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Abstract  

Pathogenic variants in the LRRK2 gene represent the most common cause of autosomal 

dominant Parkinson’s disease (PD) worldwide. We identified the LRRK2 p.L1795F variant in 

14 White/European ancestry PD patients, including two families with multiple affected carriers 

and seven additional affected individuals with familial PD using genotyping and sequencing 

data from more than 50,000 individuals through GP2, AMP-PD, PDGENEration, and 

CENTOGENE. All variant carriers were of White/European ancestry, and those with available 

genotyping data shared a common haplotype. The clinical presentation of p.L1795F carriers 

resembles that of other LRRK2 pathogenic variant carriers. Combined with published 

functional evidence showing strongly enhanced LRRK2 kinase activity, our findings provide 

conclusive evidence that the LRRK2 p.L1795F variant is pathogenic. It represents a rare 

cause of PD in the European population but needs to be included in genetic testing efforts and 

considered for ongoing gene-specific clinical trials.  



 

 

Introduction 

Parkinson’s disease (PD) has a complex and multifactorial etiology that includes genetic, 

environmental, and lifestyle factors, and age1. The prevalence of monogenic forms of PD, 

including pathogenic GBA1 variants, among relatively unselected PD patients is estimated to 

be ~15 %2,3 with variants in the LRRK2 gene representing one of the most common causes of 

autosomal dominant PD, although with reduced penetrance. Since its discovery roughly 

twenty years ago4,5, more than 1,000 different missense variants in the LRRK2 gene have 

been identified6–9, only a small fraction of which are considered disease-causing. Evaluating 

newly identified variants in established PD genes can be challenging, but determining 

pathogenicity is crucial for diagnosis and even more for treatment, particularly now that 

LRRK2-specific clinical trials are underway10,11. Key aspects of evaluating newly identified 

genetic variants are evidence of segregation, absence or very low frequencies in controls, 

support from in-silico prediction tools, and evidence from functional studies showing altered 

protein function12,13.  

 

The LRRK2 gene encodes the eponymous enzyme Leucine-rich repeat kinase 2 that contains 

different functional domains, including the N-terminal armadillo, ankyrin, and leucine-rich 

repeats domains, followed by a C-terminal Roco type GTPase, protein kinase, and WD40 

domain. The Roco GTPase domain consists of three subdomains, the ROC GTPase and two 

scaffolding domains termed COR-A and COR-B14,15. Notably, pathogenic variants in LRRK2 

are thought to cause PD through a gain-of-function mechanism leading to increased kinase 

activity, which impairs endosomal-lysosomal trafficking, promotes neuroinflammation, and 

affects ciliogenesis in the striatum14. Previously, several variants within the interacting ROC, 

COR-B, and kinase domains have been shown to robustly enhance LRRK2 kinase activity 

(defined as >1.5-fold above the wild type), measured as the phosphorylation potential of target 

proteins such as Rab10, supporting their pathogenic role15. Amongst those variants was 

LRRK2 p.L1795F (chr12:40322386:G:T, hg38), located in the COR-B domain. This variant 

was reported in a pair of siblings in 200716 and two additional singleton cases with PD were 

identified in 2016 and 201917,18, nominating it as a possibly causative variant in PD. Moreover, 

it was recently nominated as a genetic risk factor for PD, with an estimated odds ratio (OR) of 

2.519. However, the lack of additional reports of variant carriers and evidence of strong 

segregation precluded this variant from being considered “pathogenic”. 

 

In our study, we provide conclusive evidence that the LRRK2 p.L1795F variant is pathogenic 

by leveraging genome-wide genotyping and whole-genome sequencing data from the Global 

Parkinson’s Genetics Program (GP2, http://gp2.org/), along with additional data from the 
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Accelerating Medicines Partnership in Parkinson’s Disease (AMP-PD), PDGENEration 

(PDGENE) and the CENTOGENE database. 

Methods 

Study design and participants 

Our study workflow is highlighted in Figure 1. Three sources of data were included in this study 

(Table 1). First, we used the multi-ancestry whole-genome sequencing and genotyping data 

from the study participants recruited as part of GP220 as previously described21,22. Individual-

level demographic and clinical data were obtained from participating principal investigators 

and publicly available databases (e.g., for Coriell samples included in GP2). Second, we 

incorporated whole-genome sequencing data from AMP-PD. Participants in this initiative were 

recruited through multiple studies, including BioFIND, the Harvard Biomarkers Study (HBS), 

the Lewy Body Dementia Case-Control Cohort (LBD), the Parkinson’s Disease Biomarkers 

Program (PDBP), the Parkinson’s Progression Markers Initiative (PPMI), the LRRK2 Cohort 

Consortium (LCC), the Study of Isradipine as a Disease-Modifying Agent in Subjects with Early 

Parkinson Disease, Phase 3 (STEADY-PD3), and the Study of Urate Elevation in Parkinson’s 

Disease, Phase 3 (SURE-PD3). Clinical information and genetic samples from participants 

were obtained with appropriate written consent and local institutional and ethical approvals. 

Detailed information about these studies is available on the AMP-PD website (https://amp-

pd.org) and the respective study websites. Third, we obtained the clinical exome sequencing 

data from PDGENE3, a large multi-center study in North America providing genetic testing and 

counseling to more than 15,000 participants. 

Whole-genome sequencing (WGS) data 

AMP-PD  

We included 9,974 samples with the sequence alignment data available from BioFIND, HBS, 

LBD, PDBP, PPMI, STEADY-PD3, and SURE-PD3 cohorts through the AMP-PD release for 

joint genotyping with the GP2 cohort. Due to the unavailability of sequence alignment data 

from the LCC cohort, we used AMP-PD release 4 data to screen for potential pathogenic 

variants in this cohort.  

GP2  

The DNA samples from 5,926 participants were genome sequenced to an average of 30x 

coverage with 150bp paired-end reads following Illumina’s TruSeq PCR-free library 
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preparation protocol. We followed the same functional equivalence pipeline23 as AMP-PD to 

produce the sequence alignment against the GRCh38DH reference genome. 

 

We used DeepVariant v.1.6.124 to generate the single-sample variant calls for a total of 15,900 

samples in GP2 and AMP-PD and performed joint-genotyping using GLnexus v1.4.3 with the 

preset DeepVariant WGS configuration25. We set genotypes to be missing after variant quality 

control defined as genotype quality >=20, read depth >=10, and heterozygous allele balance 

between 0.2 and 0.8, and retained high-quality variants with a call rate > 0.95 after quality 

control. After the sample quality control following the quality metrics defined by AMP-PD26, we 

retained 15,752 samples (AMP-PD and GP2 combined) for the downstream analyses 

(Supplementary Table 1). Variant annotation was performed with Ensembl Variant Effect 

Predictor v11127. We used KING v.2.3.028 to infer relatedness up to the second-degree 

relatives to confirm the known relationships and identify cryptic familial relationships. Genetic 

ancestry was determined using GenoTools v1.2.3 with the default settings29. 

Genome-wide genotyping with the Neurobooster Array (GP2) 

We screened the genotyping data published as part of GP2’s Data Release 730 

(Supplementary Table 2). Genotyping was performed by GP2 using the NeuroBooster Array31 

(NBA; v.1.0, Illumina, San Diego, CA). Raw genotyping data underwent quality control and 

genetic ancestry prediction using GenoTools v1.2.3 with the default settings29. The LRRK2 

p.L1795F variant was directly genotyped using NBA, and the quality of genotype calls was 

assessed by examining the signal intensity plots. 

Clinical exome sequencing (PDGENEration) 

We included 9,759 samples with clinical exome data available from PDGENE3. The sequence 

data processing followed the same pipeline of WGS data as mentioned above. We performed 

joint-genotyping using GLnexus v1.4.3 with the preset DeepVariant WES configuration and 

followed the same criteria for sample and variant quality control as for the WGS data. 

Querying additional databases (CENTOGENE) 

We queried the CENTOGENE proprietary Databank CentoMD®32 to identify potential 

additional variant carriers. CENTOGENE is a globally operating genetic diagnostic lab. 

Genetic data included in this manuscript was generated by exon-wise PCR amplification 

followed by Sanger sequencing.  
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Statistical analyses 

To estimate the allele frequency of LRRK2 p.L1795F variant in multi-ancestral populations, 

we analyzed the GP2 genotyping data, the largest available dataset in this study. We excluded 

related individuals and samples from targeted recruitment, such as LRRK2 and GBA1 variant 

carriers within specific efforts of PPMI and LCC. Subsequently, we performed an association 

analysis of this variant with PD using the European population. We fitted the logistic regression 

model with PD status as binary outcome variable and the covariates as the genotype of LRRK2 

p.L1795F variant, sex, age, family history, and the first six principal components to account 

for the population stratification. For cases, age at onset (AAO) or age at diagnosis was used, 

while for controls, age at sampling was used. Additionally, we merged GP2 genotyping data 

with the combined AMP-PD and GP2 WGS data, resulting in a cohort of 23,276 PD cases of 

European ancestry after excluding duplicated, related, and targeted recruitment samples as 

mentioned above. This allowed us to compare the carrier distribution between PD cases and 

non-Finnish European population from the Genome Aggregation Database (gnomAD v4.1) as 

external population controls using Fisher’s exact test. We excluded the PDGENE clinical 

exome data from this analysis as we could not estimate the genetic ancestry in the same 

manner as with the other datasets. The P value ≤0.05 was considered statistically significant 

for all the analyses.  

 

To determine if carriers of the LRRK2 p.L1795F variant shared recent common ancestry, we 

phased the genotyping data from chromosome 12 in the European population using Beagle 

5.4 with default settings33 and searched for identical-by-descent (IBD) segments with the 

length ≥2 cM shared across the carriers using hap-ibd with default setting34. 

Results 

Identification of the LRRK2 p.L1795F variant segregating with disease in a family 

Our discovery cohort consisted of 16,351 individuals from GP2 and AMP-PD with WGS data, 

including 15,752 samples from the joint-genotyping sample set and 599 samples from the LCC 

cohort from AMP-PD release 4 (Table 1). Searching for recurrent rare variants, we identified 

nine carriers of the LRRK2 p.L1795F variant (ENST00000298910:c.5385G>T; 

chr12:40322386:G:T; Supplementary Figures 1-6). Of these carriers, we identified two families 

based on kinship inference (Figure 2). The larger family (GP2-FAM-1) consisted of four 

affected individuals showing segregation of this variant with PD. The second family (AMP-

https://paperpile.com/c/bhVV0Q/hJTW
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FAM-1) consisted of three variant carriers, including one clinically affected with PD, while the 

other two were reported as asymptomatic at age 55 and 76 years. The remaining two carriers 

were singleton cases with familial PD. Next, we screened the genotyping data of 54,153 

affected and unaffected individuals generated within GP2 and identified three additional 

variant carriers, all clinically affected with PD (Supplementary Figure 7). Further, screening 

the clinical exome data from 9,759 individuals available from PDGENE resulted in one 

additional variant carrier (Supplementary Figure 8). Finally, querying the CENTOGENE 

proprietary Databank CentoMD®32 , we identified another family with four individuals carrying 

the LRRK2 p.L1795F variant, three of whom were clinically affected with PD and one being 

an asymptomatic carrier. In total, we identified 17 individuals carrying this variant across all 

the datasets, of which 14 had PD and three were asymptomatic.  

Evaluation of the LRRK2 p.L1795F variant 

The p.L1795F (c.5385G>T) missense variant is rare and confined to European populations in 

several investigated databases, including gnomAD v4.1 (MAFEuropeans(non-Finnish)=0.000001695) 

and the Regeneron Genetics Center Million Exome Variant Browser35 (RGC-ME, 

MAFEuropeans=0.000009515). In comparison, it was not present in the UK Biobank36 500K 

genomes. Evaluation using various in-silico prediction tools and databases presents 

conflicting results. ClinVar, Varsome, and Franklin (the latter two based on the ACMG 

criteria12) categorize this variant as a variant of uncertain significance. Notably, Varsome and 

Franklin do not take the existing functional evidence15 into account. Furthermore, this variant 

is currently not included in the list of genetic variants reported to the clinician or the participant 

in PDGENE3. MutationTaster predicts the variant to be disease-causing, and the leucine at 

position 1795 is conserved across different species (Supplementary Figure 9). In contrast, 

other in-silico tools for predicting missense pathogenicity did not support pathogenicity 

following ACMG recommended thresholds37, including CADD (19.94) and REVEL (0.638), 

with the exception of VEST4 (0.928). Finally, this variant is located in the COR-B subdomain 

of the C-terminal Roco GTPase domain and has previously been shown to strongly increase 

LRRK2 kinase activity15.  

Allele frequency of LRRK2 p.L1795F in multi-ancestral populations and the 

founder effect 

All identified LRRK2 p.L1795F carriers in this study were of European ancestry, whereas the 

variant was absent in other ancestral populations (n=15,316) within the GP2 genotyping 

cohort. It had an allele frequency of 0.00012 among PD cases (5 heterozygous carriers and 

20,812 noncarriers) while being absent in controls (n=9,032) in the European population of 
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the GP2 genotyping cohort (Table 2). The logistic regression analysis using the European 

population of the GP2 genotyping cohort did not reveal a significant association between this 

variant and PD, possibly due to insufficient controls available in the dataset (P>0.8, 

Supplementary Table 3). However, when comparing the carrier distribution between PD cases 

from the combined genotyping and WGS dataset (6 heterozygous carriers and 23,270 

noncarriers) with the non-Finnish European population from Genome Aggregation Database 

(gnomAD v4.1) as external population controls (2 heterozygous carriers and 589,826 

noncarriers), this variant showed a significant association with PD (P<7.84e-08, two-tailed, 

Fisher’s exact test). 

 

Given this variant was observed only in the European population from the GP2 genotyping 

cohort, we searched for the overlapping IBD segments among the variant carriers using the 

genotyping data (Figure 3). The median length of an IBD segment over LRRK2 in these 

individuals was 7.05 cM (range: 2.1-96.3 cM, Supplementary Table 4). All genotyped carriers 

shared a core haplotype of 2.825 Mbp at this locus (Supplementary Table 5), suggesting that 

the p.L1795F variant descended from a common founder. 

Clinical features of identified LRRK2 p.L1795F variant carriers 

The demographic and clinical details of all 17 identified variant carriers of White/European 

ancestry, including 14 affected and three unaffected individuals, are displayed in Table 3. More 

than two-thirds were females (70.6 %; n=12/17). All affected and unaffected carriers had a 

positive family history of PD. Ages of motor symptom onset in affected individuals ranged from 

36 to 66 years. The median AAO was 54.5 years (interquartile range 47-60 years). The 

asymptomatic carriers were 55, 76 and 76 years old, respectively, at the time of sample 

collection. Based on the available clinical data, the majority of affected individuals had 

classical PD with an asymmetric onset of symptoms and a good response to dopaminergic 

medication, and without obvious atypical signs suggestive of other diagnoses (missing data 

for up to 30%); detailed data on non-motor symptoms and neuropsychiatric comorbidities were 

scarce. Cognition was reported to be unaffected in the majority of affected carriers with good 

scores in cognition tests (including Montreal Cognitive Assessment [MoCA] and Mini Mental 

State Examination [MMSE]); however, one clinically affected individual had significant 

cognitive impairment (MoCA score of 17/30 points) and one unaffected carrier also showed 

some cognitive deficits (MoCA score of 23/30 points). The characteristics of the individuals 

from the three identified families will be reported in more detail.   

  

 



 

 

Family GP2-FAM-1 

Family GP2-FAM-1 is of European ancestry with Ukrainian and Polish origin. Seven 

individuals are known to be clinically affected by PD, including the index patient (GP2-ID-3), 

his sister, mother, three maternal aunts, and a maternal cousin, consistent with autosomal 

dominant inheritance (Figure 2). Further, additional maternal aunts and uncles were reported 

to have PD but a detailed history was not available. We identified the LRRK2 p.L1795F variant 

segregating within all four tested family members from both NBA and WGS data. No 

unaffected family samples were available. Screening variants segregating within this family 

from the WGS data did not reveal any other potential causal variants, including known 

pathogenic variants in the established dominant PD genes SNCA and VPS35 as well as other 

variants in LRRK2 and pathogenic GBA1 variants. 

All family members with available data were reported to have bradykinesia, rigidity, resting 

and action tremor, and motor symptoms that were responsive to dopaminergic treatment. 

Disease progression was mild to moderate in three of four individuals with low to moderate 

UPDRS (part III) motor scores and a Hoehn & Yahr stage 2 after 9+ years of disease duration. 

Only one individual, GP2-ID-1 (deceased), seemed to have had a more progressive disease 

course with a high UPDRS (part III) motor score and Hoehn & Yahr stage 5, though over a 

disease duration of more than 20 years. Neuropsychiatric comorbidities or severe autonomic 

features were not reported in those with available data. Cognition was unaffected in all family 

members. All but one affected family member, including those without genetic testing, had an 

AAO in their fifties (ranging from 50 to 59 years), and only one individual had a lower AAO of 

40 years. Videos of individuals GP3-ID-3 and GP2-ID-4 are available in the supplementary 

materials.  

 

Family AMP-FAM-1 

Family AMP-FAM-1 included three individuals available for genetic testing, all of whom carried 

the p.L1795F variant. The index case was clinically affected by PD, while her sister and mother 

were both asymptomatic. The family history of PD was strongly positive, with multiple 

additional affected family members, including two maternal aunts and the maternal 

grandfather of the index, suggesting autosomal dominant inheritance with reduced penetrance 

(Figure 3). The index patient had a reported AAO of 46 years and a very low UPDRS (part III) 

motor score, indicating a rather mild disease course. Clinical details for the additional affected 

family members were unavailable. The two asymptomatic carriers were 55 and 76 years old 

at sample collection and showed no signs of PD. We did not identify other potential disease-

causing variants in this family by WGS. 

 

 



 

 

Family TORONTO-FAM-1 

Family TORONTO-FAM-1 included four individuals available for genetic testing, and all four 

carried the LRRK2 p.L1795F variant. The index case as well as her sister and a maternal 

uncle were clinically affected with PD whereas the mother of both siblings was an unaffected 

carrier. There were additional family members clinically affected with PD, including another 

maternal uncle and the maternal grandfather, both of which were unavailable for genetic 

testing within this study (Figure 2).  

The reported AAO of the index case was 44 years and thereby younger than for the other two 

tested family members, which were 65 and 66, respectively. The index patient and her sister 

have been followed up for almost 12 years, whereas the other two individuals (TORONTO-ID-

1 and TORONTO-ID-2) were only clinically assessed once in 2012. Notably, the index patient 

had a more progressive PD disease course than her sister, as indicated by a higher UPDRS 

motor score of 43 points and Hoehn & Yahr stage 3, compared to only 7 points in the UPDRS 

(part III) in her sister. All three affected individuals had a diagnosis of classical PD without any 

atypical features; however, one individual (TORONTO-ID-1) had significant cognitive 

impairment with a low MoCA score of only 17 out of 30 points. Interestingly, also the unaffected 

carrier showed some cognitive impairment (MoCA score of 23/30 points) but no motor 

symptoms of PD.  

Discussion 

Our study was carried out under the umbrella of GP2, a large international collaborative effort 

aimed at better understanding the genetic architecture of PD at a global scale by generating 

large-scale genetic data from diverse ancestries. Additionally, we leveraged data from AMP-

PD and PDGENE and queried the CENTOGENE database. To investigate monogenic causes 

of the disease, we screened WGS data from our discovery cohort for recurrent rare variants. 

We identified the LRRK2 p.L1795F variant segregating with the disease in four members of a 

large European ancestry family, with multiple additional affected family members not available 

for genetic analyses. Moreover, the variant was identified in a second family with one affected 

and two asymptomatic carriers, alongside multiple affected family members not available for 

genetic analyses. Further, we identified four affected carriers by analyzing additional datasets, 

including NBA genotyping data from GP2 and clinical exome data from PDGENE. Finally, we 

identified another family with 3 affected individuals and one unaffected carrier by querying the 

CENTOGENE database. All identified variant carriers in this study were of non-Ashkenazi 

Jewish, non-Finnish European ancestry and had a strongly positive family history with at least 

one but more often multiple additional affected family members. A previous rare-variant 

association analysis further supports the role of p.L1795F in PD pathogenesis, identifying it 



 

 

as a genetic risk factor with an estimated OR of 2.519. However, it should be noted that the 

number of identified carriers was quite small, likely resulting in an underestimation of the actual 

OR. Most importantly, our findings provide family segregation evidence missing from the 

previous reports16–18. Furthermore, the previously reported increase in kinase activity of this 

variant aligns with the disease mechanism established for several pathogenic LRRK2 

variants15. When applying the ACMG criteria12 in light of our findings, the variant can now be 

classified as pathogenic based on: i) the very low frequency in population databases (PM2), 

ii) established functional studies supporting a damaging effect consistent with the established 

disease mechanism (PS3), iii) observation of the variant in multiple unrelated individuals with 

the same phenotype (no specific criterion, may be considered as moderate evidence), and iv) 

strong evidence of segregation (at least PP1, based on our findings upgraded to strong evident 

by segregation in three families with two generations of family members each). Taken 

together, we thereby propose the LRRK2 p.L1795F variant to be considered pathogenic and 

causative of PD. 

 

Interestingly, the LRRK2 p.L1795F variant had an estimated allele frequency of 8.37×10−5 (5 

observations in 59,698 alleles) in the European population and was absent from all other 

ancestral populations in the GP2 genotyping cohort. This finding was consistent with several 

public frequency databases, such as gnomAD v4.1 and RGC-ME, contrasting with the LRRK2 

p.G2019S variant. Globally, the LRRK2 p.G2019S variant is the most common and well-

studied genetic cause of PD. Due to independent founder effects38–40, the highest frequencies 

of this variant were observed in the Ashkenazi Jewish population41, ranging from 10% in 

sporadic to 26% in familial PD, and Arab-Berber populations, ranging from 30% in sporadic to 

41% in familial PD42. The variant was also commonly reported in individuals of Portuguese, 

Brazilian, Spanish, and Italian ancestry but is much rarer in individuals of other European, 

Asian, or Indian descent43. In comparison, only four individuals carrying the p.L1795F were 

reported16–18, and two additional carriers were identified through AMP-PD6,19. To our 

knowledge, we provide the largest number of p.L1795F variant carriers thus far, including 14 

carriers clinically affected with PD and three asymptomatic carriers. The available data on 

AAO and family pedigrees from these previously reported carriers16–18 do not align with our 

data, making an overlap of individuals between the different studies unlikely. Including those 

reported in the literature, this brings the total to 18 clinically affected carriers of European 

ancestry. In our GP2 genotyping cohort, the observed allele frequency of the p.L1795F variant 

among affected European individuals (n=20,817) was 0.00012, while the allele frequency for 

the p.G2019S variant was 0.003266 (Table 2). This indicates that p.G2019S is a more 

common cause of PD in the European population compared to p.L1795F. However, we 
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acknowledge that the overall number of p.L1795F carriers is still limited, and higher 

frequencies might be observed in specific European subpopulations. Our haplotype analysis 

further supports this hypothesis, where all genotyped carriers shared a core haplotype of 2.83 

Mbp. We were able to determine the geographical origin of only one family of carriers in this 

study, which was of Ukrainian and Polish descent. Additionally, this variant is more prevalent 

in Northern Europe according to ancestry estimates of the carriers from RGC-ME but was not 

found in the 500K genomes of the UK Biobank. Consequently, investigating the LRRK2 

p.L1795F variant within the Central-Eastern European population could offer additional 

insights into a possible founder event. 

 

Comparing the clinical phenotypes of the p.L1795F carriers with those of other pathogenic 

LRRK2 variants, particularly p.G2019S13, revealed similarities among them and with idiopathic 

PD (iPD). LRRK2-PD is clinically indistinguishable from iPD on an individual level. Most 

individuals with LRRK2-PD, including p.L1795F carriers, exhibit a classic PD phenotype with 

asymmetric disease onset and display all the cardinal motor signs of PD with a good response 

to dopaminergic treatment. Atypical presentations have been described in single cases but 

are overall rare43. Furthermore, the AAO was comparable between p.L1795F carriers and 

other LRRK2-PD genetic subtypes. Most individuals exhibited first motor symptoms in their 

50s and 60s (53% in LRRK2-PD overall13 and 70 % of all known p.L1795F carriers including 

our study). However, a broader range of age at onset has been described, spanning from 20 

to 95 years for LRRK2-PD overall13 and from 25 to 66 years for p.L1795F carriers. Non-motor 

features and neuropsychiatric comorbidities haven’t been specifically reported for the majority 

of p.L1795F carriers, but the overall data is limited, making it difficult to draw meaningful 

conclusions. While group differences in clinical phenotypes among LRRK2 variants may 

exist43, they do not enable meaningful genotype-phenotype correlations at an individual level. 

Overall, the p.L1795F phenotype aligns well with the general characteristics of LRRK2-PD 

and appears comparable to other LRRK2 variants with cautious interpretation given the limited 

number of identified carriers. The most significant differences between the genetic subtypes 

are their ancestral and geographical variability.  

 

Notably, we identified three asymptomatic p.L1795F carriers from two different families who 

might still develop PD symptoms later in life. However, this seems unlikely for at least two 

individuals, who were 76 years old at the most recent follow-up, given that the oldest reported 

age at onset (AAO) for the affected p.L1795F carriers is currently 66 years16. Alternatively, 

reduced penetrance, a common phenomenon in monogenic forms of PD, including other 

pathogenic LRRK2 variants, might explain the finding. All three asymptomatic p.L1795F 

carriers were first-degree relatives of an affected carrier. Additionally, several other family 
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members with PD were reported in these families, suggesting that these affected members 

might also carry the same variant. However, they were not available for genetic testing in this 

study. LRRK2 penetrance depends on age44, environmental and lifestyle factors45, ancestral 

background46,47, and the specific variant as well as additional genetic modifiers48–50. For 

example, penetrance of the most common p.G2019S variant is estimated at around 25-30% 

in the Ashkenazi Jewish population and up to 42% in non-Jewish individuals by the age of 80 

years, and 45% in the North African Berber population over their life course43. However, the 

current data on LRRK2 p.L1795F is still limited, and the number of tested affected and 

unaffected family members is too low to estimate the penetrance for this variant accurately. 

 

In conclusion, this is the first study providing evidence of the LRRK2 p.L1795F variant 

segregating with disease in large multiplex families. Taken together with published functional 

data, showing strongly enhanced LRRK2 kinase activity, our findings support the LRRK2 

p.L1795F variant to be considered pathogenic. Our study demonstrates that large-scale 

studies can be helpful to identify novel rare causes of PD but also to re-evaluate previously 

identified variants by providing additional evidence of pathogenicity through an increased 

number of variant carriers and segregation. We, therefore, propose LRRK2 p.L1795F as a 

cause of PD, especially in the European population. Including this variant in the genetic 

screening of PD patients may be beneficial for the variant carriers to be included in ongoing 

gene-specific clinical trials. 

Data availability 

GP2 partnered with the online cloud computing platform Accelerating Medicines Partnership - 

Parkinson’s Disease (AMP PD; https://amp-pd.org) to share data generated by GP2. 

Anonymized data can be shared upon request and qualified researchers are encouraged to 

apply for direct access to the data through AMP PD. 
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Figure 1. Study design and workflow. Figure created with BioRender.com.
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Figure 2. Pedigree of Family GP2-FAM-1 (A), AMP-FAM-1 (B), and TORONTO-FAM-1 (C) with the LRRK2

p.L1795F variant. The pedigrees were drawn based on reported family history and may be incomplete. The index

cases are indicated with arrows. Affected individuals are indicated by black symbols: circles (female) and squares

(male). Diamond is where sex is undefined. Unaffected individuals are indicated by open symbols. Unaffected

variant carriers are indicated by open symbols with a dot in the middle. A diagonal line indicates deceased

individuals. Red circle indicates individuals with genetic data available (WGS data for GP2-FAM-1 and AMP-FAM-1,

single gene testing for TORONTO-FAM-1). Heterozygous mutant (m) and wild-type (wt) genotypes are indicated

with corresponding age at the sample collection (age) and age at motor symptom onset (if known; AAO). (A) The

mother of GP2-FAM-1 index was reported to have eight additional siblings (#), several of whom are clinically

affected with PD; however, no detailed family history is available for these relatives. (C) One maternal aunt (II-1) of

the TORONTO-FAM-1 index was reported to have had Alzheimer’s disease (##).
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Figure 3. Overlapping identity-by-descent segments spanning LRRK2 p.L1795F variant among the

variant carriers with genotyping data. Each line represents an IBD segment inferred between a unique pair.

IBD segments have been coloured according to whether both individuals within a pair belong to the same

family (GP2-FAM-1) or are otherwise considered unrelated (UR). Vertical grey line represents the genomic

position of LRRK2 p.L1795F.



Table 1: Overview of the investigated cohorts.

Cohort
Discovery Replication

GP2 AMP-PD [3] GP2 PDGENE
Data type WGS WGS NBA CES
Total number of samples 5,796 9,956 (599) 54,180 9,759
PD cases 5,283 3,442 28,729 9,759
Other phenotypes [1] 161 2,903 15,834 NA
Controls [2] 342 4,210 9,617 NA

AMP-PD = Accelerating Medicines Partnership Parkinson's disease, GP2 = Global Parkinson's Genetics Program, 
NA = not available, NBA = NeuroBooster Array, PD = Parkinson's disease, PD GENE = PD GENEration study, 
CES = clinical-exome sequencing, WGS = whole-genome sequencing

[1] Other phenotypes include atypical parkinsonism, e.g., progressive supranuclear palsy (PSP), multi system atrophy (MSA), 
corticobasal degeneration/syndrome (CBD/CBS), and dementia with Lewy bodies (DLB), as well as prodromal PD. 

[2] Controls include asymptomatic carriers of known pathogenic variants.
[3] Joint-genotyping using the 9,956 samples from BioFIND, Harvard Biomarkers Study (HBS), Lewy body dementia 
case-control cohort (LBD), Parkinson’s disease Biomarkers Program (PDBP), Parkinson’s Progression Markers Initiative (PPMI), 
Study of Isradipine as a Disease-modifying Agent in Subjects With Early Parkinson Disease, Phase 3 (STEADY-PD3), 
Study of Urate Elevation in Parkinson’s Disease, Phase 3 (SURE-PD3), and Postmortem Cohort. 
AMP-PD release 4 was used to screen for potential pathogenic variants for the 599 samples from the LRRK2 Cohort Consortium (LCC).



Table 2: Frequency of the LRRK2 p.L1795F and p.G2019S variants across ancestries in the GP2 genotyping cohort.

Variant Ancestry AF in cases AF in controls Number of 
alleles in cases (AN_case)

Number of 
alleles in controls (AN_control)

chr12:40322386:G:T (LRRK2 p.L1795F) EUR 0.0001201 0 41634 18064

chr12:40340400:G:A (LRRK2 p.G2019S)

AAC 0 0.0006281 568 1592
AFR 0 0 1876 3252
AJ 0.07081 0.01098 2556 820
AMR 0.01339 0.003247 896 308
CAH 0.006783 0.003436 1032 582
CAS 0 0 1104 688
EAS 0 0 5122 4752
EUR 0.003266 0.000166 41636 18074
FIN 0 0 192 14
MDE 0.02805 0 606 446
SAS 0 0 732 412

AF = Allele frequency, AAC= African admixed, AFR= African, AJ = Ashkenazi Jewish, AMR = Latino and Indigenous people of the Americas, CAH = Complex Admixture History, 
CAS= Central Asian, EAS = East Asian, EUR = European, FIN = Finnish, MDE = Middle Eastern, SAS = South Asian

LRRK2: ENST00000298910.12; ENSP00000298910.7



Table 3: Demographic and clinical characteristics of identified LRRK2 p.L1795F variant carriers.

Cohort GP2 AMP-PD PD GENE TORONTO
Family ID GP2-FAM-1 NA NA NA NA AMP-FAM-1 NA NA TORONTO-FAM-1
Sample ID GP2-ID-1 GP2-ID-2 GP2-ID-3 GP2-ID-4 GP2-ID-5 GP2-ID-6 GP2-ID-7 GP2-ID-8 AMP-ID-1 AMP-ID-2 AMP-ID-3 AMP-ID-4 PDGENE-ID-1 TORONTO-ID-1 TORONTO-ID-2 TORONTO-ID-3 TORONTO-ID-4
Genetic method NBA, WGS NBA, WGS NBA, WGS NBA, WGS NBA, WGS NBA NBA NBA WGS WGS WGS WGS CES Single gene testing (LRRK2)
Demographics
Gender Female Female Male Female Male Male Female Male Female Female Female Female Female Male Female Female Female
Genetic ancestry EUR EUR EUR EUR EUR EUR EUR EUR EUR EUR EUR EUR EUR White White White White
Age at sample collection 78 74 68 59 42 72 62 76 76 55 54 69 57 75 76 55 54
Family history of PD yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes

Family history details 

two children, three 
sisters, one nephew, 

several aunts 
and uncles

three sisters, one 
niece and two 

nephews, several 
aunts and uncles

sister, mother, 
three maternal aunts

brother, mother, 
three maternal aunts

aunt, 
two great uncles brother, mother mother, sister mother father, two siblings, 

child

sibling, maternal 
grandparent, 
maternal aunt

maternal 
grandprarent, 

two maternal aunts
mother maternal 

grandmother
father, two siblings, 

two nieces
father, two siblings, 

two children

sibling, mother, 
two maternal uncles, 
maternal grandfather

sibling, mother, 
two maternal uncles, 
maternal grandfather

Clinical data 
Diagnosis PD PD PD PD PD PD PD PD Control* Control* PD* PD PD PD Control** PD PD
Age at motor symptom onset 55 54 50 50 36 60 57 55 NA NA 46 65 47 65 NA 66 44
Bradykinesia + + + + + + + + NA NA + + + + - + +
Rigidity + + + + + - + + NA NA + + + - - + +
Resting Tremor + + + + + + - + NA NA + + - + - - -
Action/Kinetic Tremor + + + + - + + NA NA NA - + - - - + +
Postural Instability + + - + + - + + NA NA - - - - - - +
Gait Disturbance + + - + + - - NA NA NA - + - - - - +
Asymmetric onset of symptoms + + + + + + + NA NA NA + NA + + - - +
Responsive to dopaminergic medication + + + + + + + NA NA NA + NA + NA NA NA +
Fluctuations NA NA + + - NA NA NA NA NA + NA + - - - +
UPDRS Part III (motor score) 70 NA 10 22 24 6 11 NA NA NA 3 32 6 6 0 7 43
Hoehn & Yahr 5 2 2 2 2 1 1.5 NA NA NA 2 2 2 1 0 0 3
Cognition MMSE 29 MMSE 29 MMSE 30 MMSE 30 MMSE 30 MMSE 30 MMSE 30 NA NA NA MoCA 28 NA - MoCA 17 MoCA 23 MoCA 29 MoCA 28
Neuropsychiatric features NA NA - - NA NA NA NA NA NA NA NA - NA NA - +
Dysautonomia - - - constipation - - - NA NA NA NA NA - - - - -

Atypical Features or 
signs suggestive of other diagnosis (#)

history of head 
trauma with loss 
of conciousness

- - -
history of head 

trauma with loss 
of conciousness

- - NA NA NA NA NA - - - - -

+ present; - absent

EUR = European, MMSE = Mini Mental State Examination, MOCA = Montreal Cognitive Assessment, NA = Not available or applicable, NBA = NeuroBooster Array, PD = Parkinson's disease, CES = clinical-exome sequencing, WGS = Whole-genome sequencing

* Individuals were recruited through the LCC as "Genetically enriched" study arm. 

** Recruited as unaffected family member, not population control. 

(#) These include: history of strokes or stepwise deterioration, history of head injury with loss of consciousness, history of encephalitis, Oculogyric crisis, neuroleptic treatment at time of symptom onset, sustained remission, gaze palsy, Cerebellar signs (other than activation tremor), Fluctuations, hallucinations, dysautonomia, Memory loss, axial rigidity, Other
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