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Abstract  

A methodology for operational schedules optimisation is introduced to reduce energy 

demand by exploiting monitored occupancy patterns for dynamic thermal model 

calibration. Significant periods of low occupancy were identified on a case study 

building to leverage with proactive operational strategies to reduce energy demand. 

These strategies involve the closure of specific building zones during these periods 

to optimise resource utilisation. Up to 6% annual energy savings was estimated, 

highlighting the effectiveness of zone closures. 

The study’s replicable data-driven framework can be scaled and extended to other 

buildings, with potential for widespread energy efficiency enhancements and cost 

reductions across similar type buildings. The research enhances the understanding 

of the relationship between occupancy and energy demand, while offering adaptable 

recommendations for more energy efficient and sustainable building operations. 
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1. Introduction  

Buildings serve as significant contributors to global energy consumption, specifically 

building operations accounting for 26% of total global energy consumption (1). 

Internationally, government policies and schemes have focused on amplifying 

energy efficiency to reduce carbon emissions of the buildings sector (1). 

Furthermore, operational energy consumption has been identified as the 

predominant contributor of a building's life cycle energy usage, accounting for 80-

90% (2). All stakeholders in the built environment bear a collective responsibility to 

champion enhanced sustainability practices, particularly in the domain of operational 

energy consumption.   

Building Energy Models (BEMs), particularly dynamic thermal simulation models, are 

tools for analysing energy flows, occupant behaviours, and environmental 

interactions in buildings (3). These models enable informed decision-making, 

supporting the development of operational strategies and addressing energy 

concerns in the built environment. They are essential instruments that allow 

stakeholders to gain a deeper understanding of energy dynamics within the built 

environment and to pave the way for more sustainable building practices.  

Efficient building operations are pivotal in achieving energy reduction goals, and the 

integration of data-driven responsiveness holds promise in this endeavour. The 

incorporation of smart data-driven control systems into building operations has 

gained prominence, offering the potential to optimise operational strategies without 

affecting building occupants. The influence of occupancy on building energy 

consumption can be substantial (4), motivating a focused exploration of strategies 

that respond operations to occupancy patterns to achieve significant energy savings. 

Occupancy-based climate controls were found to save energy consumption in both 

simulations and field experiments (5). Accounting for occupancy patterns without 

architectural changes can result in energy savings with minimal financial investments 

(6). 
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This study proposes a novel approach to leverage occupancy data to enhance 

operational energy efficiency strategies, which is adaptable to evolving occupancy 

patterns. The methodology is demonstrated on a 24-hour case study university 

building, henceforth termed “CSUB”, primarily serving as study spaces. Objectives of 

the study are: 

• Gain comprehensive understanding of the occupancy patterns of the building 

of interest; 

• Construct a baseline energy model; 

• Calibrate the energy model using measured electricity data;   

• Propose and simulate operational strategies in response to identified 

occupancy patterns; 

• Assess the impact of proposed strategies in social, operational, environmental 

and economic dimensions; 

• Recommend operational strategies that are responsive to occupancy 

patterns. 

The replicable data-driven framework is suited for scalability across different building 

stocks, providing a versatile energy reduction strategy without requiring significant 

physical retrofits. The research offers actionable recommendations for sustainable 

operational practices in buildings, addressing a major source of global carbon 

emissions.  
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2. Methodology 

2.1. Case study building 

The case study building is an eight-storey educational building in London, United 

Kingdom. The building is unique in its 24/7 operations as a university library space 

that is operational throughout the year. The 5,400 m2 building has a range of spaces 

such as study spaces, café and staff offices.  

The building attained an Energy Performance Certificate (EPC) rating of “A” in 2018 

and adopts a “passive-first” design approach which uses efficient fabric materials, 

thermal mass and natural ventilation when possible (7). 

The operational aspects of the building are notably complex and has some sources 

of uncertainties. One of the challenges lies in the mixed variety of HVAC 

configurations throughout. While the HVAC system is electrically powered with 

ground-source heat pumps, the domestic hot water (DHW) supply is separately 

sourced from a district heating system.   

Additionally, the presence of a central atrium void spanning from the ground floor to 

the main roof skylight, introduces further intricacies in managing the building's HVAC 

requirements. There are some entire zones on levels L1 and L2 directly exposed to 

this atrium void. This design is likely to have significant implications on the HVAC 

loads that is complex and challenging to discern. 

Besides the building’s design with operable window openings to utilise natural 

ventilation when outside temperatures allow, the COVID-19 pandemic necessitated 

increased air change rates during operations to address safety concerns. Perhaps 

one of the most significant operational variations is the use of temperature sensors 

for HVAC control, departing from the originally intended carbon dioxide sensor-

based system.  

Notably, the building's design does not include occupant controls, with the lighting, 

windows, and HVAC centrally controlled. Throughout the building, the only control 

accessible to occupants is shading control. This element of the building design has 

made the building an interesting case study for the methodology devised for 

examining how operational controls can be responsive to occupancy patterns. This 

distinction sets it apart from other studies in the field that tend to focus on the impact 

of occupants' control over system loads.  The described complexities highlight the 
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need for a detailed examination of CSUB’s building operations and the relationship 

with energy consumption. 

Figure 1 outlines the systematic approach undertaken to achieve the research 

objectives. 

Figure 1 - Methodology overview of input data sources and workflow 

 

 

2.2. Data collection/sources 

The data required for this work primarily involve two types of data: occupancy and 

measured energy consumption data. Occupancy data serves multiple purposes: 

understanding occupancy patterns, informing energy model inputs for occupancy 

schedules, and shaping proposed operational strategies.  

Both datasets are openly available for CSUB and accessible to individuals with 

university credentials. Data from the full calendar year of 2022 was selected due to 

completeness and up-to-date nature of the sources. 

2.2.1 Occupancy data 

Occupancy data originated from the university API platform (8) and comprise of 

historical readings from seat occupancy sensors located in CSUB. The historical 
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seat occupancy readings were processed in several temporal dimensions such as 

academic term dates (Table 1), monthly, day of the week and hour of the day to 

investigate potential occupancy patterns. Utilising a k-means clustering algorithm (9), 

two distinct clusters of dates with notably different occupancy rates were identified 

and termed peak and off-peak periods. This analysis derived an evidence-based 

occupancy rate schedule for CSUB reported in Section 3.1 alongside further 

discussion. 

Academic Year (AY) calendar Dates (Calendar year 2022) 

AY 21/22 Winter break 1 – 9 Jan 

AY21/22 Term 2 10 Jan – 25 Mar 

AY 21/22 Easter break 26 Mar – 24 Apr 

AY 21/22 Term 3 25 Apr – 10 Jun 

Summer break  11 Jun – 25 Sep 

AY22/23 Term 1 26 Sep – 16 Dec  

AY22/23 Winter break 17 Dec – 31 Dec 

Table 1 - Academic calendar dates 

Subsequently, occupancy data were mapped against seats location in the building to 

identify zones with reduced occupancy at specific time of the year; this presented the 

potential to optimise occupancy by closing some zones within CSUB. This process 

spotlighted two strategic time intervals for targeted operational strategies: off-peak 

dates and weekends (further discussed in Section 2.4). 

2.2.2 Measured energy consumption data 

Measured energy meter data are sourced from the university Carbon Dashboard 

(10) and daily main meter electricity consumption for CSUB. Notably, submeter and 

system-level data were unavailable. The data was used to calibrate the energy 

model, where the model’s prediction was compared to the measured data to assess 

its performance.  

 

2.3. Modelling 

The modelling process started with the creation of a baseline model using available 

existing data. The building was modelled using DesignBuilder v7.0 (11) and 

simulated using the EnergyPlus v9.4 engine (12). Subsequently, the baseline model 
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underwent a calibration procedure to ensure a close correspondence with actual 

metered data. The calibrated model was then used to simulate a variety of scenarios 

for the proposed operational strategies, enabling subsequent detailed analysis. 

 

2.3.1 Baseline model inputs 

Design-stage documents were used to model the building geometry, interior layouts, 

construction materials and their U-values (7)(13). As detailed specification for the 

heating, ventilation and air conditioning (HVAC) systems were absent, such 

characteristics were mostly auto-sized by the software. Valuable insights were also 

drawn from a prior case study (14).  

Considering data availability constraints, only electricity-consuming segments of the 

building were modelled (which represent all energy demand of the building except 

domestic hot water). The weather file of the actual 2022 weather conditions of the 

area was utilised, courtesy of the DesignBuilder Climate Analytics platform (15). 

Table 2 summarises key inputs of the building systems: 

Variable Inputs 

Occupancy • Occupancy density of 0.2194 person/m2, derived 

from 1185 occupants across 5400 m2 

• Occupancy schedule derived from historical 

occupancy readings (Section 3.1), except for staff 

zones which utilised a generic office schedule 

Lighting • 400 lux (16) 

Equipment power 

density 

• 12.01 W/m2 (software default value) 

HVAC • Auto-sized by software due to lack of 

specifications available 

• HVAC setpoints were varied as part of the 

calibration process (Section 2.3.2) 

Table 2 - Variable inputs for energy model 
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2.3.2 Calibration 

Model calibration was carried out using a deterministic approach involving the 

utilisation of three key variables as outlined in Table 3. A series of 60 iterations were 

carried out using jEPLUS v2.1.0 software (17) based on the number of unique 

combinations of variables. The monthly energy consumption of each iteration was 

then compared to the measured meter data and evaluated based on the Coefficient 

of the Variation of the Root Mean Square Error (CV(RMSE)) and Normalised Mean 

Bias Error (NMBE), aligning with the standards established by ASHRAE Guideline 

14 (2002) (18). 

No. Variable Range 

1 Heating setpoint 19-22 °C  

(1 °C increments) 

2 Cooling setpoint 23-25 °C 

(1 °C increments) 

3 Mechanical ventilation 

rate 

15-25 litres/person 

(2.5 litres/person 

increments) 

Table 3 - Key variables varied for calibration 

2.3.3 Modelling of scenarios 

The operational strategies to be modelled involved closing specific floors and/or 

zones during designated time frames of low occupancy and concentrating the users 

in other areas. Two periods of low occupancy were identified and used in the 

modelling: off-peak dates (15 May to 02 Oct 2022) and weekends throughout the 

year. In the proposed strategy, occupancy count is maintained but redistributed 

across areas of the building that is operational and not closed. Occupancy count is 

determined by occupancy density (person/m2) multiplied by the occupancy rate (%) 

multiplied by the floor area (m2) of the building/ zone. The concentration of 

occupancy in opened areas of the building was simulated in the energy model by 

increasing the occupancy density or rate.  The increases of occupancy density and 

rate were calculated in proportion to the closed zones’ floor area to maintain total 

occupancy count across the building, which simulated the redistribution of occupants 
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across opened areas. The closure of zones was simulated by setting their 

occupancy, HVAC and lighting schedules to zero. 

 

2.4. Proposal of operational strategies 

Operational strategies were formulated by understanding the building usage during 

low occupancy periods. Two operational strategies are proposed, which entail the 

temporary closure of specific floors or zones within the CSUB during 1) off-peak 

dates and 2) weekends (elaborated in Section 3.1). This would allow both the 

consolidation of occupancy into smaller operational areas - potentially reducing 

energy demand - and a more responsive operation of the building during periods of 

lower occupancy - enhancing efficiency. 

The subsequent consideration revolved around determining which specific floors or 

zones to close off. This was guided by whether the floors or zones contained 

essential functions (e.g., entrances); if it could be feasibly closed off; or if similar 

workspaces are available elsewhere in the building. The appendix contains a 

breakdown of the CSUB floors and their usage. Consequently, B2 and Ground floors 

were excluded from the scenario modelling as they served essential functions, while 

L1 was omitted from the off-peak-period scenarios as it primarily comprised staff 

offices that are occupied throughout the year. Formulation of scenarios involving 

closed zones ensured that no zones within the remaining operational areas of the 

building would reach maximum occupancy during the simulated period, avoiding 

overcrowding. 

 

  



10 

 

3. Results & Discussion 

3.1. Insights into CSUB’s occupancy patterns 

A key objective of this study was to gain a comprehensive understanding of 

occupancy patterns, which serves two purposes: firstly, to create a custom CSUB 

occupancy schedule for input into the energy model, and secondly, to explore 

potential avenues for energy reduction in response to occupancy dynamics. 

Firstly, "working hours" (WH) between 9am to 9pm were established from the 

average hourly occupancy data. This decision was rooted in the typical starting time 

of university timetables at 9 am, alongside a decline in occupancy after 9 pm.  

Academic term dates, term breaks, and the summer break were further integrated 

into the dataset. However, a clear demarcation between occupancy rates during 

these academic periods was not clear (Figure 2).  

Figure 2 - Daily occupancy, with academic term dates, before clustering 

  

In response, a k-means clustering algorithm (9) was used and the outcome yielded 

two distinct clusters of dates characterised by notably different occupancy rates 

(Figure 3). These clusters were subsequently referred to as "off-peak" (between 15 

May to 02 October 2022) and "peak" (for the rest of the year). 
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Figure 3 - Daily occupancy after clustering 

  

A custom weekly occupancy schedule (Table 4) was generated for the two periods, 

with average weekday and weekend rates to reflect the nuanced occupancy 

dynamics throughout the week. 

Period Peak 

(01 Jan - 14 May and  

03 Oct - 31 Dec) 

Off-peak 

(15 May - 02 Oct) 

Day of the 

week 

Weekday Weekend Weekday Weekend 

Time of 

the day 

WH Non-

WH 

WH Non-

WH 

WH Non-

WH 

WH Non-

WH 

Average 

occupancy 

rate (%) 

66.3 26.3 57.0 24.4 41.6 12.3 35.7 12.6 

Table 4 - Custom occupancy schedule for CSUB 

The observed working hours for CSUB extend beyond the conventional 9am-5pm 

working hours common in the UK. Furthermore, the occupancy rates did not adhere 

to the expected academic dates, with the off-peak period overlapping with term 

dates. Despite the absence of academic activities during the weekends and hence 
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an expectation of a lower occupancy rate compared to weekdays, the reduction in 

occupancy was only around 15%.  

This divergence between empirical evidence and established assumptions for default 

occupancy schedules highlights that field measurements may differ greatly from 

default values (4) and the importance of adapting model inputs to specific building 

attributes. The custom CSUB occupancy schedule identified two key periods of low 

occupancy 1) off-peak dates and 2) weekends for the exploration of operational 

strategies involving zone closures for possible energy savings.  

3.2. CSUB model 

3.2.1 Calibration results 

Following the calibration process, the most effective iterations are outlined in Table 

5. Evaluation based on monthly CV(RMSE) and NMBE, in alignment with ASHRAE 

Guideline 14 (18), revealed that Iteration 54 demonstrated the most optimal 

performance. It was thus selected as the model for subsequent scenario simulations, 

with heating and cooling setpoints of 21 and 23°C respectively, and mechanical 

ventilation rate of 25 litres/person. 

 ASHRAE 

Guideline 

14 (2002) 

thresholds 

no. 54 no. 51 no.42 no. 55 no.48 

CV(RMSE) 15% 12.21% 15.11% 14.63% 16.12% 16.66% 

NMBE +/- 5% -0.74% -1.10% -1.05% -1.16% -1.25% 

Absolute 

annual 

deviation 

(kWh) 

NA - 79,095 - 117,461 - 112,966 - 124,393 - 134,190 

Table 5 - Calibration results compared against ASHRAE Guideline 14 

thresholds 

The iterations (Figure 4) generally follow the overall trend of the metered data, 

closely aligning with it in the earlier months of the year while displaying a larger 

deviation in the later half. Although several factors were investigated to explain this 

discrepancy (including outdoor air temperature changes, heating/cooling seasonality, 
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and occupancy variations) a definitive explanation was not identified. The sources of 

uncertainties in the building detailed in Section 2.1. may have contributed to this 

phenomenon. An alternative explanation may be that the energy model’s operations 

remain fixed throughout the entire year, while in reality CSUB’s operations might 

have undergone changes at some points during 2022; this could account for the 

divergence from the modelled pattern towards the end of the year. 

While the calibration process yielded outputs that aligned well with ASHRAE 

standards, it is crucial to acknowledge that identifying parameter combinations 

leading to a good fit with observed data does not necessarily guarantee an accurate 

representation of reality (19). 

Figure 4 - Monthly energy consumption of calibration iterations 

 

 

 

3.2.2 Model outputs  

The breakdown of the model’s simulated system loads and total monthly energy 

consumption are presented in Figure 5. The distinctive patterns of heating and 

cooling seasons can be observed. The equipment loads reflect a reduction during 

off-peak months as informed by the custom occupancy schedule, reinforcing the 

interplay between occupancy patterns and energy usage. 
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Figure 5 - Monthly electricity load breakdown of CSUB for 2022 

 

 

Lighting loads represent a significant 25% share of annual energy consumption, 

while equipment usage contributes 28% of the overall consumption (Figure 6). The 

remaining portion is predominantly allocated to HVAC, particularly ventilation and 

heating systems. The notable prominence of lighting load can be attributed to the 

building's unique 24/7 operations. 
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Figure 6 - Annual system load breakdown 

 

With the absence of submeter data, calibration could not be done based on 

individual system loads. It is possible that while the overall energy consumption 

totals may exhibit close correspondence with actual values, the distribution of system 

loads within the model may deviate from reality.  

 

3.3. Scenarios Analysis 

For each period, initial simulations involving the closure of five individual floors were 

carried out. Then, the best-performing floor was combined with the second and third 

best-performing floors individually, to create scenarios of two closed floors each. 

This aimed to assess the performance of simultaneously closing multiple floors. In 

total, seven simulation scenarios consisting of five individual floors and two 

combined floors were carried out for each period using the calibrated CSUB model. 

The simulations for the off-peak period were analysed for 140 days (15 May to 02 

October 2022), whereas the weekend simulations encompassed 104 days in total 

(all weekends throughout the year). The findings shared between the two periods are 

first discussed to set the foundation, before respective results are presented in 

further detail.  

Overall energy reductions are evident across all scenarios for both periods (although 

with varied magnitude), with the exception of one scenario. The energy savings are 
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attributed to the shutdown of HVAC, lighting, and equipment loads on the closed 

zones, leading to the redistribution of occupancy throughout the remaining 

operational areas. This allows for “economies of scale” to benefit the building’s 

energy consumption. The incremental energy consumption per occupant becomes 

lesser since these areas are already occupied, with their base loads already active. 

A noteworthy observation is that the energy savings achieved from closing individual 

floors do not cumulatively add up when multiple floors are closed simultaneously. 

This phenomenon becomes apparent in the combination floors scenarios, where the 

savings are marginally incremental in comparison to the individual floor. This 

phenomenon can be attributed to the fact that the HVAC systems on other floors 

need to compensate for the higher occupancy levels, surpassing the initial 

“economies of scale” benefits. 

3.3.1 Off peak period 

The scenarios for off peak periods saw a range of energy savings from 2.22% to 

6.05% of annual consumption, translating into 18,000 to 49,000 kWh (Table 6 and 

Figure 7). This equates to the annual electricity consumption of 6-17 medium-sized 

UK households (20). 

Floor Off peak months' 

total energy 

savings (excl. peak 

months) (kWh) 

Percentage of 

annual 

L3 and L4 - 49,248 -6.05% 

Mezz (study area 

only) 

- 48,316 -5.93% 

L3 (study area 

only) 

- 43,726 -5.37% 

Mezz and L3 - 41,296 -5.07% 

L4 - 28,174 -3.46% 

L2 (study area 

only) 

- 22,974 -2.82% 

B1 - 18,087 -2.22% 

Table 6 - Off peak period scenarios summary (in ranking order) 
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Figure 7 - Total energy reductions during off peak period scenarios 

 

Figure 8 shows the breakdown of energy savings for each scenario, highlighting that 

the majority of savings are from lighting and cooling loads. Notably, the savings in 

lighting loads are substantial, which may be attributed to how occupancy is 

reassigned to spaces that are already illuminated, translating into absolute savings.  

Figure 8 - Load breakdown of energy reductions during off peak period 

scenarios 
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The cooling load savings are particularly pronounced during the summer months, 

when cooling demands are prevalent. Monthly consumption of the fully operational 

building in comparison to scenarios involving closed areas (Figure 9) show that the 

most significant savings are evident in July and August across all scenarios, aligning 

with the months of peak cooling load for the building as a whole. Recalling Figure  in 

Section 3.2.1, the model underestimates energy consumption in the months of May 

to October by approximately 14%. This may suggest that the energy savings of 

these scenarios could potentially be higher in absolute terms in reality.  

Figure 9 - Monthly consumption of off peak period scenarios 

 

 

Conversely, equipment savings are comparatively less significant. As occupancy 

was redistributed, additional equipment power was consumed in the areas where 

occupancy has shifted to. In addition, the elevated fans load observed in L2, B1, and 

L4 is likely attributable to higher fans loads in the remaining operational areas, which 

accommodated the additional occupancy resulting from the closed zones. 

It is crucial to note that closing multiple floors in the scenarios of Mezzazine and L3, 

and L3 and L4, did not result in cumulative savings from two individual floors. 

Individually, Mezzanine, L3, and L4 demonstrated robust performance, likely due to 
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their smaller enclosed floor areas, which facilitated easier isolation. In contrast, L2 

exhibited lower energy savings, influenced by a significant portion of open-air space 

exposed to the main atrium. The energy savings in B1 were comparatively less, 

attributable to its location underground which is less influenced by outdoor air 

temperature variations. This is evident in its notably lower cooling energy savings, 

reflecting a lower demand during the cooling season compared to other floors. 

3.3.2 Weekends 

The scenarios for the weekend periods throughout the year saw a range of annual 

energy consumption changes from -2.09% to +1.26%, translating into -17,000 to 

+10,000 kWh (Table 7 and Figure 10). The savings equate to the electricity 

consumption of 3-6 medium-sized UK households (20). 

Floor Difference from 

baseline (kWh) 

Percentage of 

annual 

L4 - 17,025 - 2.09% 

L1 -16,259 - 2.00% 

Mezz (study area only) - 14,860 - 1.82% 

B1 - 12,584 - 1.55% 

L1 and 4 - 12,242 - 1.50% 

L2 (quiet study room 

only) 

- 11,497 - 1.41% 

L3 (study room only) -  8,225 - 1.01% 

L4 and Mezz + 10,278 + 1.26% 

Table 7 - Weekend period scenarios summary (in ranking order) 
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Figure 10 - Annual consumption of weekend period scenarios 

 

Figure 11 shows that the predominant sources of savings are lighting and heating 

loads, which contrasts with the off-peak period scenarios, where cooling savings are 

more prominent. Notably, heating savings are significant as these scenarios 

encompass the entire calendar year, for a building located in a heating-dominated 

climate. 
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Figure 11 - Load breakdown energy differences of weekend period scenarios 

 

 

An interesting observation is the dissimilarity in the magnitude of savings between 

the weekend and the off-peak scenarios. The highest energy savings achieved in the 

weekend scenarios reach 2.09% compared to the off-peak period scenarios of 

6.05%. This does not align with the proportional ratio of 104 days for weekends and 

140 days for off-peak dates. It can be attributed to the short and recurrent nature of 

the weekend closures, where some potential savings are negated by the frequent 

need for space reconditioning upon reopening every Monday. In contrast, the off-

peak scenarios occur within a continuous time frame, resulting in a once-off 

reconditioning energy consumption. 

It is worth noting that variance in savings between the highest (L1) and lowest (L3) 

stands at approximately 8,000 kWh, amounting to 1.08% of the annual consumption. 

This marginal difference indicates that closing different zones does not yield 

significantly more savings, which aligns with the earlier-discussed recurring need for 

space reconditioning leading to reduced energy savings. 
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3.3.3 Comparison to existing literature 

The study's findings are juxtaposed with relevant literature to contextualise them 

within the existing body of knowledge. Dong and Lam (2014)’s research (3) adjusting 

HVAC operations based on predicted occupant behaviour and weather conditions 

demonstrated energy savings of 30.1% for heating and 17.8% for cooling loads. 

These findings align with this case study, although the magnitude of energy savings 

differs. This divergence can likely be attributed to the scale of operational strategies 

employed. Dong and Lam (2014)'s study (3) was based around a much smaller 

university building and controlled the entire facility, while this research examined an 

eight-story building and investigated operational controls for only one and two floors. 

Wang, Mathew and Pang (2012)’s research (21) exploring the impact of operational 

practices on annual consumption underscored HVAC operations as the most 

influential system load and revealed a direct relationship between lighting and HVAC 

loads on energy consumption. This further corroborates the outcomes of this study, 

where lighting loads, combined with cooling during off-peak periods and heating 

during weekend periods, emerged as the predominant contributors to energy 

savings. The authors also highlighted a 3.9% savings in annual energy consumption 

from optimising operational practices of vacant spaces, such as using setback 

temperatures and shutting off lighting and equipment loads. This CSUB study 

redistributed occupancy to create vacant spaces, then optimised the operational 

controls of these spaces. While the energy savings figures cannot be compared 

directly due to the different scale of vacant spaces and time periods examined 

between the two studies, the results of this study is congruent with Wang, Mathew 

and Pang (2012) (21).  

 

4. Recommendation 

The proposed framework in this study can help identify valuable occupancy insights 

for optimising operations. This facilitates assessment of the strategies and quantifies 

environmental and economic implications for assessment of the operational 

strategies. This aids in evaluation against the economic, operational and user impact 

for decision making. Importantly, this occupancy-driven operational strategy is cost-
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effective, requiring no architectural retrofits, making it easily accessible for building 

professionals. 

The recommendation for CSUB is to close off the Mezzanine floor during off-peak 

periods due to the potential energy savings which translate to approximately 9,300 

kg of CO2 emissions (CO2e) (at 0.193 kg/kWh) (22) or annual cost savings of 

£14,500 (at 30 p/kWh) (23). Although the simultaneous closure of L3 and L4 yields 

the highest energy savings, it is not recommended due to marginal gains compared 

to the significant user and operational impact of closing an additional floor. While 

strategies for better thermal control for zone closures (eg glazed screens for areas 

exposed to the central atrium void) were considered to enhance potential energy 

savings; it would require physical retrofits and design changes, as opposed to the 

current methodology that is simple operational optimisations.  

Regardless, it is crucial for buildings to conduct their own detailed and case-specific 

feasibility study, focusing on user receptivity and technological feasibility of the 

systems.  

While this case study has attempted to simulate occupancy responsiveness by 

analysing the occupancy patterns of 2022 and retrospectively applying them to the 

energy model, it is important to acknowledge the inherent time lag and retroactive 

nature of this approach. Buildings are “artifacts with very long lifespans” (4), 

accommodating to changing usages and user groups over time, alongside the 

implications of shifting occupancy trends. The occupancy patterns of future years 

may not mirror those observed, potentially leading to disparities in the actual energy 

savings realised through the proposed operational strategies.  

 

5. Conclusions 

The methodology proposed is a replicable data-driven framework that can be scaled 

and extended to other buildings to similarly explore the optimisation of their 

operational strategies based on their occupancy patterns. This research not only 

enhances the understanding of the intricate relationship between occupancy and 

energy but also offers actionable recommendations for building operations that 

contribute to sustainable practices and energy efficiency.  
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The case study of CSUB demonstrates the framework, providing a comprehensive 

exploration of occupancy patterns and proposing an occupancy-based operational 

strategy to optimise the building operations for energy demand reduction.  

By investigating historical occupancy data and creating a calibrated dynamic thermal 

energy model of CSUB, this research has unveiled valuable insights into the 

dynamics between building occupancy and energy demand. It was observed that the 

occupancy pattern of the CSUB diverges from conventional expectations of an 

educational institution, emphasising the significance of capturing nuanced 

occupancy patterns to enhance the accuracy of BEMs. Additionally, operational 

strategies were proposed to reduce energy consumption of CSUB in response to 

periods of low occupancy. They centred around targeted zone closures during off-

peak and weekend periods. A notable observation is that the closure of multiple 

floors simultaneously demonstrated that the energy savings were only marginally 

more when compared to the individual closure of floors. This is likely attributable to 

the greater concentration of occupancy in remaining zones, adding HVAC loads that 

surpasses the initial “economies of scale” savings from a closed zones’ base loads.  

Based on the empirical evidence collected for 2022, the study recommends the 

closure of the Mezzanine study area during the off-peak period. The strategies that 

involved closures for a longer continuous timeframe (off-peak scenarios), rather than 

recurrent short closures (weekend scenarios) exhibited greater energy and carbon 

emissions savings as they avoided incurring energy consumption for frequent space 

reconditioning after the closures. The proposed strategies are also adaptable as they 

are based on optimising operations and not physical retrofits. This allows it to be 

responsive to shifts in occupancy patterns and new data over time.  

Further work could explore operational strategies that respond in real-time to 

occupancy patterns or minimise the time lag between occupancy pattern 

identification and responsive action.  
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7. Appendix 

CSUB floors, their usage and suitability for closure 

Floor Usage (areas unsuitable for 

closure marked in red) 

Comments 

B2 • Quiet contemplation 

rooms 

• Showers 

• Essential function 

B1 • Quiet study area • Easily closed as access from 

stairs/lift lobby can be restricted 

Ground • Entrance from street • Essential function 

Mezzanine • Entrance from UCL 

campus 

• Quiet study area 

• Study area can be easily 

closed off due to single point of 

access 

• Rest of the floor serves 

essential functions 

1 • Staff offices 

• Group study meeting 

rooms 

• Open group study 

area 

• Less ideal to be closed due to 

porous nature of open study 

area  

2 • Quiet study room 

• Open group study 

area 

• Group study meeting 

rooms 

• Less ideal to be closed due to 

porous nature of open study 

area 

3 • Café 

• Quiet study room 

• Group study meeting 

rooms 

• Study areas can be easily 

closed off due to single point of 

access 

• Café serves essential functions 

4 • Group study room • Easily closed due to single 

point of access 

Table 8 - CSUB floors, their usage and suitability for closure 


