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Abstract 

In this work, a combination of an acoustic emission (AE) technique and a machine learning (ML) algorithm 

(Random Forest (RF) and Gradient Boosting Regressor (GBR)) is developed to characterize the particle size 

distribution in gas-solid fluidized bed reactors. A theoretical approach to explain the generation of acoustic 

emission signal in gas-solid flows is presented. An AE signal is generated in gas-solid fluidized beds due to 

the collision and friction between fluidized particles as well as between particles and the bed inner wall. The 

generated AE signal is in the form of an elastic wave with frequencies >100 KHz and it propagates through 

the gas-solid mixture. An inversion algorithm is used to extract the information about the particle size starting 

from the energy of the AE signal. The advantages of this AE technique are that it is a cheap, sensitive, non-

intrusive, radiation-free, suitable for on-line measurements. Combining this AE technique with ML 

algorithms is beneficial for applications to industrial settings, reducing the cost of signal post-processing. 

Experiments were conducted in a pseudo-2D flat fluidized bed with four glass bead samples, with sizes 

ranging from 100 µm to 710 µm. AE signals were recorded with a sampling frequency of 5 MHz. The AE 

signal post-processing and data preparation for the ML process are explained. For the ML process, the AE 

frequency, AE energy and particle collision velocity data sets were divided into training (60%), cross-

validation (20%) and test sets (20%). Two ensemble ML approaches, namely Random Forest and Gradient 

Boosting Regressor, are applied to predict particle sizes based on the AE signal features. The combination 

of these two models results in a coefficient of determination (R²) value greater than 0.9504. 

Keywords: Acoustics, Particle size distribution, Fluidized bed, Inversion, ML, Elastic wave 
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Gas-solid fluidized bed reactors are widely implemented in the pharmaceutical, petrochemical and 

energy industries (Lettieri & Yates, 2013). Recently, fluidized bed reactors have been increasingly used in 

applications such as CO2 capture, waste management and hydrogen production, thus contributing to the 

efforts for net zero (Abanades et al., 2004, Iannello et al., 2020, Materazzi et al., 2019). The excellent mixing 

and increased contact between the phases in fluidized-beds allow for enhanced mass and heat transfer rates, 

making them suitable for challenging reaction systems such as exothermic ones (Kunii & Levenspiel, 1991). 

Fluidized-bed reactors have long been studied and their overall behaviour is well understood. They are, 

however, overly complex systems and require constant monitoring during their operation. For instance, the 

particle size distribution of the bed material may vary throughout operation, due to attrition, in the form of 

particle fragmentation (Zheng et al., 2020) and surface abrasion (Yang, 2003), as well as because of 

agglomeration (Bartels et al., 2008, Scala, 2018). The fluidization behaviour and quality are strongly affected 

by the particle size distribution. Different diagnostic techniques have been applied for the study of such 

reactors (Grace et al., 2020). However, most of them are not applicable to industrial fluidized-bed reactors 

due to their size, while some of these techniques are intrusive, or require specific configurations. Pressure 

measurements can be useful to obtain information about macroscopic properties, as well as changes in the 

overall bed behaviour (Van Ommen & Mudde, 2008); they are widely used due to their simplicity and 

robustness, but do not provide local information on particle behaviour. X-ray imaging (Lettieri & Yates, 

2013), X-ray tomography (Bieberle et al., 2012) and γ-ray tomography (Van Ommen & Mudde, 2008) as 

well as electrical capacitance tomography (Wang and Yang, 2021), provide detailed information of the inside 

of gas-solid fluidized-bed reactors, including, among others, voidage distribution and bubble characteristics. 

Nevertheless, they are hardly used in industrial fluidized-bed systems, as their application entails many 

safety risks, while the signals are heavily attenuated as they travel through large cross sections. Positron 

Particle Tracking (PEPT) has been successfully applied in real industrial systems, as noted in the 

comprehensive guide by (Windows-Yule et al., 2022). Penn et al. (2020) conducted a comprehensive study 

employing real-time magnetic resonance imaging to examine the flow regimes in a fluidized bed with a gas 

injection system, identifying six distinct regimes of bubbling and jetting behaviour, proposing an empirical 

model for predicting jet length based on the Froude number and background gas flow, and analysing the 

bubble breakoff frequency in the pulsating jet regime using Fourier analysis. Moreover, the post-processing 

of some of the resulting signals can be quite demanding, thus limiting the on-line monitoring of the units. 

Positron emission particle tracking (Windows-Yule et al., 2020) and magnetic particle tracking (Sette et al., 

2015) enable users to track tracers within fluidized beds, and, indirectly, to obtain a time-averaged particle 

velocity distribution, but, for statistically valuable information, the measuring times are very long. Magnetic 

resonance imaging (Penn et al., 2018) allows visualization of 2D slices, returning information on voidage, 

bubble characteristics and particle velocity distribution. Industrial fluidized-bed reactors, however, are 

commonly made of stainless-steel walls, which block the radio-frequency signals emitted by the sample. 

Optical (Sobrino et al., 2009) and capacitance probes (Huang & Lu, 2018) provide local information on 

properties such as voidage and bubble characteristics, but they are intrusive and can affect the operation of 

the fluidized system. 
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There is need for non-intrusive, online, local diagnostic techniques for industrial fluidized-bed reactors 

that allow monitoring during operation. Acoustic techniques (ultrasound and acoustic emission) are a 

promising option and a review of their application to particulate flows, including the physical principles, 

experimental methods, and typical challenges, was given by (Hossein et al., 2021). AE for measuring particle 

size in solid gas flows offers several advantages, including non-destructive testing, real-time monitoring, 

and sensitivity to small particles. It is versatile across various materials and requires minimal sample 

preparation. However, there are challenges, such as complex signal interpretation and sensitivity to 

environmental noise, which can lead to inaccuracies. AE also requires extensive calibration and specialized 

knowledge, and high-quality systems can be costly. Ultimately, while AE provides valuable insights, its 

effectiveness can be limited by the specific application and conditions. In a previous paper (Hossein et al., 

2022), we developed ultrasound techniques to characterize the particle size distribution, velocity profiles, 

and voidage in liquid-solid fluidized beds. Ultrasound sensors, however, operate at high frequency ranges, 

causing a large attenuation of sound waves, especially in air, since the attenuation is frequency dependent. 

This makes the use of ultrasound sensors in highly concentrated gas-solid flows difficult. Nevertheless, 

ultrasound sensors operating at low frequencies (below 500 kHz) have been used to measure low particle 

volume fractions (<10%) in turbulent granular suspensions in air (Van den Wildenberg et al., 2020). 

For gas-particulate systems, AE techniques are more appropriate. In gas-solid fluidized beds, particles 

collide with each other and with the bed walls. This collision or friction will convert some kinetic energy 

into elastic waves. The amount of energy converted is dependent on the particle size, on the particle impact 

velocity with the bed wall or with other particles, as well as on the thermophysical properties of the fluid 

and of the particles. The generated elastic waves propagate through the fluidized bed and can be detected by 

an acoustic emission sensor. Different parameters of the recorded acoustic waves such as amplitude, 

frequency, duration, and energy, can be used to characterize gas-solid fluidized beds. Acoustic emission 

techniques record the signal generated from a fluidized bed and analyse the relationship between this signal 

and the fluidized bed properties (Watson et al., 2014). AE techniques have been used to monitor granulation 

(Hansuld et al., 2012). It has been reported that the frequency of the AE wave is inversely proportional to 

the particle size (Carson et al., 2008). Boyd and Varley (2001) reviewed the development of AE techniques 

to monitor physico-chemical changes in chemical engineering processes such as bubble sound in liquid-gas 

dispersions for characterizing bubble size. Briongos et al. (2006) showed that AE techniques can be used to 

monitor the slugging behaviour in fluidized beds. Zhang et al. (2019) reported the online measurement of 

conveyed particles in solid gas flows through AE sensing. They established an AE energy model for plug 

flow in vertical pneumatic conveying by analysing the acoustic signal of particle-wall interactions. Acoustic 

emission techniques have previously been applied to fluidized-bed systems to measure the average particle 

size of the bed material (Zhang et al., 2021). However, in fluidized beds the particles often have a distribution 

of sizes which, in addition, can significantly change during operation because of phenomena such as 

comminution and agglomeration. For this reason, evaluating the particle size distribution can be helpful in 

better understanding and monitoring the operation of a fluidized-bed system. 
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The main challenge with the use of AE techniques in gas-particle systems is the inversion of the acoustic 

signal for the calculation of different parameters such as particle size distribution, particle velocity and 

voidage. Another challenge with acoustic emission techniques is the need of a theoretical model to express 

the generation of an acoustic emission signal in fluid particle flows. 

In this study, we aim to address these challenges. We present a theoretical approach to explain the 

generation of acoustic emissions signal in gas-solid flows and propose an inversion algorithm to obtain the 

particle size distribution from the acoustic emission energy spectrum. We apply the methodology to acoustic 

emission measurements obtained in a pseudo-2D fluidized bed and characterise the particle size distribution 

for four different particle sample sizes. Furthermore, for the first time, we investigate the application of 

machine learning (ML) techniques to the inversion of the acoustic emission signal in gas-solid fluidized-bed 

reactors. Machine learning techniques can alleviate the need for complex signal post processing, reduce the 

computation time for the inversion while they need fewer signal input parameters. Two ensemble machine 

learning algorithms, Random Forest (RF) and Gradient Boosting Regressor (GBR), are applied to the 

acoustic emission signal to predict the particle size distribution based on the frequency, and the kinetic 

energy of the acoustic emission signal, as well as a particle velocity. These two ML algorithms, based on the 

decision-tree (DT) framework, have been widely applied in an enormous range of engineering problems 

(e.g., Bieberle et al., 2012; Cheng et al., 2022; Gong et al., 2022), thanks to their training efficiency and good 

interpretability (Salehi-Nik et al., 2009). AE techniques have the potential to deliver accurate information 

about the bed material as well as the fluid dynamics of a fluidized-bed reactor in a non-invasive way, through 

opaque systems, and in real time. 

In what follows, Section 2 details the acoustic emission theory behind the generation and propagation 

of an acoustic emission signal in gas-solid flows and introduces the inversion algorithm for obtaining the 

particle size distribution from the acoustic emission signal energy. Section 3 provides details of the 

experimental setup, while Section 4 outlines the results and discussion. Section 5 describes the application 

of machine-learning algorithms on the acoustic emission signal. Finally, section 6 draws some conclusions 

on the work done. 

2. Acoustic emission theory and inversion 

Theory 

Acoustic Emission (AE) in fluid-particle flows refers to the generation of elastic waves by abrupt 

release of energy (Zhou et al., 2018). The sources of AE signals are particle-particle or particle-wall 

collisions (impact sound), particle-wall friction (friction sound), and air turbulence (aerodynamic sound) 

(Salehi-Nik et al., 2009). Since the average time between bursts of emission is usually shorter than the 

duration of the emission itself, the AE signal may appear as continuous (Addali et al., 2010). To detect these 

waves, a suitable acoustic emission sensor needs to be mounted on the outer face of the bed wall. The 
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generation of AE waves depends on the colliding particle size, shape, density, and velocity, as well as on the 

properties of the bed material wall (Wang et al., 2009). 

A typical pulse of an AE signal recorded by an acoustic emission sensor in a fluidized bed is shown in 

Fig. 1. The statistical AE features that can be determined are the peak amplitude of the pulse, the rise-time 

(time between the initiation of the signal and the peak amplitude), the signal duration (time interval between 

the start and the end point of the AE signal), the frequency and the absolute energy of the signal. Thanks to 

this, the AE parameters can be used to obtain the particle size distribution (PSD) in gas-solid flows. To 

calculate the rise time accurately in the presence of multiple overlapping signals, we implemented advanced 

signal processing techniques that facilitate the deconvolution of these signals. This approach allows for the 

isolation of individual contributions, improving the reliability of our rise time measurements, and is 

complemented by appropriate filtering methods to enhance signal clarity. 

Fig. 1 

The absolute energy 𝐸 of the AE signal is given by: 

 

𝐸 =
1

𝑓𝑠 
∑⌈𝐴𝑗⌉

2
𝑁

𝑗=1

  
(1) 

where 𝑓𝑠  is the sampling frequency, 𝐴𝑗 is the signal amplitude of the j-th measurement, and 𝑁 is the number 

of sampling points of the AE pulse. In the case of a purely elastic collisions between the bed wall and the 

particles, the energy fraction in the elastic wave 𝜆𝑒 (the energy dissipated during the collision process) can 

be given by (Boettcher et al., 2017): 

 𝜆𝑒 = 𝐾
𝛼

1 + 𝑒
 (2) 

where 𝐾 is a proportionality constant and 𝑒 is the coefficient of restitution, which can be obtained as 

follows: 

 

𝑒 = 3.8√(
𝜎𝑦

𝐺
) (

2𝜋𝜌𝑣𝑝𝑖
2

3𝜎𝑦
)

−
1
8

 

(3) 

where 𝜌 and  𝜎𝑦 are the density and the yield stress of the particle respectively, while 𝑣𝑝𝑖 is the impact 

velocity (normal component velocity) of the particle, and 𝐺 is given by: 

 
𝐺 =  

1 − 𝛾1
2

𝑌1
+

1 − 𝛾2
2

𝑌2
 

(4) 
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where 𝑌1,  𝑌2 and  𝛾1, 𝛾2 are the Young’s moduli and Poisson’s ratios respectively for the particle and the bed 

wall. Zhang et al. (2021) gave a definition for the dimensionless function 𝛼 in Eq. (2) as follows: 

 
𝛼 =

4(1 + 𝑒)

𝐹𝑜
2𝜔𝑝

∫ 𝜔2|𝐹(𝜔)|2𝑑𝜔
∞

0

 
(5) 

where 𝜔𝑝 =  (
3𝜎𝑦

2𝜌𝑅2)
1/2

,  𝐹𝑜 =  (
4𝜋𝜌𝑅3𝑣𝑝𝑖𝜔𝑝

3
),  where 𝑅  is the particle radius, 𝐹(𝜔) is the Fourier component 

of the AE signal in FFT, and 𝑒 is the coefficient of restitution (Eq. (3)) with values ranging between 0 and 

1. The value of 0 corresponds to a perfectly plastic collision and the value of 1 to a perfectly elastic collision. 

The relationship between 𝛼 and 1+e is obtained for glass particles (density 2500 kg/m3) with particle size 

of 100-250 μm and is illustrated in Fig. 2. 

Fig. 2 

The above Eqs. (1)–(5) link the AE energy to the particle size. Function 𝛼, shown in Fig. 2, depends on 

the AE energy, the particle size, the mechanical properties of the particle and the coefficient of restitution 𝑒. 

To obtain the particle size distribution from the AE energy recorded by the AE sensor, an inversion algorithm 

is needed, and this is based on the theoretical approach presented so far. 

Inversion 

The AE signal is generated due to the particle-particle and particle with inner bed wall collisions. The 

generated AE signals were recorded by an AE sensor (Nano 30, MISTRAS). The AE sensor used here cannot 

detect signals generated from particle-particle collisions, but it can detect the AE signals generated from the 

collisions of the particles with the bed wall. Therefore, we are ignoring the AE signals generated due to the 

particle-particle collisions. Theoretically, the kinetic energy released from the collision of particles with the 

inner bed wall can be expressed (Whiting et al., 2018) as: 

 𝐸 = 𝜆𝑒𝐸𝑘 (6) 

where 𝜆𝑒 is defined by Eq. (2). The kinetic energy 𝐸𝑘 is proportional to the diameter and velocity of the 

impinging particles, and is given by: 

 
𝐸𝑘  =

1

12
𝜋𝜌𝑑3𝑣𝑝𝑖

2  
(7) 

The relationship between the diameter of a particle and AE energy can be obtained by combining Eqs. 

(6), (7), and (2): 
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𝑑 =  [
12𝐸

𝛼
1 + 𝑒

 𝐾𝜋𝜌 𝑣𝑝𝑖
2

]

−
1
3

 

(8) 

To obtain the particle diameter, the velocity of the impinging particles against the bed wall is required. 

The component perpendicular to the wall of the particle impact velocity can be related to the gas superficial 

velocity and the particle diameter by the following equation (Cody et al., 1996): 

 
𝑣𝑝𝑖 =  𝑈 (

𝐷

𝑑
) [1 − exp (−

2(𝑈 − 𝑈𝑚𝑓)

𝑈𝑚𝑓
)] 

(9) 

where 𝐷 is an empirical constant and can be taken equal to 110 μm for monodispersed glass spheres (Cody 

et al., 1996), and 𝑑 is the particle diameter. However, as the particle size follows a distribution, particles 

move at different velocities. 𝑈 is the gas superficial velocity (we measured the superficial velocities by 

increasing the airflow rate using a rotameter and observed the particles beginning to expand within the 

fluidized reactor), and 𝑈𝑚𝑓 is the minimum fluidization velocity. This correlation is valid for 1 ≤ 𝑈/𝑈𝑚𝑓 ≤

2. Therefore, the particle size distributions were calculated for all samples with the conditions of 
𝑈

𝑈𝑚𝑓
= 1.5. 

Furthermore, another assumption is that the sensor only records signals when particles collide with the inner 

bed wall, without capturing any particle-particle collision signals. 

After the AE energy 𝐸 is obtained experimentally, 𝐾 can be found through experimental calibration as: 

 𝐾 =  𝑋𝑣𝑝𝑖 + 𝑋 (10) 

The particle characteristics, and particle size distributions corresponding to each sample are shown in 

Table 1. The 𝐾 values obtained from the experiments conducted in a 2D fluidized bed (as depicted in Fig. 

4) are pivotal to our analysis. To derive these K values, we initially predicted the values of 𝑣𝑝𝑖 by utilizing 

Eq. (9). For each fluidization velocity value 𝑈, we standardized 𝑈 to 1.5 times the minimum fluidization 

velocity, denoted as Umf, as per the conditions specified in Eq. (9). The individual 𝑈 values for each sample 

were calculated as follows: U (sample 1) = 6.255 cm/s, U (sample 2) = 21.015 cm/s, U (sample 3) = 32.625 

cm/s, and U (sample 4) = 45 cm/s. 

Table 1 

Subsequently, K values were obtained (using Eq. (10)), for the experiments were conducted in triplicate 

for every sample to ascertain the 𝑋 value, resulting in 𝑋 values of 15 ×  10−31, 14 × 10−31, 13 ×  10−31, 

and 10 × 10−31 for samples 1, 2, 3, and 4, respectively. As shown in Fig. 3, the 𝐾 values for every sample 

(blue markers) are dependent on particle velocities and it is linearly decreasing for larger samples. 
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Finally, an inversed Gaussian distribution can be used to fit this particle size data, where the general 

form of the inversed Gaussian distribution is given by (Murphy, 2007): 

 
𝐹(𝑥) =

1

𝑠√2𝜋
 exp [−

1

2
(

𝑥 − 𝑀

𝑠
)

2

] 
(11) 

where, 𝑀 is the median of variable 𝑥 and 𝑠 is the standard deviation of 𝑥. 

Fig. 3, 4 

In this study, we have assumed a Gaussian distribution to represent the particle size distribution. The 

Gaussian model is particularly suitable when the particle sizes are symmetrically distributed around a mean 

value, which aligns with the characteristics of the samples analysed in our experiments. This assumption 

allows us to simplify the complexity of the particle size distribution while still providing a robust framework 

for our analysis. Additionally, using a Gaussian distribution facilitates the comparison of our results with 

previous studies in the literature, where similar assumptions have been effectively employed. 

3. Experimental setup 

Fig. 4 shows the 2D fluidized bed together with the acoustic emission circuit used in this work. The 

fluidized-bed walls are 10 mm-thick and made of polymethyl methacrylate (PMMA). The fluidized bed 

height, width and depth are respectively 1000, 100 and 10 mm. Air injection at the bottom of the fluidized 

bed is controlled by a rotameter, while the distributor is a porous plate with hole size equal to 25 μm. The 

flow of air, before entering the fluidized bed, is homogenized in a windbox, a plenum filled with ceramic 

beads approximately 9 mm in diameter. 

The particles used in this work are spherical glass beads (ballotini) with density equal to 2500 kg/m3, 

and the fluidizing gas is air. All experiments were conducted at room temperature and pressure. Four particle 

samples with varied sizes were used. Their physical properties and minimum fluidization velocities are 

shown in Table 1. 

If the air superficial velocity in the fluidized bed is larger than the minimum fluidization velocity of the 

sample, particles are fluidized, and collide with the bed walls and with each other. Elastic waves are then 

generated and recorded by the AE sensor mounted on the outer bed wall, 6 cm above the distributor plate. 

The particle velocity is calculated from the gas superficial velocity using Eq. (9). The operating 

specifications of the AE sensor (Nano 30, MISTRAS) are summarised in Table 2. To ensure a good contact 

between the AE sensor and the bed wall, a vacuum grease is employed. Experiments with the different 

particle samples were repeated three times each and returned a standard deviation on the AE amplitude of 

less than 3%. 
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The AE signal is amplified by up to 45 𝑑𝐵 and filtered through a band pass filter with frequency range 

0-20 KHz. A signal analyser (AE-Node, MISTRAS) is used for the wave form acquisition at a sampling rate 

of 5 MHz. The digitized data is then downloaded onto a computer for further signal post-processing. 

The AE signals are recorded for the four different sample sizes (see Table 1), and the energy of the 

measured AE signal is calculated using Eq. (1). The AE signal is then inverted to particle size distribution 

using Eq. (8) (see section 2). The equations mentioned here are solved in MATLAB. 

Table 2 

4. Results and discussion 

The AE signal was collected in the experimental setup described above, and the peak amplitude and 

absolute energy were obtained. As can be seen in Fig. 5, both the average peak amplitude and the absolute 

energy (from Eq. (1)) increase with particle size and particle impact velocity, and Fig. 5 is showing how AE 

energy and amplitudes changes with fluidization flow rates. Additionally, the particle impact velocity 

increases with increasing fluidization velocity, see Eq. (9). This is because the kinetic energy converted into 

acoustic wave energy is larger for larger or faster particles. 

Fig. 5 

For each sample size (see Table 1), the acoustic emission energy was obtained by using Eq. (1) for fluid 

flow rates 
𝑈

𝑈𝑚𝑓
= 1.5. This was then fed into Eq. (8) to obtain the particle size distribution. The results were 

also compared with the particle size distributions obtained from images of the samples taken with an Axio 

Observer 5 (ZEISS) microscope (bars in Fig. 5(b)). The Python cv2.HoughCircles function was used to 

identify the size of each glass bead in the images (Fig. 5(a)) to obtain the particle size distribution. For each 

sample size at least 150 beads were measured via imaging to have a statistically valid distribution. 

As can be seen from Fig. 5(b) the particle size distributions obtained with the AE technique and from 

the microscope images are in reasonable agreement. The differences between the two techniques may be 

attributed to (1) the large attenuation of the AE signals (signal reflected from the bed wall), which may not 

reach the sensor; (2) the number of particles imaged with the microscope might not be sufficient; (3) the 

correlation used to calculate the particle velocity. 

The experiments were conducted in a room under controlled temperature and pressure conditions. 

Hence, the errors due to temperature or pressure changes are considered negligible. 

The main challenge remains that the acoustic emission attenuation is not accounted for. The AE signal 

is generated by the collision or friction of particles with the bed wall and the signal is mainly attenuated due 

to the reflection of AE signal by the bed wall. The attenuation factor depends on the material properties (e.g., 
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density, compressibility) and frequency of the sound wave (𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 ∝
1

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
). There are other 

factors causing the attenuation of the sound wave such as absorption, diffraction, divergence, and 

temperature (Hossein et al., 2021). The attenuation of sound wave through polymethyl methacrylate 

(PMMA) was measured by (Bloomfield et al., 2000) and it was found equal to 1.4 𝑑𝐵/cm/MHz. It is 

difficult to measure the acoustic emission attenuation in a solid-gas mixture experimentally because the exact 

location of the original AE signal is not known. Locating the AE signal would require multiple AE sensors 

for a small number of AE events. This is particularly challenging in complex flows, where many AE 

collisions occur at the same time over various locations. 

Furthermore, accounting for the acoustic emission attenuation coefficient remains challenging. For this 

reason, in the next section we are introducing a machine learning algorithm combined with the acoustic 

emission energy technique presented so far to characterise particle size distributions in gas-solid flows. 

To evaluate the accuracy of particle sizes measured by acoustic emission and microscope, the mean 

square error has been calculated and is presented in Table 3. The results indicate that acoustic emission 

demonstrates a strong ability to measure particle size distribution with a smaller margin of error compared 

to the microscope imaging. This suggests that acoustic emission is a reliable technique for accurately 

assessing particle sizes, providing valuable insights into the particle distribution characteristics. 

Table 3 

5. Machine Learning algorithms coupled with acoustic emission 

Recently, ML algorithms have been coupled with acoustic emission techniques (Das et al., (2019)). 

Zhang et al. (2021) introduced a ML framework (based on the frequency of the AE signal) to classify the 

damage of structural elements. Most recent applications of acoustic emission techniques in combination with 

machine learning approaches were used for early leak detection in pipelines (Ahn et al., 2019), damage 

identification (Xu et al., 2019), failure detection in ferro-cement composite structures (Behnia et al., 2016), 

monitoring gas-liquid mixing in stirred tanks (Forte et al., 2021), and identification of the solid suspension 

state in a stirred tank (Rossi et al., 2022). Here, we are introducing a methodology to combine the AE 

technique with ML for predicting the particle size distribution without depending on the model for the 

particle velocity, which can be difficult to acquire (Hii et al., 2013, Zhang et al., 2019).  We built an ML 

regression model which takes frequency, and kinetic energy from the acoustic signal as inputs and predicts 

the particle size distribution. In this study, we employ two decision tree (DT)-based ensemble machine 

learning methods, Random Forest (RF) and Gradient Boosting Regressor (GBR), for predicting particle 

diameter. RF, utilizing a bagging strategy (which refers to the process of training multiple decision trees on 

different subsets of the data and then aggregating their predictions to improve accuracy and reduce 

overfitting) (Prasad et al., 2006, Gong et al., 2023), trains multiple prediction models in parallel on randomly 

selected subsets of the training data. It uses Gini coefficients (Lewis, 2000) for tree splitting within the DT 
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framework, offering easier interpretability and less training complexity compared to Neural Network-based 

algorithms. On the other hand, GBR (Friedman, 2001) builds upon an ensemble of weak learners (DTs), 

applying a boosting strategy that sequentially trains trees to correct previous errors. This process 

incrementally builds the model, with each tree focusing on the weaknesses of the combined predictions of 

the preceding trees. While both methods employ Classification and Regression Trees (CART), the key 

distinction lies in the RF's simultaneous development of multiple trees in the RF method and in the iterative 

improvement approach in the GBR method, as detailed in Natekin and Knoll (2013). The methods used in 

this study can be used for different particle size ranges, and a fair comparison, the hyperparameters of both 

RF and GBR are fixed as: 

• Number of individual models 𝑛𝐷𝑇 = 100, 

• Maximum depth of each DT, 𝑑𝐷𝑇 = 100, 

• Number of features for each tree split 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 3. 

At first, we have evaluated the ML without preprocessing the data as shown in Fig. 6. The raw data 

included the original signal from the acoustic sensor, signal frequency, and energy. Our ML process involved 

using Microscope results for label generation, with a 60% training, 20% testing, and 20% validation split. 

The models, such as random forest and xgboost, were trained using this non-pre-processed data. 

Fig. 6 displays the machine learning predictions generated by both the RF and XGBoost models, 

achieving R2 scores of 0.6480 and 0.5537, respectively. The performance of the predictions with non-pre-

processed data is notably poor, primarily attributed to the presence of noise in the data captured by the 

acoustic emission sensor. This noise can stem from various sources, including background noise. Noise in 

the experimental data is often non-negligible, because of experimental errors and uncertainty propagations 

which may result in considerable bias in the predictive model (Gupta & Gupta, 2019). External noise from 

sources like combustion and factory operations challenges the effectiveness of our AE technique; however, 

strategies such as band-pass filtering, advanced machine learning algorithms for noise reduction, strategic 

sensor placement and directional microphones can improve signal clarity and enhance the signal-to-noise 

ratio. Continuous monitoring and adaptation of the system can further enhance its robustness against 

environmental noise, enabling reliable data collection even in challenging industrial settings. 

Fig. 6 

Ensemble ML methods, which consist of a certain number of sub-models, are known to deal efficiently 

with data uncertainties and imbalance (Verbaeten & Assche, 2003). 

To overcome this and improve the prediction results we pre-processed the data for the ML process as: 

Initially, the acoustic emission signal was cleaned out from all values that are out of the range of the sensor 

detection (Nano 30, MISTRAS sensor operation frequency range is 125-750 KHz). The AE signal then 

undergoes Fast Fourier Transform (FFT) to obtain the acoustic signal “fingerprint” in the frequency domain. 
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The amplitudes and frequencies of the signal are then identified. To remove the background noise (defined 

as a sound within human hearing range, 𝑓 < 20 KHz), a high-pass filter was applied. Finally, to reduce the 

data set, which limits the input of the ML process, only frequencies with a high relative variance (from 

the 𝐹𝐹𝑇 values) are selected. The relative variances (𝑅𝐹𝑗) for each frequency (j-th) are calculated as follows 

(Rossi et al., 2022): 

 
𝑅𝐹𝑗 =

𝜎𝑗
2

𝜇𝑗
=  

∑ (𝐴𝑖𝑗 − 𝜇𝑗)
2𝑁

𝑖=1

∑ 𝐴𝑖𝑗
𝑁
𝑖=1

 
(12) 

where 𝑁 is the number of 𝐹𝐹𝑇 spectrum, and 𝐴𝑖𝑗 is the 𝐹𝐹𝑇 magnitude for the j-th frequency (column) for 

the i-th spectrum (i-th row), 𝜇𝑗 =
1

𝑀
∑ 𝐴𝑖𝑗

𝑀
𝑖=1  and 𝜎𝑗

2 =
1

𝑀
∑ (𝐴𝑖𝑗 − 𝜇𝑗)

2𝑀
𝑖=1  .The frequencies with the highest 

𝑅𝐹𝑗  (relative frequency variances) values and the corresponding AE amplitudes, were selected for each 

sample. Finally, the training, validation, and test datasets, consisting of 2001 data points from each sample, 

were used in the ML processing. The data post processing and ML steps are illustrated in Fig. 7. 

Fig. 7 

A detailed illustration of the essential data pre-processing steps necessary for ML data preprocessing is 

shown in Fig. 8. 

In Fig. 8(a), the raw AE signal as captured by the AE sensor is visually presented, providing an initial 

overview of the data. Transitioning to Fig. 8(b), we delve deeper into the signal processing by highlighting 

the AE signal in its transformed state through Fast Fourier Transform (FFT), which facilitates the analysis 

of signal frequencies, Fig. 8(c) offers a closer look at the FFT of the AE signal post-application of a 20 kHz 

cutoff filter. This filtration step is crucial as it effectively eliminates undesirable background noise, 

enhancing the quality and reliability of the data under scrutiny. Lastly, Fig. 8(d) shows the frequency 

reduction process of the AE signal. This reduction is achieved through the implementation of Eq. (12), 

highlighting a specific computational method used to streamline and refine the signal for subsequent machine 

learning analysis. Together, these sequential steps depicted in Fig. 8 not only demonstrate the meticulous 

preparation of the AE data but also underscore the significance of data refinement to optimize the efficiency 

and accuracy of machine learning algorithms in this work. Finally, Eq. (12) is utilized to determine the 

relative frequency variances for ML processing. After cleaning and preprocessing the AE data, we have 

evaluated the ML models again, the raw data included the pre-processed AE signal l frequency, and AE 

energy. Our ML process involved using microscope image results for label generation, with a 60% training, 

20% testing, and 20% validation split, and the results are shown in Fig. 9. 

Fig. 8 
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Results in Fig. 9 is showing that, the combination of detailed preprocessing steps and the robust 

algorithmic frameworks of the machine learning models contribute to their accuracy in predicting particle 

sizes. The R2 scores on the test dataset for random forest (0.9504) and xgboost (0.9404) further support the 

efficacy of our approach. 

Fig. 9 

We evaluated the performance of RF and GBR on the test dataset by comparing the model output 

against the particle diameter measured by the AE technique, as shown in Fig. 9. For both approaches the 

predicted value is remarkably close to the recorded experimental results of the test set (the test particle sizes 

measured by the AE technique, see Fig. 6(b)) data was used as a label. 

Table 4 presents compelling evidence of the robust performance of the regression models with pre-

processed data, as indicated by R2 values exceeding 0.9  for both approaches. These outcomes align 

consistently with the observations depicted in Fig. 9. Notably, the RF model slightly outperforms the GBR 

model based on both metrics. Additionally, Fig. 10 delves into the feature importance of the predictive 

models, employing permutation importance to assess the significance of each input variable, as proposed by 

Altmann et al. in 2010. 

Fig. 10 illustrates the feature importance analysis for the machine learning predictions, revealing the 

dominance of AE energy over AE frequency in influencing the model's predictions. Furthermore, the 

visualization in Fig. 10 highlights the importance of extracted AE features, such as AE frequency and AE 

energy, derived from the pre-processed data in influencing the machine learning model predictions, and this 

is in line with the recent work in the literature reported by (Hii et al., 2013, Zhang et al., 2019). 

Fig. 10; Table 4 

A notable revelation from the Fig. 10 is the prominence of Kinetic Energy over particle frequency when 

the model is trained on pre-processed data, a coherence with Eq. (10) where AE energy is contingent on 

particle sizes. This relationship stems from the fact that collisions involving larger particles generate higher 

AE energy, while smaller particles produce relatively lower energy at the same velocities. 

It is also discerned that the importance attributed to AE frequency is notably less in comparison to 

kinetic energy. This discrepancy could be attributed to potential limitations of the sensor in recording AE 

signal frequencies, constrained within the range of 125 − 750 KHz, shaping the observed patterns in the 

feature importance analysis. 

The machine learning methods implemented in this study do not only provide an accurate prediction of 

the particle size distribution, but also bring more insight in understanding the relationship between particle 
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size, kinetic energy, and AE frequency. The test and training data can be accessed via https://github.com/DL-

WG/Acoustic_emission_-_ML. 

The transferability of this method to different system materials, particle types, and varying operational 

conditions, such as temperature, gas density, and viscosity, is an important consideration. While the 

principles of measuring particle size distribution using AE are broadly applicable, the model may require 

retraining to account for changes in system dynamics and particle properties. Complete retraining may not 

always be necessary; fine-tuning or transfer learning techniques could be employed instead. Training and 

calibration in an industrial setting can be feasible with proper integration of the sensor system and data 

collection protocols, allowing for effective adaptation to various operational environments. 

Our method can be adapted for binary, ternary, or polydisperse systems with varying particle densities 

by modifying the machine learning model to include features related to density and mass in addition to size. 

This involves enhancing the feature extraction and expanding the calibration process to accommodate 

diverse particle compositions, ultimately improving the model's predictive accuracy. Additionally, 

integrating various sensors or measurement techniques may be necessary to capture interactions among 

particles with different densities and sizes, ensuring reliable predictions of particle size distribution in 

complex systems. 

These factors highlight the need for careful consideration of the specific application when deploying 

the method in real-world scenarios. 

6. Conclusions 

This study presents the combination of acoustic emission and machine learning approaches for 

obtaining particle size distribution in fluidized-bed reactors. Each particle colliding against the fluidized-bed 

inner wall releases energy in the form of an elastic wave. This phenomenon is called acoustic emission and 

can be used to draw information about the collision itself. The acoustic emission particle size distributions 

were compared against imaging results of the bed material. Once the technique has been calibrated, the 

recorded acoustic emission signal can be used to obtain the current particle size distribution within the 

fluidized-bed reactor. This could be very useful in applications where the size distribution of the bed particles 

varies in time. In the second part of the study, acoustic emission was combined with machine learning to 

improve the accuracy of the inversion algorithm. In the machine learning process, we utilized the inputs of 

energy, frequency, and collision velocity directly to predict the particle size distributions. However, the 

theoretical model is presented to provide mathematical descriptions or representations of the physical 

phenomena and underlying principles associated with acoustic emission. By implementing ensemble 

learning methods, an accurate prediction of the particle size can be achieved. The developed regression 

functions could help in improving the results of the acoustic emission technique. The data processing in this 

study was conducted offline; however, we can adapt the method for online processing in future 
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implementations. In conclusion, the combination of acoustic emission and machine learning seems 

promising in delivering a cheap and non-invasive tool for real-time measurements of the particle size 

distribution in a fluidized-bed reactor and enable optimization of its operation. 
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Figure captions: 

Fig. 1. Typical AE pulse signal recorded in a 2D gas-solid fluidized bed. 

Fig. 2. Relationship between the coefficient of restitution 𝑒, and the dimensionless constant 𝛼 was calculated 

with Eq. (3) and Eq. (5) respectively for glass particles (density 2500 𝑘𝑔/𝑚3) with average sample size of 

175 µm. 

Fig. 3. The 𝐾 values for sample 1, 2, 3 and 4 at 
𝑈

𝑈𝑚𝑓
= 1.5 for each sample, and the blue dots represent the 

K values for each sample, while the pink dashed line illustrates the linear correlation showing how the K 

value is dependent on 𝑣𝑝𝑖. 

Fig. 4. Experimental setup: pseudo-2D flat fluidized bed on the left, acoustic emission sensing circuit on the 

right. 

Fig. 5. (a) Example of a microscope picture of glass beads, with identified centres (in blue) and circles (in 

green). A x5 lens was used, with 0.91 um/pixel conversion. (b) Inverted particle size distribution from the 

measured AE energy compared to the PSD obtained from the microscope images. 

Fig. 6. The comparison between predictions and actual values on the non-pre-processed dataset for samples 

1, 2, 3, and 4 from Fig. 5(b) is illustrated. The x-axis represents the predicted particle sizes in μm, while the 

y-axis displays the true values of particle sizes in μm. 

Fig. 7. Data preparation and processing for ML. 

Fig. 8. The frequency reduction process for ML. 

Fig. 9. The comparison between predictions and actual values on the pre-processed dataset for samples 1, 2, 

3, and 4 from Fig. 5(b) is illustrated. The x-axis represents the predicted particle sizes in μm, while the y-

axis displays the true values of particle sizes in μm. The validation process encompasses the entire dataset, 

including all samples. 

Fig. 10. Feature importance (with permutation) in RF and GBR models with pre-processed data. 
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Tables: 

Table 1 Physical properties and minimum fluidization velocities of the particle samples used in the 

experiments. 

Sample Size (μm) Density (kg/m3) Weight (g) Umf (cm/s) 

1 100-250 2500 350 4.17 

2 250-355 2500 350 9.34 

3 355-500 2500 350 14.5 

4 500-710 2500 350 30.0 

 

Table 2 Operating specifications of the AE sensor. 

AE Sensor properties Values 

Peak sensitivity 62 𝑑𝐵 

Operating frequency range 125 − 750 KHz 

Resonant frequency 300 KHz 

Temperature range −65 –  177 °C 

Case material Stainless steel 

 

Table 3 Mean squared values of measured particle sizes from acoustic emission and microscopy. 

Sample Mean square error 

1 2.79 

2 3.33 

3 4.54 

4 7.73 

 

Table 4 The R2 evaluated on the test set with preprocessed and non-preprocessed data. 

ML Algorithm Non-preprocessed R2 Preprocessed R2 

RF 0.6480 0.9504 

GBR 0.5537 0.9404 
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Highlights 

⚫ A combination of an acoustic emission (AE) techniques with machine learning (ML) for fluid particle 

flows is developed. 

⚫ A theoretical model for the generation of AE signal in gas-solid flow is presented. 

⚫ An inversion algorithm to invert AE signal to particle size distribution is reported. 

⚫ ML approaches are applied to predict particle sizes based on the AE signal features. 
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