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Abstract
Background and Objectives
Patients with multiple sclerosis (MS) often experience cognitive impairment, and this is related to
structural disconnection and subsequent functional reorganization. It is unclear how specific pat-
terns of functional reorganization might make it harder for cognitively impaired (CI) patients with
MS to dynamically adapt how brain regions communicate, which is crucial for normal cognition.We
aimed to identify dynamic functional network patterns that are relevant to cognitive impairment in
MS and investigate whether these patterns can be explained by altered energy costs.

Methods
Resting-state functional and diffusion MRI was acquired in a cross-sectional design, as part of
the Amsterdam MS cohort. Patients with clinically definitive MS (relapse-free) were classified
as CI (≥2/7 domains Z < −2), mildly CI (MCI) (≥2/7 domains Z < −1.5), or cognitively
preserved (CP) based on an expanded Brief Repeatable Battery of Neuropsychological Tests.
Functional connectivity states were determined using k-means clustering of moment-to-
moment cofluctuations (i.e., edge time series), and the resulting state sequence was used to
characterize the frequency of transitions. Control energy of the state transitions was calculated
using the structural network with network control theory.

Results
Imaging and cognitive data were available for 95 controls and 330 patients (disease duration: 15
years; 179 CP, 65 MCI, and 86 CI). We identified a “visual network state,” “sensorimotor network
state,” “ventral attention network state,” and “default mode network state.” CI patients transitioned
less frequently between connectivity states compared withCP (β = −5.78; p = 0.038). Relative to the
time spent in a state, CI patients transitioned less from a “default mode network state” to a “visual
network state” (β = −0.02; p = 0.004). The CI patients required more control energy to transition
between states (β = 0.32; p = 0.007), particularly for the same transition (β = 0.34; p = 0.049).

Discussion
This study showed that it costs more energy for MS patients with cognitive impairment to
dynamically change the functional network, possibly explaining why these transitions occur less
frequently. In particular, transitions from a default mode network state to a visual network state
were relevant for cognition in these patients. To further study the order of events leading to
these network disturbances, future work should include longitudinal data across different
disease stages.
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Introduction
Cognitive impairment is a highly debilitating symptom of
multiple sclerosis (MS) that occurs in up to 65% of patients.1

In MS, neurodegeneration and neuroinflammation damage
the CNS, giving rise to focal lesions and brain atrophy.2 These
patterns can be detected using MRI, which is essential for
diagnosis,3 but do not fully explain clinical outcomes such as
cognitive impairment.4 In MS, damage to the anatomical
pathways between brain regions (i.e., structural connectivity)
can also affect their communication (i.e., functional connec-
tivity).5 Novel conceptual and mathematical tools were
needed to describe how the MS brain is (dis)organized and
how this may lead to cognitive impairment. In this push,
network neuroscience has been crucial in which the brain is
represented as a graph consisting of brain regions (i.e., nodes)
that are structurally and functionally connected (i.e., edges).6

This is a more holistic approach because it does not focus on
single connections but models how all regions interact. Using
this framework, it was learned that functional reorganization
likely plays an important role in compensating for structural
damage in the early stages of MS, which in theory would be
energetically costly.7 As structural damage accumulates, a
critical threshold is passed after which the network cannot
function properly and costly compensatory strategies fail.8

Key to this loss of function seems to be the overload of a few
highly connected brain regions (i.e., hubs), such as regions in
the default-mode network (DMN).9

A hub overload could leave the brain network less dynamically
adaptable to cognitive challenges.7 However, these dynamic
characteristics have often not been explicitly analyzed because
most earlier studies averaged connectivity over time (i.e., static
connectivity).10 This means that time-dependent patterns
(i.e., dynamic connectivity) were neglected. Dynamic network
alterations are integral brain processes relevant to cognitive
functioning by themselves, for instance allowing the brain to
transition between modes of segregated and integrated pro-
cessing.11 Recent studies have observed disturbed network
dynamics in MS patients with cognitive impairment, even
without subjecting them to an explicit task (i.e., resting-state).
For example, regions in the DMN, frontoparietal network
(FPN), and visual network (VIS) showed less connectivity
dynamics.12 This has been interpreted as indicating that hubs
can be stuck in an “overloaded” state.7 Brain network dynamics
of cognitively impaired (CI) patients withMSmight be affected
in nonhubs as well,13 so it is important to look at dynamics of

the functional network as a whole. Accordingly, recent studies
applied a holistic model in which recurrent whole-brain con-
nectivity patterns (i.e., “connectivity states”) were identified
over time,14 showing that CI patients with MS transitioned less
fluidly between such states compared with cognitively pre-
served (CP) patients.15 Thus, less network adaptability might
be particularly important for cognitive impairment in MS.
Questions remain, including which specific adaptations are
important for cognitive impairment? In addition, can structural
network disturbances impede network adaptability by in-
creasing energy costs?

Sensitivity to changes occurring on small temporal scales is
needed to accurately characterize transitions between con-
nectivity states. Nevertheless, connectivity dynamics have
usually been captured using a sliding-window approach, which
induces temporal blurring by computing correlations over
windows of around a minute long.16 This can be ameliorated
by temporally unwrapping correlation values and focusing
on the resulting “edge time series,” which represent moment-
to-moment cofluctuations of regional brain activity. This
approach makes it possible to disentangle brief events of high-
amplitude cofluctuations from nonevents.16,17 Disentangling
these could be useful because both were related to cognitive
performance and may provide unique insights.18

The structural network shapes brain functioning, so factors
altering the structural network (e.g., damage or innate to-
pology) can affect functional network dynamics too. The
interaction between structure and function was related to
cognitive impairment in MS,19 but an intuitive link
explaining how the structural network could shape func-
tional network dynamics has been missing. Network control
theory can provide this, by modelling how complex func-
tional patterns emerge from an underlying structural net-
work. According to this framework, the wiring of the brain
makes certain dynamic transitions occur naturally
(i.e., natural trajectory), but other transitions require addi-
tional external input (i.e., control energy). It is important
that it allows quantifying the control energy that is required
for specific state transitions.20 Control energy has been lik-
ened to cognitive demand or mental load, so these measures
quantify how effortful state transitions are. Recent work
showed that physically disabled patients with MS required
more control energy to transition between activity states,21

but it is unclear whether this can explain disrupted network
dynamics in patients with cognitive impairment.

Glossary
CI = cognitively impaired; CP = cognitively preserved; DGM = deep gray matter; DMN = default-mode network; EDSS =
Expanded Disability Status Scale; Emin = minimum control energy; FA = fractional anisotropy; FLAIR = fluid-attenuated
inversion recovery; FOD = functions and orientation distribution; FPN = frontoparietal network;HC = healthy control;MCI =
mildly CI; MS = multiple sclerosis; SMN = sensorimotor network; TE = echo time; TR = repetition time; VAN = ventral
attention network; VIS = visual network.
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Therefore, this work aimed to increase our understanding of
the functional underpinnings of cognitive impairment in MS.
This is performed by characterizing framewise connectivity
state transitions and computing the control energy required
for these transitions. Based on abovementioned results
pointing toward a hub overload, we hypothesized that MS
patients with cognitive impairment would remain “stuck” in
(i.e., transition away less from) states featuring relatively high
connectivity of networks with many hub regions. This pattern
was expected to be explained by the energetic costs of making
the transitions.

Methods
Participants
Cross-sectional imaging from the Amsterdam MS cohort was
analyzed, including patients with MS and healthy controls
(HCs) based on the availability of functional and diffusionMRI
data. Participants were recruited at the MS Center Amsterdam
between 2008 and 2012. Functional network dynamics has
been described previously for these participants,12,22 but not
yet in combination with diffusion MRI data (for details, see
eMethods 1). All patients were diagnosed with clinically defi-
nite MS according to the 2010 revised McDonald criteria.3

These patients were required to be relapse-free and without
steroid treatment for 2 months before participation, and have
no history of a psychiatric and/or neurologic disease besides
MS. No other inclusion criteria related to treatment, disease
duration, or other factors concerning overall disease severity
were used. Age, sex, and the highest obtained level of education
were acquired from all participants, and clinical data obtained
from patients included symptom duration, disease phenotype,
and treatment status. The Expanded Disability Status Scale
(EDSS) was administered by a neurologist to characterize the
level of physical disability. Fatigue was ascertained in a subset of
patients (N = 167) with the checklist individual strength-20
revised.

Standard Protocol Approvals, Registrations,
and Patient Consents
Study approval was acquired from the institutional ethics review
board of the AmsterdamUMC, location VUmc. All participants
provided written informed consent before participation.

Neuropsychological Assessment
An expanded Brief Repeatable Battery of Neuropsychological
Tests was used on the same day as the MRI examination.23

Performance on individual tests was adjusted for age, sex, and
education effects in the HCs and associated with a specific
cognitive domain for descriptive purposes. Domains included
executive functioning (concept shifting test), verbal memory
(selective reminding test), information processing speed
(symbol digit modalities test), verbal fluency (word list gen-
eration test), visuospatial memory (spatial recall test), work-
ing memory (memory comparison test), and attention
(stroop color-word test). The paced auditory serial addition
task was excluded because of extensive learning effects in our

sample. The scores were transformed to z-scores based on the
distribution of HCs. Performance on all domains was com-
pared with HCs, resulting in 3 groups in MS: CI, mildly CI
(MCI), and CP. Classification of CI patients was defined as
scoring at least 2 SDs below HCs on 2 or more cognitive
domains.9 Patients who were not defined as CI, but scored at
least 1.5 SDs below HCs on 2 or more cognitive domains,
were classified asMCI. All other patients were classified as CP.

MRI Acquisitions
All scans were acquired using a 3T MRI scanner (GE Signa-
HDxt, Milwaukee, WI) with an 8-channel phased-array head
coil. The protocol included a 3D T1-weighted fast spoiled
gradient echo sequence (repetition time [TR]/echo time
[TE] = 7.8/3 milliseconds; inversion time = 450milliseconds;
flip angle = 12°; sagittal slice thickness = 1.0 mm; in-plane
resolution = 0.9 × 0.9 mm), a 3D T2-weighted fluid-
attenuated inversion recovery (FLAIR) sequence (TR/TE =
8,000/125 milliseconds; inversion time = 2,350 milliseconds;
sagittal slice thickness = 1.2 mm; in-plane resolution = 1.0 ×
1.0 mm), a resting-state fMRI echo planar imaging sequence
(202 volumes; TR/TE = 2,200/35 milliseconds; flip angle =
80°; axial slice thickness = 3 mm, contiguous; in-plane reso-
lution = 3.3 × 3.3 mm; eyes closed), and a diffusion tensor
imaging sequence using 5 volumes without directional
weighting (b = 0 s/mm2) and 30 with noncollinear diffusion
gradients (b = 1,000 s/mm2, TR/TE = 13,000/91 millisec-
onds, flip angle = 90°, axial slice thickness = 2.4 mm, contig-
uous; in-plane resolution = 2 × 2 mm).

Image Preprocessing

Lesion Detection and Filling
White matter lesions of patients with MS were automatically
segmented on FLAIR images,24 and the resulting lesionmasks
were linearly registered to T1-space to perform lesion filling.25

Functional Preprocessing
The fMRI images of all 425 participants were preprocessed
using the MELODIC pipeline (FSL 6),26 including the re-
moval of the first 2 volumes, motion correction, brain ex-
traction, and 4 mm Gaussian smoothing. Subsequently,
ICA-AROMA (v0.4-beta)27 was used for automatic removal
of residual motion artifacts. Then, regression of mean white
matter and CSF signal was performed, followed by high-pass
temporal filtering, boundary-based registration to T1-space,
and coregistration and registration to standard space.

Diffusion Preprocessing
Complete diffusion MRI data were available for 420 partici-
pants. Preprocessing was performed using QSIPrep 0.14.3.28

This included denoising and correction for B1 field in-
homogeneity, head motion, and eddy currents. Then, a de-
formation field was estimated using a registration-based
fieldmap-less approach and used to calculate an unwarped b0
reference (warping constrained along the phase-encoding
direction).29 The unwarped diffusion data were then regis-
tered to the T1-weighted volume with 2 mm isotropic voxels.
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Fiber response functions and orientation distributions
(FODs) were produced with an unsupervised multitissue
method and subsequent intensity normalization.30

Structural Damage Indicators

Volumetric Measures
FreeSurfer 7.1.1 was performed on lesion-filled T1-weighted
images and used to derive cortical gray matter volume.31 Deep
gray matter volume was derived using FSL’s FIRST. Both
cortical and deep gray matter volumes were normalized for
the estimated total intracranial volume by freesurfer. Lesion
masks (see “Lesion detection and filling”) were used to de-
termine white matter lesion volume.

White Matter Integrity
Fractional anisotropy (FA) was calculated for each voxel using
DSI studio.32 FA maps were nonlinearly registered and pro-
jected onto an FA template skeleton, using the tract-based
spatial statistics pipeline.33 The mean FA over the whole
skeleton signified white matter integrity. This approach was
chosen to minimize partial volume effects.

Network Generation

Functional Networks
All 210 cortical regions from the Brainnetome atlas34 were
combined with 14 deep gray matter (DGM) segmentations
derived from FSL’s FIRST and transformed to fMRI space.
For visualization, all regions were assigned to 1 of 7 cortical
resting-state subnetworks35 based on maximum overlap. All
DGM regions were combined into 1 distinct network. Only
voxels that represented gray matter were included, whereas a
distorted resting-state fMRI signal was excluded from the
atlas.9 Regions with less than 30% nondistorted voxels in
more than 10% of participants were discarded (the bilateral
orbitofrontal and nucleus accumbens). This resulted in 197
brain regions from which regional functional time series were
extracted. We computed edge time series by transforming
nodal time series to z-scores (using nodal means and SDs)
and performing pointwise multiplication.16,17 Edge time se-
ries characterized a 197 × 197 functional network for each
frame in the scan (Figure 1A).

Structural Networks
Tractography was performed using MRTrix3 using the
normalized white matter FODs, by applying iFOD2 prob-
abilistic tracking to generate 10 million streamlines.36 An-
atomical constraints were provided by a hybrid surface/
volume segmentation.37 Finally, streamline weights were
calculated using SIFT2,38 and a 196 × 196 structural con-
nectivity matrix was filled with the weighted number of
streamlines connecting brain regions, using only regions in
the functional network (excluding the cerebellum because
of its structural complexity).

Registrations, response functions, and structural networks
were visually inspected. No incoherent data were observed.

State Dynamics

State Identification
Edge time series were concatenated across participants, and k-
means clustering (MATLAB) was performed to derive 2–7
connectivity states,14 with 5 replicates and city block distance.
The optimal number of states was derived using the elbow
criterion, resulting in 4 states whose centroids (cluster me-
dian) represented robust coactivation patterns. The resulting
state sequence assigns each frame to a connectivity state. The
organization of these states was described by computing
global mean connectivity, global efficiency, modularity, and
the eigenvector centrality per resting-state network of the
centroids, using the brain connectivity toolbox. The network
with highest centrality was used to name the states.

State Dynamics Characterization
The total number of transitions across all states, as well as the
average fractional occupancy (time spent in each state) and
relative transition probabilities (probability of transitioning
between and persisting within each individual state) were
computed (Figure 1B).14 These transition probabilities are
based on the temporal ordering of connectivity patterns,
meaning that they are directional (i.e., [state 1 → state 2] ≠
[state 2→ state 1]). In line with previous research,39 relative
transition probabilities from states that were not visited were
considered missing values.

Control Energy
The nctpy Python toolbox was used to determine control
energy based on network control theory (see eMethods 2 for
details). Minimum control energy (Emin) was calculated per
brain region, reflecting the minimum external input that ex-
plains the observed change in brain activity (Figure 1C). The
sum across brain regions defined overall required energy for a
transition. Averaging Emin from the same state transitions
using information from the state sequence, resulted in a 4 × 4
control energy transition matrix per participant (Figure 1D).
Each transition in the transitionmatrix was transformed to a z-
score based on the distribution of HCs for that transition. The
average across the entire matrix determined the total control
energy required across state transitions, representing overall
energy inefficiency or energetic costs. The means of the di-
agonal values determined persistence control energy, denot-
ing the costs of staying in the same state. The off-diagonal
values were used for transition control energy, signifying the
costs of transitioning to a different state. Some transitions
were not observed in specific individuals, so the control en-
ergy for these transitions was regarded as missing values.

Statistical Analyses
SPSS 28 was used for all statistical analyses. All group com-
parisons (unless differently specified) were adjusted for age,
sex, and education. Education was based on the highest level
attained and was binarized for analyses (higher vocational
education or university yes/no). When the same analysis was
performed across multiple states or transitions, multiple
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Figure 1 Illustration of the Quantification of State Dynamics and Control Energy

(A) Functional MRI (fMRI) data were used to create edge time series, which reflected a functional network per time point. These networkswere clustered using
k-means clustering to define brain states (S1-S3 in this example; each represented by different colors). (B) Cross-state dynamics were quantified using the
total number of transitions, whereas fractional occupancy (i.e., fraction of time spent in each state) was used as state-specific measure and the transition
probability (Ti,j: probability of transitioning from state i to state j, relative to the total transitions from i) as transition-specific measure. (C) Information on the
number of streamlines of whitematter (WM) tracts (based on diffusionMRI) was combined with fMRI data, to derive theminimum control energy (Emin) that
is required to transition between successive frames. (D) The resulting Emin values were averaged over the same transitions (using the state sequence) to
compute an energy transitionmatrix for each participant, so this matrix denotes themean Emin required for each type of transition. Themean over the total
matrix signified total control energy (CE), whereas the diagonal and off-diagonal reflected transition and persistence CE.
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comparisons were taken into account using Bonferroni and
corrected p-values were reported. An α-level of 0.05 was con-
sidered statistically significant. Normality of the dependent var-
iables was inspected visually and using Kolmogorov-Smirnov
tests.

Demographics and clinical variables were compared between
the cognitive groups (HC, CP, MCI, and CI) using χ2 tests of
independence for categorical variables and analysis of vari-
ances for numeric variables (no adjustment for covariates).
For group comparisons of all imaging measures, linear mixed
models were used when the data were normally distributed
and Quade’s nonparametric analysis of covariance if not.
These tests allow finding ordered as well as nonordered effect
across cognitive groups. Using this approach, differences in
the total number of state transitions and the fractional occu-
pancy of each specific state were compared between cognitive
groups. Transition probabilities were investigated for states
that showed differences between groups. Total control energy
as well as transition and persistence control energy were
compared between the cognitive groups. Then, the difference
in control energy required to transition between specific states
was evaluated. Finally, the connection between transition
probability and control energy was investigated in relation to

measures of structural damage and clinical indicators of MS
using partial correlations.

Data Availability
Anonymized data, not published in the article, will be shared
on reasonable request from a qualified investigator. Code is
available on GitHub.40

Results
Demographics and Clinical Characteristics
Complete fMRI and neuropsychological assessments were
available for 330 patients (mean age of 48 ± 11 years; 68%
female) and 95 HCs (mean age of 46 ± 10 years, 58% female).
Across all patients, 179 (54%) were classified as CP
(131 women, mean age: 46 ± 10 years), 65 (20%) as MCI
(42 women, mean age: 49 ± 12 years), and 86 (26%) as CI
(51 women, mean age: 51 ± 11 years). Cognitive groups dif-
fered on age, sex, and educational level (Table 1). Finally, CI
patients showed most gray matter atrophy and lesion volume.

State Organization
Four connectivity states were identified (Figure 2A). The first
state was moderately connected with relatively high centrality

Table 1 Demographic, Clinical, and Brain Volumetric Sample Characteristics

HC (N = 95)

MS

Test statistic p ValueCP (N = 179) MCI (N = 65) CI (N = 86)

Demographics

Male, n 40 (42.1%) 48 (26.8%) 23 (35.4%) 35 (40.7%) χ2 = 8.607 0.035a

Age, y 45.70 ± 10.35CI 46.16 ± 10.35CI 49.19 ± 12.15 51.21 ± 10.66HC,CP F = 5.819 <0.001a

Level of educationb 6 (3)MCI,CI 6 (2)MCI,CI 4 (3)HC,CP 4 (3)HC,CP F = 7.035 <0.001a

Handedness, left/right/missing 0/0/95 24/153/2 3/61/1 10/76/0 χ2 = 3.698 0.157

Disease characteristics

Symptom duration — 13.49 ± 7.83CI 14.15 ± 8.15 17.17 ± 9.30CP F = 5.799 0.003a

Disease phenotype, RRMS/SPMS/PPMS — 147CI/20CI/12MCI 47/6CI/12CP 49CP/25CP,MCI/12 χ2 = 26.106 0.001a

Treatment, yes, n — 63 (35.2%) 26 (40.0%) 57 (33.7%) χ2 = 0.689 0.709

IFB/COP/NA/other — 37/6/16/4 18/6/1/1 18/4/6/1 χ2 = 7.666 0.264

EDSSb — 3 (2)CI 3 (1.5)CI 4 (2.75)CP,MCI F = 25.360 <0.001a

Brain volume

Cortical GM, BPF (%) 32.28 ± 1.52CI 31.99 ± 1.77CI 31.69 ± 1.99CI 30.59 ± 1.71All F = 16.823 <0.001a

Deep GM, BPF (%) 3.01 ± 0.21All 2.78 ± 0.29All 2.65 ± 0.33All 2.40 ± 0.41All F = 61.422 <0.001a

Lesion volume, mL — 10.28 (8.63)All 14.05 (11.02)All 22.09 (17.00)All F = 21.126 <0.001a

Abbreviations: BPF = brain parenchymal fraction; CI = cognitive impairment; cop = copaxone; CP = cognitively preserved; EDSS = Expanded Disability Status
Scale; GM = graymatter; HC = healthy control; IFB = interferon β; MCI =mild cognitive impairment; MS =multiple sclerosis; NA = natalizumab; PPMS = primary
progressive MS; RRMS = relapsing-remitting MS; SPMS = secondary progressive MS.
All values represent means and SDs for the continuous variables but signify medians and the interquartile range (b) or frequencies for categorical variables.
Sample characteristics were compared between all groups. The level of education was based on the highest level of education attained. Brain lesion volume
was transformed tomilliliters for readability. Post hoc pairwise comparisons were Bonferroni corrected (All = significantly different from all other groups, HC =
significantly different from HC, CP = significantly different from CP, MCI = significantly different from MCI, CI = significantly different from CI).
a p < 0.05.
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of the sensorimotor network (SMN) but highest in the VIS,
because of which it was described as the VIS state (Figure 2B).
The second state was strongly connected overall, most no-
tably in the SMN, and thus termed the SMN state. The third
state showed moderate connectivity strength, with highest
centrality in the ventral attention network (VAN) and
therefore called the VAN state. The fourth state was highly
modular with overall weak connectivity and highest centrality
in the DMN; thus, it was named the DMN state. These state
descriptions are merely qualitative in nature and included to
facilitate readability.

State Dynamics

Total Transitions
The transition frequency (F(3,418) = 4.92, p = 0.002) was
lower in CI compared with CP patients and HCs (Figure 3
and Table 2). MCI patients also transitioned less frequently

compared with HCs. Thus, dynamics became less fluid in
impaired patients.

Fractional Occupancy
VIS state fractional occupancy (F(3,418) = 9.38, p < 0.001) was
significantly lower in CI compared with CP patients and HCs.
Both MCI and CP patients also showed a lower VIS state
fractional occupancy compared with HCs. For the SMN state
(F(3,418) = 2.53, p = 0.226) and the VAN state (F(3,418) =
0.25, p = 1.000), the same directionality was observed, but no
significant group differences were found. The DMN state
fractional occupancy (F(3,418) = 5.55, p = 0.004) showed the
opposite effect, being higher in CI patients compared with
HCs. Although it was not significantly elevated in CI compared
with CP patients, all patients showed higher DMN state oc-
cupancy compared with HCs. These findings indicate that the
time spent in the VIS state and DMN state was altered in MS,
with impaired patients spending less time in the VIS state.

Figure 2 Brain State Organization

Four states were identified using k-means clustering. (A) The backbone of the network of the state (minimum spanning tree) is depicted, with the thickness
indicating connection strength and the colored edges indicating within-network connections and gray edges between network connections. The corre-
sponding connectivity matrices are depicted below. (B) Global connectivity strength, global efficiency, global modularity, and themean eigenvector centrality
per resting-state network are portrayed per state centroid to help illustrate how states differed fromeach other. DAN= dorsal attention network; DGM=deep
gray matter; DMN = default-mode network; FPN = frontoparietal network; SMN = sensorimotor network; VAN = ventral attention network; VIS = visual
network.
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Transition Probabilities
Based on the results above, the persistence and transition
probabilities of the VIS state and DMN state were explored
further. For VIS state persistence (F(3,404) = 4.34, p =
0.020), lower probabilities were observed in CI compared
with CP patients and HCs. MCI also showed lower VIS state
persistence probability compared with HCs. For DMN state
persistence (F(3,418) = 4.62, p = 0.014), differences were not
observed between patients and only a heightened probability
was observed compared with HCs across all patient groups.
Regarding the VIS → DMN transition (F(3,404) = 4.05, p =
0.030), CI showed higher probabilities compared with CP
patients and HCs. The inverse was true for the DMN→ VIS
transition (F(3,418) = 7.99, p < 0.001) because CI showed a
lower probability compared with CP.

Control Energy

Total Control Energy
Of 330 patients, 5 had incomplete diffusion MRI data (3 CP
and 2 MCI) and were excluded from these analyses. Total
control energy (F(3,413) = 6.56, p < 0.001) was increased in
MCI and CI compared with CP patients and HCs (Figure 4
and Table 2).

Persistence and Transition Control Energy
Persistence control energy was not different between groups
(F(3,413) = 2.99, p = 0.061); thus, staying in the same state
was not more energetically costly in CI. Transition control
energy (F(3,411) = 6.19, p < 0.001) was increased in MCI
and CI compared with CP patients and HCs. This indicated

Figure 3 Brain State Dynamics Across Cognitive Groups

In CI patients, fewer transitions between brain stateswere observed comparedwith CP andHCs. These patients spend less time in the VIS state andmore time
in the DMN state. CI patients show a lower probability tomove from the DMN state to the VIS state and stay there relative to preserved patients, whereas the
transition from the VIS state to the DMN state was more likely. The thickness of the arrows on the bottom right indicates the relative probability of that
transition occurring on average in HCs. CI = cognitively impaired; CP = cognitively preserved; DMN = default-mode network; HC = healthy control; MCI =mildly
impaired; VIS = visual network. *p < 0.05, **p < 0.01, ***p < 0.001.
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that CI featured more energetically costly transitions be-
tween states. Based on these findings, we used transition and
not total control energy in the correlations with disease
severity.

Energy of Specific State Transitions
Similarly to transition probability, Emin of VIS state and
DMN state transitions were compared between groups. Only
DMN→ VIS transition energy showed significant differences
between groups (F(3,398) = 3.87, p = 0.038), with CI and
MCI patients both showing increased energy compared with
CP patients and HCs. VIS → DMN transition energy
(F(3,396) = 2.24, p = 0.332), as well as VIS state persistence
energy (F(3,320) = 0.53, p = 1.000) or DMN state (F(3, 413)
= 3.30, p = 0.084) did not differ between groups.

Exploratory analyses showed a stepwise worsening of struc-
tural network disruption in higher-order networks and the
DGM (eMethods 3).

Validation Analyses
For most analyses showing group differences, age and sex were
significant covariates and education was not. For VIS→DMN
transition probability, only age was a significant covariate.
Differences between CI and CP patients were largely retained
when comparing only right-handed individuals, with only a
trend observed for DMN → VIS transition energy (possibly
due to power; eMethods 4).

Correlations With Disease Severity

Structural Damage
Reduced white matter integrity in patients with MS related to
less frequent state transitions (r(320) = 0.16, p = 0.013), an
increased DMN state persistence (r(320) = −0.16, p = 0.017),
more transition control energy (r(318) = −0.15, p = 0.023), and
moreVIS→DMNtransition energy (r(303) = −0.17, p= 0.010;
Table 3). No relationship with gray matter volume was observed
(validated using cortical thickness; eMethods 5).

Figure 4 Control Energy of Brain State Transitions Across Cognitive Groups

InCIpatients, transitionsbetweenandwithinbrain statesweremoreenergetically costly comparedwithCPandHCs. Inparticular,morecontrol energywas required for
transition between states, not for persisting in the same state. The transition from the DMN state to the VIS state was particularly more costly in CI compared with CP
patients. The thickness of the arrows on the bottom left indicates howmuch control energy is required on average in HCs for that transition. CI = cognitively impaired;
CP = cognitively preserved; DMN = default-mode network; HC = healthy control; MCI = mildly impaired; VIS = visual network. *p < 0.05, **p < 0.01, ***p < 0.001.
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Clinical Outcomes
Worse EDSS related to fewer transitions (r(325) = −0.16, p =
0.010), a higher VIS → DMN transition probability (r(303) =
0.15, p = 0.013), increased DMN state persistence probability
(r(325) = 0.15, p = 0.013), and DMN → VIS transition prob-
ability (r(325) = −0.13, p = 0.046). Worse EDSS also related to
more VIS→DMN transition energy (r(311) = 0.16, p = 0.008).

Cognitive Domains
Poorer information processing speed related to fewer transi-
tions (r(323) = −0.17, p = 0.014). Worse information pro-
cessing speed (r(316) = −0.22, p = 0.001) and verbal fluency
(r(317) = −0.19, p = 0.004) associated with elevated transi-
tion energy in MS. Lower information processing speed

(r(309) = 0.16, p = 0.040) and attention (r(299) = 0.17, p =
0.020) related to less VIS state persistence probability. Poorer
attention related to more VIS→ DMN transition probability
(r(299) = −0.20, p = 0.004). Lower processing speed related
to higher DMN state persistence probability (r(323) = −0.15,
p = 0.045). Finally, poorer processing speed related to more
DMN → VIS transition energy (r(303) = −0.16, p = 0.047).

Discussion
This study showed that dynamic network changes required
for normal cognitive processing require more effort in CI
people with MS because transitions between connectivity

Table 2 State Dynamics and Control Energy Across Cognitive Groups

Mean (±SD) Main: Group CI vs CP

HC (N = 95) CP (N = 179) MCI (N = 65) CI (N = 86) F p Value β (95% CI) p Value

State dynamics

Total transitions 54.9 (18.7)MCI,CI 48.0 (22.3) 43.3 (21.6)HC 42.1 (23.4)HC,CP 4.92 0.002a −5.78 (−11.23, −0.32) 0.038a

Fractional occupancy

VIS state 0.11 (0.07)MCI,CI 0.08 (0.06)HC 0.07 (0.06)HC 0.06 (0.06)HC,CP 9.38 <0.001a −0.02 (−0.04, −0.01) 0.004a

SMN state 0.03 (0.03) 0.02 (0.03) 0.02 (0.03) 0.02 (0.03) 2.53 0.226

VAN state 0.09 (0.05) 0.08 (0.05) 0.08 (0.05) 0.08 (0.06) 0.25 1.000

DMN state 0.77 (0.10)All 0.81 (0.10)HC 0.83 (0.11)HC 0.83 (0.10)HC 5.55 0.004a 0.03 (0.00, 0.05) 0.053

Transition probability

VIS state persist (NA = 14) 0.29 (0.18)MCI,CI 0.27 (0.18)CI 0.22 (0.18)HC 0.20 (0.20)HC,CP 4.34 0.020a −0.06 (−0.11, −0.02) 0.007a

VIS state → DMN state (NA = 14) 0.57 (0.20) 0.62 (0.21) 0.63 (0.25) 0.70 (0.24)HC,CP 4.05 0.030a 0.08 (0.02, 0.14) 0.005a

DMN state persist 0.84 (0.07)All 0.86 (0.07)HC 0.88 (0.07)HC 0.88 (0.08)HC 4.62 0.014a 0.02 (0.00, 0.04) 0.062

DMN state → VIS state 0.08 (0.05)CI 0.07 (0.05)CI 0.05 (0.04) 0.05 (0.04)HC,CP 7.99 <0.001a −0.02 (−0.03, −0.01) 0.004a

HC (N = 95) CP (N = 176) MCI (N = 63) CI (N = 86) F p Value β (95% CI) p Value

Control energy

Total control energy 0.09 (0.57)MCI,CI 0.38 (0.73)MCI,CI 0.66 (1.23)HC,CP 0.57 (0.88)HC,CP 6.56 <0.001a 0.25 (0.04, 0.46) 0.018a

Persistence energy 0.10 (0.73) 0.35 (0.92) 0.64 (1.03) 0.53 (0.94) 2.99 0.061

Transition energy (NA = 2) 0.08 (0.58)MCI,CI 0.24 (0.76)MCI,CI 0.62 (1.35)HC,CP 0.58 (1.00)HC,CP 6.19 <0.001a 0.32 (0.09, 0.54) 0.007a

Transition energy

VIS state persist (NA = 93b) 0.00 (1.00) 0.05 (1.07) 0.28 (1.84) 0.01 (1.21) 0.53 1.000

VIS state → DMN state (NA = 17) 0.00 (1.00) 0.12 (1.06) 0.40 (1.53) 0.47 (1.38) 2.24 0.332

DMN state persist 0.00 (1.00) 0.38 (1.07) 0.66 (1.18) 0.47 (1.03) 3.30 0.084

DMN state → VIS state (NA = 15) 0.00 (1.00)MCI,CI 0.11 (0.93)MCI,CI 0.64 (1.75)HC,CP 0.51 (1.64)HC,CP 3.87 0.038a 0.34 (0.00, 0.67) 0.049a

The total frequency of transitions was lower in cognitively impaired (CI) patients comparedwith preserved (CP) patients and healthy controls (HCs). CI patients
spent relatively less time in the VIS state andmore in the DMN state, with transition probabilities highlighting a general pattern ofmore transitions toward the
DMN state and away from the VIS state. The total control energy and particularly the control energy associatedwith transitions were elevated in CI andmildly
cognitively impaired (MCI) patients compared with CP patients and HCs. This was most notable for the transition from the DMN state to the VIS state. If a
participant did not access a particular state, this occasionally resulted in missing values (NA; i.e., not available).
The reported p values for the main group effects were corrected for multiple comparisons using Bonferroni, and pairwise comparisons are reported if the
corrected p < 0.05 (All = different from all other groups, HC = different from HC, CP = different from CP, MCI = different from MCI, CI = different from CI).
a p < 0.05.
b The proportion of missing values was higher for MCI and CI patients compared with controls and CP patients.
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Table 3 Correlational Analyses

Total transitions
(N = 330)

Transition control
energy (N = 323)

VIS state persist VIS → DMN DMN state persist DMN → VIS

Probability
(N = 316)

Control energy
(N = 243)

Probability
(N = 316)

Control energy
(N = 308)

Probability
(N = 330)

Control energy
(N = 325)

Probability
(N = 330)

Control energy
(N = 310)

r p Value r p Value r p Value r p Value r p Value r p Value r p Value r p Value r p Value r p Value

Structural damage

Cortical GM volume 0.13 0.085 −0.08 0.689 0.04 1.000 −0.12 0.268 −0.03 1.000 −0.08 0.646 −0.14 0.057 −0.05 1.000 0.02 1.000 −0.08 0.660

Deep GM volume 0.07 0.833 −0.02 1.000 0.05 1.000 −0.05 1.000 −0.10 0.344 −0.02 1.000 −0.06 1.000 0.04 1.000 0.02 1.000 −0.01 1.000

Lesion volume −0.07 0.925 0.00 1.000 −0.02 1.000 0.03 1.000 0.01 1.000 0.03 1.000 0.06 0.967 −0.04 1.000 −0.06 0.993 0.04 1.000

WM integrity 0.16 0.013a −0.15 0.023a 0.13 0.092 −0.04 1.000 −0.10 0.295 −0.17 0.010a −0.16 0.017a −0.06 1.000 0.09 0.464 −0.08 0.580

Clinical outcomes

EDSS −0.16 0.010a 0.09 0.184 −0.12 0.054 −0.01 1.000 0.15 0.013a 0.16 0.008a 0.15 0.013a 0.08 0.301 −0.13 0.046a 0.13 0.051

Fatigue −0.10 0.412 0.08 0.659 −0.11 0.352 0.14 0.268 0.16 0.084 0.21 0.020 0.11 0.332 0.03 1.000 −0.17 0.065 0.08 0.697

Cognitive domains

Executive functioning 0.08 1.000 −0.12 0.221 0.10 0.484 0.09 1.000 −0.13 0.146 −0.16 0.041 −0.06 1.000 0.03 1.000 0.08 1.000 −0.14 0.130

Verbal memory 0.09 0.693 −0.04 1.000 0.04 1.000 −0.11 0.599 −0.07 1.000 0.03 1.000 −0.08 1.000 −0.04 1.000 0.07 1.000 0.02 1.000

Processing speed 0.17 0.014a −0.22 0.001a 0.16 0.040a −0.08 1.000 −0.14 0.093 −0.15 0.077 −0.15 0.045a −0.09 0.799 0.11 0.279 −0.16 0.047a

Verbal fluency 0.09 0.765 −0.19 0.004a 0.08 1.000 −0.12 0.382 −0.09 0.806 −0.13 0.181 −0.08 1.000 −0.01 1.000 0.08 1.000 −0.15 0.055

Visuospatial memory 0.06 1.000 −0.06 1.000 0.13 0.137 0.03 1.000 −0.07 1.000 −0.04 1.000 −0.05 1.000 −0.08 1.000 0.06 1.000 −0.13 0.155

Working memory 0.06 1.000 −0.10 0.508 0.11 0.455 0.13 0.352 −0.09 0.839 −0.01 1.000 −0.05 1.000 −0.07 1.000 0.04 1.000 −0.05 1.000

Attention 0.11 0.321 −0.07 1.000 0.17 0.020a −0.09 1.000 −0.20 0.004a 0.00 1.000 −0.10 0.627 −0.08 1.000 0.11 0.310 −0.03 1.000

Abbreviations: BPF = brain parenchymal fraction; EDSS = Expanded Disability Status Scale; GM = gray matter; WM = white matter.
These correlational analyses were performed on data fromMSpatients (N = 330), withmissing values forWM integrity (5), fatigue (163), executive functioning (12), verbal memory (2), IPS (2), verbal fluency (1), workingmemory
(12), and attention (12). All correlations were adjusted for age, sex, and level of education. The p values were corrected for performing multiple comparisons using Bonferroni.
a p < 0.05.
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states required more control energy. This suggests that state
transitions became more effortful and may explain why tran-
sitions happen less frequently in CI patients with MS. The
results showed that impaired patients spent more time in the
DMN state and less in the VIS state, with the probability of
transitioning to and from the VIS state being altered in CI
patients. Transitions that happened more frequently did not
become less energetically costly, but patients who required
more control energy generally transitioned toward the DMN
state and away from the VIS state.

CI andMCI usedmore control energy for transitions between
connectivity states. This provides a mechanistic un-
derstanding of reduced brain dynamics in MS patients with
cognitive impairment, suggesting that state transitions be-
came more cognitively and metabolically demanding,20 which
may prevent transitions from occurring. An alternative pos-
sibility is that transitions occurring less frequently become
more energetically costly. However, MCI patients only
showed differences from CP for control energy and not state
dynamics, suggesting more costly dynamics may precede
abnormal state transitions over the disease course. Several
possible explanations exist for more energetically costly net-
work dynamics in MS. First, demyelination-related conduc-
tion delays in MS can affect efficient information transfer,41

which matches our observed link with white matter integrity.
We detected no relationship with lesion volume or atrophy in
MS. This suggests that demyelination severity could affect
these measures more strongly than changes in brain mor-
phometry or diffuse demyelination, which can be further
studied using modelling work with individualized estimations
of conduction velocities.42 Second, more energetically costly
transitions may be linked to an excitation-inhibition imbal-
ance43 because an adequate balance is critical for efficient
neural encoding44 and cognition in MS.45 Third, structural
damage in MS might impair the efficient wiring and make
transitions more energetically costly.46

The VIS state was especially important for cognition because
CI-MS was less likely to stay in this state and more likely to
move to the DMN state than CP patients. Conversely, when
in the DMN state, CI patients moved to the VIS state less.
Thus, CI patients did not only get “stuck” in states featuring
relatively high connectivity of hub networks (e.g., the DMN)
7,9,12 but also returned to them more often. Moreover, the
DMN state was weakly connected, which may not align with
an overload of hubs. This weakly connected state was the
most abundant across participants, which was further elevated
in CI patients. Lower connectivity strength is arguably less
metabolically demanding,16 so residing in this state could be a
compensatory mechanism. Periods of low connectivity may
be uniquely relevant for cognition18 but were likely un-
derrepresented in static or windowed approaches,16 empha-
sizing the utility of framewise approaches. Periods of more
integrative connectivity (the VIS state) were observed less in
CI patients, whereas integrated processing is important for
complex cognitive tasks47 which is often impaired in MS.1

Alternative ways to integrate information across the network
may be important for CI patients because heightened dy-
namic connectivity was observed when quantifying dynamics
using an approach that is more sensitive to nonhub in-
tegration.13 Hampered transitions from the DMN state to the
VIS state might reflect disrupted switching between internally
and externally oriented processing, as previously proposed.12

No differences in state dynamics were observed for the SMN
state and VAN state. Future work should investigate whether
these states are less important for cognitive performance or
merely not sufficiently engaged at rest.

The total transition frequency may be a broad indicator of
disease severity because we also observed that fewer transi-
tions related to more physical disability. This aligns with prior
research on connectivity states in MS.15,48 The same might be
true for the increase in control energy for CI patients because
recent work showed that MS patients with physical disability
required more control energy.21 By contrast, we did not ob-
serve a relationship between physical disability and transition
control energy, possibly because our cohort had longer dis-
ease durations where disability mechanisms might be differ-
ent. Of interest, transition control energy was particularly
relevant for information processing speed and verbal fluency,
suggesting that it might be related to shared cognitive pro-
cesses, such as cognitive flexibility. Altered network dynamics
could theoretically affect fatigue in MS, given the observed
link between fatigue and energy metabolism.49 We did not
observe such a relationship, so dedicated studies now need to
test its importance for specific types of fatigue.

Disturbed network dynamics have been reported for several
other brain disorders, so our framework provides a broadly
applicable new perspective to link brain function to structural
network organization. Although control energy should not be
directly equated to metabolic energy, previous work did show
a relationship between control energy and glucose metabo-
lism.46 Parameter choice is still a topic of debate, however,
which is why we used data-driven optimization of the control
horizon.21 Despite these challenges, the current framework
offers an exciting opportunity and generalizable approach to
study and develop personalized treatment of cognitive im-
pairment in MS.50,51 Furthermore, although fine-grained tem-
poral scales can increase noisiness of windowed connectivity, the
current approach uses information (e.g., variance) from the
entire scan and is not affected by noisy estimations in the same
way.17 Higher b-values, more phase-encoding directions, and
isotropic acquisitions were recommended for structural network
generation, warranting future work to use advanced diffusion
protocols that might yield more sensitive markers of cognitive
dysfunction in MS. The chance of sojourning in the same state
was particularly low for event states (i.e., brief high-amplitude
cofluctuations), so other modalities that acquire data with a
better temporal resolution (e.g., electroencephalography/
magnetoencephalography) or that explicitly take the temporal
sequence into account when defining states may provide more
detailed insights. Finally, explicit stimuli (e.g., tasks or movies)
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would be required to understand the cognitive processes un-
derlying specific states.52

This study showed that transitions between connectivity
states cost more energy inMS patients with CI compared with
CP patients and controls. Heightened energetic costs might
limit the transitions between states and, in turn, negatively
affect cognition. The transitions between a DMN state and
VIS state seem to be particularly relevant for cognition in
these patients. These findings provide new insights into the
possible biological underpinnings of disturbed brain dynamics
in CI patients with MS. Future work should now focus on
investigating these patterns across different disease stages.
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Canada; 2019.

31. Fischl B. FreeSurfer.Neuroimage. 2012;62(2):774-781. doi:10.1016/j.neuroimage.2012.01.021
32. Yeh FC, Wedeen VJ, Tseng WY. Generalized q-sampling imaging. IEEE Trans Med

Imaging. 2010;29(9):1626-1635. doi:10.1109/TMI.2010.2045126
33. Smith SM, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: vox-

elwise analysis of multi-subject diffusion data. Neuroimage. 2006;31(4):1487-1505.
doi:10.1016/j.neuroimage.2006.02.024

34. Fan L, Li H, Zhuo J, et al. The human Brainnetome atlas: a new brain atlas based
on connectional architecture. Cereb Cortex. 2016;26(8):3508-3526. doi:
10.1093/cercor/bhw157

35. Yeo BT, Krienen FM, Sepulcre J, et al. The organization of the human cerebral cortex
estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(3):
1125-1165. doi:10.1152/jn.00338.2011

36. Smith RE, Tournier JD, Calamante F, Connelly A. Anatomically-constrained trac-
tography: improved diffusion MRI streamlines tractography through effective use of
anatomical information. Neuroimage. 2012;62(3):1924-1938. doi:10.1016/
j.neuroimage.2012.06.005

37. Smith R, Skoch A, Bajada CJ, Caspers S, Connelly A. Hybrid surface-volume seg-
mentation for improved anatomically-constrained tractography. 2020.

38. Smith RE, Tournier JD, Calamante F, Connelly A. SIFT2: enabling dense quan-
titative assessment of brain white matter connectivity using streamlines tractog-
raphy. Neuroimage. 2015;119:338-351. doi:10.1016/j.neuroimage.2015.06.092

39. Snyder W, Uddin LQ, Nomi JS. Dynamic functional connectivity profile of the
salience network across the life span.Hum Brain Mapp. 2021;42(14):4740-4749. doi:
10.1002/hbm.25581

40. GitHub. github.com/taabroeders/research-projects/tree/main/states_2024.
41. Berman S, Backner Y, Krupnik R, et al. Conduction delays in the visual pathways of

progressive multiple sclerosis patients covary with brain structure. Neuroimage. 2020;
221:117204. doi:10.1016/j.neuroimage.2020.117204

42. Sorrentino P, Pathak A, Ziaeemehr A, et al. The virtual multiple sclerosis
patient: on the clinical-radiological paradox. medRxiv. 2023. doi:10.1101/
2023.12.01.23299274

43. HuiskampM, Kiljan S, Kulik S, et al. Inhibitory synaptic loss drives network changes in
multiple sclerosis: an ex vivo to in silico translational study. Mult Scler. 2022;28(13):
2010-2019. doi:10.1177/13524585221125381

44. Sengupta B, Laughlin SB, Niven JE. Balanced excitatory and inhibitory synaptic
currents promote efficient coding and metabolic efficiency. PLoS Comput Biol. 2013;
9(10):e1003263. doi:10.1371/journal.pcbi.1003263

45. Huiskamp M, Yaqub M, van Lingen MR, et al. Cognitive performance in multiple
sclerosis: what is the role of the gamma-aminobutyric acid system? Brain Commun.
2023;5(3):fcad140. doi:10.1093/braincomms/fcad140

46. He X, Caciagli L, Parkes L, et al. Uncovering the biological basis of control energy:
structural and metabolic correlates of energy inefficiency in temporal lobe epilepsy. Sci
Adv. 2022;8(45):eabn2293. doi:10.1126/sciadv.abn2293

Appendix (continued)

Name Location Contribution

Christiaan H.
Vinkers, MD,
PhD

MS Center Amsterdam,
Anatomy & Neurosciences,
and MS Center Amsterdam,
Psychiatry, Vrije Universiteit
Amsterdam, Amsterdam
Neuroscience, Amsterdam
UMC location VUmc;
Amsterdam Public Health,
Mental Health Program; GGZ
inGeest Mental Health Care,
Amsterdam, the Netherlands

Drafting/revision of the
manuscript for content,
includingmedical writing for
content

Menno M.
Schoonheim,
PhD

MS Center Amsterdam,
Anatomy & Neurosciences,
Vrije Universiteit Amsterdam,
Amsterdam Neuroscience,
Amsterdam UMC location
VUmc, the Netherlands

Drafting/revision of the
manuscript for content,
includingmedical writing for
content; study concept or
design; analysis or
interpretation of data

Neurology | Volume 103, Number 9 | November 12, 2024 Neurology.org/N
e209952(14)

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.n
eu

ro
lo

gy
.o

rg
 b

y 
U

ni
ve

rs
ity

 C
ol

le
ge

 L
on

do
n 

(u
cl

) 
/ E

ng
la

nd
 o

n 
17

 O
ct

ob
er

 2
02

4

https://fmrib.ox.ac.uk/fsl
https://github.com/taabroeders/research-projects/tree/main/states_2024
http://neurology.org/n


47. Shine JM, Bissett PG, Bell PT, et al. The dynamics of functional brain networks:
integrated network states during cognitive task performance. Neuron. 2016;92(2):
544-554. doi:10.1016/j.neuron.2016.09.018

48. Koubiyr I, Broeders TAA, Deloire M, et al. Altered functional brain states predict
cognitive decline 5 years after a clinically isolated syndrome.Mult Scler J. 2022;28(12):
1973-1982. doi:10.1177/13524585221101470
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