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Abstract
With the proliferation of blockchain technology in high-value sec-

tors, consensus protocols are becoming critical infrastructures. The

rapid innovation cycle in Byzantine fault tolerant (BFT) consensus

protocols has culminated in HotStuff, which provides linear mes-

sage complexity in the partially synchronous setting. To achieve

this, HotStuff leverages a leader that collects, aggregates, and broad-

casts the messages of other validators. This paper analyzes the

security implications of such approaches in practice, from the per-

spective of liveness and availability.

By implementing attacks in a globally-distributed testbed, we

show that state-of-the-art leader-based protocols are vulnerable to

denial-of-service (DoS) attacks on the leader. Our attacks, demon-

strated on committees of up to 64 validators, manage to disrupt

liveness within seconds, using only a few tens of Mbps of attack

bandwidth per validator. Crucially, the cost and effectiveness of

the attacks are independent of the committee size. Based on the

outcome of these experiments, we then propose and test effective

mitigations. Our findings show that advancements in both proto-

col design and network-layer defenses can greatly improve the

practical resilience of BFT consensus protocols.

CCS Concepts
• Security andprivacy→Denial-of-service attacks;Distributed
systems security; •Computer systems organization→Depend-
able and fault-tolerant systems and networks.
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1 Introduction
For more than four decades, researchers have been studying Byzan-

tine fault tolerant (BFT) consensus protocols [16, 18, 27] in order

to facilitate the development of dependable distributed systems. As

blockchains have grown in popularity, there has been an increas-

ing interest in developing high-performance consensus systems,

with early studies proposing committee-based protocols to improve

over Bitcoin’s [54] throughput of 7 transactions per second. BFT

consensus protocols have since been shown to increase blockchain

throughput and reduce latency [9, 44], and they are rapidly becom-

ing the standard in proof-of-stake architectures [7, 25, 46]. These

efforts resulted in the creation of HotStuff [67] and its followup

works [1, 35], which have linear message complexity in the partially-

synchronous setting: They achieve this by electing a leader, selected
among the validators in the committee, that is responsible for col-

lecting, aggregating, and broadcasting the messages generated by

other validators.

Although this leader-centric strategy greatly reduces the overall

communication complexity—which ultimately results in improved

theoretical scalability—it also exposes the protocol to liveness at-

tacks. All that is required for a protocol round to be unsuccessful is

for the leader to lose synchronization with the rest of the system.

This challenge is compounded by the need for blockchain protocols

to offer censorship resistance, which is now addressed by several

proposals via the use of alternating leaders.

We show that this weakness can be exploited in practice by

launching denial-of-service (DoS) attacks on HotStuff. To this end,

we set up a large and globally-distributed testbed of validators run-

ning the reference HotStuff implementation, and perform hundreds

of experiments with multiple attack vectors, and covering a broad

range of threat models. Our results unambiguously show that a few

Mbps of attack traffic suffice to halt the consensus and compromise

liveness within seconds, even when the adversary is external to

the committee—i.e., there are no Byzantine validators. Most impor-

tantly, the presence of the leader makes the cost and effectiveness

of these attacks independent of the committee size, as the adversary

can easily track and target each subsequent leader.

Our attacks can be interpreted in several ways. One is that

HotStuff—and specifically the implementation we use in the experi-

ments—can be attacked. However, this is not the goal of this paper.

Instead, our intent is to investigate the practical resilience of con-

sensus protocols to DoS attacks, and to evaluate general solutions

to protect consensus protocols in adversarial environments—such

as a high-stakes blockchain deployed on the public Internet. Al-

though the space of possible mitigations is extremely large, there
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are two immediate avenues for increasing the survivability of con-

sensus protocols: (i) to explore more resilient protocol designs,

and (ii) to integrate network-layer defenses to protect validator-to-

validator communication from DoS. Therefore, we first consider

fully-asynchronous consensus protocols, which aim to operate un-

der extremely unfavorable network conditions. Then, we turn to

the network security literature to identify DoS defenses that are

amenable to the decentralized consensus setting.

Asynchronous consensus protocols—albeit designed to have bet-

ter security and availability—have seen little attention by the dis-

tributed consensus community as they are often stigmatized as

unrealistic, slow, or hard to implement. Nevertheless, we ask the

question of whether they can withstand our attacks better than

leader-based protocols. We therefore execute another set of attacks

against Tusk [24], a recently proposed asynchronous consensus

protocol that promises speed and simplicity. We deploy the existing

Tusk codebase, which is considered for adoption in three blockchain

startups [14, 21, 47]. The results are encouraging, showing that

Tusk is more robust than HotStuff. Its progress cannot be trivially

paralyzed, thus indicating improved robustness of asynchronous

consensus protocols. However, the transaction throughput of the

protocol decreases under attack, and targeting more than 𝑓 valida-

tors in a committee of 3𝑓 + 1 breaks the liveness threshold and, as

expected, the protocol halts.

To conclude our exploration on the practical resilience of state-
of-the-art consensus protocols, we investigate promising network-

based defenses to further protect validators. Unfortunately, we have

to discard most traditional approaches, such as Cloud-based DoS

filtering, which introduces too much centralization for a viable

blockchain network, or VPNs, which potentially introduce new

attack vectors [63]. We finally test the effectiveness of traffic au-

thentication and rate-limiting (ARL) as a DoS protectionmechanism.

We implement an ARL prototype where source authentication is

based on symmetric-key message-authentication codes (MACs),

yielding a system with minimal computational requirements. Thus,

our prototype can be transparently deployed at the validators, does

not require changes to the consensus, and does not introduce any

consensus delay. When active, ARL blocks all our attacks, and con-

sensus proceeds unscathed.

With this paper, we then contribute to the study of the attack
resilience of consensus protocols in their integration within
real networks, and beyond their theoretical guarantees. We find

that leader-based consensus protocols such as HotStuff, although in

theory resilient to up to 𝑓 failures, can fall prey to attacks on liveness

because of their reliance on a single leader. Leader-less asynchro-

nous consensus protocols such as Tusk, on the other hand, show

better resilience. Finally, we argue that full DoS resistance is only

achieved when considering further defenses at the network layer.

We thus hope to highlight how the different synchrony models—

under which the security properties of consensus protocols have

been proven—hardly match the reality of today’s Internet, where

traffic can be dropped, rerouted, or spoofed. Therefore, we suggest

that safe and available distributed consensus requires a holistic

approach, reconciling abstract models with real deployments.

2 Background
This paper focuses on quorum-based consensus protocols. These

protocols have a well-known set of participants—called commit-
tee—a subset of which (typically < 1

3
) can be faulty or adversarial,

also called Byzantine. In the protocols we consider, members of the

committee—the validators—authenticate each other using crypto-

graphic signatures.

Additionally, we focus on partially synchronous [29] and asyn-

chronous [16] protocols that can be deployed over an unreliable

network, such as the Internet. Partially synchronous protocols typ-

ically feature lower latency than asynchronous protocols when the

network is reliable, and work by optimistically electing a leader to

drive the protocol and rotating it regularly. Such protocols suffer

larger performance degradation during periods of asynchrony or

when the leader is Byzantine. On the other hand, asynchronous pro-

tocols do not rely on a leader to drive the protocol and are therefore

more resilient. However, they have higher latency than partially

synchronous protocols, as they need to introduce randomization in

the execution to withstand network asynchrony [34].

Specifically, we analyze two state-of-the-art consensus protocols:

(i) HotStuff [67] as an example of partially-synchronous consensus,

and (ii) Tusk [24] as an example of asynchronous consensus. We

chose these particular protocols for several reasons. First, both pro-

tocols feature open-source implementations with well-documented

benchmarking scripts to measure performance under a variety of

conditions. Second, their implementations are comparable: They

are both written in Rust, use similar libraries (network, storage, and

cryptography), and are built according to similar design choices,

thus allowing for a fair comparison. Finally, HotStuff is used at

the core of many open-source projects and companies, such as

Celo, Cypherium, Flow, Monad, and Diem.
1
This paper thus offers

insights on possible threats to deployed systems.

The following background on consensus protocols is needed to

understand the attacks presented in this paper.

2.1 HotStuff: Partially-Sync. Consensus
HotStuff [67] operates in a round-by-round manner, electing a

leader in each round among the committee to balance validator

participation.

The leader proposes an extension to the longest chain of requests

that it already knows;
2
the rest of the validators then vote for the

extension, unless the extension conflicts with a longer chain they

know. Validators finally send their votes to the next leader to help

them learn the longest safe chain. If 2𝑓 + 1 validators send votes

to the next leader in a timely manner, that leader can gather them

in a data structure called the quorum certificate (QC), and build a

new block (the next proposal). If there are three consecutive blocks

in the chain, 𝐵𝑘 , 𝐵𝑘+1, 𝐵𝑘+2, which are proposed in consecutive

rounds, and each block has a QC, then the protocol has reached

consensus on block 𝐵𝑘 ; all honest validators eventually commit

𝐵𝑘 . Additionally, validators maintain a timer to track progress and

preserve liveness despite faulty leaders. When the timer expires

and a validator has still not received a proposal, it broadcasts a

1
celo.org, cypherium.io, flow.com, monad.xyz, diem.com

2
Usually, leaders collect batches of requests to propose, referred to as blocks.

Hence, the HotStuff protocol forms a chain of blocks (or a blockchain).
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timeout vote. A validator gathering enough timeout votes can form

a timeout certificate (TC) and advance its round. Every time a round

fails, timeout periods are increased, allowing lagging validators to

catch up and enabling the protocol to commit eventually.

2.2 Tusk: Asynchronous Consensus
The Tusk [24] consensus protocol provides safety and liveness even

in asynchrony, and does not make direct use of a leader to drive

consensus. We, therefore, use Tusk as a baseline to experimen-

tally test the robustness of leader-less asynchronous consensus in
comparison to the leader-based, partially-synchronous HotStuff.

Tusk is split into two sub-protocols, (i) a data dissemination

system called Narwhal, which forms a directed acyclic graph (DAG)

of batches of transactions, and (ii) a decision rule on how to totally

order the vertices of the DAG and reach consensus.

Narwhal: Building the DAG. Narwhal proceeds in rounds to

build a DAG on batch metadata. Data dissemination is symmetric

among validators, and therefore it does not have a single point of

failure, such as a leader. In each round, each validator prepares

and sends to all other validators—via consistent broadcast [17]—a

message with the batch metadata corresponding to a DAG vertex.

This metadata contains the batch digest and 2𝑓 + 1 references to

vertices from the previous round. Upon receiving such a message, a

validator replies with a signature iff (i) It has already stored the data

corresponding to the digests in the vertex (for data-availability);

and (ii) it has not replied to this validator in this round before (for

non-equivocation). The sender forms a quorum certificate from

2𝑓 + 1 such signatures and sends it back to the validators as part

of its vertex for this round. A validator advances to the next round

once it receives 2𝑓 + 1 vertices with valid certificates.

Tusk: Interpreting the DAG. Tusk takes the causally ordered

DAG constructed by Narwhal and totally orders its blocks. While

the details of Tusk’s operation are beyond the scope of this paper,

it is important to notice that Tusk achieves the total ordering of

transactions with zero extra communication and modest compu-

tation. That is, every validator determines this total block order

only based on its view of the DAG and some shared randomness—a

distributed perfect random coin [49]—derived from the blocks.

Consequently, DAG ordering is light-weight and has a reduced

attack surface compared to the Narwhal subsystem, which instead

requires exchanging and processing network messages, and verify-

ing the signatures contained within.

2.3 Denial of Service
Denial of service (DoS) is an umbrella term for a broad variety

of attacks against the availability of interconnected services. The

prevalent form of DoS attack today is the volumetric distributed–

denial-of-service (DDoS) attack, whereby an adversary—the bot-
master—directs the traffic of thousands to millions of compromised

Internet hosts—the bots—towards a target endpoint. The resulting
traffic flood, which can reach multiple Tbps, depletes the computa-

tion, memory, or bandwidth resources of the targets, forcing packet

drops and preventing legitimate traffic from reaching the service.

Attacks can target all layers in the network stack, e.g., by con-

gesting network links (network layer), by exhausting state with a

huge number of open connections (transport layer), or by drain-

ing compute power on the host with resource-intensive requests

(application layer). Some of the most recent, high-profile targets

include governments
3
and large organizations.

4

In this paper, we study DoS attacks targeting validators running

a consensus protocol. In particular, we exploit the reliance of such

protocols on cryptographic signatures to authenticate all consen-

sus messages: We design and implement signature flooding attacks
where validators are forced to verify tens of thousands of signatures

per second. Since signature verification is a compute-intensive oper-

ation, a relatively low-rate attack—compared to purely volumetric

floods—can overwhelm a validator.

In §4, we provide a more formal discussion of the threat models

and attack vectors, while in §7, we discuss the challenges that the

distributed nature of consensus protocols poses to DoS defenses.

3 Methodology
We present a general framework to evaluate the resilience of con-

sensus protocols to practical DoS attacks. We first define the threat

model, then provide a stepwise experimentation procedure, and

finally describe novel metrics to evaluate DoS attack resilience in

consensus protocols.

3.1 Threat Model
Given a consensus protocol running on a wide-area network—

typically the Internet—ourmodel considers two types of adversaries,

of increasing power.

The external adversary does not control compromised validators

in the consensus committee, and, therefore, cannot authenticate

protocol messages. However, such an adversary can impersonate

clients and submit transactions to the consensus, or send adversarial

traffic from other hosts in the network (the “botnet”).

The internal adversary controls up to 𝑓 Byzantine validators

among the committee of 3𝑓 + 1 validators. In contrast to the ex-

ternal adversary, the internal adversary has access to valid key

material and can authenticate protocol messages. Crucially, this is

the most powerful adversary that does not breach the theoretical

requirements for the security of the consensus protocol.

In both cases, we consider the adversary to be in control of a

botnet, with a large number range of IP addresses from which it can

send traffic. Further, the adversary can observe the current state

of the protocol, and specifically the current round number. This

assumption is realistic, as most consensus protocols do not attempt

to hide their protocol messages since they can easily be guessed

by observing the blockchain, and are often needed by light clients

as proofs of commits. Therefore, any entity can obtain the round

number by (i) passively observing the traffic of validators; or (ii)

through publicly available information; or even (iii) by observing

traffic patterns—e.g., the leader is the validator that broadcast mes-

sages to all other validators. Internal adversaries have even more

insight into the state of the protocol as they are directly participat-

ing with a subset of Byzantine validators.

Finally, the adversary model of the BFT protocols under con-

sideration also assumes that the adversary has full control over

3
E.g., the May 2021 attacks on the Belgian parliament [20].

4
See Cloudflare’s list of famous DoS attacks [22].
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network communications. In particular, the adversary may spoof

the source IP address, either by using on-path bots, or by hijacking

the IP address of validators. This assumption is not required for

the attacks we present in the paper to succeed, but will aid in the

analysis of robust mitigations.

3.2 DoS-Resilience Evaluation Pipeline
We propose the following experimental procedure in three steps for

the practical evaluation of the DoS resilience of consensus protocols.

#1: Static-Leader Attacks. First, evaluate the resilience of a

single validator to DoS attacks to establish a baseline, and reveal

implementation aspects that may facilitate attacks. The results also

serve as an indicator of the required resources for an attack on

multiple validators. For leader-based consensus protocols, we are

mainly interested in the resilience of the leader to attacks.

#2: Fixed-Subset Attacks. Second, test against an adversary tar-

geting a fixed set of validators at the same time. Even if only a small

set of validators are targeted, such attacks can significantly slow

down the protocol, potentially rendering it practically unusable.

This second step is also useful to gauge the relevance of the theoret-

ical guarantees the protocol offers. In principle, all BFT consensus

protocols should still be live with up to 𝑓 crashed validators.

#3: Leader-Tracking Attacks. Consensus protocols typically

assume a synchronous, partially-synchronous, or asynchronous

network model, with up to 𝑓 fixed Byzantine (or faulty) validators.

None of these models restricts the attack capabilities of clients or

external adversaries. In an Internet setting, then, it is reasonable

to assume that the adversary can rapidly change targets during an

attack. We therefore propose to study this case separately in our

methodology.

A leader-tracking attack concentrates the adversary’s resources

against the leader, trying to emulate the effects of a static-leader

attack in the more realistic dynamic setting. To succeed, the adver-

sary has to overcome the additional difficulty posed by the quick

rotation of leaders (e.g., ≈ 5 rounds/s in HotStuff). In practice, the

adversary may not have enough time to crash the leader before a

new one is elected.

Finally, a number of recent works propose to increase the re-

silience of leader-based BFT consensus protocols by introducing

unpredictability in the leader selection procedure [11, 15, 28, 37, 51].

In these protocols, the committee elects each leader randomly at

the beginning of the round, e.g., by using an unpredictable shared

random coin, making targeting the leader harder, or even infeasible.

The evaluation of leader-tracking attacks needs to also consider

such upredictable leader election sequences.

3.3 Evaluation Metrics
We are interested in attacks which significantly degrade or com-

pletely disrupt a protocol’s performance with the least cost or effort

for an adversary. The effort is measured in terms of resources the

adversary must invest to succeed in the attacks, such as the amount

of attack traffic (bandwidth utilization) or the number of attack

machines (computational power).

To evaluate the effectiveness and the cost of attacks, we define

the following metrics, and illustrate them in Fig. 1 with an example

taken from the attacks on HotStuff.

Figure 1: Example HotStuff run with/without attacks. A com-
mittee of 64 validators is under attack from 8 adversary machines (no
Byzantine validators). The gray dotted line represents the unperturbed
progress of the protocol.

Normalized Commit Rate under Attack. Attacks on liveness

congest the validators such that they take more time to commit

new blocks. A maximally effective attack sufficiently delays the

commit to reach a timeout and force a view change. In this case, no

blocks can be committed, and the consensus is effectively halted.

We capture this effect by measuring the commit rate—the number

of commits per second—after the attack start, and compare it to the

commit rate in steady-state operation. Figure 1 shows that before

the attack, HotStuff progresses with roughly 5 commits per second

(cmt/s), while after the attack starts the rate drops to zero. We

express this metric as the ratio of the commit rate after the attack
start to the commit rate without attacks. The smaller this number,

called normalized commit rate, the more effective the attack.

Time-to-Last-Commit. In case the attack is successful in com-

pletely halting consensus, the normalized commit rate is zero. This

metric therefore cannot capture the difference between distinct,

but successful, attacks. We then introduce the time-to-last-commit

(TLC) to discern the effectiveness of attacks in these cases. The

TLC measures the time elapsed from the instant the first adver-

sary machine starts attacking the consensus to the time of the last

commit. Since the protocol may temporarily re-synchronize and

commit a block, we compute the TLC as the time after which there

are no commits for 30 consecutive seconds (these events are nev-

ertheless extremely rare in our experiments). In Fig. 1, the TLC is

represented by the distance between the vertical bars of denoting

attack start and last sequential commit. More powerful attacks halt

the consensus faster, and therefore have lower TLCs.

Committee and Adversary Size. In principle, a larger commit-

tee should be able to resist more powerful adversaries, controlling

more computational and network resources. Therefore, we also

investigate the resilience of the committee relative to the size of

the adversary.

4 Attacking HotStuff
By applying the methodology described in §3, we show that at-

tacks on the liveness of leader-based consensus protocols—here

exemplified by HotStuff—are practical. Starting from an analysis

of the space of threat models and attack vectors, we devise a set of
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proof-of-concept attacks and experimentally prove that they can

rapidly, inexpensively, and indefinitely prevent liveness.

4.1 Attack Vectors
The decentralized, trust-minimizing nature of the HotStuff consen-

sus protocols enables multiple avenues for adversaries trying to

delay or halt the protocol by flooding validators with packets. We

summarize the three categories.

Client Traffic. The adversary impersonates a large number of

clients, and overloads the validators with legitimate transaction

messages. This attack aims at exhausting the computational re-

sources of the validators, by forcing the processing of many trans-

actions. Previous work has shown that increasing the number of

client transaction requests can drastically increase consensus de-

lay [24, 67] up to the point of halting consensus [62]. Nevertheless,

a flood of client traffic is in general less problematic, as the focus of

protocols is typically consensus liveness. Rate-limiting the number

of requests from clients is a traditional defense that protects the

consensus core against this attack.

Our experiments confirm that this DoS effect is present in the

HotStuff implementation under test. However, since the counter-

measure is easily deployable, we do not exploit client traffic as an

attack vector in this paper.

Unauthenticated Protocol Traffic. In blockchain applications,

validators can leave and join frequently. Therefore, validators have

to process messages from possibly any Internet host. The validators’

identity is only tied to the knowledge of a public/private key-pair,

and thus all messages are authenticated with signatures. Then, even

external adversaries can initiate signature-flooding attacks, where
they target honest validators with protocol messages containing

bogus signatures. Even if the verification step fails—an external

adversary does not have a valid private key—the computational

overhead of verifying a flood of signatures may still overwhelm a

validator and cause it to drop legitimate consensus messages.

Authenticated Protocol Traffic. Internal adversaries can cre-

ate valid protocol messages and therefore, even if they cannot

compromise safety, they have many opportunities to create compu-

tation and memory overhead on other validators. Signature floods

are particularly threatening because the signatures will pass the

authentication checks, and the messages will proceed to create

additional overhead.

4.2 Evaluation Setup
HotStuff Implementation. In our attack experiments, we use

the reference HotStuff implementation in Rust [61]. This instantia-

tion uses the 2-chain version of the protocol [35] and implements

the DiemBFT pacemaker [10]. It is multi-threaded and uses tokio5

for asynchronous networking, ed25519-dalek6 for elliptic curve
based signatures, and data-structures are persisted using RocksDB.7

It uses TCP to achieve reliable point-to-point channels, necessary

to correctly implement the distributed system abstractions. Every

message is authenticated with a signature over the message’s di-

gest, i.e., the 32-Byte output of a cryptographic hash function. We

5
https://tokio.rs

6
https://github.com/dalek-cryptography/ed25519-dalek

7
https://rocksdb.org

Figure 2: Average TLC of leader-tracking attacks on HotStuff.
Showing leader-tracking attacks with internal and external
adversaries; static-leader attacks ; and leader-tracking attacks
with an unpredictable leader-election schedule . See Figs. 6 and 7
in Appendix A for further analysis.

set the target transaction rate relatively low (10 000 tx/s), to avoid

overloading the validators and thus facilitate the observation of the

results of our attacks.

Adversary Implementation. The adversary is also implemented

in Rust, using the tokio library, and reusing the message definitions

of the HotStuff implementation.

Committee andAdversary Deployment. For our experiments,

we deploy a network of HotStuff validators on a global wide-area

network composed of AWS virtual private servers (VPSes). These

VPSes (AWS m5d.2xlarge) have 8 virtual cores, 32GB of memory,

and up to 10Gbps of available network bandwidth, providing a

good tradeoff between performance and cost. Depending on the

experiment, 8 to 64 validators are uniformly spread across 4 AWS

data centers spanning the globe.
8
Our experiments thus run on

a validator network of realistic size and communication latency.

The adversary’s deployment is similar, in that it uses the same

number and type of VPSes, and data center distribution. We can

thus compare the computational power of the adversary and the

committee to obtain a coarse estimate of the required attack power

relative to the committee size.

Evaluation Orchestration. An orchestration script is responsi-

ble for automatically creating the VPSes on AWS, deploying and

building the code, initiating the consensus protocol and the attacks,

and collecting the run logs. In each run, after the committee is

started, we wait for it to synchronize and reach steady-state op-

eration. After 60 seconds have passed, we start the adversary’s

machines. The experimental pipeline comprising multiple attack

runs with different parameters, log parsing, and plotting, is imple-

mented with the Snakemake workflow-management tool [53].

5 HotStuff Attack Results
5.1 Static-Leader Attacks
We evaluate the static-leader attack on 16 different combinations

of committee sizes (in {8, 16, 32, 64}) and adversary sizes (similarly,

{8, 16, 32, 64}). For each committee size and number of adversaries,

we run the attacks twice (32 attack runs in total) and for 180 seconds.

8us-east-1, eu-north-1, us-west-1, ap-northeast-1
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We modify the leader-election module of the HotStuff validators

to always elect the same leader—instead of proceeding in a round-

robin fashion—so that the adversary may easily target the leader.

The adversary is external to the committee, and targets the valida-

tors with a Vote signature flood, carried out as follows.

The Vote Signature Flood. Themachines in the adversary’s bot-

net send as many Vote messages as possible to the validator. These

messages are crafted to force a signature check on the validator.

First, the author field is set to the public key of one of the commit-

tee members, impersonating its identity. Thus, the message passes

the initial check at the target, which ensures that all Vote messages

contain the identity (public key) of another known committee mem-

ber. Then, the round number for which the vote is valid, contained

in the round field, is set to a high value such that it will always

be greater than the actual round number during the protocol exe-

cution. The message then passes a second check that requires the

vote to be for the current or a future round. From the consensus

standpoint, allowing future votes to be processed is beneficial, as

it may help a lagging validator in forming the quorum for a view

change and move to the latest round
9
. However, accepting future

votes also lowers the synchronization requirements on the external

adversary, who does not need to precisely know the round number.

Finally, the digest—containing the hash of the block for which the

vote is—and the signature are filled with random bytes.

Results. Results are indicated by the “Static” line in Fig. 2

(and magnified in Fig. 6a in the Appendix). We find that attacks

against a static leader are highly effective, and consensus is halted

within 10–25 seconds—16 seconds in the median—independent of

the committee size and number of adversaries. A further break-

down of the TLC behavior depending on the number of adversaries

machine can be seen in Fig. 6a in the Appendix.

This experiment confirms that the processing overhead of the

Vote signatures forces the target machine to drop packets, among

which are the valid votes from the committee. Since the attack

targets the (static) leader of the committee, it is able to rapidly

compromise liveness. As a single Vote message requires around

80 µs in the median (Fig. 3) to authenticate and then discard, a

single core can at most process 12 500 votes per second. Once the

adversary is able to deliver votes at a rate above this threshold, the

validator starts to buffer votes, and eventually has to drop packets.

We monitor the number of drops on the network interface card

(NIC) with the nstat tool, and confirm that the number of dropped

packets sharply increases on the validator under attack.

5.2 Fixed-Subset Attacks
Having established the resistance of a single validator to attacks, we

then investigate fixed-subset attacks to test the consensus protocol’s

resilience to up to 𝑓 failures. In principle, either the adversary is able

to crash more than 𝑓 validators, or the consensus should be able

to make progress. In this experiment, 𝑡 validators in a committee

of 16 (𝑓 = 5) are targeted by an adversary, with 𝑡 in {1, . . . , 6}.
The adversary is external to the committee, and employs the Vote

signature flood against target validators. We then measure the

9
A straw-man improvement to the protocol is requiring voters to attach a QC to

the vote message, proving that a quorum of validators reached the voted round. This,

however, forces the leader to check an extra QC per vote.

Figure 3: Vote and Block processing time distributions. The
values indicate the committee size. Vote processing time is almost
constant, taking 70− 80𝜇𝑠 in the median, independently of committee
size and attacks. Block processing is more expensive (500 − 1000𝜇𝑠),
and depends on the committee size.

normalized commit rate across different runs, which is expected to

be close to zero only for 𝑡 = 𝑓 + 1 = 6. We further use two different

timeout settings (5 and 10 seconds), to test whether this parameter

improves the protocol’s resilience. The common expectation is

that with longer timeout duration the chance that valid messages

manage to reach the validators under attack increases, which in turn

should increase the chance to achieve a commit. For each number

of targets 𝑡 , we run an attack twice for each timeout setting, for a

total of 24 experiments. Each experiment runs for 10 minutes, and

the adversary is started after 60 seconds of consensus warm-up

time. We thus measure the normalized commit rate for 9 minutes

to capture the long-term effects of the attack.

Results. The lines HS5s and HS10s in Figure 4 show the

result of the experiment runs. Somewhat surprisingly, we find that

the consensus is halted indefinitely with just 𝑡 = 3 validators out of

16 under attack (18.75 %).

The reason for this rapid decrease in the normalized commit rate

is that, for each leader under attack, the protocol is halted for a full

timeout of 5 or 10s. The effect is further worsened by a performance

optimization of the HotStuff protocol. In the implementation we

target, to commit the leader needs to perform three rounds of

broadcast communication to all other validators, and collect their

replies. Thus, these communication rounds can be pipelined and

executed in parallel by leaders of consecutive rounds, increasing the

transaction throughput of the consensus. The “2-chain” pipelining

still implies that to commit, two consecutive leaders must be live
and honest, which severely weakens the protocol. Disrupting a

single validator then causes not one but two consecutive rounds to

fail, and consequently 𝑓 crashed validators cause 2𝑓 failed rounds,

reducing the commit rate even more. Therefore, assuming a base

commit rate of 5 cmt/s, if e.g., 3 leaders crash in a committee of

16, the protocol is blocked for 3 · 5𝑠 + 3 · 0.2𝑠 = 15.6𝑠 , versus the

10 · 0.2𝑠 = 2𝑠 in which it can make progress. Equivalently, without

an attack HotStuff would have committed almost 6× more blocks.

5.3 Leader-Tracking Attacks
In this attack scenario, the adversary tries to continuously DoS the

current leader to disrupt liveness. We present the results for both

external and internal adversaries.
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Figure 4: Fixed-subset attack. The adversary targets 0 to 6 valida-
tors in a 16-validator committee (𝑓 = 5). HotStuff (HS) is here set up
with two timeout settings (5s and 10s).

Leader-Tracking Implementation. As discussed in §3.1, the

adversary has many ways to learn the round number, even if it

is external to the committee. We abstract away the details of the

concrete way in which the adversary obtains this information, and

simply add a subroutine on the validators that, upon view change,

broadcasts the current round number to the adversary machines.

How the adversary monitors the network in practice is orthogonal

to our attack.

Attack Mechanism and Parametrization. Knowing the latest

up-to-date round number, the adversary can identify the current

leader as well as the upcoming leaders in the sequence (we later

relax this assumption with the unpredictable leader experiments).
The botnet can thus target the current leader’s machine and a

number of validators that will become leaders in the following

rounds. In the following experiments, the total number of validators

under attack 𝑡 is chosen as 𝑡 ∈ {2, 8}: 𝑡 = 2 is always less than 𝑓 + 1

for committee sizes {8, 16, 32, 64}; 𝑡 = 8 amounts to an > 𝑓 + 1

attack when the committee size is either 8 or 16. In this way, we

can explore the effect of 𝑡 in larger committees, while comparing it

to an 𝑓 + 1 attack in smaller ones.

The external adversary uses the same Vote-flood attack vector

presented in the previous attacks. For the internal adversary, we

introduce the Block signature flood.

The Block Signature Flood. Similarly to the Vote signature

flood, the adversary sends a flood of Block protocol messages to the

target validators, inducing computation overhead and eventually

forcing dropped packets. The main difference between Vote and

Block floods is that an internal adversary can leverage a valid private

key to sign Block messages, and cause an even higher overhead.

The author field in the message is set to the identity of the val-

idator controlled by the internal adversary. To pass the preliminary

checks on the block’s validity, the round field is set to a round

number far in the future such that the validator is going to be the

legitimate leader for that round. A signature is performed on the

digest of the message.

Different to a Vote message, however, the Block message also

contains a QC field with the quorum certificate for the previous

block (see §2.1). The QC itself is an aggregate of the votes of at

least 2𝑓 + 1 validators for the previous block in the chain. After

authenticating the signature—which succeeds because the internal

adversary has a valid keypair—a validator processing the Block then

checks that the QC is valid by verifying all signatures contained

within. In this HotStuff implementation, the QC verification sub-

routine invokes a batched signature-verification function, which

is more efficient than authenticating all signatures sequentially.

However, this function only returns after the full batch has been

processed. The adversary can then insert one (bogus) signature for

each committee member, causing a higher overhead for each block

depending on the committee size (Fig. 3).

Results. The TLC of the internal and external adver-

saries are shown in Fig. 2. As expected, the internal adversary has

the lowest TLC across all experiments, confirming the effective-

ness of Block messages as attack vectors. The TLC for the external

attack is slightly higher: 21 vs 10 seconds in the median. Most im-

portantly, in both attacks the TLC is independent of the committee

size. Further breakdowns are in Fig. 6 and Fig. 7 in the Appendix.

Comparing the static-leader attack with the leader-tracking

attack , we can see that even if they use the same attack vector—

Vote flood by an external adversary—the latter has a slightly higher

TLC. This is due to several factors. First, in the static-leader ex-

periment the attack traffic is focused on a single machine; in the

leader-tracking attack, traffic is spread across 𝑡 validators, reducing

the effect on any single validator. Second, the adversary can tem-

porarily get out of sync with the rounds of the consensus. Thus, it

may target validators that are not in the set of next leaders, yielding

a less efficient attack. As shown in Fig. 7 in the Appendix, targeting

more upcoming leaders produces a faster and more effective attack.

In both cases however, the attack effectiveness is still independent

of the committee size.

When is the adversary unsuccessful? Finally, we run an ex-

periment to see when an adversary may not have enough resources
be successful to establish the minimum requirement for the botnet.

To this end, we run the same external adversary as above against a

committee of 64 validators, but now with only {1, 2, 4, 8} adversary
machines. The results are shown in Fig. 9 in the Appendix: We see

that 1 and 2 adversary machines are unable to generate enough

attack traffic to completely disrupt consensus, although they still

greatly reduce the commit rate. Each experiment lasts 180 s, with

the attack starting after 60 s. Therefore, a TLC above 120 s—such as

in the case of 1 and 2 adversary machines—indicates that the attack

was not successful. However, they can still affect the commit rate

compared to the non-adversarial case.

5.4 Unpredictable Leader-tracking Attacks
As shown above, the adversary can exploit the deterministic leader

election sequence to target upcoming leaders and increase the ef-

fectiveness of the attack. However, certain consensus protocols

(see §3.2) use an unpredictable leader election, where the committee

elects the leader randomly at the beginning of each round. There-

fore, leader-based attacks may become harder, or even infeasible.

We thus complete our exploration of attack scenarios by im-

plementing an adversary that does not know the leader election

sequence, and learns the identity of the current leader either by (i)

participating in the election with a compromised validator (internal

adversary); or by (ii) monitoring the network and observing which

validator sends Block proposals (external adversary).
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Simulating Unpredictability. The HotStuff implementation

used in the experiments does not provide an unpredictable leader

election. Instead of implementing this functionality ourselves, we

keep the round-robin leader election of the original implementation

and instead simulate “unpredictability” on the adversary side.

To this end, we implement an adversary that only targets the

leader for the current round, thus representing an adversary not

knowing who the next leaders will be. The difference between

internal and external adversaries then lies in the time at which they

learn who the current leader is. Internal adversaries are part of the

committee that elects the leader, and therefore learn the identity of

the new leader as soon as a view change occurs. External adversaries

can only infer this iformation by observing the network traffic and

the contents of Block messages, and thus learn the identity of the

new leader only after the leader has proposed a Block.

Results. The TLC of the unpredictable leader-tracking attacks

is shown in Fig. 2. Each point in the plot is the average of

16 experiments ({8, 16, 32, 64 adversaries} × {internal, external} ×
{2 reruns}). The key insights of this experiment are that (i) the

adversary can still paralyze the consensus by attacking the single

leader in a few tens of seconds, but (ii) the TLC now appears to

be linear in the committee size. This second observation can be

explained by the fact that the adversary is always behind in its

view of the consensus, and therefore cannot flood its targets before

the legitimate votes from other validators reach the leader, and

the consensus proceeds to the next round. However, even if the

adversary is too late to stop the current round, it can create overhead

on the validator such that a backlog accumulates over time, until the

validators start dropping packets: Each round is executed quickly,

and one validator may still be processing attack messages when

it becomes again the leader in the next iteration. Then, the more

validators, the more time it takes to build up the overhead backlog

across the whole committee.

Interestingly, there does not seem to be a difference between

internal and external adversaries, as shown in Fig. 8 in the Ap-

pendix. This is likely because the main factor of attack success

is not the immediate compromise of each successive leader—for

which the timely dissemination of information about the current

leader is crucial—but rather the slower overwhelming of each of

the validators until the leaders start dropping packets.

6 Attacking Asynchronous Consensus Protocols
The experiments in the previous section highlight the susceptibility

of leader-based BFT partially-synchronous consensus protocols

such as HotStuff to liveness attacks. We now investigate whether

other protocol designs are more DoS resilient by attacking asyn-

chronous consensus protocols.

As introduced in §2.2, Tusk is one such asynchronous consensus

protocol that completely forgoes the use of a leader to drive consen-

sus. Previous work has shown that Tusk does not incur a significant

performance penalty compared to HotStuff, and can process thou-

sands of transactions per second with low delay. Therefore, Tusk

may be a practical and DoS-resilient alternative to leader-based

consensus protocols. We thus run signature flood attacks against

Tusk, similar to the ones we used to disrupt HotStuff.

Figure 5: Fixed-subset attack with defenses. Replicating the sce-
nario of Fig. 4 with defenses deployed. Tusk resists attacks better
than HotStuff (HS). Authentication and rate-limiting (ARL) almost
completely removes threats, except when the rate-limiting threshold
is poorly chosen (see Fig. 11). “Int.” and “Ext.” denote internal and
external adversaries.

6.1 Tusk Implementation
We use the reference Tusk implementation in Rust

10
(also contain-

ing Narwhal, §2.2), which is comparable in design and performance

to the HotStuff implementation. Similarly to the HotStuff implemen-

tation, Tusk uses TCP to achieve reliable point-to-point channels,

necessary to correctly implement the distributed system abstrac-

tions. The VPSes, network, and adversary setup are identical to

the attacks against HotStuff (§4.2). To compare Tusk and HotStuff

with similar low-overhead workloads, we set the transaction rate

to 10 000 transactions per second.

This Tusk research implementation avoids the complexity of

using a shared random coin to select the certificate to be committed,

and instead proceeds in round-robin fashion. We do not exploit this

detail for attacks, as production-ready implementations of Tusk

would not introduce this attack vector.

6.2 Fixed-subset Attacks on Tusk
The Certificate Signature Flood. Tusk relies on the exchange

of Certificate messages across validators, which act both as votes

for previous proposals, as well as proposals for new blocks to be

committed. For each certificate, validators need to verify a signa-

ture to authenticate the message. Similarly to the Block attacks

on HotStuff, an internal adversary may further abuse the many

signatures in the Certificate to inflict an even higher overhead.

Results. We attack a fixed subset of Tusk validators of size 𝑡 ,

with 𝑡 in {1, 2, 3, 4, 5, 6}, in a committee of 16 (𝑓 = 5). The adversary

also controls 16 machines. For each value of 𝑡 we run the experi-

ment twice and compute an average of the results, leading to 12

experiments in total.

Figure 5 shows that Tusk’s normalized commit rate under at-

tack degrades more gently with the increasing number of

targets 𝑡 compared to HotStuff. Only attacks on 𝑓 + 1 validators

achieve a full loss of liveness. Even for attacks on 𝑡 = 𝑓 validators,

the commit rate is still above 40 % of the rate in normal operation.

This is as expected: Only if the validator that is selected to commit

was under attack the consensus loses a round of commits, while the

10
https://github.com/asonnino/narwhal
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remaining rounds are unaffected. Moreover, the other Tusk valida-

tors continue to advance the DAG by propagating user transactions

asynchronously. The next successful leader will then commit its

entire sub-DAG, including the transactions that the leader under

attack did not manage to commit. As a result, the degradation in

throughput is only due to the reduced capacity of the Tusk valida-

tors under attack. Further, since Tusk is an asynchronous protocol,

it advances at network speed and does not suffer from the long

timeouts that lower HotStuff’s commit rate.

7 Network-Layer Defenses
Our comparison of HotStuff and Tusk under a DoS attacks shows the

advantage of running an asynchronous, leader-less consensus pro-

tocol in terms of throughput and liveness. However—even though

Tusk retains liveness for attacks on less than 𝑓 + 1 validators—the

adversary is still able to significantly impair its throughput. More-

over, the adversary can target more than 𝑓 validators with little

additional effort, completely halting progress.

The core issue is that consensus protocols rely on the assump-

tion of point-to-point authenticated and always-available links for
their liveness guarantees. Since this network abstraction is hard to

implement in practice, the adversary can disrupt communication

channels between the validators and no liveness guarantee can be

achieved. It is therefore clear that a comprehensive solution to DoS

attacks on consensus protocols must also consider network-level

defenses that can better implement this abstraction.

Thus, we explore the network security literature for effective

DoS mitigations. We start by considering traditional DoS defenses,

and explain why they may be insufficient for the protection of dis-

tributed consensus protocols. Then, we draw from recent works to

propose new defenses specifically tailored for consensus protocols.

We conclude with a set of experiments testing the effectiveness of

these mitigations.

7.1 Defense System Requirements
Blockchains feature unique communication requirements:

• High availability: This includes protection against naturally-

occurring failures and against routing and DoS attacks.

• Decentralized operation: Validators must be fully distributed, with-

out relying on any single entity. This must include validator host-

ing hardware and networks. Further, to avoid vendor lock-in, all

systems should be open source.

• Decentralized economics: Validator deployment must be afford-

able, to guarantee the widest possible deployment and incentivize

decentralization.

Because of these peculiar requirements, most of the existing DoS

defenses are ill-suited to protect distributed consensus.

7.2 Traditional Defenses Are Insufficient
We broadly survey the most common classes of DoS defenses, and

discuss why they violate the requirements above.

IP-based Filtering. Within our adversary model, IP-based traffic

filtering is ineffective. If an IP-blocklist is deployed, the adversary

can quickly rotate bots and send traffic from different IP addresses.

If, on the other hand, an allowlist is implemented, the adversary can

bypass it by spoofing source addresses, possibly framing a honest

validator for an attack.

Cloud-Based DoS Protection. Several commercial offerings [3,

23, 57], as well as research papers [31, 38, 50], offload the filtering

of adversarial traffic to the cloud. However, cloud-based protec-

tions are not applicable to the defense of consensus protocols. First,

these services are expensive, and are only offered by a handful

of providers, favoring centralization. Second, the cloud provider

needs to have specific filtering rules that separate adversarial traffic

from legitimate consensus traffic. With attack packets coming from

possibly thousands of hosts in a botnet, and without an established

way to source-authenticate traffic, the adversary’s traffic is hard

to distinguish from honest traffic. Finally, since our attacks are

relatively low-rate compared to standard volumetric DoS, and can

be spread across multiple sources, cloud filters cannot rely on the

traffic volume to detect whether an attack is underway.

Overprovisioning. Another usual avenue for DoS mitigation is

overprovisioning, where entities—validators in this case—provision

their compute, storage, and network to withstand the highest loads.

If the protocol can horizontally scale and make use of these addi-

tional resources, attacks become increasingly difficult. This solution,

however, requires massive resources, and thus favors centralization.

Blockchains are designed to financially incentivize validators, and

thus need to run on relatively cheap hardware.

TLS & VPNs. The committee could leverage the pre-shared con-

sensus keys to set up authenticated tunnels between validators.

These tunnels could be implemented, e.g., by long-lasting TLS con-

nections or virtual private network (VPN) connections. However,

these protocols rely on complex connection handshakes and keep

per-connection state, which have been repeatedly exploited for

DoS attacks in the past. Recent work has shown that many major

VPN solutions (including WireGuard and OpenVPN) suffer from

debilitating, low-rate DoS attacks that prevent new connections,

and even force established connections to be dropped [63]. Further,

the TCP connections over which TLS is customarily transported

have been recently shown to be susceptible to cross-layer hijacking

and connection reset attacks [32, 33].

Even if perfectly patched, and using pre-shared keys to avoid DoS

attacks on the handshake, these protocols alone are only sufficient

to discard attack traffic from external adversaries. Such a defense

would certainly be an improvement over current practices, but

internal adversaries could still bypass it by using legitimate keys.

Building on these observations, we propose a defense that combines

(i) lightweight symmetric-key authentication, to protect against

signature floods, together with (ii) per-key rate-limiting, to stop

internal adversaries from generating toomuch traffic. This system is

moreover implemented at the network layer, so that state exhaustion
attacks against the transport layer are also not possible.

7.3 Consensus-specific Defenses:
Source Authentication and Rate Limiting

We now outline a more principled, consensus-specific defense

against DoS attacks, that matches the requirements in §7.1.

During flooding-based DoS attacks, including the ones presented

in this work, an adversary overwhelms a service by sending a high
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number of requests. By monitoring and limiting the number of

requests received by the validator, we can ensure that any received

request can be processed during a reasonable time frame. However,

rate-limiting is only effective if the limit is enforced on authenti-

cated traffic from validators—otherwise, an adversarymay spoof the

addresses of legitimate validators, bypass the rate-limiting, or even

exhaust the rate limit for other legitimate clients causing their traf-

fic to be dropped. Therefore, deploying a source-authentication and

rate-limiting (ARL) system in front of each validator can prevent

the attacks presented in this paper, while respecting the decen-

tralization demands of consensus protocols. Given an ARL system,

validators can (i) drop packets from external adversaries before

they reach the consensus logic, and (ii) impose strict rate limits on

the consensus traffic coming from other validators, thus preventing

attacks from internal adversaries. Further, note that an ARL-based

defense system is is decentralized, as validators can run and manage

their instances independently.

To test the effectiveness of this measure, we deploy an ARL

system in front of each validator. Crucially, this subsystem should

not open new avenues for DoS attacks. Therefore, our prototype

implementation is based on symmetric-key cryptography, and can

thus authenticate packets and enforce rate limits with minimal

computational resources—effectively at line rate. The functionality

of this system is minimal by design, to further enhance efficiency

and reduce the attack surface.

We now provide an overview of the ARL’s operation, and then

test its effectiveness as DoS mitigation for validators.

The ARL Pipeline. The ARL is composed of two distinct com-

ponents: a packet authentication system and a rate limiter. The

packet authentication system unambiguously attributes each in-

coming packet to a source host or to a “best-effort” unauthenticated

category. Packets that pass authentication are then forwarded to

the rate limiter, which ensures that sources do not exceed their

pre-defined rates. The best-effort category is also throttled. Our

ARL prototype is not sophisticated enough to protect against re-

play attacks—whereby an adversary captures and sends replicas of

legitimate packets in large volumes. However, duplicate suppression
systems have been studied in the literature and could be directly

applied in ARL as a third stage in the pipeline [48].

Symmetric Key Estabilshment. To use the ARL, each pair of

consensus validators 𝐴 and 𝐵 must share a pair of symmetric keys

𝐾𝐴→𝐵 and 𝐾𝐵→𝐴 , where the direction of the arrow denotes the

direction of communication.

Discussing the key exchange in depth is beyond the scope of this

paper. However, we note that validators must already share public

keys with each other to participate in the consensus protocol (most

importantly, to sign Votes, Blocks, and Certificates). Commonly, the

public keys of validators are shared by encoding them in transaction

blocks when a new committee is elected. The root of trust is then the

genesis block—the first block of transactions in the state machine—

which contains the keys for the initial committee. Validators can

therefore leverage these pre-shared consensus keys to authenticate

a standard key negotiation protocol—e.g., Diffie-Hellman [26]—and

derive symmetric keys for the ARL.

After the first exchange—which occurs, e.g, when a new valida-

tor joins the protocol—all subsequent re-keying can be protected

by ARL. The key exchanges can be performed before the expiry of

the previous key, so that the key requests can be rate-limited under

ARL: When the previous keys expire, the validators are already in

possession of a fresh pair and can continue using the ARL undis-

turbed. This simple re-keying strategy prevents flooding attacks on

the key exchange, drastically limiting the attack surface for DoS.

Finally, we need to consider the overhead of storing and retriev-

ing the symmetric keys at line rate. Since in every committee the

number of validators does not normally exceed the hundreds, keep-

ing the keys in cache is feasible and allows a fast and efficient

retrieval. However, in case the number of validators is too high to

store all keys in cache, a system such as PISKES [58] can be de-

ployed to decrease the overhead of fetching the keys from memory

at the destination.

Packet Authentication Details. For every packet sent from

validator 𝐴 to 𝐵, ARL adds an additional header

hdr = (𝐴,TS, 𝑙
pkt

),

where TS is a timestamp and 𝑙
pkt

is the packet length. Then, ARL

computes a cryptographic authentication tag over the hdr and a

hash of the payload:

ph = 𝐻 (payload), tag = MAC𝐾𝐴→𝐵
(hdr, ph) .

Both tag and ph are added to the packet, which is then forwarded

towards the destination. The destination 𝐵 then uses hdr, ph, and

the pre-shared 𝐾𝐴→𝐵 to recompute the MAC, and matches against

the received tag. If they are the same, the destination then recom-

putes 𝐻 (payload) and compares it to ph to verify the integrity

of the payload. Informally, if the procedure succeeds, then valida-

tor 𝐴 must have sent the packet, as only an entity with the right

𝐾𝐴→𝐵 could have produced the correct MAC. Thus, ARL achieves

per-packet source authentication.

Notice that sending both ph and 𝑙
pkt

to the destination also

improves the attack resilience of the protocol. Without this infor-

mation, the adversary could replace the existing payload with an

MTU-sized payload, which then the destination would have to com-

pute a hash of. Instead, the destination first checks that the length

of the received packet is equal to 𝑙
pkt

, mitigating this attack vector.

8 Attacking ARL-Protected Consensus
We experiment with attacks against HotStuff protected by the ARL,

and compare the resilience of this consensus-specific defense with

the unmodified HotStuff and Tusk protocols.

ARL Attack Scenarios. We consider three attack scenarios,

obtained by varying (i) the adversary’s knowledge of the ARL

(aware/unaware of the defense); and (ii) the adversary’s relation to

the committee (internal/external):

• ARL-unaware external adversary: This adversary just targets a

fixed subset of validators with a Vote signature flood, without

considering the presence of ARL. Since there is no ARL header

in the attack packets, they will be discarded without performing

the authentication step.

• ARL-aware external adversary: This attack is similar to the pre-

vious, with the distinction that an (unauthentic) ARL header is

added to packets, forcing the ARL application on the validators

to perform (and fail) packet authentication.
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• ARL-aware internal adversary: In this final and most powerful

attack, the adversary is internal to the committee and therefore

holds valid pre-shared symmetric keys with the validators. It

then performs a Vote signature flood (for comparison with the

attacks above), this time successfully authenticating the attack

packets. The rate limiter, however, caps the amount of attack

traffic that reaches the consensus logic at the validators.

ARL Deployment. ARL is implemented in C using the DPDK

high-speed packet processing framework
11
, following the high-

level system design in §7.3, and based on an open-source project.
12

ARL is deployed on all honest and compromised validators, and

performs filtering and rate-limiting for all incoming packets, while

adding the ARL header to all outgoing packets. All packets that are

not authenticated or exceed the rate limit are immediately discarded.

Each validator rate-limits traffic from other validators to a fixed

maximum rate threshold in Mbps. We assume that an internal

adversary may have access to one of the ARL authentication keys.

Therefore, the aggregate traffic from all the adversary machines is

rate-limited to the same fixed threshold. Note that if the adversary

controls more Byzantine validators—up to 𝑓—it will trivially be

able to send at as much as 𝑓 times the rate of the threshold. We

therefore experiment with the least powerful adversary (one key);

when provisioning to withstand an adversary with 𝑓 keys, the rate-

limiting threshold must be chosen to be 1/𝑓 the threshold of the

single-key adversary to similarly limit the adversary’s attack power.

The Rate-Limiting Threshold. For the rate limits, ARL differ-

entiates between consensus protocol andmempool protocol packets.

This is because the mempool has much higher bandwidth require-

ments than the consensus. If consensus and mempool were to be

rate-limited together, the threshold would have to be set to tens

or hundreds of Mbps, and an internal adversary may then use this

wide bandwidth allowance to target the consensus. Choosing ap-

propriate rate-limits—in this case for the consensus port—is critical,

especially when considering internal adversaries: Too low, and the

honest validators cannot communicate; too high, and the adversary

may still be able to send enough traffic to overwhelm the validators.

To determine an appropriate value for the rate-limiting threshold,

we run an experiment with 8 validators and 1 internal adversary

controlling 8 attacking machines, and change the rate-limit thresh-

old in exponential increments. We look at the resulting normalized

commit rate to gauge the effectiveness of the attack. We see in

Fig. 11 in the Appendix that the adversary must be able to send at

least 8Mbps to achieve an impact, while with 16Mbps the adver-

sary is able to almost completely stall the consensus. We, therefore,

test the effects of choosing the wrong rate limit threshold, and run

two experiments with a “tight” threshold of 2Mbps, and a “loose”

threshold of 10Mbps that allows for enough attack traffic to reach

the consensus logic and create a moderate amount of disruption.

Results. As before, the consensus committee consists of 16 val-

idators, and the adversary controls 16 machines. Our results indi-

cate that ARL is very effective in preventing attacks against Hot-

Stuff. The attack traffic from external adversaries is immediately

discarded, as either packets do not include the ARL header (ARL-

unaware external adversary), or the authentication MAC is invalid

11
https://www.dpdk.org/

12
https://github.com/netsec-ethz/lightning-filter

(ARL-aware external adversary). In Fig. 5 we only show the lat-

ter , as in both cases the normalized commit rate is ≈ 100%.

When considering internal adversaries—which possess valid ARL

keys and are therefore necessarily ARL-aware—we see that indeed

the choice of rate-limiting threshold makes a difference. With a

“tight” threshold of 2Mbps , the adversary cannot influence

the consensus throughput. On the other hand, with the “loose”

threshold of 10Mbps , the adversary can increase load on the

validators and lower the throughput. We can see two runs of the

consensus with different thresholds in Fig. 10 in the Appendix: after

some time, the constant stream of signatures accumulates and starts

forcing some dropped packets, delaying the consensus.

9 Discussion
Throughout the paper, we have verified the following hypotheses

on the resilience of consensus protocols to DoS attacks:

• In HotStuff, a leader-based consensus protocol, the round leader

represents a single point of failure, and this weakness can be

exploited by an adversary in practice. Most notably, the adversary

can disrupt consensus independently of the size of the committee,

violating the core availability tenet that the larger the committee,

the costlier an attack should be. This problem is exacerbated by

the reliance on timers: If the leader crashes, no progress can be

made until the timers expire and the leader is rotated.

• Tusk, an asynchronous consensus protocol, is more resistant

to DoS attacks because it does not rely on timers to advance

consensus. The consensus throughput may still decrease under

attack, but liveness is maintained as long as a quorum of honest

validators is active.

• The introduction of network-layer defenses, such as the authen-

tication and rate-limiting system (ARL), greatly increases the

survivability of HotStuff. Figure 5 clearly highlights that ARL

can improve the resilience of HotStuff validators to the point that

their throughput under attack is better than Tusk’s, despite the

weakness introduced by the single leader and the use of timers.

Future work is needed to evaluate the combination of asynchro-

nous consensus protocols with ARL, although preliminary results

indicate that ARL is a suitable protection in this case as well.

Attack implementation relevance. In the experiments, we

use the reference Hotstuff and Tusk implementations developed at

Facebook/Meta for research purposes. It uses the same core consen-

sus logic as the latest production DiemBFT codebase (DiemBFTv4),

running the same persistent storage, crypto, and network stack.

Most importantly, there are no additional DoS protections in the

production DiemBFT codebase. We therefore believe that the re-

sults presented in the paper are representative of the most advanced

consensus engine implementations. Moreover, well-engineered pro-

totypes are much simpler in terms of functionality than a fully-

fledged blockchain, and therefore provide an improvement on the

attack resilience of a blockchain: The additional overhead of RPC

endpoints, transaction execution engines, etc., only increases the

DoS attack surface. Our attacks are then targeted against consensus
engines, rather than blockchains, and therefore provide an upper

bound of the resilience of BFT systems.
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Generalizing the attacks. We focused our DoS attacks against

HotStuff and Tusk. This section discusses how those attacks gener-

alize to other consensus protocols.

Synchronous protocols such as Sync-HotStuff [1] are subject

to the same attacks described in this paper. Unlike their partially-

synchronous counterparts, synchronous protocols can tolerate up

to half faulty validators. Thus, attacking a fixed subset of valida-

tors (§5.2) requires more adversarial resources; leader-tracking at-

tacks (§5.3) remain identical. DoS attacks however are a greater

risk for synchronous protocols: while DoS attacks against partially-

synchronous protocols only halt consensus (liveness loss), the same

attacks against synchronous protocols may result in honest valida-

tors ending up with different commit sequences (safety violation).

Our results on Tusk will generalize to other asynchronous con-

sensus protocols [2, 12, 24, 42, 52]. In general, asynchronous proto-

cols do not directly depend on leaders to drive the protocol nor on

timeouts to make progress. As a result, these protocols do not suffer

from leader-tracking attacks (§5.3). Further, DoS attacks against a

fixed subset of validators are less effective (as demonstrated in §8),

as they are designed to operate under a stronger adversary model.

Finally, we note that our results partly apply to partially-syn-

chronous protocols that do not directly rely on a leader to drive

consensus. E.g., in Algorand [37], the leader is still detectable and

can be targeted, as it broadcasts block proposals. However, the

leader selection is unpredictable and the communication is based

on gossip messages, drastically lowering the overall dependence on

the leader. In Bullshark [39] (i) the leader cannot be distinguished

through traffic patterns, and (ii) the election sequence can be ran-

domized. Nonetheless, both these protocols still rely on timers for

their operation, which may still cause sharp drop in throughput

and loss of liveness under attack. We leave the evaluation of the

DoS resilience of these defense mechanisms to future work.

10 Related Work
In addition to the related work on BFT consensus protocols and

DoS attacks (§2), and traditional DoS defenses (§7.2), presented

in previous sections, we add here other related publications to

contextualize our contribution.

Attacks on Blockchains. To the best of our knowledge, Spiegel-

man and Rinberg [62] are the first and only to analyze the effects

of DoS attacks on HotStuff. While their work focuses on a protocol

that turns partially-synchronous protocols into fully asynchronous,

their evaluation shows that a flood of client requests targeted at

the leader may halt consensus in a small HotStuff deployment.

Outside DoS and quorum-based consensus, the blockchain space

presents many attack vectors that an adversary may use to attack

the safety or liveness of the protocols [9, 30, 36]. Proof-of-work

blockchains, such as Bitcoin [55] and Ethereum [66], are vulnerable

to protocol-level attacks that lower their security threshold below

51%. The most notable are selfish mining [59], stubborn mining [56],

Fork After Withholding (FAW) attack [45], and eclipse attack [41].

Further, these blockchains have been found to be vulnerable to BGP

hijacking attacks [6]. Proof-of-stake blockchains [13, 43] open up

new attacks compared to proof-of-work consensus [9]: the nothing-

at-stake attack; the grinding attack; and the long-range attack [8].

Other DoS Defenses. Zargar et al. [68] published a systemati-

zation of existing DoS defenses; given the wealth of work on the

topic, we review relevant recent proposals. A first example are

routing-based defenses [60], whereby autonomous systems under

attack redirect traffic through BGP announcements. However, the

effectiveness of these systems has been debated [65]. In the con-

text of Bitcoin, the SABRE system was proposed to mitigate BGP

hijacking attacks [5]; path-stable Internet architectures such as

SCION [19] are a solution to these attacks, as off-path entities can-

not influence the routing process. Finally, capability-based defenses,

which grant access to network resources based on cryptographic

tokens embedded inside packets [4, 40], could also be used to defend

consensus nodes, and even protect against more powerful attacks

such as Coremelt [64], where the adversary targets the network

infrastructure instead of the endpoint. These systems bear similari-

ties to our ARL implementation at the endpoints. However, they

require in-network support by forwarding elements, increasing

their deployment complexity. Therefore, studying the effectiveness

of capability-based defenses in protecting consensus protocols is

left as future work.

11 Conclusion
As blockchains are maturing to be integrated into critical infrastruc-

ture, ensuring their high availability is paramount. In this paper,

we experimentally show the effectiveness of DoS attacks against

current state-of-the-art consensus protocols, and evaluate practical

defenses. In the case of leader-based and partially synchronous con-

sensus protocols—exemplified in our experiments by HotStuff—the

cost of an effective attack on liveness is independent of the commit-

tee size. The leader is a vulnerable single point of failure, which can

be exploited by an adversary to swiftly disrupt the consensus. We

then test whether modern fully-asynchronous consensus protocols,

represented by Tusk, are more resilient to the attacks. Indeed, we

empirically show the increased DoS resistance of these protocols—

which do not require an active leader to proceed—although their

throughput is still impacted by the attacks. Finally, we analyze the

effects of deploying lower-layer DoS defenses at validators. We

demonstrate that a combination of source authentication and rate-

limiting almost entirely mitigates our attacks, while respecting the

decentralization requirements of consensus.

The breadth and depth of the attack analysis presented in this

paper is, to the best of our knowledge, novel in the study of BFT

consensus protocols. Beyond the immediate relevance of our re-

sults, we hope this work will highlight the challenges of deploying

consensus protocols in real networks, and that the experimental

methodology defined herein will help guide future evaluations.
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A Additional Results
We provide here additional results to further help in understanding

the effects of the attacks presented in the paper.

A.1 HotStuff Leader-Tracking Attacks
Figure 6 shows the breakdown by adversary size for the static,

external, and internal leader-tracking attacks ( , , and

respectively in Fig. 2); similarly, Fig. 7 shows the breakdown by

number of targets.

(a) Static leader attack (external adversary).

(b) Leader tracking attack (external adversary).

(c) Leader tracking attack (internal adversary).

Figure 6: Breakdown of the leader-tracking attacks by num-
ber of adversaries.
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(a) Leader tracking attack (external adversary).

(b) Leader tracking attack (internal adversary).

Figure 7: Breakdown of the leader-tracking attacks by num-
ber of targets in the committee.

A.2 Types of Unpredictability
As described in §5.4, unpredictability in the leader-election proce-

dure can be a mitigation to leader-tracking attacks. Figure 8 breaks

down the results by type of unpredictability.

Figure 8: Unpredictable leader-tracking attacks.

A.3 When is the adversary unsuccessful?
We run an experiment to investigate when an adversary may not
have enough resources be successful to establish the minimum re-

quirement for the botnet. We run an external adversary against a

committee of 64 validators, and constrain the adversary’s attack

power by only using {1, 2, 4, 8} machines. The results in Fig. 9 show

that 1 and 2 adversary machines cannot generate enough traffic to

disrupt consensus, although they reduce the commit rate.

(a) TLC in the number of adversary machines.

(b) Normalized commit rate in the number of adversary machines.

Figure 9: Minimum requirements for an attack.

(a) “Tight” threshold (2Mbps).

(b) “Loose” threshold (10Mbps)

Figure 10: Effects of the ARL rate-limiting threshold on Hot-
Stuff.With the “loose” rate limit, the internal adversary can induce
a slowdown in the commit rate. The vertical dashed lines represent
the start and end of the attack.
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A.4 Rate-limiting Threshold Effects
Setting an incorrect rate-limit for the ARL system may still al-

low adversaries to reduce the consensus protocol’s throughput, as

shown in Fig. 10a. With the higher (“loose” Fig. 10b) rate limit, the

adversary can still force packet drops and hinder the commit rate.

Finding a good rate-limiting threshold. Figure 11 shows an

experiment to determine an appropriate value for the rate-limiting

threshold as described in §8.

Figure 11: Finding a good rate-limiting threshold. With 8 val-
idators and 8 attacking machines, the adversary needs more than
8 Mbps of aggregate attack traffic towards each target validator to
achieve a loss of liveness.
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