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Abstract

This thesis considers generalizing spectral graph clustering. Spectral graph clustering exploits

the spectrum of graph Laplacian. There is room for generalizations of spectral graph clustering

in two directions. The first involves extending the graph Laplacian to the nonlinear p-

Laplacian, with the expectation of enhancing performance. The second generalization extends

from graphs to hypergraphs, which allows for richer modeling by connecting an arbitrary

number of vertices in one edge. Despite recent advancements in these generalizations, there

remains to be untapped potential for graph spectral clustering. This thesis addresses this gap

by introducing three theoretical frameworks.

Firstly, we propose a unified class of hypergraph p-Laplacians that incorporates existing

variants and novel generalizations. Although existing Laplacians have a similar structure, some

Laplacians miss some key features. This framework provides a comprehensive foundation for

all key features, applying to the entire class of hypergraph p-Laplacians.

Secondly, we consider how to model a hypergraph from vector data. While graph

modeling using kernel functions is well-established, an equivalent framework for hypergraph

modeling has not been established. We propose such a formulation and establish its theoretical

foundations.

Thirdly, we propose a multi-class clustering algorithm leveraging the nonlinearity of

p-Laplacian. Spectral clustering via p-Laplacian is difficult since it is difficult to obtain

higher eigenvectors. Thus, we take an alternative approach using p-resistance induced by

p-Laplacian. We develop a theory on p-resistance for practical use and its application to graph

multi-class clustering.

Finally, as a fourth part, we extend our theoretical insights to develop a learning frame-

work for vertex classification tasks, where we present a simple alternative approach to graph

neural networks (GNNs). While GNNs are commonly used for this task, they often exhibit
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biases towards homophilous information. Instead of overcoming GNNs’ limitations, we

propose an alternative approach aiming to mitigate these biases.



Impact Statement

Graphs are powerful tools for representing data across a wide range of domains, from social

networks to chemical compounds and images. Spectral graph clustering is a common method

for machine learning tasks associated with graphs.

This thesis extends spectral graph clustering through multiple generalizations, offering

theoretical foundations that open up new avenues for future research. For example, as

shown in Chapter 6, the theoretical advancements developed in this work are applied to

vertex-with-features problems, an area typically outside the scope of spectral learning.

These generalizations not only provide deeper insights into standard spectral graph

methods but also have the potential to influence research beyond the immediate field of graph

spectral learning. For example, in Sec. 1.3, we highlight how these generalizations help

clarify what is fundamental to spectral graph clustering by identifying properties that hold for

both standard and generalized frameworks, such as Courant’s min-max theorem. However,

some properties, like orthogonality, do not generalize as well to cases like the p-Laplacian,

providing valuable insights for future work.

Beyond academia, the methods developed in this thesis could impact real-world applica-

tions, such as community detection, biological networks, or recommendation systems. By

offering more expressive models through generalized spectral learning, industries working

with complex, high-dimensional data could benefit from the enhanced performance and flexi-

bility provided by these methods. However, although our approach shares the applications

beyond academia, since this is foundational work towards generalized graph learning and

does not target any immediate application, we cannot foresee the shape of positive or negative

societal impact that this thesis may have in the future.
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Chapter 1

Introduction

A graph is a discrete data structure consisting of vertices and edges, where an edge connects

two vertices. Graphs serve as powerful tools for representing data in various domains, social

networks [Newman, 2006], images [Shi and Malik, 2000], and chemical molecules [Trinajstic,

2018]. Vertex clustering is one of the fundamental problems of graphs in the machine learning

area. A well-established method for vertex clustering is spectral clustering, which leverages

the spectral properties of a matrix known as the graph Laplacian [Chung, 1996]. The use

of the graph Laplacian is motivated by its theoretically appealing spectral properties for

clustering tasks [von Luxburg, 2007]

Despite its success, there are opportunities for generalizing spectral clustering in several

directions. One direction is extending the graph Laplacian to the p-Laplacian, a nonlinear gen-

eralization. Introducing parameter p is known to improve the clustering performance [Bühler

and Hein, 2009]. The motivation for this generalization can be strengthened by drawing an

analogy to physics. In the continuous domain, the Laplace operator in calculus serves as the

continuous counterpart to the discrete graph Laplacian [Belkin and Niyogi, 2003]. Similarly,

the nonlinear extension of this operator, the p-Laplace operator, serves as the continuous

counterpart to the graph p-Laplacian and has been extensively studied [Lindqvist, 2008].

The p-Laplace operator frequently arise in physics, particularly in fluid dynamics, where

the parameter p characterizes fluid viscosity. When p = 2, the fluid behaves as an “ideal”

fluid, unaffected by viscosity, whereas for p ̸= 2, p represents the viscosity of the fluid [Lê,

2006, Astarita and Marrucci, 1974]. Analogously, in the discrete graph setting, the parameter

p is expected to capture key structural characteristics of graphs, much like how it captures

the viscosity of fluids. It is intuitive that not all graphs are expected to behave in an “ideal”
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Graph Hypergraph

Figure 1.1: Illustration of a graph and a hypergraph. In both figures, circles denote vertices.
In the graph (left), edges are represented as lines connecting pairs of vertices. In contrast, the
hypergraph (right) uses a gray circle to connect arbitrary sets of vertices, representing edges
of hypergraph.

manner, and this nonlinearity provides a valuable degree of flexibility in modeling.

The second direction is broadening the scope from graphs to their generalization hyper-

graphs. While an edge in a graph connects two vertices, an edge in a hypergraph can connect

an arbitrary number of vertices, as illustrated in Fig. 1.1. This allows hypergraphs to provide

more expressive models than standard graphs [Berge, 1984]. In real-world applications,

hypergraphs have been used to model complex data, such as videos [Huang et al., 2009], web

browsing histories [Mobasher et al., 2000], and molecular interactions in cells [Klamt et al.,

2009]. Additionally, hypergraphs are known to offer improved performance over standard

graphs in such settings [Zhou et al., 2006, Ghoshdastidar and Dukkipati, 2014].

Another direction is generalizing the task; we consider a vertex classification task, with

not only looking at a graph but also exploiting “features” over a graph. For instance, a citation

network where vertices represent papers and edges represent citations can also incorporate

features such as the content of papers alongside the network topology. The standard methods

for this problem is graph neural networks (GNNs) [Gori et al., 2005, Kipf and Welling, 2016a,

Veličković et al., 2018].

In spite of recent advancements, there are avenues for these generalizations that remain

untapped potential of the graph spectral clustering framework. This thesis addresses this gap

by introducing several theoretical frameworks.

The first part considers a broader class of hypergraph p-Laplacians. In the past many
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different hypergraph Laplacians were proposed, such as star Laplacian [Zhou et al., 2006]

and clique Laplacian [Rodriguez, 2002, Saito et al., 2018]. While these prior Laplacians have

similar properties, they derive a patchwork of nodal domain theorems, Cheeger inequalities,

and partitioning algorithms for some particular cases of hypergraph p-Laplacians. Thus, we

propose a unified class of hypergraph p-Laplacians that incorporates existing hypergraph

Laplacians as a special case and includes previously unstudied novel generalizations. Both

our theory and our partitioning algorithm apply to the complete class.

The second part considers how to model a hypergraph from vector data. While graph mod-

eling using kernel functions is well-established from a weighted kernel k-means view [Dhillon

et al., 2004] and a heat kernel view [Belkin and Niyogi, 2003], an equivalent framework for

hypergraph modeling is not established. We propose a formulation of hypergraph modeling

from vector data and establish its theoretical foundations.

The third part proposes an alternative multi-class clustering algorithm leveraging the

nonlinearity inherent in the graph p-Laplacian. The drawback of the graph p-Laplacian is

that the third and higher eigenvectors are difficult to obtain [Lindqvist, 2008], hindering

multi-class spectral clustering. To exploit the nonlinearity, we take an alternative approach;

we are motivated to use the p-resistance induced by the p-Laplacian. We then develop a theory

on p-resistance for practical use and its application to graph multi-class clustering.

Finally, the fourth part extends our theoretical insights to develop a learning framework

for vertex classification tasks, where presenting a simple alternative approach to GNNs. While

GNNs are common for this task, they often exhibit biases towards homophilous informa-

tion [Li et al., 2018, Oono and Suzuki, 2019]. Instead of overcoming GNNs’ limitations, we

propose an alternative approach aiming to mitigate these biases.

1.1 Basic Notations and Graph Definition
Before we explain the motivation of this thesis, we introduce the basic notations and graph

definitions we use throughout in this thesis.

We define N as a set of positive integers (i.e., 1, 2, 3, . . .), R as a set of real values, and

R+ is a set of positive real values. For a number k ∈ N, we write [k] := {1, . . . , k}. We write

a vector as a small bold letter a and its i-th element as ai. If a vector has an index such as

aℓ, we write i-th element of aℓ as (aℓ)i. For a matrix A, we write ij-th element of A as aij .

Similarly to the vector notation, if we write a matrix with some index, such as Aℓ, we write
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ij-th element of Aℓ as (Aℓ)ij . We denote the i-th column of the matrix A by A·i, and i-th row

by Ai· Let ei be the i-th coordinate vector, i.e.,

(ei)ℓ :=

1 if ℓ = i

0 otherwise,
(1.1)

and 1 as an all-one vector. Also, we write a matrix I as an identity matrix. We also define

M+ as the pseudoinverse of M , and M−1 as the inverse of M . Let A⊤ denote a transpose

of A. Also, we define trace(M) as the trace of regular matrix M . Let ∥a∥ be a norm

for a vector a induced from an inner product ⟨·, ·⟩. We write the 2-norm for a vector a as

∥a∥2 := (
∑

i a
2
i )

1/2, and this 2-norm is generalized to a p-norm as ∥a∥p := (
∑

i a
p
i )

1/p. We

define the Frobenius norm for a matrix A as ∥A∥Fro := (
∑

ij a
2
ij)

1/2.

Let G = (V,E,w) be a weighted undirected graph, where V := [n] is a set of vertices

and E := [m] is a set of edges equipped with a weight vector w ∈ Rm
+ . The vertices V are

also called as nodes. In this thesis, we keep using vertices to mention V . An edge connects

two vertices, and we do not consider the direction of the edge (undirected). We define a

weight matrix as a diagonal matrix W ∈ Rm×m associated with the weight vector w with ℓ-th

diagonal element wℓ. In the definition of the incidence matrix C ∈ Rm×n, cℓi and cℓj are set

to 1 and -1, respectively, for the edge ℓ connecting vertices i and j (i > j), otherwise 0. We

represent a graph by an adjacency matrix A ∈ Rn×n;

aij = aji :=

wℓ (if the edge ℓ connects vertices i and j),

0 (otherwise).
(1.2)

the ij-th element and ji-th element of A are wℓ if the ℓ-th edge connects vertices i to j, i.e.,

aij = aji := wℓ, and we define aij = aji := 0 if there is no edge between vertices i and j.

Remark that the adjacency matrix A is symmetric by its construction. A degree di for a vertex

i is defined as di :=
∑

j aij . We define a degree matrix D, a diagonal matrix whose diagonal

elements are Dii := di. Let a (unnormalized) Graph Laplacian L be

L := D − A. (1.3)

The graph Laplacian can also be written as L = C⊤WC.
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We also define normalized graph Laplacian as

LN = D−1/2(D − A)D−1/2. (1.4)

We denote i-th smallest eigenvalues of the graph Laplacian by λi, and the eigenvector

associated with λi by ψi. We also denote i-th smallest eigenvalues of the normalized graph

Laplacian by λN,i, and the eigenvector associated with λN,i by ψN,i. Note that most of the

discussion in this thesis holds for both unnormalized and normalized graph Laplacian in a

similar manner. For a more detailed understanding of graph theory basics, refer to [Bapat,

2010].

1.2 Why Spectral Clustering Matters

This section discusses why spectral clustering matters.

A clustering, in general, is the task where we group a set of “similar” data points; data

points in the same group are more similar to each other than to a data point in the other

group [Bishop and Nasrabadi, 2006, Murphy, 2012]. Clustering is unsupervised learning, i.e.,

it does not need the labels to learn. Common clustering algorithms in the Euclidean space are

hierarchical clustering such as the single-linkage clustering, centroid-based clustering such as

k-means, and density-based clustering such as the Gaussian Mixture Model.

Turning to graph clustering, graph cut is one of the simplest methods. We consider the

partition of V into two distinct sets, V1 and V \V1. Such a partition should happen when a

“dissimilarity” of two sets is the smallest. In the graph theory language, such a dissimilarity is

called as cut; a total weight of edges removed. We define the cut for a two-class partition as

Cut(V1, V \V1) :=
∑

i∈V1,j∈V \V1

aij. (1.5)

We consider the partition of V into k distinct sets, V1, . . . , Vk, where Vi ∩ Vj = ∅ for i ̸= j

and ∪i∈[k]Vi = V . We generalize the two-way cut to k-way cut as

kCut({Vℓ}kℓ=1) :=
∑
ℓ∈[k]

Cut(Vℓ, V \Vℓ) =
∑
ℓ∈[k]

∑
i∈Vℓ,j∈V \Vℓ

aij, (1.6)

which is the sum of the weight edges between different vertex sets. This objective function
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Cut

Ratio Cut

Figure 1.2: Illustration of the cut and ratio cut on two example graphs. The red and green
colors represent the clustering results. In the case of the cut, the clustering is sensitive to
minor changes, as adding just one vertex can lead to undesirable results. In contrast, the ratio
cut provides more robust and desirable clustering outcomes for both graphs

can be minimized in polynomial time [Goldschmidt and Hochbaum, 1994]. Particularly, for

the k = 2 case, there exists a simple and fast algorithm [Stoer and Wagner, 1997]. However,

it is known that in practice, this often leads to the partitioning of one individual vertex from

the rest of the graph [von Luxburg, 2007]. This result is not the one we would like to obtain

since we expect that the size of each set is reasonably large.

In order to prevent such situations, we consider to penalize if the size of the set is small.

For this aim, we define a balanced cut, called ratio cut, as

RCut(V1, V \V1) := Cut(V1, V \V1)
(

1

|V1|
+

1

|V \V1|

)
. (1.7)

The difference between the cut and this ratio cut is the “balance term”,(
1

|V1|
+

1

|V \V1|

)
, (1.8)

by which if |V1| is small the objective function is penalized. Hence, this ratio cut aims

to “balance” the size of the clusters more than the cut, since only looking at this balanced

term, the balanced term is minimized when |V1| = |V \V1| This balance term prevents the

undesirable case which we see in the cut; if we partition a graph into one vertex and the rest

of the graph, the “one-vertex-only” cluster penalizes the objective function. In Fig. 1.2, we

demonstrate this with two example graphs. On the left, both the cut and ratio cut produce

desirable clustering results. However, on the right, when one vertex is added, the cut objective

results in a “one-vertex cluster,” whereas the ratio cut continues to provide a robust clustering
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solution.

We then extend this ratio cut to k-way ratio cut as

kRCut({Vℓ}kℓ=1) :=
∑
ℓ∈[k]

Cut(Vℓ, V \Vℓ)
|Vℓ|

. (1.9)

While this ratio cut is known to empirically improve the cut as seen in Fig. 1.2, this ratio cut

problem is NP-hard [Wagner and Wagner, 1993]. Thus, we consider to relax the problem as

follows.

We first define the indicator matrix Z ∈ Rn×k as

ziℓ :=

1 when i in Vℓ

0 otherwise,
(1.10)

and also defined the ratio indicator matrix ZR ∈ Rn×k as

ZR := Z(Z⊤Z)−1/2. (1.11)

Note that Z⊤
RZR = I . Note also that since ZR can be written as

(ZR)iℓ =

1/
√
|Vℓ| when i in Vℓ

0 otherwise,
(1.12)

the matrix ZR can be seen as an indicator vector normalized by the square root of size of the

cluster. Using Z and ZR, we can rewrite Eq. (1.9) as

kRCut({Vℓ}kℓ=1) =
k∑
ℓ=1

∥Z·ℓ∥2G,2
∥Z·ℓ∥22

,where ∥x∥2G,2 :=
∑
i,j∈V

aij|xi − xj|2 = x⊤Lx (1.13)

= trace(Z⊤
RLZR) (1.14)

Note that ∥ · ∥G,2 is a seminorm, since L1 = 0. The common technique is to relax ZR from

discrete values to real values and use Z⊤
RZR = I as constraints. By relaxing ZR, we see that

Eq. (1.13) is connected to eigenvalues problem as follows;
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Algorithm 1 Spectral Clustering.
Input: Adjacency matrix A, and the number of clusters k

Compute the graph Laplacian L = D − A.
Obtain Ψk := (ψ1, . . . ,ψk), the smallest k eigenvectors of L.
Obtain the non-overlapping k sets by treating each of the n rows in Ψk as a point in Rk,
and run k-means with k clusters

Output: The non-overlapping k sets V1, . . . , Vk

Proposition 1.1 (“Foundation” of spectral clustering, e.g., von Luxburg [2007]).

min
ZR∈Rn×k

{kRCut({Vℓ}kℓ=1) s.t. Z
⊤
RZR = I} =

k∑
ℓ=1

λℓ, (1.15)

where λℓ is ℓ-th eigenvalue of L. The solution is given by taking ZR = (ψ1, . . . ,ψk), where

ψℓ is ℓ-th eigenvector of L.

This holds due to the Rayleigh-Ritz theorem, where

min
ZR∈R
{trace(Z⊤

RLZR) s.t. Z
⊤
RZR = I} =

k∑
ℓ=1

λℓ. (1.16)

For more details, see Sec. 5.2 in [von Luxburg, 2007]. This proposition serves as a “foundation”

of spectral clustering. From this proposition, the eigenproblem of the graph Laplacian L can

be seen as a relaxed problem of minimizing the ratio cut. Since the eigenproblem can be

solved in polynomial time while minimizing ratio cut is NP-hard, we use the eigenvectors as

a relaxed solution of ratio cut. We then recover the clusters from k smallest eigenvectors of L,

often by k-means algorithms. We call this procedure as spectral clustering, summarized as

Alg. 1.

To conclude the discussion above, the balanced cut can be a “good” objective for graph

clustering. However, the balanced cut is an NP-hard problem. Spectral clustering is a relaxed

solution of the graph cut and thus serves as an approximation of the balanced cut. More

details can be found in Chapter 2.

Finally, we briefly mention other graph clustering methods. The cut objective function

defined as Eq. (1.6) is well studied, and various cut-based algorithms are proposed; see Ag-

garwal and Wang [2010]. Similarly to the cut objective function, correlational clustering is

established [Bansal et al., 2004]. Another popular method is distance-based clustering, where
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we define a distance between vertices over a graph and apply any distance-based clustering

methods [Williams et al., 1964, Hennig and Hausdorf, 2006]. Also, there exist statistical

inference methods using generative models, such as the planted partition model [Condon and

Karp, 2001, McSherry, 2001] and the degree-corrected stochastic block model [Newman,

2016]. The hierarchical clustering is another established method particularly in the community

detection community, using a measure of edge-betweenness [Girvan and Newman, 2002]

and modularity [Newman, 2006, Blondel et al., 2008]. We remark that although various

methods are proposed, sometimes a method turns out to be equivalent to the other methods.

Notably, spectral clustering is equivalent to the other popular methods, such as modularity

maximization and statistical inference using a planted partition model [Newman, 2013].

This thesis proves that spectral clustering is also equivalent to the distance-based algorithm

using the effective resistance as a distance in Sec 6.4.2.1. See Schaeffer [2007] for a more

comprehensive survey of graph clustering. Note also that there exists a research line on

overlapping community detection, where we are allowed to assign multiple clusters to one

vertex. However, in this thesis, we limit our interests to the non-overlapping setting, i.e., we

are only allowed to assign one cluster to one vertex. See Xie et al. [2013] for more about

overlapping community detection.

1.3 Why Generalizations Matter: A View from Mystical

Power of Twoness

This thesis mainly discusses generalizations of spectral clustering. While these generalizations

themselves are significant contributions, we now highlight why generalizations matter from

a different view, “mystical power of twoness.” This view is Eugene L. Lawler’s favorite

observation: a problem is easy if the number of parameters is two, but if there are more,

the problem becomes very hard [Lenstra, 1998]. For example, a two-dimensional matching

problem can be solved in polynomial time, but three-dimensional matching problems are

NP-hard, which is actually first proven by Lawler. This matching problem is proven by

the two-dimensional matching problem, which can be reduced to a polynomially solvable

problem while the three-dimensional problem cannot.

While Lawler observed this in the combinatorial optimization realm, we also observe

similar phenomena in many areas. For example, the eigenproblems of a tensor are NP-hard,
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while the ones for a matrix (2-tensor) are polynomial time problems [Hillar and Lim, 2013].

Another example is a logic problem called a boolean satisfiability problem (SAT); the SAT for

three or more literals is NP-hard, while the SAT for two is solvable in polynomial time [Karp,

2010]. An example in physics is that we observe that while it is difficult to obtain a closed-

form solution for k-body problems when k ≥ 3, it is easy to obtain the closed-form solution

for the two-body problem [Whittaker, 1964]. Like these examples, we see the “mystical

power of twoness” in many areas; the “two” problems are easy, while “non-two” problems

are difficult for some reason.

Looking at the spectral clustering in Sec. 1.2, we may say that the standard graph problem

is a “2-norm problem for a 2-uniform hypergraph.” In the thesis, we generalize this from

2-norm to p-norm or 2-uniform hypergraph to general hypergraph. We argue that generalizing

the graph Laplacian offers a better understanding of the standard graph Laplacian. We observe

what is essential in the graph Laplacian, i.e., which properties hold under both the p = 2

and the general p cases. Furthermore, we seek to discern which properties are unique to the

p = 2 scenario but do not generalize to other p values. We may see that properties exclusive

to p = 2 rely on “twoness.” Given the “two” problems are easy, these properties make the

problems coincidentally easy.

Below, by the example of graph Laplacian and p-Laplacian, the Laplacian’s nonlinear

generalization, we illustrate how the “twoness” of the graph resides in the graph cut problem

using 2-seminorm and its extension to p-seminorm. Particularly, we discuss that while it is

easy to obtain k eigenvectors of graph Laplacian, it is hard to do so for p-Laplacian.

We first review the following basic facts on the pair of eigenvectors of graph Laplacian.

Proposition 1.2 (classical). Let ψi,ψj be a pair of eigenvectors corresponding to distinct

eigenvalues of L. Thus, a pair of eigenvectors of L is orthogonal to each other, i.e.,

ψ⊤
i ψj = 0. (1.17)

Roughly speaking, a pair of eigenvectors of L is orthogonal to each other because L

is symmetric and linear. In other words, without symmetricity and linearity of L, a pair of

eigenvectors of L is not orthogonal. Since the proof is straightforward but well demonstrates

how the symmetricity and linearity contributes the orthogonality, we provide the proof in

Sec. 1.3.1. As seen later, this orthogonality is built on “twoness.”
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This orthogonality (Prop. 1.2) allows us to further rewrite Eq. (1.15) as follows.

Proposition 1.3. The following successive sequence can obtain the eigenpair of the graph

Laplacian as

λℓ = min
x⊥ψ1,...,ψℓ−1

∥x∥2G,2
∥x∥22

, ψℓ = argmin
x⊥ψ1,...,ψℓ−1

∥x∥2G,2
∥x∥22

. (1.18)

The alternative sequence is

λℓ = max
x⊥ψn,...,ψℓ+1

∥x∥2G,2
∥x∥22

, ψℓ = argmax
x⊥ψn,...,ψℓ+1

∥x∥2G,2
∥x∥22

. (1.19)

This proposition lets us rewrite the k-way ratio cut problem Eq. (1.9) to obtain the

relaxed solution recursively as Eq. (1.18). This relation also leads to the efficient algorithm

to compute the eigenpair of the graph Laplacian, called Lanczos method [Lanczos, 1950],

whose details are in Sec. 10.1 in the established textbook [Golub and Van Loan, 2013].

It is known that we may further generalize Prop. 1.3 as follows.

Proposition 1.4 (Variational Theorem). The following sequence

λℓ = min
U⊆Rn

dim(U)=ℓ

max
x∈U

∥x∥2G,2
∥x∥22

. (1.20)

admits the eigenvalue of the graph Laplacian L. The solution is given by ψℓ.

See [Struwe, 2000] for the details of this proposition. The difference between Prop. 1.3

and Prop. 1.4 is as follows. The constraints of the optimization in Prop. 1.4 is given as a

dimension. On the contrary, the constraints in Prop. 1.3 is given as the pairwise relationship

between two eigenvectors; that is, each pair of eigenvectors is orthogonal. In fact, Prop. 1.3 is

tighter than Prop. 1.4; using Prop. 1.2, each pair of eigenvectors of L is orthogonal, we may

specify U in Eq. (1.20) as

U ⊥ ψn, . . . ,ψℓ+1, (1.21)

that reduces Prop. 1.4 to Prop. 1.3.
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Now, we consider a natural generalization from 2-seminorm to p-seminorm. Follow-

ing Bühler and Hein [2009], the natural p-seminorm of the graph seminorm Eq. (1.13) is to

define

∥x∥pG,p :=
∑
i,j∈V

aij|xi − xj|p. (1.22)

We then define the p-Laplacian as

(∆px)i :=
∑
j∈V

aij|xi − xj|p−1. (1.23)

Remark that when p = 2, this p-Laplacian reduces to the standard graph Laplacian, i.e.,

∆2x = Lx. (1.24)

Also, the eigenpair of p-Laplacian (λ,ψ) is defined to satisfy

(∆pψ)i = λ|ψi|p−2ψi. (1.25)

The natural idea of spectral clustering is to use the first k eigenvectors of p-Laplacian. In fact,

we may obtain in a similar variational manner as Prop. 1.4 as follows.

Proposition 1.5 (Variational Theorem for ∆p, e.g., [Struwe, 2000]). Let γ(B) be a Krasnosel-

skii genus of a set B, whose formal definition is given later in Eq. (2.40). The following

λp,ℓ = min
U⊆Rn

γ(U)=ℓ

max
x∈U

∥x∥pG,p
∥x∥pp

(1.26)

admits the eigenvalues of ∆p for ℓ = 1, . . . , n. The solution is given by the eigenvector of ∆p.

This proposition is a generalization of Prop. 1.4; we generalize the dimension in the

sequence Eq. (1.20) to Krasnoselskii genus, which is a generalization of dimension. This

genus gives “dimensions” to a set residing in not only the Euclidean space but also any space.

We call the eigenpairs generated from this sequence as variational eigenpairs. Note that when

p = 2, this sequence reduces to Prop. 1.4. Note also that there generally exist the eigenpairs

of p-Laplacian other than variational ones. We will discuss the details of this sequence in
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Sec. 2.1.4.

Now, we see the natural generalization of the variational theorem from the standard

Laplacian (Prop. 1.4) to p-Laplacian (Prop. 1.5). Looking back to the p = 2 case, orthogonality

conditions make the variational theorem simpler, from Prop. 1.4 to Prop. 1.3. Also, the simpler

sequence leads to the Lanczos algorithm, an efficient algorithm to compute the eigenvalues.

Thus, a natural question to ask is if we have an even simpler form of Prop. 1.5 for the general

p case, like Prop. 1.3? The answer is, unfortunately, no. The reason is that the orthogonality

conditions come from linearity, which only holds for p = 2 case and hence does not apply

to general p-Laplacian. In fact, we do not have any workarounds for this issue at this point;

while we know the identifications for the first and second eigenpairs, we do not know how to

obtain the third or higher eigenpairs of p-Laplacian [Lindqvist, 2008].

To conclude the examples above, we find that obtaining eigenpairs is practically easy for

the standard graph Laplacian but difficult for the general p. The eigenproblem of the graph

Laplacian L exhibits a ”twoness,” which simplifies the eigenproblem, as shown from Prop. 1.4

to Prop. 1.3. This simplification leads to the Lanczos algorithm, an efficient algorithm to

obtain k-eigenpairs of the graph Laplacian. On the other hand, for the p-Laplacian, the

problem cannot be further simplified from Prop. 1.5 and thus remains difficult.

Now, we observe that generalizations may provide a better understanding of the standard

case: what is “foundational,” i.e., well-generalized, and what is built on “twoness.” In this

example, the variational theorem is foundational, while the practical algorithm to obtain

higher-order eigenpairs is built on twoness.

1.3.1 Demonstration of Linearity and Symmetricity via Proof of Propo-

sition 1.2

We here provide the proof of Prop. 1.2, which we omitted for the sake of readability. We

introduce this proof since it demonstrates how linearity and symmetricity contribute to

orthogonality.

Since ψi,ψj are eigenvectors of L, we have

Lψi = λiψi, (1.27)

Lψj = λjψj. (1.28)
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We then have

ψ⊤
j Lψi = λiψ

⊤
j ψi, (1.29)

ψ⊤
i Lψj = λjψ

⊤
i ψj. (1.30)

Since L is symmetric and linear, we have

(ψ⊤
j Lψi)

⊤ = ψ⊤
i Lψj. (1.31)

Thus, by subtracting Eq. (1.30) from Eq. (1.29), we have

0 = λiψ
⊤
j ψi − λjψ⊤

i ψj = (λi − λj)ψ⊤
i ψj. (1.32)

From the assumption that λi ̸= λj , we have ψ⊤
i ψj = 0. Thus, we see that a pair of the

eigenvectors corresponding distinct eigenvalues of L are orthogonal. Looking back this

explanation, the key for this relationship is Eq. (1.31), which holds because L is symmetric

and linear.

1.4 Structure of this Thesis
We discuss the both directions of generalizations; from 2-seminorm to p-seminorm as well

as from a graph to hypergpraph. In Chapter 2, we discuss the preliminaries of this thesis.

In Chapter 3, we first generalize in both directions, from 2-seminorm to p-seminorm, as

well as a graph to hypergraph to grasp an overview. We propose a unified framework that

encompasses various existing hypergraph p-Laplacians while also accommodating novel

formulations. The chapter presents theoretical properties, including the nodal domain theorem

and Cheeger inequality, for this abstract class of hypergraph p-Laplacians. In Chapter 4, we

then discuss the hypergraph Laplacian for the p = 2 case. This chapter presents a framework

for transforming vector data into hypergraphs for spectral clustering. We also provide the

theoretical justifications for our representation. In Chapter 5, we then explore the graph

p-seminorm realm, reflecting on the limitations both of graph p-Laplacians and hypergraph

p-Laplacians, where it is difficult to obtain higher-order eigenvectors. We propose using p-

resistance and apply it to multi-class clustering. We then develop an approximation guarantee

for p-resistance for practical use. Finally, using the theoretical insights in the previous chapters,
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Figure 1.3: Structure of this thesis.

in Chapter 6, we propose a data representation framework for the vertex classification task,

which not only considers the topological graph structure but also incorporates features over

vertices. This representation serves as an alternative approach to GNNs, aiming to mitigate

these biases. We establish such a framework exploiting the theoretical properties of graph

Laplacian. Chapter 7 concludes this thesis. In Fig. 1.3, we illustrate how a part of Chapter 2,

and from Chapter 3 to Chapter 6 can be structured.
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Chapter 2

Preliminaries

This chapter overviews prominent work on spectral learning for graph and hypergraph. Sec. 2.1

extends the discussion from Sec. 1.2 and Sec. 1.3, by reviewing spectral clustering methods

for graphs. Sec. 2.2 discusses how to apply spectral clustering for given vector data, instead

of the discrete graph. Sec. 2.3 reviews the brief history of the spectral clustering. Sec. 2.4

then explores the analogy between circuit theory and graphs. Next, Sec. 2.5 reviews topics

related spectral clustering for hypergraph. Lastly, Sec. 2.6 summarizes this chapter. This

chapter introduces topics that are covered across multiple subsequent chapters. In some cases,

those subsequent chapters will include additional preliminary discussions of concepts specific

to their content.

2.1 Spectral Clustering for Graphs
In Sec. 1.2 and Sec. 1.3, we introduced spectral clustering. We further review additional topics

related to spectral clustering for graphs. Sec. 2.1 covers multiple topics, such as normalized

cut, Cheeger inequality, spectral connections, as well as p-Laplacian.

2.1.1 Normalized Graph Cut and Spectral Clustering

In Sec. 1.2, we see the connection between ratio graph cut and spectral clustering. In this

section, we explain that the similar discussion holds for normalized graph cut and spectral

clustering using the normalized graph Laplacian.

Same as Sec. 1.2, we consider partitioning a graph G into two vertices sets V1,V2 ⊂ V ,

V1 ∩ V2 = ∅ and V1 ∪ V2 = V . We define the normalized cut as

NCut(V1, V2) := Cut(V1, V2)

(
1

vol(V1)
+

1

vol(V2)

)
, (2.1)
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where vol(V ) :=
∑

i∈V di. Minimizing this can partition the vertex set into two subsets. We

extend to k-way partitioning problem where we partition into k subsets, Vi(i = 1, . . . , k),

where Vi ∩ Vj = ∅ if i ̸= j and ∪ki=1Vi = V , formulated as

kNCut({Vℓ}kℓ=1) :=
k∑
i=1

Cut(Vℓ, V \Vℓ)
vol(Vℓ)

. (2.2)

Similarly to the ratio indicator matrix Eq. (1.11), we introduce a normalized indicator matrix

ZN as

ZN := D1/2Z(Z⊤DZ)−1/2, (2.3)

Note that Z⊤
NZN = I . We also note that since ZN can be written as

ZN =


√
di/vol(Vj) if the vertex i belongs to j

0 otherwise,
(2.4)

the matrix ZN can be seen as an indicator vector weighted by the degree
√
dj and normalized

by vol(Vj) so that ∥(ZN)·j∥2 = 1. Using this indicator matrix, this problem can also be

rewritten as

kNCut({Vℓ}kℓ=1) = trace(Z⊤
NLNZN) (2.5)

=
k∑
j=1

(ZN)
⊤
·jLN(ZN)·j

∥(ZN)·j∥22
. (2.6)

Minimizing normalized cut is again a discrete optimization problem, and this is known

to be NP-hard [Shi and Malik, 2000]. However, if we relax ZN into real value, minimizing

these becomes an eigenproblem of graph Laplacians LN , which shows that the graph cut

problem can be written as an eigenproblem as follows.

Proposition 2.1 (“Foundation” of normalized spectral clustering, e.g., von Luxburg [2007]).

min
ZN∈Rn×k

{kNCut({Vℓ}kℓ=1) s.t. Z
⊤
NZN = I} =

k∑
ℓ=1

λN,ℓ, (2.7)
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Algorithm 2 Normalized Spectral Clustering.
Input: Adjacency matrix A, and the number of clusters k

Compute the graph Laplacian LN = I −D−1/2AD−1/2.
Obtain ΨN,k := (ψN,1, . . . ,ψN,k), the smallest k eigenvectors of LN .
Obtain the non-overlapping k sets by treating each of the n rows in ΨN,k as a point in Rk,
and run k-means with k clusters

Output: The non-overlapping k sets V1, . . . , Vk

where λN,ℓ is ℓ-th eigenvalue of LN . The solution is given by taking ZN = (ψN,1, . . . ,ψN,k),

where ψN,ℓ is ℓ-th eigenvector of LN .

Similarly to the ratio cut discussed as Prop. 1.1 in Sec. 1.2, we see that the eigenvectors

of LN is connected to the normalized graph cut problem. We establish the similar procedure

to obtain the clustering result as normalized spectral clustering, summarized as Alg. 2.

Now we observe the similar structure of the normalized graph Laplacian to the one of the

graph Laplacian. Most of the discussion in this thesis holds both for unnormalized Laplacian

and normalized Laplacian, since the most of thesis is based on this spectral clustering

discussion.

Finally, only for the normalized Laplacian, the eigenproblem can be rewritten as follows.

min kNCut({Vℓ}kℓ=1) = min
ZN

trace(Z⊤
NLNZ

⊤
N) s.t. Z

⊤
NZN = I, (2.8)

= max
Z

trace(Z⊤
ND

−1/2AD−1/2ZN) s.t. Z
⊤
NZN = I, (2.9)

This rewriting holds since LN = I −D−1/2AD−1/2. Using Eq. (2.9) and relaxing ZN into

real values, Eq. (2.9) can be written as the k largest eigenproblems of D−1/2AD−1/2. This

type of transition of equation does not hold for unnormalized Laplacian, i.e.,

min
ZR∈Rn×k

{trace(Z⊤
RLZ

⊤
R ) s.t. Z

⊤
RZR = I} ≠ max

ZR∈Rn×k
{trace(Z⊤

RAZR) s.t. Z
⊤
RZR = I}.

(2.10)

2.1.2 Analogy between Continuous Laplacian and Graph Laplacian

In this section, we establish a differential geometric analogy between the continuous and

graph domains, as the graph Laplacian shares several key properties with the continuous

Laplace operator. This analogy provides a better understanding of graph Laplacian and lays
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xi

xj

Weight of the edge 
 aij = aji

: values over verticesx
Gradient is defined over an edge, and 

difference between vertices of the targeted edge.
Gradient is a “slope” of the function at a point,  
or a measure of “smoothness” of the function.

Function f
Gradient ∇(c)f(a)

Gradient ∇x(i, j)

i

j
a

Figure 2.1: Illustration of gradients over the Euclidean space and a graph. On the left, the
gradient∇(c) is represented as the slope at the point a in the Euclidean space, where∇(c) is
a continuous gradient. On the right, the gradient corresponds to the difference between the
values of vertices connected by the target edges (i, j). In both cases, the gradient reflects the
“smoothness” of the functions.

the foundations for exploring its connection to the heat equations (Sec. 2.2.4) and further

generalizations to p-Laplacian (Sec. 2.1.4).

We firstly define H(V ) as a Hilbert space of real-valued functions endowed with the

usual inner product

⟨x,x′⟩H(V ) :=
∑
i∈V

xix
′
i (2.11)

for all x,x′ ∈ H(V ). Accordingly, the Hilbert spaceH(Ed) is defined with the inner product

⟨y,y′⟩H(Ed) :=
∑
ℓ∈Ed

sℓtℓ, (2.12)

for all y,y′ ∈ H(Ed), where Ed is a set of directed edges, i.e., we distinguish (i, j) and (j, i).

We use this space Ed regardless if the underlying graph is undirected or directed. Note that y

and y′ are defined for directed edges.

We shall now define discrete gradient and divergence operators studied in standard

graphs, which can be considered graph analogs in both discrete and continuous case [Zhou

and Schölkopf, 2006].

Definition 2.2. The graph unnormalized gradient is an operator∇ : H(V )→ H(Ed) defined
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by

(∇x)(i, j) :=√aij (xj − xi) (2.13)

for (i, j) ∈ Ed.

By definition, the gradient operator is linear. Also, from the definition, we have

(∇x)(i, j) ̸= (∇x)(i, j) (2.14)

for general x, which is why we consider Ed although the graph we consider is undirected.

Loosely speaking, the norm of the gradient at a graph vertex quantifies the local smoothness

or roughness of the function around that vertex. In Fig. 2.1, we compare the graph gradient

with its continuous counterpart, the gradient in Euclidean space,∇(c). As shown in Fig. 2.1,

both gradients capture the smoothness of their respective function or values.

By using the norm defined by the Hilbert space in Eq.(2.12), we define Dirichlet sum of

x ∈ H(V ) as

SG,2(x) := ∥∇x∥22 =
∑
i,j∈V

|(∇x)(i, j)|2. (2.15)

Since the norm of the gradient measures the local smoothness of the function around

the vertex in a rough sense, the Dirichlet sum intuitively captures the total smoothness

across the entire graph. We should emphasise that ∥∇x∥ is defined in the space H(Ed) as

∥∇x∥ = ⟨∇x,∇x⟩1/2H(Ed)
, and satisfies SG,2(x) = ∥∇x∥22.

Definition 2.3. The graph divergence is an operator div : H(Ed)→ H(V ) which satisfies

⟨∇x,y⟩H(Ed) = ⟨x,−divy⟩H(V ), ∀x ∈ H(V ),∀y ∈ H(Ed). (2.16)

Notice that Eq. (2.16) can be regarded as a graph analog of Stokes’ Theorem on manifolds.

The divergence can now be written in a closed form as follows:

Proposition 2.4. Let ℓ ∈ Ed be an edge (i, j) and ℓ′ ∈ Ed be an edge (j, i). The graph



2.1. Spectral Clustering for Graphs 49

divergence can be computed as

(divy)(i) = −
∑

ℓ∈Ed connects i,j

√
aijyℓ +

∑
ℓ′∈E connects j,i

√
ajiyℓ′ . (2.17)

Recall that wℓ is a weight for ℓ-th edge, i.e., wℓ = aij if the ℓ-th edge connects vertices i

and j. Note that this allows us to use Eq. (2.17) as a definition of the divergence; it satisfies

Eq. (2.16), analogously to Stokes’ theorem in the continuous case. Note also that divergence

is always 0 if y is undirected.

We next define graph Laplacian as follows.

Definition 2.5. The Laplacian is an operator ∆2 : H(V )→ H(V ) defined by

∆2x := −div(∇x). (2.18)

Observe that this operator is linear; by substituting Eq.(2.13) and Eq.(2.17) into the

definition (2.18) the Laplace operator for undirected graph becomes

(∆2x)(i) = −
∑
j∈V

aij (xj − xi) . (2.19)

Note that the first term of Eq. (2.17) vanishes due to the symmetry property of the gradient.

The Laplacian in (2.18) can be rewritten as

(∆2x) = (D − A)x (2.20)

= Lx. (2.21)

Note that if we change the gradient to

(∇x)(i, j) :=√aij

(
xj√
dj
− xi√

di

)
, (2.22)

the corresponding Laplacian is normalized.
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2.1.3 Cheeger Inequality

This section reviews the Cheeger inequality for the standard 2-Laplacian case. This Cheeger

inequality is one of the established results from the analogy between continuous Laplace

operator and discrete Laplacian. The Cheeger inequality for the continuous domain is

established, and the Cheeger inequality for discrete domain is particularly useful for spectral

clustering because it provides a quality guarantee for the partitioning.

Influenced by the inequality of the eigenvalue of continuous Laplacian called Cheeger

inequality, there is existing research on the Cheeger inequality in the discrete domain [Alon

and Milman, 1985, Lee et al., 2014, Tudisco and Hein, 2018]. This inequality shows the

connection between the eigenproblem of Laplacian and a graph cut called as Cheeger cut [Alon

and Milman, 1985]. This inequality motivates us to use eigenvectors to partition in the

following way. While the discrete optimization problem of finding a subset of V that

minimizes the Cheeger cut is NP-hard [von Luxburg, 2007], the eigenproblem of the graph

Laplacian is not NP-hard. Since the Cheeger inequality gives bounds between eigenvalues

of graph Laplacian and optimal Cheeger cut, the Cheeger inequality can guarantee the

performance of the eigenproblem compared to the ground truth from the original cut problem.

This performance guarantee enables us to use eigenvectors obtained by less computationally

expensive eigenproblems instead of the costly ground truth from the discrete cut problem.

Moreover, we may say that the Cheeger inequality “connects” Cheeger cut and eigenproblem;

the Cheeger inequality shows how much we approximate the original graph cut problem by

relaxing this into the real-valued eigenproblem of Laplacian.

We observe the “connection” as follows. We first discuss the unnormalized graph

Laplacian L. Let U ⊂ V be a set and U be a complement of U . The unnormalized Cheeger

cut CCut may be defined as

CCut(U) :=
Cut(U,U)

min(|U |, |U |)
, (2.23)

The optimal values h2 for CCut is called as Cheeger constant, i.e.,

h2 := min
U⊂V

CCut(U). (2.24)

We have the following connection between eigenvalues of unnormalized Laplacian and the
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Cheeger constant.

Theorem 2.6 (Cheeger Inequality [Alon and Milman, 1985]).

h22
2maxi di

≤ λ2 ≤ 2h2. (2.25)

Thm. 2.6 shows how we approximate the Cheeger constant by relaxing the original

discrete cut problem into the real-valued eigenproblem of the graph Laplacian. The Cheeger

inequality guarantees the performance of the cut resulting from algorithms using the second

eigenvector of Laplacian as follows.

Proposition 2.7 (Chung [2007]). Let (B,B) be the cut found by the second eigenvector of

the Laplacian ψ, i.e.,

B := Bt′ , where t
′ := argmin

t
CCut(Bt), Bt := {i : (ψ2)i ≥ t} (2.26)

Then, we have

CCut(B) <
√

2λ2(max
i
di). (2.27)

Plugging the upper bound of Cheeger inequality Eq. (2.25) to this proposition, we

observe

CCut(B) < 2
√
h2(max

i
di), (2.28)

This inequality guarantees the worst case of the performance of spectral clustering. The

discussion above motivates us to use spectral methods for graph partitioning problems.

The above discussion naturally generalizes to the normalized setting. The Cheeger cut

and Cheeger inequality are also naturally generalized to k-way partitioning, which we will

discuss in Sec. 2.1.4.3.

2.1.4 Spectral Clustering via Graph p-Laplacian

This section discusses spectral clustering via graph p-Laplacian. In Sec. 2.1.1, we use the

eigenvectors of graph Laplacian for spectral clustering. This eigenproblem is connected to
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the Rayleigh quotient to the 2-seminorm induced by the graph Laplacian. The natural idea is

to extend this 2-seminorm framework to p-seminorm. This extension is known to improve

the performance [Bühler and Hein, 2009]. In the following, we discuss the generalization to

p-seminorm.

2.1.4.1 Graph p-Laplacian Definition

This section generalizes graph Laplacian to a nonlinear operator called p-Laplacian.

We now redefine the p-Laplacian using the gradient (Eq. 2.13) and divergence

(Eq. (2.16));

Definition 2.8. An operator ∆p : H(V )→ H(V ) is a graph p-Laplacian if

∆px := −div(∥∇px∥p−2∇px), (2.29)

where ∇p is a similar gradient as Eq. (2.22), i.e.,

∇p(x) = a
1/p
ij (xj − xi). (2.30)

This operator is a nonlinear generalization of Laplacian defined (2.18). This nonlinear

generalization is also an analog from real domain [Lindqvist, 2008]. In physics, this p-

Laplacian is often used in fluid dynamics, where the parameter p characterizes a fluid’s

viscosity. We define p-Dirichlet sum or p-energy as

SG,p(x) := ∥∇px∥pp =
∑
i,j∈V

|(∇px)(i, j)|p. (2.31)

We then compute the p-Laplacian as

(∆px)i =
∑
i,j∈V

aij|xi − xj|p−1sgn(xi − xj), (2.32)

which is same as Eq. (1.23), and also obtain the same energy as

SG,p(x) =
∑
i,j∈V

aij |xj − xi|p , (2.33)
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which we saw in Sec. 1.3. Remark that we obtain the normalized graph p-Laplacian by

changing the gradient to normalized one.

The following statement about p-Dirichlet sum and p-Laplacian straightforwardly follows.

This relation Eq. (2.31) generalizes Eq. (2.15) for 2-Laplacian of the standard graph.

Proposition 2.9.

⟨x,∆px⟩H(V ) = SG,p(x) (2.34)

This proposition shows the connection between the p-Dirichlet sum, gradient, and p-

Laplacian.

2.1.4.2 Eigenpairs of Graph p-Laplacian

To start, we recall the definition of eigenpairs of graph p-Laplacian (Eq. (1.25)). The

eigenpair (λ,ψ) of the p-Laplacian ∆p is defined to satisfy

(∆pψ)i = λ|ψi|p−1sgn(ψi), ∀i ∈ V. (2.35)

Note that the first eigenpair is (0,1) for a connected graph. The critical values of the Rayleigh

quotient characterize the eigenpairs.

Proposition 2.10 (Bühler and Hein [2009]). The eigenpairs of the graph p-Laplacian consist

of critical values and corresponding points of the Rayleigh quotient, defined as

RG,p(x) :=
SG,p(x)

∥x∥pp
. (2.36)

From this proposition, we know that RG,p(ax) = RG,p(x), for a ∈ R. Therefore, to

consider the eigenpairs of the graph p-Laplacian, we can limit our interest to Sp := {x |
∥x∥pp = 1}, seeing the Rayleigh quotient in Eq. (2.36).

In the sequel, we briefly explain why we can obtain the second eigenpair and why it is

difficult to obtain the third or higher eigenpairs of the graph p-Laplacian. We now define the

following quotient,

R
(2)
G,p(x) :=

SG,p(x)

minη ∥x− η1∥pp
. (2.37)
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This quotient gives the second eigenpair of p-Laplacian.

Proposition 2.11 (Bühler and Hein [2009]). Let ψp,2 be the second p-eigenvector of ∆p. The

global solution to Eq. (2.37) is given by ψ∗, that is defined as

ψ∗ := ψp,2 + η∗1, where η∗ := argmin
η
∥ψp,2 − η1∥pp. (2.38)

This proposition shows that we have an exact identification for the second p-eigenpair;

minimizing Eq. (2.37) gives the second p-eigenpair of ∆p. However, we have not known the

exact identification for the third or higher eigenpair of p-Laplacian [Lindqvist, 2008] yet.

While we do not know the identification such as Eq. (2.37) for the higher order eigenpairs,

the next question is if there is a characterization of eigenpairs of the graph p-Laplacian, such

as “orthogonality” for the p = 2 case. Recall that when p = 2 the eigenvectors of graph

Laplacian are orthogonal to each other. By using orthogonality and the Rayleigh-Ritz theorem,

we we can obtain the full eigenvectors of the graph 2-Laplacian as follows.

Proposition 2.12 (Rayleigh-Ritz). Let ψ1, . . .ψk−1 be eigenvectors of the graph Laplacian

L. Then the k-th eigenvector ψk is given as

ψk = argmin
x

RG,2(x) s.t. ψk⊥ψ1, . . . ,ψk−1. (2.39)

This proposition is the simplest form of Courant’s min-max theorem and is also called

the variational theorem. This proposition further characterizes the eigenvectors of the graph

Laplacian from Prop. 2.10. We can easily obtain the higher order eigenvectors by this

proposition and the sequence Eq. (2.39). This orthogonality constraint of eigenvectors comes

from the nature of L2 space induced from the graph 2-seminorm. However, we lose this sense

of orthogonality if we expand to p-seminorm since we lose the inner product structure in the

Lp space, as we saw in Sec. 1.3.

In this context, the following further generalizes the “orthogonality” to graph p-Laplacian.

To characterize the eigenpairs of graph p-Laplacian, we use Krasnoselskii genus γ for a set B;

γ(B) =


0 if B = ∅
inf{k ∈ Z+ | ∃odd continuous h : B → Rk\{0}}
∞ when no such h exists ∀j ∈ Z+

(2.40)
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This genus is a generalized concept of the dimension; this genus defines a dimension-like

value for any set B. Notably, this set B can be a subset of not only the Euclidean space, but

also any spaces such as manifold. Using this genus, we can characterize the eigenpairs;

Proposition 2.13 (Tudisco and Hein [2018]). Consider the set of subsets Fk(Sp) := {B ⊂
Sp | B = −B, closed , γ(B) ≥ k}. The sequence defined as

λp,k := min
B⊂Fk(Sp)

max
x∈B

RG,p(x) (2.41)

admits a critical point of RG,p(x). Moreover, the pair of λp,k and the vector ψp,k such that

λp,k = RG,p(ψp,k) constitutes an eigenpair of ∆p.

This proposition is the generalized Courant’s min-max theorem (Prop. 2.12); when p = 2,

this proposition corresponds to Prop. 2.12. This proposition is also called variational theorem.

The eigenvectors obtained by the sequence Eq. (2.41) are called variational eigenvectors. In

this proposition, the space Fk(Sp) serves as a generalized orthogonal k-dimensional space.

Moreover, the sequence Eq. (2.41) may serve as a method to obtain eigenpairs successively.

However, we have two issues with the practical use of the sequence Eq. (2.41). The first

problem is that due to the abstract characterization of the Krasnoselskii genus, we do not know

how we can numerically apply this genus to obtain the higher eigenvectors. When p = 2, this

abstract characterization can be translated into the concrete and “numerically computable”

characterization, “orthogonality”. However, in the current form of the Krasnoselskii genus

given as Eq. (2.40), at this point, we do not know how to obtain this genus numerically.

Secondly, similarly to the continuous p-Laplacian theory [Lindqvist, 2008], we do not know in

which condition this sequence yields exhaustive eigenpairs. For the tree (and the disconnected

forest) case, the sequence Eq. (2.41) exhausts all the spectra [Deidda et al., 2022, Zhang,

2021]. On the other hand, for the complete graph case, it is shown that there are other

eigenpairs than ones yielded by the sequence Eq. (2.41) [Amghibech, 2003]. Despite these

extensive studies, we are yet to understand in which conditions this sequence exhausts all

the spectra of p-Laplacian. Thus, for a general graph, we do not know if the variational

eigenvalues are the same as the Rayleigh quotient would do in Prop. 2.10.

To conclude the discussion above, while we know the identification for the second

eigenpair of the graph p-Laplacian (Eq. (2.37)), we have three open problems as follows;
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1. We do not know the identification of the third or higher eigenpairs.

2. We do not know in what condition of a graph the sequence Eq. (2.41) exhausts the

spectra of the graph p-Laplacian

3. We do not know how to obtain the Krasnoselskii genus numerically.

2.1.4.3 Cheeger Inequalities for graph p-Laplacian

This section discusses Cheeger inequalities for the graph p-Laplacian. The Cheeger

inequality theoretically supports using the variational eigenvectors of p-Laplacian from the

Cheeger cut point of view.

We start our discussion from a 2-way Cheeger cut. Recall that in Eq. (2.23) and in

Eq. (2.24), we defined a Cheeger cut for a subset U ⊂ V for 2-way cut and Cheeger constant

h2 as

C(U) =
Cut(U,U)

min(|U |, |U |)
(2.42)

h2 = min
U
C(U). (2.43)

By recursively using this Cheeger cut, here we define the multi-class Cheeger cut, which we

call k-way Cheeger constant as

hk := min
{Vi}i=1,··· ,k

max
j∈{1,...,k}

C(Vj). (2.44)

This k-way Cheeger constant can be seen as the smallest k-way Cheeger cut. To obtain the

k-way Cheeger cut is known to be NP-hard. However, relaxing into the real-value would

ease this problem; this Cheeger cut can be approximated by the variational eigenvalues of the

graph p-Laplacian by Cheeger inequality.

Before we discuss the Cheeger inequality, we need a setup of the nodal domain.

Definition 2.14 (nodal domain). A nodal domain of x over a graphG is a maximally connected

subgraph A of a graph G such that for x ∈ Rn where A is either {i | xi > 0} or {i | xi < 0}.

With this idea, a nodal domain of x can be seen as a “partition” of the graph by the

sign of x. We may obtain the non-trivial bound of the number of the nodal domains of the

variational eigenvectors is bounded; see Tudisco and Hein [2018].
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This nodal domain is used in the Cheeger inequality for the variational eigenvectors of

graph p-Laplacian as follows.

Proposition 2.15 (Tudisco and Hein [2018]). Let (λp,k,ψp,k) be a k-th eigenpair of ∆p,

obtained by the sequence Eq. (2.41). Let also mk be the number of nodal domains of ψp,k.

Then,

(
max
i

di
2

)−(p−1)(
hmk

p

)p
≤ λp,k ≤ 2p−1hk

Recall that di is a degree of a vertex i. This proposition provides how much the variational

eigenvalues approximate the Cheeger constant. Thus, this proposition motivates using the

higher variational eigenvectors of the graph p-Laplacian for multi-way Cheeger Cut since the

eigenvalues can serve as an approximation of the k-way Cheeger constant. We finally remark

that the discussion here can naturally generalizes to the normalized setting.

2.1.4.4 Limitation of Multi-class Spectral Clustering using p-Laplacian

For two-class spectral clustering, we are ready to use the second eigenvector of the

graph p-Laplacian. The reason is that we are theoretically motivated (Prop. 2.15) and we can

numerically obtain the second eigenvector by Prop. 2.11. On the other hand, for multi-class

spectral clustering, while we are still theoretically motivated for the use of the higher-order

eigenpairs by the same proposition, we do not have a numerical way to obtain the higher

eigenpairs due to the three open problems discussed in Sec. 2.1.4.2. As we see in this

section, these open problems are key if we want to apply the graph p-Laplacian to multi-class

clustering. Hence, without solving these open problems, we cannot say that it is theoretically

guaranteed to use the graph p-Laplacian for multi-class clustering. However, these problems

remain open not only in the graph domain but also in the continuous domain, which has a

longer history and broader research communities. Thus, the limitation of spectral clustering

using p-Laplacian is that it is practically difficult to do multi-class graph clustering using

p-Laplacian at this point.
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2.1.4.5 Existing Work for Multi-class Spectral Clustering Using p-

Laplacian

So far, we discuss limitations for spectral clustering using the graph p-Laplacian. This

section discusses how the existing works “bypass” this limitation. In a rough sense, there

are two ways to materialize the multi-class clustering using graph p-Laplacian; i) recursively

bisectioning and ii) the use of the approximated orthogonality.

For i), Bühler and Hein [2009] proposed a multi-class clustering, which recursively

bisections a graph by using Prop. 2.11. Thus, Bühler and Hein [2009] partitions a subgraph

when we partition further than two, which does not exploit the full structure of a graph. In

fact, the theoretical nature of recursive bisectioning using spectral clustering is also less

well-understood compared to the multi-way one, even for the case of p = 2 [Verma and Meila,

2003]. Note that, in contrast, for k-way spectral clustering using p-Laplacian, we always have

a bound via the Cheeger inequality (Prop. 2.15).

The methods in line with ii), such as [Ding et al., 2019, Luo et al., 2010, Pasadakis et al.,

2022], assume that the k eigenvectors of the graph p-Laplacian are close to ones of the graph

2-Laplacian, since the Rayleigh quotients RG,p and RG,2 are similar. Using this assumption,

these methods use optimization methods for the Rayleigh quotients RG,p with the initial

conditions as the first k-eigenvectors of the graph 2-Laplacian. By these initial conditions, we

expect that the obtained k-eigenvectors are “close” to the first k-eigenvectors of the graph

2-Laplacian, and thus we expect that the obtained k-eigenvectors are the first k-eigenvectors

from the Rayleigh quotient RG,p. These methods exploit approximated orthogonality proven

in Luo et al. [2010] of eigenvectors of graph p-Laplacian in order to achieve better algorithms.

However, this assumption might be too strong, especially for the very large p or very small p,

i.e., p close to 1. Moreover, even if this assumption may be reasonable, we do not know if

the first k eigenvectors from Rayleigh quotient are the same set of vectors with the first k-

eigenvectors obtained by the sequence Eq. (2.41) as we discussed in Sec. 2.1.4.2. Now, recall

that the Cheeger inequality guarantees the quality of the cut for the latter, the eigenvectors

obtained by Eq. (2.41). Thus, at this point, we do not know if this assumption is suitable for

multi-class clustering.
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2.1.4.6 Another Graph p-Laplacian: Vertex-wise Graph p-Laplacian

We remark that we have a different way to define graph p-energy and corresponding

graph p-seminorm in many literature [Bougleux et al., 2007, 2009, Calder, 2018, Elmoataz

et al., 2008, Singaraju et al., 2009, Zhou and Schölkopf, 2006]. In this line, the p-energy is

defined in “vertex-wise” way, which is written as

SVWG,p (x) =
∑
i∈V

(∑
j∈V

aij|xi − xj|2
)p/2

, (2.45)

and the p-Laplacian is defined as

∆VW
G,p x :=

∂

∂x
SVWG,p (x). (2.46)

This definition sums the vertex-wise energy. For more details of the difference, see Saito

et al. [2018]. For the corresponding p-Laplacian, we do not have an exact identification of

higher eigenpairs either. Moreover, for the corresponding seminorm, we have not theoretical

characteristics yet, such as Cheeger inequality discussed in Sec. 2.1.4.3. Thus, for this graph p-

Laplacian, we have less understanding than the graph p-Laplacian induced from the p-energy

we used in this thesis.

2.2 Graph Spectral Connection

This section explores the connection between the graph cut problem, weighted kernel k-

means, and the heat kernel. Previously, spectral clustering was only applied to discrete graphs.

Here, we extend the discussion to vector data by introducing a method to construct a graph

from vector data. We provide theoretical justifications for this method through “spectral

connections” from both the weighted kernel k-means perspective (Sec. 2.2.3) and the heat

kernel framework (Sec. 2.2.4). It is important to note that the discussion in this section only

applies to the normalized graph Laplacian.

2.2.1 Spectral Clustering via Kernel Function

From the graph cut discussion, the most common embedding algorithm is as follows. Given a

vector data x1, . . . ,xn ∈ X ,
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1. Using a kernel function κ

κ(x,x′) := ⟨ϕ(x), ϕ(x′)⟩, (2.47)

where ϕ is a feature map, we form a graph whose adjacency matrix is as

aij := κ(xi,xj) (2.48)

2. We then apply spectral clustering (Alg. 1 and Alg. 2) to the graph whose adjacency

matrix is A.

While this algorithm “models” vector data into a graph by a kernel function without any

justifications, next Sec. 2.2.3 justifies this algorithm. Sec. 2.2.3 shows that this algorithm

is equivalent to solving the weighted kernel k-means problem. Sec. 2.2.4 established a

connection between spectral clustering heat kernel to justify the Gaussian kernel.

2.2.2 The Standard k-means and Weighted Kernel k-means

Since this section is built on the k-means formulation, we briefly review this topic.

Consider to partition the data points into {Cℓ}kℓ=1. The standard k-means algorithm is to

partition data points in Euclidean space by minimizing the sum of the square of the distance

between each data point belonging to the cluster and its centroid. The standard k-means is to

minimize the following objective function.

J ({Cℓ}kℓ=1) :=
∑
ℓ∈[k]

∑
i∈Cℓ

∥xi −mℓ∥22 mℓ :=
∑
j∈Cℓ

xj/|Cℓ|. (2.49)

Note that mj is the average within the cluster Vj and serves as the centroid. Minimizing

J ({Cℓ}kℓ=1) is NP-hard [Mahajan et al., 2012]. The approximated discrete solution is obtained

by EM-type algorithms [Bishop, 2007].

This k-means is generalized to the weighted and kernel setting. The weighted kernel

k-means algorithm partitions data points in feature space and conducts the k-means. Let ϕ be

a feature map. We define the weighted kernel k-means objective as

Jϕ({Cℓ}kℓ=1) :=
∑
ℓ∈[k]

∑
i∈Cℓ

θ(xi)∥ϕ(xi)−mϕ,ℓ∥22, (2.50)
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wheremϕ,ℓ :=
∑
j∈Cℓ

θ(xj)ϕ(xj)/
∑
j∈Cℓ

θ(xj), (2.51)

∥ · ∥2 is a norm induced from the dot product1, θ(xi) is a weight at xi and mϕ,j serves as a

weighted mean of the cluster Cj .

Minimizing Jϕ({Cℓ}kℓ=1) is also NP-hard. In practice, we may apply the same EM-type

algorithm as the standard k-means case to obtain the approximate discrete solution. However,

the EM-type algorithm does not practically work when the feature map ϕ maps x to the

infinite dimensional space. Thus, we consider to approximate the solution in a different way,

which we call approximated relax solution.

To consider the approximated relax solution, we can further rewrite Jϕ({Cℓ}kℓ=1) as

follows.

Jϕ({Cℓ}kℓ=1) = traceΘKΘ− traceZ⊤
MΘ1/2KΘ1/2ZM , (2.52)

where Θ is a diagonal matrix whose i-th element is θ(xi) and K is a gram matrix formed by

the dot product kernel, and indicator matrix ZM ∈ Rn×k as

ZM := Θ1/2Z(Z⊤ΘZ)−1/2. (2.53)

Note that Z⊤
MZM = I and

(ZM)iℓ =


√
θ(xi)/

∑
xj∈Cℓ

θ(xj) (xi ∈ Cℓ)

0 (xi /∈ Cℓ)
(2.54)

We consider to minimize Eq. (2.52) with respect to the variable ZM . Since the first term

of Eq. (2.52) is fixed with respect to the variable ZM , we want to maximize the second

term of Eq. (2.52) in order to minimize the k-means objective function. We then relax

ZM from discrete values to real values. Exploiting the linear algebra theory, maximizing

trace(Z⊤
MΘ1/2KΘ1/2ZM) can be realized by taking ZM as the largest k eigenvectors of

Θ1/2KΘ1/2. We shall call this relaxed ZM as an approximated relaxed solution of the

weighted kernel k-means. We refer to Dhillon et al. [2004] for more details.

1Sec. 4.5.1.1 shows that the discussion in this section holds for any kernel.
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2.2.3 Weighted Kernel k-means and Spectral Clustering.

This section reviews the connection between spectral clustering and the weighted kernel k-

means. While these share the same purpose in clustering, the formulations seem quite different.

However, these formulations are linked via the same trace maximization problem. This

discussion leads to embedding vector data into graphs by considering kernels for clustering.

We review an established justification by Dhillon et al. [2004], which develops the following

strategy based on the discussion above.

1. Using vectors transformed by a feature map ϕ(xi) to the weighted kernel k-means.

2. Showing a connection from this weighted kernel k-means to the spectral clustering.

By this, we can ground the use of a feature map to spectral clustering through k-means lens.

[Dhillon et al., 2004] shows the following claim.

Proposition 2.16 (Dhillon et al. [2004]). Consider a graph aij = ⟨ϕ(xi), ϕ(xj)⟩ and its

degree di. We apply k-way normalized cut (Eq. (2.2)) to this graph A. We substitute a weight

w(xi) = 1/di to the weighted kernel k-means Jϕ({Vℓ}kℓ=1) (Eq. (2.50)). If we relax ZM and

ZN into real values with orthogonal constraints, we obtain

min
ZM∈Rn×k

{Jϕ({Vℓ}kℓ=1) s.t. Z
⊤
MZM = I} = min

ZN∈Rn×k
{kNCut({Vℓ}kℓ=1) s.t. Z

⊤
NZN = I}

Above all, modeling vector data into a graph by the dot product kernel is justified; if we

conduct spectral clustering to a graph formed by the dot product kernel, this is equivalent to

the weighted kernel k-means with a particular weight in a relaxed sense. For more details,

see [Dhillon et al., 2004, von Luxburg, 2007].

2.2.4 Heat Kernel and Spectral Clustering

Heat kernel is closely related to the energy minimization problem using the Laplace operator,

while the graph cut also can be seen the energy minimization problem using graph Laplacian.

This section explains that these two problems are connected.

We now discuss that the continuous Laplace operator is related to the energy minimiza-

tion problem. Assume a compact differentiable d-dimensional manifoldM isometrically
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embedded into RN , a variable x ∈M, and a measure µ. We consider a problem to obtain a

function f :Mr/2 → R, that minimizes the energy as

min
f
S
(c)
2 (f) = ∥∇(c)f∥2 s.t. ∥f∥2 = 1, (2.55)

where operators with superscripted by (c) are the standard continuous calculus ones. From a

physics point of view, we can see S(c)
2 (f) as energy and the problem as an energy minimization

problem. This problem often appears in physics, as well as machine learning. For more

details, we refer to Sec. 4.5.2 of this thesis and [Courant and Hilbert, 1962, Belkin and Niyogi,

2003]. This problem often appears when we want to know a profile that minimizes energy,

such as velocity profile in fluid dynamics [Courant and Hilbert, 1962]. In machine learning,

this problem can be considered a clustering problem. The operator∇f can be seen to measure

how close each data point is when we embed data from a manifold to the Euclidean space.

Then, this problem Eq. (2.55) can be thought of as finding suitable mapping f best preserving

locality over all data points. More on this way of thinking, refer to Sec.3 in [Belkin and

Niyogi, 2003]. Note that we can rewrite the energy using Laplace operator as

S
(c)
2 (f) = ∥∇(c)f∥2 = ⟨∇(c)f,∇(c)f⟩ = ⟨∆(c)f, f⟩ (2.56)

The third equality follows from the Stokes theorem. We introduce the additional constraints

⟨f, c1⟩ = 0 for the original minimization problem Eq. (4.40) in order to avoid the trivial

solution to this problem, which is f = c1. Thus, we reformulate the problem Eq. (4.40) as

min⟨∆(c)f, f⟩ s.t. ∥f∥2 = 1, ⟨f, c1⟩ = 0. (2.57)

See more discussions in [Belkin and Niyogi, 2003].

We now discuss heat equation and heat kernel, which are useful tools for analyzing

∆(c)f . We pay attention to the term ∆f because this term is a main “actor” of the energy

minimization problem in Eq. (2.56). Consider a variable x ∈M. The heat equation onM is

as (
∂

∂t
+∆(c)

)
U(t,x) = 0, U(0,x) = f(x) (2.58)
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The solution is given to satisfy

U =

∫
Ht(x,y)U(0,y)dµ(y) (2.59)

where Ht is a heat kernel. A well-known example of a heat kernel is the Gaussian kernel as

Gt(x,y) =
1

(4πt)d/2
exp

(
−∥x− y∥22

4t

)
, (2.60)

which gives a solution to one variable Eq. (2.58) when M = Rn. However, obtaining a

concrete form of heat kernel for a general manifold is difficult.

We give a solution in an asymptotic case when t → 0. Locally, we can approximate

Ht(x,y) = Gt(x,y) when t and ∥x− y∥ are small [Rosenberg and Steven, 1997, Belkin and

Niyogi, 2003]. Together with

lim
t→0

∫
M
dµ(y)Gt(x,y)f(y) = f(x) (2.61)

lim
t→0

∫
M
dµ(y)Gt(x,y) = 1, (2.62)

for small t and discrete values x1, . . . ,xn instead of continuous value we can approximate as

∆(c)f(xi) ≈
∑
j

Gt(xi,xj)f(xi)−
∑
j

Gt(xi,xj)f(xj). (2.63)

The right-hand side of Eq. (2.63) is equal to the graph LaplacianL for a graph whose adjacency

matrix is a gram matrix of the Gaussian Kernel. Following Eq. (2.63), we can relate the

original energy minimization problem and graph cut problem (Eq. (2.5)) as

∥∆(c)f∥2 ≈ Y ⊤LY (2.64)

with proper constraints. By properly introducing “normalizing” constraints, the continuous

energy minimization problem corresponds to a 2-way normalized cut problem.

This discussion can justify the embedding by a kernel function for spectral clustering.

The reason is that the graph cut problem for a graph made from a Gaussian kernel can be seen

as an approximated continuous energy problem of an asymptotic case of the heat equation.
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Therefore, embedding by the kernel for spectral clustering is a discrete analog of the energy

minimization problem.

Finally, we remark that the approximation becomes exact when a number of randomly

generated data is infinite (See Thm.3.1 in [Belkin and Niyogi, 2005]). For more discussion of

this, we refer to [Belkin and Niyogi, 2003, 2005].

2.3 History of Spectral Clustering and Spectral Connection
In this section, we review the history of the spectral clustering and spectral connection.

Donath and Hoffman [1972, 1973] firstly suggested the eigenvectors of adjacency matri-

ces for the partitioning purpose. Independently, Fiedler [1973, 1975a,b] first reported that

the connectivity of the graph is related to the second eigenvalue of the graph Laplacian. For

this historical reason, the second eigenvector of Laplacian is sometimes called as Fiedler

vector, and the associated eigenvalue is called Fiedler value. Slightly after this, Barnes [1982]

and Barnes and Hoffman [1984] rediscovered spectral clustering as a linear programming

problem. Simultaneously, an analog between differential geometry and graph Laplacian was

established; notably, the Fiedler value was connected to Cheeger constant [Alon and Milman,

1985, Alon, 1986]. Then, the eigenvectors for clustering were experimentally demonstrated in

various literature, such as [Pothen et al., 1990, Barnard and Simon, 1994]. Around the same

time, the Ratio Cut [Hagen and Kahng, 1992] is established and then extended to multi-way

ratio cut [Chan et al., 1994]. These are generalized to the normalized cut in [Shi and Malik,

2000, Yu and Shi, 2003], which is empirically shown to improve the ratio cut.

In the machine learning community, spectral clustering became popular by the normalized

cut [Shi and Malik, 2000], followed by many seminal works such as [Ng et al., 2001, Meilă

and Shi, 2001, Bach and Jordan, 2003, Joachims, 2003]. Researchers in the machine learning

community were interested in the setting where we have vector data, formulate a graph

from the vector data, and then apply spectral clustering, as we will see in the next section.

The graph modeling formulation from vector data has been long explored, especially in the

computer vision vein such as [Scott and Longuet-Higgins, 1990, Weiss, 1999]. Then, Belkin

and Niyogi [2003] established the relationship between the continuous Laplace operator and

the graph Laplacian if we form a graph using a Gaussian kernel. Then, it is proven that

the graph Laplacian converges to the continuous Laplace operator when we draw an infinite

number of data points and formulate a graph Laplacian using Gaussian [Lafon, 2004, Belkin
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and Niyogi, 2005, Belkin et al., 2006, Belkin and Niyogi, 2007, 2008, Trillos and Slepčev,

2018]. Further details are discovered by the seminal work, such as [von Luxburg et al., 2004,

Giné and Koltchinskii, 2006, Hein, 2006, Hein et al., 2007, von Luxburg et al., 2008]. Also,

the connection between kernel k-means and spectral clustering is discussed [Zha et al., 2001,

Dhillon et al., 2004].

Finally, the recent developments involve the consistency of spectral clustering for certain

statistical graph models [Rohe et al., 2011], such as stochastic block model [Holland et al.,

1983]. This area actively evolves including stronger results than the consistency discussed

by Rohe et al. [2011] for the stochastic block model [Fishkind et al., 2013, Abbe et al.,

2015, Lei and Rinaldo, 2015, Sarkar and Bickel, 2015, Su et al., 2019], consistency for its

generalized model called degree-corrected stochastic block model [Qin and Rohe, 2013], and

further refinements of the spectral clustering [Joseph and Yu, 2016].

For more details of early history of spectral clustering, see [Spielman and Teng, 1996,

von Luxburg, 2007] and for spectral clustering on stochastic block model see [Abbe, 2018].

2.4 Graph Analogy to Circuit: Resistance and p-Resistance
This section introduces an analogy between the circuit theory and a graph. In this analogy,

the effective resistance between any two vertices is shown to be a distance measure, which

makes effective resistance useful in machine learning. To further explore this analogy, we

first define the notion of coordinate spanning set for a matrix. We then examine an analog

using the coordinate spanning set for the graph Laplacian. We will see that the resistance is

induced by the energy SG,2(x) (Eq. (2.15)) and graph Laplacian.

2.4.1 Coordinate Spanning Set

This section sets up the notation of coordinate spanning set, which is a convenient tool for an

analog between the circuit theory and a graph.

A symmetric matrix M ∈ Rn×n is a positive semidefinite (PSD) when a quadratic form

of M is nonnegative, i.e.,

x⊤Mx ≥ 0,∀x ∈ Rn. (2.65)

When quadratic form is strictly positive, we shall call positive definite (PD). A PSD matrix M

induces a semi-inner product as ⟨x,y⟩M := x⊤My. This inner product induces a semi-norm,
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as

∥x∥M := ⟨x,x⟩M (2.66)

The reproduced kernel associated with the above semi-inner product is M+ since

⟨u,vi⟩M = u⊤MM+ei = ui, ∀vi ∈ V(M), u ∈ H(M). (2.67)

We define the coordinate spanning set

V(M) := {vi :=M+ei : i = 1, . . . , n} (2.68)

and let H(M) := span(V(M)). This H(M) is a Hilbert space induced by inner product

⟨·, ·⟩M .

The set V acts as “coordinates” for H, that is, if w ∈ H we have wi = e⊤i M
+Mw =

⟨ei,M+ei⟩M . Note that the vectors {v1, . . . ,vn} are not necessarily orthonormal. We also

remark that this coordinate property is simply the reproducing kernel property for kernel

M+ [Aronszajn, 1950, Shawe-Taylor and Cristianini, 2004].

2.4.2 Graph Effective Resistance and p-Resistance

An analogy is established between graph and electric circuit [Doyle and Snell, 1984]. In this

analog, a vertex is a point at a circuit, and an edge is a resistor with resistance 1/aij . A flow

over a graph mapped to a current, and a distribution over V as x is seen as a potential at each

vertex point. The elemental circuit formula for the resistance is

resistance =
voltage2

energy
. (2.69)

From this formula, the effective resistance between two vertices is defined as the inverse of

the energy induced by a unit voltage between two vertices [Kirchhoff, 1847].

In this analog, the energy SG,2(x) for a vector over vertices x ∈ Rn is defined over the

potential x as Eq. (2.15). We define effective 2-resistance rG,2(i, j) between two vertices
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i, j ∈ V as

rG,2(i, j) :=
1

minx{SG,2(x) s.t. xi − xj = 1}
(2.70)

The coordinate spanning set using graph Laplacian (Laplacian Coordinate) plays a role.

For the definition of the coordinate, we obtain the Laplacian coordinate by putting M = L.

Recall that the graph Laplacian is symmetric PSD. Using the coordinate spanning set V(L),
we may rewrite 2-resistance2 as

rG,2(i, j) = ∥L+ei − L+ej∥2L (2.71)

= ∥vi − vj∥2L, vi,vj ∈ V(L). (2.72)

From the definition, rG,2(i, i) = 0 and rG,2(i, j) = rG,2(j, i). Remark that we may further

write the resistance using the 2-norm as

rG,2(i, j) = ∥L+1/2ei − L+1/2ej∥22 (2.73)

Using p-energy SG,p, these energy and effective resistance are extended to p-resistance rG,p as

rG,p(i, j) :=
1

minx{SG,p(x) s.t. xi − xj = 1}
. (2.74)

The triangle inequality [Herbster, 2010] holds for the p-resistance, that is for a, b, c ∈ V ,

r
1/(p−1)
G,p (a, b) ≤ r

1/(p−1)
G,p (a, c) + r

1/(p−1)
G,p (c, b). (2.75)

With r1/(p−1)
G,p , the graph G is a metric space. Particularly, when p = 2, 2-resistance defines a

metric between vi,vj ∈ V(L). More properties on p-energy and p-resistance, see [Herbster

and Lever, 2009, Alamgir and Luxburg, 2011].

2In the rest of this thesis, we abbreviate effective p-resistance as p-resistance.
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2.4.3 A Variant of p-Resistance

While we use p-resistance as in Eq. (2.74), we mention that there is a different variant on the

p-resistance rAG,p proposed by Alamgir and Luxburg [2011], that is defined as

rAG,p(i, j) =
1

minx

∑
ij a

1/(p−1)
ij |xi − xj|p/(p−1) s.t. xi − xj = 1

(2.76)

=
1

minx

∑
ij a

q−1
ij |xi − xj|q s.t. xi − xj = 1

. (2.77)

Despite this slight change of the definition, p-resistance in [Herbster and Lever, 2009]

and [Alamgir and Luxburg, 2011] shares almost the same properties. However, we note that

in [Alamgir and Luxburg, 2011], the parameter p works in the opposite way; if we mean large,

p [Alamgir and Luxburg, 2011] means smaller p and vice-versa.

2.5 Hypergraph Laplacians and p-Laplacians
This section introduces hypergraph Laplacians and p-Laplacians, a generalization of graph

Laplacian and p-Laplacian previously discussed in Sec. 2.1. First, Sec. 2.5.1 presents the

notations used for hypergraphs. Then, Sec. 2.5.2 introduces the existing hypergraph Laplacians

and p-Laplacians. Lastly, Sec 2.5.3 provides a brief overview of the historical development of

hypergraph Laplacians and p-Laplacians.

2.5.1 Hypergraph Notation

This section introduces hypergraph notation.

We begin with standard definitions and notation for hypergraphs. Hypergraph is defined

to generalize a graph; particularly, the edge is generalized to connect arbitrary number of

vertices. A hypergraph is defined as G = (V,E,w,µ) with the following symbol definitions.

We define V := [n] as a vertex set. We also define E as an edge set, whose element e ∈ E is

a tuple of vertices , e.g.,

e = (i1, . . . , ik), i1, . . . , ik ∈ V. (2.78)

A hypergraph is undirected when this tuple is unordered, and directed when the tuple is

ordered. When all the edge contains the same number of vertices, we call uniform. Denote
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by w a vector {w(e)}e∈E where w : E → R+ maps each edge with a weight, and let µ be a

vector {µi}i∈V , where µ : V → R+ maps each vertex with a vertex weight. A hypergraph

is connected if there is a path between every pair of vertices. If an edge contains the same

vertex multiple times, we call that this edge has a self-loop. In what follows, we assume that

the hypergraph G is connected and undirected unless noted. We define the degree of a vertex

i ∈ V as di =
∑

e∈E:i∈ew(e), while the degree of an edge e ∈ E is defined as |e|.

For the benefit of the representation of hypergraph, we define various matrices. Degree

matrices for vertex Dv is a diagonal matrix whose diagonal elements are the degree of vertices.

Also, the degree matrices for edges (De)ii is a diagonal matrix whose diagonal element is the

number of vertices contained in the i-th edge. Let We be a diagonal |E| × |E| matrix, whose

diagonal elements are the weight of edge e. Let H ∈ R|V |×|E| be an incidence matrix, whose

element h(v, e) = √ρv,e if a vertex v is connected to an edge e, and 0 otherwise, where ρv,e

counts how many times the edge e contains the vertex v, e.g., if edge is e = (v, v, v1, v2) for 4

uniform hypergraphs, ρv,e = 2.

For more details of basics of hypergraph, we refer to [Berge, 1984].

2.5.2 Hypergraph Spectral Clustering via Laplacians and p-Laplacians

This section introduces existing methods for hypergraph spectral clustering. Since the gener-

alization from graph to hypergraph is not straight forward, we have a variety of such methods,

whereas graph spectral clustering is an established area.

Hypergraph Spectral clustering also uses the hypergraph Laplacian and p-Laplacians,

simiarlry to the graph spectral clustering. This section discusses the existing hypergraph

Laplacians and p-Laplacians. Roughly speaking, we have two established ways of the gener-

alization from graph to hypergraph. One established formulation to deal with hypergraphs is

to reduce hypergraphs to graphs. The other way is a submodular approach. In the following

we discuss these.

2.5.2.1 Graph Contraction Approaches

In this section, we introduce the graph contraction hypergraph Laplacians. Agarwal

et al. [2006] classified this graph contraction hypergraph Laplacians into two categories; one

reduction is clique expansion [Rodriguez, 2002, Saito et al., 2018] and the other reduction

is star expansion [Zhou et al., 2006]. Note that the some of the existing Laplacian are not
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further explored for their generalization to p-Laplacian.

Clique Expansion (CLIQUE). This approach constructs a graph where a clique replaces

every pair of vertices in an original edge of a hypergraph. In this approach, we consider

two type of approach, one is edge-normalized [Saito et al., 2018], and the other is edge-

unnormalized [Rodriguez, 2002]. We consider the following two hypergraph cuts for both

settings.

(edge-unnormalized) Cutncl(V1, V2) :=
∑
e∈E

w(e)
|e ∩ V1||e ∩ V2|

m− 1
, (2.79)

(edge-unnormalized) Cutcl(V1, V2) :=
∑
e∈E

w(e)|e ∩ V1||e ∩ V2|. (2.80)

If we do not consider the “balance” like the ratio and normalized cut cases (see Sec. 2.1 and

Sec. 5.3), we may have unbalanced results. Thus, we consider these cuts in the balanced

approach, usually in the normalized cut approach. The hypergraph normalized cut is actually

rewritten by the quadratic form of the following Laplacians, similarly to the graph case. For

each case, we have two hypergraph Laplacians, hypergraph clique 2-Laplacian normalized by

a degree of edge L2,ncl (CLIQUE E-N), and clique 2-Laplacian but edge-unnormalized L2,cl

(CLIQUE E-UN) as

(edge-normalized) L2,ncl := I −D−1/2
v AnclD

−1/2
v , (2.81)

(edge-unnormalized) L2,cl := I −D−1/2
cl AclD

−1/2
cl , (2.82)

where

(edge-normalized) (Ancl)ij :=
∑

(i,j)∈e

w(e)/(|e| − 1) (2.83)

(edge-unnormalized) (Acl)ij :=
∑
i,j∈e

w(e), (Dcl)ii :=
∑
i∈e

w(e). (2.84)

Note that this can be seen as hypergraph contraction to graph, represented by Acl, and L2,cl is

a standard 2-Laplacian induced by Acl.
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We define the normalized hypergraph cut problem as

(edge-normalized) kNCutncl({Vℓ}kℓ=1) :=
k∑
ℓ=1

Cutncl(Vℓ, V \Vℓ)
vol(Vℓ)

(2.85)

(edge-unnormalized) kNCutcl({Vℓ}kℓ=1) :=
k∑
ℓ=1

Cutcl(Vℓ, V \Vℓ)
vol(Vℓ)

(2.86)

where vol(Vℓ) :=
∑

i∈Vℓ di Using these, the k-way normalized hypergraph cut for is rewritten

as

(edge-normalized) min kNCutncl({Vℓ}kℓ=1)

= minZ⊤
ND

−1/2
v LnclD

−1/2
ncl ZN s.t. Z⊤

NZN = 1 (2.87)

(edge-unnormalized) min kNCutcl({Vℓ}kℓ=1)

= minZ⊤
ND

−1/2
cl LclD

−1/2
cl ZN s.t. Z⊤

NZN = 1, (2.88)

where the normalized incidence matrix ZN (Eq. (2.4)) defined for the contracted graph Ancl

and Acl and the partitioning {Vℓ}kℓ=1. For both approaches, it is NP-hard to optimize the

cut objectives discretely. Thus, as a spectral clustering, we obtain the eigenvectors of graph

Laplacian matrices, L2,ncl and L2,cl, similarly to the graph case like Alg. 4.

Note that Saito et al. [2018] extends this 2-Laplacian to p-Laplacian in a vertex-wise way

(See Eq. (2.45)) in a differential geometry way. In Saito et al. [2018], the p-energy SVWG,p (x)

is defined as

SVWG,p (x) :=
∑
i∈V

 ∑
e∈E:e[1]=i

w(e)

(|e| − 1)

∑
j∈e

(
xj

µ
1/p
j

− xi

µ
1/p
i

)2
p/2

. (2.89)

The detail of this formulation is discussed in Sec. 3.5.

Star Expansion (STAR). This way constructs a graph by making a new vertex for every

edge to form a star [Zhou et al., 2006]. The hypergraph cut for this approach is defined as

Cuts(V1, V2) :=
∑
e∈E

w(e)
|e ∩ V1||e ∩ V2|

|e|
(2.90)

=
∑
e∈E

∑
j1,j2∈e;j1∈V1,j2∈V2

w(e)

|e|
. (2.91)
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Similar to the clique approach, we define the Hypergraph 2-Laplacian for star L2,s corre-

sponding this cut can be written as

L2,s := I −D−1/2
v AsD

−1/2
v (2.92)

(2.93)

where

As := HWeD
−1
e H⊤. (2.94)

We remark that this view is also hypergraph contraction to graph, represented by adjacency

matrix As. Note also that this Laplacian can be seen as the standard Laplacian if we consider

the hypergraph as a graph, except for the coefficient 1/2. This coefficient difference comes

from the nature of this view, as discussed in [Saito et al., 2018].

We define k-way normalized hypergraph cut for star expansion problem as

kNCuts({Vi}ki=1) :=
k∑
i=1

Cuts(Vi, V \Vi)
vol(Vi)

(2.95)

We can rewrite the minimization problem of Eq. (2.95) as

min
{Vi}ki=1

kNCut({Vi}ki=1) = min
ZN

traceZ⊤
ND

−1/2
v LsD

−1/2
v ZN s.t.Z⊤

NZN = I (2.96)

= max
ZN

traceZ⊤
ND

−1/2
v AsD

−1/2
v ZN s.t.Z⊤

NZN = I. (2.97)

Again, we obtain the k-th eigenvectors of Ls as a hypergraph spectral clustering.

Note on Graph Contraction Approach for Uniform Hypergraphs. We firstly intro-

duce the contraction way for any hypergraph. We then discuss all of these, two clique-ways

and star expansion way are equivalent for r-uniform hypergraphs. Recall the hypergraph

notations in Sec. 2.5.2. The star adjacency matrix isAs, and two clique ways, edge-normalized

way by [Saito et al., 2018] asAnc and edge-unnormalized way by [Rodriguez, 2002] asAc. For

r-uniform hypergraphs, the cuts are rewritten as eigenproblem of Laplacians L2,cl := Dcl−Acl
and Lncl := Dv − Ancl, but L2,ncl = (r − 1)L2,s = rL2,ncl for an r-uniform hypergraph.

Thus, the results of the spectral clustering are the same for these because the only difference
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between these is the constant coefficient, which does not affect the eigenproblem results.

2.5.2.2 Submodular Approaches

This section introduces the other way of the hypergraph Laplacian. This approach first

established by Hein et al. [2013] as a generalization of total variational approach of the graph

Laplacian, that becomes the submodular problem. Later year, [Li and Milenkovic, 2018]

extends the approach by Hein et al. [2013] to general submodular functions.

Total Variation (TV/SUB). The total variation (TV) approach for hypergraph has been

considered in a different context than the other two [Hein et al., 2013]. The hypergraph cut

for this approach is defined as

CutTV (V1, V \V1) =
∑

e∈E,e∩V1 ̸=∅,e∩V \V1 ̸=∅

w(e), (2.98)

and then balanced in a Cheeger way as

CCutTV (V1) =

∑
e∈E,e∩V1 ̸=∅,e∩V \V1 ̸=∅w(e)

min(vol(V1), vol(V \V1))
. (2.99)

Using the submodular gradient decent by Hein et al. [2013], this can be approximately

solvable.

The Hein et al. [2013] did not explicitly propose the Laplacian. Instead, Hein et al.

[2013] discussed the energy form of this total variation in p-seminorm manner, a regularizer,

is defined as

STVG,p(x) :=
∑
e∈E

w(e)max
i,j∈e
|xi − xj|p, (2.100)

which we shall call unnormalized total variation(TV V-UN), since this is not normalized by

degrees. Note that Hein et al. [2013] did not discuss the algorithms for general p > 1.

Submodular p-Laplacian (SUB) The TV p-Laplacian is actually incorporated by the

submodular p-Laplacian [Li and Milenkovic, 2018]. The extensive study by Li and Milenkovic

[2018] considers hypergraph p-Laplacian in the context of a submodular function, which we

refer to as SUB. This approach generalizes the energy of total variation Eq. (2.100) as follows.
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For a submodular function F : 2|e| → [0, 1], associated with edge e, the submodular energy;

SSUBG,p (x) :=
∑
e∈E

(w(e)max
S⊂V

(F (S))

|e|−1∑
ℓ=1

F (Sℓ)

(
xiℓ+1

µ
1/p
iℓ+1

− xiℓ

µ
1/p
iℓ

)p

, (2.101)

by reordering vertices in e as xi|e| ≥ xi|e|−1
≥ . . . ≥ xi1 , where Sℓ := {ij ∈ V }ℓj=1. Note

that this form is one form of the Lovász extension. By taking F (Si) = 1 for all i, we obtain

TV energy. The p-Laplacian for this submodular p-Laplacian [Li and Milenkovic, 2018] is

associated as

⟨x,∆px⟩ := SSUBG,p (x). (2.102)

Li and Milenkovic [2018] proposed the algorithms to obtain the second eigenvector of

this hypergraph p-Laplacian for the p = 1 and p = 2 cases using the submodular technique as

well.

2.5.3 Brief History of Hypergraph Laplacians and p-Laplacians

This section briefly discusses the history of the hypergraph Laplacians and p-Laplacians.

To deal with hypergraphs, one major formulation of hypergraph Laplacian is to reduce

hypergraphs to graphs. Until around 2010, hypergraph 2-Laplacians are proposed in various

literature in this line of research. Agarwal et al. [2006] showed that the various hypergraph

2-Laplacians in the line of reduction can be classified into two categories. One category is

a star hypergraph 2-Laplacian. The star Laplacian contracts a hypergraph into a graph by

composing the hyperedge into graph edges by making a star for each vertex. The various

work such as [Zien et al., 1999, Li and Solé, 1996, Zhou et al., 2006] can be seen as in this

star contraction way. The other category is a clique hypergraph 2-Laplacian. The clique

hypergraph 2-Laplacian contracts hypergraphs into graphs by expanding the hyperedge into

graph cliques. This Laplacian includes hypergraph 2-Laplacian includes hypergraph Laplacian

by Rodriguez [2002] as well as Bolla [1993], and Gibson et al. [2000]. When expanding the

hyperedge into the clique, Saito et al. [2018] normalized the weight of the edge by the number

of vertices to which the hyperedge connects. Among the hypergraph Laplacians above, Saito

et al. [2018] hypergraph 2-Laplacian is the one that corresponds to the graph Laplacian when

we consider a graph as a hypergraph.
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In 2013, Hein et al. [2013] proposed the regularizer using p-seminorm. Although Hein

et al. [2013] defined the regularizer that involves p-seminorm, they never mentioned “p-

Laplacian” in their paper. The first hypergraph p-Laplacian is introduced by Saito et al.

[2018]. This hypergraph p-Laplacian generalizes the vertex-wise graph Laplacian Eq. (2.45).

However, this vertex-wise graph Laplacian does not enjoy nice theoretical properties that

graph p-Laplacian has, such as nodal domain theorem and Cheeger inequality as the original

graph one does not. Slightly after hypergraph p-Laplacian by Saito et al. [2018], Li and

Milenkovic [2018] defines the hypergraph p-Laplacian by generalizing Hein et al. [2013].

Contrary to hypergraph p-Laplacian by Saito et al. [2018], this hypergraph p-Laplacian

satisfies nodal domain theorem and Cheeger inequality.

2.6 Summary
In combination with Sec. 1.2 and Sec. 1.3, this chapter provides a comprehensive review of

topics related to this thesis.

Sec. 2.1 covers spectral clustering for graphs. In Sec 2.2, we introduced a method for

modeling graphs from vector data using “spectral connections.” In Sec. 2.3, we reviewed the

history of spectral clustering as well as spectral connection. In Sec. 2.4, we also explored the

analogy between circuits and graphs, focusing on effective resistance. Lastly, Sec. 2.5 intro-

duced the hypergraph Laplacian and p-Laplacian as generalizations of their graph counterparts

in Sec. 2.1.

These notions and techniques will be frequently used in subsequent chapters, forming a

foundation for the discussions to come.



Chapter 3

Generalizing p-Laplacian: Spectral

Hypergraph Theory and a Partitioning

Algorithm

For hypergraph clustering, various methods have been proposed to define hypergraph p-

Laplacians in the literature. This work proposes a general framework for an abstract class of

hypergraph p-Laplacians from a differential-geometric view. This class includes previously

proposed hypergraph p-Laplacians and also includes previously unstudied novel generaliza-

tions. For this abstract class, we extend current spectral theory by providing an extension of

nodal domain theory for the eigenvectors of our hypergraph p-Laplacian. We use this nodal

domain theory to provide bounds on the eigenvalues via a higher-order Cheeger inequality.

Following our extension of spectral theory, we propose a novel hypergraph partitioning

algorithm for our generalized p-Laplacian. Our empirical study shows that our algorithm

outperforms spectral methods based on existing p-Laplacians.

3.1 Introduction

This chapter considers generalized hypergraph p-Laplacians. As we see in Chapter 1 and

Sec. 2.5, hypergraphs generalize graphs and serve as a natural representation of multi-

relational data. However, although a hypergraph is a natural data representation, generalization

from graph Laplacian to hypergraph Laplacian is not straightforward. Thus, as we see in

Sec. 2.5, multiple such generalizations have been proposed in the literature [Agarwal et al.,

2006, Saito et al., 2018, Hein et al., 2013, Li and Milenkovic, 2018].
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While these hypergraph Laplacians are proposed from a different view points, these

share a similar structural foundation between energy and the p-Laplacian. However, despite

sharing a similar structural foundation, some of these Laplacians miss key features, as shown

in Table 3.1. This raises the question: Do these missing features result from fundamental

limitations in the existing models despite their structural similarities? We argue that the

answer is no; to address this, this work aims to construct a theoretical structure to bring these

similar but disparate models into one unified framework.

In our unified framework, we define an abstract class of hypergraph p-Laplacians that

incorporates a number of previously proposed hypergraph p-Laplacians as well as previously

unstudied novel hypergraph p-Laplacians. This framework builds on a limited special case

previously proposed in [Saito et al., 2018]. The overall framework is inspired by a differential-

geometric analogy from the continuous to the discrete domain. Exploiting the differential-

geometric connection, we provide a generalized nodal domain theorem (see Thm. 3.13) and a

generalized Cheeger inequality (see Thm. 3.14 and Cor. 3.15). These provide a theoretical

justification and bounds for using the eigenvectors of a hypergraph p-Laplacian to perform

partitioning. Exploiting these theoretical results, we provide an algorithm for finding an

approximation to the second eigenvector. We empirically demonstrate that our algorithm

outperforms a variety of existing hypergraph p-Laplacian based methods.

We highlight five salient contributions of this work.

1. From a differential-geometric perspective, we define an abstract class of p-Laplacians

of hypergraphs that can incorporate previously proposed p-Laplacians as well as novel

unstudied p-Laplacians.

2. We provide theoretical results for our abstract class of p-Laplacians, such as the Nodal

domain theorem, the Cheeger inequality, and a bound on the relationship between the

minimum Cheeger cut and the second p-eigenvalue of the p-Laplacian.

3. Exploiting these theoretical results, we propose a convergent hypergraph partitioning

algorithm with respect to our abstract class of hypergraph p-Laplacians.

4. We demonstrate empirically that our method can improve the performance of the

existing p-Laplacians on the standard benchmark for hypergraph clustering research.

5. Based on our theoretical and empirical observations, we provide guidance on the choice
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Table 3.1: Comparison table for existing methods and ours. STAR is studied in [Zhou
et al., 2006], and unnormalized CLIQUE is studied in [Rodriguez, 2002] and edge-normalized
CLIQUE is in [Saito et al., 2018]. The TV is first proposed in [Hein et al., 2013] and generalized
to a submodular hypergraph [Li and Milenkovic, 2018]. The relation between Laplacian and
energy serves as a foundation (See Prop. 3.4). See the main text for details.

STAR CLIQUE TV Submodular Ours
Energy and Laplacian relation ✓ ✓ ✓ ✓ ✓

p-Laplacian ✓ ✓ ✓ ✓
Nodal domain theorem ✓ ✓

Cheeger inequality ✓ ✓
Clustering algorithm for fixed p ✓ ✓ ✓ ✓ ✓

Clustering algorithm for any p > 1 ✓ ✓

of p-Laplacian.

We remark that in the literature, there are a number of special case results [Zhou et al.,

2006, Agarwal et al., 2006, Saito et al., 2018, Hein et al., 2013]. These prior results derive

a patchwork of key features, such as nodal domain theorems, Cheeger inequalities, and

partitioning algorithms for some particular cases of hypergraph p-Laplacians, as shown in

Table 3.1. The advantage of the approach here is that we define an abstract class of hypergraph

p-Laplacians, and both our theory and our partitioning algorithm apply to the complete class.

Finally, we provide guidance on selecting a particular value of p for hypergraph p-Laplacians.

All proofs are in Appendix.

3.2 Hypergraph p-Laplacian

This section proposes a hypergraph p-Laplacian and discusses its p-eigenpairs. Here, we

generalize graph differential geometric notions such as gradient, divergence, Laplacian, and

cut objects to the general hypergraph setting.

3.2.1 Differential Operators: Gradient ∇c,p, Divergence divc,p and p-

Laplacian ∆c,p

In this section, we aim to extend various differential operators proposed in [Saito et al., 2018]

to an abstract class of p-Laplacians. We consider differential operations space over the set of

vertices and the set of the directed edges Ed made from edges of hypergraph E.
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We firstly introduce the following two inner product spaces H(V ) and H(Ed) of real-

valued functions over the vertex set and the directed edge set respectively,

⟨f ,g⟩H(V ) :=
∑
i∈V

figi (3.1)

⟨s, t⟩H(Ed) :=
∑
e∈Ed

s(e)t(e)

|e|!
. (3.2)

We next define three operators on these spaces; gradient ∇c,p:H(V )→ H(Ed), divergence

divc,p : H(Ed) → H(V ), and p-Laplacian ∆c,p : H(V ) → H(Ed). These operators are

discrete geometric analogs to comparable operators in continuous differential geometry. In

the continuous domain, for the second differentiable function f , the p-Laplace operator is

defined as ∆(c)
p f := div(c)(∥f∥p−2∇(c)f), where operators with superscripted by (c) are the

standard continuous calculus ones. In the following, we would like to establish a differential-

geometric framework in a generalized discrete setting analogous to the continuous one to

define an abstract class of p-Laplacians. The operators of divergence and p-Laplacian were

introduced in the graph setting [Zhou and Schölkopf, 2005, Grady, 2006] and generalized

to the hypergraph setting in [Saito et al., 2018], whereas a similar formulation of gradient

was given graph and hypergraph settings [Zhou and Schölkopf, 2005, Saito et al., 2018]. The

definition that we propose below broadly generalizes all previous definitions. We define and

discuss its interpretation below.

We propose to define the hypergraph-gradient as follows. The definition below is the

generalization of the definition of gradient over hypergraphs proposed in Saito et al. [2018].

Definition 3.1. Let∇c,p be an operator ∇c,p : H(V )→ H(Ed). A hypergraph-gradient ∇c,p

is

(∇c,px)(e) :=
∑
i,j∈e

w
1
p (e)c

1
p (i, j, e,x)

(
xj

µ
1/p
j

− xi

µ
1/p
i

)
,

where the operator∇c,p and the function c(i, j, e,x) satisfies the following three conditions

for all e ∈ Ed and vertices i, j ∈ e;

|∇c,p(αx)| = |α∇c,p(x)| (3.3)
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∑
i,j∈e

c(i, j, e,x) = c′(e) (3.4)

∂c1/p(i, j, e,x)

∂x

∣∣∣∣
i

= 0,∀j ∈ e and
∂c1/p(u, v, e,x)

∂x

∣∣∣∣
j

= 0,∀i ∈ e (3.5)

This hypergraph-gradient can be intuitively interpreted as follows. The term xj/µ
1/p
j −

xi/µ
1/p
i can be interpreted as “roughness” (normalized by µ) between two vertices. The

hypergraph-gradient is a sum of all possible combinations of this term for the edge e. Hence,

the hypergraph-gradient can be intuitively seen as the roughness in one edge, similar to the

continuous gradient∇(c) and the standard graph case discussed in Sec. 2.1.2.

The definition of the hypergraph-gradient function depends on a “weighting” function

c(i, j, e,x). This weighting function can be seen as a coefficient of the difference between

every pair of vertices. Varying c(i, j, e,x) allows us to model different types of hypergraph

expansions including but not limited to the star [Zhou et al., 2006] or clique expansions [Saito

et al., 2018] (see Table 3.2 for details), i.e., the function c enables the following our generalized

p-Laplacian framework to be abstract.

We leave a few remarks on equations of gradient Def. 3.1. First, the gradient operator

∇c,p and the function c has three conditions described as Eq. (3.3), Eq. (3.4), and Eq. (3.5).

Eq. (3.3) requires the operator ∇c,p to be either homogeneous or absolute homogeneous.

Eq. (3.4) requires that the summation of the function over all the pairs of vertices at an edge

e is independent of x. Eq. (3.5) enforces that the function c1/p is independent of x once we

fix one edge and one vertex in the edge. In the following, when c is not differentiable, we

consider subdifferential instead of derivative. We will later discuss more details in Sec. 3.2.5.

We normalize x by vertex weights µ. We call the vertex weights unnormalized when µi = 1

and normalized when µi = di for all i ∈ V . We observe that the existing unnormalized

p-Laplacian such as [Hein et al., 2013] µi = 1 for all i ∈ V and normalized 2-Laplacian [Zhou

et al., 2006, Saito et al., 2018] when µi = di for all i ∈ V .

The following definition of a divergence operator is inspired by an analogy to the

continuous setting.

Definition 3.2. A hypergraph divergence is an operator divc,p : H(Ed) → H(V ) which
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satisfies

⟨y,∇c,px⟩H(Ed) = ⟨x,−divc,py⟩H(V ), ∀x ∈ H(V ),∀y ∈ H(Ed). (3.6)

Note that Def. 3.2 is an analog to the continuous Stokes’ Theorem. Also, we can check

that div is unique. Intuitively, divergence counts the net flow defined by ϕ on the vertex,

similar to the intuition in the continuous domain.

Finally, we propose to define p-Laplacian.

Definition 3.3. An operator ∆c,p : H(V )→ H(V ) is a hypergraph p-Laplacian if

∆c,px := −divc,p(∥∇c,px∥p−2
p ∇c,px) (3.7)

.

3.2.2 p-Dirichlet Sum and p-Laplacian

This section defines the p-Dirichlet sum, which can be interpreted as energy over the hyper-

graph. Also, we discuss relations between the p-Dirichlet sum and the p-Laplacian. Lastly,

we discuss how these relations are the foundation of graph partitioning.

Using the norm defined by the Hilbert space in Eq.(3.2), we define p-Dirichlet sum of

x ∈ H(V ) as

SG,c,p(x) := ∥∇c,px∥pp =
∑
e∈Ed

|(∇c,px)(e)|p

|e|!
, (3.8)

which measures roughness of x over the hypergraph. Hence, it is natural to interpret the

p-Dirichlet sum as an energy over a hypergraph. Later we will use this energy as the objective

function of the hypergraph partitioning.

For the p-Dirichlet sum and p-Laplacian, the following relationships hold;

Proposition 3.4. SG,c,p(x) = ⟨x,∆c,px⟩H(V ).

Proposition 3.5.
∂SG,c,p(x)

∂x

∣∣∣∣
i

= p∆c,px(i).

These relations are important both in the continuous and discrete domains. In the

continuous domain, the analog of these relations is fundamental for an important problem on
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p-Laplacian, called Dirichlet Principle [Courant and Hilbert, 1962]; the Dirichlet energy is

minimized when the Laplace equation is satisfied. For the clustering in the discrete domain,

we minimize the p-Dirichlet sum. To do so, we consider a problem similar to the Laplace

equation, which is the eigenproblem of Laplacian. The discussion above shows how we see

an analogy between continuous differential and discrete geometry, as illustrated in Sec. 2.1.2.

We often see the properties of Prop. 3.4 and Prop. 3.5 in the graph p-Laplacian [Bühler

and Hein, 2009, Bougleux et al., 2009]. Moreover, also in the hypergraph context, without

a defining differential geometric setup, we see these properties in the existing hypergraph

Laplacians, as seen in Table 3.1 [Zhou et al., 2006, Saito et al., 2018, Hein et al., 2013, Li and

Milenkovic, 2018]. Hence, it is natural to expect that all of the hypergraph Laplacians have a

similar structure in this sense. However, as we see in Table 3.1, some Laplacians miss some

features; particularly, some Laplacians miss the useful nodal domain theorem and Cheeger

inequality (discussed in Sec. 3.3). Note that these results are “borrowed” from the continuous

differential geometry. One of the benefits of our abstract Laplacian is to give comprehensive

analyses to all Laplacians defined from the gradient Def. 3.1.

3.2.3 p-Eigenproblem of p-Laplacian

Next, we discuss the eigenproblem of this p-Laplacian. Since a p-Laplace operator is nonlinear,

we introduce the standard generalization of eigenpair for p-Laplacian (see for examples

of [Tudisco and Hein, 2018]).

Definition 3.6. Let ξp(x) := |x|p−1sgn(x). For p > 1, a hypergraph p-eigenpair, which is a

pair of p-eigenvalue λ ∈ R and p-eigenvector ψ ∈ H(V ) of ∆c,p, is defined by

(∆c,pψ)i = λξp(ψi),∀i ∈ V. (3.9)

The standard Laplacian shows the connection between its eigenpair and Rayleigh quotient

from the matrix theory and the continuous analysis. To obtain p-eigenpair, we consider the

following Rayleigh quotient:

Proposition 3.7. Consider the Rayleigh quotient for our abstract class of p-Laplacians as

RG,c,p(x) :=
SG,c,p(x)

∥x∥pp
. (3.10)
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The function RG,c,p has a critical point at ψ∗ if and only if ψ∗ is p-eigenvector of ∆c,p. The

corresponding p-eigenvalue λ∗ is given as λ∗p = RG,c,p(ψ
∗). Moreover, the first p-eigenvalue

is 0, whose p-eigenvector is M1/p1, where M is a |V | × |V | diagonal matrix whose diagonal

element is µv.

For the standard Laplacians, the first p-eigenvector is 1 for unnormalized and D1/2
v 1 for

normalized case.

3.2.4 Variational Hypergraph p-Laplacians

We firstly remark that the definition of p-eigenpair (Def. 3.6) leads to existing an infinite

number of p-eigenpairs, similarly to the continuous case [Binding and Rynne, 2008]. Now, we

discuss the subset of eigenpairs, similarly to the graph p-Laplacian case as seen in Sec. 2.1.4.

We move our discussion to a property of multiplicity of first p-eigenvalues.

Proposition 3.8. Suppose that hypergraph G is a union of k independent and connected

hypergraphs Gi (i = 1, . . . , k), i.e, G =
⋃k
i=1Gi where Gj ∩ Gl = ∅, for, j ̸= l. Then, k

equals to the multiplicity of eigenvalue 0 of ∆c,p.

The following corollary follows from this proposition.

Corollary 3.9. The second p-eigenvalue of ∆c,p is greater than 0, if a hypergraph G is

connected.

To analyze critical point of Eq. (3.10), Index theory [Struwe, 2000] is useful. We

use Krasnoselskii genus defined in Eq. (2.40), which we use for the discussion of graph

p-Laplacian (See Sec. 2.1.4). Since RG,c,p(αx) = RG,c,p(x) by Cor. 3.20, to consider the

p-eigenpair of p-Laplacian, we can limit our interest to Sp := {x | ∥x∥pp = 1}. From the

results in discrete case [Chang, 2016, Tudisco and Hein, 2018, Li and Milenkovic, 2018] and

continuous case [Lindqvist, 2008], we obtain the following proposition, which is a generalized

Rayleigh min-max theorem.

Proposition 3.10. Consider the set of subsets Fk(Sp) = {B ⊂ Sp | B =

−B, closed , γ(B) ≥ k}. The sequence defined as

λc,p,k := min
B⊂Fk(Sn

p )
max
x∈B

RG,c,p(x) (3.11)
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Table 3.2: The relationship between a function c(i, j, e,x) in hypergraph-gradients and
Laplacians. We denote e[1] by the first vertex of an edge e. Also, F : 2|e| → [0, 1] is
a submodular function, and we use rearranged vertices iℓ so that xi|e| ≥ . . . ≥ xi1 . See
Sec. 2.5.2 and Sec. 3.2.5 for the details and all the notations.

Type c(i, j, e,x)
CLIQUE E-N 1/(|e| − 1) when e[1] = i otherwise 0

CLIQUE E-UN 1 when e[1] = i otherwise 0
STAR 1/|e| when e[1] = i otherwise 0

TV 1 when (i, j) = argmaxi,j∈V |xj/µ
1/p
j − xi/µ

1/p
i | otherwise 0

SUB F (Sℓ)(maxS⊂e(F (S)))
1/p when i = iℓ and j = iℓ+1 otherwise 0

gives a critical point of RG,c,p(x). Moreover, the pair of λc,p,k and the vector ψc,p,k such that

λc,p,k = RG,c,p(ψc,p,k) constitutes an eigenpair of ∆c,p.

Similarly to the Rayleigh minmax theorem and the graph p-Laplacian case discussed

in Sec. 2.1.4, this proposition yields the sequence of p-eigenpairs. Moreover, for a standard

Laplacian of standard graph, this reduces into Rayleigh min-max theorem. However, similarly

to the continuous p-Laplacian theory [Lindqvist, 2008], we do not know if this sequence yields

exhaustive p-eigenpairs. We call the p-eigenpairs obtained by the sequence in Prop. 3.10 as

variational p-eigenpairs.

3.2.5 p-Laplacians and Related Regularizers

This section shows that various hypergraph Laplacians in Sec. 2.5.2 and related regularizers

can be seen as a special case of our framework.

The hypergraph Laplacians discussed in Sec. 2.5.2 can be seen as a special case of

our abstract Laplacian, defined by Def. 3.3, followed by hypergraph-gradient (Def. 3.1)

and hypergraph-divergence (Def. 3.2). Table 3.2 summarizes the corresponding function

c(i, j, e,x) in the definition of hypergraph-gradient.

Proposition 3.11. The weighting functions c in Table 3.2 correspond to the respective hy-

pergraph p-Laplacians in Sec. 2.5. Also, the weighting functions satisfy the conditions of

Def. 3.1.

Edge normalized and unnormalized clique 2-Laplacians in Table 3.2 are 2-Laplacians

proposed by Saito et al. [2018] and Rodriguez [2002], respectively. Star 2-Laplacian in
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Table 3.2 is equal to the Laplacian proposed by [Zhou et al., 2006]. The regularizer of

unnormalized TV p-Laplacian in Table 3.2 corresponds to one by [Hein et al., 2013]. The

Submodular hypergraph p-Laplacian (SUB) is proposed by [Li and Milenkovic, 2018].

Finally, for the family of total variation, we here propose a normalized TV p-Laplacian,

whose p-energy as

STVG,p(x) :=
∑
e∈E

w(e)max
i,j∈e

∣∣∣∣xidi − xj
dj

∣∣∣∣p . (3.12)

3.3 Properties of Variational p-Eigenpair of p-Laplacian
This section discusses the properties of the p-eigenproblem of our hypergraph p-Laplacian.

Hence, we aim to establish the theoretical background of spectral clustering using p-Laplacian,

such as the nodal domain theorem and the Cheeger inequality. The nodal domain theorem is

about the bounds of the number of nodal domains, which can be seen as a “division”. Using

this nodal domain, the Cheeger inequality shows how much p-eigenproblem can approximate

a minimal graph cut.

3.3.1 Nodal Domain Theorem of the p-Laplacian

This section aims to extend the classical nodal domain theorem to our framework. The nodal

domain theorem in the discrete domain is developed analogously from Courant’s nodal domain

theorem in the continuous domain [Courant and Hilbert, 1962]. In the continuous case, a

nodal domain is defined as a region for a function where a sign does not change. Therefore, a

nodal domain marks the natural division of regions of real values. The nodal domain theorem

shows a connection between eigenvectors of Laplacian and nodal domains; the theorem

describes the bounds of the number of nodal domains of eigenvectors of Laplacian [Lindqvist,

2008]. The same idea can be established in the discrete domain, i.e., a nodal domain is a

connected sub-hypergraph where a sign of p-eigenvector does not change. This nodal domain

can be seen as a “partition” by the p-eigenvector in the discrete domain. The next question is

“can we obtain a similar bound to the number of this nodal domain?”

We begin with the definition of a nodal domain for a hypergraph.

Definition 3.12. A nodal domain is a maximally connected subgraph G′ of hypergraph G

such that G′ is either {i | xi > 0} or {i | xi < 0} for x ∈ H(V ).
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Next, with this definition, we discuss the nodal domain theorem for our hypergraph

p-Laplacian. The nodal domain theorem for graph Laplacian has been proven in Fiedler

[1975b], generalized to graph p-Laplacian by Tudisco and Hein [2018], and extended to a

particular type of hypergraph p-Laplacian Li and Milenkovic [2018]. In this line of research,

we extend these nodal domain theorems to our abstract class of hypergraph p-Laplacians as

follows;

Theorem 3.13. Let 0 = λc,p,1 < λc,p,2 ≤ . . . ≤ λc,p,k−1 < λc,p,k = . . . = λc,p,k+r−1 <

λc,p,k+r ≤ . . ., be variational eigenvalues of ∆c,p, and ψc,p,k is an associated variational

eigenvector with λc,p,k. Then ψk induces at most k + r − 1 nodal domains.

As seen in Thm. 3.13, the nodal domain theorem studies the structure of p-eigenvectors

of p-Laplacian; Thm. 3.13 shows the bound on the number of nodal domains of p-eigenvectors.

The number of nodal domains matters to Cheeger inequality, which is a theoretical justification

for spectral methods via our p-Laplacian. We will discuss this Cheeger inequality next.

3.3.2 k-way Cheeger Inequality

This section establishes the k-way Cheeger inequality for our hypergraph p-Laplacian. As we

saw in Sec. 2.1.3, the 2-way Cheeger inequality serves as the connection between Cheeger

cut and eigenproblem. Moreover, the inequality gives a performance guarantee of the relaxed

graph partitioning problem. We want to establish such a connection between the Cheeger cut

and p-eigenproblem of our hypergraph p-Laplacian. For this purpose, we aim to generalize

this Cheeger inequality to our hypergraph p-Laplacians to achieve spectral partitioning via

our p-Laplacian.

We start our discussion from a 2-way Cheeger cut. Let U ⊂ V be a set and U be a

complement of A. The generalized Cheeger cut may be defined as

CCutc(U) :=
Cutc(U,U)

min(vol(U), vol(U))
, where vol(U) =

∑
i∈U

µi (3.13)

Cutc(U,U) :=
∑

e:i,j∈e,i∈U,j∈U

w(e)c′(e), c′(e) :=
∑
i,j∈e

c(i, j, e,x). (3.14)

We call the optimal cut

hc,2 := min
U⊂V

CCutc(U)
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as Cheeger constant. Considering the standard graph, this generalized Cheeger cut becomes

the standard Cheeger cut discussed in Sec. 2.1.3. We shall extend this generalized 2-way

Cheeger cut to k-way Cheeger cut. Consider disjoint partitioning of V into k sets {Vi}i=1,··· ,k.

Then, we define the k-way Cheeger constant as

hc,k := min
{Vi}i=1,··· ,k

max
j∈{1,...,k}

CCutc(Vj). (3.15)

Similarly to the previous studies [Tudisco and Hein, 2018, Li and Milenkovic, 2018], we

establish k-way Cheeger inequality for our p-Laplacian as follows.

Theorem 3.14. Let (λc,p,k,ψc,p,k) be a variational p-eigenpair of ∆c,p, mc,k be the number of

nodal domains of ψc,p,k. Then,

(
max
i∈V

di
µi

)−(p−1)(
hc,mk

p

)p
≤ λc,p,k ≤ min(k,max

e∈E
|e|)p−1hc,k.

Corollary 3.15. Let (B,B) be the cut found by the second eigenvector of the p-Laplacian ψ,

such that ({i : xi ≥ t}, {i : xi < t}) minimizing Cheeger cut. Then,

(
1

maxi di/µi

)p−1(
CCutc(B)

p

)p
< 2hc,2 (3.16)

Thm. 3.14 is an extension of the graph Cheeger inequality in terms of three perspectives;

graph to hypergraph, 2-way to k-way, and the standard 2-Laplacian to our abstract class

of p-Laplacians. Following Thm. 3.14, Cor. 3.15 is the bound of the relationship between

the cut obtained by the second p-eigenvector of our abstract class of p-Laplacians and the

generalized Cheeger constant. Similarly to the classical case in Sec. 2.1.3, Thm. 3.14 shows

how we approximate the k-way Cheeger constant by relaxing discrete k-way cut problem into

p-eigenproblem of ∆c,p; Thm. 3.14 gives the upper and lower bounds of the optimal cut using

k-th p-eigenvalue. Moreover, Cor. 3.15 gives a guarantee for the worst case of a 2-way cut

obtained by p-eigenvector. These bounds can be said to guarantee the performance of the cut

resulting from spectral methods via p-eigenvectors of our p-Laplacian. Hence, Thm. 3.14

and Cor. 3.15 motivate us to use spectral methods via our p-Laplacian for the hypergraph

partitioning problem instead of the costly discrete original cut problem. This inequality gives

the tightest bound when p→ 1. Since the original cut problem is NP-hard, the eigenproblem
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is also an NP-hard problem in this asymptotic case. Moreover, considering the standard graph

2-Laplacian, this inequality can be reduced to the classical Cheeger inequality. Also, when

k = 2, this inequality is for h2, which is a 2-way Cheeger cut for graphs. Therefore, in the

next section, we focus on constructing a spectral algorithm for a 2-way partitioning.

Finally, we remark that the discussion on k-way Cheeger cut is a generalization of the

standard graph 2-way Cheeger inequality of 2-Laplacian [Alon and Milman, 1985, Alon,

1986], k-way Cheeger inequality of 2-Laplacian [Lee et al., 2014], k-way Cheeger inequality

of graph p-Laplacian [Tudisco and Hein, 2018], and k-way Cheeger inequality of p-Laplacian

of submodular hypergraph [Li and Milenkovic, 2018] cases. We also note that the proofs

for the nodal domain theorem (Thm. 3.13) and the Cheeger inequality (Thm. 3.14) are a

natural generalization of the previous studies such as [Tudisco and Hein, 2018] and [Li and

Milenkovic, 2018]. Rather than introducing new techniques in the proofs, the focus of this

work is that we generalize the hypergraph p-Laplacian as much as possible where these

structures preserve in order to provide a unified framework.

3.4 Hypergraph Partitioning via p-Laplacian

Sec. 3.3 shows the guarantee of performance of the eigenproblem instead of the NP-hard

discrete Cheeger cut problem. Therefore, this section establishes our partitioning algorithm,

exploiting p-eigenpairs of our hypergraph p-Laplacian.

We first discuss a property of p-eigenvectors of ∆c,p. For the p-Laplacian eigenproblem,

since the p-Laplacian is nonlinear, p-eigenvectors are not necessarily orthogonal. However,

we still want a relationship between p-eigenvectors. For this motivation, instead of the

orthogonality, [Luo et al., 2010] proposed p-orthogonality as follows.

Definition 3.16 ([Luo et al., 2010]). Let Ξp(x) be a vector, whose v-th element is ξp(xi). We

call x ̸= 0 and x′ ̸= 0 as p-orthogonal if Ξp (x)
⊤Ξp (x

′) = 0.

In order to analyze this p-orthogonality of our abstract class of p-Laplacians, we recall the

Taylor expansion, which is often used for approximating functions in physics. For example,

in the motion of a pendulum, if we approximate functions with respect to the amplitude of

the angular of the pendulum by Taylor expansion, the motion equation is approximated by a

simple harmonic motion [Courant and Hilbert, 1962]. The Taylor expansion leads an infinite
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differentiable function f(x) to write as

f(x) = f(af,x) +
∞∑
n=1

f (n)(x− af,x)
n!

, (3.17)

where af,x is a constant, and f (n) is a n-th derivative of f . This Taylor expansion is often

used to approximate the function. If we consider approximating the function by the first order,

the remainder (the second or higher terms) can be seen as the approximation error. For two

functions f and g, if the error term can be written as the sum of the second or higher terms,

i.e.,

f(x) = g(x) + o2, where o2 =
∑

nf+ng≥2,nf ,ng∈N

βf,g,nf ,ng(x− af,x)nf (x− ag,x)ng ,

(3.18)

and βf,g,nf ,ng is a coefficient, then we call the function f is equal to g up to the second order

of Taylor expansion. Using this notion and p-orthogonality, we obtain the following;

Theorem 3.17. Let (ψc,λψc ) and (ψ′
c, λ

ψ′
c ) be the p-eigenpairs of ∆c,p. The p-eigenvectors

ψc and ψ′
c are p-orthogonal up to the second order of Taylor expansion with the vertex if λψc

and λψ
′

c are not equal up to the second order of Taylor expansion.

Note that for this theorem the p-eigenpairs are not necessarily variational. Thm. 3.17

tells us that two p-eigenvectors are approximated p-orthogonal, up to the second-order of

Taylor expansion.

We move our discussion to the second p-eigenpair by considering the Rayleigh quotient.

In the graph, p-Laplacian [Bühler and Hein, 2009] and the clique p-Laplacian case [Saito

et al., 2018] and also the continuous case [Lindqvist, 2008], the global minimum of a variant

of Rayleigh quotient gives the second p-eigenpair. Similarly to these works, we propose to

define the following quotient as

R
(2)
G,c,p(x) :=

SG,c,p(x)

minη ∥x− ηψc,1∥pp
, (3.19)

where ψc,1 is the first p-eigenvector. The following theorem supports this quotient.
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Theorem 3.18. The global solution of Eq. (3.19) is given by ψ∗
c , where

ψ∗
c = ψc,p,2 + η∗ψc,p,1,where η

∗ = argmin
η
∥ψc,p,2 − ηψc,p,1∥pp, (3.20)

where ψc,p,2 is the second p-eigenvector.

This theorem shows that we have an exact identification for the second p-eigenpair;

minimizing Eq. (3.19) gives the second p-eigenpair of ∆c,p. Note that the second p-eigenpair

of ∆c,p is the second variational eigenpair of ∆c,p. However, the major disadvantage is

that Eq. (3.19) is not convex and hence difficult to obtain the global optimum; optimization

algorithms applied to Eq. (3.19) would give the local optimum instead of the global optimum.

Therefore, we next consider a strategy to get a better local optimum for a 2-way hyper-

graph partitioning. The idea to obtain a better optimum is using the exact p-orthogonality as

a constraint, instead of the constraint “p-orthogonal up the second order”, which each pair

of p-eigenvectors must obey (Thm. 3.17). The reason why we use this strategy is as follows.

Due to the non-convexity of Eq. (3.19), the solution obtained by an optimization algorithm

can be a local optimum. However, this local optimum is not guaranteed to be p-orthogonal up

to the second-order to the first p-eigenvector ψc,p,1 while ψc,p,2 is so. To gain a better optimal

solution, we exploit Thm. 3.17, and we want a constraint that enforces the solution to be

p-orthogonal up the second-order to ψc,p,1. However, it is difficult to work directly with this

constraint “p-orthogonal up the second order”. To ease this difficulty, we propose to use an

exact p-orthogonal condition as a constraint. Thanks to Thm. 3.17, this exact constraint can

be seen as an approximated condition by the second order of Taylor expansion. We borrow

this approximation idea from physics; it is common to approximate physical phenomena

by the second order of Taylor expansion, such as the explained motion of a pendulum case.

Following this discussion, we incorporate the exact p-orthogonality as a constraint. Then, we

consider the optimization problem as,

min
x
J(x) = R

(2)
G,c,p(x) s.t. Ξp(x)

⊤Ξp(ψc,p,1) = 0. (3.21)

Since R(2)
G,c,p(αcx) = R

(2)
G,c,p(x) for α ̸= 0, we can arbitrarily change the scale of ψ to
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Algorithm 3 Natural Gradient Algorithms for Eigenvectors of p-Laplacian.
Input: hypergraph-gradient, and p

Initialize x
while the change is not sufficiently small do

x′ ← ∂J ′

∂x
− x(∂J

′

∂x
)⊤x

x← x− αx′

end while
Output: Second p-eigenvector ψ of ∆c,p

R
(2)
G,c,p(x). Hence, we add the scale constraints to Eq. (3.21) as

J ′(x) = R
(2)
G,c,p(Ξ

−1
p (x)) s.t. x⊤ψc,p,1 = 0, ∥x∥22 = 1, (3.22)

which gives the same global minimum solution as Eq. (3.21). To solve Eq. (3.22), we propose

to apply natural gradient algorithm [Amari, 1998] as shown in Algorithm 3, similarly to [Luo

et al., 2010]. If we use a simple gradient method as ∂J ′/∂ψ, the orthogonal condition

does not hold for each update. Instead of using this for the update of Algorithm 3, we use
∂J ′

∂x
− x(∂J

′

∂x
)⊤x so that we can preserve the orthogonal condition in Eq.(3.22) [Luo et al.,

2010]. The convergence of this algorithm is also guaranteed [Luo et al., 2010]. Finally, we

discuss the computational time. It takes at most O(|e|2) to compute one gradient. For energy,

we need to directed edge, where we compute |e| times for one edge by taking the symmetricity.

Thus, the complexity time is O(
∑

e∈E |e|3) for one iteration.

3.5 Related Work

This section compares related hypergraph 2-Laplacians and p-Laplacians and partitioning

algorithms. This section is complementary to Sec. 3.2.5. While Sec. 3.2.5 defines the related

p-Laplacians, this section focuses on discussing the context and explaining the difference

between ours and existing ones.

One major hypergraph Laplacian is from a clique expansion way (CLIQUE). The un-

weighted setting edge-unnormalized 2-Laplacian was proposed in [Rodriguez, 2002] (CLIQUE

E-UN). This 2-Laplacian and the Laplacians proposed in other studies [Zien et al., 1999,

Bolla, 1993, Gibson et al., 2000] are theoretically equivalent [Agarwal et al., 2006]. In this

line of research, 2-Laplacian from a differential geometry viewpoint is proposed [Saito et al.,

2018]. When p = 2, this Laplacian also can be explained by the clique expansion way
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but normalized by a degree of edge (CLIQUE E-N). Moreover, this p-Laplacian is proposed

based on forming vertex-wise energy (CLIQUE E-N-VW) [Saito et al., 2018], while ours is

edge-wise energy. In Saito et al. [2018], the p-energy SVWG,p (x) is defined using the norm of

the hypergraph-gradient is defined∇VW
p x at vertex i (originally for edge-normalized clique

gradient) as

SVWG,p (x) :=
∑
i∈V

∥(∇VW
p x)(i)∥p,where ∥(∇VW

p x)(i)∥ :=

 ∑
e∈E:e[1]=i

|∇VW
p x(e)|2

|e|!

 1
2

.

(3.23)

This idea comes from the definition of the energy around the vertex i as ∥∇x(i)∥ and

obtains total energy by summing up those energies over all vertices. Note that if we assume

the standard graph, p-Laplacian in [Saito et al., 2018] corresponds to a series of graph

studies [Zhou and Schölkopf, 2005, Bougleux et al., 2009], which also assume vertex-wise

energy, as discussed in Sec. 2.1.4.6. On the other hand, ours corresponds to the graph p-

Laplacian, which assumes edge-wise energy [Bühler and Hein, 2009, Tudisco and Hein, 2018],

as discussed in Sec. 2.1.4.1. Hence, our work does not incorporate p-Laplacian proposed

in [Saito et al., 2018] since the p-Dirichlet sum setting is different. Remark that when

p = 2, our model incorporates CLIQUE E-N-VW by using c in Table 3.2. However, Saito et al.

[2018] did not give theoretical analyses such as the nodal domain theorem or the Cheeger

inequality. Moreover, [Saito et al., 2018] did not give a specific partitioning algorithm

exploiting characteristics of p-Laplacian such as p-orthogonality. Hence, we need a general-

purpose optimization method for the p-eigenproblem. However, such methods do not always

leverage the characteristics of p-Laplacian, which could lead to better performance in terms

of space, time, and accuracy.

Another line of research is in a star expansion way, shown in Section 3.2.5. Zhou et al.

[2006] proposed 2-Laplacian based on a lazy random walk view. Agarwal et al. [2006] shows

that this 2-Laplacian is theoretically equivalent to Laplacians by studies of [Zien et al., 1999,

Li and Solé, 1996], also further discussed in [Ghoshdastidar and Dukkipati, 2017a].

Other Laplacian is from a total variation way and subsequent submodular way (TV/SUB).

A regularization framework for p ≥ 1 is proposed in [Hein et al., 2013] with hypergraph

partitioning algorithm for p = 1, and further explored in [Chan et al., 2018]. This idea is
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extended to a submodular hypergraph [Li and Milenkovic, 2018]. A submodular hypergraph

has an objective energy function using one form of Lovász expansion of a submodular function.

Moreover, SUB incorporates the inhomogeneous cut proposed by [Li and Milenkovic, 2017],

where weights can vary when we partition the edge. Along with this new class of hypergraph

cut, Li and Milenkovic [2018] proposed partitioning algorithms for p = 1 and p = 2. Seeing

the definition (Eq. (2.101)), submodular p-Laplacian describes a broad class hypergraph

p-Laplacian using the submodular function. We also mention that the p = 2 case for

submodular cut objective functions is discussed in [Yoshida, 2019] using the general form

of Lovász extension. Moreover, a series of research [Veldt et al., 2020, Benson et al., 2020]

directly defines objective function using a submodular function instead of Lovász extension.

While submodular models seem flexible, ours are more versatile since we do not assume

submodularity. The submodular p-Laplacian is a special case of ours as long as the conditions

in Def. 3.1 are satisfied. Additionally, our algorithm can address arbitrary p, while algorithms

from [Hein et al., 2013] and Li and Milenkovic [2018] focused on the specific p (p = 1 or

p = 2).

We remark that our framework can address existing 2-Laplacian from CLIQUE and STAR,

and TV/SUB p-Laplacian. Moreover, our partitioning algorithm can work for arbitrary p > 1,

while those existing algorithms focus on specific p or use a general-purpose optimization

algorithm without theoretical analyses. We also note that our framework can define a new

p-Laplacian, which is (but not limited to) normalized TV, shown in Section 3.2.5. However,

we need to recognize that it is out of the scope of our work to incorporate CLIQUE E-N-

VW p-Laplacian. Moreover, since our framework is based on the relationships of Prop. 3.4

and Prop. 3.5, our framework does not incorporate a tensor modeled Laplacian for uniform

hypergraph, where all edges connect the same number of vertices [Cooper and Dutle, 2012,

Hu and Qi, 2012, Qi, 2013, Hu and Qi, 2015, Chen et al., 2017, Ghoshdastidar and Dukkipati,

2017b, Chang et al., 2020]. We cannot incorporate CLIQUE E-N-VW p-Laplacian and tensors

into our model because our model is based upon the energy formed as Eq. (3.8), while

energies for those two are differently defined. We note that the difference in the aims between

tensor modeled Laplacians and our framework is as follows. In contrast, the tensor modeled

Laplacians are the tensor operation; our framework focuses on the contraction made by the

energy Eq. (3.8).



3.6. Experiments 95

Table 3.3: Summary of the dataset used in the experiment. All the dataset has two
classes. The parameter δ is the average edge degree parameter δ :=

∑
e∈E |e|/|E|, and

τ :=
∑

e∈E |e|/|V ||E| is the average ratio of the number of vertices connected by each edge
to the total number of vertices, which we can recognize as “density” of a hypergraph.

mushroom chess cancer congress news(1,2) news(3,4)
|V | 8124 3196 699 435 8124 8188
|E| 112 73 90 48 100 100∑
e∈E |e| 170604 115056 6291 6960 31066 34382
δ 1523.25 1576.11 69.9 145 310.66 343.82
τ 0.18 0.49 0.10 0.33 0.038 0.042

Lastly, we comment on p-Laplacians in the continuous domain. The continuous p-

Laplacian has a longer history than the discrete domain. The Dirichlet energy is defined

similarly to Eq. (3.8), and the variation of the energy would give the Laplace equation [Courant

and Hilbert, 1962]. The energy is minimized when the Laplace equation is satisfied. This

framework extended to arbitrary p-norm, such as [Binding and Rynne, 2008], and was

theoretically analyzed in many ways, such as nodal domain theorem and Cheeger inequality.

We remark that in the continuous case, we can identify the second p-eigenpair similarly to

Eq.(3.19), but no exact identification for the third or higher has been found yet [Lindqvist,

2008]. For a more comprehensive study, we refer to [Lindqvist, 2008] and [Struwe, 2000].

3.6 Experiments
Our experiments aim to evaluate our approximation algorithm (Alg. 3) as a function of p and

the particular type of hypergraph Laplacians (STAR, CLIQUE, and TV/SUB).

Objective of the Experiments. The objective of the experiments is to see if our algorithm

(Alg. 3) improves on the existing methods introduced in Sec. 3.5. Alg. 3 has two key “levers”;

the choice of the parameter p and the choice of hypergraph Laplacian, i.e., the function c in

the gradient (Def. 3.1). On the one hand, in the previous works discussed in Sec. 3.5, the

algorithms for hypergraph p-Laplacians were designed for a particular p (e.g., p = 1, 2) or

applied to all p > 1 without theoretical justifications. On the contrary, Alg. 3 for our abstract

class of hypergraph p-Laplacians works for all p > 1 with theoretical justification. Therefore,

we provide experiments for a wide range of hypergraph Laplacians for p > 1 in comparison

to existing algorithms.

Datasets. We build a hypergraph using the method for categorical datasets introduced
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in [Zhou et al., 2006], which is the community standard benchmark for the hypergraph spectral

clustering community. Each instance in the dataset consists of |E| categories. The vertices of

the hypergraph are the instances. The edges are defined by the attribute values. Each attribute

value within a given category defines an edge where each vertex in the edge corresponds

to those instances that share the same attribute value. All edges are given weight one. Our

experiment is performed on the datasets mushroom, cancer, chess, and congress from the

UCI repository [Dua and Graff, 2019], and two datasets created from 20newsgroups ∗1 (for

short, “news”) with two classes (1,2) and (3,4). All of these datasets were used in the previous

studies [Zhou et al., 2006, Hein et al., 2013, Saito et al., 2018]. We summarize the datasets in

Table 3.3. We provide two characterizations of the dataset. that is

δ :=
∑
e∈E

|e|
|E|

(3.24)

τ :=
∑
e∈E

|e|
|V ||E|

(3.25)

The value δ is the average edge degree. Furthermore, τ is the average ratio of the number of

vertices connected by each edge to the total number of vertices, which we can recognize as

the “density” of a hypergraph.

Experimental Setup. From the dataset, we build hypergraphs, and in Table 3.4 we

compare 11 instantiations of hypergraph p-Laplacians as discussed below. We apply Alg. 3

to five existing hypergraph Laplacians (CLIQUE E-N, CLIQUE E-UN, STAR, TV V-UN, and

TV V-N) for p > 1. We compare these to the existing fixed p algorithms for a particular

type of Laplacians. Moreover, since CLIQUE E-N has a partitioning algorithm using a

particular hypergraph p-Laplacian (CLIQUE E-N-VW by [Saito et al., 2018], see Sec. 3.5 for

the definition), we also compare to this. Hence, we compare five instantiations of ours with

six previous algorithms;

• Alg. 3 for all p > 1 is applied to the five geometries:

1. CLIQUE E-N: p > 1

2. CLIQUE E-UN: p > 1

1We used the tiny version of the original 20newsgroups available at https://cs.nyu.edu/˜roweis/
data/20news_w100.mat.

https://cs.nyu.edu/~roweis/data/20news_w100.mat
https://cs.nyu.edu/~roweis/data/20news_w100.mat
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3. STAR: p > 1

4. TV V-UN: p > 1

5. TV V-N: p > 1

• Comparison as six existing algorithms:

1. CLIQUE E-N: p = 2 [Saito et al., 2018]

2. CLIQUE E-N-VW: p > 1 [Saito et al., 2018]

3. CLIQUE E-UN: p = 2 [Rodriguez, 2002]

4. STAR: p = 2 [Zhou et al., 2006]

5. TV V-UN: p = 1 [Hein et al., 2013]

6. TV V-N: p = 1 [Hein et al., 2013]

Note that there is a variety of submodular functions for SUB that can be considered, but

we made TV by [Hein et al., 2013] as a representative of the SUB group, since TV is the

simplest form of SUB. For CLIQUE E-N-VW (p ∈ [1, 3]), we conducted experiments using

the same setting as [Saito et al., 2018] as the setting matches to ours. For our methods we

used p ∈ {1.1, 1.2, . . . , 3.0}; we limited ourselves to p ≤ 3 since the Cheeger Inequality

(Thm. 3.14), is progressively looser for larger p values. For the free-parameter experiments, we

set the starting condition of our algorithm to the solution of the corresponding fixed-parameter

Laplacian. We used the step size α = 0.01∥x∥11/∥x′∥11 as done in [Luo et al., 2010]. For all

methods, a second eigenvector was computed, and we used the k-means objective to determine

the “split point” on the eigenvector (as was also done in [Zhou et al., 2006, Saito et al., 2018]).

We evaluated the performance of our algorithms via their error rate, i.e., (# of errors)/(# of

data), as used in [Zhou et al., 2006, Hein et al., 2013, Saito et al., 2018]. We ran our experiment

on mac mini with Intel i7 and 32GiB RAM. The implementation is available at https:

//github.com/ShotaSAITO/generalized-hypergraph-laplacian.

Overall Results. The results are summarized in Table 3.4. First, looking into our

algorithm (Alg. 3) vs. fixed-parameter algorithms (existing methods, see the performances

associated with ∗ in Table 3.3) for five geometries, we see that our methods consistently

demonstrate improved performance from existing fixed-parameter methods. We also remark

that among for CLIQUE E-N, ours consistently outperforms CLIQUE E-N-VW, except chess.

https://github.com/ShotaSAITO/generalized-hypergraph-laplacian
https://github.com/ShotaSAITO/generalized-hypergraph-laplacian
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Further Discussion. A natural question to ask for our algorithm is “which hypergraph

Laplacian and which p is suitable?”. To observe this, we provide a result table on the detailed

behavior of p in Table 3.6. A further look into our abstract class of p-Laplacians can answer

this question; the experimental result reveals how the choice of p and type of the hypergraph

Laplacian are connected to the underlying parameters δ (average edge degree) and τ (density)

of the datasets. Although the experiments are preliminary, there seem to be consistent trends

that provide guidance on a range of p and the type of Laplacian to consider. Further, the

experimental guidance is supported by the theory given earlier in this chapter.

Our observation is that the density parameter (τ ) is related to the range of p while the

average edge degree parameter (δ) is connected to the hypergraph Laplacian. The density

parameter (τ ) indicates the natural range for p. The dataset chess is significantly denser (large

τ ) than the other datasets. The table indicates that while large p tends to work better for the

chess dataset, the tendency is that small p improves on large p for the non-chess datasets. To

understand this, we consider the trade-off between the Cheeger inequality (see Thm. (3.14))

and the p-Dirichlet sum. The Cheeger inequality is tighter for smaller p; hence, the relaxed

objective becomes closer to the discrete objective. On the other hand, if we examine the

p-Dirichlet sum (see Eq. (3.8)), one may observe that it is a p-norm to p-th power of the

hypergraph-gradient. The dimensionality of hypergraph-gradient scales with the graph density

(τ ). Hence in the dense case, a relatively larger p is needed to induce the same magnitude of

change in the p-Dirichlet sum, which is connected to the second p-eigenvector via Rayleigh

quotient (see Eq. (3.10)). The analogous phenomena connecting the choice of p to density

have been observed in a standard graph such as online graph transduction [Herbster and Lever,

2009]. Turning to the average edge degree parameter (δ), we observe the following indications

that suggest how to choose the Laplacian as a function of δ. There we see on the large δ

dataset (chess and mushroom) that all TV methods outperform STAR and CLIQUE methods

of our p-Laplacian whereas for the other smaller δ datasets all STAR and clique methods

outperform all TV methods. We have provided some guidance on the choice of Laplacian and

the range of p based on the density τ and average edge degree δ of the graph.

We have two different energy forms for clique, vertex-wise (proposed by [Saito et al.,

2018]) and edge-wise (this work). The vertex-wise energy outperforms our edge-wise energy

Laplacian for chess, but for the mushroom, cancer, and congress dataset, ours outperforms
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vertex-wise Laplacian. This difference may arise because the chess dataset is better suited

to a vertex-based energy model, whereas the structure of the mushroom dataset might favor

an edge-based approach. Vertex-wise energy captures information more sensitively in dense

graphs by amplifying the sum of the neighborhood information, while edge-wise energy

amplifies each edge individually, which can lead to redundancy when many edges are similar.

We further observe a different behavior than the semi-supervised learning in [Alamgir

and Luxburg, 2011, Slepcev and Thorpe, 2019] using the same energy Eq. (3.8) in the standard

graph setting. These works deal with the case of semi-supervised learning using p-Laplacians

of a graph with an asymptotically large number of vertices. In this case, the problem does not

degenerate into the trivial one when p is large, while the problem does so when p is small.

However, from these experimental results, we observed a different behavior; small p also

works when τ is small, as we discussed. This might be because there is a structural difference

in using the p-Laplacian between semi-supervised and unsupervised learning.

Computational Time. The computational times are summarized in Table 3.5. For

our method, the computational times across different instances do not vary significantly.

However, compared to existing work, our method is generally slower. In the case of p = 2,

both the existing clique and star methods have a time complexity of O(n3), while ours takes

O(
∑

e∈E |e|3). Although both are roughly in the same computational class for our datasets,

n3 is expected to be larger than
∑

e∈E |e|3. However, the experiments show that our method

is slower because it involves gradient descent, requiring multiple iterations to converge and

increasing the overall computation time. For p = 1, the TV method by Hein et al. [2013] is

faster than our approach. This is due to the ability of TV method to exploit the sparse structure

of the graph; this results in a time complexity of O
(∑

e∈E |e| log(|e|)
)
, which is faster than

O(
∑

e∈E |e|3) for the datasets used in our experiments. It is worth noting that the TV method

is optimized specifically for the p = 1 case. Developing a similarly optimized algorithm for

our unified hypergraph p-Laplacians for the general p > 1 remains an area of future work.

3.7 Summary
This chapter has considered hypergraph spectral clustering. We have proposed a general

framework for hypergraph p-Laplacian and provided theoretical results for our p-Laplacian.

We also have proposed a convergent hypergraph partitioning algorithm with respect to our

abstract class of p-Laplacian exploiting theoretical results. Our experiment has shown that our
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algorithm outperforms the existing spectral clustering algorithms for hypergraph Laplacians.

Also, we have shown practical guidance on the choice of p-Laplacian. There are several future

directions of Chapter 3. First, as discussed in the experimental section, it would be nice if

we have a better general algorithm that can exploit the sparsity when the graph is sparse, like

p = 1 case in Hein et al. [2013]. Furthermore, while we conduct our experiment on a real

dataset, it would be interesting to conceive an illustrative toy dataset where some hypergraph

Laplacian works better than others or where some p works while p = 2 does not.
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Appendices for Chapter 3
In the following sections, we provide the omitted proofs, additional discussions, and additional

experimental result for Chapter 3.

3.A Proof of Proposition 3.4
For the convenience of the other proofs, we start our discussion from Prop. 3.4 and Prop. 3.5.

Prop. 3.4 can be shown by

⟨x,∆c,px⟩H(V ) = ⟨x,−divc,p∥∇c,px∥p−2∇c,px⟩H(V )

= ⟨∇c,px, ∥∇c,px∥p−2∇c,px⟩H(E)

=
∑
e∈E

∥∇c,px∥p−2 (∇c,px)
2(e)

|e|!

= ∥∇c,px(e)∥pp = SG,c,p(x). (3.26)

3.B Proof of Proposition 3.5
Prop. 3.5 can be shown by the following. By differentiating SG,c,p(x) by x at the vertex i, we

obtain

∂

∂x
SG,c,p(x)

∣∣∣∣
i

=
∂

∂x

∑
e∈E

1

|e|!
|(∇c,px)(e)|p

∣∣∣∣∣
i

=
∑
e : i∈e

p
1

|e|!
|(∇c,px)(e)|p−1 ∂

∂x
|∇c,px(e)|

∣∣∣∣
i

= p
∑
e : i∈e

1

|e|!
|(∇c,px)(e)|p−1sgn((∇c,px)(e))

w1/p(e)

µ
1/p
i

×

 ∑
i∈e;{i,j}⊆e

c1/p(j, i, e,x)−
∑

i∈e;{i,j}⊆e

c1/p(i, j, e,x)

 (3.27)

By using Eq. (3.27), we consider the following equation.〈
x,

1

p

∂

∂x
SG,c,p(x)

〉
H(V )

=
∑
i∈V

xi
∑
e:∈e

1

|e|!
|(∇c,px)(e)|p−1sgn(∇c,pψ(e))

w1/p(e)

µ
1/p
i
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×

 ∑
i∈e;{i,j}⊆e

c1/p(j, i, e,x)−
∑

u∈e;{i,j}⊆e

c1/p(i, j, e,x)

 (3.28)

As the summation in Eq. (3.28) runs over all vertices v ∈ V , we can reconstruct all pairs of

vertices in each edge. Therefore,

∑
i∈V

xi
∑
e:i∈e

sgn(∇c,px(e))
w1/p(e)

µ
1/p
i

 ∑
j∈e;{i,j}⊆e

c1/p(j, i, e,x)−
∑

u∈e;{j,i}⊆e

c1/p(i, j, e,x)


=
∑
e∈Ed

|(∇c,px)(e)| (3.29)

From this and Eq. (3.28), we obtain〈
x,

1

p

∂

∂x
SG,c,p(x)

〉
H(V )

=
∑
e

1

|e|!
|(∇c,px)(e)|p

= ∥∇c,pψ∥pp
= SG,c,p(ψ) (3.30)

We then can show that

1

p

∂

∂x
SG,c,p(x) = ∆c,px (3.31)

3.C Proof of Proposition 3.7

To start, we show that the following basic properties of hypergraph-gradient easily follow

from the definition.

Proposition 3.19. The hypergraph-gradient has the following properties.

(∇cc,pM1/p)1(e) = 0,∀e ∈ E, (3.32)

(∇c,p0)(e) = 0,∀e ∈ E, (3.33)

∂2∇c,px/∂
2x
∣∣
v
= 0, ∀e ∈ E (3.34)

Also, hypergraph-gradient is not 0 except Eq. (3.32) and Eq. (3.33).
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These properties directly follow from the definition of the hypergraph-gradient.

By differentiating Eq. (3.10) by ψ, we can obtain the condition for critical points of

Eq. (3.10) as follows;

∆c,px−
SG,c,p(x)

∥x∥pp
ξp(x) = 0 (3.35)

By Def. 3.6, we can immediately show that ψ is an eigenvector of ∆c,p. Moreover, the

eigenvalue λ can be obtained by SG,c,p(x)/∥x∥pp. The last statement can be shown immediately

by the definition.

By the definition of Rayleigh quotient, we immediately have the following property.

Corollary 3.20. We have RG,c,p(αx) = RG,c,p(x) for α ∈ R, α ̸= 0.

For the first p-eigenvector, we compute p-Laplacian by differentiating by ψ, that is

p∆c,px =
∂

∂x
SG,c,p(x). (3.36)

Then, we obtain

∂

∂x
p∆c,px =

∂

∂x
SG,c,p(x)

=
∂

∂x
∥(∇c,px)(e)∥pp

=
∂

∂x

(∑
e

|∇c,p(x)(e)|p

|e|!

)
= p

∑
e

|(∇c,px(e)|p−1

|e|!
× 1

|e|!
∂

∂x
(∇c,px)(e) (3.37)

From Eq. (3.34), the derivative of hypergraph-gradient is independent of x. Therefore,

from Eq. (3.37), the p-Laplacian ∆c,px equals to 0 if (∇c,px)(e) = 0,∀e ∈ E. This means

that ∆c,p0 = 0. Also, ∆c,pM
1/p1 = 0.

As the p-eigenvalue is equal or greater than 0 from Prop. 3.7, the first p-eigenvector is

M1/p1, associated with the first p-eigenvalue 0.

The following corollary follows.
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Corollary 3.21.

∂

∂x
∆c,px|x=M1/p1 = 0. (3.38)

Proof. Similarly to the proof of p-eigenvector, we compute

p
∂

∂x
∆c,px =

∂2

∂2x
SG,c,p(x)

=
∂

∂x
p
∑
e

|∇c,px(e)|p−1

|e|!
× 1

|e|!
∂

∂x
∇c,px(e)

=p(p− 1)
∑
e

|∇c,px(e)|p−2

|e|!
×
(

1

|e|!
∂

∂x
∇c,px(e)

)2

+ p
∑
e

|∇c,px(e)|p−1

|e|!
× 1

|e|!
∂2

∂2x
(∇c,px)(e) (3.39)

As the second derivative of hypergraph-gradient is 0 from Eq.(3.34), ∆c,px = 0 if

(∇c,px)(e) = 0,∀e ∈ E.

3.D Proof of Proposition 3.8
As we observe RG,c,p(x) ≥ 0 from the definition, we can show that all the p-eigenvalues are

non-negative. We denote by 1Gi
a vector whose size of vector is the number of vertices of G

and fill 1 to the elements corresponds to Gi and else 0. By using this notation, we show that

∆c,p(M
−1/p1Gi

) = 0 for all i = 1, . . . , k, which shows that those vectors are p-eigenvector

and corresponding p-eigenvalues are 0. From the definition of p-Laplacian, those are the

only p-eigenvectors whose p-eigenvalues are 0. The above shows that the multiplicity of

p-eigenvalues of 0 equals to the number of independent components.

3.E Proof of Proposition 3.10
We start the proof by introducing a classical notion of locally Lipschitz.

Definition 3.22. A function g : Sp → R is locally Lipschitz when for each x ∈ Sp, there

exists a neighborhoodNx of x and a constant C depending onNx such that |g(x′)− g(x)| ≤
C∥x′ − x∥2 for all x′ ∈ Sp ∩Nx.

Here we obtain the following observation.
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Lemma 3.23. RG,c,p(x)|Sp is locally Lipschitz.

Proof. ∣∣∣∣SG,c,p(x′)

∥x′∥pp
− SG,c,p(x)

∥x∥pp

∣∣∣∣ = ∣∣∣∣SG,c,p(x′)∥x∥pp − SG,c,p(x)∥x′∥pp
∥x′∥pp∥x∥pp

∣∣∣∣
≤

supx′∈Nx∩Sp
SG,p(x

′)

infx′∈Nx∩Sp ∥x′∥2pp
|∥x′∥pp − ∥x∥pp|

≤
supx′∈Nbfx∩Sp

SG,c,p(x
′)

infx′∈Nx∩Sp ∥x′∥2pp
( sup
x′∈Nx∩Sp

p∥x′∥pp)|∥x′∥p − ∥x∥p|

≤
supx′∈Nx∩Sp

SG,c,p(x
′)

infx′∈Nx∩Sp ∥x′∥2pp
( sup
x′∈Nx∩Sp

p∥x′∥pp)∥x′ − x∥p (3.40)

From Eq.(3.40), if we chooseNx as the space where ∥x′−x∥p < ∥x′−x∥2, e.g., |x′−x| < 1,

then we can conclude RG,p(x)|Sp is locally Lipschitz.

Next, we introduce the classical result of Lunsternik-Schinirelman theorem.

Theorem 3.24 (Struwe [2000]). Suppose a function g : Sp → R is a locally Lipschitz, then

λk = min
B⊂Fk(Sn

p )
max
x∈B

g(x) (3.41)

yields a sequence of critical values of g.

By applying Thm. 3.24 to RG,p, we can show that the sequence in Eq. (3.10) yields a

critical values of RG,c,p, which are p-eigenvalues of p-Laplacian.

3.F Proof of Proposition 3.11
This section provides the proof of the Prop. 3.11. We divide the proof into two parts; one is

that weighting function corresponds to hypergraph Laplacians, and the other is the weighting

function satisfies the conditions.

3.F.1 Proof of the Hypergraph p-Laplacians

We discuss how Table. 3.2 connects to the existing Laplacians, by splitting the discussion by

clique, star, and total variation Laplacians.

We note that all the functions in Table 3.2 satisfies the conditions of Def. 3.1, which is

discussed in Section 3.F.2.
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3.F.1.1 Clique Laplacians

The hypergraph-gradient for edge-normalized Laplacian is given as

(∇c,px)(e) =
w1/p(e)

(|e| − 1)1/p

|e|∑
ℓ=1

(
xiℓ

µ
1/p
iℓ

− xi1
µ1/p(xi1)

)
, (3.42)

and edge-unnormalized Laplacian can be written as

(∇c,px)(e) = w1/p(e)

|e|∑
ℓ=1

(
xiℓ

µ
1/p
iℓ

− xi1

µ
1/p
i1

)
. (3.43)

To show that the function c for clique can induce existing clique Laplacian, we only

consider when p = 2, and µi = di for all i ∈ V . The following proposition directly shows

that Saito’s 2-Laplacian is our 2-Laplacian for clique setting.

Proposition 3.25 (Saito et al. [2018]). Let e be e = {i1, ·, i|e|}. Then if we choose hypergraph-

gradient operator∇c,p : H(V )→ H(Ed) for [Saito et al., 2018] as

(∇c,px)(e) :=

√
w(e)√
|e| − 1

|e|∑
ℓ=1

(
xiℓ√
diℓ
− xi1√

di1

)
. (3.44)

The induced 2-Laplacian correspond to 2-Laplacians proposed by [Saito et al., 2018]. If we

choose the same hypergraph-gradient but omitted denominator
√
|e| − 1, then the induced

2-Laplacian corresponds to Rodriguez’s Laplacian.

This also shows that Rodriguez 2-Laplacian is our edge-unnormalized clique 2-Laplacian.

The 2-Laplacians L are given as

L = I −D−1/2AD−1/2, (3.45)

where for an edge-normalized settingA is a matrix whose element is aij =
∑

i,j∈ew(e)/(|e|−
1) and D = Dv and for an edge-unnormalized setting aij =

∑
i,j∈ew(e) and D is a diagonal

matrix whose element dii =
∑

i∈ew(e).

In [Saito et al., 2018], they used the different energy setup for p-Laplacian, as discussed

in Section 3.5. However, when p = 2, Saito’s 2-Laplacian matches our clique normalized
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2-Laplacian. Actually, in the case of p = 2, we obtain

SSG,2(x) =
∑
v∈V

∑
e∈E:e[1]=v

1

|e|!
|(∇c,px)(e)|2

=
∑
e∈E

1

|e|!
|(∇c,px)(e)|2

= SG,c,2(x) (3.46)

Therefore, given [Saito et al., 2018] has the same structure of different geometry, we can

directly apply their proof to our setting in the case of p = 2.

3.F.1.2 Star Laplacian

The given hypergraph-gradient for star Laplacian can be written as

(∇c,px)(e) =
w1/p(e)

(|e|)1/p

|e|∑
ℓ=1

(
xiℓ

µ
1/p
iℓ

− xi1

µ
1/p
i1

)
. (3.47)

Here, we show that this hypergraph 2-Laplacian also can be seen from the same framework.

Similarly to the clique Laplacians, the following proposition follows.

Proposition 3.26. Let e be {i1, . . . , i|e|} = e. Then if we choose hypergraph-gradient operator

∇c,p : H(V )→ H(Ed) for as

(∇c,px)(e) :=

√
w(e)√
|e|

|e|∑
ℓ=1

(
xiℓ√
diℓ
− xi1√

di1

)
, (3.48)

this induces star expansion 2-Laplacian.

We can compute 2-Laplacian in the same manner as [Saito et al., 2018], with a slight

change of denominator of hypergraph-gradient from
√
|e| − 1 to

√
|e|. The 2-Laplacian

induced from the hypergraph-gradient Eq. (3.48) can be computed as

L = I −D−1/2
v AsD

−1/2
v , (3.49)

where As is a matrix whose element (As)ij =
∑

i,j∈ew(e)/|e|. We can show that Eq. (3.49)

satisfies the condition of Laplacian, in the same manner as the proof for Prop. 9 in [Saito
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et al., 2018].

3.F.1.3 Total Variation and Submodular Laplacian

The hypergraph-gradient for total variation is written as

(∇c,px)(e) = w1/p(e)max
i,j∈e

(
xj

µ
1/p
j

− xi

µ
1/p
i

)
. (3.50)

We show that the total variation method in [Hein et al., 2013] can be seen as a special

case of our framework.

Proposition 3.27. Let µi = 1 for all i ∈ V . The Total Variation Regularizer defined as

SG,c,p(x) = w(e)

(
max
i,j∈e

∣∣∣∣∣ xiµ
1/p
i

− xk

µ
1/p
i

∣∣∣∣∣
)p

(3.51)

is p-Dirichlet Sum, if we choose hypergraph-gradient as Eq. (3.50).

This is obvious from the definition of p-Dirichlet energy by Eq. (3.8), which is called

regularizer in [Hein et al., 2013].

The hypergraph-gradient for SUB is for

∇c,pψ(e) = (w(e)max
S⊂e

(F (S)))1/p
|e|∑
i=1

F (Si)

(
ψ(ui+1)

µ1/p(ui+1)
− ψ(ui)

µ1/p(ui)

)
. (3.52)

By definition, the energy can be written as

SG,c,p(x) =
∑
e∈E

w(e)max
S⊂e

(F (S))

 |e|∑
ℓ=1

F (Sℓ)

(
xiℓ+1

µ
1/p
iℓ+1

− xiℓ

µ
1/p
iℓ

)p

, (3.53)

which is Eq. (2.101).

3.F.2 Proof of Conditions

In this section, we discuss the conditions of the operator∇ and the function c(u, v, e, ψ) by

drawing examples. We use the examples listed in Table 3.2, which is mainly discussed in

Section 3.2.5.
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The first condition

∇c,p(αx) = α∇c,px or ∇c,p(αx) = |α|∇c,px (3.54)

forces the operator ∇c,p to be homogeneous or absolute homogeneous. For the examples in

Table 3.2, this condition for cliques and STAR is also obviously satisfied since the functions c

for cliques and STAR are independent of ψ. For the total variation, we obtain

c(i, j, e, αx) =


1 ((i, j) = argmaxi,j∈V

∣∣∣∣∣∣αxjµj − αxiµj
∣∣∣∣∣∣)

0 (otherwise)

=


1 ((i, j) = argmaxi,j |α|

∣∣∣∣∣∣xjµj − xi

µi

∣∣∣∣∣∣)
0 (otherwise)

=


1 ((i, j) = argmaxi,j

∣∣∣∣∣∣xjµj − xi

µi

∣∣∣∣∣∣)
0 (otherwise)

= c(i, j, e,x), (3.55)

which therefore satisfies the condition Eq. (3.54). For SUB, we compute

(∇c,pαx)(e) =
∑
i,j∈e

w
1
p (e)c

1
p (i, j, e, αx)α

(
xj

µ
1/p
j

− xi

µ
1/p
i

)

=

|e|∑
i=1

αF (Si)max
S⊂e

(F (S))

(
−xi+1

µ
1/p
i+1

+
xi

µ
1/p
i

)
= −α∇c,pψ(e), (3.56)

and therefore this satisfies the condition.

Secondly, we discuss the first condition, which is

∑
i,j∈e

c(i, j, e,x) = c′(e). (3.57)
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The condition Eq. (3.57) wants the summation of the function over all the pairs of vertices at

an edge e to be independent of ψ. For the examples in Table 3.2, this condition for cliques

and STAR is satisfied since the functions c for cliques and STAR are independent of ψ. For the

total variation, the function c depends on ψ. However, since the function c for total variation

can be written as

c(i, j, e,x) =

1 ((i, j) = argmaxi,j∈V |xj − xi|)

0 (otherwise),
(3.58)

then the summation is

∑
i,j∈e

c(i, j, e,x) = 1. (3.59)

Therefore, the summation of c(i, j, e,x) over i, j is independent of x although c(i, j, e,x) is

dependent on x. To see SUB, we observe that

∑
i,j∈V

c(i, j, e,x) =

|e|∑
i=1

max
S⊂e

(F (S))F (Si) = c(e) (3.60)

which is independent of the order of x and the particular vertices i, j.

The third condition is

∂c
1
p (i, j, e,x)/∂x |i:i∈e= 0,∀e ∈ E, j ∈ e, (3.61)

∂c
1
p (i, j, e,x)/∂x |j:j∈e= 0,∀e ∈ E, i ∈ e (3.62)

which means the function c(i, j, e,x) is constant once we fix e ∈ E and one vertex in the

edge. From this condition, we obtain

∂

∂ψ
c

1
p (i, j, e,x)x

∣∣∣∣
j : j∈e

=
∂

∂x
c

1
p (i, j, e,x)

∣∣∣∣
j : j∈e

x+ c1/p(i, j, e,x)

= c1/p(i, j, e,x),∀e ∈ E, i ∈ e. (3.63)
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Similarly, we can prove the condition of i. This implies that the function c works as a

coefficient for x once we fix j and e, and c is independent of x. Note that if c is not

differentiable, then we simply change to subdifferentiation as

∂c
1
p (i, j, e,x) |j:j∈e∋ 0,∀e ∈ E, i ∈ e, (3.64)

∂c
1
p (i, j, e,x) |i:i∈e∋ 0,∀e ∈ E, j ∈ e. (3.65)

For examples in Table 3.2, this condition is also obviously satisfied, since the functions c for

cliques and star are independent of x. Although the function c for total variation depends on

x, the function c is constant once we fix one vertex and one edge e. Moreover, this implies

that the function c satisfies the condition Eq. (3.62).

3.G Proof of Theorem 3.13

Most of the proof can be done in the similar manner as graph [Tudisco and Hein, 2018, Li

and Milenkovic, 2018], while we need to change from the the graph p-Laplacian in [Tudisco

and Hein, 2018] and hypergraph p-Laplacian in [Li and Milenkovic, 2018] to our framework

p-Laplacian. We firstly denote by (x|A)i for a set A ⊂ V as

(x|A)i =

 xi i ∈ A
0 i /∈ A

(3.66)

We start to prove the following lemma to prove Thm. 3.13.

Lemma 3.28. For a set A ⊂ V ,〈
∂

∂x
(∇c,px)(e),x|A

〉
= (∇c,px|A)(e). (3.67)

Proof. Since hypergraph-gradient is a first degree polynomial of x from Def. 3.2, for ci ∈ R

we can write hypergraph-gradient as

(∇c,px)(e) =
∑
v

cixi. (3.68)
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By Eq. (3.68), 〈
∂

∂x
∇c,px(e),x|A

〉
=
∑
v

cv,x(x|A)i = (∇c,px|A)(e), (3.69)

which ends the proof.

We move to prove the following lemma.

Lemma 3.29. Denote λc,p,ψc,p be a p-eigenpair of p-Laplacian ∆c,p. LetA1(ψc,p), . . . , Am(ψc,p)

is a nodal domains induced from ψc,p ∈ H(V ), and ψ′
c,p be the vector ψ′

c,p ∈ F (ψc,p), where

F (ψ) is a nodal space induced from ψ. Then, SG,c,p(ψ′
c,p) ≤ λc,p∥ψ′

c,p∥pp

Proof. We consider the vector f =
∑m

i=1 αiψc,p|Ai
, where αi is a constant. From the definition

of nodal domains, each edge e intersects at most two nodal domains with different signs.

Therefore, ψc,p|e∩Ai
= ψc,p|e for any e ∈ E and for any nodal domain Ai, and ψc,p|e∩Ai

=

sgn(αi)y|e for any e ∈ E and for any nodal domain Ai. We divide edges into two classes

according to the number of nodal domains intersected by each edge as follows.

E1 = {e |: |{e ∩ Ai}| ≤ 1} (3.70)

E2 = {e |: |{e ∩ Ai}| = 2} (3.71)

Note that E1 ∪ E2 = E. Then, since ∇c,pψc,p(e) = ∇c,pψc,p|Ai
(e) if Ai ∩ e = ∅ and

∇c,pψc,p(e) = 0 for those i such that Ai ∩ e = ∅ and simpler version of Hölder’s inequality

(
∑n

i=1 |xi|)p ≤ np−1
∑n

i=1 |xi|p, we have

SG,c,p(f) =
∑
e∈E

|∇c,pf(e)|p

=
∑
e∈E1

∑
i

|αi|p|∇c,pψc,p|Ai
(e)||∇c,pψc,p(e)|p−1 +

∑
e∈E2

(∑
i

|α||∇c,pψc,p|Ai
(e)|

)p

(3.72)

Moreover, we have

λc,p∥f∥pp =
∑
i

|αi|pλc,p∥ψc,p|Ai
∥pp



3.H. Proof of Theorem 3.14 116

=
∑
i

|αi|p⟨ψ|Ai
,∆c,pψc,p⟩H(V )

=
∑
i

|αi|p
∑
v

ψc,p|Ai
(v)∆c,pψc,p(v)

=
∑
i

|αi|p
∑
v

ψ|Ai
(v)

∑
e : v∈e

1

|e|!
|∇c,pψc,p(e)|p−1 ∂

∂ψc,p
∇c,pψc,p(e)

=
∑
i

|αi|p
∑
v

∑
e : v∈e

1

|e|!
|∇c,pψc,p(e)|p−1 ∂

∂ψc,p
∇c,pψc,p(e)ψc,p|Ai

(v)

=
∑
i

|αi|p
∑
e

∇c,pψc,p|Ai
(e)|∇c,pψc,p(e)|p−1 (3.73)

From Eq. (3.72) and Eq. (3.73), we have

SG,c,p(f)− λc,p∥f∥pp

=
∑
e∈E2

((∑
i

|α||∇c,pψc,p|Ai
(e)|

)p

−

(∑
i

|αi|p
∑
e

∇c,pψc,p|Ai
(e)|∇ψc,p(e)|p−1

))
=
∑
e∈E2

(
|αi1|∇c,pψc,p|Ai1

(e) + |αi2|∇c,pψc,p|Ai2
(e)
)p

+
(
|αi1|p∇c,pψc,p|Ai1

(e) + |αi2|p∇c,pψc,p|Ai2
(e)
) (
∇c,pψc,p|Ai1

+∇c,pψc,p|Ai2

)
≥ 0. (3.74)

The last inequality follows from Lemma 3.7 in [Tudisco and Hein, 2018].

Now we prove Thm. 3.13. Suppose that λc,p,k has multiplicity r and associated eigen-

vector ψc,p,k. As functions ψc,p,k|A1 , . . . ,ψc,p,k|Am are linear independent of the definition

of a nodal domain, γ(F ∩ Sp) ≤ m. From Lemma 3.29, for all x′ ∈ F ∩ Sp we have

RG,c,p(x
′) ≤ RG,c,p(ψc,p,k) = λc,p,k. Also, F ∩ Sp ∈ Fm(Sp). Hence,

λc,p,m = min
A∈Fm(Sp)

max
x′∈A

RG,c,p(x
′) ≤ max

x∈F∩Sp

RG,c,p(x) ≤ λc,p,k. (3.75)

From Eq. (3.75) λc,p,m ≥ λc,p,k and m ≥ k + r − 1. This concludes the proof.

3.H Proof of Theorem 3.14

We begin our discussion by the following lemma.
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Lemma 3.30. Let A = Span(1V1 . . . ,1Vk). Choose a vector x ∈ A ∩ Sp and suppose that it

can be written as ∥x∥pp = 1 and x =
∑

i αiM
1/p1Vi . Then,

∑
i

|αi|pvol(Vi) = 1. (3.76)

Proof. As A is a k-way partition, Vi ∩ Vj = ∅. Therefore, we obtain

1 = ∥x∥pp
=
∑
i

∥αiM1/p1Vi∥pp

=
∑
i

|αi|pvol(Vi) (3.77)

Firstly, we prove the upper bound of the inequality. Without loss of generality, we limit

our interest to ∥x∥pp = 1. If we set x =
∑

i αiM
1/p1Vi , then we obtain

RG,c,p(x) =
∑
e

∥∇c,px∥pp

=
∑
e

∑
i

αpi ∥∇c,p(M
1/p1Vi)∥pp

≤
∑
e

min(k, |e|)p−1
∑
i

|α|p∥∇c,p(M
1/p1Vi)∥pp

≤ min(max |e|, k)
∑
i

|α|p
∑
e

∥∇c,p(M
1/p1Vi)∥pp (3.78)

From |∇c,pM
1/p1Vi |pp ≤

∑
e∈ViVi c(e)w(e) = Cutc(Vi, Vi) and Lemma 3.30, Eq. (3.78) can

be tightened as

RG,c,p(x) ≤ min(max |e|, k)
∑
i

|α|pCutc(Vi, Vi)

≤ min(max |e|, k)
∑

i |α|pCutc(Vi, Vi)∑
i |α|pvol(Vi)

≤ min(max |e|, k)hc,k. (3.79)
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Next, we prove the lower bound. The proof of the lower bound depends on the following

lemma.

Lemma 3.31. For any vectors x ∈ H(V ), and p ≥ 1, there exists ς ≥ 0 such that B(x, ς) =

{i : xi > ς} satisfies

RG,c,p(M
1/px) ≥ (ρ)p−1

(
c(V )

p

)p
, (3.80)

where ρ := maxi(di/µi).

Proof. We denote by xp element-wise p-th power. Then, we obtain

SG,c,1(Mψp) =
∑
∥∇c,p(Mxp)∥

=
∑
e

∑
i,j∈e

w(e)c(i, j, e,x)|xpi − x
p
j |

≤
∑
e

∑
i,j

w(e)pc(i, j, e,x) |xi − xj|max (xi, xj)
p−1

≤ p

((∑
e

∑
i,j

w(e)pc(i, j, e,x)|xj − xi|

)p) 1
p

×

(∑
e

∑
i,j∈e

max (xi, xj)
p

) p−1
p

≤ pS
1
p

G,p(M
1/px)

(∑
i∈V

dix
p
j

) p−1
p

≤ pρ1−1/pR
1
p

G,c,p(x)∥M
1/px∥p−1

p (3.81)

Moreover, we get

SG,c,1(Mxp) =
∑
e∈E

∑
i,j∈e

w(e)c(i, j, e, ψ)
∣∣xpi − xpj ∣∣

=
∑
e∈E

∑
i,j∈e;xpi−x

p
j>0

w(e)c(i, j, e,x)

∫ xi

xj

dς

=

∫ ∞

0

∑
e∈E

w(e)
∑

i,j∈e : xpi−x
p
j>ς

c(i, j, e,x)dς. (3.82)
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From Eq.(3.82), the left hand side of Eq. (3.80) can be rewritten as

SG,c,1(Mxp)

∥Mx∥pp
=

∫∞
0

∑
e∈E
∑

i,j∈e;xpi−x
p
j>ς

w(e)c(i, j, e,x)dς∫∞
0

∑
xpj>ς

µ(j : xpj > ς)dς

≥ inf
ς>0

∑
e∈E w(e)

∑
i,j∈e;xpi−x

p
j>ς

c(i, j, e,x)

µ(i : xpi > ς)

= inf
ς>0

Cutc({i : xpi > ς}, {i : xpi > ς})
vol({i : xpi > ς})

= inf
ς>0

c({i : xpi > ς}) (3.83)

Hence, the following inequality holds for the set B∗ = {i : xpi > ς∗} where ς∗ is the

minimizer.

RG,c,p(M
1/px) =

SG,c,p(M
1/px)

∥M1/px∥pp

≥
(
SG,c,1(Mxp)

∥M1/px∥pp
1

ppρp−1

)
=

(
1

ρ

)p−1(
c(B∗)

p

)p
(3.84)

This concludes Lemma 3.31.

Suppose λc,p,k has a corresponding eigenvector ψc that induces the strong nodal do-

mains A1, A2, . . . , Am. From Lemma 3.29, we have λ ≤ RG,c,p(M
1/p1Ai

). Moreover, from

Lemma 3.31, for any i(ℓ = 1, . . . ,m), there exists a set Bℓ ⊂ Aℓ such that

RG,c,p(M
1/p1Ai

) ≤
(
1

ρ

)p−1(
c(Bi))

p

)p
(3.85)

Therefore,

λc,p,k ≥ RG,c,p(M
1/p1Ai

)

≥ max
i

(
1

ρ

)p−1(
c(Bi))

p

)p
≥ min

Bi

max
i

(
1

ρ

)p−1(
c(Bi))

p

)p
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≥
(
1

ρ

)p−1(
hc,m
p

)p
(3.86)

3.I Proof of Corollary 3.15

Let us start with the following lemma.

Lemma 3.32. Let x ∈ H(V ) be orthogonal to 1. Then there is x′ ∈ H(V ) and for all

i ∈ V, x′j ≥ 0 with at most |V |/2 non-zero entries such that

RG,c,p(M
1/px′) ≤ RG,c,p(M

1/px). (3.87)

Moreover, ∀t satisfying 0 < t ≤ maxv x
′
i, the set B = {i : x′i ≥ t} is one of the set obtained

by x, such that ({i : xi ≥ t}, {i : xi < t}) minimizing Cheeger cut.

Proof. Firstly, we observe that

RG,c,p(M
1/p(x+ c1)) ≥ RG,c,p(x), (3.88)

since SG,c,p(M
1/p(x + c1)) = SG,c,p(M

1/px) and ∥M1/p(x + c1)∥ = ∥M1/p(x)∥ +

∥cM1/p1∥ ≥ ∥M1/px∥.

Let ς be the median value of x, and set xς := x− ς1. Then RG,c,p(xς) < RG,c,p(xς), and

median of xς is zero, which means xm has at most |V |/2 positive entities and at most |V |/2
negative entities. We decompose ψm as follows;

xς = xς+ − xς−, (3.89)

where (xς+)i = (xς)i if (xς)i is positive and otherwise set 0, and (xς−)i = −(xς)i if (xς)i is

negative and otherwise set 0. We remark that xς+ and xς− are non-negative, orthogonal to each

other, and have at most |V |/2 non-zero entities. The cut defined by the set {i : (xς+)i ≥ t}
for t ∈ R is one of the cut obtained by x, such that ({i : xi ≥ t}, {i : xi < t}) minimizing

Cheeger cut, since we can obtain the same cut by considering

({i : xi ≥ t+m}, {i : xi < t+m}). (3.90)
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Similarly, cut defined by the set {i : (xm−)i ≥ t} for t ∈ R is one of the cut obtained by x,

such that ({i : xi ≥ t}, {i : xi < t}) minimizing Cheeger cut.

We move on to show that at least one of xς+ or xς− has Rayleigh quotient equal to or

smaller than Rayleigh quotient of xς , by showing the following

RG,c,p(M
1/pxς) =

SG,c,p(M
1/pxς)

∥M1/pxς∥p

≥ SG,c,p(M
1/pxς+) + SG,c,p(M

1/pxς−)

∥M1/pxς+∥p + ∥M1/pxς−∥p

=
RG,c,p(M

1/pxς+)∥M1/pxς+∥+RG,c,p(M
1/pxς−)∥M1/pxς−∥

∥M1/pxς+∥p + ∥M1/pxς−∥p

≥ min(RG,c,p(M
1/pxς+), RG,c,p(M

1/pxm−)) (3.91)

This concludes the proof.

By combining lemma 3.31 and lemma 3.32, we can say a stronger statement than

Cor. 3.15.

Corollary 3.33. Let x ∈ H(V ) be orthogonal to M1/p1, and let (B,B) be the cut found by

ψ, such that ({i : xi ≥ t}, {i : xi < t}) minimizing Cheeger cut. Then

RG,c,p(M
1/px) ≥ ρp−1

(
c(B)

p

)p
(3.92)

3.J Proof of Theorem 3.17
By definition, for all i ∈ V , we have

(∆c,pψc)i = λψc
c ξp(ψc,i) (3.93)

(∆c,pψ
′
c)i = λψ

′
c

c ξp(ψ
′
c,i), (3.94)

where λc,x and λc,x′ are eigenvalues associated with x and x′, respectively. Then, for all i ∈ V
we obtain

(∆c,pψc)iξp(ψ
′
c,i) = λψc ξp(ψc,i)ξp(ψ

′
c,i) (3.95)

(∆c,pψ
′
c)iξp(ψc,i) = λψ

′
c

c ξp(ψ
′
c,i)ξp(ψc,i). (3.96)
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By summing up over all v ∈ V and taking difference of both side of Eq. (3.95) and Eq. (3.96),

we compute

(λψc − λψ
′

c )
∑
i∈V

ξp(ψc,i)ξp(ψ
′
c,i)

=
∑
i∈V

(∆c,pψc)iξp(ψ
′
c,i)− (∆c,pψ

′
c)iξp(ψc,i) (3.97)

By applying Taylor expansion at a∆c,pψM
1/p1 to ∆c,pψ, at a∆c,pψ′M1/p1 to ∆c,pψ

′ at

aξ(ψ) to ξp(ψ), and at aξ(ψ′) to ξp(ψ′) in right hand side of Eq. (3.97), we obtain

(λψ − λψ′
)
∑
i∈V

ξp(ψc,i)ξp(ψ
′
c,i) =

∑
i∈V

(∆c,p(a∆c,pψcM
1/p1)i

+∆
′

c,p(a∆c,pψcM
1/p1)i(ψc,i − a∆c,pψµ

1/p
i ) + o2,∆c,p,ψc)

× (ξp(aξ(ψ′
c)) + ξ′p(aξ(ψ′))(ψc,i − aξp(ψ′

c)) + o2,ξp(ψ′
c))

−
∑
i∈V

(∆c,p(a∆c,pψ′
c
M1/p1)i

+∆
′

c,p(a∆c,pψ′
c
M1/p1)i(ψc,i − c∆c,pψ′

c) + o2,∆c,pψ′
c
)

× (ξp(aξ(ψ)) + ξ′p(aξ(ψ))(ψ(v)− aξp(ψ)) + o2,ξp(ψ)) (3.98)

By Prop. 3.7 and Cor. 3.21, Eq. (3.98) is

(λψc − λψ
′

c )
∑
i∈V

ξp(ψc,i)ξp(ψ
′
c,i) = o2,

which concludes the proof.

3.K Proof of Theorem 3.18

Before we start a proof, let us motivate the discussion by considering p = 2. Let ψc,1 be a

first eigenvector either M1/p1, then ⟨ψc,1,ψc,2⟩ = 0 for the second eigenvector ψc,2, and we

observe

∥ψc,2∥22 =
∥∥∥∥ψc,2 − (⟨ψc,1,ψc,2⟩|V |

)
ψc,1

∥∥∥∥2
2

= min
η∈R
∥ψc,2 − ηψc,1∥22
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Using this equation, the Rayleigh quotient to get the second eigenvector ψ2 can be written as

ψc,2 = argmin
x∈H(V )

SG,c,2(x)

minη ∥x− ηψc,1∥22
. (3.99)

This inspires Eq. (3.19).

Let us start our proof by proving λc,p,2 ≥ infxRG,c,p(x). Let ψc,2 be a p-eigenvector

corresponding to the second p-eigenvalue λc,p,2. As
∑

i ξp)(ψc,p,2)i) = 1⊤δψc,p,2 = 0,

the norm ∥ψc,p,2 − η1∥ is convex in c is minimized when c = 0. Moreover, λc,p,2 =

RG,c,p(ψc,2) = SG,c,p(ψc,2)/∥ψc,2∥pp = SG,p,c(ψc,p,2)/minη ∥ψc,p,2 − η∥pp = R
(2)
G,c,p(ψc,p,2).

Hence, λc,p,2 ≥ inf R
(2)
G,c,p(ψc,p,2).

Second, we prove λc,p,2 ≤ infxRG,c,p(x). From the definition of R(2)
G,c,p(x), we can easily

check that R(2)
G,c,p(ax+ b) = R

(2)
G,c,p(x). Let x∗ = argminR

(2)
G,c,p(x), and consider the space

A = {ax∗ + b}. As x∗ ̸= c1, γ(A ∩ Sp) = 2. From Proposition 3.7, we obtain

λc,p,2 ≤ max
x∈A∩Sp

SG,c,p(x)

= max
a,b

SG,c,p(ax
∗ + b)

∥ax∗ + b∥pp

= max
a,b

SG,c,p(ax
∗)

∥ax∗ + b∥pp

= max
a

SG,c,p(ax
∗)

minb ∥ax∗ + b∥pp
= R

(2)
G,c,p(x

∗) (3.100)

As we have λc,p,2 ≥ inf R
(2)
G,c,p(x

∗) and λc,p,2 ≤ inf R
(2)
G,c,p(x

∗), we obtain λc,p,2 = R
(2)
G,c,p(x

∗).

Since the global minimum is λc,p,2, then

λc,p,2 = RG,c,p(ψc,p,2)

=
SG,c,p(ψc,p,2)

∥ψc,p,2∥pp

=
SG,c,p(x

∗ + η∗ψc,p,1)

minη ∥x∗ − ηψc,p,1∥

=
SG,c,p(ψc,p,2)

minη ∥ψc,p,2 − ηψc,p,1∥

= R
(2)
G,c,p(ψ

∗). (3.101)
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Note that we use SG,c,p(ψ+ψc,p,1) = SG,c,p(ψ). Therefore, we can seeψ∗ = ψc,p,2+η
∗ψc,p,1,

where η = argminη ∥ψc,p,2 − ηψc,p,1∥pp.



Chapter 4

Hypergraph Modeling via Spectral

Embedding Connection

This chapter proposes a theoretical framework of multi-way similarity to model vector data

into hypergraphs for clustering via spectral embedding. For graph cut based spectral clustering,

it is common to model vector data into graph by modeling pairwise similarities using kernel

function, which has a theoretical connection to graph cut, as discussed in Sec. 2.2. For

problems where using multi-way similarities are more suitable than pairwise ones, it is natural

to model as a hypergraph. However, although the hypergraph cut is well-studied, there is

not yet established a hypergraph cut based framework to model multi-way similarity. In

this chapter, we formulate multi-way similarities by exploiting the theoretical foundation of

kernel function. We show a theoretical connection between our formulation and hypergraph

cut in two ways, generalizing both weighted kernel k-means and the heat kernel, by which

we justify our formulation. We also provide a fast algorithm for spectral clustering. Our

algorithm empirically shows better performance than existing graphs and other heuristic

modeling methods.

4.1 Introduction

This chapter considers modeling a hypergraph from vector data. In Chapter 3, we discussed

hypergraph p-Laplacian. In the experiments in Chapter 3, we use categorical data, which is a

discrete dataset and thus can be naturally considered as a hypergraph. On the other hand, we

were not able to model a hypergraph from vector data, as opposed to the standard graph case

where we can easily model a graph from vector data. This chapter discusses such a model to
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form a hypergraph. Note that since we miss the hypergraph modeling method from vector

data even for p = 2 and uniform hypergraph case, we focus on these settings.

As discussed in Sec. 2.2, spectral clustering is useful not only for graph data but also for

vector data. We model vector data as a graph by forming a vertex from each data point and an

edge from the pairwise similarity of each pair of data points [Goyal and Ferrara, 2018]. One

popular modeling method uses kernel functions. The kernel has been theoretically justified

via weighted kernel k-means [Dhillon et al., 2004] (See Sec. 2.2.3) and via heat kernel [Belkin

and Niyogi, 2003] (See Sec. 2.2.4).

Hypergraphs, generalization of graphs, and hence are suitable to model data that have

multi-way relationships (see Sec. 3.2 and Chapter 3). Recall that cut-based spectral clustering

for hypergraph has also been established [Zhou et al., 2006, Hein et al., 2013]. Therefore, from

the discussion on graphs, it is natural to model vector data as hypergraphs for clustering. How-

ever, while heuristic modeling as hypergraphs have been done in several domains [Govindu,

2005, Sun et al., 2017, Yu et al., 2018], we are yet to have a modeling framework that is

theoretically connected to hypergraph cut problems.

This chapter proposes a hypergraph modeling and its spectral embedding framework

for clustering, which we theoretically connect to the established hypergraph cut problems.

This framework models vector data as an even order r-uniform hypergraphs, all of whose

edges connect m vertices. For this purpose, we propose a biclique kernel, which formulates

multi-way similarity, by exploiting the kernel function’s ability to model similarity but in a

way where we expand from pairs to multiplets. We give a theoretical foundation to biclique

kernel; a biclique kernel is equivalent to semi-definite even-order tensor (Thm. 4.1). We show

that biclique kernel is theoretically connected to the established hypergraph cut problems

proposed by [Zhou et al., 2006, Saito et al., 2018, Ghoshdastidar and Dukkipati, 2015] via

two problems, weighted kernel k-means and heat kernels. We provide a spectral clustering

algorithm for our formulation, which is faster than existing ones (O(n3) vs. O(nr), where

n is the number of data points). This speed-up allows us to model as an arbitrarily higher-

order hypergraphs in a reasonable computational time. We numerically demonstrate that our

algorithm outperforms the existing graph and heuristic modeling methods. Our empirical

study also shows that by increasing order of a hypergraph, the performance is gained until

a certain point but slightly drops from there. To our knowledge, it is first time to obtain
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the behavior of performance of spectral clustering using higher-order (say, r ≥ 8) uniform

hypergraph.

Our contributions are as follows; i) We provide a formulation to model vector data as an

even order r-uniform hypergraph. ii) We show that our formulation is theoretically linked to

the established hypergraph cuts in two ways, weighted kernel k-means and heat kernel. iii)

We provide a fast spectral clustering algorithm. iv) We numerically show that our method

outperforms the standard graph ones and existing heuristic modeling ones.

All proofs are in Appendix.

4.2 Half Symmetric Tensors, Semi-Definiteness, and Uni-

form Hypergraph
We consider the uniform hypergraph, and introduce that uniform hypergraph can be written

using tensors.

We define an r-order tensor as A ∈ Rn1×...×nr , whose (i1, i2, . . . , ir)-th element is

ai1i2...ir ∈ R. If all the dimensions of an r-order tensor A are identical, i.e., n1 = . . . = nr =

n, we call this tensor as cubical. Letting Sr be a set of permutations σ on {1, ..., r}, an even

r-order cubical tensor is called as half-symmetric if for every elements

Aiσ(1)...iσ(r/2)ir/2+σ′(1)...ir/2+σ′(r/2)
= Air/2+σ′(1)...ir/2+σ′(r/2)iσ(1)...iσ(r/2)

,∀σ, σ′ ∈ S r
2
, (4.1)

As an example of half-symmetricity, we consider 4-order half-symmetric cubical tensor

A. Let us think about the element (1,2,3,4) of half-symmetric tensor A. Then

A1234 = A2134 = A1243 = A2143 = A3412 = A4312 = A3421 = A4321.

More general, for elements (i1, i2, i3, i4) where ij ̸= il if j ̸= l, the tensor A is

Ai1i2i3i4 = Ai2i1i3i4 = Ai1i2i4i3 = Ai2i1i4i3 = Ai3i4i1i2 = Ai4i3i1i2 = Ai3i4i2i1 = Ai4i3i2i1 .

Then, the natural question to ask is what happens if the elements contain the same index.

Let us think about the element (1,1,2,3) of half-symmetric tensor A. Then

A1123 = A1132 = A2311 = A3211.
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However, if we think about the elements containing the same index but in a different “half”,

e.g., (1,2,1,3), then

A1213 = A2113 = A1231 = A2131

A1312 = A3112 = A1321 = A3121.

Needless to say, we do not have such a permutation of the index for the “diagonal” elements,

where all the indices are the same number, e.g., (1, 1, 1, 1) and A1111.

In the following, we assume a half-symmetric even-order cubical tensor. We de-

fine the mode-k product of A ∈ Rn1×...×nr and a vector x ∈ Rnk as A ×k x ∈
Rn1×...×nk−1×1×nk+1×...×nr , whose element is

(A×k x)i1...ik−11ik+1...ir :=

nk∑
ik=1

Ai1...ik...irxik (4.2)

We define a contracted matrix A(r) for a half-symmetric even r-order cubical tensor A as

A(r) := A×2 1×3 · · · × r
2
−1 1× r

2
+1 1 · · · ×r 1 (4.3)

Note that A(r) is symmetric. For details, see [Lim, 2005, Qi, 2005, De Lathauwer et al., 2000].

Similarly to the matrix case, we define the semi-definiteness of even-order tensors. An

even r-order cubical tensor A is semi-definite if

A×1 x . . .×m x =
∑
i1...im

Ai1...imxi1 . . .xim ≥ 0. (4.4)

Note that our definition of semi-definiteness is not our own and follows the existing work such

as [Qi, 2005, Hu and Qi, 2012, Hillar and Lim, 2013]. Note also that the semi-definiteness can

be applied only to even order tensors since no odd-order tensors satisfy this semi-definiteness

for the following reason. Let us assume a tensor A is 3-order cubical tensor. From this

definition, polynomial for x formed from odd order tensor can take both positive and negative

values, such as

A×1 −x×2 −x×3 −x = −A×1 x×2 x×3 x.
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This means that, the polynomial Eq. (4.4) for x and for −x take different signs. However, the

semi-definiteness requires the polynomial Eq. (4.4) to be positive for all vectors, including x

and −x. Therefore, there is no odd-order semi-definite tensors for this definition. For more

discussion on tensor semi-definiteness, see Sec. 11 in [Hillar and Lim, 2013] and [Qi, 2005].

An r-uniform hypergraph can be represented by an r-order cubical tensor. Recall that

we call hypergraph is uniform, when all the edge contains the same number of vertices,. We

define an adjacency tensor A for uniform hypergraph, where we assign the weight of edge

e = {i1, . . . , ir} to (i1, . . . , im)-th element of r-order cubical tensor. A uniform hypergraph is

half-undirected when its adjacency tensor is half-symmetric. Note that a uniform hypergraph

is half-undirected if undirected. The following assumes that a hypergraph G is uniform,

connected, half-undirected, and has self-loops unless noted.

Since this thesis focuses on clustering, we remark on using this representation for the

clustering. In terms of clustering for half-undirected uniform hypergraph, which is mainly

discussed in Chapter 5, these three different methods produce the same result (see Sec. 2.5.2.1).

When we discuss half-directed uniform hypergraph, for a matrix representation, we use the

star method, which contracts a hypergraph into a graph by forming As := HWeH
⊤/r.

4.3 Formulation of Multi-way Similarity

This section proposes a formulation of multi-way similarity and discusses its properties.

Looking back at a pairwise similarity, kernel functions are a convenient tool to model a

similarity. However, kernel functions consider pairwise similarities, not multi-way similarities.

The idea to construct a multi-way similarity framework is that we take the benefits of the

kernel framework’s modeling ability, but at the same time, we expand to multiplets from pairs.

4.3.1 Biclique Kernel and Tensor Semi-definitness

This section formulates multi-way similarity as a biclique kernel and discusses its semi-definite

property. For two sets of r/2 variables, {xi·} and {tl·}, xi· , tl· ∈ X, X ⊆ Rd, we formulate

even r multi-way similarity function κ(r)(xi1 , ..,xir/2 , tl1 , .., tlr/2) : Xr/2 ×Xr/2 → R as

κ(r)({xi·}, {tl·}}) :=
r/2∑
γ=1

r/2∑
ν=1

κ(xiγ , tlν ), (4.5)
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where κ : X×X→ R is a standard kernel. We call κ as a base kernel. By construction, κ(r) is

also a kernel. Therefore, we call κ(r) as biclique kernel. LetK be a gram tensor of κ(r), i.e., an

r-order cubical tensor formed by Eq. (4.5), whose (i1, . . . , ir)-th element is κ(r)(xi1 , . . . ,xir).

Note that K is half-symmetric due to the construction of κ(r). Seeing Eq. (4.5), we can obtain

arbitrary even m order biclique kernel from a standard kernel function κ. For example, the

biclique kernel using Gaussian kernel for m = 4 is as

κ(4)(x1,x2, t1, t2)

= κ(x1, t1) + κ(x1, t2) + κ(x2, t1) + κ(x2, t2)

= exp(−γ∥x1 − t1∥22) + exp(−γ∥x1 − t2∥22)

+ exp(−γ∥x2 − t1∥22) + exp(−γ∥x2 − t2∥22). (4.6)

The biclique kernels are connected to the semi-definite even order tensors, which serves

as a theoretical ground of the biclique kernel. For the standard kernel, a gram matrix for a

kernel function is equivalent to a semi-definite matrix [Shawe-Taylor and Cristianini, 2004].

This characteristic is one of the theoretical foundations of kernel function. Here, we establish

a generalization of this characteristics for the gram tensor K. For this semi-definiteness of

tensors, the following theorem for a tensor formed by a biclique kernel holds.

Theorem 4.1. Given a function κ(r) : Xr/2 × Xr/2 → R defined by κ(r)({xi·}, {tl·}}) =∑
γ,ν κ(xiγ , tlν ), where κ is a function κ : X × X → R, then κ can be decomposed as

κ(x, z) = ⟨ϕ(x), ϕ(z)⟩ if and only if κ(r) is half-symmetric and has the m-order tensor

semi-definite property.

This theorem gives a theoretical foundation of the biclique kernel. Thm. 4.1 shows that a

half-symmetric even-order semi-definite tensor and a biclique kernel are equivalent, which is

similar to the foundations of the standard kernel function.

4.3.2 Contraction of Biclique Kernel

Despite of the nice property of Thm. 4.1, tensors are practically hard to work with. Many

tensor problems of generalized common operations in matrix are NP-hard [Hillar and Lim,

2013], such as computing eigenvalues. This motivates us to explore a practically easy while
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theoretical guaranteed way to deal with biclique kernel. This section argues that a contracted

matrix of a gram tensor can address this issue.

We consider a contracted matrix K(r) (defined in Eq. (4.3)) of a gram tensor K of the

biclique kernel κ(r). We call this contracted matrix K(r) as a gram matrix of κ(r). In the

following, we see this gram matrix is more computationally efficient while equivalent to the

original biclique kernel. We first observe the following lemma and corollary by contracting a

gram tensor into a gram matrix.

Lemma 4.2. Assume κ(x, z) = ⟨ϕ(x), ϕ(z)⟩κ is a base kernel of the biclique kernel κ(r). Let

ϕi := ϕ(xi), and Φ :=
∑n

l=1 ϕl/n. The gram matrix K(r) of κ(r) is equal to a gram matrix

formed by a kernel κ′ : X ×X → R as

κ′(xi,xj) := nr−2
〈
ϕi +

r − 2

2
Φ, ϕj +

r − 2

2
Φ
〉
κ
. (4.7)

Corollary 4.3. The gram matrix K(r) is semi-definite.

From this lemma, we observe that K(r) is more computationally efficient than K for the

following reason. Computing Eq. (4.7), we can rewrite K(r) by using the gram matrix K of

the base kernel κ as

K
(r)
ij = nr−2

(
Kij +

r − 2

2n
(δi + δj) +

(r − 2)2

4n2
ρ

)
(4.8)

where δi is the sum of i-th row ofK and ρ is a sum of all the elements ofK, i.e., ρ =
∑

i,jKij .

Since we can pre-compute δi, δj and ρ from K in O(n2), the overall computational time for

K(r) is O(n2), whereas O(nr) if we naively form K(r) from the original tensor and Eq. (4.3).

Note that if we see K(r) as a graph, its degree matrix is equal to a degree matrix Dv of

a hypergraph formed by K. Using this lemma, we obtain the following proposition about

equivalence of K and K(r).

Proposition 4.4. There exists only one kernel κ′ from a biclique kernel κ(r). Also, we can

compose only one biclique kernel κ(r) from a kernel κ′ and even-order r.

This proposition shows that a biclique kernel κ(r) and a set of a kernel function κ′

and even order m are equivalent. Therefore, Prop. 4.4 is a theoretical guarantee to use a
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Algorithm 4 Spectral clustering for hypergraph modeled by generalized kernel.
Input: Data X, κ, and r

Compute K from the base kernel kernel κ from data X .
Construct a gram matrix K(r) of the biclique kernel κ(r) from K by using Eq. (4.8).
Compute degree matrix Dv from K(r) and obtain top k-eigenvectors of D−1/2

v K(r)D
−1/2
v .

Conduct k-means to the obtained top k-eigenvectors
Output: The clustering result.

computationally cheaper gram matrix K(r) instead of a computationally expensive gram

tensor K.

4.4 Proposed Algorithm
We propose an algorithm for clustering vector data via modeling as an even r-uniform

hypergraph and using hypergraph cut. The overall algorithm is shown in Alg. 4. The core of

our algorithm is that we model vector data as a hypergraph by our biclique kernel (Eq. (4.5))

and use hypergraph spectral clustering (Prop. 4.8). To do this efficiently, we firstly compute

K(r) using Eq. (4.8) (the first and second step of Alg. 4) and then conduct spectral clustering

(the third step). The fourth step uses a simple k-means algorithm for obtained eigenvectors to

decide the split points, same as the previous studies [Zhou et al., 2006, Ghoshdastidar and

Dukkipati, 2015]. The overall computation time of Alg. 4 is O(n3), since it takes O(n2) to

compute K as well as K(r), and takes O(n3) to compute eigenvectors, which is equivalent

to the standard graph spectral methods. Alg. 4 is faster than spectral algorithms naively

using Eq. (2.97) Zhou et al. [2006], Saito et al. [2018] and Eq. (4.27) Ghoshdastidar and

Dukkipati [2015] for a hypergraph formed by K. Both of these cost O(nr) to compute K and

K(r), while ours takes overall O(n3). This reduction allows us to model as an arbitrary even

r-uniform hypergraphs in a reasonable computation time, e.g., for a 20-uniform hypergraph

O(n3) vs. O(n20). Therefore, Alg. 4 is as scalable as the standard graph methods in terms of

n, and more scalable than the existing hypergraph methods in terms of m.

4.5 Justification for Biclique Kernel
We discussed the proposed algorithm via biclique kernel. The question is, what are theoretical

justifications for Alg. 4? At this point, it seems ad-hoc to model vector data as a hypergraph

via biclique kernel for spectral clustering since we do so without any justifications. To justify

Alg. 4, next two sections connect Alg. 4 to the weighted kernel k-means and explain Alg. 4
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with Gaussian-type biclique kernel from a heat kernel view.

4.5.1 Weighted Kernel k-means and Spectral Clustering

The graph cut and the standard kernel have a connection through a trace maximization problem

via weight kernel k-means [Dhillon et al., 2004], as seen in Sec. 2.2. This section explores a

similar connection between our biclique kernel and the hypergraph cuts. To do so, we first

revisit the connection for the standard case and give an alternative way of connection for any

kernel, instead of the dot product kernel originally discussed in [Dhillon et al., 2004]. This

way is a kernel function approach instead of an explicit feature map approach done in [Dhillon

et al., 2004]. We generalize this way of the graph case to our biclique kernel setting. We show

that this generalized weighted kernel k-means objective for our biclique kernel is equivalent

to the established cut in Prop. 4.8, which we see as a justification of Alg. 4.

4.5.1.1 Revisiting Spectral Connection

This section revisits the claim in [Dhillon et al., 2004] that weighted kernel k-means and

graph cuts are connected. We here give an alternative way of connection. This alternative way

allows us to handle any inner product kernels, while the original in [Dhillon et al., 2004] only

assumes the dot product kernel. We define clusters by Cℓ, a partitioning of points as {Cℓ}kℓ=1,

and the weighted kernel k-means objective for this as

Jϕ({Cℓ}kℓ=1) :=
∑
ℓ∈[k]

∑
xi∈Cℓ

θ(xi)∥ϕ(xi)−mℓ∥2, (4.9)

where mℓ is a weighted mean, which is defined as

mℓ :=
∑
xj∈Cℓ

θ(xj)ϕ(xj)

sℓ
, sℓ :=

∑
xj∈Cℓ

θ(xj), (4.10)

and ∥ · ∥ is a norm induced by any inner product forming a kernel function κ(x,y) =

⟨ϕ(x), ϕ(y)⟩. Let κij := κ(xi,xj), ϕi := ϕ(xi), and θi := θ(xi). Using the kernel κ and its

gram matrix K we can rewrite Eq. (4.9) as

Jϕ({Cℓ}kℓ=1) =
∑
ℓ∈[k]

∑
i∈Cℓ

θi(∥ϕi∥2 − 2⟨ϕi,mℓ⟩+ ∥mℓ∥2)
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=
∑
ℓ∈[k]

∑
i∈Cℓ

(
θiκii − 2θi

∑
j∈Cℓ

θj
sℓ
κij + wi

∑
r,t∈Cℓ

θrθt
s2ℓ

κrt

)
=
∑
ℓ∈[k]

∑
i∈Cℓ

θiκii −
∑
ℓ∈[k]

∑
r,t∈Cℓ

θrθtκrt
sℓ

(4.11)

= traceΘ1/2KΘ1/2 − traceYΘ1/2KΘ1/2Y, (4.12)

where

Yiℓ :=


√
θ(xi)/sℓ (xi ∈ Cℓ)

0 (otherwise),
(4.13)

and Θ is a diagonal matrix whose diagonal element is θi. To minimize Eq. (4.12), we want to

maximize the second term because the first term is constant w.r.t. the partitioning variable Y .

Since Y ⊤Y = I , maximizing the second term is taking the top k eigenvectors of Θ1/2KΘ1/2.

Taking K as a graph and Θ as inverse of the degree matrix, Eq. (4.12) becomes the relaxed

graph cut problem. This gives an alternative way to connect the weighted kernel k-means and

the graph cut.

4.5.1.2 Spectral Connection for Multi-way Similarity

This section aims to establish a connection between our formulation of multi-way

similarity and the hypergraph cut problem, similarly to the graph one. To do so, we first

generalize a weighted kernel k-means for our biclique kernel. Looking at Eq. (4.11), the

objective function of weighted kernel k-means uses the kernel function κ directly. Therefore,

we consider generalizing by replacing κ in Eq. (4.11) to our biclique kernel. This discussion

leads us to define an objective function for weighted kernel k-means for multi-way similarity

as follows:

J ′({Cℓ}kℓ=1) :=
∑
ℓ∈[k]

∑
i∈Cℓ

∑
{i·}⊂Cℓ

θiκ
(r)(i, i·, i, i·)−

∑
ℓ∈[k]

∑
i,j∈πℓ

∑
{i·},{j·}⊂πℓ

θiθjκ
(r)(i, i·, j, j·)

sℓ
,

(4.14)
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where we write i instead of xi, and write i· instead of {xi·}, a set of r/2− 1 variables. Seeing

the way we form the gram matrix K(r) of κ(r) (Eq. (4.3)), we can rewrite Eq. (4.14) as

J ′({Cℓ}kℓ=1) =
∑
ℓ∈[k]

∑
x∈Cℓ

θiK
(r)
ii −

∑
ℓ∈[k]

∑
i,j∈Cℓ

θiθjK
(r)
ij

sℓ

= traceΘ
1
2K(r)Θ

1
2 − traceYΘ

1
2K(r)Θ

1
2Y, (4.15)

where Y is defined as Eq. (4.13) and K(r) is a gram matrix of biclique kernel κ(r). Similarly

to the graph case, Eq. (4.15) can be solved by taking top k eigenvectors of Θ1/2K(r)Θ1/2.

This discussion draws a connection between hypergraph cut and biclique kernel, and

justifies Alg. 4. Recall that a gram matrix K(r) is obtained by a contraction of a gram tensor

K. Taking a gram matrix K(r) as a contracted matrix from the adjacency tensor of r-uniform

hypergraph and Θ = D−1
v , where Dv is its degree matrix, Eq. (4.15) is equivalent to the

hypergraph cut problem (Prop 4.8 and Eq. (2.91)). Thus, the hypergraph cut problem for a

hypergraph formed by κ(r) is equivalent to the weighted kernel k-means objective function

for κ(r) (Eq. (4.14)) with a particular weight. This discussion justifies Alg. 4, since Alg. 4

turns out to be equivalent to a generalization of weighted kernel k-means for κ(r). Note that

since we form K by κ(r), elements of K can be negative. This contradicts the assumption that

all the weight of an edge is positive. However, this can be practically resolved in a way that

does not affect topological structures, e.g., by adding the same constant to all the data points.

Finally, we remark that we can rewrite Eq. (4.14) as an Eq. (4.9)-style objective function. Let

ϕ′
i := n

r−2
2

(
ϕi +

r − 2

2

n∑
i′=1

ϕi′

n

)
. (4.16)

Observing Eq. (4.15), we can rewrite Eq. (4.14) as

J ′({Cℓ}kℓ=1) =
∑
ℓ∈[k]

∑
i∈Cℓ

θi∥ψ
′

i −m′
ℓ∥2, (4.17)

where

m′
ℓ :=

∑
j∈Cℓ

θjϕ
′
j

sℓ
, sℓ :=

∑
j∈πℓ

θj
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4.5.2 Heat Kernels and Spectral Clustering

This section establishes a connection between heat kernel and biclique kernel to justify Alg 4.

In the graph case, for a graph made from a gram matrix of Gaussian kernel formed by

randomly generated data, the cut of this graph can be seen as an analog of the asymptotic

case of an energy minimization problem of the single variable heat equation using Gaussian

kernel as a heat kernel [Belkin and Niyogi, 2003]. It is also shown that the graph Laplacian

converges to the continuous Laplace operator with infinite number of data points [Belkin and

Niyogi, 2005]. We formulate a multivariate heat equation, to which we can similarly connect

our biclique kernel. We show that the hypergraph cut problem converges to an asymptotic

case of the energy minimization problem of this heat equation using our biclique kernel as

heat kernel if the number of data points is infinite.

We define a discrete Laplacian L
(r)
t,n for r/2 variables {xi·} ∈ Xr/2, X ⊂ Rd and

a function f : Xr/2 → R which is “decomposable” by a single variable function f ′ as

f({xi·}) =
∑r/2

µ=1 f
′(xiµ), f ′ : X→ R as

L
(r)
t,nf({xi·}) := −

∑
{yi·}

H
(r)
t ({xi·}, {yi·})f({yi·}) +

∑
{yi·}

H
(r)
t ({xi·}, {yi·})f({xi·})

r/2

(4.18)

where H(r)
t is a biclique kernel formed as

H
(r)
t ({xi·}, {yi·}) :=

r/2,r/2∑
γ,ν=1

Gt(xiγ ,yiν ), where Gt(x,y) :=
exp (−∥x− y∥2/4t)

(4πt)d/2
.

Note that Gt is a Gaussian kernel. Note also that the coefficient r/2 in Eq. (4.18) comes from

approximation of heat equation. Also, define an energy as

S2(H
(r)
t , f) :=

∑
{xi·},{yi·}

L
(r)
t,nf({xi·})f({yi·}) (4.19)

It is straightforward to think minimizing this energy; however, this leads to the trivial solution
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f = 1. To avoid this trivial solution, we now consider

minS2(H
(r)
t , f) s.t. ∥f∥2 = 1, ⟨f, c1⟩ = 0. (4.20)

For this formulation, we claim as follows.

Proposition 4.5. Minimizing Eq. (4.20) is equivalent to the hypergraph normalized cut

Eq. (2.91) for a hypergraph formed by formed by H(r)
t

We consider to relate discrete operator L(r)
t,n to continuous Laplace operator. Let us begin

with the Laplace operator. Similarly to the previous sections, if (c) is superscripted that

operator is continuous one. Assume a compact differentiable d-dimensional manifoldM
isometrically embedded into RN , a set of r/2 variables {xi}r/2i=1, xi ∈M, abbreviated as {x·},
and a measure µ. Consider a problem to obtain a function f :Mr/2 → R, such that

f =argminS
(c)
2 (f) s.t. ∥f∥2 = 1, where S

(c)
2 (f) := ∥∇(c)f∥2, f({x·}) :=

∑
i

f ′(xi),

(4.21)

and f ′ is a single variable function f ′ :M→ R. From this formulation, the function f in

this problem can be described as “decomposable” by f ′, similarly to Eq. (4.18). In physics

analogy, we can recognize S2(f) as energy, and the problem as an energy minimization

problem. This problem often appears where we want to know a profile minimizing energy,

such as velocity profile in fluid dynamics [Courant and Hilbert, 1962]. In machine learning,

∇f can be seen to measure how close each data point is when we embed data from a manifold

to the Euclidean space. Then, this problem can be thought to find a suitable mapping f best

preserving locality, and hence as a clustering algorithm [Belkin and Niyogi, 2003].

By using Stokes’ theorem, ∥∇(c)f∥2 = ⟨∆(c)f, f⟩, which rewrites this energy minimiza-

tion problem as

min(S
(c)
2 (f) = ⟨∆(c)f, f⟩) s.t. ∥f∥2 = 1, ⟨f, c1⟩ = 0, (4.22)

where c is constant. Since Laplace operator ∆(c) is semi-definite and ∥f∥2 = 1 in constraint,

the minimizer of Eq. (4.22) is given as an eigenfunction of ∆(c)f . The first eigenfunction is a

constant function that maps variables xi ∈M to one point. To avoid this, we introduce the
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second constraint since the second eigenfunction is orthogonal to the first, which is constant.

We now formulate a multivariate heat equation to analyze ∆f . For even r and r/2

variables xi ∈M ⊂ Rd, consider the following heat equation on a manifoldMr/2 as

(
∂

∂t
+∆(c)

)
U(t, {x·}) = 0, U(0, {x·}) = f({x·}), where f({xi·}) =

r/2∑
µ=1

f ′(xiµ).

(4.23)

and f is “decomposable” in the same sense as Eq. (4.18) and Eq. (4.21). Eq. (4.23) governs

an r/2 variables system, which evolves by r/2 variables interacting with each other but the

initial conditions f ′ only depend on one variable. The solution is given as to satisfy

U =

∫
Ht({x·}, {y·})U(0, {y·})dµ(y∗) where dµ(y∗) :=

r/2∏
i=1

dµ(yi) (4.24)

and Ht is a heat kernel. The dµ(y∗) corresponds to the decomposable functions as in

Eq. (4.18) and Eq. (4.21). For the heat kernel, a well-known example of heat kernel is

Gaussian, which gives a solution to one variable Eq. (4.23) whenM = Rn. However, it is

difficult to obtain a concrete form of heat kernel for a general manifold. For details of heat

kernel, refer to [Rosenberg and Steven, 1997]. For H(r)
t , we claim as follows.

Proposition 4.6. H(r)
t is a heat kernel.

From this proposition, we can say that there exists a heat equation on manifoldsM′ and

M′′, whereM′ = M′′r/2, whose solution is given as Eq. (4.24) using Ht = H
(r)
t . In the

following, we consider the heat equation on this manifoldM′.

Using Eq. (4.24), we can relate the energy minimization problem to hypergraph cut and

justify Alg. 4. The energy minimization problem Eq.(4.22) in the Euclidean space can be

approximated as

S
(c)
2 (f) = ⟨∆(c)f, f⟩ ≈ 1

t
S2(H

(r)
t , f), (4.25)

with proper constraints in Eq. (4.22) (see Appendix 4.F.2 for details). As discussed when we

defined discrete Laplacian (Eq. (4.18)), the fourth term S2(H
(r)
t , f) is equivalent to the 2-way

hypergraph cut problem using a hypergraph formed by a biclique kernel H(r)
t if properly
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treating constraints. Hence, the energy minimization problem Eq.(4.22) can be seen as a

continuous analog to the hypergraph spectral clustering. This discussion supports our biclique

kernel with Gaussian kernel and Alg. 4, since Alg. 4 with the Gaussian-type biclique kernel

can be thought as an approximation of energy minimization problem Eq. (4.22). The key

observation is that taking a different m corresponds to taking a different manifold satisfying

heat equation Eq. (4.23). This is because the biclique kernel H(r) is a different heat kernel for

each m, and each heat kernel has a manifold, on which Eq. (4.23) holds. This key observation

gives an intuitive insight; choosing better m corresponds to choosing a manifoldM′ to which

the given data space X fits better. We conclude this section by theoretically formulating the

above discussion in the following theorem.

Theorem 4.7. LetM′ =Mr/2 be a manifold, on which Eq. (4.23) satisfies with solutions

using H
(r)
t . Let the data points x1, · · ·xn be sampled from a uniform distribution on a

manifoldM, and f ∈ C∞(M′). Putting tn = n−1/(2+α), where α > 0, there exists a constant

C such that

lim
n→∞

C(ntn)
−1L

(r)
n,tnf({xi·}) = ∆(c)f({xi·}) in probability.

This theorem theoretically supports the discussion in this section; if we have infinite

number of data, Eq. (4.18) converges to the continuous Laplace operator and approximation

in Eq. (4.25) becomes exact. Note that this theorem is a multivariate version of the result

in [Belkin and Niyogi, 2005].

4.5.3 Summary of Generalizations From Graph to Hypergraph

This section relates to the discussion of graph here to the discussion in this chapter. Similarly

to Sec. 2.2, we justify our biclique kernel by generalizing spectral connection in the graph

in Sec. 4.5.1 and Sec. 4.5.2. We summarize the relationship of spectral connection in graph

(Sec. 2.2) and in hypergraph (this chapter) in Table 4.1.

4.6 Related Work
This section reviews the related work of graph and hypergraph modeling.

Justifications of Graph Modeling. There are several approaches for justification of

graph modeling via kernel function. Existing work shows the theoretical connection to the
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Table 4.1: List of objective functions of r-uniform hypergraph spectral connection and the
corresponding pairwise ones. If we model by the kernels as listed, the k-way cut, the weighted
kernel k-means with a particular weight, energy minimization problem using Laplace operator
are equivalent to the spectral clustering. Details are discussed in the main text.

Graph (pairwise) Hypergraph (multi-way)

Kernel κ(ψ(x1), ψ(x2)) := ⟨ψ(x1), ψ(x2)⟩ κ(r)({xi·}, {ti·}) :=
∑
γ,ν

κ(xiγ , tjν )

k-way cut
k∑
j=1

∑
i1∈Vj ,i2∈V \Vj

wi1i2

k∑
i=1

∑
e∈E

∑
j1,j2∈e;j1∈Vj ,j2∈Vi\V

w(e).

Spectral clustering
The top k largest eigenvectors of

graph adjacency matrix A
/ gram matrix K

Top k largest eigenvectors of
hypergraph adjacency matrix A /

gram matrix K(r).

Kernel k-means
k∑
j=1

∑
xi∈πj

θ(xi)∥ψ(xi)−mj∥2
∑
xi∈πj

θ′(xi)∥ψ′(xi)−m′
j∥2

Heat Kernel

⟨∆(c)f, f⟩, s.t., ⟨f, c1⟩ where f obeys(
∂

∂t
+∆(c)

)
U(t, x) = 0,

U(0, x) = f(x)

⟨∆(c)f, f⟩, s.t., ⟨f, c1⟩ where f obeys(
∂

∂t
+∆(c)

)
U(t, {x·}) = 0,

U(t, {x·}) = f({x·}) =
r/2∑
i

f ′(xi)

graph cut from the weighted kernel k-means [Dhillon et al., 2004], energy minimization

problem via continuous heat kernel [Belkin and Niyogi, 2003], and kernel PCA [Bengio et al.,

2004]. Our approach follows the first two.

Hypergraph Cut for Any Hypergraphs. In Sec. 2.5.2, we summarized the established

hypergraph cuts. Recall that a study on hypergraph cut has three approaches. One way is a

graph reduction way [Agarwal et al., 2006], which also works for non-uniform hypergraphs.

There are two variants of this; star [Zhou et al., 2006] and clique [Rodriguez, 2002, Saito

et al., 2018]. The other ways are submodular approach [Hein et al., 2013, Li and Milenkovic,

2018]. Note also that there is another line called inhomogeneous ways [Li and Milenkovic,

2017, Veldt et al., 2020, Liu et al., 2021]. Our approach follows star and clique ways as well

as tensor and its graph reduction approach of [Ghoshdastidar and Dukkipati, 2015].

Hypergraph Cut for Uniform Hypergraphs. For uniform hypergraph, there is tensor

modeling for uniform hypergraph [Hu and Qi, 2012, Chen et al., 2017, Chang et al., 2020].

For these approach, the eigenvector of the tensors is considered. Furthermore, there is a line of

the research where the contraction of the tensors and k-way partitioning problem is considered
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[Ghoshdastidar and Dukkipati, 2014, 2015, 2017b], which we refer as GD. Slightly changing

from GD, we form an adjacency matrix Ag as a contracted matrix of A, i.e.,

Ag := A×3 1 · · · ×r 1. (4.26)

A change from GD is the “position” of mode-k products, i.e., GD defines a contraction as

A×3 1...×r 1. The reason for this change is that we want a contraction of half-undirected

hypergraph to be symmetric, and Eq. (4.3) gives the one for half-undirected hypergraph. On

the other hand, this change does not affect the result in GD since GD assumes undirected

hypergraph and symmetric tensor and hence contraction does not change by the position of

mode-k products. The clustering algorithm of GD is to solve the eigenproblem as

max traceZ⊤
ND

−1/2
v AgD

−1/2
v ZN , s.t.Z

⊤
NZN = I. (4.27)

We here show the connection between these two algorithms through the following proposition.

Proposition 4.8. For half-symmetric uniform hypergraphs, Eq. (4.27) and Eq. (2.97) are

equivalent.

Therefore, we may say that we also follow this tensor contraction approach.

Hypergraph Modeling. Comparing to the production of hypergraph cut objectives

as above, ways of modeling as hypergraphs have received less attention. There are various

studies to model vector data as hypergraphs by heuristic ways [Govindu, 2005, Sun et al.,

2017, Yu et al., 2018]. All of these cost O(nr), comparing O(n3) to ours. However, to our

knowledge, no studies developed a hypergraph cut-based framework to model vector data as

hypergraphs.

Heat Equations for Hypergraph. We remark that, for hypergraph connection, Whang

et al. [2020] considers weighted kernel k-means, but they consider a naive connection between

reduced contracted graphs and the standard kernel. Also, Louis [2015] and Ikeda et al. [2018]

consider discrete heat equation, which is connected to random walk. However, those three are

different to ours since they do not intend to formulate multi-way relationships.
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Table 4.2: Dataset Summary. Since Hopkins 155 contains 155 different videos, we report the
sum of the data points and average dimensions of videos.

iris spine ovarian hopkins155
# of class 3 3 2 2/3

size 150 310 216 45850
dimension 4 6 100 89.32

Table 4.3: Experimental results. The standard deviation is from randomness involved in
the fourth step of Alg. 4. The kernel for r = 2 means that we use the standard kernel. GD
stands for the method used in [Ghoshdastidar and Dukkipati, 2015]. Gaussian AS stands
for Gaussian formed by affine subspace. Gaussian dH−2 is a method discussed in [Li and
Milenkovic, 2017]. Polynomial Y stands for a method proposed by [Yu et al., 2018]. Since
Hopkins155 is the average performance of 155 datasets, this only shows the average. Details
are in the main text.

Kernel and Method iris spine Ovarian Hopkins155
Gaussian (r = 2) 0.1027 ± 0.0033 0.3191 ± 0.0025 0.1315 ± 0.0023 0.1600

Gaussian Ours (r ≥ 4) 0.0693 ± 0.0033 0.2807 ± 0.0000 0.0841 ± 0.0000 0.1112
Gaussian GD 0.0737 ± 0.0318 0.3000 ± 0.0000 0.1806 ± 0.0000 0.1465
Gaussian AS 0.2267 ± 0.0000 0.2839 ± 0.0000 0.1690 ± 0.0023 0.1294

Gaussian dH−2 0.2407 ±0.0662 0.3195 ± 0.0078 0.3317 ± 0.0892 0.1490
Polynomial (r = 2) 0.2922 ± 0.0746 0.3183 ± 0.0295 0.2043 ± 0.0780 0.2278

Polynomial Ours (r ≥ 4) 0.2719 ± 0.0383 0.3142 ± 0.0452 0.1898 ± 0.0794 0.2258
Polynomial GD 0.4359 ± 0.0546 0.3219 ± 0.0050 0.2817 ± 0.1201 0.2934
Polynomial Y 0.3227 ± 0.0199 0.3828 ± 0.0754 0.4399 ± 0.0093 0.2654

(a) Iris (b) Spine (c) Ovarian
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Figure 4.1: Experimental results. Red shows the result for Gaussian and blue shows for
polynomial. The shade shows the standard deviation of the fourth step of Alg. 4. Since
Hopkins155 is the average performance of 155 datasets, this only shows the average.

4.7 Experiments

This section numerically demonstrates the performance of our Alg. 4 using our formulation

of multi-way similarity with biclique kernel.
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Objective of the Experiments. These experiments evaluate our modeling by comparing

the standard kernel and other heuristic hypergraph modelings. To focus on this purpose, we

varied the modelings and kept fixed the cut objective function as Eq. (2.91).

Datasets. Our experiments were performed on classification datasets, iris and spine

from the UCI repository, and ovarian cancer data [Petricoin III et al., 2002]. We also

used Hopkins155 dataset [Tron and Vidal, 2007], which contains 155 motion segmentation

datasets. These type of vector classification datasets were used in the previous studies, such

as [Ghoshdastidar and Dukkipati, 2015]. Note that we used vector data since the primary aim

of the research in this chapter is to model a hypergraph from vector data. As discussed later,

since the experiments need to take O(n3) time complexity and need to run multiple times on

various parameters, we need to restrict ourselves to small to medium datasets. The dataset is

summarized in Table 4.2.

Experimental Setting. We used Gaussian kernel (κ(xi,xj) = exp(−γ∥xi − xj∥2))
and polynomial kernel (κ(xi,xj) = (

∑
i xixj + c)d) as a base kernel to form a biclique

kernel κ(r), and conduct Alg. 4. We used r = 2, 4..., 20. For comparison, we employed

the following types of modeling. Note that we restrict hypergraph comparison methods to

be m = 3 to make the comparison fair in terms of computational time. By this, all of the

comparisons and ours equally cost O(n3), which is equivalent to Alg. 4. For the first of

the comparison method, we used r = 2, the standard graph method, for both kernels as a

baseline. Secondly, we used ad-hoc modeling used in the experiment of [Ghoshdastidar and

Dukkipati, 2015] for both kernels, which is, Aijk := max(κ(xi,xj), κ(xj,xk), κ(xk,xi)).

Third, we employed Gaussian-type modeling used in various papers such as [Govindu, 2005,

Li and Milenkovic, 2017], which is the mean Euclidean distance to the optimal fitted affine

subspace. More formally, Aijk := exp(−γλ1), where λ1 is the smallest eigenvalue of

X⊤
ijkXijk, and Xijk := (xi,xj,xk). Fourth, we used Gaussian-type modeling used in [Li and

Milenkovic, 2017], which is referred to as dH−2. The dH−2 is a Euclidean distance between

v and the affine subspace generated by e/{i}, for all I ∈ e, and sum this up for all I ∈ e.
Lastly, for polynomial, we used a generalized dot product form [Yu et al., 2018], which

is Aijk :=
∑

l xilxjlxkl. Note that all the hypergraph comparison methods work for any

uniform hypergraph. We can say that we compare five Gaussian-type methods (ours, baseline,

[Ghoshdastidar and Dukkipati, 2015], affine subspace, and dH−2) and four polynomial-type
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methods (ours, baseline, [Ghoshdastidar and Dukkipati, 2015], and [Yu et al., 2018]). For the

comparisons, we also used the spectral clustering as Eq. (2.97), and conduct the fourth step of

Alg. 4. We used a free parameter γ ∈ {10−3, 10−2,..., 105} for Gaussian, and d ∈ {1, 3, ..., 9}
and c = 0, 1 for polynomial. Since the fourth step of Alg. 4 involves randomness at k-means,

we repeated this step 100 times. We evaluated our performance on error rate, i.e., (# of

mis-clustered data points)/(# of data points), same as the previous studies [Zhou et al., 2006,

Li and Milenkovic, 2017]. We report average errors and standard deviations caused from

the fourth step except for Hopkins155. Since Hopkins155 contains 155 tasks and standard

deviations vary by each task, we only report an average error of 155 tasks, similar to the

previous studies [Ghoshdastidar and Dukkipati, 2014, 2017b]. Our experimental code is

available at github1. We want to mention that our experiments was run with Matlab on Mac

Mini with Intel i7 Processor and 32GiB RAM.

Overall Results. We summarize the results in Table 4.3 and Fig. 4.1. From Table 4.3, we

see that ours with Gaussian kernel outperforms the other methods at all the datasets. Ours with

polynomial kernel also outperforms other polynomial methods. Note also that the Gaussian

kernel is generally better than the polynomial kernel in our experiments; this is expected since

the Gaussian kernel is theoretically known to approximate function very well in the standard

setting, known as universality, while the polynomial kernel is known to be less expressive than

the Gaussian [Micchelli et al., 2006]. Additionally, for most cases in Fig. 4.1, if we increase

m, results are improved until a certain point but slightly drop from there. This corresponds

to the intuition; multi-way relations could be too “multi” beyond a certain point: Too many

relations could work as noise to separate the data. To our knowledge, it is first time to obtain

insights on behaviors of higher-order (say, r ≥ 8) uniform hypergraph on spectral clustering.

Moreover, for Gaussian methods, the variance for ours is smaller than one for the others. This

means that our methods offer more separated modeling.

Computational Time. Although all the comparisons and ours equally cost O(n3), we

provide the runtime of our experiment in Table 4.4 and Fig. 4.2. Ours are faster than the

hypergraph comparisons. This comes from the difference in construction of hypergraphs. All

methods have roughly two parts; i) construction of hypergraph and ii) spectral clustering,

and ii) costs O(n3) in all the methods. However, for the construction of hypergraphs, while

1https://github.com/ShotaSAITO/HypergraphModeling

https://github.com/ShotaSAITO/HypergraphModeling
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Table 4.4: Runtime Summary (unit:secs). Here we use E notation, e.g., E-06 = 10−6. GD
stands for the method used in [Ghoshdastidar and Dukkipati, 2015]. Gaussian AS stands
for Gaussian formed by affine subspace. Gaussian dH−2 is a method discussed in [Li and
Milenkovic, 2017]. Polynomial Y stands for a method proposed by [Yu et al., 2018]. For
Hopkins155, we sum up all the computational time, and report the time which produced the
best error result summarized in Table 4.3.

Kernel and Method iris spine ovarian Hopkins155
Gaussian (r = 2) 6.99E-05±3.54E-06 4.05E-04±1.11E-09 2.18E-04±7.29E-10 4.82E-02

Gaussian Ours (r ≥ 4) 6.05E-05±2.90E-06 4.28E-04±1.13E-09 2.41E-04±6.56E-10 5.22E-02
Gaussian GD 1.57E-03±4.44E-06 1.54E-02±3.15E-06 4.31E-03±1.45E-06 3.69E+00
Gaussian AS 9.16E-04±1.06E-05 7.14E-03±5.51E-06 2.70E-02±6.11E-06 4.12E+01

Gaussian (dH−2) 6.12E-02±2.54E-06 2.15E-01±1.08E-06 1.01E-01±3.15E-06 1.22E+01
Polynomial (r = 2) 3.94E-05±6.98E-06 1.11E-04±2.18E-09 7.29E-05±4.82E-07 2.69E-02

Polynomial Ours (r ≥ 4) 3.11E-05±3.73E-06 6.73E-05±2.17E-09 1.07E-04±4.96E-05 2.20E-02
Polynomial GD 1.57E-03±4.44E-06 1.54E-02±3.15E-06 4.31E-03±1.45E-06 3.69E+00
Polynomial Y 9.16E-04±1.06E-05 7.14E-03±5.51E-06 2.70E-02±6.11E-06 4.12E+01

(a) Iris (b) Spine (c) Ovarian (d) Hopkins155

Figure 4.2: Runtime for our method. Red shows the result for Gaussian and blue shows
for polynomial. The shade shows the standard deviation of the fourth step of Alg. 4. Since
Hopkins155 is the sum of runtime of different 155 datasets, this only shows the average.

ours costs O(n2), the other comparisons cost O(n3) to construct. This difference induces the

time difference. The actual running time of our method does not change the time very much

when we increase the order of the hypergraph r. This supports our claim – no matter which

r we take, the overall computational time does not depend on r. On the other hand, for the

comparison methods, if we increase m we expect the actual running time to increase since the

comparisons cost O(nr) to compute.

4.8 Summary
To conclude, we have provided a hypergraph modeling method, and a faster spectral clustering

algorithm (O(n3) for ours while O(nr) for existing ones) that is connected to the hypergraph

cut problems proposed by [Zhou et al., 2006, Ghoshdastidar and Dukkipati, 2015, Saito et al.,
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2018]. A future direction would be to explore other constructions of multi-way similarity

which can connect to other uniform and non-uniform hypergraph cuts not having kernel

characteristics, such as Laplacian tensor ways [Chen et al., 2017, Chang et al., 2020], total

variation and its submodular extension [Hein et al., 2013, Yoshida, 2019]. Also, it would be

interesting to study more on connections between this work and a general splitting functions

of inhomogeneous cut [Li and Milenkovic, 2017, Chodrow et al., 2021], e.g., to see which

class of splitting functions can be connected to the biclique kernel. The limitation of our work

is that we cannot apply our formulation to an odd-order uniform hypergraph. The reason

for this limitation is that our biclique kernel is equivalent to half-symmetric semi-definite

even-order tensor while odd-order semi-definiteness is indefinite as discussed.
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Appendices for Chapter 4

In the following sections, we provide the omitted proofs, additional discussions, and additional

experimental result for Chapter 4.

4.A Proof of Theorem 4.1

We start with the ‘only if’ direction. Following the definition of semi-definiteness of tensors,

K ×1 v . . .×r v =
n∑

i1...ir=1

vi1 . . . virκ
(r)({xiµ}

r/2
µ=1, {xiµ}rγ=r/2+1)

=
∑
i1...ir

r/2∑
j1,j2=1

vi1 . . . vir/2κ(xij1 ,xiir/2+j2
)vir/2+1

. . . vir

=

〈 ∑
i1...ir/2,j1

vi1 . . . vir/2ϕ(xij1),
∑

ir/2+1...ir,ij2

vir/2+1
. . . virϕ(xir/2+j2

)

〉

=

∥∥∥∥∥∥
∑

i1...ir/2,j1

vi1 . . . vir/2ϕ(xij1 )

∥∥∥∥∥∥
2

≥ 0.

This shows that a gram tensor K is semidefinite.

We now move to prove ‘if’ direction. We construct the space such as

F =

{
l∑

i1,...,ir/2=1

αi1αi2 . . . αir/2κ({xi}
r/2
i=1, ·)

∣∣∣ l ∈ N,xi ∈ X,αi· ∈ R, i = 1, . . . , l

}
.

We emphasize that the element of the set F is a function that takes r/2 arguments. Note

that we have used · to indicate the position of the argument of the function. Let the function

f, g ∈ F as

f({xi}r/2i=1) =
l∑

i·=1

αi1αi2 . . . αir/2κ({ti}
r/2
i=1, {xi}

r/2
i=1)

g({xi}r/2i=1) =
n∑
l·=1

βl1βl2 . . . βlr/2κ({zi}
r/2
i=1, {xi}

r/2
i=1)
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We now introduce inner product ⟨f, g⟩ as follows;

⟨f, g⟩ :=
l∑

i·=1

n∑
j·=1

αi1αi2 . . . αir/2βl1βl2 . . . βlr/2κ({ti}
r/2
i=1, {zi}

r/2
i=1) (4.28)

=
l∑

i·=1

αi1αi2 . . . αir/2g({ti}
r/2
i=1)

=
l∑

l·=1

βl1βl2 . . . βlr/2f({zi}
r/2
i=1)

where the second equation follows from the definition. We remark that since the assumption

that κ is semi-definite,

⟨f, f⟩ =
∑

i1,...,im

αi1 . . . αimκ({xi}
r/2
i=1, {xi}ri=r/2+1) ≥ 0.

Similarly to the standard kernel, the biclique kernel has reproducing property. The reproducing

property follows from Eq. (4.28) if we take g = κ({xi}r/2i=1, ·), and we do the operation defined

as Eq. (4.28) on the function f ,

⟨f, κ({xi}r/2i=1, ·)⟩ =
l∑

i·=1

αi1αi2 . . . αir/2κ({ti}
r/2
i=1, {xi}

r/2
i=1)

= f({xi}r/2i=1).

We call this property as reproducing property.

To conclude the proof, it remains to show separability and completeness. Since κ is also

kernel, separability follows for the same reasoning as [Shawe-Taylor and Cristianini, 2004].

For completeness, we consider a fixed input {xi}r/2i=1 and a Cauchy sequence (fn)
∞
n=1. From

the Cauchy-Schwarz inequality, we obtain

(
fn({xi}r/2i=1)− fm({xi}

r/2
i=1)
)2

=
〈
fn − fm, κ({xi}r/2i=1, ·)

〉2
≤ ∥fn − fm∥2 κ({xi}r/2i=1, {xi}

r/2
i=1).

This means that the Cauchy sequence (fn)
∞
n=1 is bounded, and has a limit. We define such a
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limit

g({xi}r/2i=1) = lim
n→∞

fn({xi}r/2i=1),

and include all such limit functions in F . Then, we obtain the Hilbert space Fκ associated

with kernel κ.

While we so far have the feature space, we need to specify the image of an input {xi}r/2i=1

under the mapping ψ.

ψ({xi}r/2i=1) = κ({xi}r/2i=1, ·) ∈ Fκ.

Then, inner product between an element of Fκ and the image of an input {xi}r/2i=1 is

⟨f, ψ({xi}r/2i=1)⟩ = ⟨f, κ({xi}
r/2
i=1, ·)⟩ = f({xi}r/2i=1).

This is what we need. Furthermore, the inner product is strict since if ∥f∥ = 0, then ∀x we

have

f = ⟨f, ψ({xi}r/2i=1)⟩ ≤ ∥f∥∥ψ({xi}
r/2
i=1)∥ = 0.

4.B Proof of Lemma 4.2

We begin the proof by computing a gram matrix K(r) of κ(r). First, to avoid confusion in

proof, we omit the variables t··· in the definition. We rewrite our kernel κ(r) for the two sets

of r/2 variables {xi·} and {xir/2+·} as

κ(r)({xiµ}
r/2
µ=1, {xiµ}rγ=r/2+1) =

r/2∑
j1,j2=1

κ(xij1 ,xiir/2+j2
), (4.29)

instead of {xi·} and {tl·} in the original definition Eq. (4.5). This writing change does not

change the definition, but just rewrites the variables.

To save the space, we introduce the abbreviation as

ϕi := ϕ(xi)
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ϕij := ⟨ϕ(xi), ϕ(xj)⟩.

Let κ(r) for two r/2 variables {xi,xi1 , . . . ,xir/2−1
}, {xj,xxr/2 , . . . ,xr−2} For X =

{x1, . . . ,xn}, we can compute the gram matrix as

K
(r)
ij

=
∑
i·,j·

κ(r)({xi},∪{xi·}, {xj} ∪ {xr/2+j·}) (4.30)

=
∑
i·,j·

ψij + ϕij1 + . . .+ ϕijr/2−1︸ ︷︷ ︸
r/2−1 terms

+ϕji1 + . . .+ ϕjir/2−1︸ ︷︷ ︸
r/2−1 terms

+ϕi1j1 + ϕi1j2 + . . .+ ϕir/2−1jr/2−1︸ ︷︷ ︸
(r/2−1)×(r/2−1) terms

(4.31)

= nr−2ϕij + nr−3 r − 2

2

n∑
l=1

(ϕil + ϕjl) + nm−4

(
r − 2

2

)2 n∑
l,k=1

ϕlk (4.32)

= nr−2⟨ϕi +
r − 2

2

n∑
l=1

ϕl
n
, ϕj +

r − 2

2

n∑
l=1

ϕl
n
⟩. (4.33)

Note that i· and j· runs from 1 to n. Then,

∑
i·,j·

ϕijr = nr−3
∑
l

ϕil (4.34)

∑
i·,j·

ϕjir = nr−3
∑
l

ϕjl, (4.35)

for all r = 1, . . . , r/2− 1,

∑
i·,j·

ϕirjs = nr−4
∑
l,k

ϕlk (4.36)

for all r, s = 1, . . . , r/2− 1, and

∑
i·,j·

ϕij = nr−2ϕij (4.37)

Using this we obtain Eq. (4.32). By Eq. (4.33), we now prove Lemma. 4.2. We remark that

Eq. (4.32) is equivalent to Eq. (4.8), since ϕij = Kij by definition. Since κ′(r) is kernel by

Eq. (4.33), K(r) is semi-definite, which concludes Cor. 4.3.
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4.C Proof of Proposition 4.4
Actually, Prop. 4.4 follows directly from the proof of Lemma 4.2. We apply Lemma 4.2 to

prove Prop. 4.4.

It is clear that there exists unique κ′(r) from κ(r), by seeing the way of composition. We

move on to show that there exists unique κ(r) from κ
′(r) and m. Since K(r) is a kernel by

Lemma 4.2, this concludes that K(r) is semi-definite. For a semi-definite matrix for A(r), we

have a decomposition ψ′ by the standard Mercer’s theorem. Then, we have

ϕ′
i = n

r−2
2 ϕi + n

r−2
4
r − 2

2

n∑
l=1

ϕl,

where ψ is a feature map for biclique kernel for A. By the construction, we can rewrite ψ by

ψ′ by solving the linear equation as

ϕ′ = Cϕ,

where ϕ′ := (ϕ′
1, . . . , ϕ

′
n)

⊤, ϕ := (ϕ1, . . . , ϕn)
⊤, and

C := n
r−4
2


n+ r−2

2
r−2
2

. . . r−2
2

r−2
2

n+ r−2
2

. . . r−2
2

... . . . ...
r−2
2

. . . r−2
2

n+ r−2
2

 .

By construction, C is a full rank matrix, and therefore we can write as

ϕ = C−1ϕ′. (4.38)

Therefore, this concludes the proof.

4.D Proof of Proposition 4.5
We start to define a matrix L(r) to satisfy

L(r)f ′(x1) =
∑

{xi·}
r/2
µ=2

L
(r)
t,nf({xi·}). (4.39)
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Then, we can rewrite the minimization problem as

S
(r)
2 (f) :=

∑
{xi·},{yi·}

L
(r)
t,nf({xi·})f({yi·})

=
∑
x,y

L(r)f ′(x)f ′(y) (4.40)

Let A be a contracted matrix from a gram tensorH for the biclique kernel H(r)
t , and D be a

degree matrix of A. By construction of Lm, we can rewrite

L(r) =
D

r/2
− A.

Now we consider to introduce normalizing constrains. This is justified since the continuous

counterpart of energy minimization problem Eq. (4.22) we can introduce such a constraints by

properly choosing the measure µ for inner product. Now, we consider Eq. (4.40). Introducing

the normalizing constraints, we write as

minS
(r)
2 (f) = min f⊤L(r)f

= min f⊤D−1/2

(
D

r/2
− A

)
D−1/2f

= max f⊤D−1/2AD−1/2f, s.t. f⊤f = 1.

This corresponds to the hypergraph cut problem for the hypergraph formed by H(r)
t .

4.E Proof of Proposition 4.6

Since H is a heat kernel H :M×M× (0,∞)→ R, we can decompose into

Ht(x,y) =
∑
i

exp(−λit)ϕi(x)ϕi(y) (4.41)

Using the fact that Ht is a heat kernel, we can prove that the kernel H(r)
t is a heat kernel

Mr/2 ×Mr/2 × (0,∞)→ R, since we can rewrite H(r)
t as

H
(r)
t ({x·}, {y·}) =

∑
i

exp(−λit)(ϕi(x1) + . . . ϕi(xr/2))(ϕi(y1) + . . . ϕi(yr/2)). (4.42)
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Similarly to Eq. (4.42), this heat kernel H ′(r) is also a heat kernel since we can rewrite this as

H
′(r)(x,y)

=
∑
i

exp(−λit)
(
ϕ(x) + (r/2− 1)

∫
M′

ϕ(x)dx

)(
ϕ(y) + (r/2− 1)

∫
M′

ϕ(y)dy

)
.

(4.43)

4.F Proof of Theorem 4.7

This section provides the proof of Thm. 4.7. Also, we offer the differnt approach of the

theorem by directly approximating Eq. (4.25).

4.F.1 Main Proof

The strategy to prove Thm. 4.7 is using Hoeffding’s inequality. We start by reviewing

Hoeffding’s inequality.

Lemma 4.9 (Hoeffding). Let X1, . . . , Xn be independent identically distributed random

variables, such that |Xi| ≤ K. Then

P

(∣∣∣∣∣∑
i

Xi

n
− E(Xi)

∣∣∣∣∣ > ϵ

)
< 2 exp

(
− ϵ2n

2K2

)
(4.44)

To prove the theorem for L(r)
tn , we evaluate the equation in Eq. (4.18). We define the

operator L(r)
t : L2(M)→ L2(M) as

L
(r)
t f({xi·}) :=

∫
M′

dµ(y∗)
H

(r)
t ({xi·}, {yi·})

r/2
f({xi·}

−
∫
M′

dµ(y∗)H
(r)
t ({xi·}, {yi·})f({yi·}) (4.45)

We remark that L(r)
t is the empirical average of n independent random variables with the

expectation

E(L
(r)
nt f({xi·})) = L

(r)
t f({xi·}).



4.F. Proof of Theorem 4.7 154

Applying Hoeffding inequality (Lemma 4.9), we obtain

P

(∣∣∣∣1t Ltnf({xi·})n
− L(r)

t f({xi·})
∣∣∣∣ > ϵ

)
≤ exp

(
−ϵ

2nt2

2

)
.

If we choose t as a function of n, letting t = tn = n−1/(2+α) where α > 0 to the equation

Thm. 4.7, we can obtain for any ϵ > 0,

lim
n→∞

P

(∣∣∣∣∣ 1tn L
(r)
nt

n
f({xi·})− L

(r)
t f({xi·})

∣∣∣∣∣ > ϵ

)
≤ lim

n→∞
exp

(
−ϵ

2nt2n
2

)

≤ lim
n→∞

exp

(
−ϵ

2n(n− 1
2+α )2

2

)
= 0.

With the discussion in the proof of Prop. 4.10, we can see that

lim
t
L
(r)
t f({xi·}) = ∆(c)f({xi·}).

If n→∞ then, t→ 0. The above discussion in all leads the conclusion,

lim
n→∞

C

ntn
Ltnn f({x·}) = ∆(c)f({x·}).

4.F.2 Detailed Steps of Approximation Eq. (4.25)

Although Thm. 4.7 justifies the approximation, this section endevors to directly approximate

asymptotic heat equation Eq. (4.25). In this subsection about approximation, we approximate

M′ ≈ Rn, and dµ(y·) ≈ dy, similar to [Belkin and Niyogi, 2003].

We start with expanding the heat equation as done in the main text.

lim
t→0

∆(c)U(t, {xi}r/2i=1) = ∆(c)f({xi}r/2i=1)

= − lim
t→0

∂

∂t

∫
M′

dµ(y∗)Ht({xi}r/2i=1, {y·})U(0, {y·})
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Therefore, for small t, we obtain

− lim
t→0

∂

∂t

∫
M′

dµ(y∗)Ht({xi}r/2i=1, {y·})U(0, {y·})

≈ −1

t

(∫
M′

dµ(y∗)Ht({xi}r/2i=1, {y·})f({y·})−
∫
M′

dµ(y∗)H0({xi}r/2i=1, {y·})f({y·})
)
,

(4.46)

following from the definition of partial differentiation.

In the following, we consider Ht = H
(r)
t since we are interested in this case. Note that

the heat kernel H(r)
t is a biclique kernel whose base kernel is Gaussian kernel Gt. To further

consider Eq. (4.46), we next examine a solution to Eq. (4.23) in the asymptotic case t→ 0.

This allows us to have ∆f , which we want to analyze in Eq. (4.22). We provide an analysis

on the solution to Eq. (4.23) when t→ 0.

Proposition 4.10. In the Euclidean space, i.e., M′ = Rn and dµ(yi) = dyi, a given a

function f :M′ → R and the constraints in Eq. (4.22), then

lim
t→0

∫
M′

dµ(y∗)H
(r)
t ({x·}, {y·})f({y·}) = lim

t→0

∫
M′

dµ(y∗)
H

(r)
t ({x·}, {y·})

r/2
f({x·})

(4.47)

This proposition is a generalized version of Gaussian kernel features in the following

sense. For a single variable Gaussian Kernel, we have

lim
t→0

∫
M′

Gt(x,y)f(y)dµ(y) = f(x), (4.48)

lim
t→0

∫
M′

Gt(x,y)dµ(y) = 1. (4.49)

Combining these two, we obtain

lim
t→0

∫
M
Gt(x,y)f(y)dµ(y) = f(x)

= lim
t→0

∫
M
Gt(x,y)f(x)dµ(y). (4.50)

Note the difference between the variables of y of f on the left-hand side and x of f on

the right-hand side. Prop. 4.10 is a generalized version of this relationship Eq. (4.50).
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Using this relation Eq. (4.50), for small t, we can further rewrite as∫
M
Gt→0(x,y)f(y)dµ(y) = lim

t→0

∫
M
Gt(x,y)f(y)dµ(y)

= f(x)

= lim
t→0

∫
M
Gt(x,y)f(x)dµ(y)

=

∫
M
Gt→0(x,y)f(x)dµ(y)

≈
∫
M
Gt(x,y)f(x)dµ(y).

It is too rough to approximate the left-hand side in the form of the right-hand side, i.e.,

lim
t→0

∫
M
Gt(x,y)f(y)dµ(y) ̸≈

∫
M
Gt(x,y)f(y)dµ(y)

The reason is that since we have the variable y, which we take integral in both the Gaussian

and the function, we cannot see the approximated shape if we increase the value of t, even

if t is very small. The right-hand side overcomes this problem. Using this relation, a single

variable version of Eq. (4.46) is further approximated.

Now, using the same strategy for Eq. (4.47) in Prop. 4.10, we have an approximation for

small t as∫
M′

dµ(y∗)H
(r)
t→0({x·}, {y·})f({y·}) = lim

t→0

∫
M′

dµ(y∗)H
(r)
t ({x·}, {y·})f({y·})

= lim
t→0

∫
M′

dµ(y∗)
H

(r)
t ({x·}, {y·})

r/2
f({x·})

=

∫
M′

dµ(y∗)
H

(r)
t→0({x·}, {y·})

r/2
f({x·})

≈
∫
M′

dµ(y∗)
H

(r)
t ({x·}, {y·})

r/2
f({x·}) (4.51)

This relation further rewrites Eq. (4.46), as

− lim
t→0

∂

∂t

∫
M′

dµ(y∗)Ht({xi}r/2i=1, {y·})U(0, {y·})

≈ −1

t

(∫
M′

dµ(y∗)Ht({xi}r/2i=1, {y·})f({y·})−
∫
M′

dµ(y∗)H0({xi}r/2i=1, {y·})f({y·})
)
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≈ −1

t

(∫
M′

dµ(y∗)Ht({x·}, {y·})f({y·})−
∫
M′

dµ(y∗)
H

(r)
t ({x·}, {y·})

r/2
f({x·})

)
.

(4.52)

To obtain the third approximation, we apply Eq. (4.51) to the second term of the second

equation. We also use the fact that {x·} is an abbreviated form of r/2 continuous variables

{xi}r/2i=1.

Consider discrete data points in M′ instead of the continuous variables, Eq. (4.46),

which is approximated as Eq. (4.52), is further approximated by

1

t

−∑
{yi·}

H
(r)
t ({xi·}, {yi·})f({yi·}) +

∑
{yi·}

H
(r)
t ({xi·}, {yi·})

r/2
f({xi·})

 =
1

t
L
(r)
t,nf({xi·})

Thus, the Laplacian Eq. (4.18) can be seen as a discrete approximation of the continuous

Laplacian for r/2 variables heat equation Eq. (4.23). We also see that Prop. 4.10 introduces

the coefficient r/2 in Eq. (4.18).

Finally, we remark that all the approximation here is justified by Thm. 4.7.

4.F.3 Proof of Proposition 4.10

This section provides a proof of Prop. 4.10.

Before we proceed, we review the one variable case. Using single variable Gaussian

kernel characteristics Eq. (4.48) and Eq. (4.49), we compute for multivariate version of

Eq. (4.48) as

lim
t→0

∫
M′r/2

H
(r)
t ({xi}r/2i=1, {yi}

r/2
i=1)f(y)dµ(y∗)

= lim
t→0

∫
M′r/2

r/2∑
i=1

r/2∑
j=1

Gt(xi,yi)

r/2∑
i=1

f ′(yi)dµ(y∗) (4.53)

= vol(M)r/2−1
(m
2

)2 r/2∑
i=1

f ′(yi), (4.54)
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and for multivariate version of Eq. (4.49) as

lim
t→0

∫
M′r/2

H
(r)
t ({xi}r/2i=1, {yi}

r/2
i=1)dµ(y∗) = lim

t→0

∫
M′r/2

r/2∑
i=1

r/2∑
j=1

Gt(xi,yi)dµ(y∗)

= vol(M)r/2−1
(m
2

)2
.

We now prepare to expand the left hand side of Eq. (4.47). The left hand side of Eq. (4.47) is

expanded as

lim
t→0

∫
M′

dµ(y∗)Ht({xi}r/2i=1, {y·})f({y·}) (4.55)

= lim
t→0

r/2∑
i=1

(∫
M′r/2

H
(r)
t ({xi}r/2i=1, {yi}

r/2
i=1)f

′(yi)dµ(y∗)

)
(4.56)

We further compute the inside of the parenthesis in Eq. (4.56) as

lim
t→0

∫
M′r/2

H
(r)
t ({xi}r/2i=1, {yi}

r/2
i=1)f

′(yi)dµ(y∗) (4.57)

= lim
t→0

r/2∑
j=1

(∫
M′r/2

Gt(xj,yi)f
′(yi)dµ(y∗) +

∑
l ̸=i

∫
M′r/2

Gt(xj,yl)f
′(yi)dµ(y∗)

)
(4.58)

=

r/2∑
j=1

(
vol(M)r/2−1f ′(xj) +

r/2− 1

2
vol(M)r/2−1

∫
M
dµ(yi)f

′(yi)

)
(4.59)

= vol(M)r/2−1

r/2∑
j=1

f ′(xj) +
m

2

r/2− 1

2
vol(M)r/2−1

∫
M
µ(yi)f

′(yi) (4.60)

Putting this into Eq (4.56), we obtain

lim
t→0

r/2∑
i=1

(∫
M′r/2

H
(r)
t ({xi}r/2i=1, {yi}

r/2
i=1)f

′(yi)dµ(y∗)

)

=

r/2∑
i=1

vol(M)r/2−1

r/2∑
j=1

f ′(xj) +
m

2

r/2− 1

2
vol(M)r/2−1

∫
M
dµ(yi)f

′(yi)


=
m

2
vol(M)r/2−1

r/2∑
i=1

f ′(xi) +
m

2

r/2− 1

2
vol(M)r/2−1

r/2∑
i=1

∫
M
dµ(yi)f

′(yi)
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= lim
t→0

∫
M′

dµ(y∗)
H

(r)
t ({xi}r/2i=1, {yi}

r/2
i=1)

r/2
f({xi}r/2i=1). (4.61)

The last equality follows from that due to Eq. (4.54) we can proceed the first term as this, and

that the second term vanishes due to the constraint ⟨f, c1⟩ = 0, i.e.,

0 = ⟨f, c1⟩

= c

∫
Mr/2

dµ(y∗)f({y·})

= c

∫
Mr/2

r/2∏
i=1

dµ(yi)

 r/2∑
i=1

f ′(yi)


= c

r/2∑
i=1

vol(M)r/2−1

∫
M
dµ(yi)f

′(yi).

Eq. (4.61) concludes the proof.

4.G Proof of Proposition 4.8
By definition of the star adjacency matrix, the matrix can be computed

(As)ij =
∑

e∈E;i,j∈e

aij
r

Considering the order of edges, this would be

(As)ij =
∑

e∈E;i,j∈e

aij
r

=
∑

e∈E;i,j∈e

(r
2

)2
w(e = i, · · · , j, · · ·) (4.62)

Eq. (4.62) is shown to be equivalent toAg/r. Therefore, the problems Eq. (4.27) and Eq. (2.97)

are equivalent.



Chapter 5

Multi-Class Clustering via Approximated

p-Resistance

This chapter develops an approximation to the (effective) p-resistance and applies it to multi-

class clustering. Spectral methods based on the graph Laplacian and its generalization to

the graph p-Laplacian have been a backbone of non-Euclidean clustering techniques. The

advantage of the p-Laplacian is that the parameter p induces a controllable bias on cluster

structure. The drawback of p-Laplacian eigenvector based methods is that the third and higher

eigenvectors are difficult to compute. Thus, instead, we are motivated to use the p-resistance

induced by the p-Laplacian for clustering. For p-resistance, small p biases towards clusters

with high internal connectivity while large p biases towards clusters of small “extent,” that

is a preference for smaller shortest-path distances between vertices in the cluster. However,

the p-resistance is expensive to compute. We overcome this by developing an approximation

to the p-resistance. We prove upper and lower bounds on this approximation and observe

that it is exact when the graph is a tree. We also provide theoretical justification for the use

of p-resistance for clustering. Finally, we provide experiments comparing our approximated

p-resistance clustering to other p-Laplacian based methods.

5.1 Introduction

As we see in Chapter 2, various graph methods have been considered, such as clustering and

semi-supervised learning [von Luxburg, 2007, Zhu et al., 2003]. Common to these methods,

graph 2-seminorm, 2-seminorm induced from the graph Laplacian, is actively used. Its

generalization to the graph p-seminorm is known to exhibit performance improvement [Bühler
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and Hein, 2009, Slepcev and Thorpe, 2019].

This chapter considers multi-class clustering over a graph using the graph p-seminorm.

For this purpose, spectral clustering is the most popular. In the 2-seminorm based (i.e.,

standard) spectral clustering, we use the first k eigenvectors of the graph Laplacian for k-

class clustering [von Luxburg, 2007]. This use of the first k eigenvectors is theoretically

supported [Lee et al., 2014]. Using the p-seminorm, this graph Laplacian is extended to

the graph p-Laplacian [Bühler and Hein, 2009]. Similar to the standard case, using the

first k eigenvectors of this graph p-Laplacian for k-class clustering is also theoretically

supported [Tudisco and Hein, 2018]. However, as discussed in Sec. 2.1.4, there is not yet

known an exact identification for the third or higher eigenpairs of p-Laplacian [Lindqvist,

2008], and hence in practice, it is difficult to obtain them. Due to this limitation, the existing

methods using p-Laplacian propose an ad-hoc resolution of this limitation for multi-class

clustering [Bühler and Hein, 2009, Ding et al., 2019, Luo et al., 2010]. On the other hand, this

limitation makes the p-Laplacian difficult to use in practice to leverage the full potential of

graph p-seminorm for multi-class clustering purposes. Note that the same limitation applies to

Chapter 3 even if we generalize to hypergraph p-Laplacian, where we conducted experiments

only for two-class clustering.

Thus, in order to aim to exploit the graph p-seminorm more for multi-class clustering,

we explore an alternative way to spectral clustering; in this chapter, we propose multi-class

clustering via approximated p-resistance. The p-resistance is also induced by the graph

p-seminorm. The use of p-resistance for clustering is motivated in the following way. Looking

back to the 2-seminorm case discussed in Sec. 2.4, the 2-resistance is defined as an inverse

of the constrained optimization problem using the graph 2-seminorm and is known to be a

metric over a graph [Klein and Randić, 1993]. Moreover, 2-resistance is characterized by

a semi-supervised learning problem of the graph 2-seminorm regularization [Alamgir and

Luxburg, 2011]. Given these properties, the 2-resistance is used for the multi-class graph

clustering [Yen et al., 2005, Alev et al., 2017]. However, for the large graph under certain

conditions, the 2-resistance converges to a meaningless limit function [Nadler et al., 2009,

von Luxburg et al., 2010]. Using the graph p-seminorm, the 2-resistance is generalized to the

p-resistance [Herbster and Lever, 2009], which overcomes this problem [Slepcev and Thorpe,

2019]. The 1/(p−1)-th power of the p-resistance is also shown to be a metric [Herbster, 2010,
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Kalman and Krauthgamer, 2021]. Furthermore, since different p of p-resistance captures a

different characteristic of a graph [Alamgir and Luxburg, 2011], we expect that the parameter p

serves as a tuning parameter for the clustering result. Thus, the natural idea for the multi-class

clustering is to use the 1/(p− 1)-th power of p-resistance.

While the discussion above motivates us to use the 1/(p−1)-th power of the p-resistance

to multi-class clustering, there remain two issues; i) computational cost of p-resistances for

many pairs ii) lack of theoretical justification for using p-resistance for clustering other than

the metric property. In this chapter, we address these in the following way. For i), it is

computationally expensive to compute p-resistances for many pairs. The reason is that we

need to solve the constrained optimization problem for many pairs. Looking back at the

2-resistance, we can compute the 2-resistance efficiently in the following way. Recall that we

can compute 2-resistance as

rG,2(i, j) = ∥L+ei − L+ej∥2G,2, (5.1)

where rG,p(i, j) is p-resistance for a graph G, i and j are vertices, L+ is a pseudoinverse of the

graph Laplacian L for G, ei is the i-th coordinate vector of Rn, and ∥ · ∥G,2 is a 2-seminorm

induced from the graph Laplacian L. By this representation, once we compute L+, we can

“reuse” L+ to compute 2-resistance for different pairs. This reuse makes the computation of

2-resistances for many pairs faster than naively solving the optimization problem for each pair.

However, we do not know such representation for p-resistance. Thus, to obtain p-resistance

for many pairs, we need to solve many constrained optimization problems. The significant

result of this work is that in Thm. 5.4, we give a theoretical guarantee for the approximation

of p-resistance as

rG,p(i, j) ≈ ∥L+ei − L+ej∥pG,q, (5.2)

where q satisfies 1/p+ 1/q = 1, and ∥ · ∥G,q is a graph q-seminorm whose formal definition

is given later. We also show that for a tree, the approximation of Eq. (5.2) becomes exact

(Thm. 5.5). By this approximation, we can compute the approximated p-resistance efficiently,

similar to the p = 2 case. For ii), we do not have a theoretical justification for using p-

resistance for clustering other than the metric property. While the p-resistance has the metric
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property, this property itself does not support the clustering quality. For spectral clustering and

2-resistance, we have theoretical justifications for clustering. For spectral clustering, using

the first k eigenvectors of the graph p-Laplacian is theoretically justified [Lee et al., 2014,

Tudisco and Hein, 2018]. The 2-resistance has a theoretical connection to a semi-supervised

learning problem of graph 2-seminorm regularization [Alamgir and Luxburg, 2011]. For

p-resistance, we show that p-resistance is characterized by the semi-supervised learning

problem of p-seminorm regularization. This resolves the open problem stated in [Alamgir

and Luxburg, 2011]. This gives a theoretical foundation for using p-resistance for clustering

from a view of the semi-supervised learning problem. Addressing the two issues above, as a

multi-class clustering algorithm, we propose to apply the k-medoids algorithm to the distance

matrix obtained from the approximated p-resistance. With these two results, our algorithm

can be said to be more theoretically supported than existing multi-class spectral clusterings via

graph p-Laplacian. Our experiment demonstrates that our algorithm outperforms the existing

multi-class clustering using graph p-Laplacian and 2-resistance-based methods.

Our contributions are as follows: i) We give a guarantee for the approximated representa-

tion of p-resistance using the q-seminorm. ii) We show that the p-resistance characterizes the

solution of semi-supervised learning of p-seminorm regularization of a graph. iii) We provide

graph p-seminorm-based multi-class clustering. iv) We numerically show that our method

outperforms the existing and standard methods. All proofs are in Appendix.

5.2 Hölder’s Inequality and Matrix Norm
We review Hölder’s inequality and matrix norm, which we use in this chapter.

First, we recall the weighted p-norm. Given positive weights r ∈ Rn1 where ri > 0, for

a vector x ∈ Rn1 we define the weighted p-norm ∥x∥r,p, and its inner product ⟨x,y⟩r as

∥x∥r,p :=

(
n1∑
i=1

ri|xi|p
)1/p

, ⟨x,y⟩r :=
n1∑
i=1

rixiyi. (5.3)

For this weighted p-norm and inner product, we have Hölder’s inequality as follows;

Lemma 5.1 (Hölder’s inequality). For p, q > 1 s.t. 1/p+ 1/q = 1, ⟨x,y⟩r ≤ ∥x∥r,p∥y∥r,q.

For a matrix M ∈ Rn1×n2 , we define an image of M as Im(M) := {y|y = Mx,x ∈
Rn2} ⊆ Rn1 , that is a space spanned by the matrix M . Note that MM+y is an orthogonal
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projection of y onto Im(M), where M+ is a pseudoinverse of M . We introduce a matrix

operator p-norm ~M~p for a matrix M as

~M~p := sup
x∈Rn

∥Mx∥p
∥x∥p

. (5.4)

This operator p-norm can be bounded as follows.

~M~p ≤ max(~M~1,~M~∞). (5.5)

Note that if M is symmetric, then ~M~1 = ~M~∞. We refer to [Horn and Johnson, 2012]

for the details.

5.3 Graph p-seminorm and Approximating p-Resistance

This section defines a graph p-seminorm, which is a foundation of our discussion. We then

discuss several properties of the graph p-seminorm. Using these properties, we provide the

approximation of p-resistance.

5.3.1 Graph p-seminorm

In this section, we define a graph p-seminorm and discuss its characteristics. For a vector over

vertices x ∈ Rn, we define a graph p-seminorm over a graph using a weighted p-norm for a

graph weight vector w ∈ Rm. Recall that we defined a graph p-seminorm ∥x∥G,p for x ∈ Rn

as

∥x∥G,p = ∥Cx∥w,p =

(∑
i∈E

wi|(Cx)i|p
)1/p

=

(∑
i,j∈V

aij|xi − xj|p
)1/p

. (5.6)

From the definition of p-energy Eq. (2.31), SG,p(x) = ∥x∥pG,p. Also, we immediately know

that this norm is induced by the inner product ⟨Cx, Cy⟩w from the definition of the graph

p-seminorm. We now see that this graph seminorm can also be induced from the inner product

⟨x,y⟩L, because

⟨Cx, Cy⟩w = x⊤C⊤WCy = x⊤Ly = ⟨x,y⟩L. (5.7)
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From this observation, we see that ∥x∥G,2 = ∥x∥L. Also, we can restrict graph p-seminorm

to a norm if we consider x ∈ Im(L). Note that this graph p-seminorm is same as the

graph p-seminorm defined in [Herbster and Lever, 2009]. For this graph p-seminorm, using

Lemma 5.1, the Hölder’s inequality holds;

⟨x,y⟩L ≤ ∥x∥G,p∥y∥G,q, 1/p+ 1/q = 1. (5.8)

When p = 2 Hölder’s inequality plays a fundamental role to show the representation of

2-resistance by Eq. (2.71) in the following way. Using the equality condition of the Hölder’s

inequality Eq. (5.8) for p = 2, we have a lemma.

Lemma 5.2 (Classical, e.g., Herbster and Pontil [2006]). For y ∈ Rn, we have

∥y∥−2
G,2 = min

x
{∥x∥2G,2 s.t. ⟨x,y⟩L = 1}. (5.9)

This lemma is a classical result rewritten with our notation of graph p-seminorm. By

substituting y := L+ei − L+ej , the right hand side of Lemma 5.2 becomes the inverse

of 2-resistance (see Appendix 5.B.5). Thus, we obtain rG,2(i, j) = ∥L+ei − L+ej∥2L =

∥L+ei−L+ej∥2G,2. For p-resistance, the question is how is the coordinate spanning set V(L+)

related to the p-resistance? Can we derive such relation using Hölder’s inequality Eq. (5.8),

similarly to the p = 2 case? Next section will show such connection between p-resistance and

the coordinate spanning set using Eq. (5.8).

5.3.2 Approximating p-Resistance via Coordinate Spanning Set

This section discusses approximation of p-resistance via the coordinate spanning set V(L+).

Looking at the p = 2 case, we see that L+ei ∈ V(L+) can be regarded as coordinate, and

rG,2(i, j) = ∥L+ei−L+ej∥2G,2. This expression aids us to compute all the pairs of 2-resistance

much faster than naively obtaining 2-resistance. For p-resistance, a natural question to ask is

that does there exist some norm ∥ · ∥‡ such that rG,p(i, j) = ∥L+ei − L+ej∥‡? If not, how

can we approximate as rG,p(i, j) ≈ ∥L+ei − L+ej∥‡? If we can write p-resistance by such

expression, we expect to obtain all the pairs of approximated p-resistance much faster than

naively computing all the pairs of p-resistance. This section addresses this problem.

As we see in Sec. 5.3.1, Lemma 5.2 is a key to show that rG,2(i, j) = ∥L+ei−L+ej∥2G,2.
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In the following, we now extend Lemma 5.2 from the case of p = 2 to the general p.

Proposition 5.3. For a graph G and p, q > 1 such that 1/p+ 1/q = 1, we have

∥y∥−pG,q ≤ min
x
{∥x∥pG,p s.t. ⟨y,x⟩L = 1} ≤ ∥z∥pG,p (5.10)

where

z := C+fq/p(Cy)

∥y∥qG,q
, (fθ(x))i := sgn(xi)|xi|θ. (5.11)

When fq/p(Cy) ∈ Im(C), we have

∥y∥−pG,q = min
x
{∥x∥pG,p s.t. ⟨y,x⟩L = 1} = ∥z∥pG,p (5.12)

We first note that the minimization problem of Eq. (5.10) is the inverse of p-resistance

Eq. (2.31). The left hand side of inequality Eq. (5.10) immediately follows from Hölder’s

inequality (Eq. (5.8)) with ⟨y,x⟩L = 1. We now turn our attention to the right hand side.

Recall that when p = 2 we always have fq/p(Cx) ∈ Im(C) and ∥y∥−1
G,2 = ∥z∥G,2, which

matches Lemma 5.2. In the general p case, fq/p(Cx) /∈ Im(C) and ∥y∥−1
G,q ̸= ∥z∥G,p. Thus,

neither ∥y∥−pG,q nor ∥z∥pG,p gives the solution to the minimization problem. However, this

theorem tells us that we can upper bound the solution to the minimization problem by ∥z∥pG,p.

Applying Prop. 5.3, we obtain the bound for p-resistance as follows;

Theorem 5.4. For a graph G and p, q > 1 such that 1/p+ 1/q = 1, the p-resistance can be

bounded as

1

αpG,p
∥L+ei − L+ej∥pG,q ≤ rG,p(i, j) ≤ ∥L+ei − L+ej∥pG,q,

where

αG,p := ~W 1/pCC+W−1/p
~p. (5.13)

Theorem 5.5. For a tree G and p, q > 1 such that 1/p + 1/q = 1, the p-resistance can be
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written as

rG,p(i, j) = ∥L+ei − L+ej∥pG,q. (5.14)

Thm. 5.4 and Thm. 5.5 show the relationship between p-resistance and ∥L+ei−L+ej∥pG,q.
For general graphs, we do not obtain the exact representation of p-resistance. However,

Thm. 5.4 guarantees the quality of approximation as

rG,p(i, j) ≈ ∥L+ei − L+ej∥pG,q = ∥vi − vj∥pG,q, (5.15)

where vi,vj ∈ V(L). By this approximation, we obtain a similar representation of p-resistance

to the p = 2 case Eq. (2.71). The term αG,p is a p-norm of the orthogonal projector to

Im(W 1/pC). Note that we always have αG,p ≥ 1. For a tree graph, Thm. 5.5 shows that

∥L+ei − L+ej∥pG,q becomes the exact representation of p-resistance.

The next question is what is αG,p. We bound αG,p as follows;

Proposition 5.6. For a general graph G and p > 1, we have αG,p ≤ m|1/2−1/p|.

This proposition gives the guarantee for the approximation in Thm. 5.4. Although

Prop. 5.6 gives the quality guarantee, we expect this upper bound to be loose, i.e., we expect

that the actual approximation value is closer to the exact value than this bound. The reason

why we expect in this way is that to prove the bound we only use the general technique that

holds for any matrix and we do not use any graph structural information. In fact, we have a

bound for the specific graphs as follows.

Proposition 5.7. If a graph is complete or cyclic, then ~CC+~p ≤ 4 and hence αG,p ≤
4w

1/p
max/w

1/p
min.

For these specific graphs, we can bound the p-resistance (Thm. 5.4) by a constant. In the

real dataset, we observe that the approximation of p-resistance and αG,p is far better than this

guarantee, see Sec. 5.6.

Finally, we discuss computational times of the p-resistance. To compute Eq. (5.15), it

takes O(m), given L+. Also, in general it takes O(n3) to compute L+. Note that we can reuse

L+ to compute p-resistance for different pairs. We now consider to obtain the p-resistance by

naively solving the optimization problem. We can rewrite the constrained problem Eq. (2.74)



5.4. Clustering via p-Resistance 168

p → 1

p → ∞

Figure 5.1: The illustrative examples where p changes the results of the clustering using
p-resistance. These examples conduct clustering with k-center algorithm using p-resistance
as a metric. The red and green colors show the clustering result. Also, the vertices with
borders show the obtained centers. The dotted boxes exhibit natural clustering results. These
examples show varying p tunes the clustering result; the left example gives a more natural
clustering result when p→∞ whereas for right p→ 1 gives more natural result. Details are
in Sec. 5.4.1 and Appendix 5.F.

as unconstrained problem, which is solvable by gradient descent. In each step of the gradient

descent, we compute∇x∥x∥pG,p, which takes almost same time as Eq. (5.15). Moreover, we

cannot reuse the result of a single pair to compute for other pairs, while we can reuse L+.

Thus, to compute p-resistance for a single pair, our approximation is expected to be faster

than naively solving the optimization problem. Moreover, if we compute for many pairs, our

approximation is much faster by reusing L+.

5.4 Clustering via p-Resistance
This section considers using the p-resistance for the clustering algorithm. Firstly, we propose a

clustering algorithm using the approximated p-resistance. We next characterize our clustering

algorithm from the semi-supervised problem point of view. From this characterization, we

can see that our clustering algorithm inherits properties from semi-supervised learning.

5.4.1 Proposed Clustering Algorithm via p-Resistance

This section proposes an algorithm using p-resistance. The triangle inequality Eq. (2.75)

gives a metric property to r1/(p−1)
G,p (i, j). We call this 1/(p − 1)-th power of p-resistance

as p-resistance metric. This metric property motivates us to use p-resistance for clustering

algorithms.

Furthermore, the parameter p serves as a tuning parameter of the clustering result. The

general p of p-resistance captures the graph structure somewhere between the cut and shortest
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path. Using this characteristic, we expect varying p tunes the clustering result somewhere

suitable between cut-based and path-based. When p is small, the clustering result biases

towards clusters with high internal connectivity, like a min-cut. When p is large, the clustering

result focus more on path-based topology, that is a preference for smaller shortest-path

distances between vertices in the cluster. We illustrate this with examples of the two-class

clustering in Fig. 5.1. In these examples, we conduct clustering with k-center algorithm using

p-resistance. The left example is intuitively “symmetric”; for this kind, p→∞, which looks

at the path-based topology, gives more natural result. The more natural clustering of the right

example is “cut”; for this kind, p → 1, where we focus on the graph cut, gives the more

natural result. More details are in Appendix 5.F.

While the discussion above motivates us to use the p-resistance metric for clustering,

computing the p-resistance metric for all pairs is costly. Thus, we approximate this metric by

Thm. 5.4, and we obtain

r
1/p−1
G,p (i, j) ≈ ∥L+ei − L+ej∥p/(p−1)

G,q = ∥L+ei − L+ej∥qG,q = ∥vi − vj∥qG,q, (5.16)

where vi,vj ∈ V(L). We then apply k-medoids to the distance matrix obtained by Eq. (5.16).

The overall proposed algorithm is summarized in Alg. 5

We discuss the choice of k-medoids over the other distance based method, such as

k-means [Bishop and Nasrabadi, 2006] and k-center [Gonzalez, 1985]. Although the main

emphasis of our algorithm does not comes from the choice of k-medoids but from the

approximation of p-resistance metric, k-medoids has some advantages. Since p-resistance

metric cannot define a distance between other than the data points defined as V(L+), we

cannot define distance for the some “mean”, which is outside of the data points. Therefore, the

mean-based method such as k-means is not appropriate for this setting. Instead, k-medoids is

similar to the k-means [Kaufman and Rousseeuw, 1990] but more appropriate since k-medoids

assigns the centers to the actual data points. The other potential choice is k-center algorithm.

The k-center algorithm also assigns the center to the actual data point, and is known to be

faster than k-medoids. Also, k-center algorithm is approximated by the fast greedy farthest

first algorithm [Gonzalez, 1985, Herbster, 2010]. However, the k-medoids is more robust to

the outliers than k-center. Thus, we propose to use k-medoids. The overall computational

time for Alg. 5 is dominated by the computation of the all the pairs of the approximated
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Algorithm 5 Clustering Algorithm via p-Resistance
Input: Graph G = (V,E) and p

1: Compute pseudoinverse of the graph Laplacian L+.
2: Compute all the pairs of the p-resistance metrics r1/(p−1)

G,p using Eq. (5.16) and obtain a
distance matrix.

3: Apply k-medoids to the distance matrix.
Output: The clustering result.

p-resistance,O(mn2). If we use the farthest first algorithm instead of k-medoids the algorithm

is dominated either by the computation of L+, O(n3), or farthest first O(kmn). Thus, farthest

first is faster since in general m≫ n but less robust than k-medoids.

5.4.2 Connection between Semi-supervised Learning and p-Resistance

This section explores connection from the p-resistance to the semi-supervised learning (SSL)

via graph p-seminorm. As we saw in Sec. 5.2, Herbster [2010] shows the metric property

of p-resistance. While the metric property itself can motivates us to use p-resistance for

our clustering, we do not know how much p-resistance shows connectivity of a graph. This

section shows that p-resistance can be seen from as an SSL perspective. This connection

assures us to use p-resistance for the clustering problem. In the following we explain the

connection by taking the following steps; i) SSL problem in the clustering context ii) the

connection between the SSL and p-resistance.

We first consider an SSL problem for two known labels as

min
x
{SG,p(x) s.t. xi − xj = 1} = min

x
{SG,p(x) s.t. xi = 1, xj = 0}. (5.17)

The equality holds since SG,p(x) = SG,p(x + c1), ∀c ∈ R. We first note that Eq. (5.17) is

an inverse of the p-resistance and we use the optimal value of this problem to p-resistance.

This learning problem for p = 2 case has been considered in many literature, such as [Zhu

et al., 2003], and extended to the p-seminorm setting [Herbster and Lever, 2009, Alamgir and

Luxburg, 2011, Slepcev and Thorpe, 2019].

We now put Eq. (5.17) into clustering context; the solution of Eq. (5.17) tells us the graph

structural information on clustering. We recognize that Eq. (5.17) is two fixed-label problem.

Let x∗ij be a solution of the problem Eq. (5.17). It is straightforward to interpret Eq. (5.17) if

i and j is in different binary classes; we see which clusters the third point ℓ belongs to, the
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cluster which i or j is in. More specifically, by comparing x∗ijℓ − x
∗ij
j and x∗iji − x

∗ij
ℓ we know

which cluster the third point ℓ belongs to. If we take a pair of vertices (i, j) arbitrarily, the

assumption that “i and j in different binary classes” is not always appropriate. In this case,

rather than assuming i and j in different binary classes, it is more natural to interpret in the

following way; the two-pole binary SSL problem tells us that which of i and j the third point

ℓ is close to in a graph. From this observation, if we look at x∗ij for all pairs, we know “graph

structural information” from the SSL point of view.

We next show the connection between p-resistance and the solution of Eq. (5.17), x∗ij .

Theorem 5.8. Let x∗ij be the solution of the problem Eq. (5.17), and ℓ ∈ V be the third

unlabeled point. Then we have

x
∗ij
ℓ − x

∗ij
j ≥ x

∗ij
i − x

∗ij
ℓ ⇐⇒ rG,p(j, ℓ) ≥ rG,p(ℓ, i).

First note that Alamgir and Luxburg [2011] proved Thm. 5.8 only for the p = 2 case in a

different context than clustering (See Appendix 5.H.2), and posed the case of general p as an

open problem. We resolve this open problem.

Thm. 5.8 means that the p-resistance has a good property inherited from the SSL problem

Eq. (5.17) in a following sense. Thm. 5.8 tells us that the “graph structural information”,

which can be obtained by comparing x∗ijℓ − x
∗ij
i and x∗ijj − x

∗ij
ℓ , is equivalent to comparing

p-resistances rG,p(i, ℓ) and rG,p(ℓ, j). Henceforth, Thm. 5.8 further translates the intuition

about x∗ij into p-resistance.

Thus, combining the two observations above, looking at the distance matrix computed

from p-resistances can be interpreted as follows. Each distance shows how close the pair is in

terms of two-pole binary SSL problem. Doing clustering with this distance matrix assigns a

cluster by looking at all the graph structural information of two-pole binary SSL problems,

which tells us that “which the third point ℓ is close to, i or j?”

From the observations above, we see that Thm. 5.8 motivates us to use p-resistance

metrics for multi-class problem. Without Thm. 5.8, our algorithm is somewhat naive; even

though p-resistance has a metric property, we do not know how much p-resistance contains

the structural information.
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5.5 Related Work

This section reviews the related work to the clustering via graph p-seminorm. Since our

work uses graph p-seminorm for the clustering purpose, spectral clustering using graph p-

Laplacian is relevant. The graph p-Laplacian is induced from graph p-seminorm and used

for the clustering purpose [Bühler and Hein, 2009]. Tudisco and Hein [2018] showed a

theoretical guarantee for the use of the first k variational eigenvectors (i.e., eigenvectors

obtained by variational theorem) of p-Laplacian for k-class clustering. While we know the

exact identification for the second eigenvectors of p-Laplacian, we do not know how to

obtain the third or higher eigenvectors [Lindqvist, 2008]. Thus, it is practically difficult to

use spectra of p-Laplacian for multi-class clustering. To bypass this limitation, Bühler and

Hein [2009] applied two-class clustering method to multi-class by recursively bisectioning

a subgraph into two subgraphs, which does not exploit the full structure of the graph. The

earlier works [Luo et al., 2010, Ding et al., 2019, Pasadakis et al., 2022] used approximated

orthogonality between eigenvectors of p-Laplacian for multi-class clustering. However, we

do not have theoretical supports that this approximated k eigenvectors are the approximation

of the first k variational eigenvectors. Thus, we need to say that these methods rely on the

“ad-hoc bypasses” and do not fully exploit the graph p-seminorm. For more details, see

Sec. 2.1.4.5.

Another relevant approach is resistance-based clustering. In Yen et al. [2005], k-medoids

algorithm is applied to the square of 2-resistance. For clustering purpose, similar distances

to the 2-resistance is proposed [Fouss et al., 2007, Nguyen and Mamitsuka, 2016, Yen et al.,

2008] The most relevant approach in this category is the k-center algorithm for the “distance”

matrix obtained from the exact p-resistance in Herbster [2010]. Herbster [2010] did not

numerically verify the algorithm. Our work uses p-resistance metric instead of p-resistance

since without the 1/(p−1)-th power operation p-resistance does not satisfy the metric property

(Eq. (2.75)). However, if we use k-center algorithm to the exact p-resistance metric, we obtain

the same result as Herbster [2010]. The reason is that the k-center algorithm only matters the

order of the distance, and the 1/(p− 1)-th power operation does not change the order of the

p-resistance. On the other hand, we emphasize that the most significant difference between

our work and Herbster [2010] is that while we use the approximated p-resistance Herbster

[2010] uses exact p-resistance. We also mention that the work [Nguyen and Mamitsuka, 2016]
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Table 5.1: Dataset summary. Since Hopkins 155 contains 155 different videos, we report
the sum of the data points and sum of the dimensions of videos. Also, Hopkins 155 dataset
contains 120 2-class datasets and 35 3-class datasets.

ionosphere hop 155 2cls iris wine hop 155 3cls

# of class 2 2 3 3 3
size 351 31981 150 178 13983

dimension 34 3542 4 13 999

proposed a distance from the p-seminorm flow point of view. However, this distance does not

have characterization from the learning problem (Thm. 5.8).

Also, the graph p-seminorm is actively used in semi-supervised learning (SSL). The SSL

problem using graph p-seminorm is relevant to p-resistance since the p-resistance can be seen

as SSL for two known labels. Earlier, the SSL using graph 2-seminorm is considered [Zhou

et al., 2003, Zhu et al., 2003, Calder et al., 2020]. The SSL via graph 2-seminorm and

effective resistance is known to be “ill-posed” when the size of the unlabeled data points

is asymptotically large [Nadler et al., 2009]. To overcome this problem, graph p-seminorm

based SSL and p-resistance are considered [Alamgir and Luxburg, 2011, Bridle and Zhu,

2013, El Alaoui et al., 2016, Slepcev and Thorpe, 2019], where the p-resistance is shown to

be meaningful when p is large. Finally, the graph p-seminorm is widely used in the machine

learning community, such as online learning [Herbster and Lever, 2009, Pasteris et al., 2024]

and the local graph clustering task, where we find a cluster which the given vertices belong

to [Veldt et al., 2019, Fountoulakis et al., 2020, Liu and Gleich, 2020].

5.6 Experiments
This section numerically demonstrates the performance of our Alg. 5 using approximated

p-resistance.

Objective of the Experiments. The purpose of the experiments is to evaluate if our

algorithm on two-class and multi-class clustering problems improves the existing p-seminorm-

based graph clustering algorithm. Thus, we compared it with existing resistance-based

algorithms and spectral clustering algorithms using graph p-seminorm and its p = 2 setting.

Datasets. Our experiments were conducted on the same classification datasets. We used

the ionosphere, iris, and wine datasets from the UCI repository, as well as the Hopkins155

dataset [Tron and Vidal, 2007], which includes 120 two-class and 35 three-class motion
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Table 5.2: Experimental results. The “type” shows the type of methods; (ER) for effective
resistance based methods and (SC) for spectral clustering methods. The “Hop” stands for
Hopkins 155 dataset. In method of ER, “(a)” shows that the method uses the approximation
by (Eq. (5.16)) and “(ex)” computes the exact p-resistance by gradient descent. Also, “k-med”
is k-medoids, and “FF” is the farthest first. Thus, the method “k-med (a) p” is our proposed
algorithm, and “FF (ex) p” and “FF p = 2” is a method proposed by [Herbster, 2010]. The
“p-Flow” is [Nguyen and Mamitsuka, 2016], “ECT” is [Yen et al., 2005], “Rec-bi p” is [Bühler
and Hein, 2009], and “p-orth” is [Luo et al., 2010]. Since “Rec-bi p” is a deterministic method,
we only report error. Also, since Hop contains multiple datasets, we only show the average.
Due to the significant computational time, we were unable to finish some of the experiments,
which are shown as “–”.

2 clsss multi-class
Type Method ionosphere Hop 2 cls iris wine Hop 3 cls

ER k-med (a) p 0.196 ± 0.000 0.056 0.078 ± 0.013 0.287 ± 0.000 0.144
ER k-med (ex) p – – 0.075 ± 0.000 0.427 ± 0.000 –
ER k-med p = 2 0.305 ± 0.000 0.236 0.331 ± 0.000 0.534 ± 0.000 0.306
ER FF (a) p 0.330 ± 0.023 0.109 0.108 ± 0.045 0.339 ± 0.054 0.313
ER FF (ex) p 0.344 ± 0.020 – 0.109 ± 0.019 0.524 ± 0.046 –
ER FF p = 2 0.355 ± 0.035 0.274 0.320 ± 0.000 0.530 ± 0.000 0.357
ER p-Flow 0.291 ± 0.000 0.231 0.247 ± 0.000 0.543 ± 0.043 0.243
ER ECT 0.376 ± 0.000 0.155 0.247 ± 0.000 0.534 ± 0.000 0.310
SC Rec-bi p 0.225 0.200 0.089 0.354 0.237
SC SC p-orth 0.215 ± 0.123 0.237 0.087 ± 0.089 0.327 ± 0.116 0.221
SC SC p = 2 0.308 ± 0.000 0.216 0.093 ± 0.000 0.438 ± 0.000 0.251

Table 5.3: Computational time for approximated vs exact p-resistance. (a) denotes approxi-
mation and (ex) denotes exact. In “r” we reuse L+. In “et” we compute L+ each time. All
time is in second.

ionosphere iris wine

(a) + r 0.08 ± 0.04 0.07 ± 0.03 0.01 ± 0.00
(a) + et 0.39 ± 0.00 0.32 ± 0.00 0.05 ± 0.00
(ex) 1.11 ± 0.00 1.03 ± 0.04 0.36 ± 0.00
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Figure 5.2: Plots of the error vs p for the methods. The k-med (a) stands for k-median using
our approximated p-resistance. FF (a) stands for furthest first using approximated p-resistance.
FF (e) stands for furthest first using exact p-resistance. The legend r-bisec stands for recursive
bisectioning using p-Laplacian.

segmentation datasets. Thus, we conducted our experiments on 158 datasets. Dataset sizes

are summarized in Table 4.2, part of which we share with Chpater 4. Since our algorithm as

well as resistance based comparisons take O(mn2), we choose small to medium size datasets.

Although the datasets are the same as in Chapter 4, the graphs used are different in the

following way. Chapter 4 focused on constructing graphs from vector data using similarity or

kernel functions for all pairs. However, due to higher computational costs in our experiments,

we used k-NN graphs with k = µn (0 < µ ≤ 1) to achieve sparsity. While performance

results may vary between the chapters, our primary aim is to compare with baselines for each

experiment following the experimental objectives, not to achieve the best performance on the

datasets. See more discussion in Sec 7.3.

Experimental Settings. For the resistance based method, we compared with the farthest

first algorithm on our approximated p-resistance. Additionally, we compared with existing

methods; the farthest first using exact p-resistance [Herbster, 2010], a p-seminorm flow

based method [Nguyen and Mamitsuka, 2016], and 2-resistance based method [Yen et al.,

2005]. We especially note that for the farthest first [Herbster, 2010], we computed the exact

p-resistance by the gradient descent as discussed in Sec. 5.3.2. We also apply this exact

p-resistance to k-medoids. Note that k-medoids is more costly than k-center as discussed

in Sec. 5.4.1. For spectral clustering methods, we compared with a recursive bisection

method [Bühler and Hein, 2009] and a method using the approximated orthogonality [Luo

et al., 2010]. Since the p-resistance is related to the unnormalized graph Laplacian, we use
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the unnormalized graph Laplacian for the spectral methods. We created a graph using the

following procedure: We construct a k-NN graph using the Euclidean distance. Then, we

computed the edge weight with a Gaussian kernel (κ(xi,xj) = exp(−σ∥xi − xj∥2)) for two

vectors xi,xj . We used free parameters µ ∈ {0.04, 0.06, 0.08, 0.1}, σ ∈ {10−3, . . . , 102}
and p ∈ {1.1, 1.4, . . . , 2.9, 5, 10, 100, 1000}. For comparisons, we followed the original

parameters other than above µ, σ, and p. We evaluated the performance by error rate, similar

to the previous study [Bühler and Hein, 2009]. Since the Hopkins155 dataset contains multiple

two-class and three-class tasks, we take an average of error rates among a set of two-class

tasks and three-class tasks and report both. For computational time, due to its significant

computational time, we parallelized the distance computation for the exact method, while we

did not use such a technique for the others. Thus, we first compare the approximation of the

p-resistance and the exact p-resistance. Then, we compare the computational time among the

methods except for the exact methods. Finally, we remark that our experiment was conducted

on Mac Studio with M1 Max Processor and 32GiB RAM. Also, we use an Intel binary Matlab

translated by Rosetta, which is standard in MacOS with Apple Silicon environment at the

time when experiments are conducted.

Notes on the Comparison Procedures. We make a detailed note on the comparison

methods. Firstly, for the comparison method Rec-bi [Bühler and Hein, 2009], the algorithm

is originally defined for p ≤ 2. Thus, we apply the same technique for p ≥ 2. In [Bühler

and Hein, 2009], in order to avoid the conversion to too close or too far local optimum, at

the step t [Bühler and Hein, 2009] minimizes Eq. (2.37) via the gradient descent method

using the initial condition as the obtained eigenvector of the previous step pt = 0.9pt−1. If we

increase the p, we use the same technique; pt = pt−1/0.9 until p reaches 5. Beyond 5, we use

pt = 2pt−1. When p = 2, we know that 2-resistance is further computed as

rG,2(i, j) = ∥L+ei − L+ej∥2G,2 = ∥(L+)1/2ei − (L+)1/2ej∥2. (5.18)

The graph p-seminorm is the size m norm, while the latter is based on the size n norm.

However, we use graph 2-seminorm even for the p = 2 case. The reason is that we needed

to be consistent in the experiment since we observed numerical round-off errors in the other

methods. On the other hand, ECT [Yen et al., 2005] uses the square of 2-resistance. For this

method, we use ∥(L+)1/2ei − (L+)1/2ej∥2 since the original paper [Yen et al., 2005] uses
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Table 5.4: Computational time for the main experiment (unit:sec). Here we use E notation,
e.g., E-6= 10−6 or E1 =101. Since “Rec-bi p” is a deterministic method, we only report time.
Also, since Hop contains multiple datasets, we only show the average.

2 clsss multi-class
Type Method ionosphere Hop 2 cls iris wine Hop 3 cls

ER k-med (a) p 1.37E1 ± 0.01E1 1.21E1 4.93E0 ± 0.01E0 1.30E-1 ± 0.13E-1 1.78E1
ER k-med p = 2 3.76E0 ± 0.01E0 1.01E1 1.36E0 ± 0.00E0 9.07E-2 ± 1.05E-2 1.34E1
ER FF (a) p 9.71E-2 ± 0.32E-1 4.88E-1 5.45E-1 ± 0.33E-1 4.72E-2 ± 0.18E-2 8.01E0
ER FF p = 2 8.71E-2 ± 0.12E-1 3.56E-1 4.21E-1 ± 0.12E-1 3.82E-2 ± 0.06E-2 6.45E0
ER p-Flow 1.46E1 ± 0.01E1 1.33E1 5.21 E0 ± 0.02E0 1.60E-1 ± 0.15E-1 1.81E1
ER ECT 1.01E-1 ± 0.10E-1 8.12E-1 2.03E-2 ± 0.42E-2 2.05E-2 ± 0.49E-2 9.26E-1
SC Rec-bi p 1.18E-1 8.11E-1 5.35E-1 9.07E-2 1.01E0
SC SC p-orth 8.60E-2 ± 0.01E-2 6.31E-1 4.78E-1 ± 1.65E-1 3.02E-2 ± 0.57E-2 8.10E-1
SC SC p = 2 1.60E-2 ± 0.01E-2 3.43E-2 1.28E-1 ± 0.00E-1 8.78E-3 ± 0.00E-3 6.12E-2

this.

Overall Results. The results are summarized as follows. We see that ours outperforms

the others except for iris. As we expected, seeing the deviation, k-medoids offers more

robust performance than the farthest-first algorithms. Moreover, our approximation provides

faster computation than the exact method since we could not finish some of the experiments

using the exact p-resistance even for the farthest first. Seeing Fig. 5.2, in k-medoids large p

offers better performance. Also, if we look at p = 2, the k-medoids with 2-resistance is not

always better than spectral clustering. However, for general p the k-medoids with p-resistance

performs better. Thus, the k-medoids with p-resistance can be said to be more benefited by p

than spectral clustering. These correspond to the existing theoretical indication; p-resistance

with large p becomes meaningful function while 2-resistance is not [Alamgir and Luxburg,

2011]. Comparing exact and approximation p-resistance in Fig. 5.2, while we observe similar

performance in the middle range of p, we observe the better performance for approximation

at the very small p or very large ps. This might come from the numerical computation of

the gradient ∇x∥x∥pG,p as follows. For the exact solution of the very small p, the gradient of

each step tends to be very small. For the very large p, there is a risk of amplifying round-off

numerical error at each step of optimization by taking the power of large p. On the other hand,

the approximation offers a robust computation, especially for important large ps, because

instead we compute by taking the power of small q in Eq. (5.16), by which we can avoid the

risk discussed.

Computational Time to Compute Resistances. Next, we compare times to compute the

exact and approximated p-resistance for 100 randomly chosen pairs of vertices. We made a
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Figure 5.3: Plot of matrix norm ∥CC+∥p vs. the bound m1/2−1/p in Prop. 5.6.

graph for ionosphere, iris, and wine by choosing the best-performing parameters in Table. 5.2.

We measure time for exact p-resistance by naively optimizing Eq. (2.74) by gradient descent.

For approximation, since we can reuse L+ for our approximation, we report the time in two

ways: i) we compute L+ each time and compute the approximation, and ii) we reuse L+. The

“each time” scenario reports the computational time of p-resistance for a single pair. In the

reuse scenario, we measure time t to compute L+ and p-resistance 100 pairs using L+. Then,

we report the time t/100. By this, the reuse scenario is much faster than the each time scenario.

Table 5.3 summarizes the computing time. We observe that the approximation method for

a single pair is faster than the exact method by comparing the “each time” and exact. As

expected, the reuse scenario provides much faster computation than the exact p-resistance

Computational Time of the Experiments. In Table 5.3, we compare the approximation

by Eq. (5.16) and the exact computation of p-resistance by naively optimizing Eq. (2.74)

by the gradient descent. For ionosphere, iris, and wine, we made a graph for the best

performing parameters in Table. 5.2. In Table 5.4, we compare the computing time for the

best-performing parameters in Table. 5.2. We are unable to share the computing time of

the exact resistances since due to their severe time complexity, we needed to parallelize

the computations, which makes us difficult to track the running time. We can see that ours

are slower than spectral clustering methods. This slowness is because ours takes O(mn2)

while spectral clustering methods using p-Laplacian are O(n3)-based convergence methods.

Looking at the computational time for ECT, the time is similar to the spectral methods since

ECT is also the O(n3) method.

Comparison of the Values of Approximated and Exact p-Resistance. Here we observe

that the value of approximation from the real experiments is tighter than Prop. 5.6. Firstly,
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Figure 5.4: The ratio of the approximated value of p-resistance to the exact p-resistance, i.e.,
∥L+ei − L+ej∥qG,q/r

1/(p−1)
G,p (i, j). Also, the factor of the bound αqG,p.

since αG,p = ~W 1/pCC+W−1/p~p involves p in the matrix as well as norm, it is somewhat

difficult to how αG,p behaves by changing p. Thus, we focus on the unweighted graph; we

numerically investigate the unweighted ∥CC+∥p that is a matrix norm evaluated in Eq. (5.21).

We plot ∥CC+∥p for wine, ion, and iris with the µ when k-medoids performs the best in

Fig. 5.3. We use the matrix p-norm estimation algorithm proposed by [Higham, 1992]. We

plot p → 1 and p → ∞ as the exact value. We remark on the estimation of the matrix

norm by [Higham, 1992]; let ξ be the output by the estimation of the matrix norm of CC+,

then ~CC+~p/m
|1/2−p| ≤ ξ ≤ ~CC+~p. Fig. 5.3 shows that ∥CC+∥p is far lower than the

worst bound in Prop. 5.6. Moreover, Fig. 5.3 shows that the estimation algorithm proposed

by Higham [1992] outputs is reliable results on this problem since this follows theory in

terms of ~CC+~p′ ≤ ~CC+~p if 2 < p′ < p or p < p′ < 2. Next, we evaluate the quality of

the approximation comparing to Thm. 5.4. To do so, we would like to compute the ratio of

approximation to the exact p-resistance as ∥L+ei − L+ej∥qG,q/r
1/(p−1)
G,p (i, j). Using Thm. 5.4,

this ratio can be theoretically evaluated as

1 ≤
∥L+ei − L+ej∥qG,q
r
1/(p−1)
G,p (i, j)

≤ αqG,p, αG,p := ~W 1/pCC+W−1/p
~p. (5.19)

This experiment also aims to evaluate this inequality. We numerically computed the approxi-

mated p-resistance, exact p-resistance, and αG,p. To compute αG,p, we use the same algorithm

for the Table. 5.3. To compute the approximated and exact p-resistance, we conducted with

the following procedure. To create a graph, we used µ = 0.1, in order to make k-nn graph.
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This means that we use k = ⌊0.1n⌋. To make the comparison simple, we use an unweighted

graph. This is because if we incorporate weights, it is not trivial how αG,p behaves, and thus,

the results might not be a consistent of a comparison among different ps. The rest of the

analysis was carried in the same procedure as Table 5.4. We perform this experiment for

p ∈ {1.4, 1.7, 2, 2.3, 2.6, 2.9, 5, 10}. We cannot perform too small and too large p cases since

we observed the dominance of the numerical errors to obtain the exact ones. In fact, this

phenomenon is similar to what we observed in the main experiment. Thus, we omitted them

from the table. The result is summarized in Fig. 5.4. We can see that the all the ratios are in

the bound of Thm. 5.4. We also remark that using Prop. 5.6 we have the bound as

αqG,p ≤ m|q/2−1|, (5.20)

all of the plots of ∥L+ei − L+ej∥qG,q/r
1/(p−1)
G,p (i, j) in Fig. 5.4 is obviously far lower than

this bound. For this result we observe the looser bound for larger p, since ~CC+~p ≤
~CC+~∞ assuming an unweighted graph. By incorporating the weight, we might ob-

serve αG,p differently, since we do not know which is larger ~W 1/pCC+W−1/p~p and

~W 1/∞CC+W−1/∞~∞. Further, we have

αqG,p = ~W 1/pCC+W−1/p
~
q
p ≤

(
wmax

wmin

)q/p=q−1

~CC+
~
q
p. (5.21)

Seeing the current derived bound Eq. (5.21), the bound may be looser if we involve the

weights and p is small and hence q is large. A tighter bound particularly for smaller p is

a possible future direction, but this might be a lower priority due to the low performance

at the smaller p. The reason is that, for small p, it is known that rG,p(i, j) converges to a

meaningless function [Alamgir and Luxburg, 2011, Slepcev and Thorpe, 2019] under certain

graph building conditions. Also, possibly due to this, our method performs better for larger p.

5.7 Summary

We have proposed the multi-class clustering algorithm using the approximated p-resistance.

For this purpose, we have shown the guarantee for the approximation of p-resistance. This

has enabled to compute the p-resistance much faster than the naive optimization methods. We

also have shown that p-resistance characterizes the solution of the semi-supervised learning



5.7. Summary 181

problem. Our algorithm has outperformed the existing clustering methods using the graph

p-seminorm.

The limitation of this work is that we cannot exploit the sparse structures of graphs. It is

because we use L+, which becomes dense even if the graph is sparse. For future work, there

remains an ample opportunity to further speed up the procedures involving pseudoinverse of

graph Laplacian, such as sparsification techniques [Spielman and Srivastava, 2011, Spielman

and Teng, 2014]. Moreover, instead of our approximated representation of p-resistance

approach, the exciting approach is to obtain exact representation of p-resistance. We leave

some discussion on the difficulty of this approach in Appendix. 5.I. Finally, it would be

also interesting if we apply this p-resistance framework to the recently growing space of

hypergraph clustering using hypergraph p-Laplacians [Hein et al., 2013, Saito et al., 2018, Li

and Milenkovic, 2018].
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Appendices for Chapter 5

In the following sections, we provide the omitted proofs, additional discussions for Chapter 5.

5.A Additional Definitions for Proofs

First, we make an additional note for an intuition behind the analog between graph and electric

circuit. In this analog, a vertex is a point at a circuit, and an edge is a resistor with resistance

1/aij . A flow over a graph mapped to a current, and a distribution over V as x is seen as a

potential at each vertex point. For the equations Eq. (2.70), the energy is defined as a sum

of the inverse of resistance times square of the difference of the potential. The effective

resistance between i and j is computed as follows; we inverse the energy that is minimized

with the constraint that the difference of potential between i and j is unit. Given an electrical

network the effective resistance between two vertices is the voltage difference needed to

induce a unit “current” flow between the vertices i.e., it is resistance measured across the

vertices.

Next, on top of the image for a matrix M ∈ Rn1×n2 , Im(M), we also define a kernel1 of

M , which is a subclass of Rn, as

Ker(M) := {x|Mx = 0,x ∈ Rn}. (5.22)

From the elementary result in the linear algebra area, we note that

Im(M)⊥ = Ker(M⊤), (5.23)

where Im(M)⊥ is an orthogonal space to Im(M).

The matrix norm is submultiplicative, i.e., ~M1M2~p ≤ ~M1~p~M2~p whenever a

product of matrices M1M2 can be defined. A matrix norm is shown to be bounded as follows;

Lemma 5.9 (Higham [1992]). For a square matrix M ∈ Rn1×n1 , ∥M∥p ≤ n
|1/2−1/p|
1 ∥M∥2.

Lemma 5.10 (Higham [1992]). For a matrix M ∈ Rn1×n2 , ∥M∥p ≤ max(∥M∥1, ∥M∥∞).

1This kernel is a linear algebraic kernel, not a kernel function which often appears in the machine learning
context.



5.A. Additional Definitions for Proofs 183

We elaborate more on Lemma 5.10. For a symmetric matrix, since we have

~M~1 = ~M~∞ = max
j

∑
i

|mij|. (5.24)

From the Lemma 5.10 and Eq.(5.24), for a symmetric matrix M , we have

~M~p ≤ ~M~1 = ~M~∞. (5.25)

By this we can bound ~M~p by 1 or infinity norm of the matrix M .

An operator weighted matrix norm is defined for any matrix M ∈ Rn1×n2 and weights r

as

~M~r,p := sup
x∈Rn2

∥Mx∥r,p
∥x∥r,p

. (5.26)

Recall that

∥x∥r,p = ∥R1/px∥p, (5.27)

where R is a diagonal matrix whose diagonal element is a weight of the norm.

From this definition, we can rewrite ~M~r,p as

~M~r,p = sup
x∈Rn2

∥Mx∥r,p
∥x∥r,p

= sup
x∈Rn2

∥R1/pMx∥p
∥R1/px∥p

(5.28)

= sup
x′:=R1/px,x∈Rn2

∥R1/pMR−1/px′∥p
∥x′∥p

(5.29)

= sup
x′∈Rn2

∥R1/pMR−1/px′∥p
∥x′∥p

(5.30)

= sup
x∈Rn2

∥R1/pMR−1/px∥p
∥x∥p

(5.31)

= ~R1/pMR−1/p
~p, (5.32)
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5.B Proof of Proposition 5.3
For the proof we divide the proof into lower bound, upper bound and equal condition.

5.B.1 Lower Bound

In the following we give a proof of this Proposition. From Hölder’s inequality, we have

⟨x,y⟩L ≤ ∥x∥G,p∥y∥G,q (5.33)

Assuming ⟨x,y⟩L = 1, we have

1 ≤ ∥x∥G,p∥y∥G,q, (5.34)

and hence

∥y∥−pG,q ≤ ∥x∥
p
G,p, (5.35)

which proves the lower bound.

5.B.2 Upper Bound

This section proves the upper bound of Prop. 5.3.

Recall the variable of the minimization problem in Eq. (5.10) is x. If we prove that

when x = z, this z satisfies the condition in the minimization problem ⟨z,y⟩L = 1, from the

minimization problem nature we can prove the upper bound. For this strategy, we use the

following lemma.

Lemma 5.11. For α ∈ Rn and β ∈ Rm, we have

⟨Cα,β⟩w = ⟨Cα,β′⟩w (5.36)

where

β := β′ + β′′, β′ := CC+β,β′′ := (I − CC+)β (5.37)

For readability, we move the proof of Lemma 5.11 to Sec. 5.B.4.2.
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By using Lemma 5.11, we now prove the upper bound.

Note that

fq/p(Cy)

∥Cy∥qw,q
= CC+fq/p(Cy)

∥Cy∥qw,q
+ (I − CC+)

fq/p(Cy)

∥Cy∥qw,q
. (5.38)

Recall that we define as

z := C+fq/p(Cy)

∥y∥qG,q
= C+fq/p(Cy)

∥Cy∥qw,q
, (fθ(x))i := sgn(xi)|xi|θ. (5.39)

By using this relation and Lemma 5.11, we have

⟨z,y⟩L = ⟨Cz, Cy⟩w (5.40)

= ⟨Cy, Cz⟩w (5.41)

= ⟨Cy, CC+fq/p(Cy)

∥Cy∥qw,q
⟩w (5.42)

= ⟨Cy,
fq/p(Cy)

∥Cy∥qw,q
⟩w (5.43)

= 1. (5.44)

From Eq. (5.42) to Eq. (5.43) we apply Lemma 5.11. The last equality comes from the

same nature of Eq. (5.57) in Prop. 5.13, which we will discuss in Sec. 5.B.4.1.

From the discussion above, z satisfies the condition of the minimization problem of

Eq. (5.10). Therefore, we obtain

min
x
{∥x∥pG,p s.t. ⟨y,x⟩L = 1} ≤ ∥z∥pG,p (5.45)

5.B.3 Proof of the Equal Condition

Finally, we turn into the equality condition. We obtain the following lemma.

Lemma 5.12. For any p, q such that 1/p+ 1/q = 1, we have

min
x
{∥x∥pG,ps.t. ⟨x,y⟩L = 1} = ∥z∥pG,q = ∥y∥

−p
G,q, (5.46)
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where

z := C+fq/p(Cy)

∥y∥qG,q
= C+fq/p(Cy)

∥Cy∥qw,q
, (5.47)

when fq/p(Cy) ∈ Im(C)

The proof of Lemma 5.12 is given in Sec. 5.B.4.3

5.B.4 Proof of Lemma 5.11 and Lemma 5.12

This section provides proofs for Lemma 5.11 and Lemma 5.12. These lemmas are critical

components for the proof of Prop. 5.3. In order to enhance the readability, we gather proofs

for these claims in this section. We first give auxiliary lemmas, that hold for the general

setting. Then, using these auxiliary lemmas, we provide the proofs for Lemma 5.11 and

Lemma 5.12.

5.B.4.1 Auxiliary Lemmas

This section provides auxiliary lemmas. We start with the following claim.

Proposition 5.13. For any p, q > 1 such that 1/p+ 1/q = 1, we have

min
x
{∥x∥pr,p s.t. ⟨y,x⟩r = 1} = ∥y∥−pr,q (5.48)

Proof. Using the Hölder’s inequality, we get

∥y∥r,q∥x∥r,p ≥ ⟨x,y⟩r (5.49)

Assuming ⟨x,y⟩r = 1, we can rearrange as

∥x∥r,p ≥ ∥y∥−1
r,q . (5.50)

Now we consider when the minimum of the right hand side of Eq. (5.50). The minimum with

the assumption ⟨y,x⟩r = 1 is achieved when x = ζ such that

ζ :=
fq/p(y)

∥y∥qr,q
, (fθ(y))i := sgn(yi)|yi|θ (5.51)
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which means

ζi =
sgn(yi)|yi|q/p

∥y∥qr,q
. (5.52)

For this ζ, we compute

⟨y, ζ⟩r =
n∑
i=1

riyiζi (5.53)

=
n∑
i=1

riyi
sgn(yi)|yi|q/p

∥y∥qr,q
(5.54)

=

∑n
i=1 ri|yi|q/p+1

∥y∥qr,q
(5.55)

=

∑n
i=1 ri|yi|q

∥y∥qr,q
(5.56)

=
∥y∥qr,q
∥y∥qr,q

= 1. (5.57)

The transition from Eq. (5.55) to Eq. (5.56) comes from q/p+ 1 = q. Also, we have

∥ζ∥r,p =
∥∥∥∥fq/p(y)∥y∥qr,q

∥∥∥∥
r,p

(5.58)

=

(
n∑
i=1

ri

∣∣∣∣sgn(yi)|yi|q/p∥y∥qr,q

∣∣∣∣p
)1/p

(5.59)

=
1

∥y∥qr,q

(
n∑
i=1

ri
∣∣sgn(yi)|yi|q/p∣∣p)1/p

(5.60)

=
1

∥y∥qr,q

(
n∑
i=1

ri |yi|q
)1/p

(5.61)

=
1

∥y∥qr,q
∥y∥q/pr,q (5.62)

= ∥y∥q/p−qr,q = ∥y∥−1
r,q . (5.63)

By substituting x = ζ in Eq. (5.50), the assumption ⟨y,x⟩r = 1 is satisfied and the equality

holds. Thus, we obtain

∥x∥r,p ≥ ∥y∥−1
r,q ⇐⇒ ∥x∥pr,p ≥ ∥y∥−pr,q , (5.64)
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where the equality holds when x = ζ.

We bring another lemma about spaces spanned by matrices.

Lemma 5.14 ([Ben-Israel and Greville, 2003] Ex.9, §1.3, p.43 & §2.6, p.71). For a matrix

M ∈ Rn1×n2 , we define a generalized inverse of matrix M denoted by M † ∈ Rn2×n1 ,

satisfying that

MM †M =M. (5.65)

Then,

Im(M) = Im(MM †). (5.66)

Also,

S = {y : y = (I −MM †)x,x ∈ Rn1} ⊆ Im(M)⊥. (5.67)

Note that the generalized inverse M † is not unique. However, the pseudoinverse M+ is

unique, and also be one of generalized inverses M †. From this lemma, we can write as

Im(M) = {a : a =MM †b,b ∈ Rn1}, Im(M)⊥ ⊇ {a : y = (I −MM †)b,b ∈ Rn1}.
(5.68)

5.B.4.2 Proof of Lemma 5.11

This section provides a proof of Lemma 5.11.

For the illustrative purpose, we start with the w = 1 case. If w = 1, then

⟨Cα,β⟩w = ⟨Cα,β′ + β′′⟩w (5.69)

= ⟨Cα,β′⟩w + ⟨Cα,β′′⟩w (5.70)

= ⟨Cα,β′⟩w. (5.71)

The last equality follows for the following reason. By composition, Cα ∈ Im(C). Also, from

Lemma 5.14, β′′ ∈ Im(C)⊥. Hence, Cα and β′′ are orthogonal to each other and we get
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⟨Cα,β′′⟩w = 0.

We now turn into the case where w is arbitrary. Things are less trivial when we introduce

the weight. Thus, we further analyze the weighted inner product.

Since the matrix W is a full rank diagonal matrix, we obtain

W 1/2C(C+W−1/2)W 1/2C = W 1/2CC+C = W 1/2C, (5.72)

and thus C+W−1/2 is a generalized inverse of W 1/2C, i.e.,

(W 1/2C)† = C+W−1/2. (5.73)

Also, since W is a full rank diagonal matrix,

{b : b = W−1/2a, a ∈ Rm} = {b′ : b′ ∈ Rm} = Rm. (5.74)

Using these relations and Lemma 5.14, we get

Im(W 1/2C) = {b : b = W 1/2C(W 1/2C)†a, a ∈ Rm} (5.75)

= {b : b = W 1/2CC+W−1/2a, a ∈ Rm} (5.76)

= {b : b = W 1/2CC+a′, a′ ∈ Rm}, (5.77)

where we use Eq. (5.73) for Eq. (5.76) and we use Eq. (5.74) for Eq. (5.77). Moreover, we

have

Im(W 1/2C)⊥ ⊇ {b : b = (I −W 1/2C(W 1/2C)†)a, a ∈ Rm} (5.78)

= {b : b = (I −W 1/2CC+W−1/2)a, a ∈ Rm} (5.79)

= {b : b = W 1/2(I − CC+)W−1/2a, a ∈ Rm} (5.80)

= {b : b = W 1/2(I − CC+)a′, a′ ∈ Rm}, (5.81)

where we use Eq. (5.73) for Eq. (5.79) and we use Eq. (5.74) for Eq. (5.81). Therefore,

⟨Cα,β⟩w = ⟨W 1/2Cα,W 1/2β⟩ (5.82)
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= ⟨W 1/2Cα,W 1/2β′⟩+ ⟨W 1/2Cα,W 1/2β′′⟩ (5.83)

= ⟨W 1/2Cα,W 1/2CC+β⟩+ ⟨W 1/2Cα,W 1/2(I − CC+)β⟩ (5.84)

= ⟨W 1/2Cα,W 1/2CC+β⟩. (5.85)

= ⟨W 1/2Cα,W 1/2β′⟩. (5.86)

= ⟨Cα,β′⟩w (5.87)

The line Eq. (5.85) follows because from Eq. (5.81) the W 1/2(I − CC+)β ∈
Im(W 1/2C)⊥ and therefore W 1/2(I − CC+)β is orthogonal to W 1/2Cα, which induces

⟨W 1/2Cα,W 1/2(I − CC+)β⟩ = 0.

Eq. (5.87) concludes the proof.

5.B.4.3 Proof of Lemma 5.12

This section proves Lemma 5.12.

If fq/p(Cy) ∈ Im(C), then

Cz = CC+fq/p(Cy)

∥y∥qG,q
(5.88)

=
fq/p(Cy)

∥y∥qG,q
(5.89)

=
fq/p(Cy)

∥Cy∥qw,q
(5.90)

From Eq. (5.88) to Eq. (5.89), we use the following relation; for a vector a ∈ Im(C) we have

a = CC+a since CC+ is an orthogonal projection onto the space Im(C). Eq. (5.90) is a

form of Eq. (5.51), and thus from Prop. 5.13, Eq. (5.90) satisfies the equality condition of the

Hölder’s inequality as

∥Cz∥pw,p = ∥Cy∥−pw,q ⇐⇒ ∥z∥pG,p = ∥y∥
−p
G,q, (5.91)

where we use the definition of the graph p-seminorm. Thus, we obtain the claim.

5.B.5 Remark on the Constraints

This section provides detailed explanation for the constraints of Lemma 5.2 and Prop. 5.3.

We first note that the trick in this transformation is as same as done in [Herbster and Pontil,
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2006, Klein and Randić, 1993]. The elaboration here follows these earlier works.

Using the reproducing property Eq. (2.67) as done in [Herbster and Pontil, 2006, Klein

and Randić, 1993], the constraints of 2-resistance (and also for p-resistance Eq. (2.74)) can

be rewritten as

1 = xi − xj = ⟨x, L+ei − L+ej⟩L. (5.92)

Now, since L1 = 0, there exists c ∈ R such that x − c1 ∈ H(L). We now define as

x′ := x− c1. We then compute

⟨x′, L+ei⟩L = x′⊤LL+ei (5.93)

= x′⊤ei (5.94)

= x′i. (5.95)

The second line follows since we have LL+x′ = x′ for x′ ∈ H(L). Note that this computation

is same as the reproducing kernel property characteristics Eq. (2.67). Also, the definition of

x′ immediately leads to

Lx′ = L(x− c1) = Lx− cL1 = Lx, (5.96)

and thus for u ∈ Rn we have

⟨x′,u⟩L = x′⊤Lu (5.97)

= x⊤Lu (5.98)

= ⟨x,u⟩L (5.99)

From these discussions, we obtain

1 = xi − xj (5.100)

= (xi − c)− (xj − c) (5.101)

= x′i − x′j (5.102)

= ⟨x′, L+ei⟩L − ⟨x′, L+ej⟩L (5.103)
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= ⟨x, L+ei⟩L − ⟨x, L+ej⟩L (5.104)

= ⟨x, L+ei − L+ej⟩L. (5.105)

The third line follows from the definition of x′. The fourth line follows from Eq. (5.95) and

the fifth line follows from Eq. (5.99). Thus, we obtain Eq. (5.92)

5.C Proof of Theorem 5.4

In this section we prove Thm. 5.4. The general strategy is applying Prop. 5.3.

By definition,

rG,p(i, j) =
1

minx ∥x∥pG,p s.t. xi − xj = 1
. (5.106)

First, we rewrite the condition of the minimization problem. Using Eq. (5.92), we observe

that the denominator of Eq.(2.74) can be written as

min
x
{∥x∥pG,p s.t. xi − xj = 1} = min

x
{∥x∥pG,p s.t. ⟨L

+ei − L+ej,x⟩L = 1} (5.107)

From this rewrite, we see that Eq. (5.107) is exactly same as the minimization problem

of Prop. 5.3 if we substitute y := L+(ei − ej). Thus, we apply Prop. 5.3 to this problem in

order to obtain lower and upper bounds of Eq. (5.107).

Lower Bound of Eq. (5.107). Now, we come to the lower bound of this problem Eq. (5.107).

By applying the lower bound of Prop. 5.3 with substituting y := L+(ei − ej), we obtain

∥L+(ei − ej)∥−pG,q ≤ min
x
{∥x∥pG,p s.t. ⟨L

+(ei − ej),x⟩L = 1}. (5.108)

This conclude the lower bound.

Upper Bound of Eq. (5.107). Next, we turn to the upper bound of this problem Eq. (5.107).

We first compute

∥z∥G,p = ∥Cz∥w,p =
∥∥∥∥CC+fq/p(Cy)

∥Cy∥qw,q

∥∥∥∥
w,p

(5.109)

=

∥∥CC+fq/p(Cy)
∥∥
w,p

∥Cy∥qw,q
(5.110)
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≤ ~CC+
~w,p

∥fq/p(Cy)∥w,p
∥Cy∥qw,q

(5.111)

= ~CC+
~w,p∥Cy∥−1

w,q (5.112)

= ~W 1/pCC+W−1/p
~p∥Cy∥−1

w,q (5.113)

= ~W 1/pCC+W−1/p
~p∥y∥−1

G,q (5.114)

= αG,p∥y∥−1
G,q, (5.115)

where we recall that we defined as αG,p := ~W 1/pCC+W−1/p~p. The transformation

from Eq. (5.110) to Eq. (5.111) follows from the submultiplicative characteristics of the

matrix norm discussed in Sec. 5.2. The equality from Eq. (5.111) to Eq. (5.112) holds due

to the same discussion as Eq. (5.63) in Prop. 5.13, which we discussed in Sec. 5.B.4.1. The

transformation from Eq. (5.112) to Eq. (5.113) follows from a characteristics of the weighted

matrix norm discussed in Eq. (5.30). Hence, by taking the p-th power of the inequality

Eq. (5.115) and observing that we substitute y := L+(ei − ej), we obtain

∥z∥pG,p ≤α
p
G,p∥L

+(ei − ej)∥−pG,q (5.116)

Thus, from Prop. 5.3 and the inequality Eq. (5.115) we get

min
x
{∥x∥pG,p s.t. ⟨L

+(ei − ej),x⟩L = 1} ≤ ∥z∥pG,p ≤ αpG,p∥L
+(ei − ej)∥−pG,q. (5.117)

Combining Lower and Upper Bounds of Eq. (5.107). We now combine the lower bound

Eq. (5.108) and the upper bound Eq. (5.117). By combining these two and using Eq. (5.107),

we get

∥L+ei − L+ej∥−pG,q ≤ min
x
{∥x∥pG,p s.t. ⟨L

+(ei − ej),x⟩L = 1} ≤ αpG,p∥L
+ei − L+ej∥−pG,q

⇐⇒ ∥L+ei − L+ej∥−pG,q ≤ min
x
{∥x∥pG,p s.t. xi − xj = 1} ≤ αpG,p∥L

+ei − L+ej∥−pG,q
(5.118)

For the p-effective resistance, taking the inverse we obtain

1

αpG,p
∥L+ei − L+ej∥pG,q ≤ rG,p(i, j) ≤ ∥L+ei − L+ej∥pG,q. (5.119)
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5.D Proof of Theorem 5.5
This section proves Thm. 5.5. The proof here is a special case of Thm. 5.4.

For the incidence matrix of tree, rank(C) = n− 1 [Bapat, 2010]. Hence Im(C) = Rn−1.

Thus, fq/p(Cy) ∈ Rn−1 = Im(C). Using the Lemma 5.12 and substituting y = L+ei−L+ej ,

min
x
{∥x∥pG,ps.t. ⟨x, L

+ei − L+ej⟩L = 1} = ∥L+ei − L+ej∥−pG,q. (5.120)

Recall that the minimization problem of Eq. (5.120) is the inverse of the p-resistance. There-

fore, Eq. (5.120) leads to the claim.

5.E Proof of Proposition. 5.6
We recall that by definition of pseudoinverse, we have

~CC+
~2 = 1, (5.121)

since the eigenvalues ofCC+ is either 0 or 1. Also, for any matrixM and any invertible matrix

P , PMP−1 and M share the same eigenvalues. By construction, W is also an invertible

matrix. Thus, using Lemma 5.9, we obtain

αG,p = ~W 1/pCC+W−1/p
~p (5.122)

≤ m|1/2−1/p|
~W 1/pCC+W−1/p

~2 (5.123)

= m|1/2−1/p|. (5.124)

5.F Proof of the Cut Results of Illustrative Examples Fig. 5.1
This section explains illustrative examples of clustering via p-resistance where p plays a role.

5.F.1 Preliminaries for Illustrative Examples

Before we discuss the details of the clustering, we setup preliminaries. We now setup the

notions on the graph metrics. First, a st-mincut is defined as the minimum cut between the

vertices s and t, i.e.,

min
V ′

Cut(s, t) := min
V ′

∑
i∈V ′,j∈V ′\V |s∈V ′,t∈V ′\V

aij. (5.125)
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The act of the “cut” of the edges is defined to divide into two graphs so that the vertex s

belongs to one and the vertex t belongs to the other. The minimum cut is that we want such a

cut so that the sum of the weight of the edges to be cut is minimized.

Now, we also define the shortest path between vertices s and t is defined as

min
i

∑
ℓ∈E

wℓiℓ s.t. i = (iℓ)ℓ∈E unit flow from i to j, (5.126)

where i ∈ {0, 1}m. The shortest path problem is to finding the path with smallest sum of the

weights of edges between s and t.

In the following, we show that p-resistance is connection with st-mincut and the shortest

path. We recall the theorem in [Alamgir and Luxburg, 2011] as

Proposition 5.15 (Alamgir and Luxburg [2011]). Consider a p-flow problem as

FG,p(i, j) := min
i

∑
ℓ∈E

w1−p
ℓ ipℓ s.t. i = (iℓ)ℓ∈E unit flow from i to j, (5.127)

where i ∈ R+m is a current at edges. Then, for 1/p+ 1/q = 1, we have

r
1/(p−1)
G,p (i, j) = FG,q(i, j). (5.128)

We first remark that i in q-flow problem is non-negative real value whereas i for the

shortest path is either 0 or 1. We remark that when p→∞, q goes to 1 and q-flow problem is

a simple shortest path flow problem.

This proposition means that the 1/(p− 1)-th power of p-resistance is equivalent to the

q-flow. From this proposition, we now see the connection between p-resistance, and st-mincut

and shortest path as follows.

• When p→ 1, p-resistance between s and t is 1/st-mincut.

• When p→∞, 1/(p− 1)-th power of the p-resistance is the discrete shortest path of

the unweighted graph.

Thus, we intuitively characterize the p-resistance as

• When p is small, p-resistance more focus on a minimum cut.
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• When p is large, p-resistance more focus on the “path”, and also more focus on the

“unweighted topology”.

We next formulate the clustering problem as follows. We use the k-center algorithm

using p-resistance as a metric as

C∗
G,p := min

v∗1 ,v
∗
2∈V

max
v∈V

min
i∈{1,2}

r
1/(p−1)
G,p (v, v∗i ), (5.129)

where {v∗1, v∗2} is a minimizer. Since when p→ 1 and r1/(p−1)
G,p > 0, then r1/(p−1)

G,p →∞ and

therefore Eq. (5.129) cannot be used. In this case, we note that the following relation that is

x < y ⇐⇒ x1/(p−1) < y1/(p−1) (5.130)

we have

C∗p−1
G,p := min

v∗1 ,v
∗
2∈V

max
v∈V

min
i∈{1,2}

rG,p(v, v
∗
i ). (5.131)

Thus, we simply use the comparison of rG,p instead of r(1/(p−1))
G,p when p → 1. We finally

remark that Herbster [2010] showed that when p→ 1 the triangle inequality still holds, i.e.,

rG,p→1(i, j) ≤ rG,p→1(i, ℓ) + rG,p→1(ℓ, j). (5.132)

5.F.2 Illustrative Examples of Clustering via p-Resistance

Now, we discuss the examples in Fig. 5.1. We give notations as in Fig. 5.5. We denote by

(Vij, Eij) the vertices and edges of the graph Gij . We also give the example where the weight

matters and its notation in Fig. 5.6.

5.F.2.1 The Case of G1

For the case of p→ 1, since p-resistance is the 1 over min-cut, we have for j > i

rG,p(i, j) =


1 i = 1 and j ∈ V \{1}
1/5 i, j ∈ V12 or i, j ∈ V13
1/4 i ∈ {5, 6}, j ∈ {7, 8}

(5.133)
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Figure 5.5: The notations of illustrative example graphs. In the graph G2 the vertex 5 is in
both G21 and G22.

1 2 3 4 5 6

G3

p → 1

p → ∞

Figure 5.6: The illustrative example of a weighted graph and its notations. The weights of
edge drawn in the line are 1, whereas weight of the dotted line is ϵ≪ 1. The other drawing
rule follows Fig. 5.1. In the example, we observe that we focus on the difference of the weight
when p → 1, while we ignore the weight when p → ∞. For this example, “more natural
result” depends on the perspective. If we look at the cut, the more natural result is obtained
when p→ 1. If we look at the path-based topology, we obtain the natural result when p→∞.
Details in Appendix 5.F.

Note that rG,p(i, j) = rG,p(j, i). By using this p-resistance, the set satisfying Eq. (5.131) is

v∗1 = 1 and v∗2 ∈ V12 ∪ V13. This is because if we do not take v∗1 = 1,

min
v∗1 ,v

∗
2∈V

max
v∈V

min
i∈{1,2}

rG,p(v, v
∗
i ) = 1, (5.134)

which is the maximum of the weight of edges of G.

For p→∞, since p-resistance is a shortest path, we have for j > i

r
1/(p−1)
G,p (i, j) =


1 i = 1, j ∈ V2
1 i, j ∈ V12 or i, j ∈ V13
2 i = 1, j ∈ V13
2 i ∈ V12, j ∈ V13.

(5.135)
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Then if we set v∗1 = 2 and v∗2 ∈ V13, we have

min
v∗1 ,v

∗
2∈V

max
v∈V

min
i∈{1,2}

r
1/(p−1)
G,p (v, v∗i ) = 1. (5.136)

Since this is the minimum of the weight of the edge, it is clear that this set is optimal.

Coloring the vertices in the same color if the vertices are closer to the same center than

the others, we obtain Fig. 5.1.

5.F.2.2 The Case of G2

For the case of p→ 1, we have for j > i

rG,p(i, j) =


1/5 i, j ∈ V21
1/2 i ∈ V21, j ∈ V22
1/2 i, j ∈ V22.

(5.137)

Then if we set v∗1 ∈ V21 and v∗2 ∈ V22, we have

min
v∗1 ,v

∗
2∈V

max
v∈V

min
i∈{1,2}

r
1/(p−1)
G,p (v, v∗i ) = 1/2. (5.138)

Since mini∈V22, rG,p(i, j) = 1/2, this is the best possible minimum.

For the case of p→∞, we have for j > i

rG,p(i, j)
1/(p−1) =



1 i, j ∈ V21
2 i ∈ V21\{5}, j ∈ {6, 10}
3 i ∈ V21\{5}, j ∈ {7, 9}
4 i ∈ V21\{5}, j = 8

min{j − i, 6− (j − i)} i, j ∈ V22

(5.139)

Then if we set v∗1 = 5 and v∗2 = 8, we have

min
v∗1 ,v

∗
2∈V

max
v∈V

min
i∈{1,2}

r
1/(p−1)
G,p (v, v∗i ) = 1. (5.140)

Since the minimum of p-resistance is 1, this is the best possible minimum.

Coloring the vertices in the same color if the vertices are closer to the same center than
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the others, we obtain Fig. 5.1.

5.F.2.3 The Case of G3

For the case of p→ 1, we have for j > i

rG,p(i, j) =


1 i, j ∈ {1, . . . , 4}
1 i, j ∈ {5, 6}
1/ϵ i ∈ {1, . . . , 4}, j ∈ {5, 6}.

(5.141)

Then if we set v∗1 ∈ {1, . . . , 4} and v∗2 ∈ {5, 6}, we have

min
v∗1 ,v

∗
2∈V

max
v∈V

min
i∈{1,2}

r
1/(p−1)
G,p (v, v∗i ) = 1. (5.142)

Since the minimum of p-resistance is 1, this is the best possible minimum.

For the case of p→∞, we have for j > i

r
1/(p−1)
G,p (i, j) = j − i if j > i (5.143)

Then if we set v∗1 = 2 and v∗2 = 5, we have

min
v∗1 ,v

∗
2∈V

max
v∈V

min
i∈{1,2}

r
1/(p−1)
G,p (v, v∗i ) = 1. (5.144)

Since the minimum of p-resistance is 1, this is the best possible minimum.

Coloring the vertices in the same color if the vertices are closer to the same center than

the others, we obtain Fig. 5.1.

5.G Proof of Proposition 5.7
This section provides the proof for Prop. 5.7. In practice, we want to know how close to the

exact value and how far from this upper bound the value of ~W 1/pCC+W−1/p~p is. In the

following, we argue that in the general case αG,p is far less than the bound given in Prop. 5.6.

Before we get into the detail, we give a brief overview of an interpretation of αG,p. From

the definition of z, z is a mapping of fq/p(Cy)/∥y∥qG,q from Rm → Im(C). Comparing the

equality condition Eq. (5.90), we observe that if fq/p(Cy) ∈ Im(C), we obtain the tightest

bound since ∥z∥G,p = ∥y∥−1
G,q. By looking at this, we observe that the αG,p is the worst
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possible “overflow” of the mapping from Im(C) from Rm, in a sense of the weighted p-norm.

5.G.1 Bound of αG,p for Some Specific Graphs

In this section we give a constant bound of αG,p for some specific graphs. We now divide the

proof into the complete case and the cyclic case.

5.G.1.1 Complete Case

First, we obtain the pseudoinverse of C of a complete graph.

Lemma 5.16. For an incidence matrix C ′ for a complete graph,

C
′+ =

1

n
C

′⊤ (5.145)

Proof. For a graph Laplacian L of unweighted graph can be written as

L = nI − 1⊤1, (5.146)

and thus

Lij =

 n− 1 if i = j

−1 if i ̸= j
. (5.147)

Also, we know that

L = C
′⊤C ′. (5.148)

Now we consider the the vector xij ∈ Rn as

x⊤
ij := (0, . . . , 0,

ith element︷︸︸︷
1 , 0, . . . , 0,

jth element︷︸︸︷
−1 , 0, . . . , 0)︸ ︷︷ ︸

size n

. (5.149)
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Note that this xij is one row of the incidence matrix C ′. Now we get

(Lxij)l =


(n− 1)× 1 + (−1)× (−1) = n if l = i

1× (−1) + (n− 1)× (−1) = −n if l = j

(−1)× 1 + (−1)× (−1) = 0 otherwise

(5.150)

= n(Lxij)l. (5.151)

Since xij is one column of the transpose of the incidence matrix C
′⊤,

LC = C
′⊤C ′C

′⊤ = nC
′⊤ ⇐⇒

(
1

n
C

′⊤
)
C ′
(
1

n
C

′⊤
)

=
1

n
C

′⊤ (5.152)

Also,

(LC)⊤ = C
′
C

′⊤C
′
= nC

′ ⇐⇒ C
′
(
1

n
C

′⊤
)
C

′
= C

′
(5.153)

From Eq. (5.152) and Eq. (5.153), the matrix 1/nC ′ satisfies the definition of C+, which

leads to the claim.

Note that ~CC+~1 = ~CC+~∞ due to the symmetricity of CC+.

~CC+
~p ≤ ~CC+

~∞ ≤ ~C~∞~C+
~∞ = 4

n+ 1

n
≤ 4. (5.154)

5.G.1.2 Cyclic Case

In the cyclic graph, m = n, i.e., the number of vertices is equal to the number of edges.

Thus, the incidence matrix C is square. However, in order to avoid confusion, in the following

we use m and n. Now, we define the incidence matrix C ∈ Rm×nof the cyclic graph as

ci1 =


−1 when i = 1

1 when i = 2

0 otherwise

(5.155)

ci2 =


−1 when i = 1

1 when i = n

0 otherwise

(5.156)
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cij =


−1 when i = j − 1

1 when i = j

0 otherwise for

for j ≥ 3. (5.157)

Before we explore C+, we introduce cyclic shift operator of the vector. Given the vector

a, the shift operator (l) “cyclic shifts” the element, as

a(l) = (an−l+1, an−l+2, . . . , an, a1, . . . , an−l)
⊤. (5.158)

Thus, a(0) = a. Also, we define the reverse operator rev for a vector a as

rev(a) = (an, an−1, . . . , a1). (5.159)

We also define the vector ξ ∈ Rn as

ξ = (1/2− 1/2n, 1/2− 3/2n, . . . , 1/2− (2i− 1)/2n, . . . ,−1/2 + 1/n). (5.160)

Now, we define a matrix B as

B1· = ξ
(1) (5.161)

B2· = rev(ξ(0)) = rev(ξ) (5.162)

Bj· = ξ
(j−1)for j ≥ 3, (5.163)

where Bi· denotes i-th column of B. We plot a heatmap of C and B for the illustrative

purpose.

Now we prove that C+ = B. To claim that, it is enough to prove that BC = I −
1⊤1/n [Bapat, 2010]. From the construction,

(BC)ii = ξ1 − ξn = 1/2− 1/2n− (−1/2− 1/2n) = 1− 1/n. (5.164)
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Figure 5.7: Heatmap plot for the matrices C, B = C+ and CC+ of the cyclic graph for
n = 20.

Also, when i ̸= j,

(BC)ij =


−ξi−1 − ξn−i+1 when when j = 1

ξ
(j)
i+1 − ξ

(j)
i when when 2 ≤ j < n,

ξn−i+1 + ξi+1 when when j = n,

(5.165)

= −1/n. (5.166)

Thus, we can say that B = C+. By doing a similar computation, we get

CC+ =


1− 1/n when i = j

1/n when i = 2 or j = 2, i ̸= j

−1/n otherwise

(5.167)

We also plot a heatmap for CC+ for the illustrative purpose in Fig. 5.7(c). Thus, applying

Lemma 5.10, we get

~CC+
~p ≤ ~CC+

~1 = max
i

n∑
j=1

|(CC+)ij| = 2− 1/n ≤ 4. (5.168)

We leave a brief note for other concrete examples. Several attempts are made to obtain

the concrete form of C+ for the specific graph [Azimi and Bapat, 2018, Azimi et al., 2019].

However, due to their abstract ways to characterize the graph such as distance or cut, we think

that it is hard to immediately obtain a non-trivial bound from these results. Also, C+ for tree

is studied [Bapat, 1997]. However, since we know the exact representation of p-resistance for
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Table 5.5: The values of approx-
imated 1-resistance for the graph
Fig. 5.9 (a). The exact 1-resistance
for this graph is 1/δ.

ζ
5 10 20 40 80

δ

5 0.2 0.1 0.05 0.025 0.0125
10 0.2 0.1 0.05 0.025 0.0125
20 0.2 0.1 0.05 0.025 0.0125
40 0.2 0.1 0.05 0.025 0.0125
80 0.2 0.1 0.05 0.025 0.0125

Table 5.6: The values of approx-
imated p-resistance for the graph
Fig. 5.9 (b). The exact 1-resistance
for this graph is 1/(δ + 1).

ζ
5 10 20 40 80

δ

5 0.46 0.33 0.21 0.13 0.07
10 0.61 0.48 0.33 0.21 0.12
20 0.75 0.64 0.49 0.33 0.20
40 0.85 0.77 0.65 0.49 0.33
80 0.92 0.87 0.79 0.66 0.50

tree in Thm. 5.5, we do not have to discuss the tree case.

5.G.2 Condition Number Point of View

To prove the bound of Prop. 5.6, we only use ~MM+~2 = 1 and Lemma 5.9, which holds

for any matrix M . Hence, we can say that this is the “worst” bound and we expect a far

lower value of ~CC+~p for a general incidence matrix of graph. To gain some qualitative

observation on how close between the exact and approximation, we further decompose αG,p.

By using the submultiplicity and Lemma 5.10,

αG,p = ~W 1/pCC+W−1/p
~p (5.169)

≤ ~W 1/p
~p~CC

+
~p~W

−1/p
~p (5.170)

≤ ~CC+
~pw

1/p
max/w

1/p
min (5.171)

≤ ~C~p~C
+

~pw
1/p
max/w

1/p
min (5.172)

where wmax := maxℓwℓ and wmin := minℓwℓ. In numerical analysis, the term ~C~p~C
+~p

is called as a condition number of the matrix C [Saad, 2003]. A condition number is related

to the “difficulty” to numerically solve the linear equation Cx = y. The larger the condition

number gets, the more difficult to solve the linear equation. The linear equation is difficult to

solve if we can make one or more pairs of column or row of C close to parallel by elementary

operations. However, by construction of incidence matrix, no pairs of column or row of the

incidence matrix are close to parallel. Thus, we expect that the condition number of C will

not be large, and hence we expect a smaller value of αG,p than Prop. 5.6 in general.
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Figure 5.8: The example where the approximated value is far lower than the exact value.
See 5.G.3 for details.

Table 5.7: The values of ~CC+~1/m
1/2

for the graph Fig. 5.9 (a). If this value is
close to 1, we have a looser bound.

ζ
5 10 20 40 80

δ

5 0.51 0.33 0.23 0.16 0.11
10 0.41 0.27 0.19 0.13 0.09
20 0.31 0.2 0.14 0.1 0.07
40 0.23 0.15 0.1 0.07 0.05
80 0.16 0.11 0.07 0.05 0.04

Table 5.8: The values of ~CC+~1/m
1/2

for the graph Fig. 5.9 (b). If this value is
close to 1, we have a looser bound.

ζ
5 10 20 40 80

δ

5 0.70 0.55 0.43 0.33 0.24
10 0.68 0.59 0.51 0.41 0.32
20 0.59 0.56 0.54 0.49 0.41
40 0.47 0.48 0.51 0.52 0.48
80 0.36 0.38 0.44 0.49 0.51

Table 5.9: The condition numbers
~C~1~C

+~1 for the graph Fig. 5.9 (a).

ζ
5 10 20 40 80

δ

5 20.4 45.2 95.1 195.1 395
10 40.4 90.2 190.1 390.1 790
20 80.4 180.2 380.1 780.1 1580
40 160.4 360.2 760.1 1560.1 3160
80 320.4 720.2 1520.1 3120.1 6320

Table 5.10: The condition numbers
~C~1~C+~1 for the graph Fig. 5.9 (b).

ζ
5 10 20 40 80

δ

5 24.4 49.7 101.8 219.3 457.7
10 51.0 136.7 346.2 812.8 1790
20 120.2 362.3 1035.1 2702.6 6432.7
40 266.2 871.6 2768.2 8119.5 21449
80 563.8 1943.9 6670.3 21713 64438
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5.G.3 Example where Approximation is Far Lower than the Exact Value

Lastly, we discuss an example where the approximation is far lower than the exact value

and how this happens. We consider a graph depicted in Fig. 5.8. First, we see a graph in

Fig. 5.8 (a). To build this graph, first consider the line graph, where the ζ vertices are in line.

This graph is constructed with δ lines of diameter ζ each lines start vertex is glued to each

other lines “start vertex” and similar to the “end vertices”. For Fig. 5.8 (b), we add one edge

to the graph in Fig. 5.8 between the start vertex and end vertex.

We now compare with approximation and the exact value of 1-resistance between the

start vertex and end vertex. As we discussed in Sec. 5.F, we compute the exact 1-resistance

between i and j as the minimum cut’s inverse. Thus, for (a) rG,1(start, end) = 1/δ and for

(b) we have rG,1(start, end) = 1/(δ + 1). We then compute the approximated values and

~CC+~1 for Fig. 5.8. We give a result in Tables 5.5–5.8. From Tables 5.5 and 5.6, we

observe that we have a far less accurate approximation for graph (b) than that for graph (a). In

Tables 5.7 and 5.8, we observe that a far larger value of ~CC+~1 for the graph (b) than that

for the graph (a). We also observe that comparing with ~CC+~1 of the graph constructed

from the real dataset in Fig. 5.3, we see a far larger value of ~CC+~1 for the graph (b). The

larger value of ~CC+~1 might be the reason why the approximation of the 1-resistance of

graph (b) is far worse than the graph (a).

We now discuss why ~CC+~1 for graph (b) is far larger than that for graph (a). We now

revisit the condition number argument in Sec. 5.G.2. The condition number is the stableness

of the linear equation of the matrix. The stable linear equation is even if we add small value

ϵ to the linear equation, i.e., Cx = y + ϵ, the solution x is almost unchanged. If we add

perturbation on each edge in graph (a), the graph can absorb the perturbation since each line

graph is almost independent. However, on the graph (b), each line graph becomes dependent

due to the additional edge. Moreover, the start and the end vertex are like “pivots” of the

graph. The perturbations might be widely spread over the graph by connecting two pivots. By

this spread, graph (b) becomes unstable, while graph (a), where we do not connect the pivots

is more stable. In Tables 5.9 and 5.10 we see that graph (b) is far more unstable than graph

(a).

Finally, we argue that we do not observe this phenomenon in the real setting. In the

example of graph (b), the unstableness comes from the sparse connection over the graph and
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connection of the “pivots” over such a spares graph. In a dense graph such as a complete

graph, we saw far lower ~CC+~1 as we observe in Sec 5.G.1. As we saw in the real dataset

case, we can assume that there is a denser connection over the graph, even between the

clusters.

5.H Proof of Theorem 5.8
This section discusses Thm. 5.8, including proof and some existing claim on Thm. 5.8.

5.H.1 Main Proof

We use the following characteristics of p-Laplacian, defined as Eq. (2.32).

Proposition 5.17 ([Bühler and Hein, 2009]).

SG,p(x) = ⟨x,∆px⟩H(V ), (5.173)(
∂Sp(x)

∂x

)
i

= p(∆px)i. (5.174)

Before we prove the main argument, we now explore a matrix expression of the p-

Laplacian ∆p. We define a matrix Ap,x as

Ap,x(i, j) := aij|xi − xi|p−2, (5.175)

and its degree-like matrix Dp,x as

Dp,x(i, j) =


∑n

j=1Ap,x(i, j) if l = i

0 if l ̸= i
(5.176)

Define the matrix Lp,x as

Lp,x := Dp,x − Ap,x. (5.177)

Now,

(Lp,xx)i = Dp,x(i, i)xi −
n∑
j=1

Ap,x(i, j)xj (5.178)
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=
n∑
j=1

Ap,x(i, j)xi −
n∑
j=1

Ap,x(i, j)xj (5.179)

=
n∑
j=1

Ap,x(i, j)(xi − xj) (5.180)

=
n∑
j=1

aij|xi − xi|p−1sgn(xi − xj) (5.181)

= (∆px)i. (5.182)

Thus, we can say that Lp,x is a matrix expression of the p-Laplacian, satisfying

Lp,xx = ∆px. (5.183)

Then, by Prop. 5.17, we can prove that

x⊤Lp,xx = SG,p(x). (5.184)

Now we turn to the optimization problem Eq. (5.17). By using the Lagrangian multiplier

method, the optimal solution satisfies the following:

F (x, λ) := (SG,p(x))− λ(xi − xj − 1) (5.185)

∂F

∂x
= pLp,xx− λ(ei − ej) = 0 (5.186)

∂F

∂λ
= xi − xj − 1 = 0. (5.187)

From Eq. (5.186), we have

x∗ij =
λ

p
L+
p,x∗ij (ei − ej). (5.188)

From Eq. (5.188) and Eq. (5.187), we have

λ

p

(
(L+

p,x∗ij (i, i)− L+
p,x∗ij (i, j))− (L+

p,x∗ij (j, i)− L+
p,x∗ij (j, j))

)
= 1. (5.189)
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Following Eq. (5.188), we substitute λ/p from Eq. (5.189) into Eq. (5.188), and we have

x∗ij =
L+
p,x∗

ij

L+
p,x∗ij (i, i) + L+

p,x∗ij (j, j)− 2L+
p,x∗ij (i, j)

(ei − ej). (5.190)

Since p-resistance is an inverse of the energy, we obtain

rG,p(i, j) = (x∗ij⊤L+
p,x∗ijx

∗ij)−1 (5.191)

= L+
p,x∗ij (i, i) + L+

p,x∗ij (j, j)− 2L+
p,x∗ij

(i, j) (5.192)

= (ei − ej)
⊤L+

p,x∗ij (ei − ej) (5.193)

The rest of the proof is same as the original proof in Thm. 6 in [Alamgir and Luxburg,

2011]. The trick is that we do not have to the exact form of Lp,x∗ij . Only this expression is

enough to prove Theorem 5.8.

5.H.2 Original Context of Theorem 5.8

Originally in Sec. 5 [Alamgir and Luxburg, 2011], Thm. 5.8 when p = 2 has a different

interpretation. Nadler et al. [2009] proves that the semi-supervised learning problem of p = 2

case is meaningless if the number of vertices are infinite. Thm. 5.8 for p = 2 supports this

claim in [Nadler et al., 2009] for two-pole semi-supervised leaning problem for the following

way. Since the equivalent 2-resistance is known to converge to a meaningless function, the

solution of the semi-supervised problem is equivalently characterized by this meaningless

function. Thus, the semi-supervised learning does not make sense, if the number of the

vertices are large. If the conjecture for p > 1 case were proven, Thm. 5.8 can be interpreted

that for some range of p > 1 two-pole semi-supervised learning problem is not meaningless,

since the equivalent p-resistance is shown not to converge to a meaningless one. Later

year, independent of p-resistance, the statement “for some range of p > 1 semi-supervised

learning problem is not meaningles” is proven by [Slepcev and Thorpe, 2019]. Thm. 5.8 now

supports [Slepcev and Thorpe, 2019] from a p-resistance view.

5.H.3 Remark on the Existing Claims on Theorem 5.8

Finally, we discuss several existing claims on this theorem. First, we need to mention a small

fixable mistake in the original proof in [Alamgir and Luxburg, 2011] for the p = 2 case.
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Figure 5.9: The graph example discussed in [Bridle and Zhu, 2013].

The original proof assumes that the solution to the semi-supervised learning Eq. (5.17) when

p = 2 is that

x∗ij = L+(ei − ej). (5.194)

However, this is not true since this does not satisfy the constraint

x
∗ij
i − x

∗ij
j = (ei − ej)

⊤L+(ei − ej) ̸= 1. (5.195)

Instead, the solution is given as

x∗ij =
L+(ei − ej)

(ei − ej)⊤L+(ei − ej)
. (5.196)

Note that this corresponds to Eq. (5.190). However, this does not affected the rest of the proof,

since the proof exploits only x∗ij = ρL+(ei − ej) for ρ ∈ R, and ρ does not matter. Thus, the

validity of the original claim still remains.

Next, since Thm. 5.8 resolves the open problem in [Alamgir and Luxburg, 2011], there

is an existing discussion on if this statement is true or not. The work [Bridle and Zhu, 2013]

claims that there is a counterexample to Thm. 5.8 in the general p case. In the following,

we argue that the discussion on the example in [Bridle and Zhu, 2013] does not work as a

counterexample.

The “counterexample” given in [Bridle and Zhu, 2013] is based on the example shown

as Fig. 5.9. However, unfortunately, we believe that there is invalidity in the discussion on

this example. Firstly, we recall that

min
x
{SG,p(x) s.t. xs − xt = 1} ≠ min

x
SG,p(x), (5.197)
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since minx SG,p(x) = 0 when x = c1, ∀c ∈ R, while c1 does not satisfy the constraint

of the left hand side. However, the work [Bridle and Zhu, 2013] assumes the equality of

Eq. (5.197), see the the first equality at the top of the left column in p.3 of [Bridle and Zhu,

2013]. Moreover, we note that

∂SG,p(x)

∂xu
=

∂

∂xu
(w|xs − xu|p + 2w|xu − xv|p + 3w|xs − xt|p) (5.198)

= p
(
w|xs − xu|p−1 + 2w|xu − xv|p−1

)
, (5.199)

and therefore

∂SG,p(x)

∂xu
̸= p

(
−w|xs − xu|p−1 + 2w|xu − xv|p−1

)
, (5.200)

where the difference between Eq. (5.199) and Eq. (5.200) is the sign of the term w|xs−xu|p−1.
2 However, the work [Bridle and Zhu, 2013] assumes the equality of Eq. (5.200), see the

third equality at the top of the left column in p.3 of [Bridle and Zhu, 2013]. In [Bridle

and Zhu, 2013], these invalid equality assumptions of Eq. (5.197) and Eq. (5.200) derive

the fundamental relationship in order to bring a counterexample. The rest of the analysis

in [Bridle and Zhu, 2013] is carried with this relationship. Due to this invalidity, we believe

that there are serious flaws in the claim that the example Fig. 5.9 leads to a counterexample to

Thm. 5.8. Hence, we claim that Thm. 5.8 holds with the proof in this section.

5.I On Difficulties of The Exact Solution

In this section, we briefly explain the difficulties to obtain the exact solution of the resistance.

Again, we consider the minimization problem Eq. (5.17). The Lagrangian multiplier method

gives Eq. (5.186) and Eq. (5.186). From Eq. (5.186), the optimal solution x satisfies

0 = p∆px− λ(ei − ej) (5.201)

2There is a slight difference between the definition of the p-resistance between ours and [Bridle and Zhu,
2013]. We follow the definition of [Herbster and Lever, 2009] and [Bridle and Zhu, 2013] follows the definition
of [Alamgir and Luxburg, 2011]. However, these two have almost same properties. Moreover, while we write
the equations in our form, this difference does not affect the discussion here. For more details of the difference,
see §6.1 in [Alamgir and Luxburg, 2011] or Sec. 2.4.3.
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To solve this problem, we want to consider ∆+
p , which is “generalized inverse” function ∆p,

defined as

∆+
p (∆p(∆

+
p (x))) = ∆+

p x (5.202)

Recall that we can write as

∆p = C⊤Wfp−1(Cx). (5.203)

For the convenience of notation, we write

fw,p = Wfp(Cx). (5.204)

If there exists α ∈ Ker(C) s.t.

f−1
w,p−1(C

+⊤x−α) ∈ Im(C), (5.205)

the ∆+
p is given as

∆+
p (x) := C+f−1

w,p−1(C
+⊤x−α), (5.206)

The reason is as follows. We get

∆p(∆
+
p (x)) = C⊤fw,p−1(CC

+f−1
w,p−1(C

+⊤x−α)) (5.207)

= C⊤fw,p−1(f
−1
w,p−1(C

+⊤x−α)) (5.208)

= C⊤(C+⊤x−α)) (5.209)

= C⊤C+⊤x. (5.210)

The second line follows from the assumption that f−1
w,p−1(C

+⊤x−α) ∈ Im(C). Thus,

∆+
p (∆p(∆

+
p (x))) = C+f−1

w,p−1(C
+⊤C⊤C+⊤x−α) (5.211)

= C+f−1
w,p−1(C

+⊤x−α) (5.212)

= ∆+
p x. (5.213)
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From this property, if we substitute

x = ∆+
p

(
λ

p
(ei − ej)

)
(5.214)

the Eq. (5.201) satisfied. Therefore, the next question is what α is. However, we do not know

even if such α satisfying Eq. (5.205) exists or not.



Chapter 6

ResTran: A GNN Alternative to Learn A

Graph With Features

This chapter considers a vertex classification task where we are given a graph and associated

vector features. The modern approach to this task is graph neural networks (GNNs). However,

GNNs are biased to primarily learn homophilous information. To overcome this bias in

GNN architectures, we take a simple alternative approach to GNNs. Our approach is to

obtain a vector representation capturing both features and the graph topology. We then apply

standard vector-based learning methods to this vector representation. For this approach, this

chapter propose a simple transformation of features, which we call Resistance Transformation

(abbreviated as ResTran). We provide theoretical justifications for ResTran from the effective

resistance, k-means, and spectral clustering points of view. We empirically demonstrate that

ResTran is more robust to the homophilous bias than established GNN methods.

6.1 Introduction

As discussed from Chapter 2 to Chapter 5, spectral clustering is used to cluster vertices in a

given graph. While extensively studied, this approach typically considers a dataset where each

vertex has both graph connections and associated features. The goal is to classify vertices

by leveraging both the graph’s topological structure and the vertex features. We may call

this task as a vertex classification task in the “graph-with-features” setting. The modern

approach to this task is graph neural networks (GNNs) [Gori et al., 2005, Kipf and Welling,

2016a, Veličković et al., 2018]. GNNs propagate features over the graph to build expressive

latent embeddings; the embeddings are then consumed in downstream classification models.
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However, due to the nature of these GNN architectures, GNNs are typically known to have

a bias towards homophilous information and to not be effective in learning heterophilous

information [Hoang and Maehara, 2019, Luan et al., 2022]. This bias worsens if we stack

GNN layers (known as “over-smoothing” [Li et al., 2018, Oono and Suzuki, 2019]). Some

recent GNN models mitigate this bias, such as [Azabou et al., 2023, Pei et al., 2020, Luan

et al., 2021], while such models, including these examples, often involve complicated GNN

architectures.

In this chapter, to overcome this homophilous bias in a simpler way, we propose an alter-

native approach to GNNs since this bias seems to be inherent in GNN architectures. Instead of

mitigating biases by complicating the GNNs, our approach is to obtain a vector representation

for the features and graph. Then, we apply standard vector-based learning methods to this

vector representation, such as established neural network (NeuralNet) based models like

variational autoencoder or even support vector machines (SVMs). For this approach, we

propose a Resistance Transformation (abbreviated as ResTran), a simple transformation of

feature vectors to incorporate graph structural information.

We theoretically justify ResTran from a connection between the k-means and spectral

clustering. Our justification is inspired by Dhillon et al. [2004] and Chapter 4, which justifies

using feature maps for spectral clustering applied to vector data. For this purpose, Dhillon

et al. [2004] takes the following steps as i) setting up k-means objective for transformed

vectors by a feature map and ii) showing the equivalence from this k-means objective to

spectral clustering. For ResTran, we follow a similar strategy: i) modifying the k-means

to incorporate the vector representation by ResTran and ii) showing the equivalence from

this k-means to spectral clustering. We show that this modified k-means for the featureless

setting (i.e., looking only at a graph by taking features as an identity matrix) is equivalent

to spectral clustering. Moreover, for the graph-with-features setting, we show that this k-

means can be seen as a natural extension of spectral clustering from the featureless to the

graph-with-features setting. We also discuss why ResTran may preserve the homophilous

and heterophilous information better than the established GNNs. Our experiments show that

ResTran outperforms graph-only and feature-only representation in unsupervised tasks. We

also numerically show that ResTran is more robust to the homophilous bias than established

GNNs in the semi-supervised learning (SSL) tasks.
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Note that, for ResTran, we use the same Laplacian coordinate, which is the same

coordinate space as Chapter 5.

Contribution. In summary, our contributions in this chapter are as follows. i) We

propose a simple ResTran for a graph-with-features problem. ii) We theoretically justify

ResTran from an effective resistance, k-means, and spectral clustering perspective. iii) We

numerically confirm that ResTran is more robust to homophilous bias than established GNNs

for common datasets. All proofs are in the Appendix.

6.2 Basic Notions
This section introduces some basic notion related to this chapter.

6.2.1 Graph-with-features Problem vs. Featureless Problem.

This chapter considers a vertex classification task. This task is classifying vertices of the

graph into k classes. For this task, we consider two settings. i) Graph-With-Features Problem.

This problem assumes that the i-th vertex is associated with f dimensional features xi ∈ Rf .

We define a feature matrix as X := (x1, . . . ,xn). A popular technique for this is a GNN. ii)

Featureless Problem. This problem only considers the topology of the graph. There are various

methods specifically for this, such as spectral clustering. All the methods from Chapter 2

to Chapter 5 consider this featureless problem. We can also apply the graph-with-features

methods to this featureless setting. A common technique to do so is by setting X = I , where

I is an identity matrix [Kipf and Welling, 2016a].

6.2.2 Coordinate Spanning Set and Resistances Revisited

We introduced coordinate spanning set and resistance in Sec. 2.4.1. This section revisits and

further develops coordinate spanning set and resistance related to this chapter.

Recall that the reproduced kernel associated with the PSD matrix M is M+ since

⟨u,vi⟩M = u⊤MM+ei = ui, ∀vi ∈ V(M)⟨·,·⟩M , u ∈ H(M)⟨·,·⟩M . (6.1)

For this inner product, we defined the coordinate spanning set

V(M)⟨·,·⟩M := {vi :=M+ei : i = 1, . . . , n}. (6.2)
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While this coordinate spanning set is same as V(M) in Eq. (2.67), we give a notation-wise

addition to V(M); we subscript the inner product ⟨·, ·⟩M , which the coordinate spanning set

is defined over.

We letH(M)⟨·,·⟩M := span(V(M)⟨·,·⟩M ). ThisH(M)⟨·,·⟩M is a Hilbert space induced by

inner product ⟨·, ·⟩M . As we see in Sec. 2.4.1, the set V acts as “coordinates” forH, that is, if

w ∈ H we have wi = e⊤i M
+Mw = ⟨ei,M+ei⟩M .

If we measure this spaceH(M)⟨·,·⟩M over the plain dot product ⟨·, ·⟩2, the coordinate is

instead

V(M)⟨·,·⟩2 := {vi :=M+1/2ei : i = 1, . . . , n}, (6.3)

since ∥M+ei∥M = ∥M+1/2ei∥2. In the following, for brevity, we use

V ′(M) := V(M)⟨·,·⟩2 , H′(M) := H(M)⟨·,·⟩2 (6.4)

Instead of V(L) we used in Chapter 5, we use V ′(L) (Eq. (6.4)) for this chapter.

Recall that the resistance can be written as

rG,2(i, j) = ∥L+1/2ei − L+1/2ej∥22. (6.5)

Then, we can write the resistance using the coordinate spanning set V ′(L) as

rG,2(i, j) = ∥vi − vj∥22, vi,vj ∈ V ′(L). (6.6)

6.2.3 Homophily, Heterophily, and Eigenspace of Laplacian

A graph dataset may be classified into two notions. The homophily assumption is that adjacent

vertices are more likely to be in the same group. The heterophily assumption is that vertices

are collected in diverse groups, i.e., the contrary to homophily assumption. From the cut

definition, spectral clustering assumes homophily. Recall that the spectral clustering looks

at the eigenspace associated with smaller eigenvalues (i.e., low-frequencies) of L. Thus,

we may see that this eigenspace contains homophilous information. Also, we may say that

the eigenspace for larger eigenvalues (i.e., high-frequencies) of L captures heterophilous
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information. In the following, we say “low-frequency” for homophily or ”high-frequency”

for heterophily. See Hoang and Maehara [2019] and Luan et al. [2022] for details.

6.3 Proposed Method: ResTran

This section presents our learning framework for the graph-with-features setting. A common

method for this setting is a GNN, where we develop NeuralNets incorporating a graph. Instead,

we propose a vector representation of the graph-with-features, which we call ResTran. We

then apply vector-based machine learning methods to this vector, e.g., SVM and the standard

NeuralNet methods. In Sec. 6.4, we will justify ResTran from the spectral connection and

resistance view and also explore characteristics of ResTran.

For our framework, we use the shifted graph Laplacian, as done in [Herbster and Pontil,

2006], as

L−1
b := L+ + bJG, where b > 0, (JG)ij :=

1 (i and j are in the same component)

0 (otherwise),
.

(6.7)

Note that from the definition JG = 11⊤ if the graph is connected, i.e., contains only one

component. Note also that Lb is invertible since Lb is symmetric positive definite (PD) as we

see later in Prop. 6.1.

Proposed Framework via ResTran. Below we propose our framework. The overall

strategy is to i) have a vector representation of graph-with-features ii) apply a vector based

machine learning method. For i), using the coordinate V ′(Lb), we propose our Resistance

Transformation (ResTran for abbreviation) XG as

XG := (xG,1, . . . ,xG,n), where xG,i := Xv′
i, v

′
i ∈ V ′(Lb). (6.8)

Recall that v′
i = L

−1/2
b ei by definition of V ′(Lb) in Sec. 6.2.2. Note that xi, xG,i ∈ Rf and X ,

XG ∈ Rn×f . For ii), we then use any vector based machine learning methods for XG, such as

SVM and NeuralNet-based methods.

Practical Implementation via Krylov Subspace Method. If we naively compute L−1/2
b

and then multiply X to obtain ResTran Eq. (6.8), it costs prohibitive O(n3) complexity due
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Algorithm 6 Proposed Practical Framework for SSL via ResTran and Krylov Subspace
Method
Input: Graph G = (V,E), Features X , Training and Test Indices Tr, Te, Krylov Subspace

Dim r
Obtain the approximated ResTran X̃G (Eq. (6.8)) by applying Krylov subspace method,
i.e.,

X̃G = KRYLOVSUBSPACEMETHOD(L,X, r)

Obtain the model by applying any vector machine learning method to the training data
whose indices are Tr as

MODEL = ANYVECTORMLMETHOD({(X̃G)·i, yi}i∈Tr)

Obtain the predicted label ŷ by applying MODEL to the test data whose indices are Te as
ŷ = MODEL({(X̃G)·i}i∈Te)

Output: The predicted label ŷ

to the computation of L−1/2
b . Instead of this naive computing, we consider to approximate

XG. For this purpose, we apply the Krylov subspace method, by which we can approximate a

solution of linear algebraic problems. The Krylov subspace method reduces the computational

complexity from O(n3) to O(rfm), where r is the dimension of the Krylov subspace. The

dimension r is typically small, say r < 100. The Krylov subspace method approximates

XG by considering L and X at the same time. Thus, we expect a better approximation for

Krylov than approximating L−1/2
b without using X; such methods include the polynomial

approximation. Note that this polynomial approximation is common in the established

convolutional GNNs, such as [Defferrard et al., 2016, Kipf and Welling, 2016a]. Refer to

Appendix 6.A or [Higham, 2008] for details. The overall proposed framework is summarized

in Alg. 6. Note that Alg. 6 can be interpreted as SSL even though we apply supervised

methods such as SVM because we first observe X and G to obtain XG. This is same as GNNs,

where we observe X and G before we learn. Alg. 6 naturally generalizes to the unsupervised

setting.

Coordinate Interpretation of ResTran. We first remark that L−1/2
b = (v′

1, . . . ,v
′
n),

L
−1/2
b is symmetric, and XG = XL

−1/2
b . The X⊤

G can be seen as retaking basis of

X⊤ by V ′(Lb) if we see L−1/2
b in row-wise. Moreover, by comparing the original X =

(Xe1, . . . , Xen), the XG can be seen as retaking ei to v′
i to indicate i-th vertex if we see

L
−1/2
b in column-wise.



6.4. Characteristics and Justification of ResTran 220

Comparison with GNNs. This approach is simpler than existing GNN approaches. The

recent GNNs often involve complicated graph designs in layers of NeuralNet or pre/post-

processing. However, our framework is simple since we transform X to XG and then apply

any vector-based methods.

6.4 Characteristics and Justification of ResTran
This section discusses the characteristics and justification of ResTran. We first discuss the

characteristics of ResTran, by exploring theoretical properties of Laplacian coordinate V ′(Lb)

from a resistance view. Next, we justify using ResTran of XG from a k-means perspective.

6.4.1 Characteristics of ResTran: An Effective Resistance View

This section discusses the characteristics of ResTran. We first explore theoretical properties

of the Laplacian coordinate V ′(Lb). We then interpret these results to explain characteristics

of ResTran.

Theoretical Properties of V ′(Lb). In the following, we assume that we have K con-

nected components. We write Gi := (Vi, Ei) for i = 1, . . . , K, and G = G1 ∪ . . . ∪ GK .

We write as ni := |Vi|. Whiteout loss of generality, we can assume that n1 ≤ . . . ≤ nK .

Denote 1Gj
by all one vector for Gj , i.e., (1Gj

)i = 1 if j ∈ VGj
otherwise 0. Note that∑

j∈[K] 1Gj
= 1 and (JG)i· = 1Gs if i ∈ Vs. Note also that 1Gj

are eigenvectors of L. Using

this notation, we have properties of V ′(Lb) as follows.

Proposition 6.1. Suppose that a graph G has K connected components. Let (λi, ψi) be the

i-th eigenpair of L. If n1b > λ−1
K+1, the i-th eigenpair (λ′i, ψ

′
i) of L−1/2

b is

(λ′i,ψ
′
i) =


(
λ
−1/2
n+1−i,ψn+1−i

)
for i = 1, . . . , n−K,(

(ni−(n−K)b)
1/2,1Gni−(n−K)

)
for i = n−K + 1, . . . , n.

Corollary 6.2. L−1/2
b ei = (L+1/2 +

√
bJ

1/2
G )ei, where J1/2

G =
∑K

i (n
−1/2
i 1Gi

1⊤
Gi
)

This proposition shows that L and L−1/2
b share eigenvectors and that L−1/2

b is PD since

λ′i > 0 for all i. Next, we explore the characteristics of the coordinates V ′(Lb). We define an

extended resistance as

r′G(i, j) := ∥v′
i − v′

j∥22, v′
i,v

′
j ∈ V ′(Lb) (6.9)
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Recall that v′
i = L

−1/2
b ei. The following can be claimed.

Proposition 6.3. If two vertices i, j in the same component Gs, r′G(i, j) = rGs(i, j).

Prop. 6.3 means that even if we use V ′(Lb) instead of VL, the resistance, the distance

between coordinates (Eq. (2.71)), is preserved within the connected component. For inter-

component, the parameter b controls the connectivity among the components. If two vertices

are in different components, it is natural to think that they are apart. However, in the graph-

with-features setting, even if two vertices are in different components, the two vertices often

belong to the same cluster; therefore, these are not apart so much. We parameterize this

intuition by b; by taking larger b, we weigh more on the disconnected observation. Taking b

large enough for two vertices i, ℓ in the different components, we can make r′G(i, ℓ) greater

than any resistances within the component as follows.

Proposition 6.4. If b >
√
2n1/λK+1, r′G(i, ℓ) > r′G(i, j) for i, j ∈ Vs and ℓ ∈ Vt where s ̸= t.

Using these theoretical properties, we observe the following characteristics of the Re-

sTran.

ResTran from a Resistance View. From Prop. 6.3 and Prop. 6.4, we observe that V ′(Lb)

serves as a coordinate offering an extended resistance. Our ResTran may be viewed as the

basis transformation from ei to v′
i. This is why we call our transformation Eq. (6.8) as a

“resistance” transformation.

ResTran Capturing a Mix of Homophilous and Heterophilous Information. Our

ResTran can be seen as favoring the homophilous assumption but, at the same time, not

ignoring the heterophilous assumption, while GNNs are biased toward homophily. Recall

that the homophilous information is contained in the space spanned by ψi for the smaller

eigenvalues λi while the heterophilous information is in the space spanned by ψj for larger

eigenvalues λj , as seen in Sec. 6.2.3. GNNs are effective at homophilous data but not at

heterophilous data [Luan et al., 2022]. Loosely speaking, this happens because each layer of

GNNs multiplies the adjacency matrix A to the next layer, often several times. Stacking the

layers enlarges the low-frequency components, which leads to a bias towards homophily. On

the other hand, ResTran “balances” homophily and heterophily. Observe that we can see that

L
−1/2
b is “spectral reordering” of the graph Laplacian L (see Prop. 6.1); the largest eigenvalues

of L−1/2
b are the smallest eigenvalues of L, and the order is reversed. Also, from Prop .6.1, the
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eigenvalues of L−1/2
b associated with eigenvectors ψi is either

√
nib or λ−1/2

i , which is large

since λi is small. Recall that ResTran multiplies L−1/2
b to X once. Thus, the space containing

the homophilous information is amplified by large λ−1/2
i . At the same time, we do not ignore

the heterophilous space, but this is amplified by small λ−1/2
j since λj is large.

6.4.2 Justification of ResTran XG from a k-means Perspective

This section justifies our ResTranXG. Our justification is inspired by Dhillon et al. [2004]. As

reviewed in Sec. 2.2, Dhillon et al. [2004] justifies using a feature map for spectral clustering

applied to vector data. For this purpose, Dhillon et al. [2004] use the following steps: i)

modify the k-mean objectives to incorporate a vector transformed by a feature map and ii)

show a connection from this modified k-means objective to spectral clustering. Here, we aim

to establish a similar connection for ResTran. For this purpose, following i), we use XG in

the k-means objective Eq. (2.49) as

JG({Vℓ}kℓ=1) :=
∑
ℓ∈[k]

∑
i∈Vℓ

∥xG,i −mG,ℓ∥22, mG,ℓ :=
∑
j∈Vℓ

xG,j/|Vℓ|. (6.10)

This objective is a replacement of the standard k-means Eq. (2.49) from xi to xG,i. Following

ii), we establish connections from this k-means objective to spectral clustering as follows.

• Sec. 6.4.2.1 shows that in the featureless setting where X = I , conducting k-means on

v′
i = L

−1/2
b ei is equivalent to spectral clustering.

• Sec. 6.4.2.2 shows that conducting k-means on xG,i can be seen as a natural generaliza-

tion of the spectral clustering through the k-means discussion.

With these connections, we say that ResTran is justified in the same sense as the feature map

for spectral clustering as done by [Dhillon et al., 2004] discussed in Sec. 2.2.

6.4.2.1 Justification for Featureless Setting: Revisiting the Spectral Con-

nection

This section justifies Eq. (6.10) for the featureless setting, where we use X = I . There-

fore, for featureless setting, XG = (v′
1, . . . ,v

′
n) from the definition of XG Eq. (6.8). Using

this XG, we can rewrite Eq. (6.10) and further expand using Frobenius norm ∥ · ∥Fro and
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indicator matrix ZR (Eq. (1.11)) as

JR({Vℓ}kℓ=1) :=
∑
ℓ∈[k]

∑
i∈Vℓ

∥v′
i −mℓ∥22, mℓ :=

∑
j∈Vℓ

v′
j/|Vℓ|,v′

j ∈ V ′(Lb) (6.11)

= ∥L−1/2
b − ZRZ⊤

RL
−1/2
b ∥2Fro. (∵ mℓ = (L

−1/2
b ZRZ

⊤
R )·i if i ∈ Cℓ). (6.12)

With Eq. (6.12), we may obtain the relaxed solution of k-means by relaxing ZR into real

values. We first claim that the objective Eq. (6.11) grounds on the extended resistance

(Eq. (6.9)) as follows.

Proposition 6.5. The objective function Eq. (6.11) can be rewritten as follows.

JR({Vℓ}kℓ=1) =
1

2

∑
ℓ∈[k]

∑
i,j∈Vℓ

r′G(i, j)

|Vℓ|
(6.13)

This proposition means that the k-means objective using v′
i (Eq. (6.11)) can be seen as

the sum of the extended resistances. Since Eq. (6.13) itself seems a natural objective for graph

clustering, our k-means Eq. (6.11) also may be seen as a natural objective. We also show

that minimizing JR({Vj}kj=1) (Eq. (6.11) and its equivalence Eq. (6.13)) has a theoretical

connection to spectral clustering as follows;

Theorem 6.6. If we relax ZR into real values and n1b > λ−1
K+1, we have

argmin
ZR

{RCut({Vℓ}kℓ=1) s.t. Z
⊤
RZR = I} = argmin

ZR

{JR({Vℓ}kℓ=1) s.t. Z
⊤
RZR = I}

(6.14)

This theorem means that that ratio cut and k-means using v′
i are theoretically equivalent

if we relax ZR. By this theorem, Eq. (6.11), featureless version of Eq. (6.10) using the

common featureless technique X = I , are theoretically justified in a sense of k-means.

Remark that Thm. 6.6 revisits the spectral connection between k-means and spectral

clustering as seen in Sec. 2.2. However, the previous connections only hold for the vector data

and a feature map, not for the discrete graph data like Thm. 6.6. Moreover, from Prop. 6.5 and

Thm. 6.6, the clustering using resistance and spectral clustering are equivalent in a relaxed

sense, which the previous connections have not shown. Finally, while the previous connections

only hold for the normalized cut, Thm. 6.6 is the first to show the spectral connection for the
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ratio cut. Note that Thm. 6.6 naturally generalizes to normalized cut. For more details on how

the previous connection and Thm. 6.6 differ, see Sec. 6.4.3.

6.4.2.2 Justification for the Graph-With-Features Setting: A k-means

View

This section justifies the k-means objective for the graph-with-features setting Eq. (6.10).

In Sec. 6.4.2.1, we saw that Eq. (6.11), which is a featureless setting of Eq.(6.10), is equivalent

to the spectral clustering. This section shows that Eq. (6.10) is a “natural extension” of spectral

clustering through Eq.(6.11).

We first recall that the common technique (see, e.g., [Kipf and Welling, 2016a,b]) to

apply a graph-with-features method to featureless setting is substituting X = I . Thus, it is

natural to think in a “reverse way”; in order to generalize the featureless methods to graph

with the features method, we replace I to the feature vector X . Since Eq. (6.12) is for a

featureless setting, we now explicitly write I as

JR({Vℓ}kℓ=1) = ∥L
−1/2
b I − ZRZ⊤

RL
−1/2
b I∥2Fro. (6.15)

Looking at Eq. (6.15), this can be thought as a featureless setting of the following objective

function;

J ′
G({Vℓ}kℓ=1) := ∥L

−1/2
b X⊤ − ZRZ⊤

RL
−1/2
b X⊤∥2Fro. (6.16)

Using mG,j in Eq. (6.10), we further rewrite Eq. (6.16) as

J ′
G({Vℓ}kℓ=1) =

∑
ℓ∈[k]

∑
i∈Vℓ

∥xG,i −mG,ℓ∥22 = JG({Vℓ}kℓ=1), (6.17)

by which we show that JG({Vℓ}kℓ=1) Eq. (6.10) and J ′
G({Vℓ}kℓ=1) Eq.(6.16) are equal.

What does the equivalence between JG({Vℓ}kℓ=1) and J ′
G({Vℓ}kℓ=1) mean? We begin

with J ′
G({Vℓ}kℓ=1). The objective J ′

G({Vℓ}kℓ=1) can be seen as a generalization of JR({Vℓ}kℓ=1)

(Eq.(6.11)) from featureless to graph-with-features setting. Recall that from Thm. 6.6, the

featureless JR({Vℓ}kℓ=1) is equivalent to the standard spectral clustering. Thus, by stretching

this idea from the featureless to the graph-with-features, J ′
G({Vℓ}kℓ=1) can be seen as a natural
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extension of spectral clustering to graph-with-features setting through a k-means perspective.

Hence, since J ′
G({Vℓ}kℓ=1) = JG({Vℓ}kℓ=1), we may say that the k-means JG({Vℓ}kℓ=1) we

initially discuss in Eq. (6.10) can be seen as a natural “extended” spectral clustering for

graph-with-features, seen through a k-means lens. Thus, we now establish a connection

from k-means to the “extended” spectral connection using the common technique from the

featureless to graph-with-features. In this sense, we may justify usingXG, similarly to Dhillon

et al. [2004].

Finally, Thm. 6.6 also offers insights into the graph-with-features setting. From Thm. 6.6,

we see that the basis v′
i has a graph structural information through spectral clustering. Thus,

we can say that the ResTran xG,i captures more graph structure than xi since ResTran replaces

the basis from ei to v′
i.

6.4.3 Comparison with Theorem 6.6 and Weighted Kernel k-means

This section expands the explanation on the comparison between Thm. 6.6 and the previous

weighted kernel k-means. We recall that Thm. 6.6 revisits the spectral connection between

k-means and spectral clustering, extensively studied as we saw in Sec. 2.2. However, the

previous connections is different than Thm. 6.6 in a number of sense.

Vector vs. Discrete. Most of the previous spectral connections are applied to vectors

but not discrete graph data. Seeing Eq. (2.50), the weighted kernel k-means only applies to

the vector data X = (x1, . . . ,xn). We construct a graph G whose adjacency matrix is a gram

matrix, i.e., construct a graph whose weight is

aij = kij = ϕ(xi)
⊤ϕ(xj), (6.18)

where K is a gram matrix as defined in Sec. 2.2. The weighted kernel k-means is equivalent

to the normalized cut on this graph. Thus, this previous connection assumes for the vector

data. On the other hand, our connection can be for a “given” graph data G = (V,E), and thus

we do not have to assume any vector data. Note that Dhillon et al. [2007] connects discrete

data to k-means in a different manner than us, which we discuss later.

Laplacian Coordinate Insights. Ours offers the Laplacian coordinate insights; seeing

the Eq. (6.11), if we use v′
i to represent i-th vertex and put this vector into the standard

k-means objective function, this is equivalent to the spectral clustering. On the other hand, the



6.4. Characteristics and Justification of ResTran 226

weighted kernel k-means cannot be applied to this setting; the previous connection does not

incorporate our connection Thm. 6.6. Two potential scenarios to reach Laplacian coordinate

insights can be considered. One is a kernel mapping scenario. A naive application of the

weighted k-means to the previous framework is to use L+ as a kernel and ⟨·, ·⟩L as an inner

product. However, this Eq. (2.50) is not equivalent to the discrete spectral clustering. The

other scenario is incorporating the weight to the standard setting. Recall that our insights

come from the standard k-means. Thus, if we aim the standard k-means from the weighted

kernel k-means, we compute

Jϕ({Cℓ}kℓ=1) =
k∑
j=1

∑
i∈Cj

w(xi)∥ϕ(xi)−mϕ,j∥2, mϕ,j :=
∑
ℓ∈Cj

w(xℓ)ϕ(xℓ)/
∑
ℓ∈Cj

w(xℓ)

(6.19)

=
k∑
j=1

∑
i∈Cj

∥w1/2(xi)ϕ(xi)− w1/2(xi)mϕ,j∥2. (6.20)

However, this transformation does not go anywhere close to the standard k-means. To

conclude, the previous connection does not incorporate Thm. 6.6, and thus does not offer the

Laplacian coordinate insights.

Connection to the k-means using Resistance. Finally, we would like to point out

that the previous connection does not connect to k-means. The previous connections, such

as Dhillon et al. [2007], connect discrete data and ratio cut and normalized cut. We can

connect to ratio cut if using K = σI − L and normalized cut if using K = σD−1 − LN for

σ ≥ 0. However, this connection does not conclude Prop. 6.5, which provides the connection

between k-means using resistance and spectral clustering. Furthermore, Thm. 6.6 naturally

generalizes to normalized cut. Let v′′
i :=

√
div

′
i. Then, we define the objective function and

expand similarly in Sec. 6.G as

JN({Vℓ}kℓ=1) :=
∑
ℓ∈[k]

∑
i∈Vℓ

∥v′′
i −mℓ∥22, mℓ :=

∑
j∈Vℓ

v′′
j /|Vℓ|,v′

j ∈ V ′(Lb) (6.21)

= traceD1/2L−1
b D1/2 − traceZRD

1/2L−1
b D1/2ZR. (6.22)

Therefore, minimizing Eq. (6.21) subject to Z⊤
RZR = I is equivalent to top k eigenvector

problem of D1/2L−1
b D1/2. This is equivalent to the smallest k eigenvectors of D−1/2LD−1/2,
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by which we show that Thm. 6.6 naturally generalizes the ratio cut to the normalized cut. This

normalized cut connects to the normalized measure discussed in Liben-Nowell and Kleinberg

[2003].

6.5 Related Work

This section provides a review of the related work to our ResTran.

Spectral Connection. Our justification relies on the connection between spectral cluster-

ing, effective resistance and k-means. The spectral clustering using ratio and normalized cut

has been extensively studied [Fiedler, 1975b, Shi and Malik, 2000]. The Laplacian coordinate

and effective resistance are used for the various learning problem such as clustering [Fouss

et al., 2007, Saito and Herbster, 2023b, Yen et al., 2008, 2005] and online learning [Herbster

and Pontil, 2006, Herbster et al., 2005]. The connection between normalized cut and weighted

kernel k-means has been developed, such as [Bach and Jordan, 2003, Dhillon et al., 2004,

Saito, 2022]. The connection between ratio cut, effective resistance, and k-means are loosely

studied [Saerens et al., 2004, Zha et al., 2001]. However, these studies do not give the “exact”

connection between ratio cut and spectral clustering like Thm. 6.6. Also, the previous studies

do not give the Resistance Transformation interpretation. We remark that there exist other

connections between weighted kernel k-means and other matrix decomposition methods by

using different constraints. Ding and He [2004] shows a connection between k-means with

addition of constraints and principal component analysis [Pearson, 1901, Lakhina et al., 2004,

Saito et al., 2015b, Wold et al., 1987], and Ding et al. [2005] provide a connection between

k-means with other constraints and non-negative matrix factorization [Lee and Seung, 1999,

2000, Saito et al., 2015a, Wang and Zhang, 2012].

GNNs. Since our ResTran aims to address the graph-with-features problem, one popular

approach to this problem is GNN. The GNN is firstly proposed as a neural network applied to

the graph structural data [Gori et al., 2005, Scarselli et al., 2008]. The GCN [Kipf and Welling,

2016a] and GAT [Veličković et al., 2018] are established methods. The recent advancements

include [Gasteiger et al., 2020, Hamilton et al., 2017, Pei et al., 2020, Xie et al., 2016] to

name a few; see [Wu et al., 2020] for more comprehensive survey. The closest approach in

the sense of formulation to our ResTran is SGC [Wu et al., 2019]. The SGC aims to simplify
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ℓ layers of GCN. The SGC is formulated as

ŷ =softmax(ÃℓX⊤Ω),

where Ã := (D + I)−1/2(A+ I)(D + I)−1/2, Ω := Ω(1) . . .Ω(ℓ), (6.23)

where Ω(i) is a i-th layer of a fully-connected layer. This approach is close to ours for the

following reason. If we apply ℓ layers of fully connected to ours, and then this can be written

as ŷ = softmax(X⊤
GΩ) = softmax(L

−1/2
b X⊤Ω). The SGC is close since, in this setting, the

difference is Ã and L−1/2
b . However, our approach is not limited to this formulation, but

we can apply any building blocks, especially, activate functions such as ReLU. There have

been some follow-ups on this simple approach [Chen et al., 2020, Salha et al., 2019, 2021,

Zhu and Koniusz, 2021]. Another relevant approach is PinvGCN [Alfke and Stoll, 2021].

For a dense graph aiming for faster GCN, PinvGCN reconstructs three graphs by heuristic

approximation of L+, runs GCN for each graph, and then combines the results. While these

studies heuristically simplify the GCN in some similar manner, we provide a theoretical

justification on Resistance Transformation in Sec. 6.4. Also, again our ResTran is not limited

to simplfied GCN models. In addition to various models of GNNs, transformers using the

eigenvectors of Laplacian as positional encoding are considered [Dwivedi et al., 2023, Wang

et al., 2022]. Also, Convolutional GNNs also exploit spectral properties such as [Bruna et al.,

2014, Henaff et al., 2015]. The polynomial approximation strategy is a standard practice

to obtain the spectra of graph Laplacian, such as [Defferrard et al., 2016, Kipf and Welling,

2016a]. Moreover, Krylov subspace method is used for the better approximation for the

convolutional GNNs [Luan et al., 2019]. However, these studies are on specific GNNs while

ours can be applied to any vector based model. Some common problems to GNN are reported:

limited expressive power [Xu et al., 2019] and over-squashing [Di Giovanni et al., 2023,

Topping et al., 2021, Black et al., 2023]. The most relevant problem to this study is the “low-

frequency bias” of GNNs, where GNNs tend to learn only homophilous information [Chang

et al., 2021, Du et al., 2022, Hoang and Maehara, 2019, Hoang et al., 2020, Zheng et al.,

2022, Zhu et al., 2003, Luan et al., 2022, Platonov et al., 2023, Bonchi et al., 2023]. This

phenomenon gets worse if we stack the GNN layers, which is known as “over-smoothing” [Li

et al., 2018, Oono and Suzuki, 2019]. By construction, our Resistance Transformation are

expected to represent not only homophilous information but also heterophilous information.
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Table 6.1: Homophilous dataset summary.

Cora Citeseer Pubmed Photo Computer

|V | 2708 3327 19717 7650 13752
|E| 5429 4732 44338 119081 245861

Classes 7 6 3 8 10
Features 1433 3703 500 745 767

SSLs. Since this work is related to semi-supervised learning problems, this section

reviews the SSL studies in detail. The SSL over graph is extensively studied [Blum et al.,

2004, Zhou et al., 2003, Zhu et al., 2003]. Unlike GNNs, these only use the graph topology.

The Planetoid [Yang et al., 2016] is an SSL method that incorporates features and the topology

at the same time, while most of the GNN models are known to outperform Planetoid. The

SSL models for the vector dataset are also discussed. The early models include SVM-based

one [Joachims, 1999], and early NeuralNet models [Ranzato and Szummer, 2008, Weston

et al., 2008]. Also, we apply a kernel function to the vector to form a graph and apply

the graph-based SSL models. One of the early established deep neural network-based SSL

methods is variational autoencoder (VAE) [Kingma et al., 2014], which is simplified by the

follow-up study called Auxiliary VAE (AVAE) [Maaløe et al., 2016]. Since then, there have

been various improvements including [Laine and Aila, 2017, Miyato et al., 2018, Yang et al.,

2022]. However, none of these aim to incorporate the graph and features. Instead, we can

apply these methods to our XG, unless the models are not designed to some specific tasks,

e.g., images [Berthelot et al., 2019, Kurakin et al., 2020, Sohn et al., 2020, Zhang et al., 2021].

6.6 Experiments
This section numerically demonstrates the performance of ResTran.

Objective of the Experiments. The purpose of our experiments is to evaluate if our

ResTran XG improves i) the graph-only or feature-only representation and ii) the existing

GNN methods. Recall that we propose to use ResTran XG and to apply a vector-based

machine learning method. Thus, various sophistications can be involved in both ResTran and

the comparison methods. However, to focus on evaluating our ResTran, we want to exclude

the effects of sophistication as much as possible. To do so, our experiments only used simple

and established methods for both ResTran and the comparison. We used Alg. 6 for ResTran.

Datasets. For the homophilous dataset, we used the standard citation network benchmark;
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Table 6.2: Heterophilous dataset summary.

Texas Cornell Wisconsin chameleon squirrel actor

|V | 183 183 251 2277 5201 7600
|E| 295 309 499 31421 198493 26752

Classes 5 5 5 5 5 5
Features 1703 1703 1703 2325 2089 932

Cora [McCallum et al., 2000], Citeceer [Sen et al., 2008], and Pubmed [Namata et al., 2012].

We also used the two Amazon co-purchase graphs, photo, and computer [McAuley et al., 2015].

The homophilous dataset statistics are summarized in Table 6.1 For the heterophilous dataset,

we used web data, Wisconsin, Cornell, and Texas, all of which are a part of WebKB [Craven

et al., 1998]. We also used the Wikipedia dataset chameleon and squirrel [Rozemberczki et al.,

2021], as well as actor [Pei et al., 2020]. The heterophilous dataset statistics are summarized in

Table 6.1. Note that the difference between homophilous datasets and heterophilous datasets

has been discussed in a variety of the literature, such as [Luan et al., 2022, Platonov et al.,

2023]. Note that we are aware of large pools of the benchmarks for this purpose, such as

OGB. However, like the experimental purpose where this chapter focuses on the comparison

with simple and established models and settings, we focus on the established and long-used

benchmarks.

Experimental Settings for Unsupervised and Supervised tasks. We evaluated Re-

sTran and existing methods by accuracy, same as the previous studies such as [Kipf and

Welling, 2016a, Veličković et al., 2018]. Note that, throughout the experiments, we used

b = 1/(nλK+1) for ResTran, that is the condition of Thm. 6.6. Also, we used the Krylov

subspace dimension r = 20, since our preliminary experiements show that performances do

not change when r > 20. Our experiments were conducted on Google Colab Pro+, Matlab,

and Mac Studio with M1 Max Processor and 32GiB RAM. The experimental code is at

https://github.com/ShotaSAITO/ResTran.

6.6.1 Comparing ResTran with Graph-Only and Feature-Only

This experiment compares ResTran with Graph-Only and Feature-Only.

Objective of the Experiments. This experiment briefly evaluates if our ResTran for

representing the graph-with-features datasets improves the feature-only X and graph-only A.

If we observe that the latent space is more separable for ResTran XG than for graph-only and

https://github.com/ShotaSAITO/ResTran
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Table 6.3: Experimental results for unsupervised learning. All measures are accuracy (%).
“Graph-Only” uses only graph Laplacian. “Feature-only” uses a Gram matrix constructed
only by features. “Graph + Feature” uses a Gram matrix constructed by our proposal XG.

Cora Citeseer Pubmed Texas Cornell Wisconsin

Graph-Only 29.3 ± 0.5 23.7 ± 0.0 39.6 ± 0.0 49.6 ± 1.1 49.0 ± 5.6 45.6 ± 4.2
Feature-Only 32.6 ± 0.6 45.5 ± 0.9 45.4 ± 0.0 55.2 ± 0.5 55.2 ± 0.0 47.8 ± 0.0

Graph + Feature (Ours) 58.9 ± 4.5 48.2 ± 0.8 71.6 ± 0.6 55.5 ± 0.5 55.7 ± 0.0 48.2 ± 0.3

feature-only settings, we can say that ours improves the representation. For this purpose, we

compare these using the simple setting of spectral clustering.

Experimental Settings. For the feature-only and ResTran, we used the Gaussian kernel

to form a graph and applied spectral clustering. For graph-only, we used the graph Laplacian

for the spectral clustering. We conducted a simple k-means on the first k eigenvectors of the

graph Laplacian, and we reported the average. More specifically, for the feature only and

ours, we computed the edge weight with a Gaussian kernel (κ(xi,xj) = exp(−σ∥xi− xj∥2))
for two vectors xi,xj . We used free parameter σ ∈ {10−2, . . . , 103}. To gain the sparsity, we

further constructed a 100-NN graph from these gram matrices, which is a common technique.

We compute the smallest k eigenvectors of unnormalized Laplacian for all three graphs. Then,

we apply the standard k-means to the smallest k eigenvectors in order to obtain the clustering

results. Since the k-means algorithm depends on the initial condition, we repeated it 10 times

and reported the average and standard errors. We conduct this experiment on the smaller sets

of the datasets, both from homophilous and heterophilous datasets, since from the preliminary

experiments, we observe similar patterns for the other datasets.

Overall Results. We see that ResTran offers better separation than graph-only and

feature-only. The results of the unsupervised task are summarized in Table 6.3. In all datasets,

we see that ResTran improves both graph-only and feature-only. These results further confirm

that ResTran XG better represents the dataset than the feature only X or the graph only A.

6.6.2 Comparing ResTran with GNN Methods.

This section compares ResTran with GNN methods.

Objective of the Experiments. Here, we evaluate whether ResTran improves the existing

GNN methods. We evaluate this for the SSL tasks both on homophilous and heterophilous

datasets.
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Experimental Settings. We first introduce the comparison methods. Recall that our ex-

periments only used simple and established methods for both our proposal and the comparison

since we want to exclude the effects of sophistication as much as possible. For comparison, we

used three established simple GNN models, GCN [Kipf and Welling, 2016a], GAT [Veličković

et al., 2018], as well as SGC [Wu et al., 2019], which is a simplified GCN. For ResTran, we

apply both non-NeuralNet vector-based models and NeuralNet-based models. We discuss

some details of the methods we used for ResTran. For non-NeuralNet models, LP [Zhu et al.,

2003] is one of the established models in SSL, as we saw in Appendix 6.5. The SVM [Cortes

and Vapnik, 1995] is also an established model, while SVM is a supervised learning model

in general. However, in this context, we can interpret the SVM as an SSL method, since,

even though we only use the indices corresponding the training set, i.e., {(XG)·i}i∈Tr, in

ResTran Eq. (6.8), the transformation uses the whole L and X but not {yi}i∈Te. Remark

that we only use the training set {xG,i}i∈Tr to form a gram matrix and therefore the gram

matrix is the size |Tr|× |Tr| matrix. For NeuralNet models, as we discussed in Appendix 6.5,

AVAE [Kingma et al., 2014] is a simpler version of the SSL via VAE, which is the one of the

earliest NeuralNet based SSL models. Also, VAT [Miyato et al., 2018] is the one early estab-

lished NeuralNet based SSL model using generative adversarial network behind the scene.

We then discuss the hyperparameters. To conduct a fair comparison, we endeavored to use the

same settings for ours and compare as much as possible. We used non-normalized features

for both methods. For non-NeuralNet based models, we again used a Gaussian Kernel and

used free parameter σ ∈ {10−2, . . . , 103}, as done in the unsupervised learning setting. For

non-NeuralNet models, we apply label propagation (LP) [Zhou et al., 2003] and SVM [Cortes

and Vapnik, 1995] with the Gaussian kernel for XG. For NeuralNet models, we use two early

and simple models, VAT [Miyato et al., 2018] and AVAE [Maaløe et al., 2016] to XG. We

only use fully connected layers and ReLU as an activation function for our NeuralNet models,

which are simple and established NeuralNet components. For AVAE, the first fully connected

layer contains 256 hidden units, and the second fully connected layer contains 128 hidden

units. For VAT, the first fully connected layer contains 1028 hidden units, and the second fully

connected layer contains 512 hidden units. Also, each layer was activated by ReLU. Finally,

we passed to the output layer. For AVAE, we used the embedding dimension as 30 and the

dimension of the auxiliary variable as 30. We used batch size 128. We applied the learning
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Table 6.4: Experimental results for homophilous data using semi-supervised learning with
some known labels. We use 5% labels. All measures are accuracy (%).

Type cora citeseer pubmed photo computer

GCN GNN 79.9 ± 0.9 67.4 ± 1.1 83.8 ± 0.4 83.1 ± 1.2 80.4 ± 0.4
GAT GNN 74.9 ± 4.2 67.6 ± 0.1 82.8 ± 0.2 87.7 ± 1.3 80.3 ± 1.2
SGC GNN 79.3 ± 1.7 70.2 ± 0.8 67.9 ± 1.8 80.1 ± 2.9 81.4 ± 2.0

ResTran + LP Non-NeuralNet 30.6 ± 0.6 20.6 ± 4.6 39.5 ± 1.4 25.3 ± 0.2 37.5 ± 2.2
ResTran + SVM Non-NeuralNet 49.1 ± 5.7 45.5 ± 6.7 76.5 ± 2.2 24.3 ± 2.7 43.8 ± 3.4

ResTran + VAT NeuralNet 77.6 ± 2.5 68.7 ± 1.1 82.8 ± 0.7 86.3 ± 0.8 78.1 ± 2.4
ResTran + AVAE NeuralNet 78.2 ± 1.8 71.7 ± 1.0 83.9 ± 0.7 86.8 ± 1.5 81.6 ± 0.9

Table 6.5: Experimental results for heterophilous data using semi-supervised learning with
some known labels. We use 5% labels. All measures are accuracy (%).

Type Texas Cornell Wisconsin chameleon squirrel actor

GCN GNN 50.9 ± 4.2 37.4 ± 9.3 46.3 ± 4.9 32.7 ± 2.0 23.5 ± 1.1 25.9 ± 0.9
GAT GNN 50.3 ± 3.3 44.9 ± 4.9 44.0 ± 4.8 32.8 ± 1.8 23.4 ± 1.3 26.4 ± 0.9
SGC GNN 44.6 ± 5.0 42.3 ± 5.3 44.6 ± 5.0 31.8 ± 1.8 23.5 ± 0.8 26.0 ± 0.8

ResTran + LP Non-NeuralNet 46.3 ± 17.3 42.2 ± 20.6 37.3 ± 12.6 20.3 ± 0.8 20.0 ± 0.3 22.3 ± 2.8
ResTran + SVM Non-NeuralNet 48.8 ± 14.1 45.7 ± 16.8 47.8 ± 9.6 33.6 ± 5.8 31.9 ± 0.9 29.4 ± 0.9

ResTran + VAT NeuralNet 55.9 ± 5.1 49.0 ± 3.8 51.2 ± 5.0 34.0 ± 1.4 27.7 ± 3.5 27.8 ± 1.2
ResTran + AVAE NeuralNet 51.4 ± 3.7 48.2 ± 3.7 50.0 ± 2.1 40.7 ± 1.4 32.4 ± 0.8 29.5 ± 1.3

rate of 0.01 to Adam for AVAE. We used two hidden layers for both of the NeuralNet methods

for Restran and our comparisons. For all of the NeuralNet-based settings, we used a dropout

rate of 0.2. We train all models for 100 epochs using the Adam optimizer. We conducted

our experiments with the split where we know 5% labels, we use 25% for validation, and

the rest for the test. We conducted our experiments on 10 random splittings and reported

the average. For the comparison, apart from the setting above, we used the implementation

and hyperparameters as implemented in the examples of PYTORCH-GEOMETRIC1. Finally,

remark that for citation network benchmarks, although various studies use the public splittings

in [Yang et al., 2016], we avoided using these since overfitting to this specific splitting is

reported [Shchur et al., 2018].

Overall Results. The results are summarized in Table 6.4 and 6.5. On homophilous

datasets, we observe comparable performances among GNNs and ResTran + NeuralNet

models. On heterophilous datasets, we observe the performance improvement from GNNs

to ResTran, sometimes even with SVM. This means that our ResTran is more robust to

homophily bias. This robustness is expected from the construction of ResTran since, unlike

1https://github.com/pyg-team/pytorch_geometric/tree/master/examples

https://github.com/pyg-team/pytorch_geometric/tree/master/examples
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GNNs, XG preserves not only homophilous information but also heterophilous information

as seen in Sec. 6.4.1.

Computational Time. In the experiments, we have opted not to report computational

time since it does not provide meaningful insights for comparison. This is primarily due to the

fundamental differences between our proposed approach and existing GNN algorithms. Our

approach involves the proposed transformation step (ResTran), followed by downstream SSL

algorithms, which can vary. In contrast, the comparison methods are end-to-end. Our focus

is on comparing the performance of our transformation (ResTran) with existing end-to-end

GNN algorithms, which requires to plug ResTran into some SSL algorithms. Consequently,

the computational time for our method depends on the specific choice of SSL algorithms and

architectures, factors that are beyond the scope of this chapter and would only complicate

comparison further. Moreover, the transformation step in our approach benefits from the

pre-computation of the Krylov subspace method, which cannot be applied to the compar-

ison methods. This difference makes a time comparison inherently unfair. For instance,

increasing the number of repetitions in our experiments would disproportionately favor our

method due to this pre-computation, but this does not imply that the comparison methods are

inherently slower. Moreover, although we repeated the experiments 10 times, it is unclear

if this number of repeats (or any number) is a fair basis for determining which method is

faster. Therefore, reporting and comparing computational time would not lead to meaningful

conclusions and could mislead the reader. However, both ResTran and GNNs exhibit similar

computational complexity: ResTran requires O(rfm) and GNNs require O(tfm), where r

and t are constants.

6.7 Summary
We considered a vertex classification task on the graph-with-features setting, where we have a

graph with associated features. While the modern approach to this task has been GNNs, we

took an alternative approach to overcome the homophilous biases in GNNs. Our approach was

to transform the feature vectors to incorporate the graph topology and apply standard learning

methods to the transformed vectors. For this approach, we proposed a simple transformation

of features, which we call ResTran. We established theoretical justifications for ResTran from

resistance, k-means, and spectral clustering viewpoints. We also discusses why ResTran is

robust to homophilous biases. We empirically demonstrated that ResTran is more robust on
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the homophilous bias than existing GNN methods. Limitation and future work are that we

are unsure how much ResTran has an expressive power, as done in [Xu et al., 2019]. We

conjecture that the expressive power of ResTran is less than the 2-WL test. Thus, we speculate

that we need a different setup for triangle counting problems.
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6.A Note on Krylov Subspace Method

This section breifly explains the Krylov subspace method and its advantages over some natural

ideas.

6.A.1 Krylov Subspace Method

In this section, the Krylov subspace method is an established way to approximate the solution

of the linear algebraic solutions. In this case, we consider to approximate f(A)b for the

matrix A ∈ Rn×n and for a vector b ∈ Rn.

The r-th Krylov subsupace Kr for the matrix A ∈ Rn×n and for a vector b ∈ Rn is

defined as

Kr(A,b) := span{b, Ab, A2b, . . . , Ar−1b}. (6.24)

The Krylov subspace method approximates f(A)b into this Krylov subspace Kr(A,b). To

obtain this approximation, the common way is Arnoldi process. The Arnoldi process at i-th

iteration obtains Qi ∈ Rn×i and Hi ∈ Ri×i as

AQi = QiHi + hi+1,iqi+1e
⊤
i ,where Qi := [q1 . . . ,qi],q1 := b/∥b∥22. (6.25)

Note that Qi has orthonormal columns and Hi is upper Hessenberg matrix. Then, Krylov

subspace based method approximates

f(A)b ≈ Qrf(Hr)Q
⊤
r b = ∥b∥2Qrf(Hr)e1. (6.26)

This process overall takes O(rm) time complexity. Typically, r is chosen small, say r < 100.

See [Higham, 2008] for more details.

6.A.2 Advantages of Krylov Subspace Method

This section discusses the advantages of the Krylov subspace method over some natural ideas.

One natural idea to approximate L−1/2
b X is to approximate L−1/2

b using polynomial

function. This technique is commonly used, even in the GNN research area, such as [Kipf
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and Welling, 2016a]. For example, we first expand L−1/2
b as

L
−1/2
b = a0I + a1Lb + a2L

2
b + . . . , (6.27)

and then approximate in some order, say,

L
−1/2
b ≈ a0I + a1Lb. (6.28)

While this is straightforwardly understandable, the Krylov subspace method approximates

L
−1/2
b X better as follows. While this polynomial approximation only uses L when approx-

imation, the Krylov subspace method approximates LX using both L and X as seen in

Appendix 6.A.1. Hence, the Krylov subspace approximates L−1/2
b using more information

than a polynomial approximation.

The other natural idea is to reduce the dimension, such as principal component analysis

(PCA). We consider to eigendecompose the graph Laplacian as

L = ΨΛΨ⊤, (6.29)

where Ψ := (ψ1, . . . ,ψn) and Λ := diag(λ1, . . . , λn), where ψi is the i-th eigenvector and

λi is the i-the eigenvalue. Then, we compose Λr′ := diag(λ1, . . . , λr′ , 0, . . . , 0). The value r′

is again typically small compared to n. Then, we approximate L+1/2 as

L+1/2 ≈ ΨΛ+1/2
r Ψ⊤. (6.30)

This approximation can be conducted much faster than obtaining naively L+1/2.

While dimensional reduction is the standard way to make pseudoinverse faster, the

Krylov subspace method provides a better approximation in the following sense. Firstly,

as the polynomial approximation, the Krylov subspace approximates L−1/2
b X with more

information. Secondly, as discussed in 6.4.1 and as seen in the experimental result as 6.6,

ResTran also works for heterophilous datasets. However, from the construction of the

eigendecomposition, the reduction cut down the high-frequency information corresponding

to the heterophilous information. Therefore, the dimensional reduction throws away the

information that ResTran is good at dealing with.
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6.B Additional Definitions for Proofs

This section set ups additional preliminary definitions and facts for proofs.

Without loss of generality, we can reorder G as G = G1 ∪ . . . ∪GK and |G1| ≤ . . . ≤
|GK |. For the visual aid of JG, we can write JG as

JG =



|G1| ... |GK |

1 1

|G1|

1 1

... . . .

1 1

|GK |

1 1



, (6.31)

Let 1Gj
is all one vector for Gj , i.e., (1Gj

)i = 1 if j ∈ VGj
otherwise 0. Then we have

(1G1 · · ·1GK
)(1G1 · · ·1GK

)⊤ = JG. (6.32)

We also introduce the bound of resistance by the eigenvalue as follows.

Lemma 6.7 (Chandra et al. [1996]). For any i, j ∈ V , we have

rG(i, j) ≤
2

λ2
(6.33)

Lemma 6.8 (Herbster and Pontil [2006]).

max
i
∥L+1/2ei∥22 ≤ max

i,j
rG(i, j) (6.34)

By combining these two lemmas, we obtain

max
i
∥L+1/2ei∥22 ≤

2

λ2
(6.35)
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6.C Proofs of Proposition 6.1 and Corollary 6.2

We conduct eigendecomposition on L, and obtain eigenpairs as (λk, ψk). We define a matrix

U and diagonal matrix Λ as

Ψ := (ψ1, ψ2, . . . , ψn),Λkk := λk. (6.36)

We remark that the psuedoinverse of Λ can be written as

Λii = 0, for i = 1, . . . , K (6.37)

Λ
+1/2
ii = 1/λ

1/2
i , for i ≥ K + 1. (6.38)

Now we define an n× n matrix Λb which has only one element, as

(Λb)ii = 1/nGj
b for i ∈ VGj

(6.39)

We can then write as

L
−1/2
b = ΨΛ+1/2Ψ⊤ +

√
bJG

= ΨΛ+Ψ⊤ +ΨΛ
+1/2
b Ψ⊤

= Ψ(Λ+1/2 + Λ
+1/2
b )Ψ⊤. (6.40)

Thus, for ℓ > K, the eigenvector associated with λ−1/2
ℓ is ψi. From Eq. (6.39), for ℓ ≤ K

the eigenvalue associated with ψℓ is
√
nGℓ

b, where |G1| ≤ . . . ≤ |Gℓ| ≤ . . . ≤ |GK |. If

nG1b > λ−1
2 , nGi

b is the largest K eigenvalues. This concludes the proof for Prop. 6.1.

Eq. (6.40) yields the Cor. 6.2.

Finally, by generalizing the fact that the square root of the all one matrix can be written

as (11⊤)1/2 = 11⊤/
√
n, we have
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J
1/2
G =



|G1| ... |GK |

1/
√
n1 1/

√
n1

|G1|

1/
√
n1 1/

√
n1

... . . .

1/
√
nK 1/

√
nK

|GK |

1/
√
nK 1/

√
nK



(6.41)

From the proof of Prop. 6.1, we immediately have the following corollary.

Corollary 6.9. Let (λω, ψω) be the ω-th eigenpair of L. Suppose that a graph G is connected.

If nb > λ−1
2 , i-th eigenpair (λ+i , ψ+

i ) of L−1
b are

(λ+i , ψ
+
i ) =

(
λ−1
n+1−i, ψn+1−i

)
for i = 1, . . . , n− 1,

(
nb,1/

√
n
)
for i = n

6.D Proof of Proposition 6.3
Using Cor. 6.2, we obtain

∥v′
i − v′

j∥22 = ∥(vi + b1⊤1ei)− (vj − b1⊤1ei)∥22 = ∥vi − vj∥22 (6.42)

Using the fact of Eq. (2.71), we conclude the proof.

6.E Proof of Proposition 6.4
Without loss of generality, we write as

rG(i, j) =

∥∥∥∥∥∥∥∥


L
+1/2
Gs

+
√
bnGs1Gs

0

0

 ei −


0

L
+1/2
Gt

+ b
√
bnGt1Gt

0

 ej

∥∥∥∥∥∥∥∥
2

2

(6.43)



6.E. Proof of Proposition 6.4 241

=

∥∥∥∥∥∥∥∥

√
bnGs1Gs√
bnGt1Gt

0

 (ei − ej)−


L
+1/2
Gs

L
+1/2
Gt

0

 (ej − ei)

∥∥∥∥∥∥∥∥
2

2

(6.44)

≥


∥∥∥∥∥∥∥∥

√
bnGs1Gs√
bnGt1Gt

0

 (ei − ej)

∥∥∥∥∥∥∥∥
2

−

∥∥∥∥∥∥∥∥


L
+1/2
Gs

L
+1/2
Gt

0

 (ej − ei)

∥∥∥∥∥∥∥∥
2


2

(6.45)

=

(bnGs + bnGt)
1/2 −

∥∥∥∥∥∥
 L

+1/2
Gs

(eGs)i

L
+1/2
Gt

(eGt)j

∥∥∥∥∥∥
2

(6.46)

(6.47)

The second to third line follows from triangle inequality. We now show that the first term is

strictly larger than the second term. The first term is bounded as

bnGs + bnGt ≥ 2bnG1 , (6.48)

and ∥∥∥∥∥∥
 L

+1/2
Gs

(eGs)i

L
+1/2
Gt

(eGt)j

∥∥∥∥∥∥ = (∥L+1/2
Gs

(eGs)i∥22 + ∥L
+1/2
Gt

(eGt)j∥22)1/2 (6.49)

≤ (max
i,j

rGs(i, j) + max
i,j

rGt(i, j))
1/2 (6.50)

≤ (2/λK+1 + 2/λK+1)
1/2 (6.51)

= 2λ
1/2
K+1 (6.52)

Therefore, due to the assumption that b > (1 +
√
2)2/nG1λK+1, we have

(bnGs + bnGt)
1/2 ≥

∥∥∥∥∥∥
 L

+1/2
Gs

(eGs)i

L
+1/2
Gt

(eGt)j

∥∥∥∥∥∥ (6.53)

We also have if minx ≥ max y ≥ 0, then

(x− y)2 > (minx−max y)2 (6.54)
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since x− y > minx−max y > 0. By using these relations, we obtain

rG(i, j) ≥

(bnGs + bnGt)
1/2 −

∥∥∥∥∥∥
 L

+1/2
Gs

(eGs)i

L
+1/2
Gt

(eGt)j

∥∥∥∥∥∥
2

(6.55)

(6.56)

≥

(
(2bnG1)

1/2 − 2

λ
1/2
K+1

)2

(6.57)

≥ 2

λK+1

≥ rG(i, j) (6.58)

6.F Proof of Proposition 6.5

We now start with the standard k-means objective function using the general norm ∥ · ∥ is

defined as

J ({Cℓ}kℓ=1) :=
∑
ℓ∈[k]

∑
i∈Cℓ

∥xi −mℓ∥2, mℓ :=
∑
j∈Cℓ

xj/|Cℓ|. (6.59)

For each cluster Cℓ of Eq. (6.59), we further rewrite the objective function of k-means as

∑
i∈Cℓ

∥xi −mℓ∥2, mℓ :=
∑
j∈Cℓ

xj/|Cℓ| (6.60)

=
∑
i∈Cℓ

(
∥xi∥2 − 2⟨xi,mℓ⟩+ ∥mℓ∥2

)
(6.61)

=
∑
i∈Cℓ

∥xi∥2 − |Cℓ| ∥mℓ∥2 (6.62)

=
1

2|Cℓ|

(∑
i,j∈Cℓ

2∥xi∥2 − 2|Cℓ|2 ∥mℓ∥2
)

(6.63)

=
1

2|Cℓ|

(∑
i,j∈Cℓ

(∥xi∥2 + ∥xj∥2)−
∑
i,j∈Cℓ

⟨xi,xj⟩

)
(6.64)

=
1

2

∑
i,j∈Cℓ

∥xi − xj∥2

|Cℓ|
(6.65)
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Summing up over the all cluster, we can rewrite Eq. (6.59) as

J ({Cℓ}kℓ=1) =
1

2

∑
ℓ∈[k]

∑
i,j∈Cℓ

∥xi − xj∥2

|Cℓ|
. (6.66)

By replacing xi and xj to v′
i and v′

j and ∥ · ∥ to ∥ · ∥2, we conclude the proof.

6.G Proof of Theorem 6.6
We now rewrite Eq. (6.11) as

J({Vℓ}kℓ=1) =
∑
ℓ∈[k]

∑
i∈Vℓ

(∥v′
i∥22 − 2⟨v′

i,mj⟩2 + ∥mj∥22)

=
∑
ℓ∈[k]

∑
v′
i∈Vℓ

⟨v′
i,v

′
i⟩2 − 2

〈
v′
i,
∑
v′
j∈Vℓ

1

|Vℓ|
v′
j

〉
2

+

〈∑
v′
j∈Vℓ

1

|Vℓ|
v′
j,
∑
v′
r∈Vℓ

1

|Vℓ|
v′
r

〉
2


=
∑
k∈[ℓ]

∑
i∈Vℓ

(
(L−1

b )ii − 2
∑
l∈Vj

1

|Vj|
(L−1

b )il +
∑
r,t∈Vℓ

1

|Vℓ|2
(L−1

b )rt

)
(6.67)

=
∑
ℓ∈[k]

∑
i∈Vℓ

(L−1
b )ii −

∑
ℓ∈[k]

∑
r,t∈Vℓ

1

|Vℓ|
(L−1

b )rt (6.68)

= traceL−1
b − traceZRL

−1
b ZR, (6.69)

where ZR is an n× k matrix which serves as an indicator matrix, defined in Sec. 2.2. Thus,

if we minimize Eq. (6.69) with respect to ZR, we maximize the second term. Assuming

ZR is discrete, Z⊤
RZR = I . If we relax ZR with this constraint, traceZRL−1

b ZR becomes a

problem to obtain top k eigenvectors. From Prop. 6.1 and Cor. 6.9, the top k eigenvectors

of L−1
b are equivalent to the smallest k eigenvectors of L. Similarly to Sec. 2.2 case, using

Cor. 6.1, optimal solutions of k-means onHLb
and spectral clustering is given as the same set

of vectors, which is the k smallest eigenvectors of L. This completes the proof.



Chapter 7

Conclusions and Future Directions

This chapter provides conclusions and future directions of this thesis.

7.1 Conclusions

As we see in Chapter 1, despite recent advancements, there remain untapped opportunities

for further generalizing the graph spectral clustering framework. To address these gaps, this

thesis has contributed to the development of hypergraph spectral clustering and graph-based

learning algorithms.

In Chapter 3, we have considered hypergraph spectral clustering via hypergraph p-

Laplacians. In the past many different hypergraph Laplacians were proposed, since gen-

eralizations can take different form. However, while these prior Laplacians have similar

properties, they derive a patchwork of key features, such as nodal domain theorems, Cheeger

inequalities, and partitioning algorithms for some particular cases of hypergraph p-Laplacians.

To address this, we have proposed an abstract class of hypergraph p-Laplacians. We also

provided theoretical results for our p-Laplacian and a hypergraph partitioning algorithm based

on our abstract class of hypergraph p-Laplacians. Our experiments demonstrated that this

algorithm outperforms existing hypergraph spectral clustering methods.

In Chapter 4, we have considered a hypergraph modeling from vector data. In the

standard graph, vector data is commonly modeled by constructing vertices from data points

and edges based on pairwise similarities, with theoretical justifications connecting this to

the normalized cut. However, no comparable framework has existed for hypergraph cut

problems. To address this, we have proposed a novel hypergraph modeling method with

theoretical foundations. Furthermore, we have developed a spectral clustering algorithm
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connected to hypergraph cut problems. Our experiments have showed that this method

improves performance over standard graph-based modeling approaches.

In Chapter 5, we have focused on multi-class clustering exploiting the graph p-seminorm.

While spectral clustering via p-Laplacian is effective to the bisectioning problem, it is known

to be limited to apply to the multi-class settings, due to the long open problems. Thus, We

have taken a different approach; we proposed the multi-class clustering algorithm using the

p-resistance. However, p-resistance is expensive to compute. Thus, for this purpose, we

have shown a guarantee for the approximation of p-resistance. This approximation has led to

compute an approximation of p-resistance much faster than the naive optimization methods.

We empirically confirmed that our algorithm has outperformed the existing clustering methods

using the graph p-seminorm.

In Chapter 6, we have considered vertex classification in graph-with-features settings,

where both the graph structure and node features are available. While graph neural networks

(GNNs) are commonly used for this task, they tend to exhibit bias towards homophilous

information. To mitigate this bias, we have proposed ResTran, a simple alternative to GNNs.

ResTran transforms feature vectors by incorporating graph topology and then applies standard

learning methods to these transformed vectors. We have provided theoretical justifications for

ResTran from the perspectives of resistance, k-means clustering, and spectral clustering. Our

experiments have demonstrated that ResTran is more robust against certain biases compared

to existing GNN approaches.

7.2 Why Generalizations Mattered: A View from Mystical

Power of Twoness

This thesis focused on generalizations of spectral clustering. As seen in Sec. 1.3, standard

spectral clustering can be understood as solving a 2-seminorm problem on 2-uniform hyper-

graphs. We extended this to the p-seminorm and generalized the framework from graphs to

hypergraphs.

In Sec. 1.3, we argue that generalizing the graph Laplacian provides a better understand-

ing of the standard graph Laplacian. Using examples there, we illustrate that we identify

what is essential in the graph Laplacian, specifically which properties hold in both the p = 2

case and the general p cases. Additionally, from generalizations we observe that properties
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exclusive to p = 2 depend on “twoness,” a feature unique to the p = 2 scenario that does

not extend to other p values. These unique properties make problems easier to solve when

p = 2. Specifically in the example in Sec. 1.3, the variational theorem holds for both cases,

but orthogonality does not apply to the general p case, which makes the computation difficult

for the general p case.

In the following, we revisit key observations through the lens of this “mystical power of

twoness.” By examining these observations, we also highlight the limitations of this thesis.

Many of the computational conveniences are provided by the unique properties of “twoness.”

Thus, what does not generalize well to the p-case presents limitations.

Nodal Domain Theorem and Cheeger Inequality. In Chapter 3, we generalized

the graph Laplacian to the hypergraph p-Laplacian in an abstract way. Despite this broad

generalization, we preserved differential geometric structures, particularly the nodal domain

theorem and the Cheeger inequality. These properties hold for both the graph Laplacian and

the hypergraph p-Laplacian. However, the hypergraph p-Laplacian shares the same limitation

as the graph p-Laplacian regarding higher eigenvalues. Neither can capture the third or higher

eigenvalues, meaning that obtaining these values still depends on the ”twoness” structure, as

explained in Sec. 1.3.

Kernel Property. In Chapter 4, we generalized the kernel from graphs to r-uniform

hypergraphs where r is even, focusing on the 2-seminorm problem. For r-uniform hyper-

graphs, the semi-definiteness of the kernel is preserved, which is also an important property

for the standard graph. However, this property does not extend well to odd-uniform or general

hypergraphs. Therefore, to accommodate such models, we may need to explore how to

generalize semi-definiteness to broader settings.

Laplacian Coordinate. In Chapter 5, we considered generalization from resistance to

p-resistance in graph settings. We showed that the Laplacian coordinates V(L) = {vi :=
L+ei : i = 1, . . . , n} plays a critical role. Recall that the standard resistance can be written as

rG,2(i, j) = ∥vi − vj∥G,2, where vi,vj ∈ V(L). (7.1)

We approximated the p-resistance for general p as

rG,p(i, j) ≈ ∥vi − vj∥G,p, where vi,vj ∈ V(L). (7.2)
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This approximation becomes exact for tree graphs. Thus, the Laplacian coordinate is useful

for both p = 2 and general p cases. When p = 2, the m-dimensional graph seminorm ∥x∥G,2
can be rewritten as the n-dimensional seminorm ∥x∥L. Reducing from m to n makes the

computation faster for the p = 2 case. However, this simplification does not apply easily for

general p-seminorms. The efficiency we gain in the p = 2 case, where we compute in O(n)

instead of O(m), is another result of the ”twoness” property as discussed in Appendix 5.I.

Finally, we mention that we have not had effective resistance for hypergraphs because we do

not have an immediate circuit analogy for hypergraphs. The circuit analogy is also due to

“twoness.”

7.3 Future Directions
This section outlines promising future directions based on this thesis.

More Hypergraph Modeling. In Chapter 4, we proposed a model for even-order

uniform hypergraphs from vector data, which connects to certain hypergraph cut problems.

Chapter 3 introduced an abstract class of hypergraph Laplacians. A key question arises: can

we develop a hypergraph model aligned with the hypergraph Laplacian proposed in Chapter 3?

Furthermore, can we establish theoretical foundations similar to those in Chapter 4 for this

new modeling approach?

Hypergraph Multi-class Clustering via p-Seminorm. In the experiments from Chap-

ter 4 and Chapter 5, we observed that the Iris dataset performed better in Chapter 4, despite

the more sophistication in Chapter 5. This suggests that for some datasets, generalizing from

graph to hypergraph is more effective than extending from the 2-seminorm to the p-seminorm.

An interesting question is: under what conditions do datasets benefit from graph generaliza-

tion, and when do they benefit from seminorm generalization? While this is an interesting

question, it would be more convenient if we can combine both; a hypergraph multi-class

clustering via p-seminorm. However, as noted in Chapter 3, the hypergraph p-Laplacian

shares the same limitations as the graph p-Laplacian in multi-class clustering. Since there

is no hypergraph counterpart for effective resistance, it would be fruitful to explore how the

insights from Chapter 5 could be applied to hypergraphs.

p-Laplacian vs. p-Resistance. Another valuable direction is to further explore the

relationship between the p-Laplacian and p-resistance. The first question is: how are these

concepts connected? In Chapter 6, we showed that spectral clustering is connected to k-
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means using resistance. Can we establish a similar connection between the p-Laplacian

and p-resistance? Another question is whether the parameter p behaves the same way for

both the graph p-Laplacian and p-resistance. In the experiments in Chapter 3, smaller p

generally performed better, while in Chapter 5, larger p was more effective. This aligns with

theoretical results: for the p-Laplacian, Cheeger’s inequality gets progressively looser as p

increases, while for p-resistance, smaller p loses global graph information for certain graph

classes [Alamgir and Luxburg, 2011]. Investigating the causes of these differences would be

a valuable next step.

More Scalability with Theoretical Guarantees. Much of the discussion in this thesis

focuses on generalizing spectral clustering, which typically has a complexity of O(n3). Most

of the generalized methods proposed in this thesis tend to be slower, with most having a

complexity of at least O(n3), making practical computation for large graphs challenging. As

a result, the datasets used for the experiments in this thesis are relatively small compared to

current standards. From the observations of “twoness” (discussed in Sec. 1.3 and Sec. 7.2),

this “twoness” can make algorithms faster, although general approaches may not benefit from

such advantages. Given these fundamental challenges, an important future direction is how to

achieve faster approximations with theoretical guarantees. For instance, can techniques like

sparsification [Spielman and Teng, 2014], which approximates the Laplacian with theoretical

guarantees, be extended to the generalized case?

More Applications of Laplacian Coordinates. As discussed in Sec. 7.2, the Laplacian

coordinate is fundamental for both p = 2 and general p cases. In Chapter 6, we applied this

insight to improve graph-with-features representation. Could Laplacian coordinates be useful

in other areas? Possible applications include overlapping community detection [Xie et al.,

2013] and temporal networks [Holme and Saramäki, 2012].
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