, which can interpret and

learn from large datasets to recognise common coding patterns, conventions and

idioms and exploit them effectively. By combining program analysis and machine

learning, we can harness the strengths of both approaches. Program analysis will

help with the generated patches satisfying the required execution semantics, while

machine learning improves the naturalness and readability of the patches while

reducing the likelihood of test overfitting. This dual-channel approach helps reduce

the search space and increases the likelihood of generating correct and maintainable

patches.

Several existing tools have leveraged program analysis for APR, such as Sem-

fix [8], Angelix [4], and SPR [9]. Program analysis provides a robust framework for

understanding code behavior, ensuring that generated patches maintain the intended

functionality. Nonetheless, pure program analysis based techniques have notable

limitations. One significant issue is the potential for overfitting to the success cri-

teria, such as the failing tests, due to the large search space of candidate patches.

Distinguishing between two non-equivalent patches that pass failing tests presents

1Super exponential w.r.t. the size of the namespace
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a challenge. Some existing works addressed this issue by generating additional

tests [10, 11]. However, using these techniques has drawbacks, such as the potential

requirement for a large number of tests and performance issues when running a

substantial amount of tests.

In contrast, Machine Learning (ML) has emerged as a powerful tool in

APR [3, 12, 13], capturing the "naturalness" of code [14] by extensively train-

ing on existing open source repositories written by humans. This approach makes

ML-generated patches more intuitive and easier for developers to understand. How-

ever, ML-based APR faces significant challenges. While ML models trained on this

task excel at learning syntactic patterns, they often struggle to ensure whether the

fixes they generate are correct, potentially leading to superficially correct patches

that fail to address the underlying issue effectively. Additionally, most ML models

typically operate within a fixed "window" of code due to computational and training

complexity limitations. Transformer-based models, for example, require a manage-

able amount of input data to function effectively. They may struggle with processing

larger amounts of code due to the quadratic relationship between the number of

input tokens and the model’s parameters. These window width limitations constrain

the model’s ability to fully understand the broader context of the code, potentially

leading to incomplete or suboptimal repairs.

To address the challenges discussed above, this thesis presents these key contri-

butions:

• An Efficient Specification Patches that have been generated by APR tools

need to be validated. Most APR tools continue the process of generating

and validating the generated patches until a patch that satisfies the criteria

of success is found. Using test suite as the criteria of success is inefficient,

as it takes a long time to rebuild the code with the generated patch and run

the tests. Hence, prior works [4, 8, 15] used concolic execution to construct

a patch specification. These tools validate the generated patches against the

patch specification. These approaches cannot construct a patch specification

for patches that cause side effects in the code. Chapter 3 provides an efficient
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method of constructing the patch specification while alleviating this limitation.

• Variable Prioritisation Number of in-scope variables at any point in a code-

base is massive. Hence, when constructing a patch, it is useful to have a

method of prioritising variables. Identifying the best variables to fill a spot can

be accomplished by using Machine Learning. However, ML based techniques

suffer from window width limitation. Hence, this work proposes a new data

structure named CDU chain to compress the snippet information to fit the

window width. This variable prioritisation strategy can easily be plugged into

existing APR techniques such as Prophet [3] and Trident, which is discussed

in Chapter 3.

• Patch Prioritisation using Static and Dynamic Information Leverages

fuzzing and abstract interpretation to construct a new data structure called

Program State Probability (PSP). PSP, discussed in Chapter 5, can be used to

prioritise patches effectively. Since PSP approximates the allowable program

states, it has additional exciting applications, such as speeding up symbolic

execution and serving as a knob, giving the ability to move across the space of

over- and under-approximation of program behavior.

• Study on Effect of Bug-Related Information: This study, detailed in Chap-

ter 6, is the first large-scale investigation of prompt design for Automated

Program Repair (APR) using large language models (LLMs). Evaluating over

19,000 prompts with combinations of seven types of bug-related facts (e.g.,

GitHub issues, test errors, angelic values), the study reveals that adding more

facts can degrade LLMs’ bug-fixing performance, though each fact is shown

to be useful under certain conditions. It also shows that dynamically choos-

ing a subset of facts for different bugs is more effective than static selection.

The study introduces a statistical model for optimising fact selection which

outperforms static fact selection.
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Research Scope

For the purposes of this research, a bug is defined strictly by the presence of a "failing

test," ensuring a quantifiable criterion for what constitutes an error. Bugs that do

not arise through failing tests, such as those identified through static analysis, code

reviews, or runtime anomalies without explicit test failures, are not considered within

this scope. Furthermore, the investigation assumes that the location of the bug, such

as the specific function or line numbers, is already known; hence, techniques for bug

localization, including methods for automatically identifying or predicting the buggy

code regions, are outside the scope of this work. The scope is further confined to

repairs involving single-function fixes. Initially, this is approached through repairs

in a single chunk of code as discussed in Chapter 3, and subsequently, the scope

expands to encompass function repairs in Chapter 6. This research does not address

multi-function or cross-file fixes.



Chapter 2

Background

This chapter provides the essential background knowledge required to understand

the methodologies and techniques employed in this thesis. It covers topics in three

main areas: program analysis, machine learning, and automated program repair. The

background related to automated program repair is discussed in Section 2.1, the

program analysis techniques employed are discussed in Section 2.2, and the machine

learning techniques are discussed in Section 2.3.

Chapter 3 mainly leverages symbolic execution discussed in Section 2.2.3 to

make the patch specification extraction more efficient and additionally discusses a

patch prioritisation algorithm to reduce test overfitting (Section 2.1.4). Chapter 4’s

primary contribution is that it leverages a new input representation with machine

learning (Section 2.3) to improve variable selection. Chapter 5 uses Fuzzing (Sec-

tion 2.2.1) and abstract interpretation (Section 2.2.2) to provide a new method of

prioritising patches. Chapter 6 discusses the information to leverage when construct-

ing a prompt to feed into LLMs (Section 2.3.2) for the program repair task.

2.1 Automated Program Repair
Automated Program Repair (APR) is the process of automatically generating a fix for

a program such that it can be accepted by the developer. The goal of APR is to identify

and correct defects in software without human intervention, thereby enhancing

software reliability and reducing maintenance costs. The research community has

dedicated increasing attention to this task [16].
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Figure 2.1: Architecture of standard APR tools. These tools take a buggy program and a
suspicious location identified within the code. They generate a candidate patch
and run it through a patch checker. If the candidate patch passes the checks,
it is returned as the final patch. If it fails, the process iterates by generating
and testing the next candidate patch until a successful patch is found or any
termination criteria is reached.

2.1.1 Architecture

The architecture of standard Automated Program Repair (APR) tools consists of

three primary components: the Patch Generator, the Patch Prioritiser, and the Patch

Checker, as illustrated in Figure 2.1.

Each component plays a crucial role in the APR process. The Patch Generator

is responsible for creating candidate patches. GenProg, a well-known APR tool,

utilises genetic algorithms to generate patches [2]. Getafix, an APR tool developed

by Meta, achieves this by mining fix patterns from multiple repositories and applying

suitable patterns to the buggy locations [5]. Given the potentially large number of

patches generated by these techniques, the Patch Prioritiser helps by ordering the

candidate patches so that the most promising ones are ranked higher. This increases

the likelihood of finding the correct patch efficiently. The candidate patches are then

evaluated by the Patch Checker, which validates them against specific criteria, such

as a test suite or a formal specification, to ensure their correctness.

2.1.2 Fault Localisation

Real-world repositories often contain tens of thousands of lines of code, making it

impractical to generate patches without first identifying a set of potentially buggy lo-
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cations. This is where fault localisation techniques come into play. Fault localisation

techniques aim to identify the parts of the code that are most likely to contain bugs,

thereby narrowing down the search space for the Patch Generator.

Fault localisation typically uses statistical methods to analyse program execution

and identify suspicious code locations. These methods can include:

• Spectrum-Based Fault Localisation (SBFL): This technique involves run-

ning the program with a set of test cases and collecting coverage information.

It calculates suspiciousness scores for each program element (e.g. statements,

branches) based on the correlation between the elements executed and the

test outcomes (pass or fail). Common measures used in SBFL include Taran-

tula [17], Ochiai [18], and Jaccard [18].

• Machine Learning-Based Approaches: Recent advancements have seen

the application of machine learning techniques to fault localisation. These

methods train models on information such as historical bug data, dynamic

execution information such as code coverage and data dependencies w.r.t.

failing tests to predict the likelihood of code regions being buggy [19, 20].

2.1.3 Correctness Criteria

The patch checker employs a correctness criteria to determine whether a candidate

fix is plausible. To truly consider a patch correct, it should be able to pass a code

review and be accepted by the developer. Finding a correct patch is achieved by

validating the fix against a specific criteria which can be automatically checked

against and comprehensive enough to ensure that all correct patches satisfy them.

Given the challenges in obtaining formal specifications for real-world software,

practical approaches typically rely on test suites [8, 4, 2, 3, 12]. Hence, the patches

that pass through the patch checker are considered as plausible by APR tools. Some

papers [4, 12] consider a generated plausible patch as correct when the generated

patch is equivalent to the developer’s patch.

In addition to test suites, static analysis tools can be used to evaluate candidate

patches. These tools analyse the code without executing it to detect potential issues
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such as security vulnerabilities, coding standard violations, and potential runtime

errors. SymlogRepair [21] uses datalog based analysis as a correctness criteria for a

patch. Tools such as InferFix [22] and GetaFix [5] employ static analysis along with

failing tests to check whether the generated patch can be considered plausible.

2.1.4 Test Overfitting

Test overfitting is a common issue in Automated Program Repair (APR) where the

generated patch passes all the provided test cases but fails to generalise to other

untested scenarios. This occurs because the repair process is overly focused on

satisfying the given test suite, potentially neglecting to fix the root cause.

To illustrate test overfitting, consider the following simple buggy program

written in Python:

def find_max(a, b):
if a > b:

return b
else:

return a

(a) The Buggy program incor-
rectly returns the smaller
value instead of the larger
value.

# Test cases
assert find_max(5, 5) == 5
assert find_max(5, 10) == 10
assert find_max(-1, -5) == -1

(b) Test cases used for validat-
ing the program.

def find_max(a, b):
if a == 5:

return b
else:

return a

(c) Generated fix passes initial
tests but fails to generalise.

Figure 2.2: Illustration of test overfitting in APR. The buggy program shown in (a) incor-
rectly returns the smaller value instead of the larger value. The initial test cases
shown in (b) validate the generated fix shown in (c), which passes these tests
but is logically incorrect.

The key problem with test overfitting is that the patch is validated against a

limited set of tests, which may not cover the full range of behaviors required by the

program. Consequently, the program may still contain bugs that were not exposed

by the initial test suite.

Researchers have proposed various approaches to tackle this problem. The

first group of approaches uses a pre-defined database of transformations to increase

the chance of generating correct patch [23, 24, 25]. The second group generates

additional tests [10, 11]. The third group of techniques prioritise the patches that are

more likely to be correct [26, 27, 28, 29, 3]. This led to the development of a patch
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prioritisation component for APR tools, as illustrated in the architecture depicted in

Figure 2.1.

2.2 Program Analysis
This section discusses the program analysis techniques used in the thesis such as

Fuzzing, Abstract Interpretation and Symbolic Execution.

2.2.1 Fuzzing

Fuzzing, also known as fuzz testing, is a dynamic software testing technique aimed at

discovering vulnerabilities and bugs by automatically generating inputs to a computer

program. The primary goal of fuzzing is to find security vulnerabilities and bugs by

observing how the program behaves under these conditions. Formally, fuzzing can

be defined as follows:

Definition 1 (Fuzzing). Fuzzing is a software testing technique that generates a set

of test inputs I from the input space T and feeds them to a program p. The program

is then executed with each input i ∈ I. Fuzzing monitors the program’s execution for

abnormal behavior like crashes, memory leaks, or assertion failures.

The effectiveness of fuzzing depends on the ability to generate diverse and

comprehensive input sets that can thoroughly test the various execution paths of the

program p.

2.2.2 Abstract Interpretation

Abstract interpretation is a theory of over-approximating the semantics of computer

programs [30]. It provides a framework for constructing abstract models of the

program’s behavior by mapping its concrete operations to an abstract domain. The

primary goal of abstract interpretation is to perform static analysis to discover

properties about the program that hold for all possible executions.

The motivation behind abstract interpretation is to analyze programs in a way

that is both sound and computationally feasible. By working in an abstract domain,

we can reason about the program’s behavior without executing it (unlike fuzzing),

thus enabling the detection of potential errors, such as bugs or security vulnerabilities,
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before the program runs. One such vulnerability that can be analysed by abstract

interpretation is null pointer exception. For instance, consider a program segment

where a variable x can either be assigned a reference to an object or be null. In

the abstract domain {NonNull,Null}, abstract interpretation can track the flow of

values assigned to x throughout the program. If an operation is attempted on x when

it can be Null, abstract interpretation can identify this potential error path. This

capability allows developers to preemptively address null pointer exceptions during

code analysis without executing the code.

Abstract interpretation involves a trade-off between precision and computational

feasibility. In scenarios where precise determination of certain program properties

is computationally infeasible (Rice’s theorem [31]) or less critical, deliberately

introducing imprecision into the analysis can be advantageous. For instance, in

handling null pointer exceptions, focusing on whether a variable could be Null

rather than precisely pinpointing every null pointer occurrence can still effectively

highlight potential issues while reducing computational overhead. Similarly, for

variables where only the sign matters, such as tracking whether a value is positive,

negative, or zero, an abstract domain representing signs (+,0,−) simplifies analysis

by abstracting away irrelevant details.

For a given concrete domain (C,≤C) representing the possible states of the

system and a set of concrete operations O describing the transitions between these

states. Abstract interpretation aims to construct an abstract domain (A,≤A) and

establish a sound mapping across these domains.

Definition 2 (Abstract Interpretation). Abstract interpretation defines an abstract

domain (A,≤A) and operations O♯ based on a concrete domain (C,≤C) and their

corresponding operations O. The abstraction function α : 2C → A maps concrete

elements to an abstract element, and the concretisation function γ : A → 2C maps

abstract elements back to concrete elements. These functions satisfy the Galois

connection property [30]:

∀a ∈ A,α(γ(a)) = a and ∀C′ ⊆C,C′ ⊆ γ(α(C′))
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2.2.3 Symbolic execution

Symbolic execution is a program analysis technique in which a program is run with

symbolic instead of concrete inputs. The result of this execution is a set of constraints

over these symbolic variables which is called path constraint. SMT solvers are used

to solve these path constraints to determine the feasibility of these paths. One of the

main challenges of symbolic execution is the path explosion problem. For instance,

with binary symbolic branching, the number of states doubles at each decision

point, leading to a potential explosion in the number of feasible paths. To provide a

precise understanding of symbolic execution, we first formally elaborate on SMT

solving, which is required for resolving path constraints, and then formally define

the semantics of symbolic execution

SAT/SMT solving

Boolean satisfiability problem is a problem of determining whether a propositional

formula is satisfiable. Although this problem is NP complete, efficient algorithms

were proposed like CDCL [32] which can handle large complex propositional formu-

las. Satisfiability Modulo Theories (SMT) is a decision problem of logical formulas

with respect to a set of theories expressed in first-order logic. Examples of various

theories include the theory of integers, the theory of arrays, the theory of bitvectors

etc.

As is usual in SMT literature [33], we consider formulas and terms built from

predicate and function symbols (e.g. “+”, “−”, “ > ”) from a given signature Σ. We

denote the set of all such formulas and terms as LΣ. We also consider a background

theory T that fixes the interpretations of the symbols in Σ.

We use the letters α , β , γ and δ to denote variables from LΣ, and the letters

π , φ and ψ to designate formulas from LΣ. Symbolic memory θ is a function from

memory addresses to logical terms from LΣ (for an address a, the corresponding

logical term is θ(a)). We express the equality of two symbolic program states θ1 and

θ2 for all initialised addresses as the formula θ1 = θ2 :=
∧

a∈Initialised θ1(a) = θ2(a).

Definition 3 (Satisfiability). {α1 7→ n1, ...,αk 7→ nk} is an assignment of the variables

in a programming language L (a mapping from the variables to values). We say
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⟨stmt⟩ ::= ⟨lvalue⟩ = ⟨rvalue⟩ | ⟨call⟩ |
if (⟨rvalue⟩) { ⟨stmt⟩ } else { ⟨stmt⟩ } |
while ( ⟨rvalue⟩ ) { ⟨stmt⟩ } |
⟨stmt⟩ ; ⟨stmt⟩
int ⟨var⟩ = ⟨rvalue⟩
return ⟨rvalue⟩

⟨rvalue⟩ ::= ⟨const⟩ | ⟨var⟩ | *⟨var⟩ | &⟨var⟩ |
⟨rvalue⟩ + ⟨rvalue⟩ | other operations...

⟨lvalue⟩ ::= ⟨var⟩ | *⟨var⟩
⟨rvlist⟩ ::= ⟨rvalue⟩ | ⟨rvalue⟩ , ⟨rvlist⟩
⟨call⟩ ::= ⟨fun⟩ (⟨rvlist⟩)
⟨vlist⟩ ::= ⟨var⟩ | ⟨var⟩ , ⟨vlist⟩
⟨decl⟩ ::= int ⟨fun⟩(⟨vlist⟩) { ⟨stmt⟩ }

Figure 2.3: Syntax of programming language L .

that this assignment satisfies a formula π iff a substitution of the variables αi with

the corresponding values ni (denoted as π[α1 7→ n1, ...,αk 7→ nk]) evaluates to True.

Since it is inefficient, in general, to encode problems as SAT formulas, Satis-

fiability Modulo Theories addresses this by deciding the satisfiability of first order

formulas with their given background theories. Each SMT formula can be trans-

formed to an equivalent conjunctive normal form (CNF) using Tseytin algorithm

[34]. Simply converting an SMT formula into CNF is not enough to apply a proposi-

tional satisfiability algorithm like CDCL, because SMT solvers need to evaluate not

only the Boolean structure but also the theory-specific constraints. Specialized algo-

rithms are required to combine Boolean reasoning with theory specific constraints

corresponding to arithmetic, arrays, bitvectors, and other theories [33].

Formally Defining Symbolic Execution

A formal definition of symbolic execution is necessary to clearly explain the state

merging strategy described in Section 3.3.2. For simplicity in formalism, we consider

an imperative programming language L whose syntax is described in Figure 2.3.

Program p ∈L is a set of function declarations, i.e. L := 2decl, with distinct names.



2.2. Program Analysis 34

NUM

⟨n,θ ,σ ,π⟩ ⇓s ⟨θ ,σ ,π,n⟩

OP
⟨e1,θ ,σ ,π⟩ ⇓s ⟨θ1,σ1,π1,φ1⟩ ⟨e2,θ1,σ1,π1⟩ ⇓s ⟨θ ′,σ ′,π ′,φ2⟩ φ = φ1 op φ2

⟨e1 op e2,θ ,σ ,π⟩ ⇓s ⟨θ ′,σ ′,π ′,φ⟩

RVALUE-VAR
((_,γ),_) = pop(σ)

⟨v,θ ,σ ,π⟩ ⇓s ⟨θ ,σ ,π,θ(γ(v))⟩

DEREF-RVALUE-VAR
((_,γ),_) = pop(σ)

⟨∗v,θ ,σ ,π⟩ ⇓s ⟨θ ,σ ,π,γ(v)⟩

ASSIGN
⟨e,θ ,σ ,π⟩ ⇓s ⟨θ ′,σ ′,π ′,φ⟩ ((_,γ),_) = pop(σ)

⟨v = e,θ ,σ ,π⟩ ⇓s ⟨θ ′[γ(v) 7→ φ ],σ ′,π ′⟩

SYMB

⟨α,θ ,σ ,π⟩ ⇓s ⟨θ ,σ ,π,α⟩

IF-TRUE
⟨e,θ ,σ ,π⟩ ⇓s ⟨θ1,σ1,π1,φ⟩ π1 ∧φ is SAT ⟨s1,θ1,σ1,π1 ∧φ⟩ ⇓s ⟨θ ′,σ ′,π ′⟩

⟨if (e) { s1 } else { s2 },θ ,σ ,π⟩ ⇓s ⟨θ ′,σ ′,π ′⟩

IF-FALSE
⟨e,θ ,σ ,π⟩ ⇓s ⟨θ1,σ1,π1,φ⟩ π1 ∧¬φ is SAT ⟨s2,θ1,σ1,π1 ∧¬φ⟩ ⇓s ⟨θ ′,σ ′,π ′⟩

⟨if (e) { s1 } else { s2 },θ ,σ ,π⟩ ⇓s ⟨θ ′,σ ′,π ′⟩

WHILE-TRUE
⟨e,θ ,σ ,π⟩ ⇓s ⟨θ1,σ1,π1,φ⟩ π1 ∧φ is SAT ⟨s1,θ1,σ1,π1 ∧φ⟩ ⇓s ⟨θ2,σ2,π2⟩ ⟨while (e) { s },θ2,σ2,π2⟩ ⇓s ⟨θ ′,σ ′,π ′⟩

⟨while (e) { s },θ ,σ ,π⟩ ⇓s ⟨θ ′,σ ′,π ′⟩

WHILE-FALSE
⟨e,θ ,σ ,π⟩ ⇓s ⟨θ1,σ1,π1,φ⟩ π1 ∧φ is UNSAT

⟨while (e) { s },θ ,σ ,π⟩ ⇓s ⟨θ ,σ ,π⟩

SEQ
⟨s1,θ ,σ ,π⟩ ⇓s ⟨θ1,σ1,π1⟩ ⟨s2,θ1,σ1,π1⟩ ⇓s ⟨θ ′,σ ′,π ′⟩

⟨s1 ; s2,θ ,σ ,π⟩ ⇓s ⟨θ ′,σ ′,π ′⟩

CALL
⟨e1,θ ,σ ,π⟩ ⇓s ⟨θ1,σ1,π1,φ1⟩ ... ⟨en,θn−1,σn−1,πn−1⟩ ⇓s ⟨θn,σn,πn,φn⟩ ({v1, ...,vm},s) = decl( f )

β = newframe() γ = {vi 7→ newloc(β )} σ
′ = push(σn,(β ,γ)) ⟨s,θn,σ

′,πn⟩ ⇓s ⟨θ ′,σ ′′,π ′⟩ ((_,γ ′),)= pop(σ ′′)

⟨ f (e1, ...,en),θ ,σ ,π⟩ ⇓s ⟨θ ′,σn,π
′,θ(γ ′(return))⟩

VAR-DECL
⟨e,θ ,σ ,π⟩ ⇓s ⟨θ ′,σ ′,π ′,φ⟩ ((β ,γ), t) = pop(σ ′) γ

′ = γ[v 7→ newloc(β )] σ
′′ = push(t,(β ,γ ′))

⟨int v = e,θ ,σ ,π⟩ ⇓s ⟨θ ′,σ ′′,π ′⟩

Figure 2.4: Semantics of symbolic execution.

L is a subset of the C programming language with only integer values, without

global variables, and without switch statements, among other simplifications.

Memory is a function µ : N→ Z from addresses to values. Stack frame β is

a bounded subset of N. Environment γ is a mapping from variable names to their

addresses. Program stack σ is a stack of pairs {(βi,γi)}i of stack frame βi and

environment γi, with the usual stack operations pop, pick, and push. Stack frame

allocator is a procedure newframe that, each time it is called, returns a new stack

frame that is disjoint from previously allocated stack frames. Variable allocator

newloc is a procedure that, for a given stack frame, returns a location within this

stack frame that is not allocated to any variable.

Definition 4 (Semantics of L 1). The semantics of a statement s in L is the relation

⟨s,µ,σ⟩ ⇓ ⟨µ ′,σ ′⟩, where µ ′ and σ ′ are the memory and the stack obtained by

executing the statement s in the context of memory µ and stack σ according to the

1We omit, the rather standard, formal definition of the semantics of C-like language with pointers.
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semantics of the C language. Similarly, the semantics of an rvalue expression e

in L is the relation ⟨e,µ,σ⟩ ⇓ ⟨µ ′,σ ′,r⟩, where r is the result of evaluating the

expression.

Programs in L are executed like C programs, under several simplifying as-

sumptions: all values are allocated on stack, stack frames have infinite size and never

de-allocated, and the entry function and its arguments have to be specified explicitly.

Specifically, executing a program in L means evaluating the entry function applied

to its arguments in the context of zeroed memory and an empty stack, as stated in

the definition below:

Definition 5 (Execution). Let p ∈ L be a program, f be a function declared in

p (entry function), A := [a1, ...,an] be an ordered set of integers (entry function

arguments). The function exec is defined as exec(p, f ,A) := (µ,r) such that µ0 :=

λx. 0, σ0 := /0 and ⟨ f (a1, ...,an),µ0,σ0⟩ ⇓ ⟨µ,_,r⟩.

The semantics of symbolic evaluation is defined as evaluation that transforms

symbolic memory and augments current path constraint:

Definition 6 (Semantics of symbolic evaluation). The semantics of symbolic eval-

uation of a statement s in L is the relation ⟨s,θ ,σ ,π⟩ ⇓s ⟨θ ′,σ ′,π ′⟩, where θ ′,

σ ′ and π ′ are the symbolic memory, the stack and the path condition obtained

by executing the statement s in the context of symbolic memory µ , stack σ , and

path condition π according to the semantics of symbolic execution in Figure 2.4.

The semantics of symbolic evaluation of rvalue expressions is defined accordingly

(i.e. ⟨e,θ ,σ ,π⟩ ⇓s ⟨θ ′,σ ′,π ′,ψ⟩, where ψ is the symbolic result of evaluating the

expression e).

Definition 7 (Symbolic execution). Let p ∈ L be a program, f be a function de-

clared in p (entry function), Φ := [φ1, ...,φn] be an ordered set of terms from LΣ

(entry function arguments). The function symexec is defined as symexec(p, f ,Φ) :=

{(πi,θi,ψi)}i (set of triples) such that θ0 := λx. 0, σ0 := /0 and for all i,

⟨ f (φ1, ...,φn),θ0,σ0,True⟩ ⇓s ⟨θi,_,πi,ψi⟩, where θi represents a symbolic mem-
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ory, πi represents a path condition and ψi represents the symbolic result obtained by

evaluating the function f .

2.3 Machine Learning
This section delves into two machine learning approaches used in this thesis: Ran-

dom Forests and Transformers. Specifically, Section 2.3.1 explains random forests.

Section 2.3.2 introduces language models which are used for predicting the most

likely token to be the next. Finally, Section 2.3.3 delves into transformers, explaining

their architecture.

2.3.1 Random Forests

Random forests are a machine learning method primarily used for classification

and regression tasks. They operate by constructing a multitude of decision trees

at training time and outputting the mode of the classes (classification) or mean

prediction (regression) of the individual trees. Given that random forests comprise

a multitude of decision trees, this subsection first delves into the decision trees in

Section 2.3.1, explaining their construction and usage. Subsequently, the discussion

progresses to random forests themselves in Section 2.3.1.

Decision Trees

A decision tree [35] is a flowchart-like structure where an internal node represents

a feature (or attribute), the branch represents a decision rule, and each leaf node

represents the outcome. The paths from the root to the leaf represent classification

rules.

Mathematically, a decision tree is built by recursively splitting the data set D

into subsets D1,D2, . . . ,Dk with the goal of increasing homogeneity within these

subsets. This means that we want each subset to be as pure as possible with respect

to the target variable, either a class label in classification tasks or a continuous value

in regression tasks.

Classification trees involve selecting splits that make the resulting child nodes

contain instances that predominantly belong to a single class. The homogeneity is

measured using criteria like Gini impurity or entropy [36]:
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• Gini impurity quantifies the likelihood of an incorrect classification of a ran-

domly chosen element if it was randomly labeled according to the distribution

of labels in the node. A lower Gini impurity indicates a purer node.

• Entropy, derived from information theory, measures the amount of disorder

or unpredictability in the node. Lower entropy indicates a higher level of

certainty or purity within the node.

For each possible split, we calculate the impurity (using Gini or entropy) of the

resulting child nodes and choose the split that results in the greatest reduction in

impurity, thereby creating more homogeneous subsets.

Figure 2.5 illustrates a decision tree constructed on 150 samples of iris flowers2

. In this example, the decision tree is tasked with classifying the iris flower species

based on features such as sepal length, sepal width, petal length, and petal width.

Decision trees partition the dataset by selecting features and thresholds that minimise

the Gini impurity, a measure of class impurity or disorder, at each split. This process

iteratively divides the samples into increasingly homogeneous subsets, ultimately

leading to leaf nodes containing samples predominantly belonging to a single class.

For regression trees, the goal is to create subsets where the target values are as

close to each other as possible. This is typically measured by the variance within the

nodes:

• Variance measures how much the target values within a node deviate from the

mean target value of that node. Lower variance means that the target values

are closer to each other, indicating a more homogeneous node.

The best split is the one that minimises the variance in the child nodes, leading to

groups of instances that have similar target values.

The decision tree algorithm aims to partition the data into subsets where the

target variable (the variable we want to predict) is as uniform as possible within each

subset. This process involves recursively selecting features with their corresponding

2This decision tree was constructed on the iris dataset [37], a widely used dataset in machine
learning for illustrating various techniques. The iris dataset contains measurements of iris flowers,
including sepal and petal dimensions, along with their corresponding species labels.
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Figure 2.5: A decision tree depicting the classification of iris flower species. Decision
trees partition the dataset by selecting features and thresholds that minimise
the Gini impurity, a measure of class impurity or disorder, at each split. This
process iteratively divides the samples into increasingly homogeneous subsets,
ultimately leading to leaf nodes containing samples predominantly belonging to
a single class.

thresholds that minimise the impurity or disorder of the target variable at each

split. The goal is to create increasingly homogeneous subsets where the majority

of samples belong to the same class or category. This recursive splitting continues

until a stopping criterion is met, such as reaching a maximum tree depth or having a

minimum number of samples per leaf node.

Random Forests

Random forests improve the accuracy and robustness of a single decision tree

by combining multiple trees. Each tree in the forest is built by sampling with

replacement from the training data. This technique of sampling with replacement

on training data is called bootstrap sampling. Additionally, when splitting a node, a

random subset of features is considered, which introduces diversity among the trees.
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Let {T1,T2, . . . ,TB} be the B decision trees in the forest, each trained on a

bootstrap sample of the data D. For classification, the forest predicts the class label ŷ

by majority voting:

ŷ = arg max
c∈{1,...,C}

B

∑
b=1

I(Tb(x) = c)

where I(·) is the indicator function that is 1 if the argument is true and 0

otherwise, and Tb(x) is the class prediction of the b-th tree for input x.

For regression, the prediction ŷ is given by averaging the predictions of the

individual trees:

ŷ =
1
B

B

∑
b=1

Tb(x)

2.3.2 Language Models

Definition 8 (Language Model). A language model is a probabilistic model that

assigns a probability P(w1,w2, . . . ,wn) to a sequence of words (w1,w2, . . . ,wn) in a

language. Formally, a language model estimates the likelihood of a word sequence

by factorizing it using the chain rule of probability:

P(w1,w2, . . . ,wn) =
n

∏
i=1

P(wi | w1,w2, . . . ,wi−1)

where P(wi | w1,w2, . . . ,wi−1) is the conditional probability of the word wi

given the preceding words (w1,w2, . . . ,wi−1).

In practice, language models often employ approximations, such as the Markov

assumption, simplifying the model by considering only the previous state [38].

Specifically, bigram models, a type of n-gram language model where n = 2, consider

only the previous word. More generally, n-gram language models consider the

probability of the current word wi given the previous n−1 words:

P(wi | w1,w2, . . . ,wi−1)≈ P(wi | wi−n+1, . . . ,wi−1).

Earlier language models, such as n-grams, relied on statistical estimation techniques
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such as Maximum Likelihood Estimation (MLE) to estimate these probabilities [38].

However, as machine learning techniques advanced, language models evolved to

encompass more sophisticated approaches, such as leveraging neural networks (e.g.

RNN, LSTM, Transformers).

Although language models were initially developed for natural languages, they

have also been applied to formal languages, such as programming languages [14, 39],

as well as to symbolic domains like mathematical theorem proving, where structured

patterns and rules govern the reasoning process [40, 41].

In the context of machine learning, parameters refer to the variables that the

model learns from data during the training process. These parameters are adjusted

to minimise the difference between the model’s predictions and the actual data.

Language models with a large number of parameters (e.g. 300 Million) are known

as large language models (LLMs). LLMs excel at capturing intricate patterns and

nuances in language due to their extensive parameterisation, which is typically

achieved through the use of large neural networks. They are fundamental to many

natural language processing tasks, including speech recognition, machine translation,

and text and code generation.

2.3.3 Transformers

Transformers are a type of neural network architecture introduced in the paper

"Attention is All You Need" [1]. Transformers have revolutionised the field of

natural language processing (NLP) by providing the foundation for many state-of-

the-art models, including BERT and GPT. Transformers are particularly effective in

building language models as they can handle long-range bi-directional dependencies

between the tokens and can be parallely trained. Large language models (LLMs) are

typically constructed using the transformer architecture, enabling them to achieve

remarkable performance across various NLP tasks, such as text and code generation,

speech recognition, and machine translation.
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Architecture Overview

Transformers are designed to handle sequential data, but unlike traditional recurrent

neural networks (RNNs) [42] and long short-term memory networks (LSTMs) [43],

they do not process the data in order. Instead, transformers rely entirely on a

mechanism called self-attention to draw global dependencies between inputs. The

architecture of transformers, proposed by Vaswani et al [1], comprises multiple

layers, with each layer incorporating either attention or a feedforward layer. This

design, as depicted in Figure 2.6, enables the model to capture intricate relationships

between different parts of the input sequence while also allowing for non-linear

transformations through the feedforward neural networks.

Figure 2.6: This figure taken from Vaswani et al [1] illustrates the architecture of transform-
ers.
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Self-Attention Mechanism

The self-attention mechanism allows each position in the input sequence to attend to

all other positions, computing a weighted sum of these positions. The weights are

determined by a similarity function between the positions.

For an input sequence of length n, each element is usually represented by

a vector, known as an embedding. While embeddings are typically dense vec-

tors—meaning most positions contain non-zero values—they can also be sparse,

depending on how they are constructed. Dense embeddings are often preferred

because they capture richer semantic relationships by placing similar elements closer

together in the continuous vector space. This allows the encoding of various linguis-

tic or contextual features of the token, such as syntactic or semantic meaning, which

is more challenging to achieve with sparse or one-hot encodings. These embeddings

are denoted as x1,x2, . . . ,xn. The self-attention process involves three steps:

• Query, Key, and Value Vectors: Each input embedding xi is projected into

three vectors: a query qi, a key ki, and a value vi. These vectors are computed

using learned weight matrices W Q, W K , and WV :

qi =W Qxi, ki =W Kxi, vi =WV xi

– Query vector qi Represents the current position’s vector used to query

the other positions.

– Key vector ki: Represents the vector against which the query is compared

to compute attention scores.

– Value vector vi: Represents the information to be aggregated based on

the attention scores.

• Attention Scores: The attention score for each pair of positions (i, j) is

computed as the dot product of the query from position i and the key from

position j and scaled by the square root of the dimension of the key vector,

denoted as dk:
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Attention(qi,k j) =
qi · k j√

dk

qi · k j represents the dot product between the query vector qi and the key

vector k j. This dot product measures the alignment of the query and the key.

The higher the dot product, the more relevant the key is to the query. The

scaling by dk is used to mitigate the effect of large dot products due to high

dimensionality.

• Attention Weights and Output: Once the attention scores are computed, they

are passed through a softmax function to obtain the attention weights. These

attention weights represent the importance or relevance of each position in

the input sequence with respect to the current position. The softmax function

ensures that the attention weights sum up to 1, allowing for a proper weighting

of the value vectors during the aggregation step. The attention weights are

then used in computing a weighted sum of the value vectors, resulting in the

output of the attention mechanism:

Attention(Q,K,V ) = softmax
(

QKT
√

dk

)
V

Here, Q, K, and V are matrices containing the query, key, and value vectors

for all positions in the sequence. To prevent information from future positions

influencing the current position (maintaining the auto-regressive property), the

dot products corresponding to the future to past information flow (i.e. right to

left) are set to −∞ before applying the softmax function. This masking ensures

that the attention mechanism respects the temporal order of the sequence

during training and inference.

Multi-Head Attention

Instead of using a single attention function, transformers employ multi-head attention.

This means that the model utilises multiple sets of query, key, and value vectors. If a

transformer model with eight attention heads, each head can independently focus on
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different aspects of the input data, such as identifying relationships between words

or capturing syntactic structures.

Multiple attention heads are handled through concatenation as follows:

MultiHead(Q,K,V ) = Concat(head1,head2, . . . ,headh)W O

where each headi = Attention(QW Q
i ,KW K

i ,VWV
i ) and W O is a learned projec-

tion matrix. The projection matrices used in the attention mechanism are:

• W Q
i : Query projection matrix for head i, used to transform the input into the

query vector space.

• W K
i : Key projection matrix for head i, used to transform the input into the key

vector space.

• WV
i : Value projection matrix for head i, used to transform the input into the

value vector space.

Positional Encoding

Since transformers do not inherently capture the sequential order of the input data,

positional encodings are added to the input embeddings to provide information about

the position of each token in the sequence. These encodings can either be learned or

predefined.

Feed-Forward Networks and Layer Normalization

Each layer in the transformer encoder includes a fully connected feed-forward

network (FFN) applied to each position separately and identically. This is followed

by layer normalization and residual connections to stabilize and improve training:

FFN(x) = max(0,xW1 +b1)W2 +b2

where W1, W2, b1, and b2 are learned parameters.



Chapter 3

Trident: Controlling Side Effects in

Automated Program Repair

3.1 Introduction

Most existing software is written in imperative programming languages. Statements

in imperative languages can have side effects: observable effects beyond returning

a value to the invoker of the operation. Common side effects include changing the

value of a variable, writing data to disk, or enabling or disabling a button in the user

interface.

Despite the importance of modifications with side effects for real-world pro-

grams, state-of-the-art program repair tools have a limited ability to handle side

effects, which restricts their applicability. Test-driven program repair approaches

that rely on program synthesis, both symbolic [15] and enumerative [9], currently

only synthesise side-effect-free expressions, or scale only to small programs [44].

Current heuristic repair approaches generate patches with side effects only if suit-

able code fragments exist in the buggy program [45] or in a pre-defined database

of patterns [24], which may not contain the needed code. Machine learning ap-

proaches [46] can potentially generate patches with side effects, but their success

depends on the size and the quality of training data. Finally, existing approaches for

controlling test-overfitting [26, 29] do not take side effects into account. This lacuna

is important, because our experiments demonstrate that patches with side effects are
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more prone to test-overfitting.

This chapter introduces TRIDENT, the first test-driven program repair approach

that synthesizes patches with side effects without relying on the plastic surgery

hypothesis, a database of patterns, or training data. TRIDENT effectively addresses

the limitations of previous constraint-based program repair techniques [4, 15], and

complements heuristic techniques [45, 23], since it does not rely on the plastic

surgery hypothesis [47] or a repair pattern database.

TRIDENT takes a buggy program and its test suite, then follows the general

workflow of semantic program repair [8]: it localises faulty statements, infers a

specification for patching these statements using symbolic execution, and then

constructs a patch via program synthesis. Assignment statements and function

calls are two basic classes of statements that involve side effects. Compared to

previous semantic techniques, TRIDENT supports two new defects classes: the

insertion/modification of assignment statements and function calls. To repair a

software defect, an automated program repair tool must (1) contain a correct patch in

its search space, (2) find this patch within a time budget, and (3) reduce the chance

of generating an incorrect, test-overfitting patch. TRIDENT tackles these challenges

by enhancing specification inference and patch synthesis for assignment statements

and function calls.

In order to include patches with side effects in its search space, TRIDENT

extends existing component-based program synthesis approaches [48, 49] by intro-

ducing the concept of lvalue components, which can appear in the left-hand-sides of

assignments, and rvalue components, which can appear in the right-hand-sides of

assignments. Then, the basic building block of TRIDENT’s patch synthesiser is a k-

holed assignment that represents a simultaneous assignment of k rvalue components

to k lvalue components (Section 3.3.2). This formalism captures the semantics of

both assignment statements and function calls with side effects. Functions without

loops can be precisely summarised as simultaneous assignments [50]. For functions

with loops, TRIDENT computes summaries using loop unrolling.

The inclusion of patches with side effects in the search space causes a scalability
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problem during the symbolic execution that infers the specification of the holes

because it exacerbates the path explosion problem. Side effects introduce additional

state changes that must be tracked during concolic execution. Each side effect can

alter the program’s state, resulting in new execution paths and contributing to path

explosion. For example, if the task is to model a missing statement that updates

an unknown variable with an unknown value at a particular location, performing

symbolic execution from this point, with a symbolic assignment of an unknown

variable at an unknown location in the memory to an unknown value, generates new

program states for each potential variable/memory location that could have been

modified, leading to a rapid increase in execution paths. To alleviate this problem,

TRIDENT leverages a novel merging strategy that rests on two insights. First, distinct

variables can be updated and still generate states that traverse the same path to

program exit. Second, even when many variables can be assigned, any concrete

patch will affect only a few of them. When two paths write the same thing (the same

rvalue) to two different variables (two different lvalues), TRIDENT exploits the first

insight to efficiently merge both writes into a single state. To ensure consistency of

this merging, TRIDENT appends an appropriate path constraint to the path condition

(Section 3.3.2). It exploits the second insight to restrict the number of variables that

a patch can update.

Although many bugs in imperative programs require side-effected patches

to fix, some side effects can increase overfitting as our experiments demonstrate

(Section 3.5). To address this issue, TRIDENT applies a simple patch prioritisation

heuristic to minimise overfitting. We find that preferring a patch with the fewest side

effects lowers overfitting.

To evaluate TRIDENT, we used three benchmarks: 10 bugs extracted from free

GNU projects for evaluating TRIDENT’s scalability on bugs that require patches with

side effects, 36 bugs sampled from ManyBugs [51] for evaluating TRIDENT’s scala-

bility on generic defects and 110 defects extracted from Codeflaws benchmark [52]

for evaluating propensity of TRIDENT’s patches to overfit. The 10 bugs were the

first 10 sampled uniformly whose fixes required side effects and the 110 were cut
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down from the complete Codeflaws dataset, again to those needing side effects

(Section 3.5). The evaluation demonstrates that TRIDENT generates patches involv-

ing assignments and function calls for 6 out of the 10 realistic bugs. Furthermore,

TRIDENT’s patch prioritisation increases the rate of correct patches from 33.3% to

58.3% when applied to the 110 defects from Codeflaws. These results demonstrate

the practicality and utility of TRIDENT.

The key contribution of this work is TRIDENT, the first scalable test-driven

patch synthesis approach that addresses the memory updates/call function defect

class without relying on the plastic surgery hypothesis, a database of patterns, or

training data; it is enabled by a tight integration of two technical insights:

• An extension of component-based program synthesis that introduces lvalue

and rvalue components to capture assignments and function calls;

• Multi-path specification inference, a state merging technique tailored to the

synthesis of side effected patches that mitigates path explosion.

All code, scripts, and data necessary to reproduce this work are available at

https://github.com/norhh/Trident-TSE.

3.2 Overview
For a given buggy program, test-driven program repair (TPR) techniques search for

a plausible patch — a patch that passes a test-suite — in a search space of candidate

patches. Since a test-suite is an incomplete specification, program repair systems

utilize patch prioritization strategies to increase the probability of finding a correct

patch. Thus, to repair a bug, a TPR system has to (1) contain the correct patch in its

search space, (2) be efficient enough to find a plausible patch given a time budget,

and (3) prioritize a correct patch over plausible, but incorrect, patches.

TRIDENT is the first TPR technique to synthesise side-effected patches. This

fundamental advance exacerbates all three of TPR’s seminal problems. Section 3.2.1

presents the resulting challenges; the rest of the section overviews how TRIDENT

overcomes them. TRIDENT’s novel primitive is its notion of k-holed assignment

https://github.com/norhh/Trident-TSE
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int clamp(int x, int l,
int h) {
int r;
// missing

assignment r =
x;

if (x < l)
r = l;

if (r == x && x > h)
r = h;

return r;
}

(a) A function missing an as-
signment.

int clamp(int x, int l,
int h) {
int r;

L
1 , ...,

L
k = R

1 , ...,
R
k ;

if (x < l)
r = l;

if (r == x && x > h)
r = h;

return r;
}

(b) A buggy function with
holes, placed before suspi-
cious statements.

int clamp(int x, int l,
int h) {
int r;
switch(PATCH_ID) {

case 0: x =
R; break;

case 1: l =
R; break;

case 2: h =
R; break;

case 3: r =
R; break; }

if (x < l)
r = l;

if (r == x && x > h)
r = h;

return r;
}

(c) Eliminating lvalue-holes
using a switch statement
(for k = 1).

Figure 3.1: Synthesising a patch that inserts an assignment statement.

(Section 3.2.2), which can capture function calls (Section 3.2.3). Section 3.2.4 details

TRIDENT’s strategy for resisting overfitting.

3.2.1 The Challenges of Synthesis with Side Effects

The two key challenges of adding the insertion/modification of assignment statements

into the TPR search space are (1) efficiency, i.e. how to efficiently search the

extended space for plausible patches, and (2) test-overfitting, i.e. how to ensure that

the generated patches are correct.

Consider the function clamp in Figure 3.1a; it restricts a number between two

other numbers. It has a bug: it does not assign r to x before its checks. Suppose

clamp fails the test clamp(2,1,4)→ 2, where the “ → 2” denotes the expected

output.

The first way to automatically repair this bug is generate-and-validate program

repair: enumerate and test all possible insertions of assignments of the form v = e,

where v ∈ {x, l, h, r}, the program variables in scope, and e is an expression over

these variables. The main shortcoming of this method is that it requires a large

number of test executions, and therefore does not scale to the large search spaces

needed to repair realistic bugs. The second way to automatically repair this bug is
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int buggy(int x, int y)
{
// missing call

inc_if_zero(&x,&y)
if (x > 0 && y > 0)

return 1;
else

return 0;
}

(a) A function missing a func-
tion call.

void inc_if_zero(int &x,
int &y) {

if (x == 0)
x++;

if (y == 0)
y++;

}

(b) The definition of
inc_if_zero.

int buggy(int x, int y)
{
// Hole precedes

suspicious code
L
1,

L
2 = R

1,
R
2;

if (x > 0 && y > 0)
return 1;

else
return 0;

}

(c) Assignment synthesis in
TRIDENT.

Figure 3.2: Synthesizing a patch that inserts a function call.

synthesis-based program repair. Existing techniques, such as Angelix [4], do not

synthesize assignments, because they are limited to side-effect-free expressions.

Since a test suite is an incomplete specification, TPR techniques are prone to

test-overfitting, generating patches that pass the tests, but are incorrect. Extending

the search space with side-effected patches poses additional challenges: (1) larger

search spaces are more prone to test-overfitting [53], and (2) intuitively, changes

with side effects are more likely to break functionality that is not covered by tests.

A common approach to alleviate test-overfitting is to define a cost function on the

search space, and search for a patch that passes the tests and minimises the cost. To

the best of our knowledge, no cost function that takes side effects into account has

been proposed.

3.2.2 Synthesising Assignments

To address the efficiency challenges that side-effected patches pose, we first introduce

a new reification of a memory update that we call k-holed assignment. Then, we

use this representation to define an efficient update-aware specification inference

approach called multi-path specification inference.

A lvalue-hole, or L, refers to a set of writable memory locations. The two-holed

assignment L = R combines an lvalue-hole and an rvalue-hole. Synthesising such

assignment effectively means filling L with an lvalue (e.g. a variable), and R with

an rvalue (e.g. an arithmetic expression). A k-holed assignment L
1 , ...,

L
k =

R
1 , ...,

R
k

generalises two-holed assignment to the simultaneous assignment of up to k lvalue
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holes (Definition 13).

Following SemFix [8], TRIDENT inserts holes before suspicious locations

(Figure 3.1b and Figure 3.2c), infers a logical specification for the holes, and then

leverages the inferred specification to synthesise expressions to fill the holes. SemFix

specification inference uses symbolic execution equipped to handle programs with

rvalue-holes. Thus, a key prerequisite for supporting synthesis with side effects is

extending specification inference to programs with k-holed assignments, as shown in

Figure 3.1b.

A naïve approach to extend specification inference to k-holed assignments is to

transform these assignments into switch statements as shown in Figure 3.1c for k = 1.

Specifically, we can enumerate all possible variables that can appear on the left-hand

side of an assignment as cases in a switch statement, and, for each case, insert

an rvalue-hole for the right-hand expression. This transformation allows reusing

SemFix’ specification inference to synthesize an assignment statement. However,

this approach is inefficient because adding a switch statement significantly increases

the number of paths that symbolic execution must explore. Current general-purpose

state-merging strategies do not efficiently handle the resulting path explosion because

they require fixed state topology and do not have a mechanism for bounding the

search of lvalues. Section 7.1 elaborates on these limitations.

To alleviate path explosion of this naïve approach, we propose a more efficient

semantics for inferences the specification of a k-holed assignment that we call

multi-path specification inference. Multi-path specification inference rests on the

insight that assignments to different variables along a path can leave that path’s

decisions unchanged. For example, inserting x = l-1; or l = x+1; at entry

in Figure 3.1a both result in executing the true branch of first if-statement and the

false branch of the second if-statement. Therefore, it is possible to merge the states

induced by assignments to different variables, significantly reducing the number

of paths to explore, thereby increasing the chance of finding a patch within a time

budget. After merging states that correspond to assignments of different variables,

the resulting path constraint effectively captures an equivalence class of assignments
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that drive test execution along this path.

To merge states corresponding to assignments of different variables, multi-path

specification inference uses two groups of constraints: (1) those representing an

assignment of a symbolic value to each writable memory location, controlled by a

dedicated Boolean selector variable, and (2) cardinality constraints over the selector

variables that restrict the number of memory locations that a patch satisfying the

specification assigns along a given path.

Consider the k-holed assignment statement L
1 , . . . ,

L
k =

R
1 , . . . ,

R
k at the missing

assignment in Figure 3.1b. Multi-path specification inference, when executing this

statement, constructs the following path constraint:

φ
def
= (sx → x′ = αx ∧¬sx → x′ = x)

∧ (sl → l′ = αl ∧¬sl → l′ = l)

∧ (sh → h′ = αh ∧¬sh → h′ = h)

∧ (sr → r′ = αr ∧¬sr → r′ = r)

∧ AtMost(k,sx,sl,sh,sr)

where, for β ∈ {x, l,h,r}, αβ is the symbolic variable representing values of the

rvalue-hole R, sβ is a Boolean selector variable that enables/disables assignments

to different memory locations, β ′ is the value of the program variable β after the

statement, and AtMost(k,–) is a cardinality constraint that encodes that at most k of

its program variable arguments can be True. Here, AtMost(k,–) means that at most

k of the variables x, l, h and r can be modified as a result of executing the k-holed

assignment.

TRIDENT’s encoding merges the semantics of a subspace of assignments into

the same state. Then, the values of the selector variables determine the subset of

variables the synthesised statement updates. This significantly reduces the number

of explored paths during symbolic execution. For example, consider a path that

takes the false branches of the both if-statements that corresponds to the constraint

ψ
def
= (x′ ≥ l′)∧ (r′ ̸= x′∨x′ ≤ h′). When TRIDENT explores this path in the program
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with k-holed assignments (Figure 3.1b), the path has the path condition φ ∧ψ .

Lacking k-holed assignment, traditional symbolic execution would, to achieve an

equivalent result, have to explore four paths in the program with switch statement

(Figure 3.1c), yielding the path conditions x′ = αx ∧ψ , l′ = αl ∧ψ , h′ = αh ∧ψ and

r′ = αr ∧ψ . In this case, TRIDENT reduces the number of explored paths, for k = 1,

from 4 to 1.

After exploring the path φ ∧ψ , TRIDENT can synthesize the patch r = x,

since this patch is consistent with φ ∧ψ if sr is true, and produces the desired output

r′ = 2. To synthesize it, TRIDENT uses the variables {x, l, h, r} as both lvalue and

rvalue components. TRIDENT automatically extracts the variables and data fields

defined or used in the current function as components, as Section 3.3.3 details.

The cardinality constraint AtMost(k,–) is essential for assignment synthesis.

First, it allows synthesising statements that modify more than one memory location.

Second, it reduces the search space by avoiding paths that are only feasible when

more than k variables are modified. For example, consider clamp in Figure 3.1b

and the test clamp(2,1,4) → 2, which clamp fails returning 0, not 2. Using

AtMost(1,–) to restrict the search space to assignments that modify at most one

variable makes the path that follows the false branch of the first if-statement and the

true branch of the second if-statement infeasible. This is because changing evaluation

of the second if-statements requires changing the binding of two variables, which

AtMost(1,–) forbids because it makes the following constraint unsatisfiable:

(sx → x′ = αx ∧¬sx → x′ = 2)

∧ (sl → l′ = αl ∧¬sl → l′ = 1)

∧ (sh → h′ = αh ∧¬sh → h′ = 4)

∧ (sr → r′ = αr ∧¬sr → r′ = 0)

∧ AtMost(1,sx,sl,sh,sr)

∧ (x′ ≥ l′)

∧ (r′ = x′∧ x′ > h′)
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We assume that k is relatively small, because large k implies that complex mod-

ifications are required and such programs have serious problems such as wrong

algorithms or lacking functionality. TRIDENT is designed for program features

that are almost correct with the exception of a small fragment of code. Currently,

TRIDENT starts from k = 1. If it cannot synthesise a patch, it increments k and

repeats, until it reaches a configurable bound on k.

3.2.3 Synthesising Function Calls

The abstraction provided by k-holed assignments is powerful enough to express

more complex, side-effected modifications such as function calls. This is because

loop-free functions are equivalent to simultaneous assignment, and program with

loops can be summarised as simultaneous assignments using loop unrolling [50].

Consider the buggy program in Figure 3.2a with a missing call to the function

inc_if_zero shown in Figure 3.2b. Assume buggy fails the test buggy(0,0)→

1.

TRIDENT computes function summaries for all functions that can be called at

the target location. Currently, user must provide a library of functions, and TRIDENT

computes the summaries via symbolic execution with loop unrolling. For example,

TRIDENT computes the following summary for inc_if_zero:

(x=0 → x′=x+1∧ x ̸=0 → x′=x)

(y=0 → y′=y+1∧ y ̸=0 → y′=y)

where x and y denote the values bound to the variables x and y before executing

inc_if_zero, and x′ and y′ represent their values after executing it.

Given function summaries, TRIDENT executes buggy to infer its patch syn-

thesis specification, as explained in Section 3.2.2. Here, we assume that TRIDENT

infers this specification with AtMost(k = 2,−), which corresponds to inferring a

specification for lvalue-holes in the form of simultaneous assignment to at most 2

variables, as in Figure 3.2c. Specifically, TRIDENT infers this specification from the
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int f(int x, int y, bool ok)
{

int r;
r = x + 1;
if (x < y)

r = y + 1;
if(ok > 0) return r;
else return x+r;

}

(a) Low cost patch.

int f(int x, int y, bool ok)
{

int r;
r = x + 1;
if (x < y)

r = ++ok;
if(ok > 0) return r;
else return x+r;

}

(b) High cost patch.

Figure 3.3: Patches with different cost.

test-passing path:

(sx → x′ = αx ∧¬sx → x′ = 0)

∧ (sy → y′ = αy ∧¬sy → y′ = 0)

∧ AtMost(2,sx,sy)

∧ (x′ > 0∧ y′ > 0)

After inferring this patch synthesis specification, TRIDENT combines it with

with inc_if_zero’s summary, if the two are consistent, to synthesise a call to

inc_if_zero(&x,&y), which replaces the pair of assignments in Figure 3.2c.

3.2.4 Resisting Overfitting

As demonstrated in Section 3.5.3, the inclusion of patches with side effects

into the program repair search space increases the probability of generating test-

overfitting patches. To alleviate this problem, we propose a patch prioritization

strategy that assigns lower cost to patches that have fewer side effects.

Consider the code fragments in Figure 3.3a and Figure 3.3b. The function

f (x,y,ok) is expected to return max(x,y)+ 1 if (ok > 0), otherwise should return

max(x,y)+ x+1. Assume that TRIDENT generated patches that inserted the high-

lighted assignments to pass the test f(−3,1,1)→ 2. Although both programs pass

the test, the patch in Figure 3.3b is incorrect, as it breaks the functionality for inputs

satisfying (y > x)∧ (ok = 0).

To reduce the chance of generating such overfitted patches, we propose a
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heuristic to minimise the number of side effects in a patch. This heuristic is based

on the intuition that updating fewer variables decreases the chance of breaking the

functionality that is not covered by the tests. Specifically, the patch in Figure 3.3a is

assigned cost 1, since it only changes r. The patch in Figure 3.3b is assigned cost

2, since it changes r and ok. Therefore, TRIDENT prefers the patch in Figure 3.3a

due to its lower cost. Although this method does not guarantee that the chosen patch

is correct, our evaluation in Section 3.5.3 shows that it does, in practice, alleviate

test-overfitting associated with side effects.

3.3 TRIDENT

TRIDENT relies on symbolic execution as defined in Definition 7. TRIDENT uses

tests as correctness criteria, where a test is a pair ([a1, ...,an],φ), where a1, ...,an is

a sequence of integer inputs, and φ is a predicate on the return value (or symbolic

term).

Section 3.3.1 defines the definitions required for the chapter. The next three

sections are devoted to the core contributions of TRIDENT. Section 3.3.2 describes

the state-merging strategy for alleviating path explosion when inferring specification

for patch synthesis. Section 3.3.3 defines a component based synthesis approach

that explicitly reasons about side effects. Finally, Section 3.3.4 introduces a patch

prioritization strategy for alleviating test-overfitting due to side effects.

3.3.1 Definitions

Our approach is designed for imperative languages that use assignment statements to

update program state. This chapter builds on top of the definitions discussed in 2.2.3.

To precisely define the semantics of assignment statements, this section employs the

notion of value category as in CPL [54]:

Definition 9 (Value categories1). An expression in a program is an rvalue when it is

evaluated in “right-hand mode”, i.e. appears in a condition or on the right-hand

side of an assignment. An expression is an lvalue when it is evaluated in “left-hand

1Value categories are defined as in CPL, an ancestor of C and C++, as opposed to the more
complex categories in C and C++, to simplify the description of the approach.
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mode”, i.e. appears on the left-hand side of an assignment.

This chapter assumes that all expressions can be evaluated in "right-hand mode", but

only certain expressions can be evaluated in "left-hand mode". For example, x can

be both an lvalue and an rvalue, but x+1 can only be an rvalue.

A patch is a pair of programs (p, p′). The difference between p and p′ —

diff (p, p′) — is the minimal (in terms of the number of AST nodes) substitution

{ sp
1 7→ sp′

1 , ...,sp
n 7→ sp′

n } of statements/expressions in p to statements/expressions

in p′ such that p′ is obtained by simultaneously applying this substitution to p (we

assume that sp
i and sp′

i are all unique statements at different program locations). We

call a pair (sp
i ,s

p′
i ) in this mapping an atomic substitution. An atomic substitution

has a side effect iff there exists a memory, stack pair that defines a context in which

the execution of p and p′ results in a different value for at least one memory location.

Definition 10 (Atomic Substitution with Side Effect). An atomic substitution (sp
i ,s

p′
i )

has a side effect iff there exists an address a ∈ N, a memory µ , and a stack σ such

that ⟨sp
i ,µ,σ⟩ ⇓ ⟨µ1,_,_⟩, ⟨sp′

i ,µ,σ⟩ ⇓ ⟨µ2,_,_⟩ and µ1(a) ̸= µ2(a).

This definition considers side effects syntactically w.r.t. the minimal difference

between a program and a patched version under a given diff algorithm.

Definition 11 (Patch with Side Effect). A patch has a side effect iff an atomic

substitution of its difference has a side effect.

For example, consider a patch

(int f (y) { x = y−1}, int f (y) { x = y+1}).

The difference of this patch is the minimal substitution {y − 1 7→ y + 1}. The

expressions y−1 and y+1 do not write to memory, so their evaluation results in the

same memory values for any initial memory and stack. Therefore, this patch has no

side effects.

Assume that {α1 7→ n1, ...,αk 7→ nk} is an assignment of the variables from

L (defined in Figure 2.3 We say that this assignment satisfies a formula π iff
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KHOLE-ASSIGN
((_,γ),_) = pop(σ) n = |Dom(γ)| s1, ...,sn = fresh bool symb. variables α1, ...,αn = fresh int symb. variables

θ
′ = θ [γ(vi) 7→ αi]vi∈Dom(γ) π

′ = π ∧ (
∧

vi∈Dom(γ)

¬si → αi = θ(γ(vi)))∧AtMost(k,{s1, ...,sn})

⟨ L
1 , ...,

L
k = R

1 , ...,
R
k ,θ ,σ ,π⟩ ⇓m ⟨θ ′,σ ,π ′⟩

Figure 3.4: Semantics of multi-path specification inference.

a substitution of the variables αi with the corresponding values ni (denoted as

π[α1 7→ n1, ...,αk 7→ nk]) evaluates to True. We also introduce a concretization of

symbolic states defined as follows:

Definition 12 (Concretization). Let θ be a symbolic state, {α1 7→ n1, ...,αk 7→ nk}

be an assignment of the variables from LΣ. A concretization θ [α1 7→ n1, ...,αk 7→ nk]

of θ with the assignment {α1 7→ n1, ...,αk 7→ nk} is defined as follows:

θ [α1 7→ n1, ...,αk 7→ nk] := λa. θ(a)[α1 7→ n1, ...,αk 7→ nk]

that is as a concrete program state (a mapping of memory addresses into values

expressed using lambda notation) computed by substituting all the variables αi in

the logical terms in the codomain of θ with the corresponding values ni.

3.3.2 TRIDENT’s Multi-Path Specification Inference

A key part of TRIDENT repair algorithm is inferring specification for patch synthesis.

This specification is a logical formula that summarises how changes at the given

location can affect the output of the program. The main difference between TRIDENT

and previous semantic algorithms, such as Angelix, is that TRIDENT’s specification

encodes the effect of assigning multiple memory locations. A naïve way to implement

specification inference shown in Figure 3.1c causes path explosion and therefore

reduces the scalability of program repair as demonstrated in Section 3.5. Thus, this

chapter proposes a multi-path specification inference approach that uses a specialised

state merging strategy to reduce the number of explored paths.

In order to formalise multi-path specification inference, we extend language L

with a k-holed assignment statement defined below:
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Definition 13 (k-holed assignment). Let k, l be integers such that l ≤ k, L
1 , ...,

L
k be

lvalue-holes, R
1 , ...,

R
k be rvalue-holes, x1, ...,xl be a sequence of lvalue expressions,

e1, ...,el be a sequence of rvalue expressions. The semantics of k-holed assignment
L
1 , ...,

L
k = R

1 , ...,
R
k w.r.t. the substitution x1, ...,xl , e1, ...,el is defined as

t1 = x1

...

tl = xl

x1 = e1[x1 7→ t1, ...,xl 7→ tl]

...

xl = el[x1 7→ t1, ...,xl 7→ tl]

where t1, ..., tl are fresh variables, and ei[x1 7→ t1, ...,xl 7→ tl] is the expression ob-

tained by replacing x1, ...,xl with t1, ..., tl correspondingly.

The fresh variables t1, ..., tl in the definition prevent the preceding assignments from

affecting the result of the following ones. We refer to this extended language with

k-holed assignments as L ′.

Multi-path specification inference is defined for programs from L ′ using an

augmented version of symbolic execution. For simplicity, we assume that there is

only a single test, but all definitions in this chapter can be trivially generalised for

multiple tests by considering the conjunction of constraints corresponding to these

tests.

Definition 14 (Multi-path specification inference). Let p ∈ L ′ be a program, f be a

function declared in p (entry function), ([a1, ...,an],φ) be a test. The function infer is

defined as infer(p, f , [a1, ...,an])
def
= symexm(p, f , [a1, ...,an]) where symexm is given

in Definition 7 with the semantics ⇓m, where the relation ⇓m is an extension of ⇓s to

L ′ in Figure 3.4.
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3.3.3 TRIDENT’s Patch Synthesis

TRIDENT employs component-based program synthesis that constructs a patch as

a combination of components that satisfies a given logical specification. The key

novelty relative to previous techniques [48, 49] is that it supports side-effected

components. Specifically, we consider components of three types identified as sets

of labels: {R} for components that represent rvalue-expression, {L} for components

that represent lvalue expressions, and {R,L} for components that are both rvalue

expressions and lvalue expressions, such as program variables.

Definition 15 (Component). Component is a tuple (T,{iR1 , ..., i
R
n},{iL1 , ..., i

L
m},φ),

where T is the type of the component (i.e. {R}, {L}, or {R,L}), {iR1 , ..., i
R
n} is the set

of rvalue inputs, {iL1 , ..., i
L
m} is the set of lvalue inputs, and φ is the semantics of the

component, a logical formula over the variables {iR1 , ..., i
R
n , i

L
1 , ..., i

L
m}, representing

the input, and {ot}t∈T , representing the outputs.

For example, a component that adds one to a given value can be represented as

follows

(R,{iR1},{},oR = iR1 +1),

because it is component that has one rvalue input and is itself an rvalue. Meanwhile,

a component that increments a variable, is represented as

(R,{iR1},{iL1},oR = iL1 ∧ iL1 = iR1 +1),

because it accepts an argument as both an rvalue (for reading) and an lvalue (for

writing), updates the value of the lvalue input, and returns this value as rvalue output.

This flexible component model allows the representation of a wide range of

operations, from simple arithmetic expressions to more complex constructs, such as

function calls, by treating them as components within the synthesis framework. As a

result, function calls are naturally incorporated into the synthesis process without

requiring any special handling, as they are treated like any other component within

the unified representation.
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Algorithm 1: Patch synthesis
1 Input:
2 Components: A list of components
3 S: inferred specification
4

5 for tree ∈ enumerate_trees(Components) do
6 φ = encode(tree,S)
7 is_sat,valuation = solve(φ)
8 if is_sat then
9 return decode(tree,valuation)

TRIDENT represents patches as trees of components. Specifically, a component

tree is a pair (c,{iR1 7→ tR
1 , ..., i

R
n 7→ tR

n , i
L
1 7→ tL

1 , ..., i
L
m 7→ tL

m}) of the root component c

and a mapping from its inputs to subtrees tR
1 , ..., t

R
n , t

L
1 , ..., t

L
m. The semantics of the

tree is a formula that connects input and outputs of the components:

J(c,{iR1 7→ tR
1 , ..., i

R
n 7→ tR

n , i
L
1 7→ tL

1 , ..., i
L
m 7→ tL

m}K
def
=

φ ∧ iR1 = oR
1 ∧ ...∧ iRn = oR

n ∧ iL1 = oL
1 ∧ ...∧ iLm = oL

m

∧ JtR
1 K∧ ...∧ JtR

n K∧ JtL
1 K∧ ...∧ JtL

mK,

where φ is the semantics of the component c and oR
1 , ... are the outputs of the root

components of the subtrees tR
1 , ....

TRIDENT uses an enumerative algorithm to find a patch that satisfies the given

specification. However, an enumerative algorithm is not efficient for generating

integer constants because of search space explosion. To address this, TRIDENT

applies an SMT solver to generate these constants, similarly to SyGuS solvers [49].

For example, to represent a set of components that add different constants to a given

value, instead of considering concrete semantics oR = iR1 + 1, oR = iR1 + 2, ..., we

consider an abstract semantics oR = iR1 + c and ask an SMT solver to find a value of

the parameter c that satisfies the specification.

Algorithm 1 demonstrates the patch synthesis algorithm that combines enu-

meration and SMT-solving. First, this algorithm enumerates abstract trees, that is,

trees of components in which the leafs corresponding to constants are represented as
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Algorithm 2: Patch Prioritization
1 Input:
2 Patch: A list of components
3 Line: Line number of patch
4 P: Program
5

6 if has_no_side_effects(Patch) then
7 return 0

8 P′ := apply_patch(P,Patch)
9 return mutated_memory_count(P′,Line)

parameters. Then, it encodes each abstract tree and the specification into a formula

that is satisfiable iff there is a assignment of constants that makes the patch satisfy the

specification. Particularly, for a program p with a k-holed assignment and the entry

function f , a test ([a1, ...,an],φ), a specification {(πi,,ψi)}i
def
= infer(p, f , [a1, ...,an]),

and a candidate components tree t, it constructs the following formula:

JtK∧
∨

i

πi ∧φ(ψi)

For multiple tests, TRIDENT considers the conjunction of the corresponding formulas.

If the formula is satisfiable, then TRIDENT constructs a concrete patch from the

model by substituting constant parameters with concrete values.

3.3.4 TRIDENT’s Patch Prioritization

TRIDENT employs patch prioritization strategy to alleviate test-overfitting. TRIDENT

prioritizes patches based on the assumption that minimising the number of side

effects in the patched expression will reduce overfitting. Algorithm 2 returns the

patch priority where the patches with lower priority value are preferred by the patch

prioritisation strategy. The algorithm takes as input the program, patch and the line

number where the patch is applied. The function apply_patch applies the patch on

program P. The function mutated_memory_count returns the number of memory

locations whose values are changed by the execution of the patched line Line in the

program P′. If the patch P has no side effects under Definition 11, then algorithm 2

gives it a priority of 0, to avoid synthesising patches with side effects when they are
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Buggy
program
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Clang

Inferrer
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PatchDocker
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Figure 3.5: Architecture of TRIDENT.

not required.

3.4 Implementation
Figure 3.5 shows the architecture of TRIDENT, which consists of three main compo-

nents:

• The frontend transforms and analyses buggy programs;

• The inference engine infers synthesis specifications; and

• The synthesiser constructs patches.

The frontend performs several source code focused tasks. First, it localises sus-

picious locations in the buggy program using Ochiai statistical fault localisation [18].

Second, it instruments suspicious locations by inserting holes in the form of calls

to the function __trident_khole_assignent using Clang, LLVM’s default

frontend[55]. Finally, it calls the other components of TRIDENT to infer synthesis

specification and synthesize patches.

The inference engine is built on top of KLEE symbolic execution en-

gine [56] and extensions implemented as a C library that is linked to the
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buggy program when it is executed using KLEE. The runtime provides a func-

tion __trident_khole_assignent that represents a k-holed assignment
L
1 , ...,

L
k = R

1 , ...,
R
k . This function takes the values of program variables and ad-

dresses of assignable memory locations, and constructs path constraints and symbolic

state according to the semantics of the rule KHOLE-ASSIGN in Figure 3.4.

The synthesizer constructs patches based on inferred specification in the form

of KLEE path conditions and provided components and function summaries. It uses

PySMT [57] to manipulate SMT formulas, and Z3 for constraint solving.

TRIDENT relies on Docker[58] virtual environments to execute the subject pro-

gram for fault localization and patch validation, and to perform symbolic execution

with KLEE.

The following transformation schemas for C programs, which adapt transfor-

mation schema successfully used in previous work [4], define TRIDENT’s search

space:

⟨stmt⟩ ; 7→ ⟨stmt⟩ ; L
1 , ...,

L
n = R

1 , ...,
R
n ;

if (⟨expr⟩) ⟨stmt⟩ 7→ c, L
2 , ...,

L
n = R

1 , ...,
R
n ; if (c) ⟨stmt⟩

while (⟨expr⟩) ⟨stmt⟩ 7→ while (c) { ⟨stmt⟩ ; c, L
2 , ...,

L
n = R

1 , ...,
R
n}

for(_;⟨expr⟩;_) ⟨stmt⟩ 7→ for (_;c;_){⟨stmt⟩ ; c, L
2 , ...,

L
n = R

1 , ...,
R
n }

switch (⟨expr⟩) ⟨stmt⟩ 7→ c, L
2 , ...,

L
n = R

1 , ...,
R
n ; switch (c) ⟨stmt⟩

⟨call⟩ ; 7→ L
1 , ...,

L
n = R

1 , ...,
R
n ;

⟨assignment⟩ ; 7→ L
1 , ...,

L
n = R

1 , ...,
R
n ;

In these transformations, we synthesize a k-holed assignments c, L
2 , ...,

L
k =

R
1 , ...,

R
k with a dedicated variable c that is used as an rvalue expressions for condi-

tional statements, loops and switch statements. Effectively, this emulates synthesis

of expressions with side effects.

A total of 37 components, including 15 function summaries are constructed

offline using symbolic execution.
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3.4.1 Limitations

TRIDENT inherits the usual limitations of symbolic execution approaches. First, it

faces the usual path explosion problem, which the state merging algorithm, described

in Section 3.3.2, alleviates. Second, state-of-the-art symbolic execution engines

cannot automatically model the environment, like network communication. Third,

SMT solver are necessarily incomplete and cannot solve all expressions in actual

programs. Finally, handling pointers and data structures is an open challenge for

symbolic execution.

Aliasing occurs when the same data can be accessed through different pointers.

Our synthesis algorithm assumes that there is no aliasing in the considered lvalues.

Specifically, all lvalues passed to the synthesizer must refer to different memory lo-

cations in the context of given tests. TRIDENT’s implementation trivially guarantees

this property since it only passes references to local and global variables as lvalues.

To support dynamic data structures, such as linked lists, an alias analysis technique

can be applied. Supporting dynamic data structures also requires modelling them

symbolically. TRIDENT’s implementation does not support dynamic data structures,

because KLEE does not explicitly model them.

TRIDENT assumes that all components are readily available, which may not

always be a realistic assumption. Some components, such as function calls, require

offline synthesis. Additionally, the components constructed using symbolic execution

may lack precision due to the limitations of symbolic execution. This causes the

function call component to not accurately represent its actual code counterpart.

3.5 Evaluation

To evaluate TRIDENT, we first demonstrate its utility: we show that TRIDENT can

synthesise patches with side-effects for bugs in real-world programs. Synthesis-

ing side-effected patches exacerbates two seminal challenges: the path explosion

problem of symbolic execution and the test-overfitting problem of program repair.

TRIDENT combats path explosion with multi-path specification inference introduced

in Section 3.3.2. Section 3.5.2 reports the effectiveness of this countermeasure. Sec-
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Table 3.1: CF110 dataset of bugs from Codeflaws benchmark

Class Number Description

SISA 38 Insert assignment
DRWV 14 Replace variable with variable
DMAA 3 Insert/replace array access
ORRN 21 Replace relational operator
OILN 15 Tighten/loosen condition
OAIS 19 Insert/delete arithmetic operator

Total 110

Table 3.2: OSS10 dataset of bugs from open source projects

Program Commit kLoC Missing/incorrect statements

grep 191a84a 38 match_lines=match_words=0;

grep 7585d81 27 strip_trailing_slashes(optarg);

coreutils c160afe 208 x.preserve_xattr = true;

coreutils 9944e47 249 if (!nfiles) fstatus[0].failed=1;

coreutils ca99c52 249 if (line_width<0) line_width=0;

coreutils 9f5aa48 224 relative_to = relative_base;

coreutils 2a80912 247 f[i].fd = -1;

busybox 0506e29 297 end = key->range[3];

busybox 5c13ab4 331 flags = option_mask32;

busybox 6f7a009 351 xtc &= ~TC_UOPPOST;

tion 3.5.3 shows how much more prone to test-overfitting patches with side effects

are than side-effect-free patches, and how well TRIDENT’s prioritisation heuristic

alleviates this problem.

Benchmarks To answer our research questions, we constructed three bug datasets:

OSS10 10 bugs from open source projects that require patches containing addition/-

modification of assignments and function calls, extracted from Coreutils, Grep

and Busybox (Table 3.2);

CF110 110 bugs from Codeflaws [52]. Among these 110 versions, 55 require

patches with side effects, and 55 require patches without side effects.

MB37 37 bugs taken from ManyBugs [51].

To construct OSS10, we identified bugs from Coreutils, Grep and Busybox that

require patches with side effects. We chose these projects for our dataset, because

they are well-supported by KLEE, and also their version control history links bug



3.5. Evaluation 67

fixing commits with corresponding regression tests. Specifically, we uniformly

sampled bugs from these projects, keeping the first 10 that manual assessment

determined involved statements with side effects, those that add/modify assignments

or function call. Table 3.2 lists the size of the codebase from which each bug is

drawn.

ManyBugs [51] benchmark consists of 185 defects taken from nine large, open

source C projects. This benchmark is commonly used in evaluating automatic

program repair tools [3, 4, 59]. Prior work [60] argues for explicitly defining

the defect classes while evaluating various program repair tools, to ensure a fair

comparison of tools on comparable classes. A defect class is a family of bugs that

share a common attribute. For instance, GenProg [45] does not repair expression-

level bugs, while Angelix [4] does not fix bugs pertaining to insertion of new

statements or modifying existing statements in a way that induces side effects.

TRIDENT supports the defect classes of Angelix2 while additionally supporting those

defect classes with side effects that k-holed assignment can model. In case when

these tools are run on bugs outside their defect classes, these tools will not be able

to fix these bugs, although, it could be possible for these tools to generate a patch

which passes the tests but is incorrect.

Following previous work [59], we eliminated the samples that do not belong

to TRIDENT’s defect classes or that TRIDENT could not compiled due to version

incompatibilities; this led to MB37, which is a dataset of 37 samples.

We chose Codeflaws as the source for our second dataset, because it contains

bugs from a large variety of defect classes. Codeflaws bugs were not labeled with

side effects in mind. To construct CF110, we therefore inspected bugs in defect

classes that require, or rule out, patches with side effects, and then uniformly sampled

bugs from the inspected set. Specifically, we selected 55 bugs from classes SISA,

DRWV and DMAA (with side effects), and 55 bugs from classes ORRN, OILN and

OAIS (without side effects). Section 7.2 details the reasons for constructing new

2Although TRIDENT supports Angelix’ defect class, their search spaces are different: Angelix
attempts to minimally modify existing expressions, while TRIDENT synthesises expressions from
scratch. This explains differences in the results.
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int clamp(int x, int l, int h) {
int r;
klee_open_merge()
switch(PATCH_ID) {

case 0: x = R; break;
case 1: l = R; break;
case 2: h = R; break;
case 3: r = R; break;

}
klee_close_merge()
if (x < l)

r = l;
if (r == x && x > h)

r = h;
return r;

}

Figure 3.6: Applying KLEE state merging in AKP.

datasets.

Tool Configurations In our experiments, we use the following tool configurations:

TN TRIDENT with disabled patch prioritisation;

TP TRIDENT with enabled patch prioritisation;

PR Prophet [3] with default configuration;

SOS SOSRepair [59] with default configuration;

AKN Angelix-like assignment synthesis with disabled KLEE merging;

AKP Angelix-like assignment synthesis with enabled KLEE merging;

ANG Angelix [4] with default configuration; and

GP GenProg [45] with default configuration.

The TP and TN configurations employ multi-path specification inference de-

scribed in Section 3.3.2 with cardinality constraints with K = 2. AKN is an applica-

tion of Angelix for assignment synthesis that uses a switch statement to enumerate

possibly writable memory locations (Section 3.2.2). AKP is an extension of AKN

that applies KLEE’s built-in state-merging mechanism by surrounding the switch

statement with klee_open_merge() and klee_close_merge() as shown
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Table 3.3: Generated patches for OSS10:  indicates correct patch, G#— plausible patch,
#— no patch found.

Bug Patch Time (s)

TP AKP GP TP AKP GP

191a84a # # # 1273.2 Timeout Timeout
7585d81   # 469.8 554.2 Timeout
c160afe  # # 94.6 Timeout Timeout
9944e47 G# # # 76.3 Timeout Timeout
ca99c52 # # # Timeout Timeout Timeout
9f5aa48 # # # Timeout Timeout Timeout
2a80912  # # 75.6 Timeout Timeout
0506e29 # # # Timeout Timeout Timeout
5c13ab4   # 367.9 348.3 Timeout
6f7a009 G# G# # 283.4 349.6 Timeout

Overall 4+2 2+1 0+0

in Figure 3.6. ANG is Angelix [4] applied only to side-effect-free expressions, but re-

implemented using the same synthesiser as TRIDENT with only rvalue components.

We used GenProg [45] in our experiments because, although it does not synthesise

patches with side effects, it can potentially generate them by copying from other

parts of the same program. PR is the original version of Prophet [3] with the default

configuration specified in their replication package. For SOS, GP, and ANG we used

the generated patches listed in their replication packages to compile the results.

Experimental Setup We conducted all experiments inside a Docker container on an

Intel® Core™ i7-2600 CPU 2.7 GHz machine running on Ubuntu 16.04 with 16GB

of memory. We used 2 hours as the timeout for each tool.

3.5.1 TRIDENT Fixes Real Bugs

To investigate the applicability of TRIDENT for realistic projects, we ran it

on the real bugs in the OSS10 and MB37 datasets. On OSS10 that contain bugs

involving side effects, we executed three configurations: TP, AKP and GP. Here

AKP serves as the baseline approach. GP is an alternative approach, because it

cannot synthesise new statements, but can copy/move them from a code bank, by

default the rest of the same program. On OSS10 that contain both bugs involving

side effects and side-effect-free bugs, apart from TP, we executed four configurations

that represent state of the art C program repair tools: ANG, PR, SOS and GP.
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Table 3.4: The number of plausible and correct patches each program repair tool generates
on bugs in MB37 dataset. TRIDENT generates 16 out of 37 patches of which 8
are equivalent to patches written by the developers.

Bug kLoC Total Plausible Correct

TN ANG PR SOS GP TN ANG PR SOS GP

gmp 145 2 1 2 1 0 1 0 0 0 0 0
gzip 491 4 3 3 2 0 1 2 1 2 0 0
libtiff 77 10 5 5 5 8 7 3 3 1 2 2
php 1,099 19 6 6 9 4 9 3 3 4 3 0
wireshark 2,814 2 1 1 1 2 2 0 0 0 2 0

Overall 37 16 17 18 14 20 8 7 7 7 2

(a) The number of plausible patches generated by
each tool

(b) The number of correct patches generated by
each tool

Figure 3.7: Venn diagrams describing the intersection of the repaired bugs in MB37 dataset
by different repair tools. Generally, the tools are complementary. TRIDENT

correctly fixes 2 bugs that other tools do not repair correctly

In order to identify if the generated patches are correct, we conservatively

compared them with human patches, classifying a patch as correct only if it is

syntactically identical to the human patch, or can be obtained from the human patch

through a trivial refactoring.

Table 3.3 summarises the results of our experiment on OSS10. The time column

indicates the time(in seconds) taken to generate a patch for the corresponding buggy

location. TP generated more patches than AKP and GP on the considered dataset. TP

generated more patches than AKP due to the efficiency of its state merging algorithm.

GP could not generate patches for the considered bugs, because required statements

are not present in the source code. TP repaired all versions, except for Grep 7585d81,



3.5. Evaluation 71

...
case EXCLUDE_DIRECTORY_OPTION:

if (!excluded_directory_patterns)
excluded_directory_patterns =

new_exclude ();
strip_trailing_slashes (optarg);
add_exclude (

excluded_directory_patterns,
optarg, EXCLUDE_WILDCARDS);

break;
...

(a) Function call generated by TRIDENT for Grep.

...
if (!TIFFFillStrip(tif,strip))
return((tmsize_t)(-1));

size = strip_size;

if ((*tif->tif_decodestrip)(tif,buf,
size,plane)<=0)

return((tmsize_t)(-1));
(*tif->tif_postdecode)(tif,buf,size);
return(size);

...

(b) Assignment statement generated by TRIDENT
for Libtiff

Figure 3.8: Examples of patches generated by TRIDENT.

* by the compression close+cleanup routines. But

* be careful not to write stuff if we didn’t add data

* in the previous steps as the "rawcc" data may well be

* a previously read tile/strip in mixed read/write mode.

*/
- if (tif->tif_rawcc > 0 && tif->tif_rawcc != orig_rawcc
+ if ((tif->tif_rawcc > 0)
&& (tif->tif_flags & TIFF_BEENWRITING) != 0
&& !TIFFFlushData1(tif))
{

Figure 3.9: Angelix’s patch for libtiff-2007-11-02-371336d-865f7b2.

using one or more assignments. For Grep 7585d81, TP generated a function call

shown in Figure 3.8a, which is identical to the human patch. In order to enable this

function call synthesis, we first generated summaries for all supported functions in

Grep, and used them as components for patch synthesis.

Table 3.4 summarises the results of our experiments on MB37 dataset: TRI-

DENT’s performance is comparable to other state of the art tools. Figure 3.7 shows

the overlap of generated patches for different tools. TRIDENT generates 2 correct

patches that no other tool could repair, Figure 3.7b. Figure 3.8b shows one of these

two patches.

Even though TRIDENT supports the defect classes of Angelix, we can see from

Figure 3.7b and Figure 3.7a that Angelix synthesises some bugs that TRIDENT cannot

and vice-versa. This is due to the difference in their search spaces: Angelix attempts

to minimally modify existing expressions, whereas TRIDENT synthesises expressions

from scratch. One illustrative example is Figure 3.9. Here, Angelix successfully

generates a patch, since it is easy to modify the existing expression to reach the patch
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by simply dropping the expression tif->tif_rawcc != orig_rawcc. TRI-

DENT, in contrast, does not generate a patch, since the patch requires an expression

with 11 components, which is infeasible due to the vast number of candidate patches

that use up to 11 components.

TRIDENT generated two correct patches exclusively, because the correct patches

are not in the search space of the other approaches. These correct patches require

inserting an assignment. Angelix cannot generate a patch that inserts an assignment.

GenProg and Prophet could not generate these patches, since the needed assignments

do not appear in the buggy programs. SOSRepair could not generate them because

its performance depends on the size and quality of the database of patterns.

TRIDENT repaired 3 more real bugs from OSS10 dataset (Table 3.3) that require

patches with side effects than the baseline, state of the art semantic repair

augmented to synthesise assignments. TRIDENT correctly repaired 2 new bugs

from MB37 dataset that the other state of the art tools, i.e. Prophet, SOSRepair,

Angelix and GenProg did not repair.

3.5.2 Containing Path Explosion

Concretely, path explosion manifests itself during a symbolic run in terms of the

number of paths visited. To investigate how TRIDENT’s state merging mitigates

path explosion in our setting, we executed three configurations — TP, AKN, and (3)

AKP— on the both OSS10 and CF110 datasets. We compare these three configura-

tions in terms of the average number of paths each visits during k runs over corpus

against the time limit of 10 hours.

Table 3.5 summarises the results of our experiments on CF110 dataset, and

Table 3.6 summarises the results of our experiments on OSS10 bugs. Both tables

display the average number of paths that each approach explores per suspicious

location; for CF110, this average is over all versions from a defect class. In both

cases, TRIDENT, under its TP configuration, visits fewer paths than either baseline,

demonstrating the effectiveness of its state-merging strategy at coping with path

explosion in practice. Figure 3.10 shows a violin plot for the distribution of number
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Table 3.5: The average number of paths explored in the CF110 dataset. Here, TRIDENT,
under TP, visits 8 fewer paths on average than the closest baseline.

Class Paths (Average)

TP AKP AKN

SISA 12.87 18.43 26.69
DRWV 9.15 13.62 25.23
DMAA 38.86 76.18 98.24
ORRN 15.50 30.36 56.77
OILN 16.47 24.33 40.68
OAIS 16.88 24.72 31.92

Overall 27.39 35.51 37.32

Table 3.6: The average number of paths explored in the OSS10 dataset. The buggy versions
for which TRIDENT, under its TP configuration, generated a patch are bolded.
On the corpus, TP visits almost 1000 fewer paths than the closest baseline, on
average.

Version Paths (Average)

TP AKP AKN

191a84a 5.4 13.2 22.5
7585d81 95.0 96.0 96.0
c160afe 10.0 268.0 1602.5
9944e47 22.0 490.5 616.0
ca99c52 5688.0 6024.2 6352.0
9f5aa48 1175.0 1320.0 9000.0
2a80912 8.0 39.0 104.0
0506e29 12922.0 16807.0 16807.0
5c13ab4 88.0 317.0 936.0
6f7a009 12647.0 15966.0 21378.0

Overall 3266.1 4133.9 5691.3

of paths for each class in CF110; here, we see that, for each of TP’s runs, the bulk of

the area of each violin plot is lower than for the baselines and, crucially, that its tail

of outliers is even more markedly lower.

Table 3.7 demonstrates the solving time and the number of solver queries of the

patch synthesiser for OSS10. On average, TRIDENT required fewer solver calls, but

since the constraints it passes to the solver have additional clauses to control patch

side effects, the total solving time does not significantly differ from other techniques.

The key advantage of TRIDENT is not in reducing the patch generation time, but

reducing the number of paths that are necessary to explore to find a test-passing path,

which increases the chance of finding a patch, as demonstrated in Section 3.5.1.
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Figure 3.10: The distribution of paths explored in the CF110 dataset. The x-axis contains
the defect class name and the name of tool configuration. The weight of each
violin plot is lower and their tails are shorter than either baseline.

Table 3.7: The patch synthesizer’s solving time and the number of solver queries for each
tool for the bugs in OSS10 dataset. The versions for which TP generated a patch
exclusively are bolded. TP has, on average, fewer solver queries, but since its
constraints involve additional clauses, the solving time does not considerably
differ across configurations.

Version Solving Time (Seconds) Query Count

TP AKP AKN TP AKP AKN

191a84a 99.0 107.3 76.9 1794 1199 372
7585d81 2.4 2.4 2.1 9 9 9
c160afe 17.3 246.0 164.5 1197 8258 7827
9944e47 21.7 162.4 194.8 1328 6836 1213
ca99c52 241.7 170.6 110.2 184 579 461
9f5aa48 1131.1 661.2 1467.4 1570 3617 7824
2a80912 29.1 94.6 72.2 620 564 561
0506e29 79.3 74.7 70.5 72 64 83
5c13ab4 106.2 173.5 171.1 10873 10034 3206
6f7a009 92.8 95.5 98.1 2833 2985 2523

Total 1820.6 1788.2 2427.8 20480 34145 24079

Overall, TP explores 22.9% fewer paths on average compared to AKP and

26.6% fewer paths when compared to AKN on CF110 dataset, and 21% fewer paths

on average compared to AKP and 43% fewer paths when compared to AKN on

OSS10 dataset.

TRIDENT’s novel state merging strategy reduces the number of explored paths by

22–43% compared to the baselines — state of the art semantic repair augmented

to synthesis assignments and KLEE’s general-purpose state merging strategy.



3.5. Evaluation 75

Table 3.8: Plausible and correct patches generated for CF110 bugs; as expected, TRIDENT

slightly increases test-overfitting on patches without side effects (first three rows)
and its patch priorisation strategy reduces test-overfitting, as the comparison
between TP and TN on patches with side-effects (the last three rows) shows.

Class LoC Plausible Correct

TP TN ANG TP TN ANG

OILN 46±21 2 2 1 0 0 0
OAIS 36±25 8 8 7 1 1 1
ORRN 53±36 7 7 7 2 2 3

Overall 17 17 15 3 3 4

SISA 59±35 16 16 1 9 6 0
DRWV 46±20 8 8 0 5 2 0
DMAA 83±28 0 0 0 0 0 0

Overall 24 24 1 14 8 0

3.5.3 Resisting Overfitting

A program repair technique overfits a test suite when it produces patches that pass

the test suite, but are incorrect. Following convention, we call patches that pass a test

suite plausible. We measure the degree of test-overfitting as 1− C
P , one minus the

ratio of correct C to plausible patches P. In this experiment, we define correctness

as passing the held-out test suite provided by Codeflaws benchmark.

We first establish how extending the search space with side effects exacerbates

test-overfitting, then show that TRIDENT produces a higher proportion of correct

patches than the baseline. For the former, we compare TRIDENT with ANG, which

is only applied to expression without side effects. For the later, we compare the over-

fitting rate of two TRIDENT’s configurations: TP (with enabled patch prioritisation),

and TN (with disabled patch prioritisation). We execute all the above configurations

on CF110.

Table 3.8 summarises the results. The top three classes OILN, OAIS and ORRN

contain programs that can be fixed with a side-effect-free patch and the bottom three

classes SISA, DRWV and DMAA require side effects. TP and TN generate more

patches than ANG for the side-effect-free classes OILN, OAIS and ORRN but the

extra patches fail the held-out tests. TP and TN both have the test-overfitting ratio of

82.4%. Meanwhile, the test-overfitting of ANG is 73.3%. These results indicate that
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adding patches with side effects to the search space increases test-overfitting. For

classes with side effects SISA, DRWV and DMAA, TP has the test-overfitting rate

of 41.7%, and TN has the test-overfitting rate of 66.7%. ANG, in contrast, generates

one patch which is incorrect. The results demonstrate that TP’s new prioritisation

heuristic alleviates test-overfitting by decreasing the rate test-overfitting from 66.7%

to 41.7%.

Despite the fact that handling patches with side effects expands the search

space thereby increasing the rate of test-overfitting, TRIDENT’s specialised patch

prioritisation alleviates this negative effect, reducing overfitting from 66.7% to

41.7%.

3.6 Threats to Validity
The results for the tools ANG, SOS, and GP were taken from their respective repro-

duction packages, as noted in Section 3.5.1. However, the experimental environments

and systems used to compute these results differ from those in our setup, which

introduces a threat to validity.



Chapter 4

Rete: Learning Namespace

Representation for Program Repair

4.1 Introduction

Every program defines a namespace and uses scoping rules to control variable visibil-

ity. Existing program repair algorithms neglect information about program’s names-

pace when searching for repairs, which reduces their effectiveness and increases

test-overfitting [53]. Patch generation techniques that use machine learning usually

fall into three categories: They (1) ignore information about program variables,

effectively only learning to choose the template into which to insert variables [3];

(2) only extract variables from local context [29, 61]; or (3) learn information about

program namespace implicitly [12], but have difficulty handling long-range depen-

dencies [62]. At each program location, many visible variables are not local, so

tools that fall into the first two categories cannot effectively synthesize patches that

require non-local visible variables. CoCoNut [12] falls into the third category, so,

in principle, it can learn long-range dependencies, but our experiments (Table 4.9)

show that it fails to generate five correct patches because it prefers variables in the

local neighbourhood to more suitable visible variables.

This chapter proposes RETE, a new program repair technique, to address this

problem. RETE prioritises visible variables in a program namespace by their like-

lihood of being used at a given program location. In the spirit of neuro-symbolic
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computation [63], RETE combines program analysis and machine learning to learn

rich project specific semantic information about the namespace. Specifically, it uses

variables’ CDU chains, def-use chains augmented with control flow, to learn latent,

low-dimensional representations of program variables that capture their semantic

affinities.

RETE generates patches by inserting program variables into patch templates.

It separates patch template generation and prioritisation into two steps and defines

an interface for each step to facilitate the use of different algorithms for each one.

Thus, RETE is a framework that integrates existing program repair approaches.

RETE prioritises patches by combining the ranks of variables and the ranks of patch

templates into which the variables are inserted into a single ranking. Any combination

of tools can be used to extract these individual template and variable ranks. We

implement three instances of template ranking using existing approaches: (1) the

plastic surgery hypothesis [47] that extracts templates from the buggy program,

mutates them, and prioritises the mutated templates based on the syntactic distance

from the donor code; (2) Prophet’s enumerative synthesiser and machine learning

based prioritiser [53]; and (3) Trident’s constraints-based synthesiser (Section 3.3.3)

and combine them with our various variable ranking algorithms (Section 4.3).

We implemented RETE for C and Python. We chose C because of C’s impor-

tance and because many program repair techniques have targeted it. We target Python

because of its ever-increasing importance and the fact that its default dynamic typing

heightens the importance of namespace information, since without static types, every

visible variable is a candidate for fixing a bug.

To evaluate RETE, we use two benchmarks: 107 bugs extracted from

BugsInPy [64] and 35 bugs extracted from ManyBugs [51]. We extracted these

bugs to match RETE’s defect class described in Section 4.3.1 (with a restriction

to inserting/modifying single line statements). The evaluation demonstrates that

RETE generates patches for 29 of our 107 BugsInPy bugs, and generates 8 for our

35 bugs ManyBugs. When we adapted Prophet to work on Python, despite its age,

it outperformed the previously available state of the art, CoCoNut: fixing 21 bugs
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to CoCoNut’s 16 bugs on our dataset (section 4.5). On Python, RETE outperforms

Prophet-for-Python by six correct fixes. When using RETE’s variable prioritisation,

Prophet-for-Python generates 3 more bugs than it does on its own. On the ManyBugs

dataset, Trident’s constraint-based algorithm (Section 3.3.2), augmented with RETE’s

template enumeration and variable prioritisation, generates more correct patches

than the state of the art tools SOSRepair [59], Prophet [53] and Trident (Chapter 3)

on their own.

This chapter makes the following contributions:

• We introduce the problem of learning program namespace and present two

solutions using deep learning and feature engineering which use information

from program analysis.

• We present a generic algorithm to integrate variable prioritisation into existing

repair techniques, instantiated for the Plastic Surgery Hypothesis, Prophet and

Trident.

• We realise these contributions in RETE, and evaluate them on real bugs in C

and Python projects.

RETE’s implementation, and the scripts and data used to evaluate it, can be

found in the accompanying package https://github.com/norhh/Rete

4.2 Overview
To repair real-world bugs, program repair has to explore huge search spaces

of candidate patches. Consider the developer patch for a bug in Black [65] in

Figure 4.1a. Even if we restrict the number of field accesses with the operator ’.’ to

the maximum of two, there are 11118 visible variables and object field accesses at

the fix location. This number can be derived by traversing the tree of object attribute

accesses. By limiting the depth of this traversal to two consecutive accesses, we

count all possible combinations of variables and their fields that can be accessed

within this two-access restriction, resulting in 11 118 variables.

https://github.com/norhh/Rete
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i f (
s e l f . p r e v i o u s _ l i n e
and s e l f . p r e v i o u s _ l i n e .

i s _ d e c o r a t o r
) :

re turn 0 , 0

+ i f (
+ i s _ d e c o r a t o r
+ and s e l f . p r e v i o u s _ l i n e
+ and s e l f . p r e v i o u s _ l i n e .

is_comment
+ ) :
+ re turn 0 , 0

n e w l i n e s = 2
i f c u r r e n t _ l i n e . d e p t h :

n e w l i n e s −= 1

(a) The developer fix for a bug
in Black.

i f (
s e l f . p r e v i o u s _ l i n e
and s e l f . p r e v i o u s _ l i n e .

i s _ d e c o r a t o r
) :

re turn 0 , 0

i f 1 and 2 :

re turn 0 , 0

n e w l i n e s = 2
i f c u r r e n t _ l i n e . d e p t h :

n e w l i n e s −= 1

(b) A template for a hypothetical
repair tool.

i f (
s e l f . p r e v i o u s _ l i n e
and s e l f . p r e v i o u s _ l i n e .

i s _ d e c o r a t o r
) : # Code b l o c k used t o g e n e r a t e

f i x
re turn 0 , 0

i f 1 and s e l f . p r e v i o u s _ l i n e . 2 :

re turn 0 , 0

n e w l i n e s = 2
i f c u r r e n t _ l i n e . d e p t h :

n e w l i n e s −= 1

(c) Edited locations with ab-
stract variables.

Figure 4.1: A bug in Black Python formatter, and how it can be fixed with patch templates.

A popular approach for reducing the search space, employed by a large number

of existing program repair tools, is to ignore the variables that are not local to the fix.

However, considering only local variables makes some bugs impossible to repair and

increases the likelihood of generating test-overfitting patches. For example, the field

access self.previous_line.is_comment in Figure 4.1a, which is used in

the fix, does not exist anywhere else in the entire program. Even assuming that a

prioritisation algorithm shortlists 100 candidate variables and we know the exact fix

template given in Figure 4.1b, constructing such a patch would require examining

4950 possibilities to fill the variables into the template.

Program repair approaches relying on program synthesis struggle to generate

patches for programs with large namespaces. For example, Trident, which was

discussed in Chapter 3, enumerates patches using patch templates from its search

space and checks whether they satisfy the specification constraints. Applied to the

bug in Figure 4.1, for simplicity, let us assume that Trident uses T patch templates,

Trident must enumerate ca. 8–9 orders of magnitude (T×111182) patches to find

this fix, a clearly infeasible number of patches. Prophet [3] and SPR [9] map

variables to the values that they hold during test execution. They use this mapping to

instantiate templates. If the number of candidate variables is large, this can lead to

test-overfitting, since many variables can take the same values during test execution,

leaving these tools unable to differentiate them.
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RETE efficiently synthesises the correct patch in Figure 4.1a by prioritising the

correct patch in the first 1000 patches. To do this, RETE employs a novel method to

rank variables using a project-independent representation of a program’s namespace.

4.2.1 RETE’s Template Generation

RETE’s core contribution, learning program namespaces, is orthogonal to exist-

ing program repair algorithms. Thus, RETE provides an extensible framework

for program repair, which seamlessly integrates existing patch generation algo-

rithms. We consider three archetypal algorithms: the plastic surgery hypothesis [47],

Prophet’s enumerative synthesiser [53], and Trident’s constraints-based synthesiser

(Section 3.3.3).

We now show how RETE uses the plastic surgery hypothesis. Our interpretation

of the plastic surgery approach starts with existing program statements as partial

patches and edits them using one of three operations: replacing a variable with a hole

, appending an operator with holes for its operands, or removing an operator and

its operands. The synthesis algorithm searches for a minimal edit patch. The cost

of adding or removing an operator equals the number of holes added or removed.

Consider the statement x+a×b, the set {x+ y,a+ self .W}, and the rewrite chain

x+ y →1 x+ 1 →2 x+ 1 × 2 →3 x+a× 2 →4 x+a×b. The chain shows that

x+ a× b is 2 edits from the set because the cost of both →1 and →2 is 1 and the

cost of both →3 and →4 is 0. Section 4.3.4 explains how we set the edit costs. RETE

later fills the variable holes with concrete variables using the ranking it learns.

In Figure 4.1c, the code block in lines 1-5 (The if block with the comment) is

two edits away from the required patch in Figure 4.1c:

1.self.pl → is_decorator

2.self.pl.is_decorator → self.pl.is_comment

where self.pl represents self.previous_line

This patch is correct, if self.previous_line is not None1. As is common

practice in APR, RETE guards such deferences with NoneType checks. Given these

edits and its NoneType heuristic, RETE generates the human-equivalent patch as

shown in Figure 4.1a.
1NoneType is Python’s unit type.
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4.2.2 RETE’s Variable Prioritisation

RETE’s variable ranking model shortlists the most likely variables at the location

of the fix based on a partial patch. This reduces not only the number of variables

to examine but also the likelihood of test-overfitting. In Figure 4.1c, the correct

variables to fill the holes in " 1 and self.previous_line. 2" are ranked

4th and 5th, much less than 782 and 12, the number of visible variables at each hole.

The rank for the second variable is not as good as that of the first since no identifier

that could fix the problem appeared in a similar context sufficiently often for the

model to learn it. Purely ML-based approaches, e.g. those using Neural Machine

Translation (CoCoNut), struggle to fix such bugs, since the field, is_comment is

too sparse for the model to learn to associate it with self.previous_line.

4.3 RETE

The central “signal” hypothesis of this project is that variables with similar semantics

are used in similar ways across code bases; this usage signal complements and can

supersede signal in raw lexical similarity of names. We introduce conditional def-use

chains to capture usage signal.

We consider a C-like programming language L . Program p ∈ L is a set of

function declarations. In p, let V be its set of variables, and S be the set of all

statements in L. Let represent a missing variable and V =V ∪{ }. The language

L extends L by replacing V with V . Let δ ∈ ∆ be a patch; δ (p) denotes the

application of δ to p. ∆ ⊂ ∆ is a set of patch templates where δ (p)∈L ,∀δ ∈ ∆ .

δ (v) denotes instantiating δ with the variables v ∈ V n, where |v| = n. RETE’s

defect class [60] consists of those bugs that instantiations of its patch templates can

fix.

4.3.1 The Patch Ordering Problem

Generate-and-validate program repair approaches find patches by enumerating and

testing a large number of candidate patches. Typically, the first patch found that

enables the program to pass the test suite is returned as the solution. Thus, the

order in which the patches are enumerated is crucial. First, it affects patch quality
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since not all patches that pass the tests are correct. Second, it affects the speed of

patch generation since it determines the number of test executions required to find a

suitable patch.

Problem 1 (The Patch Ordering Problem). Given a test suite T , and a program p

that does not pass T and a set of patches ∆, find the bijection O : ∆ → [1..|∆|] such

that

argmax
O

P
(

O(δi)< O(δ j) | δi(p) is correct

∨
(
δi(p) is plausible∧δ j(p) is implausible

))
,

where δ (p) is plausible if it passes all tests in T and implausible otherwise.

O is a patch ordering that simultaneously maximises the probability that correct

patches precede plausible patches, and the probability that plausible patches, in turn,

precede implausible patches.

RETE solves a restricted version of this general problem: it optimises O only

over instantiated templates δ (v). Because of this restriction, RETE decomposes the

patch ordering problem into two subproblems: that of ordering templates, aka δ ,

(Section 4.3.2) and, for each template, the problem of finding the correct variables to

fill those holes, a.k.a. finding v (Section 4.3.3).

4.3.2 Prioritising Templates via Distance

Let α[vars(α)/ ] be the buggy context with holes replacing all its variables, vars(α).

We formulate the problem of finding the best template for a particular bug in the

program p as a graph search problem, starting from α . Let G = (∆ ∪{α },E)

be our graph. The distance function d : E −→ W weights each (δ s,δ t) = e ∈ E.

Templates are ordered by their distance from α .

Different APR approaches define d differently. Section 4.4.1 gives our definition.

Techniques such as DirectFix [26] define d as the minimal number of sub-expression

substitutions required to construct the patch from a buggy statement. Techniques

such as Prophet [3] order templates using Maximum likelihood estimation, implicitly
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defining d using probability.

4.3.3 Learning Namespace Representations

In this chapter, we introduce namespace representations learning, which aims to

learn latent, low-dimensional representations of program variables, which preserves

semantic properties of variable uses, and thus facilitates such applications as variable

prioritisation for patch synthesis.

We now describe how we capture a variable’s uses in a Conditional DU (CDU)

chain, a new data structure that augments a classical DU chain with control infor-

mation. A variable may have many CDU chains, so we describe how we sample

them before describing how we use them to learn embeddings that capture affinities

between variables (their names and uses) and holes, each of which represents a

potential variable use.

The predicate D : S×V indicates if a variable is defined in a statement; the

predicate U : S×V indicates if a variable is used in a statement. For a variable v

and a definition d (i.e. D(d,v)), we say that d reaches an arbitrary use-statement

s (i.e. U(s,v)), if there exists at least one execution path from d to s along which

no other statement s′ ̸= s satisfies D(s′,v). A def-use chain of the variable v is the

sequence of all statements s1, ...,sn s.t. 1) D(s1,v)∧
∧n

i=2U(si,v); 2) The definition

of v in s1 reaches si for all i > 1 along at least one path; and 3) ∀i, j s.t. i < j∧ i ̸= 1,

si precedes s j in the source code.

A node d of a graph b-dominates a node e if every path starting from a node b

to e traverses d. Domb(d) denotes the set of all nodes that b-dominate the node d.

For the statement s in program p, let (g1 . . .gn) be the set of conditional statements

in p each of whose elements gi dominate s. For the sequence seq = ⟨a1, . . . ,an⟩, we

write x ∈ seq to denote ∃i ∈ {1, . . . ,n}. x = ai.

Definition 16 (Conditional Definition-Use (CDU) Chain). For the variable v, a

conditional def-use chain w.r.t. an initial node b in a control flow graph is the

sequence of statements c = ⟨s1, . . . ,sn⟩ where

• A subsequence of c is the DU chain d of the variable v; and
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• Any statement si /∈ d is a conditional statement s.t.

∀s j ∈ d . i < j =⇒ si ∈ Domb(s j).

CDU chains are formed by interleaving a DU chain of v with all conditional

statements that b-dominate a statement in the underlying subsequence of the DU

chain. In c, the condition gi precedes the arbitrary element s in c’s DU chain if gi

dominates s. Definition 16 non-deterministically orders the conditions w.r.t. each

other, subject to the constraint that a conditional must precede all statements it

dominates. Using b-domination allows us to choose a starting node closer to a

variable’s uses than a program’s entry.

Our intuition is that CDU chains of a given length likely have more information

about their variable than arbitrary code snippets of the same length. CDU chains

are related to program slices, which consist of all the statements and predicates that

might affect a set of variables at a program point [66, 67, 68]. Unlike slices, CDU

chains ignore, by design, a variable’s data dependencies for two reasons: 1) to avoid

the data dependency clusters that bloat many slices [69] and 2) to focus on capturing

variable-specific signal.

The variable prediction task takes a list of statements with a hole at a variable

use and predicts the correct variable to fill that hole. RETE models this task as a

masked language modelling problem. Pre-trained, masked language models for code,

based on transformers [1], fine-tuned with a small amount of labelled data, achieve

state-of-the-art performance in different software engineering applications [70, 71,

72]. Accordingly, RETE adopts this approach to learn affinities between variables

and their uses in CDU chains.

To train its variable prioritiser model, RETE repeatedly serialises each CDU

chain and masks each use of a variable, not just the defined variable, ignoring all

other tokens. For instance, three CDU chains containing five variable uses would

generate 15 distinct masked training instances. Figure 4.2 shows us how the model

works. For a CDU chain for the variable a ending with a > b, one instance replaces

the final use of awith to mask it out and then feeds it to a pre-trained large language

model to convert the input into a sequence of embeddings. RETE then runs these
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Embeddings

a = 0

Variable
Prioritiser

A Large Language Model

P(token = )> b

Figure 4.2: Processing a sample CDU chain.

embeddings through a feed-forward network with a softmax layer to realise the

task-specific fine-tuning.

Many CDU chains can traverse a given buggy line, so, while its individual CDU

chains may be short, the aggregate length of a variable’s set of CDU chains can be

large. Transformers take a maximum length sequence of tokens as input. Thus, the

serialisation of a variable’s CDU chains may need to be compressed. Section 4.4.2

details how RETE’s framework serialises and compresses CDU chains.

4.3.4 Jointly Prioritising Patches

RETE ranks patches by combining template and variable priorities. RETE uses min

priority queue, ordered by Equation (4.1). Equation (4.1) defines score(δ (v)) using

td(δ ) ∈ N which gives δ , the priority of the template and P(δ , ,v) ∈ [0,1], the

probability of v ∈V being the candidate to fill the single hole . Template distance td

(Section 4.3.2) calculates the distance of the template from the source node extracted

from the localiser (i.e. td(δ ) = d(δ S,δ )). The variable prioritiser described in

Section 4.3.3 provides variable probabilities. A Lower score means a better patch.

score(δ (v)) = td(δ )+
θ

|h(δ )| ∑
i∈ h(δ )

1
P(δ , i,vi)

(4.1)

where θ is a constant we use to control the growth of the summands, and the function

h(δ ) returns the set of holes in δ . We use 1
P(δ , i,vi)

in the summation because it

gives lower score for variables with a higher probability. As the range of td(δ ) is

in W, various template scores differ by integers, the variable prioritisation score



4.4. RETE’s Implementation 87

Buggy Program Patch
Prioritiser

Candidate Patch

Patch
OKFail

Suspicious 
Location 

Patch
Generator

Patch
Checker

Figure 4.3: Architecture of RETE.

starts to matter when P(δ , i,vi)< θ , as the score breaks the barrier of 1. We use

θ = 0.073 as this value performed the best in our experiments. We prioritise patches

by separately prioritising templates and variables rather than directly prioritising

instantiated patches because the number of instantiated patches is much larger than

the number of templates, making it infeasible in practice.

4.4 RETE’s Implementation

Figure 4.3 shows RETE’ architecture, which has three main components: (1) Patch

Generator, (2) Patch Prioritiser combining Variable Prioritiser and Template Priori-

tiser, and (3) Patch Checker. RETE’s implementation takes in a buggy program p and

a suspicious line number and feeds p to its patch prioritiser, which combines its tem-

plate and variable prioritisers to produce a patch that it checks with its Patch Checker.

If the check fails, RETE generates and checks patches until it finds a successful patch.

RETE implementation is a framework, so its implementation components are not

fixed; they can be instantiated with various existing approaches. For instance, its

checker can be anything ranging from a test suite to a patch specification extracted

from symbolic execution.

When realised as a generate-and-validate approach, RETE prioritises tests that

failed the previous run for efficiency in practice. To combine templates and variable

priorities, RETE lazily constructs a priority queue ordered by Equation (4.1).
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4.4.1 Lazily Prioritising Templates

To realise RETE’s template prioritisation scheme (Section 4.3.2), we need to define

the buggy context, our templates, and a distance function for our templates, then

use these components to build a weighted graph. To define the buggy context, we

use fault localisation. Many different localisers have been used in APR for C. For

our C dataset, we use the Ochiai statistical fault localisation [18], since it performs

well [73]. Variation in localisation has confounded tool comparison in C. Perhaps,

for this reason, prior work on Java APR [74, 75] assumes perfect localisation, as

it facilitates tool comparison. CoCoNut is the only previous Python APR work of

which we are aware, and it assumes perfect localisation. For our Python dataset, we

follow its lead.

We turn to the confirmation of the Plastic Surgery Hypothesis (PSH) [47] to

define our templates. PSH shows that many fixes can be constructed from existing

code in a codebase. Relying on the PSH, we construct templates starting from

atomic statements surrounding the buggy context. We templatise these statements by

replacing their variables with holes, one at a time. A statement with three variable

uses would generate three distinct templates, each with a single hole. We start with

only single-holed templates to preserve signal in the names of the other variables

in keeping with RETE’s central conceit: the application of Firth’s dictum [76] to

variables.

The distance between two templates is the difference in the number of holes

each has. Thus, we prefer templates with fewer holes, in keeping with PSH, are

likely to generate instantiations closer to the buggy statement in edit distance.

Starting from this initial set of templates, RETE’s framework uses Dijkstra’s

algorithm [77] to lazily construct its template graph. First, the framework inter-

connects the initial templates with zero cost edges to favour their use. It weights

subsequent edges by the distance of the templates they connect. It moves to the next

template only when it has enumerated all variable instantiations of the current tem-

plate whose score, Equation (4.1), exceeds the distance of the next template. RETE’s

framework constructs new templates from existing ones by replacing, appending, or
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removing statements. Replacing a statement cannot change the number of holes: it

must both fill a hole and replace a variable with a hole. Append and remove change

the number of holes, so long as the resulting template has at least one hole, i.e.

remains a template. When filling a hole, we try each of the variable prioritiser’s top

30 variables. This restriction was because maintaining all possible bindings is quite

expensive, and we observed that it was unnecessary in practice on our corpus. We

hypothesize that this observation generalises. We picked 30 as it effectively balanced

cost and performance on our corpus. When creating a template, RETE’s framework

nondeterministically chooses an operation. We chose the templates surrounding the

line of code as the set of initial templates, and we restricted the template size to a

single statement and the size of the set to 20 templates.

4.4.2 Variable Prioritisation with CodeBert

We instantiate the pre-trained component of RETE’s variable prioritiser (VP) with

CodeBERT [78] and fine-tuned CodeBert for C and Python datasets. CodeBERT [78]

is a model pre-trained on natural language (NL) and programming language (PL)

pairs across six languages: Python, Java, JavaScript, PHP, Ruby, and Go, using

2.1 million NL-PL data points. Since CodeBert is not trained for C, we replaced

C-specific symbols, such as NULL with 0, and dropped volatile quantifiers. We

then feed this modified CDU chain to CodeBert to produce embeddings for the

task-specific model that fine-tunes CodeBert to RETE’s variable prioritisation task:

to accurately predict variables for holes in CDU chains. VP’s task-specific fine-tuned

subcomponent is a feed-forward layer with a softmax function, implemented using

Huggingface’s open-source transformer [79].

At inference time, we have a buggy statement with a hole. We gather the CDU

chains that share this statement, as they comprise the variables that can fill the hole.

Under preliminary experimentation, concatenating these chains was inaccurate, so

we decided to build a query by interleaving them. To do so, we order statements

by reachability, then line number. If one statement is reachable from another in the

program’s control flow graph, the statement that is reached follows the other in the

interleaving; if the statements are mutually reachable or unreachable, we order them
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by line number. We perform these actions to maximise variable diversity, as we want

to improve the cases where uncommon variables are used to fix the bug by increasing

unique variable information in our CDU chains.

To fine-tune the model, we trained the task-specific submodel on interleaved

CDU chains so that the training data matches the prediction queries. To produce

the shared hole needed for interleaving, we converted each input program into a set

of single-holed programs, each with a different variable replaced with a hole. We

interleaved the set of CDU chains that pass through each single-holed program’s

holed statement.

CodeBERT’s window size is 512 tokens. In our corpus, 5692 CDU chains

pass through a buggy line on average, each having an average length of 34. Naïvely

interleaving these produces inputs whose average length is 5692×34 > 512. To cope

with this mismatch, we compress our inputs. First, we consider only cardinality at

most five subsets of the CDU chains that pass through a single-holed statement. Then

pick that subset whose chains maximise the number of distinct variables that they use,

to maximise, as with dropping duplicates above, to increase diverse information on

variables. This is the NP hard unweighted maximum coverage problem [80], whose

solution we greedily approximate [81]. If required, we next reduce the number of

conditions in each chain in the interleaving to the two that use the most variables. If

the input is still too long, we truncate it.

Random Forest Variable Prioritiser Several existing program repair techniques [61,

82] use machine learning with feature engineering to tackle test-overfitting. These

techniques include features related to program variables, some of which are language-

specific and not applicable to C or Python. In the spirit of these techniques, we

implemented an alternative approach, based on feature engineering. This approach

uses a random forest, and the language-independent features in Table 4.1, to rank

program variables. We train this random forest using Scikit-learn [83].
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Feature Description

lvalue count of variable definitions
rvalue count of variable uses
for_init count of for loop initialisation uses
for_cond count of for loop condition uses
for_lcv count of loop control uses
while_cond count of while loop condition uses
if_cond count of if condition uses
hole_to_def distance between hole and the def
last_use distance to last use
hole_window count of uses in k lines around hole
operator_histo multiset of counts of operator/function uses
is_global local/global variables

Table 4.1: The features that our random forest uses. Each feature is tracked for each variable
in scope.

4.5 Evaluation
This evaluation uses many configurations of APR techniques, so it starts by an-

alytically defining APR components, then using those components to establish a

new taxonomy. It then turns to describing experiments whose aim is to answer the

following questions:

• Do our conditional definition-use (CDU) chains contain strong signal about

variable usage? (Section 4.5.2)

• Is RETE’s prioritisation strategy effective? (Section 4.5.3)

• Does the best combination of RETE’s components advance the state of the art?

(Section 4.5.4)

Corpus Our corpus consists of three bug datasets whose bugs belong to RETE’s

defect class (Section 4.3.1), as shown in Table 4.2. The programs in P28 were

sampled uniformly from GitHub on 21/10/21. We exclude two samples namely

wireshark-37122-37123 and gzip-3fe0caeada-39a362ae9d from MB37 used in Tri-

dent, since we could not build them along with our ML libraries. MB35 and BG107

include a test suite; the number of tests averages 62.8 for BG107 and 91.3 for MB35.
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BG107 107 bugs from the BugsInPy [64] dataset.
P28 28 Python programs with artificially added holes.
MB35 The ManyBugs [51] subset used in Trident.

Table 4.2: Evaluation corpus of bugs in RETE’s defect class.

P28 does not need one as we used it to train and evaluate RETE’s neural variable

ranker.

Experimental Setup We split the test suite into two parts (20-80), taking care that

the smaller part includes at least one failing test. The smaller part is sent to a subject

APR tool for patch generation. A patch is plausible if it passes the test suite. We

consider a patch correct if it is plausible, and manual inspection deems it equivalent

to the patch written by the developer. All the patches generated and used in this

evaluation are available in the reproduction package.

For all training and fine-tuning, we used the buggy datasets with a split of

90-10 for training and testing. All the hyperparameters are tuned by using K-fold

cross-validation with k = 5 and grid search. No layers were frozen, since we had a

large enough dataset and a set of low learning rates during the grid search. We use

Adam optimiser with a weight decay fix [84].

We conducted experiments inside a Docker container on a CPU of 2.7 GHz

machine running on Ubuntu 21.04 with 16GB of memory and Geforce RTX 3070M.

We applied a 4-hour timeout for Python-based tools and a 2-hour timeout for C-based

tools. This difference is due to the fact that Python tools run tests for validation,

whereas C-based tools use a patch specification for verification, which is much faster

than running tests. Therefore, Python tools require more time to execute tests. In

contrast, synthesis-based techniques for C, such as Trident, Angelix, and SemFix, do

not need to execute tests for each possible patch, allowing for shorter timeouts.

4.5.1 Tool Configurations and Baselines

RETE’s key contribution is in the variable prioritisation, which is designed to im-

prove patch prioritisation for program repair, and is orthogonal to existing patch

generation and prioritisation techniques. To evaluate its impact in isolation, we

dissect existing program repair techniques into interchangeable parts, and consider
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Validator

V Validation against Tests -
T Trident’s patch Specification Section 3.3.2
A Angelix’s patch Specification [4]
S SOSRepair’s patch Specification [59]

Patch Generator

A Angelix’s Angelic Values [4]
S SOSRepair’s Database of Snippets [59]
P SPR’s Transformation Schemas [9]
C CoCoNut’s Neural Machine Translation [12]
E Trident’s Naïve template enumeration Chapter 3
G GenProg’s Genetic Algorithm [45]
S Plastic Surgery Algorithm [47]

Patch Prioritisation

D DirectFix’s modification minimisation [26]
C CoCoNut’s Neural Machine Translation [12]
E Trident’s expression size minimisation Chapter 3
T Trident’s side effects minimisation Section 3.3.4
P Prophet’s Maximum Likelihood Estimation [53]
S Plastic Surgery Algorithm [47]

Variable Prioritisation

E Naïve variable enumeration -
H Heuristic discussed in Section 4.5.2 -
B CodeBERT [78]
G GraphCodeBERT [85]
D CodeBERT fine-tuned on DU chains Section 4.3.3
C CodeBERT fine-tuned on CDU chains Section 4.3.3
F Random Forest Section 4.5.2

Table 4.3: Program Repair Components Used in Evaluation.

their combinations with RETE’s approach. This analysis differs from the existing

high-level classification of APR tools [86] into heuristic-based, constraint-based, and

learning-based since our goal was to abstract over irrelevant components of existing

tools that would complicate the objective evaluation of the proposed technique.

We analytically divided repair techniques into three main parts: patch gen-

eration, patch checking and patch prioritisation. Patch generation explores the

space of patches by enumeration [9], meta-heuristics [45], neural machine trans-

lation [12, 13], or SMT-based program synthesis [8]. Patch checking determines
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Configuration Tool Reference

V P
P Prophet [53]

T E
T Trident Chapter 3

A A
D Angelix [4]

S S SOSRepair [59]
V C

C CoCoNut [78]
V G GenProg [45]

Table 4.4: Configurations of standard tools.

whether a candidate patch meets the correctness criteria, either via validation against

a test suite [45] or verification, as by solving constraints (Section 3.3.2). Patch

prioritisation ranks patches by their likely correctness, as with syntactic distance [26]

or machine learning [3]. We denote such techniques as X a
b , where X is a validator,

a is a patch generator, and b is a patch prioritiser. For RETE, we further split patch

prioritisation into template and variable prioritisation, and combine them using the

technique described in Section 4.3.4. Such configurations are denoted by the notation

X a
R(b,c), where b denotes a template prioritisation technique, and c denotes a variable

prioritisation technique.

The considered components are tabulated in Table 4.3. Based on this notation,

Angelix [4] is A A
D since it uses its own patch specification and synthesis methods

while using DirectFix [26] patch prioritisation. Angelix uses logical constraints

that encode program semantics and information extracted from tests, and validates

candidate patches against these constraints; we refer to this validation method as A.

Trident is denoted by T E
T since it uses different constraints that encode information

about side effects. Finally, Prophet is V P
P since it extends SPR [9] using an ML-based

patch prioritiser. All techniques used as baselines are tabulated in Table 4.4.

All the techniques in Table 4.3, except for CoCoNut (V C
C ), are implemented

for C. In order to make a more objective comparison, we ported Prophet to Python

and trained it on Python programs in the configuration V P
R(P, C). Prophet orders partial-

ly/fully instantiated patches using machine learning and concretising the partially

instantiated patches using SPR’s condition synthesis algorithm [9]. In SPR’s algo-

rithm, when multiple possible candidate variables have the same potential value
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map, we improve Prophet by supplanting it with RETE’s variable prioritisation to

prioritise variables to satisfy the condition. V P
R(P, C) differs from V P

P in cases where

multiple variables satisfy the conditions, V P
R(P, C) uses its variable prioritiser (i.e. C) to

order these unordered candidate variables. Section 7.2 discusses why we consider

these baselines. We restrict the defect class to inserting or modifying a single atomic

statement for all tools that we ran in the evaluation. This does not cover instances

such as inserting for/while block, sequence of atomic statements, method declaration,

etc. We used this constraint to make the patch generation more feasible by reducing

the search space.

4.5.2 CDU Chains Contain Strong Signal

To demonstrate the variable usage signal CDU chains contain, we compare token

predictors against CodeBert fine-tuned on CDU chains on our variable prediction

task.

We use four variable prioritisation baselines — H, F, B, and G — introduced

in Table 4.3. The first, H, ranks candidate variables based on their frequency

in a program. The second, F, is the random forest implemented using explicit

feature engineering; outperforming this technique means that our neural approach is

outperforming manual feature engineering. More information on the features used by

the random forest available in our reproduction package. These two baselines frame

the results; we use the two neural baselines — CodeBert B and GraphCodeBert

G — without fine-tuning to demonstrate variable signal in CDU chains. We did

not fine-tune GraphCodeBert with CDU chains because it takes both source code

and that code’s dataflow as input. The difference between the performance of

CodeBert and GraphCodeBert in Table 4.5 do not appear to warrant the engineering

required to extract the dataflow GraphCodeBert needs. We note that CDU chains,

by construction, implicitly contain dataflow information, which a neural network

trained using them may learn and exploit.

Internally, all of these approaches rank candidate variables, so it is natural to

compare them using standard rank measures. Unfortunately, none works well in our

setting. We do not use mean average precision (MAP) or normalised discounted
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gain (NDCG) because we only care about the rank of the first plausible patch, not

their density in a prefix of the complete ranking. We do not use Mean reciprocal

rank (MRR) because it does not account for search space reduction. We rank the

candidate variables w.r.t. to the number of variables in-scope, which differs for

different samples. MRR does not distinguish cases such as ranking 6th out of 6 vs.

6th out of 1000 variables in-scope.

Instead, we introduce a new measure, which we call the fraction searched

measure. This measure returns the length of the prefix of ranked variables that must

be checked over the total number of candidates, i.e. the fraction of the variable search

space we had to check. For example, assume we have a search space of 100 variables

and, under a particular ranker, the 16th variable is the first that can fill a hole. In this

case, the ranker reduced the search space to 16%. Formally, let p ∈ L be a program

and p ∈ L be p with some of its variables replaced with holes. Let r( i, p ) be the

rank that the variable ranker r assigns to the ground truth variable in p that fills i in

p . The r’s fraction searched is

F(r, p, p ) =
1∣∣h(p )

∣∣ ∑
i∈h(p )

r( i, p )∣∣var( i, p )
∣∣

where h(p ) counts the holes in p and var( i, p ) ⊆ V denotes the set of all the

variables in-scope i in p .

To compute var( , p ), we consider only variables whose type matches the

hole’s type. For Python, this does not help much since everything is an object and

many objects seamlessly slot into many expressions because of default functions,

like __bool__(). Hence, we restrict rankings to a fixed vocabulary of variables

that varies by bug. We construct this vocabulary by limiting the accessors (".") to 2

to leverage the Law of Demeter [87] and avoid variable explosion.

Table 4.5 shows that CodeBERT [78], fine-tuned with CDU Chains, (Column C)

outperforms the baselines. In particular, it outperforms the neural baselines — vanilla

CodeBERT (B) and GraphCodeBert (G) — by an order of magnitude. We observe

that CodeBERT, when fine-tuned on CDU chains, (Column C), performs better when
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Table 4.5: The performance of variable prioritisation techniques using the fraction searched
measure. The best configuration C, CodeBert fine-tuned with CDU chains, is
bolded.

Dataset samples H F B G D C

Python 802k 0.476 0.039 0.232 0.204 0.18 0.033
C 652k 0.416 0.032 0.260 0.252 0.07 0.028

- if (tif->tif_rawcc > 0 && tif->tif_rawcc != orig_rawcc
+ if ((tif->tif_rawcc > 0)

&& (tif->tif_flags & TIFF_BEENWRITING) != 0
&& !TIFFFlushData1(tif))

{

Figure 4.4: Dev. patch for libtiff-2007-11-02-371336d-s865f7b2.

compared to its counterpart fine-tuned on DU chains (Column D). Using this, we

can conclude that extending DU chains with conditions helps improve performance.

As expected, we observe that feature engineering allows random forest (Column F)

to outperform vanilla CodeBert and GraphCodeBert, which are not benefiting from

CDU chains. These results are strong evidence that CDU chains are valuable source

of signal for the variable prediction task. We find:

CDU chains contain strong signal: CodeBert fine-tuned on CDU chains (Column

C in Table 4.5) outperforms the neural baselines by an order of magnitude; its

performance edge over random forest (F) means fewer expensive checks of

candidate patches.

Although CDU chains permit CodeBert to outperform our random forest base-

line, its inference is expensive. It takes 0.65s on average to respond to queries,

compared to ca. 0.004s for our random forest.

4.5.3 Effectiveness of RETE’s Prioritisation

To understand the effectiveness of RETE’s patch prioritisation, we compare compo-

nent combinations for Python and then C. Below, PSH refers to the plastic surgery

hypothesis and VP to variable prioritiser. For Python, we use BG107 and these

component combinations:



4.5. Evaluation 98

Table 4.6: On BG107, variable and template prioritisation perform better. The best configu-
ration is bolded.

Dataset Samples Correct Plausible

V E
R(E, F) V S

R(S, H) V S
R(S, F) V S

R(S, C) V E
R(E, F) V S

R(S, H) V S
R(S, F) V S

R(S, C)

Black 4 0 0 2 2 0 3 3 3
Fastapi 3 0 0 0 0 0 0 0 0
Httpie 3 1 1 2 2 1 2 3 3
Keras 11 0 1 2 2 0 1 7 7
Sanic 1 0 0 0 0 0 0 0 0
Y-DL 3 0 0 1 1 0 0 1 1
Spacy 2 0 0 1 1 0 0 1 1
Tqdm 4 1 1 2 2 1 1 3 3
PySnooper 1 0 1 1 1 0 1 2 2
Tornado 6 0 0 1 2 0 0 2 2
Matplotlib 8 0 2 2 2 0 2 3 3
Luigi 15 1 5 7 7 1 7 7 7
Scrapy 10 0 2 2 2 0 2 2 2
Pandas 36 0 2 4 5 0 2 4 5

Overall 107 3 15 27 29 3 21 38 39

Table 4.7: Average patch ranking for MB35: variable prioritisation indeed helps since T S
R(S, C)

and T S
R(S, F) outperform other tools by a large margin. Ranks that cannot be assessed

are marked with “-”.

Bug T E
T T E

R(E, F) T S
R(S, H) T S

R(S, F) T S
R(S, C)

gmp-a1d3d-f17cb 165350 2563 87339 933 843
libtiff-09e82-f2d98 13313 311 14241 552 513
libtiff-764db-2e42d 90471 7655 724 2 7
libtiff-a72cf-0a36d ≈ 1012 - 52428627 15924 15842
libtiff-37133-865f7 ≈ 1018 - 40842 8786 8566
php-70075-5a8c9 87 51 619 890 782
php-e65d3-1d984 90471 36840 110436 5072 5439
php-63673-2adf5 61 7 52 7 3

Average ≈ 2×1017 - 6585360 4021 3999

V S
R(S, C) PSH with CDU chain VP

V S
R(S, F) PSH with Random Forest VP

V S
R(S, H) PSH with Heuristic VP

V E
R(E, F) Naïve enumeration with Random Forest VP

Table 4.6 shows that V S
R(S, C) significantly outperforms all the other combinations.

Combining PSH and RETE’s VP does indeed improve patch synthesis since V S
R(S, C)

and V S
R(S, F) both significantly outperform V S

R(S, H) and V E
R(E, F). V E

R(E, F) could fix only three

bugs, whereas V S
R(S, F) fixes 27 and V S

R(S, H) fixes 15. This is because most patches are
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Table 4.8: This table compares Prophet and CoCoNut against RETE’s best variant (V S
R(S, C))

and Prophet enhanced with RETE (V P
R(P, C)). For correct and plausible patches,

RETE outperforms the other baselines by generating 7 and 13 additional correct
patches against Prophet and CoCoNut, respectively. All the RETE variants are
bolded.

Dataset Samples Correct Plausible

V P
P V P

R(P, C) V C
C V S

R(S, C) V P
P V P

R(P, C) V C
C V S

R(S, C)

Black 4 1 2 1 2 3 3 3 3
FastApi 3 0 0 0 0 0 0 0 0
Httpie 3 1 2 1 2 3 3 2 3
Keras 11 2 2 1 2 4 4 3 7
Sanic 1 0 0 0 0 0 0 0 0
Y-DL 3 0 0 0 1 0 0 0 1
Spacy 2 1 1 0 1 1 1 1 1
Tqdm 4 1 2 1 2 2 2 1 3
PySnooper 1 1 1 1 1 1 1 1 2
Tornado 6 0 0 0 2 0 0 0 2
Matplotlib 8 2 2 2 2 2 2 2 3
Luigi 15 8 8 5 7 8 8 8 7
Scrapy 10 2 2 1 2 2 2 3 2
Pandas 36 3 3 3 5 5 5 6 5

Overall 107 22 25 16 29 31 31 30 39

Table 4.9: The number of patches that require non-local variables. A variable is considered
non-local if it is not directly used in the method. All RETE configurations
are bolded. Using RETE with variable prioritisation helps generate non-local
variables. The results show that CoCoNut (V C

C ) and Prophet (V P
P ) could not

generate patches with long ranged dependencies on their own.

V C
C V P

P V P
R(P, C) V S

R(S, C)

Correct Patches 16 22 25 29
Correct Patches with non-local Variables 0 0 1 5

closer to pre-existing code located somewhere in the buggy program’s code [47];

hence, when V E
R(E, F) tries to construct a patch in such cases, it faces the harder task of

doing so from the ground up without guidance. V S
R(S, F) fixes more bugs than V S

R(S, H),

since it enumerates patches more intelligently (Section 4.3.3). V S
R(S, C) fix two more

correct bugs when compared against V S
R(S, F) since CDUs identify relevant variables

better than our random forest baseline.

For C, we utilised the eight bugs in intersection of MB35 and the subset of

RETE ’s defect class on which its best configuration produces a fix. We leverage

Trident’s multi-path sepcification inference (Section 3.3.2) as a validator: C compiles
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Figure 4.5: Patches generated per unit time by RETE (V S
R(S, C)), Prophet (V P

P ) and CoCoNut
(V C

C ).

Figure 4.6: The number of patches generated by T E
T and T S

R(S, F) per unit time: T S
R(S, F) gener-

ates patches faster than T E
T .

slowly, and Trident’s efficient patch specification inference obviates many com-

pilations. We compare these five component combinations: T E
T (vanilla Trident),

T E
R(E, F), T S

R(S, H), T S
R(S, F) and T S

R(S, C). Table 5.6 shows the results. In some cases, the

ranks of patches from T S
R(S, F) and T S

R(S, C) are extremely low compared to those T E
T ’s

patches. This is because T E
T constructs statements from ground up, hence bugs such

as libtiff-a72cf60-0a36d7f and libtiff-371336d-865f7b2 (Fig-

ure 4.4) cannot be synthesized by T E
T as they require constructing a fresh expression
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Table 4.10: Plausible and correct patches for bugs in MB35 (C dataset). RETE integrated
with Trident, the column labelled T S

R(S, F), generates 18 plausible patches out of
35, of which 8 are correct. The next largest total, GenProg, the column labelled
V G, generates 19, of which only two are correct. No other tool configuration
generates more correct patches than T S

R(S, F).

Bug kLoC Total Plausible Correct

T S
R(S, F) T

E
T A A

D V P
P S S V G T S

R(S, F) T
E

T A A
D V P

P S S V G

gmp 145 2 1 1 2 1 0 1 0 0 0 0 0 0
gzip 491 3 3 3 3 2 0 1 1 1 1 1 0 0
libtiff 77 10 8 5 5 5 8 7 4 3 2 1 2 2
php 1,099 19 6 6 6 9 4 9 3 3 3 4 3 0
wireshark 2,814 1 1 1 1 1 1 1 0 0 0 0 1 0

Overall 35 18 15 17 18 13 19 8 6 6 6 6 2

with 8-13 different variables and operators. In such cases, we resorted to estimating

T E
T ’s rank on them by assuming that candidate variables were uniformly ordered.

Unfortunately, we could not estimate T E
R(E, F)’s performance the same way, since it uses

F as its VP. On average, the search space is reduced by a few orders of magnitude on

these seven bugs. The rankings of configurations T S
R(S, H) and T S

R(S, C) affirm that both

RETE’s template and variable prioritisers play a pivotal role in synthesising patches.

On both our Python and C datasets, enhancing other techniques with RETE’s

template and variable prioritisers improves their performance.

4.5.4 RETE’s Performance

We now show that RETE advances the state of the art in 1) time to generate patches

and 2) number of correct patches. We close by showing how it speeds Trident, the

state of the art C APR tool for handling side effects.

Figure 4.5 shows how many patches RETE (V S
R(S, C)), Prophet (V P

P ) and CoCoNut

(V C
C ) produce per unit time. All 107 programs from the dataset are uniformly ordered

and then each tool’s execution time to patch each bug, with a timeout of four hours, is

summed, upto the time budget. For each budget, we repeat this process 10 times with

10 different orders and average the results. At all budgets, RETE (V S
R(S, C)) outperforms

Prophet and CoCoNut.

Table 4.8 compares RETE against Prophet [3] and CoCoNut [78] in terms of
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the number of correct and plausible patches each generates. All RETE variants are

bolded in the table. Prophet (V P
P ) generates 22 and CoCoNut (V C

C ) 16 correct patches.

RETE’s best configuration (V S
R(S, C)) generates 29 correct patches. On Python, RETE

improves the state of the art by 31% vs. Prophet and 59% vs. CoCoNut. Prophet,

enhanced with RETE’s variable prioritisation (V P
R(P, C)), fixes three more bugs than

vanilla Prophet [3]. Interestingly, we observe each of these two tools exclusively

fixes some patches, like patches in Luigi and Pandas. Although V P
R(P, C) generates

more correct patches than Prophet, they generate the same number of total patches.

This may indicate that Prophet enhanced with Rete’s variable prioritisation reduces

the overall overfitting of the generated patches.

A variable is non-local if it is not used in the buggy method. For example, if

the variable var is directly used somewhere in the method, but var.a is not, var

is local and var.a is non-local. Under this definition, most in-scope variables in

Python are non-local. Table 4.9 shows that integrating variable prioritisation helps

synthesise patches that require non-local variables: V S
R(S, C) fixes five bugs that require

non-local variables, whereas the other tools struggle to synthesise correct patches

that require them.

V S
R(S, C) fixes five bugs that require non-local variables, whereas other tools struggle

to synthesise correct patches that require non-local variables.

Table 4.10 compares the performance of RETE-enhanced Trident (T S
R(S, F)) against

the state of the art. We did not include T S
R(S, C) for C, despite the fact that it generates

better rankings, because Trident’s validation step is much faster on average than

querying CodeBert (0.28 vs. 0.65 seconds). A faster GPU than ours would probably

alleviate this issue.

Although T S
R(S, F) does not synthesise new patches relative to the state of the art,

it does synthesise more correct patches. Angelix also generated the two correct

patches that T S
R(S, F) generated beyond those generated by vanilla Trident. This is due

to patch construction. Angelix (A A
D ) constructs patches by minimally modifying the

existing expressions using SMT queries, while RETE’s PSH template constructor
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tries to find patches close to a set of existing statements. One such patch is Figure 4.4.

Here, Angelix and T S
R(S, F) both successfully generate this patch, since it is easy to

modify the existing expression to reach the patch by simply dropping the expression

tif->tif_rawcc != orig_rawcc. Vanilla Trident, in contrast, does not

since the patch requires an expression with 11 components, which is infeasible

due to combinatoric explosion. To understand the importance of RETE’s variable

prioritisation more clearly, we ran an experiment by varying the time limits on these

seven bugs that T E
T synthesises to compare it against T S

R(S, F). Figure 4.6 shows that

T S
R(S, F) synthesises patches much faster than T E

T .

RETE-enhanced Trident (T S
R(S, F)) repairs bugs faster than vanilla Trident (T E

T )

while fixing two more bugs.



Chapter 5

Precise Data-Driven Approximation

for Program Analysis

5.1 Introduction
Program analysis checks if a given program satisfies certain correctness proper-

ties. Due to the undecidability, program analysers approximate program behaviour,

which results in imprecision. Techniques like abstract interpretation (Section 2.2.2)

overapproximate program behaviour, causing false positives (false alarms), and

techniques like symbolic execution (Section 2.2.3) underapproximate program be-

haviour [88, 89], which leads to false negatives (missed violations). Abstract interpre-

tation resort to coarse abstractions of program states to make their analysis decidable,

at the cost of precision. On the other hand, symbolic execution is imprecise because

it explores a finite number of execution paths and thus may miss important edge

cases.

To improve the precision and recall of program analysis, we propose an alterna-

tive to underapproximate and overapproximate reasoning. Our approach leverages

execution samples to probabilistically approximate program states via a novel data

structure called program state probability (PSP). For each state, PSP estimates the

probability of existence of a program input that reaches that particular state during

execution. We compute PSP by constructing an estimator, such as random forest,

from data obtained through fuzzing.
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i n t N, o f f ;
s c a n f ( "%d " , &N ) ;
i f (N <= 0) re turn 1 ;
l l * a = m a l lo c ( s i z e o f ( l l ) * N ) ;
l l *b = ma l lo c ( s i z e o f ( l l ) * N ) ;
f o r ( i n t i = 0 ; i < N; i ++) {

s c a n f ( "%d " , &o f f ) ;
i f ( o f f < 0 | | o f f > 6 )

re turn 1 ;
i n t p = i − 1 ;
a [ i ] = ( i == 0)?6 : a [ p ] + o f f ;
b [ i ] = ( i == 0)?0 : b [ p ] + a [ p ] ;
a s s e r t ( b [ i ] <= 3* i * i + 3* i ) ;

}
re turn 1 ;

(a) A program from SV-
benchmarks for which
Clam produces a false
positive (ll denotes
long long).

(b) A heatmap showing the prob-
ability of reaching programs
states w.r.t. the values of
b[i] and i (cooler means
less likely).

(c) A heatmap computed when
analysing an assertion in
OpenSSL, for which Clam
generates a false positive.

Figure 5.1: An example program, a PSP heatmap computed for this program, and a heatmap
for analysis of OpenSSL.

This technique’s fundamental premise is that significant variation exists in the

likelihood of reaching various states. Therefore, we can considerably enhance anal-

ysis precision at the cost of a small probability of unsoundness or incompleteness.

First, PSP enables us to disregard low-probability states deemed feasible by over-

approximation, thus reducing false positives. Second, PSP enables us to consider

high-probability states deemed infeasible by underapproximation, thus reducing false

negatives. The level at which low-probability states are ignored and high-probability

states are recognised is controlled by a user-defined threshold, which functions as

a control knob for the analysis trade-off. We demonstrate the utility of PSP by

applying it to tackle fundamental challenges faced by two widely-used analysis

techniques — abstract interpretation and symbolic execution. PSP reduces abstract

interpretation’s false positives and increases the number of violations detected by

symbolic execution. Apart from that, we applied PSP to test-driven program repair

to alleviate test-overfitting by prioritising correct patches.

Abstract interpretation approximates program states using abstract domains

to make analysis scalable, which often leads to false positives, causing developers

to ignore legitimate warnings [90]. Minimising false positives is crucial to ensure

the usefulness of abstract interpretation. To achieve that, we propose augmenting

abstract domains with program state probabilities constructed using values from
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fuzzing. PSP allows us to disregard low-probability states deemed reachable by the

abstraction. Although this creates a low probability of unsoundness, we demonstrate

that PSP effectively reduces false positives, which is important for the practical use

of abstract interpretation as a bug-catching tool.

Symbolic execution executes a program with symbolic inputs and creates path

conditions for the explored paths, which are solved using an SMT solver to identify

feasible paths and potential bugs [91]. However, it suffers from a scalability bot-

tleneck due to the high computational cost of constraint solving. We applied PSP

to reduce the solving cost by identifying probable states and guessing which path

conditions are satisfiable. Specifically, we prioritise exploring paths that are more

likely to be feasible and skip solving path conditions whose probability of being

satisfiable is above a user-defined threshold. As a result, PSP facilitates deeper code

exploration and thus enables symbolic execution to find bugs faster.

Program repair tools face the challenge of searching for a correct patch in a

search space that contains many irrelevant or incorrect patches. One way to address

this challenge is to prioritise patches in a way that increases the likelihood of finding

a correct patch. We formulate a new hypothesis that the set of values most variables

in a program can take is invariant with respect to small edits to the program. Relying

on this hypothesis, we prioritise patches that make minimal changes to the range of

all values program variables can take during execution. PSP enables us to efficiently

implement this prioritisation strategy by probabilistically quantifying unchanged

bindings of variable to values.

We implemented PSP using AFL fuzzer [92] for C programs, and using Fuzzer

Harvey [93] for smart contracts. For abstract interpretation, we integrated PSP with

Clam analyser [94] for C programs. An evaluation on six programs from Magma

benchmark [95] revealed that PSP enhances the precision of Clam by improving its

F1-score by 74.3%. For symbolic execution, we compared our PSP-based search

strategy with the state-of-the-art search strategy using pending constraints [96] and

abstract symbolic execution (ASE) [97]. To compare with the pending constraints, we

implemented our strategy in Mythril [98] symbolic executor for smart contracts, and
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to compare with ASE, we implemented PSP inside the ASE tool. Our experiments

demonstrated that PSP increases the number of found bugs by 4.1% compared

to the pending constraints, and reduces the number of solver calls by 77 times

compared to ASE. For program repair, we integrated PSP with the state-of-the-art

patch prioritisation strategy of Rete [99]. For bugs from ManyBugs benchmark [51],

PSP decreased the average rank of correct patches by 26%.

In this chapter, we make the following contributions:

• Introduce program state probability (PSP), which probabilistically approxi-

mates program states.

• Apply PSP to reduce false positives during static analysis.

• Propose a search strategy relying on PSP to guide symbolic execution to find

more bugs.

• Propose patch prioritisation strategy using PSP to effectively prioritise correct

patches for program repair.

PSP’s implementation, and the scripts and data used to evaluate it can be found

in the accompanying package https://zenodo.org/record/7902213

5.2 Overview
In this section, we discuss the general intuition behind program state probability, and

illustrate one of its applications: reducing false positives of static analysis.

Figure 5.1a depicts a simplified code fragment from SV-benchmarks, which

serves to evaluate the accuracy of program analysis tools. The program comprises

a sequence of memory allocations and assignments, and includes a loop and an

assertion. The assertion checks whether b[i] <= 3*i*i + 3*i holds for all

values of i between 0 and N − 1. Clam [94], an LLVM-based abstract interpreter

for C programs, can only imprecisely analyse the code and yields intervals in the

range b = [8,∞], which is inaccurate and leads to a false positive. This limitation

arises because Clam does not precisely capture program dependencies because of

the overapproximation of program states.

https://zenodo.org/record/7902213
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To overcome this issue, we augment Clam’s approximation with a probability

distribution constructed from fuzzing data. PSP is visualised in Figure 5.1b that

shows a heatmap obtained from fuzzing data to construct a probability map for

various program states with respect to the variables b[i] and i. The cooler colours

represent a lower probability that the program can generate such a program state.

The heatmap reveals a more precise range of values for b, making it more accurate

than Clam while capturing the dependencies between b[i] and i.

The upper curve in the heatmap corresponds to the function 3*i*i + 3*i,

which satisfies the assertion. The lower bound provided by the heatmap is close

to the actual lower bound, which is 6i. At large values of i, it does not precisely

match because we did not provide enough seed inputs for the fuzzer. However, it

is sufficient to conclude that the probability that there exists an input that leads to

the assertion violation is 0.1826, which is below our default threshold of 0.8. Hence,

PSP helps to eliminate Clam’s false positive.

The heatmap in Figure 5.1c is obtained by analysing a larger program, OpenSSL,

which contains the assertion assert(ctx->buf_len >= ctx->buf_offset).

The heatmap shows the distribution of values for the variables ctx->buf_len

and ctx->buf_offset. We can see that the heatmap’s heat extends up to the

location of the assertion, indicating that the condition holds with a high probability

based on the output of PSP. In contrast, Clam does not effectively capture the

relationship between these variables, which leads to a false positive.

5.3 Program State Probability

This work rests on the idea of using the probability that a program can reach a given

program state to precisely approximate program behaviour. Here, we formalise

program state probability, detail how to calculate it, and apply it to estimate the

likelihood of a program condition being satisfiable.

We use the following terminology. Let I be the set of all possible inputs a

program f can take. Let V be f ’s variables and X be the values a variable can

take. Let Σ f be the set of all concrete states the program f can potentially take.
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Each state σ :V →X ∈Σ maps variables to values. We assume that V contains the

program counter, which binds each state to the location in the program at which it

is computed. Consider the set of abstract states (sets of concrete states) computed

during an abstract interpretation of the program f . Let A f be the union of all the

abstract states computed during the abstract interpretation of f , so A f ⊆ Σ f .

5.3.1 Estimating Program State Probability

Let f be a program, let σ ∈ Σ f be an arbitrary program state of f , and let f (i) =

σ0,σ1, . . . ,σn = σ denote the execution of f instrumented to output its entire state

trajectory. This indicator function defines the set of states f can generate:

IΣ f (σ) =

1 if ∃i ∈ I,σ ∈ {σ j | f (i) = σ ∧ j ∈ [0..|σ |]}

0 otherwise
(5.1)

This indicator function is not computable, so we define program state probability

to approximate it.

Definition 17 (Program State Probability (PSP)). For the program f , the program

state probability of the program state σ ∈ Σ f is the probability that f can generate

σ . Formally, it is P(IΣ f (σ) = 1).

To estimate PSP, we use the information generated from fuzzing. We represent

the event of running a fuzzer as F and the fuzzing data using the multiset Fuzz

whose element multiplicity represents the number of times the program state σ was

encountered n times during the fuzzing campaign.

We use the Fuzz produced by fuzzing campaign F to estimate PSP as follows:

P(IΣ f (σ) | F) =


1 σ ∈ Fuzz

0 σ /∈ A f

r(σ ,Fuzz) otherwise

(5.2)

where r is a probability distribution, which defaults to uniform, over the states unseen

during the fuzzing campaign F .
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When the fuzzing campaign encountered σ , we can say with certainty that

P(IΣ f (σ) | F) = 1. When σ /∈ A f , we can say with certainty that P(IΣ f (σ) | F) = 0,

as abstract domain overapproximates the set of possible program states. Otherwise,

we use the function r to estimate, or “radiate”, probability f can generate σ from

the observations in Fuzz. This function can be instantiated in various ways, as

discussed in Section 5.3.2. Where clear from context, we use P(IΣ f (σ)) to denote

P(IΣ f (σ) | F).

We compute the probability of a state’s feasibility, such that if the state is

discovered during the fuzzing campaign (σ ∈ Fuzz), its probability is set to 1,

indicating that the state is feasible. The number of times the state is encountered

during the fuzzing campaign does not affect this measure. Therefore, this approach

is resistant to changes in the fuzzing settings, although it is not completely immune

to them.

5.3.2 Estimating Unseen States

Empirically, we observe that variable bindings often obey rules and exhibit patterns,

like monotonically increasing at a fixed stride, only taking on odd (or even) num-

bers, or oscillating among a few error codes. We leverage this insight to estimate

r(σ ,Fuzz). A program generates very few of the possible program states. We first

check whether σ ’s neighbourhood has enough data to contend with this sparsity. If

it does, we look for patterns in it. If we discern a pattern, we increase the probability

of unseen values that obey it. We use smoothing to reserve probability weight for

the rest of the values.

We use supervised learning to find binding patterns. Let N : Σ×N→ 2Σ be σ ’s

k-neighbors:

N(σ ,k) = {σ
′ ∈ Σ | d(σ ,σ ′)≤ k}

where d is a distance function over program states that share almost all their variables.

We assume d ignores unshared variables. In N, k is the neighbourhood radius and

limits the neighbourhood size. We apply N to the bindings recorded in Fuzz, the

output of the fuzzing campaign F . Suppose the population of a state’s neighbourhood
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exceeds the minimum sample threshold u. In that case, we employ a supervised

model Ms to estimate r(σ ,Fuzz) and predict states in a given observed state’s neigh-

bourhood that were unseen during fuzzing; otherwise, we resort to the unsupervised

statistical method Ms:

r(σ ,Fuzz) =

Ms(O) |N(σ ,k)| ≥ u

Ms(Fuzz) otherwise
(5.3)

where O = {σ ′−σ | σ ′ ∈ N(σ ,k)}.

We use O to offset each state in N(σ ,k) by σ before giving it to the model.

This way, the model only needs to predict the probability of a particular pattern of

variable values, rather than the exact values themselves. For example, if a variable

only takes on odd or even values, the model can learn to predict the probability of

the variable being odd or even without being affected by the absolute values of the

variable.

To estimate Ms(Fuzz), we can subject the empirical distribution that the mul-

tiset Fuzz defines to various classical smoothing techniques such as kernel density

estimation. Alternately, we could use heat diffusion to distribute probabilities across

neighbouring points:

∂P(I(σ))

∂ t
= ∇

2P(I(σ))+Q(σ , t) (5.4)

The variable t represents the time during which the system evolves. The function

Q(σ , t) supplies or removes heat from the system, ensuring that the heat sources and

sinks (i.e., states encountered during fuzzing and states not in the abstract domain)

maintain their probability. Specifically, ∀t ∈ [0,∞], σ ∈ Fuzz ⇒ P(I(σ | F)) = 1 and

σ ̸∈ A ⇒ P(I(σ | F)) = 0 We numerically solve Equation (5.4) using the Forward

Time Centered Space method [100]. We evaluated these different approaches in

Section 5.6.5; our implementation uses the heat diffusion method because it worked

best as shown in Section 5.5.2.
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5.3.3 Satisfiability Under PSP

Consider an arbitrary condition C in the program f containing variables v1 . . .vn. We

denote the probability that there exists an input that satisfies this condition as P(I f
C)

where:

I f
C =

1 if ∃σ ∈ Σ f ,I f
Σ
(σ) = 1∧⟨C,σ⟩ ⇓ 1

0 otherwise
(5.5)

where ⇓ evaluates C in the program state σ .

We compute the lower bound of P(I f
C) by assuming the event with the maximum

probability subsumes all other events. Consider the set Σ
f
C = {σ ∈ Σ f ,⟨σ ,c⟩ ⇓ 1}.

Using this assumption and utilising Σ
f
C gives us the following expression:

P(I f
C)≥ max

σ∈Σ
f
C

P(IΣ f (σ)) (5.6)

We can similarly compute the upper bound as follows:

P(I f
C)≤ min

(
1, ∑

σ∈Σ
f
C

P(IΣ f (σ)
)

(5.7)

We can compute a weak approximation of P(I f
C) by assuming that the set of events

Σ
f
C = {I f

Σ
(σi) | σi ∈ Σ,⟨C,σi⟩ ⇓ 1} are mutually independent:

P(I f (C))≈ 1− ∏
σi∈Σ

f
C

(
1−P

(
IΣ f (σi))

))
(5.8)

5.4 PSP Applications
Here, we introduce three applications of PSP: enhancing the precision of static

analysis, optimising symbolic execution, and improving the quality of automatically

generated patches.

5.4.1 Static Analysis

Abstract interpretation overapproximates program states to make analysis scalable,

which leads to false positives, discouraging developers from examining analysis
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violations. Therefore, minimising false positives is crucial for the usability of abstract

interpretation. To achieve that, we use PSP to construct P(I(σ)) by relying on

fuzzing data as well as the abstract states A f computed by an abstract interpretation

tool. Then, we calculate P(I f
¬C) for each assertion C, as explained in Section 5.3.3.

We only report an assertion violation if the resulting probability is greater than a

user-defined threshold θ . This enables us to disregard low-probability states deemed

reachable by overapproximation, thus reducing false positives. The threshold θ is

set such that for θ = 0, we have complete overapproximation, while for θ = 1, we

have complete soundness. To ensure soundness at θ = 1, we restrict the estimation

of probability using statistical methods to be strictly less than 1. This means that if a

probability is estimated as 1, its value is set to 1− ε , where ε → 0+. This restriction

enforces soundness at θ = 1, and ensures that we are not reporting false positives

due to imprecise probability estimates.

5.4.2 Symbolic Execution

Symbolic execution constructs a path condition, the conjunction of conditionals it

encounters along a path. It queries an SMT solver to determine which paths are fea-

sible by checking the satisfiability of their path conditions, which is computationally

expensive. PSP can reduce this cost by identifying probable states and guessing if

path conditions are satisfiable.

We utilise PSP to prioritise execution paths when symbolically executing a

subject program to find bugs. The algorithm is shown in Algorithm 3. As usual, it

takes the subject program and a termination condition, which could bound steps,

time, memory, or computation. Algorithm 3’s key novelties are two-fold: 1) it

prioritises probable paths, line 10, and 2) it skips, line 18, solving probable program

states, only checking whether improbable states are satisfiable (line 19). The solve

helper function extracts the path condition from the symbolic state s and invokes an

SMT solver. The bugs(s) function checks whether the symbolic state s can possibly

break certain criteria drawn from the semi-universal implicit specification of most

programs, such as integer or buffer overflows.

Because of its new features, Algorithm 3 spends more time exploring probable
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Algorithm 3: This algorithm shows symbolic execution using PSP.
1 Input:
2 f : The subject program
3 PSP: The PSP model built from fuzzing data
4 θ : Threshold for ignoring improbable states
5 κ: Termination criteria
6 Output:
7 B: The set of bugs discovered
8

9 S0 := initState( f )
10 workList := PriorityQueue(PSP)
11 workList.put(S0)
12 B := {}
13 while workList ̸= /0∧κ do
14 s := workList.next()
15 B := B∪bugs(s)
16 newStates := execute(s)
17 for s ∈ newStates do
18 if PSP(I f

s.pc)< θ then
19 if solve(s) ̸= SAT then
20 continue

21 workList.put(s)

22 return B

paths rather than solving constraints. Despite not solving probable states, Algorithm 3

always explicitly solves and stores the inputs for those bugs it finds, i.e., solve(s) ̸=

SAT =⇒ bugs(s) = /0. It may, of course, deem some UNSAT state to be probable,

thus treating it as SAT and generating a false negative. To support its new features,

Algorithm 3 additionally takes, as input, a PSP model trained on a fuzzing campaign

F’s fuzzing data and a threshold value θ that determines which program states are

sufficiently improbable to ignore. Finally, as usual, it returns the set of bugs it finds

during its run.

We cannot directly employ the bounds discussed in Section 5.3.3 as it is not

feasible to enumerate through all possible program states without any approxima-

tion. Hence, we aim to directly estimate P(I f
pc). We represent this condition using

Conjunctive Normal Form (CNF). Any path condition pc can be represented as

pc =C′∧C where C is a conjunct-free condition. We can compute the probability
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as P(I f
pc) = P(I f

C | I f
C′)×P(I f

C′), by effectively computing P(I f
C | I f

C′), we can recur-

sively repeat this to evaluate this condition completely. This recursive process is not

necessary as the path conditions are incrementally built, hence when a new condition

C gets added, we will have P(I f
pc′) = P(I f

C | I f
pc)×P(I f

pc), since the probability of

the previous patch condition has already been computed, we are just left with having

to compute P(I f
C | I f

pc).

To effectively evaluate P(I f
C | I f

C′), we employ the χ2 test of independence

offline to prune out irrelevant conditions. We perform this action by constructing

a dependency graph g : V ×V → {0,1}, which returns true if two variables are

dependent. Using this graph, we can effectively eliminate conjuncts from C′ that

are possibly independent and drop them since for any two independent events A

and B, P(A | B) = P(A). Using this dependency graph, any conjunct in C′ which

does not contain any variables which belong to the same connected component of

at least one variable used in C is dropped. The next step is to filter the Fuzz data to

only include program states that pass through the points guarded by the remaining

constraints. This results in a new set of data denoted as Fuzz′. We then use Fuzz′

to evaluate P(I f
C | I f

C′) using Equation (5.6), which provides the most conservative

bound and prioritizes precision. As this reduces our chances of giving an unfeasible

path a higher probability of SAT.

5.4.3 Patch Prioritisation

Program repair tools search for a patch in a search space that includes many irrelevant

or incorrect patches. Due to the sparsity of useful patches in this space, brute force

enumeration is usually infeasible. So instead, patch prioritisation orders the patches

so that the correct ones appear earlier during enumeration.

Since program repair tools typically generate patches, whose size is insignificant

w.r.t. to the size of the program, we formulate the following hypothesis:

Hypothesis 1. The set of values that most variables in a program can take is invariant

w.r.t. the edits δ iff δ change a sufficiently small portion of the program.

We acknowledge that counterexamples for this hypothesis exist. Nonetheless,
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we observed that it often holds in practice. Relying on this hypothesis, we prioritise

patches that make minimal changes to the range of all values program variables

can take during execution. We speculate this prioritisation strategy can be used in

conjunction with other strategies to increase the quality of automatically generated

patches.

In practice, a patch δ usually involves replacing one variable with another with

an indistinguishable distribution over its values, thus our focus here on probabilisti-

cally quantifying probabilistically unchanged bindings. To probabilistically check

Hypothesis 1, we first define the subset of a program’s state on which an arbitrary

predicate holds:

IΣ f (α) =

1 if {σ | σ ∈ Σ f ,α(σ)} ̸= /0

0 otherwise
(5.9)

We are interested in computing the probability that the program patch δ does not

change some binding when δ ( f ) is executed. For the fixed binding v= x, we leverage

this indicator function over predicates to define

D(v,x) =
∣∣P(IΣ f (σ(v) = x))−P(I

Σδ ( f )(σ(v) = x))
∣∣

This difference captures the probability that the two program variants disagree on the

binding v = x; when they are in perfect agreement, this difference is zero. Finally,

we define the probability that there exists an input on which the program patch δ

changes the binding of a variable that f and δ ( f ) share:

IP( f ,δ ) = ∏
v∈V∩Vδ

∏
x∈X

(
1−D(v,x)

)
(5.10)

We cannot directly compute Equation (5.10), because X is often infinite. Hence,

we approximate X by the values observed during the execution of a test suite T on f

and δ ( f ). We denote these constrained sets as X |T ( f ) and X |T (δ ( f )) and constrain

x to their union.
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Since the number of patches is large, the probability computation must be

efficient. Hence we constrain v to δV over V , which denotes all the variables in the

patch δ . This reduces the number of variables being considered. A limitation of

this approximation is that when the patch does not change any form of assignment

(such as modifying conditions), the newly constrained equation may not capture any

changes, rendering the probability calculation unnecessary.

Below, we use b to denote the binding “σ(v) = x”. We can speed Equa-

tion (5.10)’s computation by precomputing P(IΣ f (b)), using Equation (5.9). To

construct P(I
Σδ ( f )(b)), since we restrict our equation to v ∈Vδ and x ∈ X |T ( f ), we

approximate P(I
Σδ ( f )(b)) as follows

P(I
Σδ ( f )(b))≈

1 x ∈ X |T (δ (p))

P(IΣ f (b)) otherwise

We use Section 5.4.3 to transform Equation (5.10) as follows

IP( f ,δ ) = ∏
v∈Vδ

∏
x∈X |T (δ ( f ))

(
1−|1−P(IΣ f (b)|

)
(5.11)

We can replace P(I
Σδ ( f )(b)) with 1, from Section 5.4.3 and the fact that

X= X |T ( f )\X |T (δ ( f ))

∀b ∈Vδ ×X•P(IΣ f (b)) = P(I
Σδ ( f )(b))

which considers only variables whose binding does not exist in δ . Hence, we restrict

x to X |T (δ (p)), which allows us to approximate P(I′v(x)) with 1.

To understand Equation (5.11), consider a patch prioritisation technique that

takes a program f , a specification S, and a patch δ as inputs and outputs the probabil-

ity of the patch being correct with respect to the specification, denoted as P(δ ( f ) | S).

Let Γ denote “leaves bindings probabilistically indistinguishable”. We can extend

this technique by incorporating the unchanged bindings as follows:
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P(δ ( f ) | S) = IP( f ,δ ) ·P(δ ( f ) | S,δΓ) (5.12)

We can apply other patch prioritisation techniques to this equation’s second term,

P(δ ( f )|S,δΓ), to create a new probability that prioritises patches that probabilisti-

cally leave bindings unchanged while eliminating those that do not. Equation (5.12)

ensures that we do not prioritise patches that violate variables’ properties, such as

assigning an expression that could evaluate into an even number to a variable that

only takes odd numbers. This equation can be used in combination with existing

patch prioritisation to improve their accuracy and eliminate unlikely patches that

violate variable properties.

5.5 Implementation
We now detail the interesting design decisions we made in order to realise an analysis

framework resting on PSP. First, we discuss the fuzzing tools we used for C and

Solidity. We then discuss the exact models and techniques we used to realise

Equation (5.3) and estimate unseen program states. We close by describing how we

integrated PSP into the Mythril symbolic execution engine and adapted the Trident

patch synthesiser to use PSP to prioritise patches.

5.5.1 Logging Fuzzing Information

To realise PSP, we must effectively estimate P(IΣ f (σ)). For C programs, we use

AFL [92] to generate values bound to program variables, then use these values to

define an empirical probability distribution, which we use as our estimate. To log the

bindings that the fuzzer observes along with the line numbers, we instrument each

variable with a function that records the variable to a global dictionary flushed to

stdout at every return/exit point. For smart contracts, we use the proprietary Fuzzer:

Harvey [93] to log variable information. We use the solidity events that a program

emits. These events trigger the LOG opcode and cause the EVM to add entries to the

transaction receipt. Although we do not use LOG’s transaction receipt, we do use

Harvey to capture logs that satisfy the event signature corresponding to capturing the

variable’s state and write them to a dictionary that we periodically flush to a file. We
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can recognise this instrumented event corresponding to capturing the variable’s state

through its event signature, which is available as input to the LOG opcode.

5.5.2 Estimating Unseen States

We use two methods to assign probabilities to unseen program states: a supervised

model and an unsupervised statistical method. First, we instantiate the supervised

model with Random Forest under the default parameters of scikit-learn. We employ

the classic Euclidean distance as the distance function. We instantiate u with 100 and

k with 20 for computing Equation (5.3). We use these numbers as they gave good

results in some short-scale experiments. For the unsupervised statistical method, we

employ two methods: kernel density estimation (with scikit-learn’s defaults) and the

numerical diffusion method. For numerical heat diffusion, we employ a diffusion

factor of 6 and numerically compute it for t=10 seconds. We have observed that it

works well on ten assertion samples taken from OpenSSL.

5.5.3 Symbolic Execution

For symbolic execution, we implement PSP’s strategy on Mythril [98], a well-

maintained symbolic execution engine for smart contracts. We implement this on

Mythril’s v0.23.22 version, since earlier versions do not strictly adhere to execution

timeout due to Z3 not adhering to its prescribed timeout, which will end up tainting

the results. We employ a solver-timeout of 25 seconds for all the configurations.

Mythril has two classes of search strategies: ordinary and super strategies.

Ordinary strategies can be stacked on top of super strategies, and super strategies are

stackable on top of one another. The top strategies in the stack, i.e. super strategies,

have the highest priority in choosing the next state. In case when the criteria of

choice for the super strategy is not satisfied, the choice of the next state goes to the

ordinary strategy.

We implemented PSP as an ordinary search strategy. The only super

strategy on top of PSP is the BoundedLoopsStrategy, which, by de-

fault, bounds loops to three iterations. We stack CoverageStrategy and

BoundedLoopsStrategy when running the other baselines on Mythril, such
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as the pending constraints search strategy [96] and the default BFS. We use

the MythrilCoveragePlugin, a custom Mythril plugin, to record instruc-

tion and branch discovery along with their discovery times. For the threshold

θ , we employ θ = 0.8, as that provided the best performance out of all thresholds

θ ∈ {x | x ∈ Z,0 ≤ x ≤ 100,x ≡ 0 (mod 10)} on a sample of 10 smart contracts

taken from SmartBugs-Wild [101] dataset.

5.5.4 Patch Prioritisation

To implement patch prioritisation, we extend Trident’s [102] patch synthesiser to

use PSP to prioritise patches. Trident enumerates every patch to the depth d = 4,

checking if each patch matches the specification. We modified Trident to use a

priority queue instead, ordered by state probability under PSP’s IP, defined by

Equation (5.11).

5.6 Evaluation
We aim to answer the following questions in our evaluation:

RQ1 How does PSP improve the bug-finding capability of abstract interpretation?

RQ2 How does PSP improve the bug-finding capability of symbolic execution?

RQ3 How does PSP improve patch prioritisation?

We also report on PSP’s sensitivity to its two critical hyperparameters, and

perform an ablation of its value estimators.

We trained PSP on fuzzing data from coreutils and openssl, split into 90% for

training and 10% for testing. We conducted runs on a 16 core, 3.2 GHz machine

running Ubuntu 22.10 with 32GB of memory.

To compare PSP with the baselines, we focus on key performance metrics

relevant to bug finding tools. First, we present the true positive counts, highlighting

the primary objective of bug finding tools — discovering bugs. Second, we report

precision, since excessive false positives have a detrimental effect on the usability

of bug finding tools [103]. Third, we report the Matthews Correlation Coefficient
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Table 5.1: The number of bugs/false positives each tool finds. A30 denotes running the AFL
fuzzer for 30 minutes. P(F,θ) denotes running the fuzzer F with threshold θ .

Program Clam A30 P(A30,0.5) P(A30,0.7)

Bugs TP FP TP FP TP FP TP FP

libtiff 14 14 73 1 0 5 8 3 5
libpng 7 7 91 1 0 5 9 5 8
openssl 20 20 173 2 0 8 14 8 11
php 16 16 76 2 0 5 4 5 2
libxml 17 17 83 2 0 7 7 6 4
SQLite 20 20 167 0 0 1 8 0 6
Poppler 22 22 159 1 0 7 16 6 12

Total 116 116 822 9 0 38 67 31 48

Table 5.2: Tool performance using IR measures. A30 denotes running the AFL fuzzer for 30
minutes. P(F,θ) denotes running the fuzzer F with threshold θ .

Tools Precision Recall F1 Score MCC

Clam 0.12 1.00 0.22 0.09
A30 1.00 0.08 0.14 0.26
P(A30,0.1) 0.19 0.42 0.26 0.13
P(A30,0.5) 0.36 0.33 0.34 0.26
P(A30,0.7) 0.41 0.28 0.34 0.27

(MCC), which encapsulates our approach’s defect classification capacity, considering

the full confusion matrix [104]. We also include the F1 Score to facilitate comparison

with related work.

5.6.1 RQ1: PSP for Abstract Interpretation

We use the Clam static analyser [94] to overapproximate whether an assertion can

be violated and the AFL fuzzer [92] for 30 minutes to under-approximate it. We

compare the bugs reported by these tools to the bugs reported by PSP and count the

number of false positives or negatives. We sample 7 out of 9 projects from Magma

benchmark [95], namely, libtiff, libpng, openssl, php, libxml, Poppler, SQLite. The

projects have some explicit assertions that always hold and other assertions that

violate to indicate a bug’s presence.

Table 5.1 shows the number of false positives and false negatives for various

tools; Table 5.2 shows precision, recall, F1 score, and MCC. As an overapproximate

analysis, Clam has the highest recall among all tools. Clam also has the lowest

precision: it reports 938 bugs, but only 12% of the reported bugs are actually bugs.
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In contrast, AFL is under-approximate; it has the highest precision but the lowest

recall. After running for 30 minutes, AFL reports only 8% of the 116 bugs.

PSP achieves the highest F1-score, balancing precision and recall. If the

threshold value θ is set to 0.5, then PSP finds 38 of the 116 bugs, but it also reports

67 bugs that do not exist. PSP for θ = 0.5 reports substantially more true positives

than AFL and substantially fewer false positives than Clam. If we adjust θ to 0.7,

the total number of bug reports decreases from 105 to 79, increasing precision from

36 to 41% at the cost of decreasing recall from 33 to 28%.

From Equation (5.2), we observe that PSP only constructs non-zero probabilities

for at least one program state w.r.t. a statement iff the statement is covered by the

fuzzer. For the statements covered by the fuzzer, PSP at θ = 0.7 has correctly

identified, by violating an assertion, 77.5% of the buggy statements as bugs. In

contrast, the fuzzer has only identified 18.4% of the buggy statements, which it has

covered in the span of 30 minutes as bugs.

RQ1: For the threshold θ = 0.7, PSP finds 31 out of 116 bugs and produces 48

false alarms; it finds 22 more bugs than AFL running for 30m (A30) and does so

with 774 fewer false positives than Clam.

In summary, PSP outperforms Clam in terms of precision, and outperforms

AFL in terms of the number of found bugs, while outperforming the fuzzer on F1

and effectively matching it on MCC. In practice, analyses like PSP are important for

software developers who wish to trade finding more bugs against contending with

more false positives.

5.6.2 RQ2: PSP for Symbolic Execution

To evaluate PSP’s symbolic execution strategy on smart contracts, we compare

our strategy (PSP) against two baseline strategies: Mythril’s default search strategy

(Default), which is a combination of breadth-first, coverage-directed, and loop bound

strategies.1, and a recent search strategy based on pending constraints [96] (Pending),

which is implemented on top of Mythril’s default search strategy. We opted to
1The strategies are called BFS, CoverageStrategy, and BoundedLoopsStrategy.
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Figure 5.2: Bugs Discovered vs Time.

Figure 5.3: Instruction Coverage vs Time.

evaluate PSP using Mythril rather than running KLEE on Magma for homogeneity

because KLEE is not robust enough to easily run on Magma and may lack support

for certain instructions in this context. In contrast, Mythril is a widely used industry

tool which is specifically designed to support symbolic execution on smart contracts,

making it both easier to run and more reliable for evaluating PSP’s strategy.

We evaluate the symbolic execution strategy of PSP for smart contracts using

three sets of 52 random samples extracted from the SmartBugs-Wild [101] dataset,

which consists of 47,398 smart contracts from Ethereum mainnet. Smart contracts

tend to be smaller than traditional programs due to the limited storage capacity and
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high cost of running on the blockchain. The bytecode of a smart contract on EVM

has a size limit of 24KB [105]. However, smart contracts operate differently from

standard programs because they are state machines, where users can modify the state

by triggering one of the smart contract’s functions. This potentially leads to infinite

execution paths if a user repeatedly triggers a function that modifies the state, which

results in complex control flow and an increased number of possible execution paths,

even for small programs. The average number of lines of a smart contract in our

samples is 379.8.

Figure 5.2 shows the number of bugs found in smart contracts over time by

our technique (PSP) and the baseline techniques. Figure 5.3 shows the number of

instructions symbolically executed over time. PSP outperforms the baseline (Default)

and improved strategy (Pending) in terms of number of bugs found. In 30 minutes,

PSP can find 9% and 4.1% more bugs than Default and Pending, respectively. In

terms of symbolic coverage of program instructions, PSP performs substantially

better than Default and Pending from 10 minutes onwards. For the first 600 seconds,

the coverage-guided Default and Pending strategies perform better. However, the

coverage-guided strategies quickly exhaust the easy-to-discover instructions and start

underperforming. PSP’s search strategy does not explicitly prioritise coverage. Even

though it lags initially due to not focusing on coverage, PSP eventually outperforms

the other two strategies due to its superior performance once the easy-to-discover

instructions are exhausted.

RQ2 (1/2): PSP’s search strategy finds 4.1% more bugs in smart contracts than

the state-of-the-art pending constrains search strategy.

Abstract symbolic execution (ASE) [97] represents the amenable portion of the

symbolic state using value sets and delegates constraint solving partially to cheaper

membership tests in these value sets. For an objective comparison with ASE, we

implemented the PSP search strategy in the ASE tool for C programs. Since the

programs supported by ASE are smaller, the fuzzer thoroughly covers various paths

in that programs, enabling a precise estimation for PSP. Thus, our ASE variant does
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Table 5.3: The execution time and the number of solver queries for PSP, ASE and default
symbolic execution.

Program PSP ASE baseline

time(s) queries time(s) queries time(s) queries

bubble_sort_1 8.70 0 8.39 0 38.8 67350
bubble_sort_3 21.70 4644 152.80 637821 266.7 1135634
bubble_sort_all 9.30 0 58.75 40320 59.0 234958
dijkstra 17.40 572 156.60 88726 184.7 99564
dirname 0.06 0 0.05 0 74.7 815764
gcd 1.50 0 125.60 3192 123.6 3192
half 0.01 0 0.01 0 16.4 8010
heap_sort_1 0.78 0 0.81 0 1.6 2340
heap_sort_3 0.74 0 22.50 104524 111.3 518822
heap_sort_all 25.30 9674 288.30 960034 111.1 964444
insert_sort_1 7.50 0 7.40 0 38.6 67350
insert_sort_3 24.90 18268 330.00 1420769 650.8 2860000
insert_sort_all 2.30 3244 15.20 80057 18.5 80638
merge_sort_1 0.20 0 0.20 0 0.4 896.0
merge_sort_3 0.30 0 9.40 29460 34.9 147400
merge_sort_all 0.30 0 18.00 78750 18.9 80638
quick_sort_1 4.70 0 4.80 0 4.9 598.0
quick_sort_3 5.90 0 61.40 205666 128.3 446606
quick_sort_all 5.30 0 25.80 78800 26.7 80638
selection_sort_1 4.10 0 4.10 0 559.7 1192300
selection_sort_3 21.50 70831 771.40 2913602 1048.4 3828538
selection_sort_all 2.30 3244 153.20 521344 153.3 526350
kruskal 12.30 1255 179.90 711343 195.4 789714
bellman-ford 18.50 6632 131.70 91752 150.3 102876
binary_search_all 0.03 0 0.03 0 345.0 8000
linear_find_all 0.01 0 0.01 0 32.5 2000
is_permutation 8.20 6055 383.10 1622733 418.0 1716634
loop_invgen 0.10 0 124.80 22859 246.8 34440
min_max_all 0.50 0 30.20 72067 32.8 77706
fibonacci 0.05 0 0.05 0 6.9 206554
outerproduct 0.08 0 0.08 0 45.0 140616

not implement value sets, as they are superfluous on small programs. We employ two

thresholds, 0.1 and 0.9, and only solve path constraints if their estimated probability

of satisfiability falls into (0.1,0.9). We simply assume the query is UNSAT for a

low threshold (< 0.1) and SAT for a high threshold (> 0.9). We construct data by

running fuzzing for 3 seconds. For this result, we use the dataset of small programs

employed in the original ASE work [97]. The average program size in this dataset is

ca. 79 lines of code.

Table 5.3 shows the results for the comparison of the execution time and the

number of solver queries against the ASE tool and the default (baseline) symbolic

execution on the benchmark set of C programs provided by the ASE authors. Out of

31 samples tested, PSP required solver intervention in only 10 cases, whereas ASE

required intervention in 19 cases. In these 10 cases, we observed that the number of

queries sent to the solver was at least an order of magnitude lower than the number

of queries sent by ASE. Overall, the total number of queries was reduced by 77

fold when using PSP compared to ASE. These results demonstrate that PSP is a

promising approach for optimising symbolic execution, reducing the reliance on
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solver intervention and improving the efficiency of the technique.

RQ2 (2/2): Compared to ASE, PSP’s search strategy reduces the number of

solver calls by 77 and the average time of a symbolic execution run by a factor

of 15.

5.6.3 RQ3: PSP for Patch Prioritisation

We use the C implementation of Rete Chapter 4 as the baseline for patch prioritisation.

We extend Rete with PSP, using the techniques described in Section 5.4.3. We

chose the C implementation of Rete because the fuzzing framework for C is more

robust when compared to Python. We use MB35 dataset [102], consisting of 35

bugs sampled from ManyBugs [51]. Our evaluation of patch prioritisation involves

determining the rank of the correct patch in the ordered sequence of generated

candidate patches. We restricted our analysis to 8 bugs, excluding those for which

Rete does not generate correct patches within 2 hours, as computing precise ranking

for such bugs would be impractical. The average patch ranking for Rete and PSP-

Rete (Rete augmented with PSP) are 3999 and 2959, respectively, as shown in

Table 5.6.

RQ3: PSP integrated with the state-of-the-art patch prioritisation of Rete helps to

decrease the average rank of correct patches by 26% from bugs from ManyBugs.

5.6.4 PSP’s Hyperparameters

PSP has two critical parameters: The precision threshold θ and the fuzzer config-

uration Atime. Here, we explore PSP’s sensitivity to these two parameters on our

subset of the Magma benchmark (Section 5.6.1). The precision threshold of PSP is

used for classifying whether a given sample has a bug. Based on how PSP computes

probabilities Section 5.3.1, at θ = 1, we have a precision of 1 and at θ = 0, we have

a recall of 1. Figure 5.4 presents the F1 score and MCC as a function of θ . The F1

score increases rapidly until θ = 0.5, after which it starts to decrease. This drop in

F1 score from 0.9 to 1 is due to the restriction on estimations of probability discussed
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Figure 5.4: This graph shows how PSP’s performance varies with θ . Recall that, when
θ = 0, PSP conservatively considers all states deemed feasible under an abstract
interpretation and, when θ = 1, PSP is equivalent to the fuzzer it is using, and
ignores all states the fuzzer did not produce. We see here that performance on
F1 score peaks at just shy of θ = 0.5, whereas MCC peaks at around 0.7.

in Section 5.4.1. Examining Figure 5.4 shows that PSP has the best with MCC at

θ = 0.7, and after that, the score decreases.

In Figure 5.5, we plot the Receiver Operating Characteristic (ROC) curve

for PSP(A30,θ) by considering only assertions visited by the fuzzer, as our PSP

implementation cannot estimate assertions unvisited during fuzzing. A ROC curve

shows the trade-off between the true positive rate and the false positive rate for

different classification thresholds. The dotted x = y line represents the performance

of a random classifier. The area between a classifier’s ROC curve and the dotted line

indicates how much the classifier outperforms random guessing. The fact that PSP’s

ROC curve is well above this line demonstrates that PSP is a decent bug classifier.

The fuzzing configuration Atime influences the quality of PSP. Atime depends

on the fuzzer, which, in our case, is AFL. It also depends on how long the fuzzer

runs to generate fuzzing data, which we measure in terms of time and the number

of fuzzer iterations. In practice, a user of PSP may wish to identify what fuzzing

budget is needed to construct a PSP of sufficient quality. We suggest doing it simply
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Figure 5.5: This Receiver Operating Characteristic (ROC) curve shows how True Positive
Rate and False Positive Rate vary with the threshold. We observe that PSP is
strictly above a random classifier in terms of performance.

Figure 5.6: This plot illustrates the average Hellinger distance between normalised PSPs
across fuzzer iterations with a stride of 5000. The vertical dotted line indicates
the number of fuzzer iterations corresponding to a 30 minute fuzzing campaign.
We observe that the probabilities indeed converge when using PSP.

by observing the convergence of PSP as the budget increases.

To evaluate PSP’s convergence, we computed the difference between PSPs

across fuzzer iterations with the stride of 5000. To quantify the distance between the

sets of state probabilities of two iterations, we normalise them, and then compute the
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Table 5.4: Expanded names of the functions used in Table 5.5

Abbreviation Expansion

RF Random Forest
DIF Diffusing the probability
RFDIF Random Forest on dense data and DIF on sparse data
RFKS Random Forest on dense data and KDE on sparse data
DIF Diffusing the probability using Equation (5.4)
KDE Kernel Density Estimation

Table 5.5: The performance of estimating techniques from Table 5.4. Coreutils-S denotes
the sparse version of Coreutils, and Coreutils-D denotes its dense version.

Dataset Samples RFDIF RFKDE RF DIF KDE

Coreutils-S 100k 99.8% 99.5% - 99.8% 99.5%
Coreutils-D 100k 99.3% 99.0% 98.4% 62.3% 56.4%

average Hellinger distance [106] between the normalised probabilities as follows:

H(pi, pi−5000) =
1√
2

√
n

∑
i=1

(
√

pi −
√

pi−5000)
2

where pi denotes the probability at the ith iteration.

Figure 5.6 shows how the distance between adjacent PSPS converges with

the increase of the number of fuzzer iterations. The vertical dotted line indicates

the number corresponding to a 30 minutes fuzzing campaign. The fact that PSP

converges implies that we can stop the fuzzer after a certain number of iterations

without a significant loss of precision.

5.6.5 Ablation: Estimating Unseen States

Table 5.4 shows various estimating techniques for the unseen program state. We

conducted fuzzing on Coreutils by randomly selecting lines for instrumentation,

which we divided into two categories: dense and sparse. For the sparse category,

we chose samples that did not satisfy the criteria for choosing the supervised model

shown in Equation (5.3). We selected variables with a large range of values or

samples from states that did not have enough fuzzing samples. For the dense

category, we chose variables that satisfied the criteria for running the supervised

model, such as error codes, file descriptors, enums, etc. This process resulted in 100k
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Table 5.6: Average patch ranking for MB35.

Bug Rete PSP-Rete

gmp-a1d3d-f17cb 843 840
libtiff-09e82-f2d98 513 496
libtiff-764db-2e42d 7 6
libtiff-a72cf-0a36d 15842 12039
libtiff-37133-865f7 8566 5711
php-70075-5a8c9 782 725
php-e65d3-1d984 5439 3954
php-63673-2adf5 3 3

Average 3999 2959

samples for sparse and dense data. Additionally, we generated discrete samples (DS)

with specific patterns, such as even, odd, modulo, and other randomly generated

periodic patterns. For string samples (SS), we extracted them by instrumenting

strings from coreutils.

To evaluate the techniques, we considered any probability above 0.5 as in-

dicating the existence of a state and any probability below 0.5 as indicating the

non-existence of a state. Table 5.5 reports each technique’s performance at esti-

mating unseen states. RF is effective in recognising patterns present when the data

is dense. However, for sparse data, both DIF and KDE are effective in estimating

the unseen states, although DIF has slightly better results. For techniques such

as symbolic execution on smart contracts, RF was rarely triggered (with a trigger

rate of < 1%) due to data sparsity. In shot, random forest (RF) outperforms the

other methods on dense data; diffusing the probability (DIF) outperforms the other

methods on sparse data.

5.6.6 Threats to Validity

We evaluated PSP against Clam using a subset of the Magma benchmarks [95].

Specifically, we uniformly sampled 7 out of the 9 available benchmarks for computa-

tional feasibility. The limited size of this sample set may affect the generalisability

of our findings to other benchmarks.

Additionally, PSP relies on fuzzing to infer probabilities. Fuzzers like AFL

may not cover certain variables or may only observe a biased subset of a variable’s

possible values, introducing a potential external validity threat.
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Our evaluation involved running various tools (Mythril, AFL, Clam, Harvey)

with their default configurations. As a result, our findings may not generalize to

other configurations or settings beyond those used in this study.



Chapter 6

The Fact Selection Problem in

LLM-Based Program Repair

6.1 Introduction

When debugging and fixing software bugs, developers seek bug-related information

from a diverse array of sources. Such sources include the buggy code’s context,

documentation, error messages, outputs from program analysis, etc. Individual

pieces of this information, which following recent work we refer to as facts [107],

have been demonstrated by previous studies to enhance LLMs’ bug-fixing efficacy

when incorporated into the prompts [108, 109, 110]. Given the ever-increasing

context window of cutting-edge LLMs, a critical question emerges: “Which specific

facts, and in what quantity, should be integrated into the prompt to optimise the

chance of correctly fixing a bug?”

This work is a systematic effort to investigate how to construct effective prompts

for LLM-based automated program repair (APR) by composing facts extracted from

the buggy program and external sources. We identified 14 atomic facts: those

individually studied in the context of APR by previous works, such as the buggy

code’s context (Prenner et al. [111], Xia et al. [108], and Chen et al. [112]), GitHub

issues (Fakhoury et al. [109]), and stack traces (Keller et al. [113]); angelic values,

a semantic fact previously unexplored in the context of LLM-based APR, but that

was successfully used for debugging [114] and repair [4]; and those chosen based
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on our developer intuition. Since some of these atomic facts are closely related, we

combined them into seven compound facts, which from now on we refer to as just

facts. Our study was conducted on 314 bugs in open source Python projects from the

BugsInPy [64] benchmark.

Our first experiment aims to confirm the utility of the considered facts. Specifi-

cally, for each fact, if the potential inclusion of this fact in APR prompts helps to

repair some additional bugs, or increases the probability of fixing some bugs. To

answer this question, we constructed over 19K prompts tasked to repair the buggy

function and containing different subsets of the seven facts for the 314 bugs. Then,

we queried an LLM to generate patches, and evaluated the patches using the provided

test suites. Finding 1 confirms the utility of each fact, that is each fact helped repair

at least one bug that was not repaired by any prompt without this fact. Moreover, all

the facts have statistically significant positive impact on the probability of fixing a

bug in a single attempt.

Given the utility of each fact, it is tempting to assume that adding more facts

always enhances LLM’s performance. Contrary to this intuition, Finding 2 reveals

that APR prompts are non-monotonic over facts: adding more facts may degrade

LLM’s performance. An experiment involving 157 bugs showed that prompts

incorporating all available facts resulted in 12 fewer bug fixes and exhibited an 8.2%

lower probability of repairing a bug within a single attempt compared to the most

effective subset. This result aligns with previous research that showed that LLMs

do not robustly make use of information in long input contexts [115], and their

performance is dramatically decreased when irrelevant information is included into

the prompt [116]. Another important consideration is the cost of facts: facts such

as the buggy code’s context are low-cost to extract, while angelic values or GitHub

issues are high-cost, because they require program analysis or human effort.

The non-monotonicity of APR prompts and, simultaneously, the utility of each

fact led us to define the fact selection problem: determining the optimal set of facts

for inclusion in prompts to maximise LLM’s performance on given tasks. It can

be viewed as a variant of feature selection of classical machine learning for LLM’s
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in-context learning. We consider two instances of fact selection: universal fact

selection when the selected facts do not depend on a specific task instance, i.e. the

bug, and bug-tailored fact selection when the fact set is bug-specific.

If there was a universal set of facts that is effective for all bugs, it would

significantly simplify the development of LLM-based APR tools. However, our

experiments showed that universal fact selection is suboptimal compared to bug-

tailored fact selection. Specifically, Finding 3 identified that there is not a universal

set of facts that is sufficiently effective, compared to other sets, on all subsets of

the 314 bugs. Meanwhile, enumerating sets of facts via e.g. greedy strategies while

repairing each bug might be impractical, because of the high cost of LLM queries

and the necessity to generate multiple responses due to LLMs’ nondeterminism.

As a practical compromise, we trained a statistical model that we call MANIPLE.

It is designed to select facts contingent upon the features of a specific bug. Em-

pirical evidence shows that MANIPLE significantly outperforms a universal fact

selection methodology that employs a generic set of facts that exhibited the optimal

performance on the training data.

We benchmarked MANIPLE against state-of-the-art zero-shot non-conversational

LLM-based APR techniques. On our testing set, MANIPLE repaired 17% more bugs,

highlighting the practical impact of the fact selection problem.

The contributions of this work are:

• A systematic study of seven bug-pertinent facts for APR prompts, including

angelic values, previously unexplored in the context of LLM.

• An empirical evidence of the non-monotonicity of APR prompts over bug-

related facts.

• A motivation and introduction of the fact selection problem for LLM-based

APR.

• The first bug-tailored fact selection model, MANIPLE, that significantly out-

performs previous related techniques.
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Please fix the buggy function provided below and output a corrected version.
<.. CoT instructions are omitted ...>

## The source code of the buggy function
‘‘‘python
# this is the buggy function you need to fix
def read_json(
<... a part of code is omitted ...>

return result
‘‘‘
## A test function that the buggy function fails
‘‘‘python
def test_readjson_unicode(monkeypatch):
<... a part of code is omitted ...>

tm.assert_frame_equal(result, expected)
‘‘‘
### The error message from the failing test
‘‘‘text
monkeypatch = <_pytest.monkeypatch.MonkeyPatch object at 0x7f567d325d00>
<... a part of message is omitted ...>
pandas/_libs/testing.pyx:174: AssertionError
‘‘‘
## Runtime values and types of variables inside the buggy function
compression, value: ‘’infer’‘, type: ‘str‘
<... some variables are omitted ...>
lines, value: ‘False‘, type: ‘bool‘

## Expected values and types of variables during the failing test execution
path_or_buf, expected value: ‘’/tmp/tmphu0tx4qstest.json’‘, type: ‘str‘
<... some variables are omitted ...>
result, expected value: <...omitted...>, type: ‘DataFrame‘

## A GitHub issue for this bug
‘‘‘text
Code Sample, a copy-pastable example if possible
<... a part of text is omitted ...>
However, when read_json() is called without encoding parameter, it calls built-in

↪→ open() method to open a file and open() uses return value of locale.
↪→ getpreferredencoding() to determine the encoding which can be something not
utf-8

‘‘‘

Figure 6.1: A simplified APR prompt incorporating various facts for fixing pandas:128. ...
shows information omitted for brevity. ... shows a part of the GitHub issue that is
essential to correctly fix the bug. Too much information in the prompt “distracts”
the LLM from the relevant part of the issue description, significantly reducing
pass@1 and the correctness rate.

All code, scripts, and data necessary to reproduce this work are available at

https://github.com/PyRepair/maniple.

6.2 Motivating example

To illustrate the importance of the fact selection problem, we consider the

bug pandas:128 [117] in the Pandas data analysis library within the BugsInPy

benchmark. This bug arises due to incorrectly handling the default encoding in the

https://github.com/PyRepair/maniple
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Pandas’ read_json function. The developer patch for this bug involves setting

the encoding to UTF-8 when it is not specified by adding the following lines to the

buggy function:

+ if encoding is None:

+ encoding = "utf-8"

When GPT-3.5-Turbo [118] was prompted to rectify the bug solely based on the

source code of the buggy function, it did not successfully address the issue in any of

15 trials. A likely explanation of this failure is that the function itself does not contain

any inherently incorrect code, so fixing this bug requires external information.

Drawing upon existing literature on LLM-based APR and relying on our intu-

ition as developers, we assembled a diverse set of bug-related facts to incorporate

into the prompt. These include the buggy function’s context, the failing test case,

the error message, the runtime values of local variables, their angelic values (values

that, when taken by program variables during test execution, result in successful

passage of the test), and the GitHub issue description. Figure 6.1 gives a simplified

representation of the resulting prompt. Adding these facts enabled the LLM to

generate a plausible patch, i.e. a patch that passes the tests, in four out of 15 trials.

However, only two of these patches were correct. The other two hard-coded UTF-8

as the only encoding instead of the default one. The causes of failures to fix the

bug included “forgetting” to change the function despite correct chain-of-thought

reasoning [119], or hard-coding the encoding inconsistently.

Interestingly, when we removed all facts but the code of the buggy function,

the runtime variable values and the GitHub issue, it significantly raised the success

rate. Specifically, the LLM generated plausible patches in 12 out of 15 trials, and

11 out of these 12 were correct. A similar high success rate was demonstrated by

the prompt with only the buggy function and the GitHub issue. We posit that this is

because redundant or irrelevant information in the original prompt “distracted” the

LLM from critical details in the GitHub issue (highlighted in Figure 6.1) necessary

to repair the bug [116].

We refer to this phenomenon, that adding more facts may degrade LLM’s perfor-

mance, as the non-monotonicity of prompts over facts. To provide stronger empirical
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Figure 6.2: Comparison of pass@1 (the vertical axis) for around 10K prompts incorporating
subsets of the seven considered facts (the horizontal axis) computed over 15
responses for repairing 157 Python bugs within the BugsInPy benchmark. Zero
facts corresponds to the prompt containing only the buggy function without any
additional information about the bug. The graph plots the average pass@1 score
(dashed orange line) and the maximum pass@1 score (solid green line) across
all bugs. This graph clearly shows the non-monotonic nature of APR prompts
over facts.

evidence, we conducted a large-scale experiment with 19K prompts containing var-

ious subsets of seven facts on 314 bugs in Python projects. Figure 6.2 shows how

pass@1, which estimates the probability of generating a plausible patch in a single

trial, depends on the number of included facts. The graph shows two lines: the top

line corresponds to the scenario when we select the most effective combination of

facts for each bug. The bottom line indicates the performance of an average fact set.

It is evident that both these functions are non-monotonic.

Apart from the non-monotonicity of prompts, we also discovered that each of

the considered facts helps to fix some bugs that cannot be fixed without it. These

observations motivated us to formulate the fact selection problem, the problem of

selecting facts for a given bug to maximise the chance of repairing it and propose a

model MANIPLE that selects effective facts based on features of a given bug.
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6.3 Study Design
This section discusses the experimental setup, the facts chosen for our study, and

how they are represented in prompts.

6.3.1 Experimental Setup

We denote the set of bugs as B and the set of all bug-relevant facts as F. Since we

aim to investigate how using various facts impacts the success of APR, we define the

set of all jobs as J= B×2F, which pairs bugs with sets of facts.

Zero-shot Prompting for APR An advantage of large language models, such as

ChatGPT [118], is they can be adapted to a downstream task without retraining

via prompt engineering [120]. A prompt refers to the input or instruction given to

the model to elicit a response. Prompting typically takes either the form of zero-

shot, i.e. directly providing the model a task’s input, or few-shot [121], where the

model is provided with a few examples. In this work, we investigate a zero-shot

APR approach. Although the few-shot approach is promising, it requires finding

high-quality examples [122], which we leave for future work.

Function-granular Perfect Fault Localisation APR tools repair bugs by first local-

ising suspicious locations. For an objective evaluation of APR tools, Liu et al. [74]

argues for the use of perfect fault localisation (PFL), that is, when the buggy loca-

tions are known to the tool. PFL can resolve to difference granularity levels: notably,

the line or the function. Liu et al. argues that fault localisation tools do not offer

the same accuracy in identifying faulty locations at different granularities, “making

function-level granularity appealing for limiting unnecessary trials on fault positive

locations”. We found that, in BugsInPy [64], the average Ochiai [18] rank of the

buggy line is 2502 and the buggy function is 22 across the entire codebase, making

it much more likely to localise the buggy function than the buggy line. Apart from

that, although 70% of the bugs in BugsInPy require modifying only a single function,

65% of them modify multiple lines within this function. Localising a bug to multiple

lines is harder than targeting individual lines. Meanwhile, cutting-edge models,

like GPT-3.5-Turbo, effectively fix bugs even without specifying the exact lines,

i.e. when only the buggy function is provided. Thus, in contrast to some previous
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Facts

Static (1)

Declaration (1.1.1) Class Scope (1.2.1)

Docstring (1.1.2) File Scope (1.2.2)

Test Code (1.3.1)

Test File
Name (1.3.2)

Title (3.1.1)

Description (3.1.2)

Buggy Class (1.1)
Used Method

Signatures (1.2)
Failing Test (1.3) GitHub Issue (3.1)

Dynamic (2) External (3)

Error
Information (2.1)

Error Message (2.1.1)

Stack Trace (2.1.2)
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Figure 6.3: This work uses seven compound facts (dark rectangles) across three categories
for constructing program repair prompts. Each fact is composed of two atomic
facts. Each prompt contains the buggy function to be repaired; the facts can be
included based on the employed fact selection strategy.

studies [12, 46, 108], we use function-granular PFL.

Python Bug Benchmark APR tools are typically compared on datasets of bugs ex-

tracted from real world projects, such as Defects4J [123] for Java and BugsInPy [64]

for Python. In this work, we use BugsInPy because of Python’s ever-increasing

importance and popularity. BugsInPy contains 501 bugs from 17 popular Python

projects such as Pandas [124] and Matplotlib [125]. Among them, we selected a

subset of 314 bugs, which we refer to as BGP314, that require modifications within

a single function, due to our PFL approach, and that we were able to reproduce. To

investigate APR performance on various classes of defects, we consider three parts

of BGP314:

• BGP157PLY1: This dataset comprises 157 bugs, which have been uniformly

selected from BGP314 for the purpose of training and analysis.

• BGP157PLY2: Consisting of 157 bugs, this dataset is the complement of

BGP157PLY1 in BGP314. Used for evaluating fact selection strategies.

• BGP32: A subset of 32 bugs uniformly sampled from BGP157PLY1, in-

tended for preliminary studies on finding parameters, such as determining the

right response count to reduce the variance.

LLM Nondeterminism Nondeterminism in LLMs leads to varying outcomes be-

tween trials, which poses a challenge for analysing results [126]. To alleviate it, we

use the pass@k measure, which represents the probability that at least one query
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out of k will be successful in solving a problem. Previous work [39] recommends

estimating pass@k as

pass@k(J)≜ EJ

[
1−

(n−c
k

)(n
k

) ]
(6.1)

where EJ denotes expectation over the set of jobs J, n is the number of responses

obtained from the LLM, where n > k and c is the number of successes found in the n

responses. Larger n helps reduce variance. A pilot study using BGP32 reveals that

when n = 15 and k = 1, pass@k exhibits the average standard deviation of ca. 0.04,

and that further increasing n only marginally decreases standard deviation. This is

discussed in detail in supplementary materials (Section 6.8).

For generate-and-validate APR [127] that operates by iteratively generating and

testing patches until it finds one that passes the tests, a commonly used measure

is the number of bugs for which at least one patch passes the tests among LLM’s

responses:

#fixed(J)≜ |{b | j ∈ J,c j > 0}| (6.2)

where j = (b,F) is a job, and c j is the number of responses that pass the tests for the

job j.

Test-overfitting in Program Repair APR techniques repair bugs w.r.t. correctness

criteria, such as tests or formal specification. Since tests do not fully capture the

intended behaviour, automatically generated patches based on tests may be incor-

rect [128]. Thus, the APR literature distinguishes between plausible patches, patches

that pass the tests, and correct patches, patches that satisfy the intended requirements.

Since manually labelling a large number of patches is resource-intensive and error-

prone, most analyses of the fact selection problem with pass@k and #fixed in this

chapter count plausible patches as successes. We only label correct patches when

comparing our tool with other APR techniques in Section 6.6.

In our experiments, we used the latest version of GPT-3.5-Turbo, gpt-3.5-turbo-

0125, which has a 16K context window. As of March 2024, the cost of reproducing

the experiments in this chapter using OpenAI API [129] is $479.
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6.3.2 Bug-Related Facts

The considered facts were collected from previous LLM-based APR research, pre-

vious non-LLM-based APR literature, and our intuition as developers. In total, we

collected 14 atomic facts, but since many of them are related, we grouped them into

seven compound facts, which we refer to simply as facts or F. These seven facts are

divided into three categories: static, dynamic, and external, as shown in Figure 6.3.

Buggy Class (1.1) The declaration of a class containing the buggy function provides

a broader context and dependencies. A class docstring offers insight into the overall

purpose and functionality of the class.

Used Method Signatures (1.2) Considering methods used within the buggy function,

as shown by Chen et al. [112], allows for the analysis of dependencies and potential

side effects that might contribute to the incorrect behaviour.

Failing Test (1.3) The code of a failing test, as shown by Xia et al. [110] provides

useful context for repairing a buggy function as it specifically highlights the condi-

tions under which the program fails.

Error Information (2.1) Previous approaches showed that using error mes-

sages [110] and stack traces [113] improves LLM’s bug-fixing performance.

Runtime Information (2.2) Runtime values and types of the function’s parameters

and local variables during the failing test execution provide an LLM with concrete

data about the program’s behaviour.

Angelic Forest (2.3) For a given program location, a variable’s angelic value [114]

is a value that, if bound to the variable during the execution of a failing test, would

enable the program to pass the test. Angelic forest [4], previously applied for

synthesis-based repair, is a specification for a program fragment in the form of pairs

of initial states and output angelic values, such that if the fragment satisfies these

pairs, then the program passes the test.

Inspired by this approach, we added a variant of angelic forest to a prompt; this

variant combines variable values at the beginning of a function’s execution coupled

with the angelic values at the end of a function’s execution, i.e. the input/output

requirements of the function. Since Python is dynamically typed, we specify both
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the values and types of variables. Angelic values can be computed using symbolic

execution [4, 114]; however, due to the immaturity of Python symbolic execution

engines, we were unable to execute them on bugs in BugsInPy. Thus, we extracted

angelic values from the correct versions of the programs via instrumentation.

GitHub Issue (3.1) A GitHub issue, when available, provides important contextual

information for fixing the bug, as shown by Fakhoury et al. [109].

To denote subsets of F, we utilise seven-width bitvectors, where the i-th bit

indicates whether the i-th compound fact in our taxonomy (Figure 6.3) is included in

the set. For example, 0000100 corresponds to the set containing only the runtime

information (2.2).

6.3.3 Prompt Design

We construct prompts via the prompt engineer E : B× 2F → Σ∗, which builds a

prompt over the alphabet Σ to repair an input bug using a subset of facts from F.

The prompt is constructed with the directive “Please fix the buggy function provided

below and output a corrected version" along with the included subset of facts. The

buggy function’s code, together with its docstring, is provided as part of the prompt

for the LLM to effectively fulfill this directive. Each fact is incorporated via a

specialised prompt template. Figure 6.1 shows an example prompt with incorporated

facts, and the fact templates are detailed in supplementary materials (Section 6.9).

We employed the standard chain-of-thought [119] approach by instructing the

LLM to reason about the provided facts, as detailed in supplementary materials

(Section 6.10).

In our preliminary experiments, we discovered that LLM often generates incor-

rect import statements, which makes it hard to automatically extract patches from

the responses and apply them to the code. To address it, we explicitly added the

import statements in the current file to the prompts. A small study showed that

this consistently improves the success rate, as detailed in supplementary materials

(Section 6.11).
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6.4 The Fact Selection Problem
Let an LLM be a function from a string, i.e. a prompt, to a set of strings, the responses

R. We consider an arbitrary measure m : 2R × 2C → R that scores a set of LLM

responses w.r.t. some correctness criteria C that maps correct patches to a high score

and incorrect patches to a low score, and a prompt engineer E : B×2F → Σ∗.

Definition 18 (Fact Selection Problem). Given a set of bug-relevant facts F, a prompt

engineer E, a buggy program b, and correctness criteria for that buggy program Cb,

the fact selection problem is to find F ⊆ F that maximises

arg max
F∈2F

m(LLM(E(b,F)),Cb) (6.3)

Cb encompasses any of the standard correctness criteria such as a test suite or

a specification, etc.
∗
Fb denotes an optimal solution of Equation (6.3) for b; We use

∗
Fb(F) to denote the optimal F for the buggy program b over the fact set F.

Similarly, we use
∗
FB(F) to denote the optimal fact set F over all the buggy

programs b ∈ B and the fact set F. This can be defined as the solution to the equation

below.

arg max
F∈2F

∑
b∈B

m(LLM(E(b,F)),Cb)

We aim to answer the following questions in this section:

• How does the inclusion of each fact affect the overall effectiveness of a program

repair prompt?

• Is there point beyond which adding facts to a program repair prompt degrades

its performance?

• Can a fixed subset of facts be universally optimal up to a tolerance of ε for

bug resolution across various bug sets?

The first question examines the impact of each fact on the repair effectiveness,

questioning whether every fact contributes positively to the resolution process. Sec-

tion 6.4.1 answers this question affirmatively, showing the inherent value of each
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fact. The second question delves into the potential for diminishing returns or even

detrimental effects from overloading a prompt with too many facts, suggesting an

optimal threshold for fact inclusion that maximises prompt efficacy. If there is no

such point, then the optimal strategy will be to include all the facts. Section 6.4.2

shows that, on our dataset, adding facts to a prompt is non-monotonic. Formally, the

final question asks whether, ∀b ∈ B, the following equation holds:

m
(
LLM(E(b,

∗
FB)),Cb

)
= m

(
LLM(E(b,

∗
Fb)),Cb

)
+ ε (6.4)

This equation asks whether one can select a fact set for a set of bugs that is as

effective as a fact set tailored to each bug. Section 6.4.3 answers this question by

showing that this statement does not hold. The above answers, combined, establish

the importance of the fact selection problem.

6.4.1 Fact Utility

A fact should only be considered for inclusion in a prompt if it has a potential to

improve the outcome. To confirm the utility of the considered facts F, we simplify

the premise by assuming that facts are independent and pose two questions: "What

is the utility of each individual fact in improving repair performance on our dataset

if we select the most effective fact set for each bug?" and "What is the utility of each

individual fact in improving repair performance on our dataset if we select a random

fact set for each bug?" The first question addresses the potential effectiveness when

we precisely know which facts to choose for a specific bug. This notion of utility,

which we refer to as utility under optimal fact selection, is relevant when we have

a method to closely approximate an optimal solution
∗
Fb(F) to Equation (6.3), i.e.

choose the most effective facts for each bug b ∈ B. The second question explores

the expected outcomes when we lack specific knowledge about which facts to select,

and hence make a random choice. This notion of utility, which we call utility under

uniform fact selection, is relevant when solving Equation (6.3) is either difficult or

infeasible.

To estimate the utility of each fact, we generated prompts containing all subsets
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Fact # Excl. Fixed Gain Shapley
Error Info. 9 0.48 0.54
Angelic Forest 7 0.08 0.11
Failing Test 7 0.06 0.08
Used Method S. 4 -0.12 -0.18
Buggy Class 4 -0.03 -0.05
GitHub Issue 3 0.44 0.51
Runtime Info. 2 0.03 0.05

Table 6.1: On the left side, this table reflects the number of bugs (“# Excl. Fixed”) that
could only be resolved by incorporating the specific fact into the repair process
under an optimal fact selection for BGP157PLY1. On the right side, we report
both “Gain” as defined by A( f ) in Equation (6.5) and Shapley values under a
uniform fact selection. The “Gain” cells quantify the average percentage increase
in prompt repair performance from adding the fact. “Error Information” is the
most effective and “Used Method Signatures” the least. All the Shapley values
are scaled by a factor of 16.

of the considered 7 facts (the remaining one, the buggy function, is always present in

the prompt), which resulted in 19228 prompts in total for BGP314, which is below

314× 27 since some facts are not available for some bugs. For each prompt, we

computed 15 responses to estimate the measures pass@1 and #fixed. This enabled

us to both evaluate an optimal selection strategy by explicitly considering
∗
Fb for

each bug, and a uniform selection strategy.

To show the utility of facts F under optimal fact selection, we compute two

measures. First, we compute the number of bugs that were fixed only when the fact

is available, presented in the column “# Excl. Fixed” of Table 6.1. Notably, the

inclusion of “Error Information”, “Angelic Forest” and “Failing Test” each leads to

fixing the most additional bugs that cannot be fixed without them. Importantly, the

table underscores the bug-fixing utility of every fact that we consider by showing

that it exclusively resolves a positive number of bugs.

Second, we analysed each fact’s utility under optimal selection by how its

inclusion in or its exclusion affects pass@k. We do so by simulating the scenario

where specific facts are missing: If a fact f were missing, we would be forced to

compute
∗
Fb over F−{ f} for each bug b ∈ B. The baseline for this scenario is when

all the facts are available.

Each row in the table in Table 6.2 details the pass@1 attainable by the best



6.4. The Fact Selection Problem 146

Fact f With f Without f ∆ p-value
Error Info. 0.403 0.331 0.071 0.00000
GitHub Issue 0.403 0.341 0.062 0.00000
Angelic Forest 0.403 0.371 0.032 0.00000
Failing Test 0.403 0.375 0.027 0.00007
Runtime Info. 0.403 0.384 0.019 0.00001
Buggy Class 0.403 0.392 0.010 0.00028
Used Method S. 0.403 0.393 0.009 0.00327

Table 6.2: With f reports the pass@k over BGP157PLY1 of the fact f labelling the row;
Without f is pass@k without using f; and ∆ shows their difference. Removing
facts does indeed decrease the performance of the best performing prompt across
all the facts.

prompts, with and without a specific fact (denoted by f). For each bug b ∈ B,

prompts are constructed using optimal fact sets
∗
Fb(F) over all facts and

∗
Fb(F−{ f}),

excluding the fact f . The consistent reduction in pass@1 (denoted as ∆) emphasises

the value of each fact in bug fixing.

To determine the statistical significance of the impact of each individual fact

under optimal selection, we calculated pass@1 scores for all bugs, both with and

without a particular fact. These scores were then compared. The Wilcoxon signed-

rank test shows that the inclusion of each fact has a statistically significant effect on

each bug’s optimal fact set.

We evaluate the utility of individual facts under uniform selection using two

complementary measures: Shapley [130] and a new measure we introduce and call

fact gain, defined in Equation (6.5). We report fact gain along with Shapley for

two reasons: (1) Shapley’s results are hard to interpret and (2) we have the luxury

of exhaustive enumeration, since our fact set is small. Fact gain computes the net

increase in pass@1 scores due to the addition of a specific fact f ; we defined it by

adapting relative change [131] to our problem domain by setting the reference value

to fact subsets that do not contain the measured fact f . We define the gain of each

fact as follows:

A( f ) =
pass@k(J f )−pass@k(J f )

pass@k(J f )
(6.5)
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Here, J f = {(b,F)∈ J | f ∈F} is the subset of problems where the fact set F includes

the fact f , whereas J f = {(b,F)∈ J | f /∈ F} encompasses those that exclude the fact

f . A( f ) computes the aggregate gain from incorporating the fact f into the repair

process, effectively measuring the fractional increase in the aggregate likelihood of

achieving a successful repair when the fact is added.

Table 6.1 showcases the significance of each fact in APR prompts, leverag-

ing both aggregate gain (A( f )) and Shapley values, as defined in Equation (6.5).

An interesting observation from the experimental results in Table 6.1 is that the

facts “Buggy Class” and “Used Method Signatures” exhibits a negative aggregate

gain, indicating its inclusion might adversely affect the repair outcome on average.

Meanwhile, if we select the most effective facts set for each bug, each of these facts

enables LLM to fix 4 additional bugs that were not fixed without it. This shows the

importance of fact selection.

Finding 1. Under the assumption that we select the most effective fact set for

repairing each bug, each of the considered facts demonstrates its utility on our

dataset.

If we select an optimal fact set for repairing each bug, then each of the con-

sidered seven facts demonstrates its utility on our dataset: having it as an option

for inclusion into the prompt helps to repair at least one bug exclusively, and has a

statistically significant positive impact on pass@1. When we select facts uniformly

for each bug, five of the seven facts show utility, as having them as options increases

the probability of fixing a bug.

6.4.2 Impact of Fact Set Size on Prompt Performance

In this section, we investigate the concept of prompt monotonicity by examining how

the incremental addition of facts affects prompt performance. Monotonicity, in this

context, refers to a consistent improvement in performance with each additional fact.

This implies that more information invariably leads to better outcomes. Conversely,
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non-monotonicity indicates that there exists a threshold beyond which adding more

facts does not enhance, and may even degrade, performance.

Similarly to Section 6.4.1, we evaluate the non-monotonicity of prompts in two

settings: under an optimal fact selection and under a random selection. For each

of them, we aggregate pass@1 scores for all bugs over sets containing a varying

number of facts. Figure 6.2 presents the performance of pass@1 for the prompts

across different fact set cardinalities, ranging from 0 to 7. The maximum pass@1

corresponds to an optimal fact selection for each bug, and the average pass@1

corresponds to a random fact selection.

Observing the trend lines, it is clear that the maximum pass@1 score generally

rises with an increasing number of facts, peaking at fact sets containing 3 elements

before a sharp decline, and the average pass@1 score exhibits a plateau from 2 to 5

facts and subsequent drop-off beyond this point. This confirms the non-monotonicity

of prompts.

Finding 2. Prompt performance is non-monotonic with respect to the number of

included facts. While adding facts generally improves performance, there exists

a threshold beyond which additional facts hinder performance.

6.4.3 Non-Existence of a Universally Optimal Fact Set

A "universally optimal fact set" in the context of automated program repair is a

collection of facts that, when applied, yields the highest effectiveness in terms of bug

fixes and pass@1 scores across a wide range of projects. For defining a universally

optimal fact set, we first define the quality of a fact set in terms of the following

properties:

• Efficiency: A fact set is efficient when it outperforms alternative fact sets.

• Universality: A fact set is universal when it is efficient up to ε-tolerance, as

defined in Equation (6.4).
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Project Best Fact Set Pass@1

Project Total
luigi 0011111 0.53 0.26
black 0010111 0.38 0.22
fastapi 0000101 0.19 0.18
httpie 0001111 0.50 0.25
pandas 0011001 0.25 0.25
tornado 0011000 0.37 0.20
ansible 0010101 0.10 0.12
matplotlib 0001001 0.36 0.25
cookiecutter 0001101 0.93 0.20
tqdm 0001111 0.00 0.24
youtube-dl 0011001 0.08 0.25
keras 0101111 0.32 0.23
scrapy 0011111 0.45 0.26
sanic 0010101 0.64 0.21
thefuck 0001001 0.16 0.21

Table 6.3: Comparison of project-specific best fact sets and their project’s average Pass@1
scores and the total average Pass@1 scores across all projects in BGP157PLY1.
The fact sets are represented using their bitvector encodings.

• Coverage: The set of bugs a fact set can resolve.

We define the function Coverage : 2F → 2B where F ⊆ F is a fact set and B is

the set of all bugs in the dataset being considered, such that Coverage(F) returns the

set of bugs fixed by the fact set F .

The Coverage Ratio for a given fact set F is defined as:

CR(F) =
|Coverage(F)|

|
⋃
∀Fi⊆FCoverage(Fi)|

(6.6)

We prefer sets that maximise universality and coverage ratio.

Table 6.3 showcases the best performing fact sets for each project alongside

their project-specific and overall training dataset Pass@1 scores. Notably, no single

fact set dominates across all projects; for example, the fact set 0010101 leads in the

Sanic project with a Pass@1 of 0.21, falling short of the maximum Pass@1 score of

0.26. Similarly, for FastAPI, the best fact set, 0000101, secures a project-specific

Pass@1 of 0.19, which is more than its overall score of 0.18 but significantly below

the highest Pass@1 of 0.26. Moreover, the table reveals that the highest occurrence
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Approach #fixed
Best Fact Set in BGP157PLY1 77
Best Fact Set in BGP157PLY2 84
All Facts 72
Top 5 Union 99
Total Union 119

Table 6.4: Comparison of various approaches based on the number of bugs plausibly fixed
in BGP157PLY2. Note that the “Best Fact Set in BGP157PLY2” puts an upper
bound on universal fact selection for BGP157PLY2.

count for any fact set is merely 2, with five fact sets appearing twice. This distribution

underscores the variability in fact set effectiveness across projects, casting doubt on

the possibility of identifying a universally optimal fact set that maintains superior

performance across the broad spectrum of repositories and bugs.

Table 6.4 assesses the effectiveness of various approaches of fact selection in

producing plausible fixes. The analysis underscores the Best Fact Set, identified as

1111001, which was selected for its highest coverage in terms of the number of bugs

it could fix according to the training data, compared against broader approaches such

as the Top 5 Union and Total Union. The Top 5 Union, which aggregates the bugs

fixed by the top five best performing fact sets, generates fixes that pass tests for 99

bugs, while the Total Union, encompassing bugs fixed by all fact subsets, resolves

119 bugs. These unions significantly surpass the Best Fact Set in bug resolution

capability, fixing many additional bugs (22 and 42 respectively). This shows that the

highest coverage ratio of the fact set is CR(1111001) = 0.65 that it fixes 65% of the

bugs while missing 35% of the bugs fixable by other sets.

These results highlight that the Best Fact Set does not have a high coverage

ratio, especially compared to the theoretical maximum of an optimal fact selection

which has a coverage ratio of 1. The coverage ratio’s delineation as monotonic — in

that the fact set with the highest number of bugs fixed is deemed the best — indicates

that within this dataset, no fact set achieves a high coverage ratio. Table 6.4 further

shows the limitations inherent in static fact selection strategies, as demonstrated by

the performance of the Best Fact Sets w.r.t. BGP157PLY2. These sets fix 84 bugs,

and set the upper limit for universal fact selection in BGP157PLY2. These sets
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Figure 6.4: Presented above is an upset diagram contrasting the top 5 fact sets from
BGP157PLY1 along with the standard fact set which includes the buggy func-
tion and chain-of-thought instructions, encoded as the bitvector 0000000. The
diagram highlights the intersection sizes at the top, with the most substantial
intersection being represented by 41. We can observe that these fact sets individ-
ually fix up to a total of 7 bugs. The total number of bugs fixed by these 6 fact
sets is 107, which is 18 more than the best fact set on this dataset which fixes 89
bugs.

were not ranked high in the training data, as they were positioned at ranks 16 and 34,

respectively out of 128 candidates.

The UpSet diagram [132] in Figure 6.4 shows the combinatorial overlap among

the top 5 fact sets from BGP157PLY1, as well as a baseline which does not contain

any facts, encoded with the bitvector 0000000. The diagram is particularly instructive

in revealing the number of bugs addressed by various intersections of these fact

sets, with the largest subset intersection resolving 41 bugs. Each of the fact sets is

shown to individually contribute to the resolution of up to 7 bugs. Cumulatively,

these 6 fact sets fix a total of 107 bugs, surpassing the efficacy of the single best fact

set, which fixes 89 bugs. This UpSet plot helps us in answering the question of the

existence of a universal fact set w.r.t. the number of bugs fixed, we would expect

to see a row with dots in most, if not all, columns, signifying its presence in the

majority of intersections. However, the absence of such a pattern in this upset plot

indicates there is no single fact set that fixes all bugs. Instead, different fact sets are

effective for different bugs, and no single set appears as a common element across

all or most bug fixes.

Finding 3. The diversity in the best fact sets across different repositories (Ta-

ble 6.3), and the significant difference in the bugs fixed by the top five fact sets
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(Figure 6.4), both point to the absence of a universal fact set in our dataset.

6.5 Selecting Facts with MANIPLE

Universal fact selection, as demonstrated in Section 6.4.3, does not achieve consistent

performance across all the bugs in our dataset. Thus, to automate creating bug-

tailored prompts, we introduce MANIPLE, a random forest trained to select relevant

facts for inclusion in the prompts.

We focus on the task of predicting the success or failure of test executions based

on vectors representing features extracted from both the prompt and the code.

Our training dataset D is constructed from the BGP157PLY1. It consists of

pairs ( j,y), where:

• j = (b,F) ∈ J represents a job, which is a tuple consisting of a bug b along

with and a fact set F ⊆ F

• y ∈ [0,1] represents the probability of successfully fixing the bug b in a single

trial, given the fact set F ⊆ F. This probability is computed using pass@1.

We manually craft a set of features f( j) based on domain knowledge and the

characteristics of the facts. The feature function f : J→ Rm maps the input job j ∈ J

to an m-dimensional feature space.

The goal is to train a machine learning model M capable of using the feature

vector f( j) to accurately predict the probability of success. The model is designed to

minimize the prediction error over the dataset using a loss function L, as follows:

argmin
M

∑
(J,y)∈D

L(M (f(J)),y) ,

where L(M (f(J)),y) measures the loss between the predicted probability M (f(J))

and the true probability y. Here, J represents the set of facts, y is the actual probability

of success, and f(J) is the feature vector derived from J.
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The choice of loss function L depends on the nature of the task. For example,

in regression tasks, which use distance functions, L may be the Mean Squared

Error, which measures the squared differences between predicted and actual values.

In classification tasks, Cross-Entropy Loss is commonly used, as it quantifies the

difference between the predicted probability distribution and the true distribution.

This is achieved through an appropriate training process that adjusts the param-

eters of M based on the training data D .

Using this model M , we can select the optimal fact set by choosing the one that

yields the highest predicted probability of success according to the model’s output.

6.5.1 Feature Selection

To train a machine learning model to meet these objectives, we define the feature

vector, f(x) = [b,rep_id, ℓ,c]T , where

• Bitvector (b): encodes the fact set F , where b ∈ {0,1}n.

• Repository ID (rep_id): uniquely identifies the source repository of the bug b.

• Prompt Length (ℓ): the length of the prompt in either characters or tokens,

where ℓ ∈ N0. Cross-validation determines whether characters or tokens are

chosen.

• Cyclomatic Complexity (c): a measure of code complexity that quantifies the

number of linearly independent paths through a program’s source code.

This choice of features was guided by the investigation conducted on

BGP157PLY1. Specifically, the inclusion of the Repository ID (rep_id) is sup-

ported by the findings in Table 6.3, which show significant variability in the optimal

bitvectors for fact selection across different projects. This variability underscores

the influence of the repository context on successful repair. However, this may limit

the classifier’s performance with respect to rep_id’s it has previously encountered,

as this feature is not generalisable across unseen repositories, unlike the rest of

the features. Additionally, Prompt Length (ℓ) was identified as a crucial factor,

displaying a Spearman correlation of −0.18 with the pass@1 for repair success,
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accompanied by a highly significant p-value of p < 10−129. This correlation holds

for both token and character lengths of prompts, indicating that an increase in prompt

length is associated with a decrease in LLM performance — a conclusion that is

further supported by the non-monotonicity of adding facts to prompts, as noted in

Figure 6.2, as more facts increase prompt length.

Cyclomatic Complexity emerged as another pivotal feature, showing a negative

Spearman correlation of −0.1 with the pass@1, p-value of 10−42. Unlike prompt

length, Cyclomatic complexity does not depend on the fact set chosen (recall that

the buggy code itself is necessarily always included) but remains instrumental in

predicting the pass@1 for a bug, mainly for scenarios where no prompt generates a

successful fix.

6.5.2 MANIPLE: A Random Forest for Fact Set Selection

Leveraging these observations, we present MANIPLE, a random forest model (Sec-

tion 2.3.1) for the fact selection task and evaluate it in both regression and classifica-

tion settings. As a regressor, the model directly predicts the pass@1 for each job. In

the classification task, we categorise the scale (i.e., [0, 1]) based on the number of fact

sets considered by the model. Our analysis reveals that classification performs better.

This finding can be attributed to the noise and significant variance present in our

data, as detailed in supplementary materials (Section 6.8). The classification method

proved more robust to variance in pass@1 compared to regression. Additionally,

ordering and ranking the fact sets did not yield comparable performance. This is

likely due to the variance in ranks, which directly stems from the variance in pass@1.

Additionally, we trained MANIPLE only on the top five highest-performing fact

sets. These sets were identified using bootstrap aggregation, where we evaluated

the performance of each fact set across multiple bootstrap samples drawn from our

dataset. By aggregating the outcomes, we identified the best performing fact sets.

We optimised the model’s hyperparameters through a comprehensive grid search,

evaluating the performance of each combination of parameters. To ensure the model’s

generalisability and to prevent overfitting, we employed k-fold cross-validation with

k = 5.
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6.6 Comparing MANIPLE with SOTA LLM-Based

APR
We compared MANIPLE with existing zero-shot non-conversational LLM-based APR

methods that incorporate various types of information into prompts. Our baselines

include approaches whose prompts include the following facts:

• Buggy Function only, denoted as T0

• Buggy Function, Buggy Class and Used Method Signatures, denoted as T1, an

approach similar to the technique by Chen et al. [112].

• Buggy Function combined with GitHub Issue, denoted as T2, an approach

similar to the technique by Fakhoury [109].

• Buggy Function alongside Error Information, denoted as T3, an approach

similar to the technique by Keller et al. [113].

For a fair comparison, we supply the same prompts, built from these facts, to

MANIPLE and all the baselines. These prompts, unsurprisingly, differ structurally

from the prompts on which the baselines were run. For example, our prompt

incorporates our chain-of-thought instructions defined in supplementary materials

(Section 6.10). Our focus here is on comparing MANIPLE’s performance to the

baselines’ w.r.t. facts, not their performance given approach-specific optimal prompts,

whose construction would require close cooperation with the authors of each baseline.

We evaluated tool efficacy according to two criteria: (1) number of plausi-

ble fixes (i.e. eq. (6.2)), and (2) the number of correct fixes, determined by the

first plausible patch generated by the LLM and subsequently subjected to manual

evaluation.

For assessing patch correctness, we employ an interrater agreement scale, where

“3” indicates patches syntactically equivalent to the developer’s patch, allowing for

minor refactoring or restructuring, “2” — patches that achieve the intended outcome

through an alternate method, “1” — diverging from the developer’s patch, rendering

correctness indeterminable, and “0” — incorrect patches (irrelevant, incomplete,
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Tool #fixed Correct % Correct
T0 44 7 16%
T1 37 5 14%
T2 63 18 29%
T3 66 31 47%
MANIPLE 88 37 42%

Figure 6.5: Comparison of tool performance on the BGP157PLY2 test set, focusing on
bugs fixed. #fixed represents the number of bugs with test-passing patches,
and Correct indicates bugs fixed with patches identical to the developer’s. We
observe that MANIPLE outperforms all the fact set combinations used. This
shows that bug-tailored fact selection can improve the repair success.

introducing regressions). Each patch undergoes evaluation by two independent raters.

In cases of scoring discrepancies, the raters discuss them. If the discrepancy is

not resolved, the more conservative (lower) score is recorded, ensuring a rigorous

standard of correctness. Following this scoring system, patches with the scores of

2 and 3 are labelled as "correct", and with the scores of 1 and 0 are labelled as

"incorrect."

The analysis in Figure 6.5 underscores the potential of bug-tailored prompt

selection for boosting automated program repair efficacy. Previous LLM-based

zero-shot non-conversational approaches, represented by T1, T2 and T3, that always

use the same set of facts achieve a maximum of 66 plausibly fixed patches on

BGP157PLY2. In contrast, MANIPLE, which leverages bug-tailored fact selection,

identifies a significantly higher number of plausible patches (88). Furthermore,

MANIPLE boasts 6 additional correct fixes compared to the best of these approaches.

These findings suggest that tailoring the fact set to the specific context of each bug

has the potential to improve the upper bound for repair success.

Surprisingly, T1, which utilises function code alongside scope information

(including class information and invoked functions), fixes fewer bugs compared

to using function code alone. However, this does not imply that scope and class

information are useless. T1 still identifies 5 plausible patches, 2 of which are correct,

that would not be found using just the function code as the only fact.
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6.7 Threats to validity
In assessing GPT-3.5, we face an inherent challenge due to the possibility of data

leakage. This risk stems from the fact that the datasets utilised for training these

models are not openly available, obscuring the exact nature of the information they

have been exposed to. As a result, there is a possibility that GPT-3.5 may have

previously encountered instances from the test set during their training. The fact that

our baselines use the same model partially addresses this threat.

The facts collected for our study represent our best effort. Although, to the

best of our knowledge, this work considers the widest range of information in APR

literature, we acknowledge that our fact set is provisional and will undoubtedly

change as research into LLM-assisted APR continues.

The external validity of our findings relies on the distribution of bugs within our

dataset. Our dataset is a subset of BugsInPy, a benchmark published at FSE’20 [64].

BugsInPy is a curated dataset built to best practice from GitHub repos with more

than 10k stars that have at least one test case in the fixed commit that distinguishes

the buggy version from its fix. Its representativeness has not been challenged and,

from first principles, we can think of no reason that our filtering (Section 6.3.1)

would introduce systematic bias. LLM performance on few-shot prompts has been

shown to be sensitive to the order of the shots [133]; another threat to our external

validity is that we did not permute facts across trials in our experiments.

6.8 Analyzing the impact of nondeterminism on

LLM’s performance
In this investigation, we aim to determine the influence of nondeterminism on the

performance of Large Language Models (LLMs). The study is conducted using

BGP32, as it is expensive to run a query a large amount of responses from the LLM.

A challenge presented by nondeterminism in LLMs is the variability in outcomes

from one experiment to the next, precluding the use of the conventional performance

evaluation method of generating k responses from the LLM and determining success

if at least one response meets the success criteria. However, due to the variability
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Figure 6.6: This plot illustrates the relationship between the standard deviation of pass@1
and the number of responses (n). The reduction in standard deviation demon-
strates diminishing returns as n increases. This observation motivated our
selection of n = 15, as its standard deviation is comparable to that of n = 30.

inherent in each trial, this approach may yield inconsistent results.

To address this variability, we use pass@k as our measure. Pass@k represents

the probability of achieving at least one successful outcome within k attempts at

solving a problem. This is determined by soliciting n > k responses from the API

and calculating the likelihood of at least one success within k trials, as discussed in

Section 6.3.1.

For our methodology, we obtained n = 30 responses and evaluated pass@k

for k = 1. To simulate multiple runs, we employed bootstrapping by sampling n

responses from the pool of 30 responses with replacement, repeated 10 times. The

standard deviation of pass@1 for these 10 samples was computed. Furthermore, we

calculated the mean standard deviation of all the bugs in BGP32.

As depicted in Figure 6.6, the mean standard deviation of pass@1 demonstrates

diminishing returns from approximately n = 15. This observation prompted our

decision to choose n = 15. Figure 6.7 displays the mean standard deviation of

pass@k across varying response counts (n) and trial counts (k). Notably, the heatmap
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Figure 6.7: This heatmap depicts the standard deviation of pass@k against varying response
count (n) and trial counts (k). The vertical gradient transitions from lighter to
darker shades as n increases, signifying a reduction in standard deviation and
thereby highlighting enhanced measurement precision with number of queries.
On the horizontal axis, the gradient shifts from darker to lighter shades as the
k grows, indicating an increase in standard deviation. This pattern suggests
that lower values of k and higher values of n are associated with more precise
outcomes.

indicates a decrease in standard deviation with increasing n, while an increase in k

corresponds to higher standard deviation.

In understanding the mean standard deviation of pass@k, it is crucial to consider

the granularity of the measure. Granularity refers to the smallest increment by

which the measure can vary, encompassing all possible values within its range.

Lower granularity allows for the capture of finer differences. However, if the mean

standard deviation significantly exceeds the granularity, it can suggest that much of

the finer differences in the output could be attributed to noise stemming from the

nondeterminism of the LLM’s output.
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For our analysis, we specifically focus on k = 1 because the granularity for

pass@1 is 1
n for n responses. This granularity allows for a more precise measurement

of success probability since the standard deviation is lower than the granularity.

However, for k = 2, the granularity for pass@2 is 1
(n

2)
, which is relatively small

compared to any chosen n from our current data. For instance, pass@2 for n = 15

yields 0.05, which is larger than 1
(15

2 )
≈ 0.01. Hence, we adopt k = 1 to ensure more

accurate results.

6.9 Fact Prompt Templates
This section defines fact templates that are used to generate APR prompts.

Buggy Function (Directive) The body of the buggy function is given as the first

section using the following template:

Please fix the buggy function provided below and output a corrected version.

Following these steps:

<CHAIN-OF-THOUGHT INSTRUCTIONS>

# The source code of the buggy function

‘‘‘python

# this is the buggy function you need to fix

<FUNCTION BODY>

‘‘‘

Buggy Class (1.1) The declaration of a class containing the buggy function is added

to the function body section:

# The source code of the buggy function

‘‘‘python

# The declaration of the class containing the buggy function

class <CLASS DECLARATION>:

...

# this is the buggy function you need to fix

<FUNCTION BODY>

‘‘‘

A class docstring offers insights into the overall purpose and functionality of the

class, which can guide the LLM in understanding how the buggy function should

operate. It is added to the buggy class declaration in the prompt using the standard
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Python docstring notation.

Used Method Signatures (1.2) The methods used within the buggy function are

incorporated into the buggy class declaration section:

The source code of the buggy function

‘‘‘python

# The declaration of the class containing the buggy function

class <CLASS DECLARATION>:

...

# This function from the same class is called by the buggy function

def <FUNCTION SIGNATURE>:

# Please ignore the body of this function

...

‘‘‘

Signatures of the methods used, which are declared outside the class of the

buggy function, are incorporated into the prompt as follows:

# Buggy function source code

‘‘‘python

# This function from the same file, but not the same class, is called by the buggy

↪→ function

def <FUNCTION SIGNATURE>:

# Please ignore the body of this function

...

‘‘‘

Failing test (1.3) The test code is incorporated into prompts in a separate section:

# A test function that the buggy function fails:

‘‘‘python

# The relative path of the failing test file: <TEST FILE NAME>

<TEST CODE>

‘‘‘

Error Information (2.1) We incorporate the error message and the stack trace into a

separate section of the prompt:

# The error message from the failing test

‘‘‘text

<ERROR MESSAGE>
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<STACK TRACE>

‘‘‘

Runtime Information (2.2) Assume that x1, ..., xn are local variables in the buggy

function, v1, ..., vn and t1, ..., tn are their values and types at the beginning of the

function’s execution, and v′1, ..., v′n and t ′1, ..., t ′n are their values and types at the end

of the function’s execution. To represent runtime values inside the prompt, we use

the following format.

# Runtime values and types of variables inside the buggy function

Each case below includes input parameter values and types, and the values and

↪→ types of relevant variables at the function’s return, derived from

↪→ executing failing tests. If an input parameter is not reflected in the

↪→ output, it is assumed to remain unchanged. Note that some of these values

↪→ at the function’s return might be incorrect. Analyze these cases to

↪→ identify why the tests are failing to effectively fix the bug.

# Case <CASE ID>

## Runtime values and types of the input parameters of the buggy function

x1, value: v1, type: t1

...

xn, value: vn, type: tn

## Runtime values and types of variables right before the buggy function’s return

x1, value: v′1, type: t ′1
...

xn, value: v′n, type: t ′n

...

Angelic Values (2.3) Assume that the function operates a set of variables x1, ..., xn,

for which the runtime values in the beginning of the function are v1, ..., vn, and the

types are t1, ..., tn, and the angelic values at the end of the function are a1, ..., an and

the types are at1, ..., atn. Then, this information is incorporated into the prompt as

follows:

# Expected values and types of variables during the failing test execution

Each case below includes input parameter values and types, and the expected values

↪→ and types of relevant variables at the function’s return. If an input

↪→ parameter is not reflected in the output, it is assumed to remain unchanged

↪→ . A corrected function must satisfy all these cases.
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# Expected case <CASE ID>

# The values and types of buggy function’s parameters

x1, expected value: v1, type: t1

...

xn, expected value: vn, type: tn

## Expected values and types of variables right before the buggy function’s return

x1, expected value: a1, type: at1

...

xn, expected value: an, type: atn

...

To reduce the length of the prompt, we only print the values of variables that change

after the function execution. Values converted into a human-readable representation

using Python’s .__str__() method. Also, class and function variables are filtered.

GitHub Issue (3.1) We incorporate the GitHub issue’s title and description into the

prompt as follows:

# A GitHub issue for this bug

The issue’s title:

‘‘‘text

<ISSUE TITLE>

‘‘‘

‘‘‘text

The issue’s detailed description:

<ISSUE DESCRIPTION>

‘‘‘

6.10 Chain-of-thought Instructions
When writing these prompts, we also applied the standard techniques, chain-of-

thoughts (CoT) prompting. Since we considered different possible subsets of facts

for the inclusion in APR prompts, we used the following instruction template at the

beginning of each prompt:

1. Analyze the failing test case and its relationship with <LIST_OF_FACTS>.

2. Identify the potential error location within the problematic

function.

3. Explain the bug’s cause using:

<LIST_OF_FACTS>
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4. Suggest possible approaches for fixing the bug.

5. Present the corrected code for the problematic function such that it

↪→ satisfied the following:

<CORRECTNESS_CRITERIA>

For bitvector = 1111111, the following will be its chain of thought instruction:

1. Analyze the failing test case and its relationship with the error message

↪→ along with the buggy function, buggy class, buggy file, the github issue,

↪→ the expected and actual input/output variable information .

2. Identify the potential error location within the problematic

function.

3. Explain the bug’s cause using:

a. The buggy function

b. The buggy class

c. The buggy file

d. The failing test and error message

e. Discrepancies between expected and actual input/output variable values

f. The Github Issue information

4. Suggest possible approaches for fixing the bug.

5. Present the corrected code for the problematic function such that it

↪→ satisfied the following:

a. Passes the failing test.

b. Satisfies the expected input/output variable values provided.

c. Successfully resolves the issue posted in Github

We conducted a small-scale experiment on BGP32 to confirm the effectiveness

of CoT. The proportion of prompts that successfully led to a fix, incorporating CoT,

stood at 0.46; this figure fell to 0.38 in the absence of CoT. Our findings indicated a

modest positive Spearman correlation of 0.08 between the application of CoT and

the pass@1 rate for repair success, which was supported by a statistically significant

p-value of 10−13. This led us to directly include Chain of Thought into our prompts.

6.11 Handling Imports in Prompts
Without listing import statements of the current file in APR prompts, the LLM may

generate arbitrary import statements and call functions that are not defined within

the repository. This behavior can be attributed to two main reasons. First, the LLM

might lack contextual knowledge about the identifiers used within the buggy function.

Second, it might assume the absence of import statements in the program and, based

on its training data, add imports. Note that this is often not related to the functional
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correctness of generated code, but incorrect imports make it hard to extract patches

from the LLM’s responses and insert them into the buggy programs.

For example, consider pandas:84. The LLM encounters a piece of code that

uses the BlockManager identifier, which is an internal component of ‘pandas‘.

Without specific context or import statements, the LLM might incorrectly suggest

importing BlockManager directly from the top-level pandas package with:

from pandas import BlockManager

However, the appropriate way to import BlockManager is from within the

pandas.core.internals module, which is more specific and not immedi-

ately apparent without domain knowledge or explicit instruction:

from pandas.core.internals import BlockManager

To test whether adding import statements improves pass@k, we manually selected

10 bugs which frequently resulted in undefined identifier errors and conducted two

experiments for a comparative study. In the first experiment, we enumerated all 64

possible bitvectors, set the seed to 42, and the temperature to 1, and obtained the fix

patches from the LLM. The pass@5 calculated in this experiment was 0.233. Then,

we kept the settings the same and added the following instruction at the beginning of

our prompt to obtain fix patches from the LLM:

Assume that the following list of imports is available in the current environment,

↪→ so you do not need to import them when generating a fix.

‘‘‘python

<import statements>

‘‘‘

The pass@5 calculated from the above example was 0.271, which suggests a

noticeable enhancement in the fix rate.

We did not consider import statements as a fact for our study, because it mostly

solved a technical issue that helped us extract patches from the responses, rather than

affecting the functional correctness of the generated code.
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Related Work

This section discusses the relevent areas that this thesis is related to, namely: sym-

bolic execution, automated program repair, program analysis and prompt engineer-

ing.

7.1 Symbolic Execution
Symbolic execution [134, 135] is recognised as one of the most expensive testing

methodologies [136]. Much research seeks to improve the efficiency and effective-

ness of symbolic execution [88]. Variants of symbolic execution have also been

proposed to reduce its cost, such as concolic execution [137, 138] and execution-

based testing [56, 139]. Researchers have studied ways to accelerate path exploration

in symbolic execution. One such approach is distributing path exploration among

different workers [140, 141]. Several techniques have sought to leverage composi-

tionality to speed up symbolic execution [142, 143]. Researchers also investigated

techniques for pruning the search space [144, 145], and transforming the underlying

code for symbolic execution [146, 147, 148].

One way to tackle symbolic execution’s scalability challenge is to side-step it

via search: rather than directly speed symbolic execution or solving, use search to

maximise your computational budget. Kapus et al.’s Pending Constraints approach

prioritises execution paths that are already known to be feasible and defer the rest [96].

Thus, like PSP, it avoids wasting resources on solving constraints. However, pending

Constraints is more conservative: uses caching to identify known-to-be-feasible
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paths; PSP, discussed in Chapter 5, in contrast, prioritises paths that it predicts will

produce a likely state. Both approaches exemplify the "rich get richer" proverb:

Pending Constraints will tend to explore feasible paths and their easy extensions

more deeply, while PSP focuses on probable paths. For bug finding, we have shown

PSP’s prioritisation works better (Section 5.6.2).

Abstract symbolic execution (ASE) defines a value set decision procedure

based on strided value interval sets for efficiently determining precise, or under-

approximating value sets for variables, which helps to reduce the number of SMT

queries. Furthermore, PSP approximates even further by reducing the number of

queries as shown in Section 5.6.2.

Neuro-symbolic execution [149] trains a neural network to approximate hard-to-

analyse program constructs such as loops and external function calls. In contrast, we

directly approximate program states, which enables us to create an efficient search

strategy reducing the number of SMT queries.

State Merging Although various general-purpose state-merging strategies [150, 151]

for symbolic execution have been proposed, they have two important limitations in

the context of assignment synthesis. First, to align symbolic memory in complex real-

world programs, general-purpose state-merging strategies make assumptions about

the topology of the states to merge. For example, KLEE [56] assumes that the merged

states have exactly the same allocated memory objects and the same set of symbolic

variables. These assumptions do not hold in the context of assignment synthesis,

reducing the effectiveness of such techniques as demonstrated in Section 3.5. Second,

a generated patch can modify several memory locations, and the number of such

locations has to be bounded during path exploration to prevent path explosion.

However, it is not clear how general-purpose state-merging techniques can efficiently

express such a bound.

The key difference of general-purpose state-merging approaches from our

techniques (Section 3.3.2) is that they operate on regions of code that impact of

which on the state they seek to merge with a dedicated split and merge operations.

However, path explosion can occur within these regions. Trident, which is discussed



7.2. Automated Program Repair 168

in Chapter 3, builds state merging for the impact of patches in its search space

into its very representation of symbolic state, obviating explicit split and merge

operations. This representation incorporates cardinality constraints to bound the

number of memory locations that can be modified by the synthesised patch. To

compute function summaries, Trident uses symbolic execution with loop unrolling

as in compositional symbolic execution [50].

7.2 Automated Program Repair

Test-overfitting in Program Repair: Test-overfitting is a central challenge of

test-driven program repair [86]; it affects both generate-and-validate [128] and se-

mantic [152] techniques. Researchers have proposed various approaches to tackle

this problem. The first group of approaches uses a pre-defined database of trans-

formations to increase the chance of generating correct patch [23, 24, 25]. The

second group generates additional tests [10, 11]. The third group of techniques

defines a cost function that assigns lower cost to patches that are more likely to be

correct [26, 27, 28, 29, 3]. Trident, which is discussed in Chapter 3, complements

existing techniques by proposing a new cost function specialized for the class of

defects that require patches with side effects.

Program Repair Benchmarks in C: For evaluating Trident’s side effects, we

constructed new bug datasets, rather than directly using existing benchmarks, such as

ManyBugs [51], IntroClass [51], Codeflaws [52], DBGBench [153]. We did not use

ManyBugs, because the majority of its bugs either require side-effect-free patches or

complex patches than involve many lines in several files. We did not use DBGBench,

because it did not contain enough bugs with side-effect-free modifications, and some

of its bugs were not reproducible with KLEE. IntroClass contains only very small

programs. We reused some defect classes from Codeflaws that involve the insertion

of assignments or functions calls. For evaluating the general performance of Trident

and Rete, we employed 37 bugs taken from ManyBugs [51]. However, when running

it on Rete, we dropped 2 bugs as we were unable to run Rete on these bugs due to

the ML library dependencies.
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Patch Generation and Checking Various patch generation approaches have been

proposed: SPR [9] explores the space of patches by enumeration, GenProg [45]

uses meta-heuristic search, CoCoNut [12] and Cure [13] use neural machine transla-

tion, and techniques like SemFix [8] and Angelix [4] employs SMT-based program

synthesis. Program repair typically realises patch checking by 1) testing as in

generate-and-validate techniques [45] or by 2) solving constraints as in semantic

techniques [8, 102, 59]. Rete is a generic framework that does not impose a fixed

patch generation or checking technique. In this work, we evaluate three instanti-

ations of Rete: for the plastic surgery hypothesis [47], for Prophet’s enumerative

synthesiser [53], and for Trident’s constraint-based synthesiser Section 3.3.3.

Patch Prioritisation Various patch prioritisation techniques have been proposed.

DirectFix [26] prioritises smaller changes. Prophet [3] learns a probabilistic model

for ranking patches. CapGen [154] uses AST node information to estimate the

likelihood of concrete patches. GetaFix [5] uses a hierarchical clustering algorithm

that clusters mined fix patterns into general and specific fix patterns and uses code

context to choose an appropriate fix pattern. These approaches ignore information

about program variables. Several recent techniques [61, 82], although they focus

only on variables in the local context, do learn variable-related features and thus can

prioritise variables. In contrast to these techniques, Rete does not require feature

engineering and outperforms our language-agnostic feature engineering approach, as

shown in Section 4.5.

Deep Learning for Program Repair Deep learning has been applied for automat-

ically repairing bugs. DeepRepair [155] leverages learned code similarities using

recursive autoencoders [156] to select repair ingredients from code fragments that

are similar to the buggy code. Several techniques leverage deep learning to directly

sort and transform code [157, 12]. CoCoNut [12] is a generate and validate approach

that directly generates multiple patches by using an ensemble of context-aware

neural network architecture. RewardRepair [158] uses execution data to improve

upon patch synthesis. VarCLR [159] uses Recoder [160] synthesises a sequence

of edits over directly synthesising the correct program. SequenceR [46] clusters
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similar variables by directly passing a stream of tokens to an encoder. Although

deep learning techniques implicitly learn information about the program namespace,

our experiments show that state-of-the-art deep learning based tools have difficulty

handling the long-range dependencies problem [62]. Rete addresses this problem

by combining deep learning with program analysis in the form of extraction of

CDU chains to learn a project-independent representation of the program names-

pace. We could not use Cure [13] as a baseline since its reproduction package is

not currently public. Additionally, more recent tools, such as Recoder [160] and

RewardRepair [158] were not compared against in the evaluation since they were

implemented in Java.

Variable Representation There are various techniques used to represent variables,

each with its own strengths and weaknesses. Word2vec [161] and its extensions,

such as GloVe [162] and FastText [163], are simpler approaches that model variable

representations by encoding tokens. However, these techniques may not capture

the full complexity and nuance of natural language. To overcome these limitations,

more advanced techniques, such as ELMo [164] and BERT [165], use pre-trained

language models to achieve a deeper understanding of language [39, 166]. These

approaches have been successfully applied in a range of code modification tasks,

including suggesting variable names from code contexts [167], rewriting method

and class names [168], and automated program repair [155, 61, 82]. They have

also been used for type inference from natural language information [169, 170] and

detecting bugs [171, 172]. These techniques, while possessing substantial strengths,

are nonetheless impeded by sparse data, particularly when learning about global

information outside the network’s context window. This can result in suboptimal

performance in certain code modification tasks. Rete ameliorates this data sparsity

issue by using CDU chains, which contain important information that increases

the likelihood of incorporating global information into the network’s context. This

approach is effective, as demonstrated by the results in Table 4.9, which show that

Rete generates more fixes related to global variables when compared with other

techniques.
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Program repair with contextual information CoCoNut [12] utilizes surrounding

contextual information to train an ensemble of neural machine translation mod-

els. Rete [99] employs Conditional Def-Use chains as context for CodeBert [78].

CapGen [154] utilises AST node information to estimate the likelihood of patches.

DLFix [173] treats the program repair task as a code transformation task, learning to

transform by additionally incorporating the surrounding context of the bug. The con-

text used in this work includes the class and scope information of the buggy program,

which is broader than the contexts used above. FitRepair [108] constructs prompts

using identifier extracted from lines that look similar to the buggy line. Although,

our work does not directly provide identifiers statically, as python is dynamic, we

provide dynamic values of the variables during the test run.

LLM-based program repair LLM based techniques are making strides in APR.

InferFix [22] uses few-shot prompting to repair issues from Infer static analyser.

ChatRepair [110] uses interactive prompting constructed using failing test names and

their corresponding failing assertions. Our approach focuses on the zero-shot, non-

conversational setting, but can be potentially integrated with InferFix and ChatRepair.

Various approaches focused on prompt engineering for APR, e.g. incorporating bug-

related information within the prompts [22, 174, 175], as the quality of fixes could be

enhanced by integrating contextual information, such as the bug’s local context [111]

and details about relevant identifiers [108], into the prompt. Xia et al. [108] utilize

relevant identifiers to augment the fix rate of prompts. Keller et al. [113] reveals that,

for debugging tasks, focusing on the specific line indicated by a stack trace is more

effective than providing the entire trace. Similarly, Fakhoury et al. [109] investigates

how combining issue descriptions with bug report titles and descriptions enhances

program repair efforts. Following recent research [107], we refer to such pieces of

information as facts. Our work uses individual facts from previous work to formulate

and motivate the fact selection problem.

Program repair for Python QuixBugs [176] is a benchmark consisting of small

programs in Java, and Python. They are not reflective of real software projects.

Bugswarm [177], was constructed by automatically mining failing CI builds, and
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thus contains issues outside of the scope of our study, such as configuration issues.

BugsInPy [64] manually curates 501 bugs from 17 popular Python Projects. For

Rete, which is discussed in Chapter 4, we choose 107 bugs in the defect class of Rete

for evaluation, whereas for Maniple, which is discussed in Chapter 6, we selected

314 bugs from this benchmark that require modifications within a single function,

and which we managed to reproduce. PyTER [178] is a program repair technique

that focuses on Python TypeErrors; it was evaluated on a custom benchmark for type

errors.

7.3 Program Analysis

Data-Driven Program Analysis Data-driven automatic tuning has been shown

to improve static analysis performance [179, 180]. In contrast, we focus on the

precision of program analysis. Heo et al. [181] use machine learning to balance the

trade-off between precision and scalability of static analysis by selectively enabling

unsoundness when analysing loops and library functions. PSP, which is discussed in

Chapter 5, differs from these techniques by relying on data obtained through fuzzing.

It directly approximates program states, enabling a wider range of applications,

including symbolic execution and program repair.

Combining Testing and Verification Testing and verification have been combined

in various ways [182]. A combination of concrete execution and abstraction to effec-

tively reduce the under-approximation of abstraction has also been explored [183].

Tools such as SMASH [143] combine may and must analysis (over-approximation

and under-approximation). UFO [184] uses interpolation to unify over and under-

approximate techniques in model checking. PSP, which is discussed in Chapter 5,

differs from these techniques by combining fuzzing data and abstract interpretation

to construct probabilities for program states. This combination provides a trade-off

between under-approximation and over-approximation and reduces false positives.
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7.4 Prompt engineering
Recent advancements in prompt engineering have significantly influenced the effec-

tiveness of models like ChatGPT. Notably, the tree-of-thoughts approach [185] and

the zero-shot-CoT approach [186] have emerged as pivotal strategies. Frameworks

like ReACT [187] use LLM to generate reasoning traces and task specific actions in

an interleaved manner. Self Consistency [188] is an approach that traverses multiple

diverse reasoning paths through few shot CoT and uses the generations to select the

most consistent answer. Automatic Prompt Engineer [189] proposes a framework

for automated prompt generation. It frames the task as a natural language synthesis

task to construct prompts. This is orthogonal to our approach, as our task is to select

ideal facts and the task of the Automatic Prompt Engineer is to refine the prompt

into which the selected facts can be directly plugged. Repository Level Prompt Gen-

eration (RLPG) [190] is a very general framework for retrieving relevant repository

context and constructing prompts, instantiated for code completion. RLPG generates

prompt proposals and uses a classifier to choose the best one. In contrast, our fact

selection problem discussed in Chapter 6 aims to find an optimal combination of

facts to repair a given bug. Our work also uses a wider variety of information,

incorporating, apart from code context, dynamic and external information.



Chapter 8

Conclusion

An effective Automated Program Repair (APR) tool must efficiently generate patches

that developers are likely to accept. To achieve this, the tool must address three key

challenges: efficient exploration of the search space of patches, mitigation of test

overfitting, and generation of maintainable, human-like patches. This thesis presents

four approaches aimed at tackling these challenges from different perspectives.

8.1 Contributions
In Chapter 3, Trident is presented as an efficient specification that makes navigating

the search space more efficient. Patches generated by automated program repair

(APR) tools usually require validation, and many APR tools go through a cycle of

generating and validating patches until a successful one is found. Using the test

suite as the validation criteria is time-consuming, as rebuilding the code with the

generated patch and running the tests takes a considerable amount of time. Previous

works such as Angelix [4], SemFix [8] and SE-ESOC [15] used concolic execution

to construct a patch specification for validation. However, these approaches are

unable to construct a patch specification for patches that cause side effects in the

code. Trident provides an efficient method for constructing the patch specification

while overcoming this limitation. Additionally, Trident proposes a patch priortisation

strategy to alleviate test overfitting.

In Chapter 4, we address the issue of existing program repair approaches

neglecting information about the program’s namespace when searching for repairs.
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This neglect reduces their efficiency and increases test overfitting, especially since the

number of candidate variables is large. Rete aims to tackle this problem by enhancing

patch prioritisation with information about the program namespace. This helps in

effectively navigating through the large search space. By extracting information

from CDU chains, Rete can prioritise candidate variables for patch generation more

effectively. Our evaluation demonstrates that Rete can repair real bugs in open-source

projects more rapidly compared to state-of-the-art methods while also finding more

correct repairs.

In Chapter 5, we delve into the concept of Program State Probability (PSP),

which is instrumental in enhancing program analyses such as abstract interpretation

and symbolic execution. These analyses often suffer from imprecision caused by

over- and under-approximation. PSP leverages execution samples to probabilistically

estimate reachable program states, considering the probability of reaching a given

state to enhance analysis precision. Additionally, it has been successfully applied

in three domains: static analysis, symbolic execution, and program repair. The

results demonstrate that using PSP improves the precision of abstract interpretation,

increases the discovery of bugs through symbolic execution, and prioritises accurate

patches for program repair. Section 5.4.3 shows that PSP can be leveraged to

prioritise patches making APR techniques more efficient.

In Chapter 6, our research leverages the combination of program analysis and

machine learning to create effective prompts for LLM-based automated program

repair (APR). We use information obtained from program analysis to construct

prompts that direct the LLM in generating correct patches. Some of these facts,

such as Angelic Values capture the required execution semantics that the patch

has to satisfy for the failing tests, making it easier for the LLM to generate a

patch which satisfies the tests. Additionally, we tackle the challenge of selecting

relevant facts, demonstrating that there is no universally optimal set of facts for

addressing different types of bugs. Building on this understanding, we develop a

bug-specific fact selection strategy to improve the efficacy of APR. Our research

contributes to the efficient generation of human-like patches that are more likely
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to be correct due to adapting the correct features, as demonstrated in Section 6.6.

Additionally, this work presents important findings that will guide future researchers

interested in building LLM-based agents for automatically resolving GitHub issues.

It provides valuable insights into the utility of different types of facts, as discussed

in Section 6.4.1, and highlights the non-monotonicity property, where adding more

facts can actually decrease performance, as demonstrated in Figure 6.2. These

findings help tool developers identify important facts based on different notions of

utility and address the fact selection problem by choosing bug-specific facts, since

the non-monotonicity property indicates that including too much information in the

prompt can be detrimental.

8.2 Future Work
Some promising directions for future work are listed below:

Improving Variable prioritisation

Variable prioritisation is a crucial task, not only for Automated Program Repair

(APR) but also for functionalities such as autocomplete for code. Chapter 4 uses

CDU chains to effectively prioritise variables. I have explored additional strategies,

such as utilising co-occurrence matrices and using compressed statement embeddings

depicted as a graph, which outperformed CDU chains. Despite these advancements,

there remains significant potential for further improvement. Therefore, continuing to

explore and improving the representation is a promising area for future work.

Improving PSP

Chapter 5 employs basic approximations to estimate the probability of the feasibility

of a program state. There is significant potential to enhance these approximation

methods. PSP can be utilised to improve three distinct techniques: bug finding,

Symbolic Execution, and Automated Program Repair. Each of these techniques can

benefit from individually optimised algorithms that leverage PSP’s insights. For

instance, there is a wide range of strategies yet to be explored in utilising PSP’s

information to prioritise from the work list in choosing the next best state to explore

during symbolic execution. Additionally, it is feasible to compress and utilise PSP’s
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data to create prompts for Large Language Models (LLMs), which may turn out to

be an effective fact.

Exploring Additional Facts

We have only considered 16 facts (Figure 6.3) in Chapter 6. There are many addi-

tional facts which can potentially be considered to improve LLM based APR. Some

examples include leveraging PSP, summaries of relevant functions, information

such as class structures and interactions extracted from UML class and sequence

diagrams.

Prompt Compression

Our observations in Chapter 6 highlight a challenge with Large Language Models

(LLMs) — performance drops when the prompts are too long. Preliminary analysis

of the dataset indicates a clear correlation between prompt length and pass@1

scores, as we have detailed in section 6.5.1. This insight has not only motivated the

incorporation of prompt length as a critical feature in our random forest classifier

but also sheds light on the non-monotonicity with respect to the number of facts,

as adding more facts will increase the prompt length. Hence, the development of

sophisticated prompt compression techniques emerges as a promising avenue for

research.

Effective Fact Selection

Chapter 6 provides a proof of concept for a successful dynamic fact selection strategy

by providing a simple statistical model which performs better than the best static

fact selection strategy on our dataset. There is a substantial potential for further

refinement. Potential future work could involve constructing a more robust dynamic

fact selection strategy and comparing it against the established feature selection

techniques used within the machine learning landscape.

Effective Prompt Construction

Chapter 6 addresses a strategy for selecting facts and describes the challenges in

choosing effective facts. After selecting the required facts, a effective prompt is
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essential for improving the performance of LLMs for any given task. While most

current works focus on using fixed, manually crafted prompt templates, there is

potential to automatically construct effective, bug-specific prompts. For automated

program repair, this prompt construction task goes beyond traditional automated

prompt construction on natural language tasks as it involves incorporating code

fragments, execution values (from facts containing execution information), and other

relevant facts. This can be accomplished by techniques such as fine-tuning LLMs,

advanced search strategies, leveraging the framework of Generative Adversarial

Networks [191], and leveraging optimisation algorithms. These methods can dy-

namically generate bug-tailored prompts, thereby enhancing the effectiveness of

automated program repair.
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[145] Guowei Yang, Corina S Păsăreanu, and Sarfraz Khurshid. Memoized symbolic

execution. In Proceedings of the 2012 International Symposium on Software

Testing and Analysis, pages 144–154, 2012.

[146] Junjie Chen, Wenxiang Hu, Lingming Zhang, Dan Hao, Sarfraz Khurshid, and

Lu Zhang. Learning to accelerate symbolic execution via code transformation.



Bibliography 197

In 32nd European Conference on Object-Oriented Programming (ECOOP

2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[147] Jonas Wagner, Volodymyr Kuznetsov, and George Candea. -overify: Opti-

mizing programs for fast verification. In 14th Workshop on Hot Topics in

Operating Systems (HotOS XIV), number CONF. USENIX Association, 2013.

[148] Hayes Converse, Oswaldo Olivo, and Sarfraz Khurshid. Non-semantics-

preserving transformations for higher-coverage test generation using symbolic

execution. In 2017 IEEE International Conference on Software Testing,

Verification and Validation (ICST), pages 241–252. IEEE, 2017.

[149] Shiqi Shen, Shweta Shinde, Soundarya Ramesh, Abhik Roychoudhury, and

Prateek Saxena. Neuro-symbolic execution: Augmenting symbolic execution

with neural constraints. In 26th Annual Network and Distributed System

Security Symposium, NDSS 2019, San Diego, California, USA, February

24-27, 2019. The Internet Society, 2019.

[150] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea.

Efficient state merging in symbolic execution. Acm Sigplan Notices, 47(6):193–

204, 2012.

[151] Koushik Sen, George Necula, Liang Gong, and Wontae Choi. Multise: Multi-

path symbolic execution using value summaries. In Proceedings of the 2015

10th Joint Meeting on Foundations of Software Engineering, pages 842–853,

2015.

[152] Xuan Bach D Le, Ferdian Thung, David Lo, and Claire Le Goues. Over-

fitting in semantics-based automated program repair. Empirical Software

Engineering, 23(5):3007–3033, 2018.

[153] Marcel Böhme, Ezekiel O Soremekun, Sudipta Chattopadhyay, Emamurho

Ugherughe, and Andreas Zeller. Where is the bug and how is it fixed? an

experiment with practitioners. In Proceedings of the 2017 11th Joint Meeting

on Foundations of Software Engineering, pages 117–128, 2017.



Bibliography 198

[154] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung.

Context-aware patch generation for better automated program repair. In 2018

IEEE/ACM 40th International Conference on Software Engineering (ICSE),

pages 1–11. IEEE, 2018.

[155] Martin White, Michele Tufano, Matias Martinez, Martin Monperrus, and

Denys Poshyvanyk. Sorting and transforming program repair ingredients via

deep learning code similarities. In 2019 IEEE 26th International Conference

on Software Analysis, Evolution and Reengineering (SANER), pages 479–490.

IEEE, 2019.

[156] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshy-

vanyk. Deep learning code fragments for code clone detection. In 2016 31st

IEEE/ACM International Conference on Automated Software Engineering

(ASE), pages 87–98. IEEE, 2016.

[157] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.

Unified pre-training for program understanding and generation. arXiv preprint

arXiv:2103.06333, 2021.

[158] He Ye, Matias Martinez, and Martin Monperrus. Neural program repair with

execution-based backpropagation. In 2022 IEEE/ACM 44th International

Conference on Software Engineering (ICSE), pages 1506–1518. IEEE, 2022.

[159] Qibin Chen, Jeremy Lacomis, Edward J. Schwartz, Graham Neubig, Bogdan

Vasilescu, and Claire Le Goues. Varclr: Variable semantic representation

pre-training via contrastive learning. In 44th IEEE/ACM 44th International

Conference on Software Engineering, pages 2327–2339. ACM, 2022.

[160] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei

Xiong, and Lu Zhang. A syntax-guided edit decoder for neural program

repair. In Proceedings of the 29th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering, pages 341–353, 2021.



Bibliography 199

[161] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.

Distributed representations of words and phrases and their compositionality.

Advances in neural information processing systems, 26, 2013.

[162] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:

Global vectors for word representation. In Proceedings of the 2014 conference

on empirical methods in natural language processing (EMNLP), pages 1532–

1543, 2014.

[163] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. En-

riching word vectors with subword information. Transactions of the associa-

tion for computational linguistics, 5:135–146, 2017.

[164] ME Peters, M Neumann, M Iyyer, M Gardner, C Clark, K Lee, and L Zettle-

moyer. Deep contextualized word representations. arxiv 2018. arXiv preprint

arXiv:1802.05365, 12, 2018.

[165] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:

Pre-training of deep bidirectional transformers for language understanding.

arXiv preprint arXiv:1810.04805, 2018.

[166] Qibin Chen, Jeremy Lacomis, Edward J Schwartz, Graham Neubig, Bogdan

Vasilescu, and Claire Le Goues. Varclr: Variable semantic representation

pre-training via contrastive learning. In Proceedings of the 44th International

Conference on Software Engineering, pages 2327–2339, 2022.

[167] Rohan Bavishi, Michael Pradel, and Koushik Sen. Context2name: A deep

learning-based approach to infer natural variable names from usage contexts.

arXiv preprint arXiv:1809.05193, 2018.

[168] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning

distributed representations of code. Proceedings of the ACM on Programming

Languages, 3(POPL):1–29, 2019.



Bibliography 200

[169] Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. Nl2type: infer-

ring javascript function types from natural language information. In 2019

IEEE/ACM 41st International Conference on Software Engineering (ICSE),

pages 304–315. IEEE, 2019.

[170] Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and Baowen Xu. Python

probabilistic type inference with natural language support. In Proceedings

of the 2016 24th ACM SIGSOFT international symposium on foundations of

software engineering, pages 607–618, 2016.

[171] Michael Pradel and Thomas R Gross. Detecting anomalies in the order of

equally-typed method arguments. In Proceedings of the 2011 International

Symposium on Software Testing and Analysis, pages 232–242, 2011.

[172] Michael Pradel and Koushik Sen. Deepbugs: A learning approach to name-

based bug detection. Proceedings of the ACM on Programming Languages,

2(OOPSLA):1–25, 2018.

[173] Yi Li, Shaohua Wang, and Tien N Nguyen. Dlfix: Context-based code

transformation learning for automated program repair. In Proceedings of the

ACM/IEEE 42nd International Conference on Software Engineering, pages

602–614, 2020.

[174] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Practical pro-

gram repair in the era of large pre-trained language models. arXiv preprint

arXiv:2210.14179, 2022.

[175] Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. Impact of code language

models on automated program repair. arXiv preprint arXiv:2302.05020, 2023.

[176] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama.

Quixbugs: A multi-lingual program repair benchmark set based on the quixey

challenge. In Proceedings Companion of the 2017 ACM SIGPLAN interna-

tional conference on systems, programming, languages, and applications:

software for humanity, pages 55–56, 2017.



Bibliography 201

[177] David A Tomassi, Naji Dmeiri, Yichen Wang, Antara Bhowmick, Yen-Chuan

Liu, Premkumar T Devanbu, Bogdan Vasilescu, and Cindy Rubio-González.

Bugswarm: Mining and continuously growing a dataset of reproducible fail-

ures and fixes. In 2019 IEEE/ACM 41st International Conference on Software

Engineering (ICSE), pages 339–349. IEEE, 2019.

[178] Wonseok Oh and Hakjoo Oh. Pyter: effective program repair for python type

errors. In Proceedings of the 30th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering,

pages 922–934, 2022.

[179] Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh. Data-driven

context-sensitivity for points-to analysis. Proceedings of the ACM on Pro-

gramming Languages, 1(OOPSLA):1–28, 2017.

[180] Minseok Jeon, Sehun Jeong, Sungdeok Cha, and Hakjoo Oh. A machine-

learning algorithm with disjunctive model for data-driven program analy-

sis. ACM Transactions on Programming Languages and Systems (TOPLAS),

41(2):1–41, 2019.

[181] Kihong Heo, Hakjoo Oh, and Kwangkeun Yi. Machine-learning-guided

selectively unsound static analysis. In 2017 IEEE/ACM 39th International

Conference on Software Engineering (ICSE), pages 519–529. IEEE, 2017.

[182] Dirk Beyer and Marie-Christine Jakobs. Cooperative verifier-based testing

with coveritest. International Journal on Software Tools for Technology

Transfer, 23:313–333, 2021.

[183] Greta Yorsh, Thomas Ball, and Mooly Sagiv. Testing, abstraction, theorem

proving: better together! In Proceedings of the 2006 international symposium

on Software testing and analysis, pages 145–156, 2006.

[184] Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. From under-

approximations to over-approximations and back. In Tools and Algorithms



Bibliography 202

for the Construction and Analysis of Systems: 18th International Conference,

TACAS 2012, Held as Part of the European Joint Conferences on Theory and

Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24–April 1, 2012.

Proceedings 18, pages 157–172. Springer, 2012.

[185] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan

Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving

with large language models. arXiv preprint arXiv:2305.10601, 2023.

[186] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and

Yusuke Iwasawa. Large language models are zero-shot reasoners. Advances

in neural information processing systems, 35:22199–22213, 2022.

[187] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik

Narasimhan, and Yuan Cao. React: Synergizing reasoning and acting in

language models. arXiv preprint arXiv:2210.03629, 2022.

[188] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang,

Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain

of thought reasoning in language models. arXiv preprint arXiv:2203.11171,

2022.

[189] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu

Pitis, Harris Chan, and Jimmy Ba. Large language models are human-level

prompt engineers. arXiv preprint arXiv:2211.01910, 2022.

[190] Disha Shrivastava, Hugo Larochelle, and Daniel Tarlow. Repository-level

prompt generation for large language models of code. In International Con-

ference on Machine Learning, pages 31693–31715. PMLR, 2023.

[191] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-

sarial nets. Advances in neural information processing systems, 27, 2014.


	Introduction
	Background
	Automated Program Repair
	Architecture
	Fault Localisation
	Correctness Criteria
	Test Overfitting

	Program Analysis
	Fuzzing
	Abstract Interpretation
	Symbolic execution

	Machine Learning
	Random Forests
	Language Models
	Transformers


	Trident: Controlling Side Effects in Automated Program Repair
	Introduction
	Overview
	The Challenges of Synthesis with Side Effects
	Synthesising Assignments
	Synthesising Function Calls
	Resisting Overfitting

	Trident
	Definitions
	Trident's Multi-Path Specification Inference
	Trident's Patch Synthesis
	Trident's Patch Prioritization

	Implementation
	Limitations

	Evaluation
	Trident Fixes Real Bugs
	Containing Path Explosion
	Resisting Overfitting

	Threats to Validity

	Rete: Learning Namespace Representation for Program Repair
	Introduction
	Overview
	Rete's Template Generation
	Rete's Variable Prioritisation

	Rete
	The Patch Ordering Problem
	Prioritising Templates via Distance
	Learning Namespace Representations
	Jointly Prioritising Patches

	Rete's Implementation
	Lazily Prioritising Templates
	Variable Prioritisation with CodeBert

	Evaluation
	Tool Configurations and Baselines
	CDU Chains Contain Strong Signal
	Effectiveness of Rete's Prioritisation
	Rete's Performance


	Precise Data-Driven Approximation for Program Analysis
	Introduction
	Overview
	Program State Probability
	Estimating Program State Probability
	Estimating Unseen States
	Satisfiability Under PSP

	PSP Applications
	Static Analysis
	Symbolic Execution
	Patch Prioritisation

	Implementation
	Logging Fuzzing Information
	Estimating Unseen States
	Symbolic Execution
	Patch Prioritisation

	Evaluation
	RQ1: PSP for Abstract Interpretation
	RQ2: PSP for Symbolic Execution
	RQ3: PSP for Patch Prioritisation
	PSP's Hyperparameters
	Ablation: Estimating Unseen States
	Threats to Validity


	The Fact Selection Problem in LLM-Based Program Repair
	Introduction
	Motivating example
	Study Design
	Experimental Setup
	Bug-Related Facts
	Prompt Design

	The Fact Selection Problem
	Fact Utility
	Impact of Fact Set Size on Prompt Performance
	Non-Existence of a Universally Optimal Fact Set

	Selecting Facts with Maniple
	Feature Selection
	Maniple: A Random Forest for Fact Set Selection

	Comparing Maniple with SOTA LLM-Based APR
	Threats to validity
	Analyzing the impact of nondeterminism on LLM's performance
	Fact Prompt Templates
	Chain-of-thought Instructions
	Handling Imports in Prompts

	Related Work
	Symbolic Execution
	Automated Program Repair
	Program Analysis
	Prompt engineering

	Conclusion
	Contributions
	Future Work

	Bibliography

