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A B S T R A C T

Background & Objective: Automatic lesion segmentation techniques on MRI scans of people with multiple sclerosis 
(pwMS) could support lesion detection and segmentation in trials and clinical practice. However, knowledge on 
their reliability across scanners is limited, hampering clinical implementation. The aim of this study was to 
investigate the within-scanner repeatability and between-scanner reproducibility of lesion segmentation tools in 
pwMS across three different scanners and examine their accuracy compared to manual segmentations with and 
without optimization.
Methods: 30 pwMS underwent a scan and rescan on three MRI scanners. GE Discovery MR750 (3.0 T), Siemens 
Sola (1.5 T) and Siemens Vida (3.0 T)). 3D-FLuid Attenuated Inversion Recovery (3D-FLAIR) and 3D T1-weighted 
scans were acquired on each scanner. Lesion segmentation involved preprocessing and automatic segmentation 
using the Lesion Segmentation Toolbox (LST) and nicMSlesions (nicMS) as well as manual segmentation. Both 
automated segmentation techniques were used with default settings, and with settings optimized to match 
manual segmentations for each scanner specifically and combined for the three scanners. LST settings were opti
mized by adjusting the threshold to improve the Dice similarity coefficient (DSC) for each scanner separately and 
a combined threshold for all scanners. For nicMS the last layers were retrained, once with the multi-scanner data 
to represent a combined optimization and once separately for each scanner for scanner specific optimization. 
Volumes and counts were extracted. DSC was calculated for accuracy, and reliability was assessed using intra- 
class correlation coefficients (ICC). Differences in DSC between software was tested with a repeated measures 
ANOVA and when appropriate post-hoc paired t-tests using Bonferroni correction.
Results: Scanner-specific optimization significantly improved DSC for LST compared to default and combined 
settings, except for the GE scanner. NicMS showed significantly higher DSC for both the scanner-specific and 
combined optimization than default. Within-scanner repeatability was excellent (ICC>0.9) for volume and 
counts. Between-scanner ICC for volume between Vida and Sola was higher (0.94–0.99) than between GE MR750 
and Vida or Sola (0.18–0.93), with improved ICCs for nicMS scanner-specific (0.87–0.93) compared to others 
(0.18–0.79). This was not present for Sola vs. Vida where all ICCs were excellent (>0.94).
Conclusion: Scanner-specific optimization strategies proved effective in mitigating inter-scanner variability, 
addressing the issue of insufficient reproducibility and accuracy found with default settings.
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1. Introduction

Multiple sclerosis (MS) is characterized by the distinctive combina
tion of focal demyelination and neurodegeneration within the central 
nervous system (CNS) (Filippi et al., 2018). Magnetic resonance imaging 
(MRI) is an invaluable non-invasive tool for visualizing brain lesions in 
MS. The high sensitivity of MRI for lesions allows for qualitative and 
quantitative assessments of lesion burden, primarily on T2-weighted 
images (Wattjes et al., 2021). MS lesions can take diverse shapes but 
are mainly focal and occur in various locations, including periven
tricular, (juxta)cortical, infratentorial brain regions, and the spinal cord, 
all of which are incorporated into the revised 2017 McDonald criteria as 
part of the dissemination in space criterion (Thompson et al., 2018).

Automatic lesion segmentation techniques could serve as a valuable 
aid for both lesion detection and segmentation in research, clinical trials 
and are starting to make their way into the clinical neuroradiology 
workflow, although some hurdles still need to be overcome (Spagnolo 
et al., 2023). These tools have shown to be promising candidates to 
alleviate the time burden, mitigate inter-observer variability and pro
vide quantitative information on lesion volumes (Weeda et al., 2019). 
The latter is relevant to use in a clinical context for, among others, 
disease progression predictions which has shown to be more promising 
than lesion count alone (Oship et al., 2022).

The majority of current studies assessing automatic lesion segmen
tations have focused on the accuracy of these tools (Weeda et al., 2019; 
Sadeghibakhi et al., 2022). However, little research has been dedicated 
towards the reliability of these tools, which hampers clinical imple
mentation. The present study investigated the within-scanner repeat
ability and between-scanner reproducibility, as defined previously (van 
Nederpelt et al., 2023), of automated lesion segmentation tools on three 
different MR scanners with different field strengths in MS patients with 
different degrees of pathology. Between-scanner reproducibility 
included differences in both hardware and clinical scan protocols. 
Furthermore, we investigated whether local optimization schemes for 
automatic segmentation tools could improve these metrics.

2. Materials and methods

2.1. Participants

In this study, 30 people with MS (pwMS), aged between 18 and 70 
years, were scanned between February and June 2022, as part of the 
“accurate multiple sclerosis atrophy measurement system” (AMS2) 
dataset (van Nederpelt et al., 2024). This included 22 
relapsing-remitting MS (RRMS), 2 secondary progressive MS (SPMS) 
and 6 primary progressive MS (PPMS) participants, diagnosed according 
to the revised 2017 McDonald criteria (Thompson et al., 2018). Exclu
sion criteria were past or current clinically relevant non-MS neurolog
ical, psychiatric or (auto)immune disorder(s), as well as 
contraindications to undergo MRI examination. The participants were 
scanned twice (scan and rescan), to assess within-scanner repeatability 
(or precision), on three MR scanners to assess between-scanner repro
ducibility, in the same center. Between the scan (run 1) and rescan (run 
2), the participants got off the scanner bed and walked a few steps before 
repositioning. All the different MR examinations were performed on the 
same day within 4 hours, to minimize time of day effects. Participants 
did not consume coffee in between scans, but could maintain normal 
hydration status by consuming tea and water or visiting the bathroom as 
needed. The local ethical committee approved the study protocol 
(NL75420.029.20), and written informed consent was obtained from all 
individuals, according to the Declaration of Helsinki. During their visit, 
the expanded disability status scale (EDSS) score was assessed by means 
of a questionnaire (Lechner-Scott et al., 2003).

2.2. MRI protocol

The scans were performed on three MRI scanners: 1) 3.0 T GE Dis
covery MR750 (General Electric Healthcare, Milwaukee, USA), 2) 1.5 T 
Siemens Sola and 3) 3.0 T Siemens Vida (Siemens Healthineers, Erlan
gen, Germany). All exams were performed by the same trained PhD- 
candidate (DvN). The imaging protocol included a 3D T1-weighted 
(T1w) and a 3D FLuid Attenuated Inversion Recovery (FLAIR) scan 
using acquisition protocols (Table 1). Because the aim of this study is to 
investigate how lesion segmentation is affected by scanner differences in 
a clinical setting, we did not standardize echo time (TE), repetition time 
(TR) and inversion time (TI) between scanners. In the current study, we 
will use the term “between-scanner” to encompass both the differences 
arising from using different scanners, including differences in acquisi
tion protocols. For all acquisitions, the vendor-specific 3D correction for 
geometric distortion from non-linearity of gradient coils was applied on 
the scanner during image reconstruction. Images were visually checked 
for artifacts (e.g., movement) at the time of scanning and reacquired 
immediately if deemed necessary.

2.3. Lesion segmentation

2.3.1. Preprocessing
Prior to lesion segmentation, both FLAIR and T1w scans were bias 

field corrected using the N4 algorithm from the advanced normalization 
tools (ANTs) software package (Tustison et al., 2010; Avants et al., 
2009). The T1w scan was linearly registered to the FLAIR with FMRIB’s 
Linear Image Registration Tool (FLIRT), using 6 degrees of freedom 
(DOF) and default parameters. Subsequently, the FLAIR-derived brain 
mask, created using the HD-brain extraction tool (HD-BET), was applied 
to both FLAIR and T1w scans to ensure uniformity in BET results 
(Isensee et al., 2019; Jenkinson and Smith, 2001).

2.3.2. Manual segmentation and lesion location classification

2.3.2.1. Manual segmentation. For manual lesion segmentation, a mid- 
space average image was created using the brain-extracted and N4 
bias field-corrected FLAIR scans obtained from the first run of the three 
different scanners. The subject-specific mid-space average was con
structed using the ANTs “antsMultivariateTemplateConstruction2.sh” 
with default options, apart from rigid-body registration of the three 
scans to an unbiased mid-space and averaging across scans (See Fig. 1) 
(Avants et al., 2009). This procedure was followed to ensure unity be
tween the different lesion masks in the native space.

Two raters (MB, DvN) manually delineated lesions on the mid-space 
image using FSLeyes separately (10 and 20 images, respectively). We 
defined lesions as hyper-intense regions with or without a hypo-intense 
core on the FLAIR compared to the surrounding tissue with a size of at 
least 5 voxels (5 mm3). The raters had access to the T1w image regis
tered to the FLAIR mid-space image as a reference. Additionally, the 
raters rated three participants twice to calculate the intra-rater agree
ment. Afterwards, an experienced MS neuroradiologist (GP, experience 
> 10 years) reviewed every segmentation (30 in total), and lesion masks 
were adjusted accordingly.

2.3.2.2. Lesion classification. For the automatic lesion location classifi
cation, Synthseg (v2.0) was run on the mid-space average FLAIR image 
and cortical, lateral ventricle, brainstem and cerebellum masks were 
obtained (Billot et al., 2023). First, lesions were classified as periven
tricular if lesions overlapped with the lateral ventricles mask which was 
dilated with a spherical kernel of 1 mm. Second, lesions were classified 
as (juxta)cortical if lesions had at least 5 voxels overlapping with the 
cortical mask. Third, lesions were classified as infratentorial if they 
overlapped with the cerebellum and/or brainstem mask. Fourth, all 
other lesions were classified as deep WM, based on an eroded (spherical 
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kernel 2 mm) cerebellar WM mask, or as “other”. Because less than 3 % 
was classified as “other” and most were in the deep WM category, these 
two categories were merged into a single category “deep”. During the 
review of the segmentations, the neuroradiologist also checked for the 
lesion classifications and lesion location classifications were changed 
accordingly.

The final manual lesion mask was registered back to all three native 
spaces (the first run of each scanner). Here the inverse of the registration 
matrix of the mid-space average construction and AntsApplyTransforms 
from the ANTs toolbox with nearest neighbor interpolation was applied.

2.3.3. Automatic segmentation
Two segmentation tools were selected for evaluation, as they were 

the most promising candidates with respect to accuracy based on a 
previous study (Weeda et al., 2019). These were the Lesion Prediction 
Algorithm (LPA) as implemented in the Lesion Segmentation Toolbox 
(LST) toolbox version 3.0.0 (www.statistical-modelling.de/lst.html) 
(Schmidt and Wink, 2017) and nicMS lesions version 0.2 (https://gith 
ub.com/sergivalverde/nicMSlesions) (Valverde et al., 2019). For both 
software packages, the lesion volume and counts were obtained using 
the fslstats and fsl-cluster tools from the FSL library version 6.0.6.5 

(Jenkinson et al., 2012).

2.3.3.1. LST. LST-LPA is an open-source toolbox integrated into the 
Statistical Parametric Mapping (SPM) toolbox. Initially developed for 
MS lesion segmentation, LPA was trained using a logistic regression 
model based on data from 53 pwMS with severe lesion patterns 
(Schmidt, 2017). The output of LST is a lesion probability map. To 
evaluate whether optimization of the threshold for probability in
fluences the accuracy and reliability, three thresholds were applied. 
First, the default threshold of 0.5 was applied, termed: “LST default”. 
Then, the threshold was adjusted for each scanner specifically as pre
viously described (Weeda et al., 2019), resulting in an optimized 
threshold for GE, an optimized threshold for SOLA and an optimized 
threshold for the VIDA FLAIR scans termed: “LST scanner specific”. 
Briefly, one participant, the one with the median lesion volume, was 
selected from the dataset. The threshold was increased with a 0.05 step 
size from 0.1 to 0.9. The threshold that yielded the highest dice simi
larity coefficient (DSC) for that participant was selected. Lastly, a 
combined threshold for all three scanners was defined, which was based 
on the highest DSC for 3 participants that were closest to the median 
lesion volume of the group: “LST combined scanners”. Participants 

Table 1 
MRI acquisition parameters1.

Scanner Pulse sequence resolution (mm3) TR (ms) TE (ms) TI (ms) FA (◦) Field Strength (T)

GE Discovery MR750 IR-FSPGR 1.0 x 1.0 × 1.0 8.2 3.2 450 12 ​ 3
Siemens SOLA MPRAGE 1.0 x 1.0 × 1.0 2300 2.6 900 8 ​ 1.5
Siemens Vida MPRAGE 1.0 x 1.0 × 1.0 2300 2.3 900 8 ​ 3
GE Discovery MR750 FLAIR 0.98 x 0.98 x 1.2 8000 129.1 2340 − ​ 3
Siemens SOLA FLAIR w/ T2-prep 1.0 x 1.0 x 1.4 5000 388 1600 − ​ 1.5
Siemens Vida FLAIR w/ T2-prep 1.0 × 1.0 x 1.0 5000 386 1650 − ​ 3

1 IR-FSPGR=Inversion Recovery Fast SPoiled GRadient Echo, MPRAGE=Magnetization Prepared RApid Gradient Echo, FLAIR=FLuid Attenuated Inversion Re
covery, TR=Repetition Time, TE=Echo Time, TI=Inversion Time, FA=Flip Angle.

Fig. 1. Example of lesion segmentations, FLAIR images and the mid-space average FLAIR. Red arrows indicate which FLAIR images were used to create the mid- 
space average. For the manual segmentation, green indicates periventricular lesions, lightblue indicates deep lesions, and yellow indicates (juxta)cortical lesions. 
For the automated segmentation techniques: dark blue = LST default, light green = LST scanner specific, pink = LST combined, light blue = nicMS default, green =
nicMS scanner specific, red = nicMS combined. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)
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selected for optimization were not used for performance evaluation.

2.3.3.2. nicMSlesions. NicMSlesions (nicMS) is an open source super
vised deep learning approach based on a convolutional neural network 
(CNN) to achieve precise segmentation of white matter (WM) lesions. 
NicMS can be re-trained with a limited set of annotated images 
(Valverde et al., 2019). At first, we applied the default network “baseline 
2ch” for the automatic segmentation. Secondly, as retraining with one 
subject significantly improved the segmentation (Weeda et al., 2019); 
nicMS was retrained in the following situations;

a) A scanner-specific network. Here, the 2 last layers of nicMS were 
retrained three times separately using the manual lesion mask of one 
participant, with the median lesion volume, registered back to the 
native FLAIR space of each scanner. In this manner, three specific 
retrained versions were created, namely, a GE, SOLA and VIDA 
version. These versions are referred to as nicMS scanner specific. The 
participant was not used for performance evaluation.

b) A combined network for all the scanners. For this, we selected lesion 
masks of 3 participants that were closest to the median lesion volume 
of the group, based on the manual segmentation. We randomly 
paired participants with scanners and registered the manual lesion 
mask to the corresponding native FLAIR space, resulting in one 
manual lesion mask in the native FLAIR space of the GE, one in the 
native FLAIR space of the SOLA and the last for the VIDA native 
FLAIR space. These three masks were used to retrain one network. 
This network version is called nicMS combined scanners. The three 
participants were excluded from the performance evaluation.

The participants used for optimalisation were the same for both LST 
and nicMS. Detailed demographic information is provided in the Sup
plementary Table 1.

For both manual and automatic segmentations, a minimum cluster 
size of 5 voxels was applied to ensure unity between the minimum lesion 
size, using the fsl-cluster tool (Jenkinson et al., 2012), with maximum 
connectivity of 26 (faces, edges and corners). For the manual segmen
tation, this was done in the mid-space image before registration to the 
native FLAIR space. A potentially higher reproducibility for lesions was 
tested with cluster sizes of 10 and 20 voxels.

2.4. Statistical analyses

All statistical analysis was performed using R Statistical Software 
(version 4.1.1; R Foundation for Statistical Computing, Vienna, Austria).

2.4.1. Accuracy
Accuracy was assessed using the DSC in the native FLAIR space of 

each scanner. This was extracted from images for the first run only. 
Differences in DSC were tested using a repeated measures analysis of 
variance (ANOVA) with paired t-test for post hoc analyses. Other mea
sures included the lesion-wise true positive rate (TPR), false positive rate 
(FPR), and false negative rate (FNR) for lesion detection. The distribu
tion of TPR, FPR and FNR over typical lesion locations was calculated as 
well. Rates were calculated with reference to the total lesion count 
derived from the manual segmentations.

2.4.2. Reliability
The reliability part of this study used the same analysis pipeline as 

previously described (van Nederpelt et al., 2023). The following ana
lyses were conducted for both lesion volume and count: 1) the intra-class 
correlation coefficient (ICC) with a 95 % confidence interval (CI) for 
absolute agreement within scanner (ICC-AA) for the output of run 1 and 
run 2. 2) the ICC for consistency between scanners (ICC-C), based on run 
1 of all pairwise scanner combinations. 3) reproducibility evaluations of 
volume and counts involved a repeated measures ANOVA and a 

Friedman test, respectively. Classification of ICC values was performed 
according to proposed reporting guidelines (Koo and Li, 2016). In cases 
where Mauchly’s test for sphericity was violated, a Greenhouse-Geisser 
correction was applied. Subsequent post hoc examinations employed 
pairwise t-tests or Wilcoxon signed-rank tests, when appropriate. 4) to 
compute the standard error of measurements (SEM) and the smallest 
detectable change (SDC), a variance component analysis (VCA) was 
performed for both within-scanner (SEMwithin, SDCwithin,) and between- 
scanner (SEMbetween, SDCbetween) measurements (de Vet et al., 2011; 
Mokkink et al., 2023). These measures are presented as percentages of 
the mean lesion volume or count across all subjects. Reported p-values 
are Bonferroni corrected for multiple comparisons. The threshold for 
statistical significance was set at α = 0.05.

3. Results

3.1. Demographics and training time

The demographics of the pwMS are detailed in Table 2. The cohort 
included 10 males (33 %), with an average age of 44.4 ± 11.7 years, 
ranging from 21.7 to 61.9 years. The average disease duration was 7.4 
± 6.4 years and the mean EDSS score was 3.3 ± 1.9, ranging from 0 to 
6.5. Lesion volume averaged 5.9 ml, with a wide range from 1.7 to 51.2 
ml. For nicMS the training time was 48.1 min for the combined network. 
For the GE scanner specific network this was 19.28 min, and 13.72 and 
19.95 min for the Sola and Vida, respectively.

3.2. Accuracy

3.2.1. Manual segmentation
The repeatability of the manual segmentations was spatially good, 

and volumetrically excellent. The ICC for absolute agreement of the 
volumes was 0.93, and the mean DSC was 0.73 ± 0.06. From the 
automated lesion location method, 93 % was correctly classified (total 
manual segmented lesion count = 1666). The most common corrections 
made by the neuroradiologist were from (juxta)cortical to deep (2.7 %) 
and from deep to periventricular (2.04 %).

3.2.2. Automated segmentation
For both LST and nicMS, the DSC was different between the software 

and optimization procedures, as the main effect of the repeated mea
sures ANOVA was significant for every scanner. The DSC improved 
significantly (p < 0.05) for the scanner-specific (range: 0.49–0.56) and 
combined optimization (range: 0.46–0.56) compared to default DSCs 
(range: 0.27–0.47), except for LST on GE scans (see Fig. 2). A detailed 
overview of the DSC values is provided in Table 3. For the Sola and Vida, 

Table 2 
Demographics and clinical characteristics2. a Mean, b Mean since symptom 
onset, cMedian based on manual segmentation.

MS (n = 30)

Demographics ​
Subject type (RRMS/SPMS/PPMS) 22/2/6
Male, n (%) 10 (33 %)
Agea, y (range) 44.4 ± 11.7 (21.7–61.9)
Disease durationb, y (range) 7.4 ± 6.4 (0.7–23.8)
Clinical characteristics ​
EDSSa (range) 3.3 ± 1.9 (0–6.5)
Lesionc volume, ml (range) 5.9 (1.7–51.2)
Disease-modifying treatment ​
(none/TEC/GIL/COP/TYS/OCR/AUB) 81/1/3/1/9/1
Non-disease modifying drug ​
(FAM) 6

2 TEC=dimethyl fumarate (Tecifidera); GIL=fingolimod (Gilenya); 
COP=glatiramer acetate (Copaxone); TYS=Natalizumab (Tysabri); 
OCR=Ocrelizumab (Ocrevus); AUB=Teriflunomide (Aubagio); 
FAM=fampridine (Fampyra).
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Fig. 2. Boxplot of Dice similiarity coefficient (DSC) values for each scanner separately. Top = GE, middle = SOLA bottom = VIDA.
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the DSC for LST-scanner-specific optimization (Sola: 0.49, Vida 0.53) 
was significantly higher than LST-combined optimization (Sola: 0.46, 
Vida 0.47). The DSC for nicMS was significantly higher than LST default 
for Sola and Vida but for the GE, conversely, LST default outperformed 
nicMS. There was no difference between the DSC of nicMS scanner- 
specific and nicMS combined (p > 0.05). In the supplementary Figs. 1- 

6, all volumes and counts of automated segmentations are plotted 
against the manual segmentations. The TPR, FPR and FNR are depicted 
in Fig. 3. Increased TPR and lower FNR are observed for nicMS, although 
this was not statistically tested. The FPR for nicMS scanner specific was 
visually increased compared to nicMS combined for the GE and Vida 
while this was reversely true for the Sola. This was also seen for LST. 

Table 3 
DSC3 values for LST and nicMS.

LST default LST scanner 
specific

LST combined nicMS default nicMS scanner specific nicMS combined

GE 0.55 ± 0.09 0.55 ± 0.09 0.55 ± 0.09 0.47 ± 0.11 0.56 ± 0.08 0.56 ± 0.08
Sola 0.27 ± 0.11 0.49 ± 0.09 0.46 ± 0.10 0.40 ± 0.11 0.50 ± 0.08 0.49 ± 0.08
Vida 0.28 ± 0.10 0.53 ± 0.08 0.47 ± 0.09 0.43 ± 0.12 0.54 ± 0.07 0.52 ± 0.09

3 DSC=Dice score coefficient.

Fig. 3. Stacked bar graph of mean true positive (TP), false positive (FP) and false negative (FN) rates for all scanners and segmentation methods combined. Rates 
were calculated based on individual manual lesion counts.
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Supplementary Figs. 7-9 show the share of each lesion location is 
depicted with respect to the TPR, FNR and FPR. It can be observed that 
the highest fraction of the TP lesions for LST are found in the periven
tricular area whereas for nicMS the highest TP fraction was observed for 
deep lesions. For LST there were almost no TP infratentorial lesions. No 
visible differences between scanners can be observed. Interestingly, 
most FN lesions were in the deep category for both LST and nicMS and 
did not differ between scanners (see Supplementary Fig. 8). The location 
for FP lesions differed between scanners and segmentation tool 
(Supplementary Fig. 9).

3.3. Reliability & precision

3.3.1. Within-scanner
The ICC-AA for within scanner volumes was excellent (>0.9) and is 

depicted in Fig. 4, the 95 % CI were slightly wider for LST for the Vida 
and Sola. The data for counts and volumes is additionally depicted in the 
Supplementary Materials (Supplementary Figures 9–15), where each 
run is plotted against the second run of the same scanner. Similar ob
servations were found for the counts (Fig. 5). However, for the GE (LST 
default, LST scanner specific and nicMS default) and Sola (nicMS scan
ner specific), the ICC was good (>0.85) instead of excellent. SEM and 
SDC values are detailed in Table 4. SEM and SDC values were slightly 
lower for nicMS for both volumes and counts.

3.3.2. Between-scanner
Between-scanner ICC-C for volumes varied between software and 

scanner comparison (see Fig. 6). For Sola vs Vida, ICCs were excellent 
(>0.94) for both LST and nicMS. However, this was not true for both 
Siemens scanners vs the GE scanner. The scanner-specific optimization 
led to a significant (non-overlapping CIs) increase in ICC for nicMS 
scanner specific vs. LST default and LST combined and for LST scanner- 
specific vs LST default for the GE vs Vida. A detailed overview of data for 

counts and volumes is additionally depicted in the Supplementary Ma
terials (Supplementary Figures 17–22), where each first run of the 
scanner is plotted against the first run of the other scanners. ICC for 
counts was good to excellent for all scanners and tools (Fig. 7). Lesion 
size did not influence the ICC values for volume as ICCs were compa
rable between clusters of 5, 10 and 20 voxels (see Supplementary 
Figure 23). A minimum of threefold increase in SEM and SDC was 
observed (Table 5) compared to within-scanners, and the lowest values 
were found for scanner-specific optimization for volumes and combined 
optimization for counts, which was true for both nicMS and LST. Fig. 8
depicts the boxplots for volumes of every scanner and segmentation 
method. For every software variant, significant differences (p < 0.02) 
were found between the scanners but also between scanners and manual 
volumes. This was not present for nicMS scanner specific (p = 0.11) and 
nicMS combined (p = 0.26).

4. Discussion

In this study, the accuracy, reliability and precision of two distinct 
lesion segmentation tools for MS, namely LST and nicMS, were assessed 
in a unique same-day scan-rescan study using three different MRI 
scanners with different field strengths. Both tools were optimized for 
each scanner separately and for the three scanners combined. NicMS 
scanner-specific optimization outperformed both the default and com
bined optimization, except for the SEM and SDC where a slight increase 
was found with respect to lesion count. Moreover, there were no sig
nificant differences between scanners for the AI-based nicMS algorithm 
for scanner-specific and combined optimization with respect to volume, 
which were present for LST. LST scanner-specific optimization also 
improved the SEM and SDC for lesion count and volume. However, for 
LST, the optimum threshold for the scanner specific-optimization on GE 
was the identical to the default threshold (both 0.5).

The DSC for scanner-specific optimized tools (0.52–0.54) presented 

Fig. 4. The Intra-class correlation coefficient (ICC) for absolute agreement for lesion volume within scanners. A is the GE scanner, B the Sola and C the Vida. The 
error bars indicate the 95% confidence intervals.
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in this study are comparable to manual inter-rater variability and other 
studies which investigate automatic lesion segmentation accuracy. 
Although these DSC values may seem low compared to whole brain 
segmentation tasks, it is important to recognize that the maximum ac
curacy achievable by automatic tools is inherently limited by inter-rater 
variability, which serves as the benchmark for comparison to a gold 
standard. Additionally, there is a relationship between the region of 
interest (ROI) size and DSC values, where a smaller ROI (e.g., lesions) 
results in a lower DSC value than a larger ROI (e.g., a whole brain mask) 
with a similar deviation in contour. The comparable results to rater 
variability suggest that the automatic lesion segmentation tools are 
sufficiently accurate for clinical application (Weeda et al., 2019; 
Valverde et al., 2019; Commowick et al., 2021). In addition, lesion 
masks obtained through automatic segmentation can be helpful for ac
curate brain volume quantification in pwMS (González-Villà et al., 
2017). Not to mention, they could aid in lesion detection as radiologists 
currently perform visual identification of lesions on T2-weighted se
quences, a time-consuming process and susceptible to high variability 
among different radiologists (Bozsik et al., 2022). It must be noted that 

SEM and SDC values for lesion count here are provided as a percentage 
of the mean lesion count and that for the subject with the lowest lesion 
count (14 lesions), optimized tools offer a precision of 1.3 lesions which 
is relevant for demonstrating evidence of disease activity (Kappos et al., 
2016).

In this study, segmentation of MS lesions was optimized for each 
individual scanner using only one MRI exam. The relatively short time 
investment of one manual segmentation of one subject could, therefore, 
be a worthwhile effort to be able to obtain reliable and accurate auto
matic lesion masks between different scanners or potentially even be
tween different centers, but this was not tested in this study. Moreover, 
the improvement of optimization with just one individual lesion mask 
has already previously been shown to improve accuracy, affirming our 
results (Weeda et al., 2019). However, incorporating multiple subjects 
with varying lesion loads (small, medium, and high) could further 
enhance the robustness of the model.

Within-scanner reliability was high, however, the time between 
repeated scans was short as this was a scan-rescan type of approach. It 
could be argued that this overestimates precision because long-term 
scanner hardware variability is not included. It should be noted that 
all exam-specific tuning and calibration (such as resonance frequency, 
B0 shim and transmitter amplitude) are fully repeated for the rescan. 
Variability from long-term fluctuations of B0 field homogeneity and 
gradient amplitude calibration are however not included. Additionally, 
repositioning effects may also be slightly larger over a longer time span, 
because the operator and the patient may inadvertently tend to repro
duce head positioning better on such short term.

Between vendors, lesion masks of the Siemens scanners seemed to be 
more similar when compared to the GE (3 T) even though there is a 
difference in field strength between the Sola (1.5 T) and Vida (3 T). This 
result is slightly unexpected as several studies have indicated effects of 
field strength on lesion detection and segmentation (Sicotte et al., 2003; 
Hagens et al., 2018). One of these studies indicated that 15 % more T2 
lesions were found at 3 T then at 1.5 T, but this was assessed visually by 

Fig. 5. The Intra-class correlation coefficient for absolute agreement within scanners for the lesion count. The error bars are the 95% confidence intervals.

Table 4 
SEM and SDC4 within the scanner for the volumes and counts. The values are 
presented as percentage of the mean lesion volume and counts, as obtained for 
the software (LST or nicMS) used.

SEM volume SDC volume SEM count SDC count

LST ​ ​ ​ ​
default 14.19 % 39.32 % 15.64 % 43.36 %
scanner specific 11.18 % 31.00 % 13.06 % 36.21 %
combined 10.37 % 28.74 % 9.49 % 26.30 %
nicMS ​ ​ ​ ​
default 6.68 % 18.50 % 10.67 % 29.57 %
scanner specific 7.47 % 20.70 % 9.02 % 25.00 %
combined network 7.29 % 20.19 % 11.35 % 31.47 %

4 SEM=Standard error of measurement; SDC=smallest detectable change.
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Fig. 6. The Intra-class correlation coefficient for consistency between scanners for the lesion volume. The error bars are the 95% confidence intervals.

Fig. 7. The Intra-class correlation coefficient for consistency between scanners for the lesion count. The error bars are the 95% confidence intervals.
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radiologists (Hagens et al., 2018), which is slightly different from the 
current study. A possible explanation could be that an identical imple
mentation of the 3D FLAIR pulse sequence was used on the Siemens 
scanners, while the GE implementation visually appears to yield a 
slightly different contrast. This discrepancy may arise due to subtle 
variations in the evolution of the variable flip angle or the FSE/TSE echo 
train of the CUBE and SPACE sequences. We used a T2 magnetization 
preparation on the Siemens scanners module before the inversion pulse. 
This reduces T1-weighting for GM and WM, allowing a shorter TR. This 
preparation was not available on the GE scanner. Moreover, there was 
an increased FPR for the Sola scanner for scanner-specific optimization. 
This could possibly result from manual lesion masks being created in the 
combined mid-space average space, where the resulting FLAIR images 
are likely to have an increased signal-to-noise ratio compared to the 
original FLAIR images in the native space. This is even more true for the 

Sola scanner, which has a lower field strength compared to the other two 
scanners (1.5 T vs. 3 T). Again, it is well known that field strength in
fluences the detection and segmentation of lesions and more lesions as 
well as lesion volume are found on 3 T compared to 1.5 T (Sicotte et al., 
2003).

In the context of multi-center studies, an important consideration is 
whether to include scanner (center) effects in the statistical model, as 
scanner variability can introduce bias or affect the robustness of the 
results (van Nederpelt et al., 2023; Biberacher et al., 2016). Several 
statistical harmonization techniques have been proposed for this (Fortin 
et al., 2018; Pomponio et al., 2020). However, the proposed domain 
adaptation technique here could help mitigate scanner effects by 
aligning the data distributions across different scanners, potentially 
reducing the need for explicit scanner correction as volume measure
ments do not statistically differ for nicMS scanner-specific optimization 
and nicMS combined. However, correcting for center effects can still be 
beneficial, as patient selection criteria may vary across centers, intro
ducing additional variability. In our study, the focus was on clinical 
application within the same patient context where such statistical 
models are not applicable, but future work should consider these 
broader statistical modelling questions.

Furthermore, it is noteworthy that nicMS currently needs the T1w 
images as additional input, which may limit its applicability in the 
clinical routine where T1w images are not routinely acquired. In 
contrast, LST-LPA requires only FLAIR images, rendering it more 
accessible for standard clinical use. Although our study utilized both 
T1w and FLAIR images for consistency, the broader clinical implications 
of these differences merit consideration. Future studies should focus on 
optimizing FLAIR-only segmentation tools. Next to software 

Table 5 
SEM and SDC5 between scanners for the volumes and counts. The values are 
presented as percentage of the mean lesion volume and counts of the specific 
software.

SEM volume SDC volume SEM count SDC count

LST ​ ​ ​ ​
default 154.24 % 427.54 % 34.37 % 95.26 %
scanner specific 51.56 % 142.91 % 24.41 % 67.65 %
combined 100.06 % 277.34 % 21.06 % 58.37 %
nicMS ​ ​ ​ ​
default 50.75 % 140.67 % 33.84 % 93.81 %
scanner specific 31.00 % 85.93 % 30.83 % 85.47 %
combined network 35.02 % 97.06 % 23.23 % 64.39 %

5 SEM=Standard error of measurement; SDC=smallest detectable change.

Fig. 8. Boxplot of lesion volumes for each scanner and the manual segmentation. A=LST default, B=nicMS default, C=LST scanner specific, D=nicMS scanner 
specific, E=LST combined, F=nicMS combined. Lines indicate the same subject for the different scanners.
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optimization, other strategies for the harmonization of lesion segmen
tations could be employed. For example, in a recent study, it was shown 
that using image harmonization of same-subject between-scanner T1w 
and FLAIR scans, the intra-rater agreement improved both for spatial 
distribution and for global and per-lesion volume between the scanners 
(Carass et al., 2024). The problem is that this image harmonization 
strategy was trained on paired data. Alternative harmonization strate
gies with unpaired data could be used for future endeavours (Zuo et al., 
2023). For clinical introduction of the proposed methods future en
deavors should follow the Quantitative neuroimaging framework as 
previously proposed (Goodkin et al., 2019).

4.1. Limitations

This study has several limitations. Firstly, as the manually segmented 
lesions were registered from the mid-space average space to the original 
FLAIR space, small lesion masks may have shifted slightly. However, the 
minimum lesion size of 5 voxels limited the impact. Secondly, the 
combined mid-space average of all three scanners improved the image 
quality both in terms of contrast- and signal-to-noise. This could have 
resulted in better-defined lesions compared to single scanner FLAIR 
images. Lastly, although this study was a scan-rescan study using 
different MRI scanners with different field strengths, it was performed in 
a single center with one dedicated person in charge of image acquisition.

5. Conclusion

This study showed a higher within-scanner repeatability than 
between-scanner reproducibility for lesion segmentations in MS. Using 
default settings the between-scanner accuracy and reproducibility were 
not sufficient for clinical implementation. However, scanner-specific 
optimization strategies proved effective in mitigating inter-scanner 
variability, resulting in higher DSC and ICC values and lower SEM and 
SDC values compared to default or combined optimization approaches 
for both nicMSlesions and LST. As such, local optimization of automatic 
segmentation tools may provide the improvements required to imple
ment these in the standard clinical routine.
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