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ABSTRACT
Animal-mediated pollination is a key ecosystem service required to some extent by almost three-quarters of the leading human 
food crops in global food production. Anthropogenic pressures such as habitat loss and land-use intensification are causing 
shifts in ecological community composition, potentially resulting in declines in pollination services and impacting crop pro-
duction. Previous research has often overlooked interspecific differences in pollination contribution, yet such differences mean 
that biodiversity declines will not necessarily negatively impact pollination. Here, we use a novel species-level ecosystem service 
contribution matrix along with mixed-effects models to explore how groups of terrestrial species who contribute differently to 
crop pollination respond globally to land-use type, land-use intensity, and availability of natural habitats in the surrounding 
landscape. We find that the species whose contribution to crop pollination is higher generally respond less negatively (and in 
some cases positively) to human disturbance of land, compared to species that contribute less or not at all to pollination. This 
result may be due to these high-contribution species being less sensitive to anthropogenic land conversions, which has led hu-
mans to being more reliant on them for crop pollination. However, it also suggests that there is potential for crop pollination to 
be resilient in the face of anthropogenic land conversions. With such a high proportion of food crops requiring animal-mediated 
pollination to some extent, understanding how anthropogenic landscapes impact ecological communities and the consequences 
for pollination is critical for ensuring food security.

1   |   Introduction

Anthropogenic pressures are causing shifts in the compo-
sition of ecological assemblages (Millennium Ecosystem 
Assessment  2005; Newbold et  al.  2015; Walther et  al.  2002). 
This can lead to declines in ecosystem functioning and im-
pact the benefits that nature provides to people (Cardinale 
et al. 2012; Mace, Norris, and Fitter 2012). These benefits are 

often referred to as ecosystem services and they underpin 
human well-being (WWF 2018; Biggs et al. 2012). One such ex-
ample is animal-mediated pollination. This service is required 
to some extent by around three-quarters of human food crop 
species (Klein et al. 2007), benefitting the global economy by 
an estimated US$235-577 billion (2015 US$) through increas-
ing worldwide annual crop output (Lautenbach et  al.  2012; 
Potts et al. 2016). However, anthropogenic pressures such as 
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habitat loss and land-use intensification can impact abun-
dance and richness of pollinators across ecological communi-
ties (Biesmeijer et al. 2006; Dicks et al. 2021; Potts et al. 2010; 
Soroye, Newbold, and Kerr  2020). These shifts in ecological 
assemblages may result in declines in pollination provision, 
negatively impacting human well-being. For instance, it is es-
timated that 5%–8% of global crop production (by mass) would 
be lost without animal-mediated pollination, imposing di-
etary changes and requiring the transformation of more land 
to agriculture to keep up with food demands (particularly in 
the Global South (Aizen et al. 2009)). Furthermore, the crops 
that are dependent to some degree on animal-mediated pol-
lination (such as fruits, nuts, and vegetables) are important 
for providing key nutrients and variety in our diets (Smith 
et al. 2015). Understanding the impact of anthropogenic pres-
sures on pollinator assemblages is therefore crucial if we are 
to sustain current and future societal needs (Biggs et al. 2012; 
Potts et al. 2016; Dicks et al. 2021).

Land use (e.g., natural habitats versus agricultural and urban 
areas), land-use intensity (e.g., level of chemical input or re-
source extraction), and landscape composition (the proportion 
of natural or human-altered land uses surrounding a site) are 
known to impact ecological assemblages, particularly pol-
linators, with effects differing between species (Newbold 
et  al.  2015; Millard et  al.  2021; Ganuza et  al.  2022; Kennedy 
et  al.  2013; Steffan-Dewenter and Westphal  2008). For exam-
ple, pollinator diversity has been found to be lower in human-
altered land uses, particularly those used more intensively by 
humans, compared to more natural habitats (Millard et al. 2021; 
Ganuza et al. 2022). However, species richness of pollinators in 
areas of low or intermediate disturbance can be higher than in 
natural habitats (Millard et  al.  2021). At the landscape level, 
landscape composition is an important factor influencing pol-
linator species richness and abundance (Ganuza et  al.  2022; 
Cariveau et  al.  2013), with biodiversity harboured in habitats 
adjacent to cropland known to influence pollinator-dependent 
crop production (Tscharntke et  al.  2022; Kremen, Williams, 
and Thorp 2002; Carvalheiro et al. 2011). Previous research has 
found that landscape composition influences pollinators to a 
greater degree than landscape configuration (the distribution, 
abundance, and size of different land-use types surrounding a 
site (Ganuza et al. 2022; Kennedy et al. 2013; Jauker et al. 2009)). 
For instance, species richness of moths and flies has been found 
to be higher in sites surrounded by a lower proportion of agricul-
ture and grassland (Ganuza et al. 2022). For bees, species rich-
ness has been found to be higher in sites surrounded by greater 
proportions of urban areas (at the expense of forest, grassland, 
or agriculture (Ganuza et  al.  2022)). However, not all taxa re-
spond in the same way, with the influence of the proportion of 
surrounding land in agricultural production differing between 
bee species (Cariveau et  al.  2013). These differences between 
taxa in responses to anthropogenic land uses and landscape 
composition cause species turnover along environmental gradi-
ents (Quintero, Morales, and Aizen 2010; Newbold et al. 2016; 
Rabello et al. 2021; Almeida-Maués et al. 2022).

As well as responding differently to land-use characteristics, 
species do not contribute equally to pollination (Herrera and 
Pellmyr 2002; Rader et al. 2011). For example, it has previously 
been suggested that, in general, the more abundant (dominant) 

species are more important for pollination (Winfree et al. 2015). 
The difference between species is also in part due to crops dif-
fering in their dependence on animal-mediated pollination 
(Klein et al. 2007). For example, animal-mediated pollination is 
essential for watermelon (Citrullus lanatus) and kiwi (Actinidia 
deliciosa), whereas there is little loss of production without an-
imal visitors for tomato (Lycopersicon esculentum) and papaya 
(Carica papaya) (Klein et  al.  2007). Consequently, the loss of 
those species that pollinate crops for which animal-mediated 
pollination is essential will pose a larger risk to crop production 
compared to species known to pollinate crops that are not de-
pendent on this form of pollination. For instance, whilst bees are 
often highlighted as the most important crop pollinators (Rader 
et al. 2016; Jauker et al. 2012), the loss of some species, such as 
Peponapis pruinosa that pollinate watermelon, may pose higher 
risks to crop production than the loss of species such as Amegilla 
chlorocyanea, which pollinate tomatoes (Klein et al. 2007). This 
also means that, for some crops, maintaining sufficient pollina-
tion levels may rely on species that are rare or declining (Genung 
et al. 2023).

Past research has found that despite widespread declines in 
British bee species, dominant crop pollinators increased in 
occupancy from 1980 to 2013 (Powney et  al.  2019). As such, 
changes in the composition of ecological assemblages may not 
always have negative consequences for pollination services. 
There may be functional redundancy within an assemblage 
(Nyström  2006), or species moving into an area may perform 
similar functions to those becoming locally extinct, or the as-
semblage may gain pollinators that contribute more to pol-
lination than those lost. On the other hand, if an ecological 
assemblage loses its most important pollinators, and species en-
tering the area are not pollinators, or are poor pollinators for the 
community of plants in that location, there may be pollination 
shortages, leading to reduced or unstable yields for crops that 
have high dependence on animal-mediated pollination. This 
leads to the following question: are species with different contri-
butions to pollination responding differently to anthropogenic 
land uses, and what impact may this have on animal-mediated 
pollination following shifts in the composition of ecological as-
semblages driven by land-use change?

Previous work to understand the spatial responses of pollinat-
ing species to land use has tended to group all pollinator species 
together (thus not considering differences in pollination con-
tribution (Millard et al. 2021)), focus on certain taxa (Cariveau 
et al. 2013; Oliver et al. 2015; Winfree and Kremen 2009; Lázaro 
et al. 2016), or classify any flower visitor as a pollinator (Ganuza 
et al. 2022; Cusser, Neff, and Jha 2018). Overlooking species' dif-
ferent contributions to pollination has limited the ability of past 
research to understand how shifts in ecological assemblages 
within anthropogenic landscapes may be impacting pollination. 
To our knowledge, the impact of land use, land-use intensity, 
and natural habitat availability on species that differ in their 
pollination contribution has yet to be assessed. Here, we use a 
novel matrix approach to quantify the contribution of differ-
ent species within an ecological assemblage to crop pollination 
provision. Specifically, we assess the contribution of a species 
to crop pollination by considering both the importance of a 
species for pollination and the uncertainty underlying the evi-
dence for this importance. We investigate whether species with 
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different contributions to pollination vary in their responses to 
land use and land-use intensity as well as the availability of nat-
ural habitats in the surrounding landscape. As such, we make 
a first step at accounting for interspecific differences in polli-
nation provision when looking at the impacts of anthropogenic 
landscapes on animal-mediated pollination services globally. 
As a result of the research highlighted above on species' differ-
ent responses to anthropogenic landscapes (Ganuza et al. 2022; 
Cariveau et al. 2013) and the increase in dominant crop pollina-
tors occupancy over the last few decades (Powney et al. 2019), 
we expected that groups of species that differ in their contribu-
tion to crop pollination will not respond uniformly to landscape 
features. As species that pollinate crops are more likely to be 
present in agricultural areas, we predicted that species whose 
contribution to crop pollination is higher may be less negatively 
impacted by human-altered landscapes, although the expected 
magnitude and direction of effects of land use on groups of 
species contributing differently to agricultural pollination re-
mains unclear. Further, it is unknown how land-use intensity 
and availability of natural habitats in the landscape will impact 
pollinators with different levels of contribution to agriculture. 
Together, our results will help to understand the potential resil-
ience of pollination to future species turnover driven by human 
disturbance of land.

2   |   Methods

2.1   |   Ecological Assemblage and Land-Use 
Type Data

We acquired occurrence and abundance data for terrestrial an-
imal species (including likely pollinators and species not likely 
to provide pollination services) from the PREDICTS (Projecting 
Responses of Ecological Diversity in Changing Terrestrial 
Systems) Project database (Hudson et al. 2016, 2017). This data-
base contains data from studies across the globe that have made 
spatial comparisons of ecological assemblages across different 
land-use types and intensities (Hudson et al. 2014). It is hierar-
chically structured, whereby the database contains data from 
published sources that each contain data from one or more studies 
(split by sampling method or split due to covering large geographic 
areas, such as multiple countries), which may themselves be split 
into spatial blocks (for spatially blocked designs), and then into 
sites (where sampling of the ecological assemblage occurs). For 
each site, the database contains records of species' abundance, 
occurrence, or overall species richness of sampled taxa (for more 
information, see (Hudson et  al.  2017; Hudson et  al.  2014)). We 
selected only sites with geographic coordinates (so we could ob-
tain landscape composition data) and land-use type and inten-
sity classifications. We removed data for species whose binomial 
name was not recorded, was uncertain, or was incomplete. We 
also used the MergeSites function within the ‘predictsFunctions’ 
package (Newbold 2018a) to merge sites that had the same co-
ordinates, and that came from the same original study, used the 
same sampling methods on the same sampling dates, and had the 
same land-use type and intensity. We included all sites that met 
the above criteria (i.e., including studies focusing on pollinator 
species as well as those that did not sample any likely pollinators 
so that we could compare across species groups). Overall, we ob-
tained occurrence data for 11,861 assemblages, containing 13,701 

species (5 Adenophorea, 334 Amphibia, 1068 Arachnida, 2970 
Aves, 24 Chilopoda, 26 Clitellata, 28 Diplopoda, 103 Entognatha, 
269 Gastropoda, 8029 Insecta, 20 Malacostraca, 519 Mammalia, 
302 Reptilia, 2 Secernentea, 2 Udeonychophora). Of these, 13,051 
species had abundance data.

Within the PREDICTS database, each site containing an assem-
blage is assigned a land-use type (Table S1) (Hudson et al. 2014). 
We considered six different land-use types: (1) primary vege-
tation—natural vegetation with no evidence of previous de-
struction (by humans or extreme natural events), (2) secondary 
vegetation—vegetation recovering from destruction, (3) planta-
tion forest—agricultural land used for cultivating woody crops, 
(4) cropland—agricultural land used to cultivate herbaceous 
crops, including animal fodder, (5) pasture—agricultural land 
used for livestock grazing, and (6) urban areas—areas of human 
habitation and buildings. In the following, we refer to human-
altered land uses as including plantation forests, croplands, 
pastures, and urban areas. Each site is also assigned a use in-
tensity: minimal, light, or intense. The criteria used to classify 
use intensity is specific to each land-use type and is based on 
factors such as chemical input, stock density, crop rotation, irri-
gation, logging and bushmeat extraction (see Table S1) (Hudson 
et al. 2014). Therefore, we combined land-use type and land-use 
intensity categories into a single axis of disturbance with 18 cat-
egories (e.g., light use plantation forest, intense use cropland, 
minimal use pasture; following (Millard et al. 2021; De Palma 
et al. 2016)).

2.2   |   Landscape composition

To account for landscape composition, we calculated the 
percentage of semi-natural habitat (SNH) surrounding each 
site using the 2005 global land-cover map from the European 
Space Agency Climate Change Initiative (ESA CCI (ESA Land 
Cover CCI Project Team and Defourny 2019)). This land-cover 
map has a spatial resolution of 300 m and contains 37 land-
cover categories (Table  S2) (Defourny et  al.  2017). We chose 
the year 2005 as this was the mean of the midpoint year of 
sampling of the sites in our dataset. We grouped land-cover 
categories to calculate the percentage of surrounding SNH 
within a 1-km radius of each site using the method of Williams 
et  al.  (2022). SNH included forest, grassland, wetland and 
shrubland, and excluded all other categories (e.g., agriculture, 
urban, or bare areas (Williams et al. 2022)). When calculating 
percentage of SNH we accounted for the maximum percent-
age cover detailed within each of the ESA's land-cover cate-
gories (Williams et al. 2022). For example, the category ‘Tree 
cover, needleleaved, evergreen, closed (> 40%)’ could cover 
100% of the 300 × 300-m area, whereas the category ‘Tree 
cover, needleleaved, evergreen, open (15%–40%)’ could cover 
a maximum of 40% of the 300 × 300-m area. We used a radius 
of 1 km because this has previously been chosen to approxi-
mate the dispersal distance of a wide range of taxa (Ganuza 
et al. 2022; Williams et al. 2022; Le Provost et al. 2020). We 
also checked the sensitivity of our results to including the per-
centage of semi-natural habitat within a 10- and 50-km radius 
of each site, and to using land-cover data from a different year 
(2002 and 2008, which are the lower and upper quartiles of the 
midpoint year of sites sampling years).
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2.3   |   Species-Level Ecosystem Service 
Contribution Matrix

To incorporate interspecific differences in contribution to pol-
lination and assess how differences in ecological assemblages 
across land uses may impact potential pollination provision, 
we developed a novel species-level ecosystem service contribu-
tion matrix. The species-level ecosystem service contribution 
matrix combines (1) the ‘Importance’ of a species for the pro-
vision of a particular ecosystem service (pollination of crops 
in the case of this study) and (2) the ‘Certainty’ underlying the 
evidence for this importance (which can depend on the evi-
dence source—e.g., published data vs. expert opinion—or the 
taxonomic level that we have data for—e.g., genus or species), 
to produce a set of contribution classifications (Figure 1). These 
classifications give an indication of a species' contribution to the 
provision of the ecosystem service, and can be used as a proxy 
for the impact that the loss of that species (either completely or 
thorough reduced abundance) may have on service provision. 
The species-level ecosystem service contribution matrix is sim-
ilar to ecosystem service matrices, which have been used to 
guide management decisions by identifying the importance of 
habitats (and occasionally species) for ecosystem service provi-
sion and the certainty underlying this importance (Burkhard 
et al. 2009; Campagne et al. 2017; Geange et al. 2019; Kokkoris 
et al.  2019; Potts et al.  2014). However, to our knowledge, the 
two measures (importance and certainty), within species-level 
ecosystem service matrices (which have so far been restricted 
to marine species (Potts et al. 2014; Burdon et al. 2017)), have 
not previously been combined to give an indication of contribu-
tion, or used to assess how responses to anthropogenic pressures 
may vary across species that differ in their service contribution. 
Overall, the species-level ecosystem service contribution matrix 
provides a relatively simple approach to explore the responses of 
species with differing ecosystem service contributions to envi-
ronmental change.

The species-level ecosystem service contribution matrix also 
offers two key advantages for our study. First, we are able to 
incorporate interspecific differences in contribution to crop 
pollination, which is vital if we are to understand how shifts in 
ecological assemblages due to environmental changes may im-
pact pollination. Second, it provides the ability to account for 
the certainty of evidence underlying pollination contribution, 
and thus account for the different ways that previous studies 
have classified pollinators (e.g., all species that visit flowers 
(Ganuza et al. 2022), versus species for which there is evidence 
of pollen carrying (Rader et al. 2011), versus experimental con-
firmation or quantification of animal-mediated pollination (Liu 
et al. 2020; Ollerton and Liede 1997)).

We acquired data on species' provision of pollination services 
from Millard et al. (2021) and Klein et al. (2007). The pollina-
tor dataset constructed by Millard et  al.  (2021) contains a list 
of genera that are pollinators (for any flowering plant) and was 
produced using an automatic text-analysis method followed by 
manual inspection. Millard et al. (2021) also carried out searches 
within higher-level taxonomic groups to extrapolate across gen-
era if there was sufficient evidence. Further, this pollinator 
dataset was assessed by a set of experts who removed any taxa 
that were highly unlikely to be pollinators (Millard et al. 2021). 

The dataset constructed by Klein et al. (2007) contains 107 food 
crops important on the world market (that are directly con-
sumed by people), their level of dependence on animal-mediated 
pollination, and their likely pollinators. Two key features of 
these datasets enabled us to create the species-level ecosystem 
service contribution matrix (see Figure 1). First, they include a 
level of uncertainty in their classifications: Millard et al. (2021) 
includes a four-level confidence score, ranging from the highest 
confidence where there was experimental evidence confirming 
pollination for at least one species in the genus, to the lowest 
confidence where only non-destructive/non-predatory flower 
visitation had been observed; and Klein et al. (2007) differenti-
ates between ‘true pollinators/primary pollinators’ (defined as 
‘species for which at least 80% of their single flower visits re-
sults in a fruit (Klein, Steffan-Dewenter, and Tscharntke 2003a; 
Klein, Steffan-Dewenter, and Tscharntke 2003b) or species that 
improve the fruit and seed quality and quantity when abun-
dant as compared with the level when all flower visitors are 
excluded’) and possible pollinators (i.e., floral visitors). Second, 
Klein et al.  (2007) completed an extensive literature review in 
order to include detail on how important animal pollination was 
for the production of each crop in the dataset (based on the re-
duction in production without flower visitors), which meant we 
could assess the importance of pollinator species. For example, 
species that pollinate crops for which animal-mediated pollina-
tion was more important (e.g., if animal-mediated pollination 
was classed as great or essential for crop production) were con-
sidered to be of higher importance compared to species that pol-
linated crops for which animal-mediated pollination had little 
impact on production (Figure 1). For further description of these 
databases, see the Supporting Information.

We used the data in Millard et al. (2021) and Klein et al. (2007) 
to develop a species-level ecosystem service contribution ma-
trix for pollination, giving each cell within the matrix a defi-
nition based on the information included in the two datasets 
(Figure 1). To assign a species' level of importance, we looked 
at the relationship between the species (or genera) and flow-
ers/crops (e.g., whether the species is an unlikely pollinator vs. 
evidence of pollination) and, for pollinating species and gen-
era listed in Klein et al.  (2007), how dependent the crops they 
pollinate are on animal-mediated pollination. The level of cer-
tainty was assigned by looking at (1) the taxonomic resolution 
of the evidence (we assigned a higher certainty classification 
to a species if the species was listed as a pollinator rather than 
the genus; if the genus was listed as a pollinating genera, we as-
sumed all species within the genera were pollinators; Figure 1), 
(2) for flower visitors, the evidence suggesting that the species 
may pollinate (e.g., evidence of non-predatory flower visitor vs. 
evidence of pollen feeding), (3) whether the evidence was avail-
able for crops specifically or flowers more generally, and (4) for 
known crop pollinators, the proportion of crops that they polli-
nated for which animal-mediated pollination had an essential/
great/modest/little impact on crop production. Note that from 
Klein et al. (2007) we only used information on named genera 
or species, we excluded data on broader/less precise categories, 
such as ‘flies’, ‘bats’, or ‘ants’.

Using the species-level ecosystem service contribution matrix 
(Figure 1), we assigned each species in our dataset a contri-
bution classification. Following the ‘traffic light’ format of 
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a risk matrix (Jordan, Mitterhofer, and Jørgensen  2018; Li, 
Bao, and Wu  2018), we categorised the cells in the matrix 
into three groups according to the contribution towards pol-
lination provision (indicated by colour in Figure  1): (1) low 
contribution (blue), (2) medium contribution (yellow), and (3) 
high contribution (red). Across the contribution groups, there 
were bird, insect, mammal, and reptile species in all groups 
(Tables S3, S4), whereas species from the other Classes in our 
dataset (Adenophorea, Amphibia, Arachnida, Chilopoda, 
Clitellata, Diplopoda, Entognatha, Gastropoda, Malacostraca, 
Secernentea and Udeonychophora) only occurred in the low-
contribution group. Due to this imbalance across contribu-
tion groups, we dropped any Orders that did not include 
species in all contribution groups. Our final dataset included 
9776 species across the following nine Orders: Apodiformes, 
Chiroptera, Coleoptera, Didelphimorphia, Diptera, 
Hymenoptera, Lepidoptera, Passeriformes, and Squamata 
(Appendix A, Table A1; Tables S5, S6). For each contribution 
group, the land-use-use-intensity categories contained species 
from between 70—1409 assemblages (Appendix A, Table A1). 
The exceptions included intense use pasture, which contained 
species within the low-contribution group from 52 assem-
blages (of which 46 assemblages had abundance data) and 
intense use urban sites, where there were species within the 
medium- and high-contribution groups from 39 assemblages 
(see Appendix A, Table A1).

We assessed the spatial coverage of data for each contribution 
group; our dataset contained assemblage data across 9492 sites 
(7472 contained species with low-contribution group, 6329 con-
tained medium-contribution group species, and 5643 contained 
high-contribution species; Figure 2; also see Tables S7, S8), and 
these sites ranged in the percentage of SNH from 0% to 100% 
(Table S9).

2.4   |   Statistical Analyses

To explore how groups of terrestrial species with different con-
tribution levels to pollination respond to anthropogenic land-
scapes, we analysed how species richness and total abundance 
of the three contribution groups from the species-level ecosys-
tem service contribution matrix were impacted by land-use 
type, use intensity, and landscape composition.

We used a generalised linear mixed-effects model with a Poisson 
error distribution to explore the impact of land-use type and 
intensity on species richness (the number of uniquely named 
species within an assemblage). We used backwards stepwise 
variable selection, which uses maximum likelihood estima-
tion to select terms and likelihood-ratio tests to compare the fit 
of different models (Zuur et al. 2009) (Appendix A, Table A2). 
The fixed effects included in the backwards stepwise variable 
selection were contribution group (categorical variable) and 
the land-use-use-intensity variable (categorical variable), and 
the interaction between them. We did not include percentage 
of surrounding SNH, as our model would not converge with 
this addition. Following previous studies using the PREDICTS 
Project database (Newbold et al. 2015; Millard et al. 2021), we 
included three random intercept terms: (1) study identity, to 
account for variation across studies in methods or measures 

used, (2) spatial block, to account for the spatial structuring 
of sites where assemblages were sampled, and (3) site identity, 
to control for overdispersion within the estimates of species 
richness (Rigby, Stasinopoulos, and Akantziliotou 2008). We 
checked for overdispersion in these models using the R pack-
age ‘StatisticalModels’ (Newbold 2018b), and applied a quasi-
likelihood analysis to adjust for overdispersion.

We used a linear mixed-effects model to investigate the impact 
of contribution group, land-use type, land-use intensity, and 
percentage of surrounding SNH on total abundance (the sum of 
the relative abundances of all species sampled within an assem-
blage). We loge(x + 1) transformed the total abundance values 
to normalise the model residuals (Millard et  al.  2021). Again, 
we used backwards stepwise variable selection to select main 
effects and interactions. Into the backwards stepwise variable 
selection, as potential explanatory variables, we included contri-
bution group, land-use-use-intensity (categorical variables), the 
percentage of surrounding SNH within a 1-km radius (continu-
ous variable), and the 2- and 3-way interactions between these 
variables as fixed effects. We included study identity and spatial 
block as random intercept terms. For both the species richness 
and total abundance models, all variables included in the back-
wards stepwise variable selection were included in the best-fit 
models (Appendix A, Table A2).

2.5   |   Sensitivity Tests

We carried out a range of sensitivity tests to ensure our mod-
els were robust. First, we calculated Chao1-estimated species 
richness to check whether our results differed when account-
ing for incomplete sampling (Chao, Chazdon, and Shen 2005). 
Second, we used a zero-inflated negative binomial mixed 
model to investigate the impact of landscape features on total 
abundance, accounting for the large number of abundance 
counts that are 0 (n = 4198). We also ran an ‘overall’ species 
richness and total abundance model (i.e., by removing the 
contribution grouping and including the total number of 
species or abundance of individuals at a site in the models, 
respectively) and used Moran's I tests to check for spatial auto-
correlation in the residuals of each individual study. Further, 
across all assemblages in the dataset, total abundance mea-
sures ranged from 0 to over 350,000, due to some assemblages 
including very large groups/flocks of species such as African 
fig flies (Zaprionus indianus). Most assemblages (n = 18,038) 
had a total abundance of less than 5000. To ensure that the 
extreme abundance measures did not impact our results, we 
reran the total abundance model excluding outliers. Outliers 
were defined as:

where O denotes outliers, and Q3 and IQR are the third quar-
tile and the interquartile range of total abundance measures, 
respectively. We also ran leave-one-out cross-validation tests 
where studies were dropped one by one, and each model 
rerun to ensure there were no overly influential studies in 
our dataset. Additionally, we tested the robustness of our re-
sults to basing contribution groupings on importance alone, 
and not incorporating the certainty scale. To do this, we used 

(1)O > Q3 + 1. 5∗IQR
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the contribution groupings indicated along the high certainty 
row for each importance grouping (negligible, low, medium, 
high, very high), so that a species' importance for pollination 

was not down-weighted by its level of certainty. Using these 
new contribution groupings, we then ran the same models de-
scribed above.

FIGURE 1    |     Legend on next page.
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All analyses were completed in R 4.1.0 (R Core Team  2021) 
using the packages ‘dplyr’ v.1.0.8 (Wickham et al. 2022), ‘lme4’ 
v.1.1.28 (Bates et  al.  2015), ‘plyr’ v.1.8.6 (Wickham  2011), 
‘predictsFunctions’ (Newbold  2018a), ‘StatisticalModels’ 
v.0.1 (Newbold  2018b), ‘Hmisc’ v.4.6.0 (Harrell Jr  2021), and 
‘NBZIMM’ (Zhang and Yi  2020). The extraction of the per-
centage of surrounding SNH was completed in ArcGIS 10.4 
(ESRI 2015).

3   |   Results

Species richness differed across our land-use type and inten-
sity variable and, importantly, this differed with contribution 
grouping (Figure  3; Appendix  A, Table  A3). Whereas species 
richness for the low- and medium-contribution groups tended 
to be lower across most human-altered land uses relative to that 
in minimally used primary vegetation, this was not observed 
in the high-contribution group. Species richness in the high-
contribution group was higher in cropland, pasture, and urban 
sites relative to minimally used primary vegetation (Figure 3c, 
Table A3). Further, across the low-contribution group, richness 
in human-altered land uses generally declined with higher use 
intensity (Figure 3a). However, across the medium- and high-
contribution groups, the impact of land-use intensity did not 
always follow this pattern within human-altered land uses 
(Figure 3b,c).

The interaction between land-use-use-intensity categories and 
the percentage of surrounding SNH significantly impacted the 
total abundance, with direction of the effects again differing 
between contribution groups (p < 0.001, Figure 4; Appendix A, 
Table A4). For species in the low-contribution group, compared 
to minimally used primary vegetation, abundances were lower 
within most human-altered land uses, particularly those used 
more intensively (Figure 4a). However, for species in the high-
contribution group, in croplands (irrespective of SNH or use in-
tensity), plantations surrounded by a high percentage of SNH, 
and intensively used pastures, we observed significantly higher 
total abundances compared to that in minimally used primary 
vegetation (Figure 4c). There was a similar trend towards higher 
abundances in plantations, pastures, and urban areas in the 
medium-contribution group as well (Figure  4b). It is notable 
that across croplands, the total abundance of species in the high-
contribution group was higher for areas surrounded by a low 
compared to high percentage of SNH (Figure 4c), the opposite 

pattern to that observed for species in the low-contribution 
group (Figure 4a).

3.1   |   Explanatory Power and Sensitivity Test 
Results

The models reported here had similar explanatory power to 
those presented in Millard et  al.  (2021), with a low percent-
age of variation explained by the fixed effects (1%–1.5%) and 
large percentage of variation by the random effects (70%–80%; 
Table  S10). However, similar to Millard et  al.  (2021), our aim 
was to explore differences between species groups in the gen-
eral trends of responses to the landscape features, not to pre-
dict biodiversity metrics for certain groups in specific locations, 
and the explanatory power of the models is acceptable for this 
purpose. The results of models using Chao1-estimated species 
richness (Figure S1), or running zero-inflated negative binomial 
mixed models (Figure S2), were similar to the results presented 
above, leading to the same overall conclusions with regard to 
the responses of different species groups. In the absence of spa-
tial autocorrelation, we would expect by chance for the residuals 
associated with 5% of studies within the PREDICTS database 
to have a p value of < 0.05 when subjected to a Moran's I test. 
For the ‘overall’ species richness and total abundance model 
(i.e., the models without the contribution grouping variable), 
we found that the percentage of studies for which the residu-
als showed apparently significant spatial autocorrelation was 
8.3 and 5.8, respectively (Table S11). On the whole, the results 
from the total abundance models run after removing outliers did 
not differ from those reported above (Figure S3). The exception 
was that, for medium-contribution species, total abundance in 
intense use urban areas did not differ significantly from the total 
abundance in minimal use primary vegetation surrounded by a 
higher percentage of SNH. Following the leave-one-out cross-
validation tests, we looked at the effect of each study's removal 
on the estimated model coefficients and did not find any overly 
influential studies (Figures S4, S5). Basing contribution group-
ings on importance alone produced very similar results to those 
presented above (Figures  S6, S7). Last, our finding that the 
abundance of species who contribute highly to pollination gen-
erally responded less negatively (and in some cases positively) 
to human disturbance of land, compared to groups of species 
that contribute less or not at all to pollination, was consistent 
when including the percentage of SNH within a larger (10- or 50-
km) radius (rather than within a 1-km radius; Figures S8, S9), 

FIGURE 1    |    The species-level ecosystem service contribution matrix for pollination. ‘Importance’ refers to the importance of a species for 
pollination provision, and ‘Certainty’ refers to the confidence underlying the evidence for the species' importance. Each cell includes the definitions 
used to classify each species, and the number of species in our analyses with this classification (in bold). The colour of the cell gives an indication of 
the contribution of those species to pollination provision: Blue = low contribution, yellow = medium contribution, red = high contribution. We only 
included species from Orders found across all contribution groups (low, medium, and high). A ‘true pollinating species or animal group’ is defined 
by Klein et al. (2007) as “species for which at least 80% of their single flower visits result in a fruit, or species that lead to higher fruit and seed quality 
and quantity when caged or abundant in natural communities in contrast to fruit and seed quality and quantity when flowers are protected from all 
visitors”. A ‘possible pollinator’ within the Klein et al. (2007) database is a floral visitor. If a species could have fit into two different classifications, we 
assigned the species the higher risk classification (e.g., if there was evidence confirming pollination at the genus level within Millard et al. (2021), but 
the species was classed as a “true pollinator” with the impact of animal-mediated pollination classed as “great” for over half of the crops it pollinated 
within Klein et al. (2007), the species was assigned with a contribution classification of High Importance, High Certainty). See Table S5 for the list 
of species names in each contribution group.
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FIGURE 2    |    The spatial distribution of assemblages within the PREDICTS Project database that included species within (a) low-, (b) medium-, 
and/or (c) high-contribution groups from the Orders of Apodiformes, Chiroptera, Coleoptera, Didelphimorphia, Diptera, Hymenoptera, Lepidoptera, 
Passeriformes, or Squamata. Contribution group indicates the contribution of the species towards the provision of crop pollination (see Figure 1).
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and when using land-cover data from 2002 to 2008 (rather than 
2005; Figures S10, S11).

4   |   Discussion

We find that species are not responding uniformly to human-
altered landscapes, with those species that have a higher contri-
bution to crop pollination affected less negatively, and in some 

cases positively, compared to those that contribute less. Our re-
sults also demonstrate key differences in responses to land-use 
intensity and landscape composition between species that vary 
in their pollination contribution. These findings, which high-
light important differences between pollinators, are in line with 
past research that calls attention to the variation in responses of 
pollinating species (specifically, the occupancy of British bees 
and the difference between dominant crop pollinators and other 
bee species (Powney et  al.  2019)). However, it is important to 

FIGURE 3    |    The difference in species richness in assemblages across different land-use types and land-use intensities, relative to that in minimally 
used primary vegetation. Assemblages have been split into three groups: (a) species in the low-contribution group; (b) species in the medium-
contribution group; and (c) species in the high-contribution group. Colours represent land-use type: Primary vegetation (PV; light green), secondary 
vegetation (SV; dark green), plantation (purple), cropland (yellow), pasture (orange), and urban (red). Error bars represent ±1 SE. The down arrows 
for the high-contribution group in intense use primary and secondary vegetation and plantation represent predictions by the model that there may be 
no species from the high-contribution group found in these land uses. Note the difference in y-axis limits between the plots.
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note that despite pollinators being present, their ability to polli-
nate may differ across land-use types or be impacted by anthro-
pogenic changes (e.g., the foraging ability of certain species can 
be impacted by change in pesticide use (Kremen et al. 2007)). 
Nonetheless, our research takes a step towards including in-
terspecific differences and their underlying uncertainty when 

looking at the impacts of human-altered landscapes on eco-
logical assemblages and the ecosystem services they provide. 
Assessing the impacts of environmental changes on pollinators 
is vital for assessing future risk to food markets and livelihoods, 
mitigating negative impacts from anthropogenic pressures, and 
ensuring global food security (Potts et al. 2016, 2010).

FIGURE 4    |    The difference in total abundance of species in assemblages across different land-use types, land-use intensities, and with different 
amounts of surrounding semi-natural habitat (SNH), relative to assemblages in minimally used primary vegetation surrounded by a high percentage 
(91.4%) of SNH. Assemblages have been split into three groups: (a) species in the low-contribution group; (b) species in the medium-contribution 
group; and (c) species in the high-contribution group. Open shapes represent those assemblages with a low percentage of surrounding SNH (37.5%) 
and filled shapes represent those assemblages with a high percentage of surrounding SNH (91.4%)—we chose to present these values as they were 
the 33rd and 66th percentile, respectively, across sampled sites. Colours represent land-use type: Primary vegetation (PV; light green), secondary 
vegetation (SV; dark green), plantation (purple), cropland (yellow), pasture (orange), and urban (red). Error bars represent ±1 SE; the upper values of 
the error bars for light and intense use urban sites surrounded by a high percentage of SNH in plot (b) were 721% and 1253%, respectively; the upper 
values of the error bars for minimal use urban sites surrounded by a high percentage of SNH in plot (c) was 746%.
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The mechanisms underlying our results remain in question. 
Past research has shown that pollinator responses to crop-
lands are more negative (much lower species richness and total 
abundance compared to that in natural habitats) in tropical 
compared to non-tropical areas (Millard et al. 2021). Despite 
having a higher number of assemblages containing species 
within each contribution group in temperate areas (Table S8), 
our data still contained a high number of assemblages in trop-
ical croplands (Table S7), and so we do not think that this is 
driving the less negative, and in some cases positive, response 
of the high-contribution group to human-altered land uses. 
However, there were fewer assemblages within tropical com-
pared to temperate pastures, which could influence the result 
for this land-use type. Unfortunately, there were not enough 
data to carry out separate analyses for temperate and tropi-
cal areas. As such, there may be differences in responses to 
temperate and tropical landscape composition that we are 
not able to identify in this study and would be of interest to 
examine if more data were available. An ecological mecha-
nism underlying our results may be that the species we are 
currently relying on for crop pollination (those within the 
high-contribution group) are, by necessity, more resilient to 
human-altered land use (i.e., the species that are documented 
to be important pollinators are those that can survive in ag-
ricultural areas). Factors that could lead to species' being 
more resilient to human-altered land uses include life-history 
strategies (Albaladejo-Robles, Böhm, and Newbold 2023), cli-
matic tolerances (Williams, Bates, and Newbold 2020), and/
or range sizes (Newbold et al. 2018). Further data on the po-
tential contribution to crop pollination of species lost from 
human-altered land uses could be used to explore (1) whether 
species within the high-contribution group are those that are 
simply more resilient to land-use change, and we are missing 
less resilient species that could contribute highly if they were 
present, or (2) if those species that are more resilient are also 
those that contribute more to crop pollination within ecologi-
cal assemblages overall.

These findings have implications for the resilience of crop pol-
lination under shifts in ecological assemblages following land-
use change. Our results suggest that due to high-contribution 
species persisting in human-altered land uses, if species' ability 
to pollinate crops is maintained across land uses, crop polli-
nation may be resilient within these areas, particularly within 
croplands and pastures. We also observed that minimally 
used urban areas, which often include extensive green spaces 
(Hudson et al. 2014), appear to be benefitting important polli-
nator species. Past research that found positive effects of urban 
landscapes on pollinator species richness (Ganuza et al. 2022; 
Theodorou et al. 2020) suggested potential mechanisms includ-
ing the larger number of flowering-plant species in these envi-
ronments and the diverse nesting resources available in urban 
areas (Ganuza et al. 2022; Baldock et al. 2015). It is important 
that urban areas maintain their pollinator communities, as it 
has been estimated that around 15%–20% of the world's total 
food supply originates from such areas (Armar-Klemesu 2000). 
However, it should be noted that animal-mediated pollination 
is not just important for food production, but also for the polli-
nation of wild flowering plants (Genung et al. 2023). Moreover, 
a high species richness is important for pollination resilience, 
as diverse pollinator assemblages are required to maintain 

pollination rates over space and time (Lemanski, Williams, and 
Winfree 2022; Winfree et al. 2018). The species within the high-
contribution group are also being impacted by other anthropo-
genic pressures, such as climate change (Wyver et al. 2023). As 
such, despite our results suggesting that there is potential for 
crop pollination to be resilient across some land uses, this does 
not mean that the full pollination service (i.e., for wild and culti-
vated plants) provided by animals will be resilient against future 
anthropogenic land-use changes.

We found that the effect of the interaction between land-use 
type, use intensity and surrounding SNH differed between the 
contribution groups. Past work has highlighted the beneficial 
effects that low levels of human use intensity can have on main-
taining or enhancing pollinator biodiversity, and the more neg-
ative effects of higher levels of human use (Millard et al. 2021). 
However, our results suggest that the impact of land-use in-
tensity may be more nuanced for species that contribute more 
highly to pollination and that it interacts with other landscape 
features (such as the availability of surrounding natural habitat). 
For example, in croplands and pastures, we found that species 
richness of the high-contribution group was higher in intensely 
used sites compared to minimally and lightly used sites. We 
also observed that, as previous research has suggested (Ganuza 
et al. 2022; Williams et al. 2022), the effect of surrounding SNH 
is complex, differing across land-use categories and contribu-
tion groups. Our results suggest that within croplands, areas 
surrounded by a lower percentage of SNH favour a higher total 
abundance of high-contribution species compared to areas sur-
rounded by a higher percentage of SNH. This could be due to the 
quality or type of surrounding SNH, which may be suboptimal 
for the species present in these areas (Bartual et al. 2019; Schoch 
et  al.  2022), along with factors such as agri-environmental 
schemes (Jauker et al. 2012), which have been designed to en-
courage and maintain pollinator populations within agricultural 
systems (Powney et al. 2019; Rural Payments Agency 2019). To 
disentangle the impact of land-use intensity and SNH, further 
data are needed on site management and the quality, type, and 
intensity of the surrounding SNH as well as more data within 
tropical areas in order to examine geographical differences. 
Nevertheless, this highlights the importance of the combination 
of landscape features when looking at the impact of changes in 
land use across pollinating species.

The novel species-level ecosystem service contribution matrix 
that we introduce here can be used to explore the impacts of an 
anthropogenic pressure on species that contribute differently 
to an ecosystem service. Previous work that grouped all polli-
nators together (Cariveau et al. 2013; Lázaro et al. 2016) over-
looked these important interspecific differences in pollination 
provision. The advantages of the species-level ecosystem service 
contribution matrix include that it accounts for such differences 
between species in their importance for an ecosystem service, as 
well as the uncertainty underlying the evidence for this impor-
tance (which is key when relying on multiple sources of evidence 
(Harwood 2000)). This method could be applied to any ecosys-
tem service where there are sufficient data or expert knowl-
edge to generate a contribution matrix and allocate species a 
contribution classification. Further, this approach is relatively 
simple, which is an important and appealing trait when trying 
to tackle complex questions, especially those of policy interest 
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such as ways to enhance the resilience of ecosystem services 
(Biggs et  al.  2012; Jordan, Mitterhofer, and Jørgensen  2018). 
Additionally, this approach is easy to update as and when new 
data become available.

There are, however, limitations to our approach. The impor-
tance of a species to pollination may change across space, 
there may be intraspecific differences (e.g., between the 
males and females of a species (Fuster and Traveset  2020)), 
and some species may have the potential to become important 
pollinators following environmental or ecological community 
changes. Unfortunately, we currently are not able to take these 
factors into account due to lack of available data. There may 
also be time-lagged effects (i.e., a delay in the loss or gain of 
species following land-use change), which are not captured in 
most space-for-time analyses (De Palma et al. 2018). However, 
for the assemblages in our dataset with data available, the 
median number of years since fragmentation or land-use con-
version was 13 (n = 1567), and past research has found that 
changes in populations and assemblages often occur rapidly 
following habitat change, with almost half of the changes oc-
curring within 3 years (Daskalova et al. 2020). Consequently, 
we do not expect time-lagged effects to be biasing our results. 
As mentioned above, one of the advantages of the species-level 
ecosystem service contribution matrix is that it is a relatively 
simple approach and can be used to group species together into 
categories based on their contribution to an ecosystem ser-
vice. However, currently this approach is not able to take into 
consideration synergistic or antagonistic interactions between 
species across an ecological assemblage when it comes to pro-
viding an ecosystem service (Frund et al. 2013), or to identify 
which specific species' roles may be functionally redundant. 
At a global scale, the data are not available for these factors to 
be included, but further localised field studies could work on 
gathering the data for future work. Furthermore, although our 
results suggest larger losses of species in the low- compared to 
high-contribution group within human-altered land uses, the 
loss of species within this low-contribution group may lead 
to other ecosystem services declining, which may have detri-
mental impacts on crops. For example, a decline in predators 
of crop pests could lead to a decrease in crop production due to 
an increase in pest species (Tschumi et al. 2015).

Whilst there is still much to learn, our study takes steps towards 
accounting for interspecific differences in pollination provision 
when looking at the impact of anthropogenic land uses and land-
scapes on pollination. With such a high proportion of human 
food crops requiring animal-mediated pollination to some ex-
tent (Klein et al. 2007), understanding how pollinators are im-
pacted by human-altered landscapes, and how the resilience of 
nature's benefits to humans could be improved, is critical if we 
are to meet future societal needs.
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TABLE A2    |    The selection of models tested within the backwards stepwise variable selection process. The fit of different models were compared 
using likelihood-ratio tests. For the species richness and total abundance models, ΔAIC values are given in comparison with the best-performing 
model (the model including the most complex fixed-effects structure possible in each circumstance). The marginal R2 value of each model is also 
provided. To explore the impact of contribution group and land-use-use-intensity on species richness, we used generalised linear mixed-effects 
models with a Poisson error distribution, with all models tested including 3 random intercept terms (study identity, spatial block, and site identity). To 
investigate the impact of contribution group, land-use-use-intensity, and percentage of surrounding semi-natural habitat (SNH) on total abundance, 
we used linear mixed-effects models, with all models tested including study identity and spatial block as random intercept terms. See the main text 
for more information on the variables included in each model.

Model

ΔAIC Marginal R2Fixed effects included

Species richness

Contribution group, land-use-use-intensity, and the interaction between them 0 0.14

Contribution group and land-use-use-intensity 14,241 0.07

Contribution group only 14,582 0.06

Land-use-use-intensity only 26,382 0.01

None (null model) 26,723 0

Total abundance

Contribution group, land-use-use-intensity, and percentage of surrounding 
SNH, and the 2- and 3-way interactions between them

0 0.10

Contribution group, land-use-use-intensity, and percentage of surrounding 
SNH, and the 2-way interactions between them

787 0.09

Contribution group, land-use-use-intensity, and percentage of surrounding SNH 3202 0.05

Contribution group only 3303 0.05

Land-use-use-intensity only 5146 0.01

Percentage of surrounding SNH only 5217 < 0.01

None (null model) 5230 0
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TABLE A3    |    The coefficients, standard errors, and p values from the generalised linear mixed-effects model with a Poisson error distribution 
investigating the impact of contribution group, land-use type and land-use intensity on species richness. Land-use types included primary vegetation 
(PV), secondary vegetation (SV), plantation forest (PF), cropland (Cr), pasture (Pa), and urban (Ur). Land-use intensities ranged from minimal, to 
light, to intense use. Species contribution groupings included those in the low-, medium-, and high-contribution groups. Colons represent interaction 
terms. We applied a quasi-likelihood analysis to adjust for overdispersion.

Term Estimate Standard error p

(Intercept) 2.07 0.12 < 0.001

PV light use 0.32 0.04 < 0.001

PV intense use 0.43 0.05 < 0.001

SV minimal use −0.32 0.04 < 0.001

SV light use −0.04 0.05 0.428

SV intense use −0.21 0.07 0.001

PF minimal use 0.11 0.06 0.088

PF light use −0.21 0.05 < 0.001

PF intense use −0.23 0.09 0.006

Cr minimal use −0.37 0.07 < 0.001

Cr light use −0.27 0.08 < 0.001

Cr intense use −0.95 0.09 < 0.001

Pa minimal use −0.35 0.06 < 0.001

Pa light use −0.47 0.06 < 0.001

Pa intense use −0.57 0.13 < 0.001

Ur minimal use −0.03 0.08 0.747

Ur light use −0.49 0.09 < 0.001

Ur intense use −0.79 0.13 < 0.001

Medium-contribution group −0.85 0.03 < 0.001

High-contribution group −1.68 0.05 < 0.001

PV light use: Medium-contribution group −0.33 0.05 < 0.001

PV intense use: Medium-contribution group −0.91 0.07 < 0.001

SV minimal use: Medium-contribution group 0.96 0.04 < 0.001

SV light use: Medium-contribution group 0.36 0.05 < 0.001

SV intense use: Medium-contribution group 0.51 0.07 < 0.001

PF minimal use: Medium-contribution group −0.64 0.09 < 0.001

PF light use: Medium-contribution group 0.12 0.06 0.027

PF intense use: Medium-contribution group −0.33 0.11 0.003

Cr minimal use: Medium-contribution group −0.06 0.09 0.471

Cr light use: Medium-contribution group −0.87 0.11 < 0.001

Cr intense use: Medium-contribution group −0.16 0.12 0.177

Pa minimal use: Medium-contribution group 0.30 0.06 < 0.001

Pa light use: Medium-contribution group 1.07 0.06 < 0.001

Pa intense use: Medium-contribution group 0.09 0.19 0.615

Ur minimal use: Medium-contribution group −0.56 0.10 < 0.001

Ur light use: Medium-contribution group 0.10 0.11 0.362

Ur intense use: Medium-contribution group 0.28 0.20 0.157

(Continues)
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Term Estimate Standard error p

PV light use: High-contribution group −0.23 0.07 0.002

PV intense use: High-contribution group −0.91 0.15 < 0.001

SV minimal use: High-contribution group 0.69 0.07 < 0.001

SV light use: High-contribution group −0.18 0.12 0.120

SV intense use: High-contribution group −0.14 0.14 0.295

PF minimal use: High-contribution group −0.05 0.11 0.669

PF light use: High-contribution group 0.26 0.08 0.001

PF intense use: High-contribution group 0.01 0.14 0.961

Cr minimal use: High-contribution group 1.58 0.09 < 0.001

Cr light use: High-contribution group 1.48 0.10 < 0.001

Cr intense use: High-contribution group 2.45 0.11 < 0.001

Pa minimal use: High-contribution group 0.98 0.09 < 0.001

Pa light use: High-contribution group 0.83 0.11 < 0.001

Pa intense use: High-contribution group 1.82 0.16 < 0.001

Ur minimal use: High-contribution group 0.88 0.12 < 0.001

Ur light use: High-contribution group 1.97 0.10 < 0.001

Ur intense use: High-contribution group 1.97 0.16 < 0.001

TABLE A3    |    (Continued)
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TABLE A4    |    The coefficients and their p values from the linear 
mixed-effects model investigating the impact of contribution group, 
land-use type, land-use intensity, and percentage of surrounding semi-
natural habitat (SNH) on total abundance. Land-use types included 
primary vegetation (PV), secondary vegetation (SV), plantation forest 
(PF), cropland (Cr), pasture (Pa), and urban (Ur). Land-use intensities 
ranged from minimal, to light, to intense use. Species contribution 
groupings included those in the low-, medium-, and high-contribution 
groups. Colons represent interaction terms. We evaluated significance 
for coefficients using the Kenward-Roger approximation for degrees of 
freedom (Luke  2017). Semi-natural habitat was run as a first-degree 
(i.e., linear) orthogonal polynomial in the model.

Term Estimate p

Intercept 3.77 < 0.001

PV light use 0.21 < 0.001

PV intense use 0.73 < 0.001

SV minimal use −0.79 < 0.001

SV light use −0.25 0.009

SV intense use −0.42 < 0.001

PF minimal use 0.24 0.015

PF light use −0.60 < 0.001

PF intense use −0.36 0.004

Cr minimal use −0.26 0.006

Cr light use −0.53 < 0.001

Cr intense use −1.06 < 0.001

Pa minimal use 0.17 0.071

Pa light use −0.30 < 0.001

Pa intense use −0.96 < 0.001

Ur minimal use −0.19 0.246

Ur light use −0.24 0.101

Ur intense use −0.33 0.363

SNH 27.00 < 0.001

High-contribution group −1.51 < 0.001

Medium-contribution group −1.25 < 0.001

PV light use: High-contribution group −0.07 0.447

PV intense use: High-contribution group −0.93 < 0.001

SV minimal use: High-contribution group 1.04 < 0.001

SV light use: High-contribution group 0.03 0.845

SV intense use: High-contribution group −0.003 0.982

PF minimal use: High-contribution group −0.06 0.634

PF light use: High-contribution group 0.22 0.017

PF intense use: High-contribution group 0.72 < 0.001

Cr minimal use: High-contribution group 1.29 < 0.001

Cr light use: High-contribution group 1.59 < 0.001

Cr intense use: High-contribution group 2.19 < 0.001

(Continues)

Term Estimate p

Pa minimal use: High-contribution group −0.39 0.004

Pa light use: High-contribution group 0.28 0.023

Pa intense use: High-contribution group 2.28 < 0.001

Ur minimal use: High-contribution group 1.38 < 0.001

Ur light use: High-contribution group −0.53 0.021

Ur intense use: High-contribution group −0.59 0.460

PV light use: Medium-contribution group 0.02 0.765

PV intense use: Medium-contribution 
group

−0.55 < 0.001

SV minimal use: Medium-contribution 
group

1.61 < 0.001

SV light use: Medium-contribution group 0.98 < 0.001

SV intense use: Medium-contribution 
group

1.01 < 0.001

PF minimal use: Medium-contribution 
group

−0.22 0.088

PF light use: Medium-contribution group 0.66 < 0.001

PF intense use: Medium-contribution 
group

0.48 0.008

Cr minimal use: Medium-contribution 
group

0.11 0.357

Cr light use: Medium-contribution group −0.21 0.184

Cr intense use: Medium-contribution 
group

0.65 < 0.001

Pa minimal use: Medium-contribution 
group

−0.02 0.896

Pa light use: Medium-contribution group 1.09 < 0.001

Pa intense use: Medium-contribution 
group

1.22 < 0.001

Ur minimal use: Medium-contribution 
group

0.39 0.120

Ur light use: Medium-contribution group 1.33 < 0.001

Ur intense use: Medium-contribution 
group

1.07 0.182

PV light use:SNH −6.40 0.434

PV intense use:SNH −23.46 0.116

SV minimal use:SNH 67.67 < 0.001

SV light use:SNH −69.49 < 0.001

SV intense use:SNH 71.53 < 0.001

PF minimal use:SNH −43.45 < 0.001

PF light use:SNH −6.83 0.445

PF intense use:SNH −27.64 0.126

Cr minimal use:SNH 9.23 0.399

(Continues)

TABLE A4    |    (Continued)
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Term Estimate p

Cr light use:SNH 34.98 0.014

Cr intense use:SNH 31.40 0.016

Pa minimal use:SNH −26.68 0.065

Pa light use:SNH −88.96 < 0.001

Pa intense use:SNH −115.27 < 0.001

Ur minimal use:SNH −62.35 0.001

Ur light use:SNH 16.48 0.241

Ur intense use:SNH 47.95 0.183

SNH:High-contribution group −33.09 < 0.001

SNH:Medium-contribution group −60.42 < 0.001

PV light use:SNH:High-contribution 
group

−56.45 < 0.001

PV intense use:SNH:High-contribution 
group

61.44 0.003

SV minimal use:SNH:High-contribution 
group

−86.26 < 0.001

SV light use:SNH:High-contribution 
group

155.01 < 0.001

SV intense use:SNH:High-contribution 
group

−58.19 0.021

PF minimal use:SNH:High-contribution 
group

64.81 < 0.001

PF light use:SNH:High-contribution 
group

119.27 < 0.001

PF intense use:SNH:High-contribution 
group

142.86 < 0.001

Cr minimal use:SNH:High-contribution 
group

−43.03 0.006

Cr light use:SNH:High-contribution 
group

−69.01 < 0.001

Cr intense use:SNH:High-contribution 
group

−79.81 < 0.001

Pa minimal use:SNH:High-contribution 
group

97.26 < 0.001

Pa light use:SNH:High-contribution 
group

98.72 < 0.001

Pa intense use:SNH:High-contribution 
group

111.15 < 0.001

Ur minimal use:SNH:High-contribution 
group

136.65 < 0.001

Ur light use:SNH:High-contribution 
group

−219.93 < 0.001

Ur intense use:SNH:High-contribution 
group

−255.50 0.001

(Continues)

TABLE A4    |    (Continued)

Term Estimate p

PV light use:SNH:Medium-contribution 
group

63.46 < 0.001

PV intense use:SNH:Medium-
contribution group

15.42 0.422

SV minimal use:SNH:Medium-
contribution group

−72.85 < 0.001

SV light use:SNH:Medium-contribution 
group

89.94 < 0.001

SV intense use:SNH:Medium-
contribution group

−108.57 < 0.001

PF minimal use:SNH:Medium-
contribution group

68.28 < 0.001

PF light use:SNH:Medium-contribution 
group

67.39 < 0.001

PF intense use:SNH:Medium-
contribution group

42.97 0.153

Cr minimal use:SNH:Medium-
contribution group

33.31 0.024

Cr light use:SNH:Medium-contribution 
group

−9.42 0.600

Cr intense use:SNH:Medium-contribution 
group

34.73 0.035

Pa minimal use:SNH:Medium-
contribution group

5.37 0.775

Pa light use:SNH:Medium-contribution 
group

122.18 < 0.001

Pa intense use:SNH:Medium-contribution 
group

204.25 < 0.001

Ur minimal use:SNH:Medium-
contribution group

95.53 0.002

Ur light use:SNH:Medium-contribution 
group

75.40 0.003

Ur intense use:SNH:Medium-contribution 
group

43.84 0.583

TABLE A4    |    (Continued)
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