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Developing and Evaluating a Risk-Informed Decision Support 

System for Earthquake Early Warning at a Railway Bridge 
 

Abstract 
Earthquake early warning (EEW) systems provide timely information on the arrival of strong seismic waves at a site. 

Such information can help mitigate the negative impacts of earthquakes on the operation of infrastructure assets. EEW-

informed mitigation actions should stem from risk-based decision-making protocols, and EEW benefits should be evaluated 

for the range of possible rupture scenarios that affect an asset of interest. This paper addresses these challenges specifically 

for railway bridges by (1) developing a risk-informed EEW decision support system (DSS) for these assets; and (2) 

quantifying the effectiveness of the proposed EEW-DSS in mitigating seismic risks for railway bridges across relevant 

rupture scenarios. The proposed EEW-DSS combines information on site-specific seismic hazard, time-dependent EEW 

algorithm outputs, probabilistic seismic demand modelling, damage/derailment fragilities, and seismic loss models. These 

modelling components are integrated into a multi-criteria decision-making framework. Value of information theory is then 

proposed to estimate the loss-mitigation benefits of the EEW-DSS, accounting for varied stakeholder risk priorities as well 

as dynamic lead-time/accuracy trade-offs related to EEW performance. A multi-span railway bridge is adopted for the case 

study, which sheds light on the importance of risk-based, uncertainty-informed decision-making to the overall effectiveness 

of EEW in potentially reducing seismic losses. 

 

Keywords: Earthquake early warning, Decision-support system, Value of information theory, Multi-criteria decision-

making, Railway bridges, Train derailment, Seismic risk assessment. 

  

1. Introduction 
Earthquake early warning (EEW) systems and algorithms can be used to estimate the size and arrival of 

earthquake-induced ground motions at a site with seconds to tens of seconds of advance notice. Rapid but important 

risk-mitigation actions (e.g., automated shut-down procedures or ‘Drop, Cover, and Hold on’ measures) can then 

potentially be performed before the shaking hits the area of interest (e.g., Wu & Kanamori, 2008). The idea of using 

communication technologies for EEW dates to the 1980s and is made possible because digital information travels 

faster than seismic waves (Heaton, 1985). The physical basis of these systems is that longitudinal primary waves (or 

P waves) from an earthquake rupture travel faster than the more damaging transverse secondary waves (or S waves). 

EEW systems can be classified - according to the spatial distribution of the corresponding seismic network used to 

detect and interpret the incoming earthquake - as regional (e.g., Zuccolo et al., 2020), on-site (e.g., Colombelli et al., 

2015), or hybrid (e.g., Iervolino et al., 2006). A recent comprehensive review of the current status of EEW systems 

and related computational algorithms is provided by Cremen and Galasso (2020). 

Decisions for issuing EEW alerts have traditionally been hazard-driven. However, to maximise the practical 

effectiveness of EEW, there is a need to unify the seismological computations of the system (as well as the related 

uncertainties) with corresponding risk-based engineering-driven consequence predictions that account for the response 

of the built environment to earthquakes (e.g., Iervolino et al., 2007). Some work towards this aim has recently been 

carried out in the literature. For example, Cheng et al. (2014) and Cremen, Velazquez, et al. (2021) investigated the 

use of engineering-based EEW applications in buildings by translating EEW ground-shaking outputs into building-

specific structural responses. Pitilakis et al. (2016) combined EEW seismological information with building-specific 

fragility functions to investigate the effectiveness of EEW for a hospital. To further facilitate well-informed decision 

making for EEW, action-specific risk-based consequence predictions should be combined with multi-criteria decision-

making (MCDM) frameworks that explicitly account for stakeholder preferences toward the different types of losses 

that may be incurred (e.g., Le Guenan et al., 2016). This challenge was recently addressed by Cremen and Galasso 

(2021), who developed an engineering-oriented decision-making methodology for building-specific EEW 

applications, which has been demonstrated for school buildings (Galasso et al., 2023) and modified for application to 

a seaport (Cremen et al., 2022). 

This study focuses on the effectiveness of EEW for seismic risk management of railway bridges. EEW bridge 

applications are of interest due to the extensive range of interconnected consequences that can result from the effects 
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of bridge damage, such as broader transportation and community disruptions. Possible actions that EEW systems can 

facilitate for a bridge are closing it, restricting its use (e.g., through speed limits/ or lane closures), or keeping it open. 

However, past studies on EEW have largely overlooked its potential application to seismic risk mitigation for railways. 

One exception is the study of Sokos et al. (2016),which showed that regional EEW systems could help mitigate seismic 

risk associated with the Rion-Antirion (Greece) bridge by providing a few seconds of warning (or lead) time that could 

be leveraged to regulate driving speed and/or prevent bridge crossings during significant earthquake events. Hilbring 

et al. (2011) focused on derailment-driven decision-making alert thresholds in terms of ground acceleration limits (but 

did not explicitly consider risk-based consequence predictions). EEW systems have effectively minimised casualties 

from the Shinkansen train incident during the 2004 Niigata Chuetsu, Japan, earthquake (e.g., Nakamura, 2005; 

Nakamura et al., 2011). The Bay Area Rapid Transit (BART) system in California has an EEW-triggered automated 

train-braking mechanism (e.g., Strauss & Allen, 2016).  

The accuracy of EEW outputs is a critical consideration in evaluating its effectiveness and has been addressed 

in many previous studies (e.g., Minson et. al., 2018; Wald 2020; Cremen, Zuccolo, et al., 2021). EEW accuracy is 

influenced by the different levels of uncertainty associated with the estimated parameters used for making decisions 

(e.g., real-time location and magnitude estimates and ground-motion intensity at the site of interest). Some of these 

uncertainties can be reduced as more information is gathered about an incoming event, which comes at the expense 

of decreased warning time (e.g., Iervolino et al., 2006). Further uncertainties also stem from estimating losses induced 

by the incoming earthquake and the consequences of actions taken to mitigate risk. Probabilistic frameworks can 

effectively handle these uncertainties in the decision-making process and their potential influence on false and missed 

alarms (e.g., Iervolino et al., 2007; Cremen & Galasso, 2021). However, from an analysis of existing literature, it is 

clear that most investigations of EEW accuracy focus only on single earthquake scenarios (e.g., Minson et al., 2017; 

Zuccolo et al., 2021). An exception is the study of Minson et al. (2019), which examined various earthquake catalogues 

in California to illustrate the best-alerting strategy for EEW.  

A value of information (VoI) framework (Zonta et al., 2014) can be utilised to investigate EEW effectiveness 

from a decision support perspective (Wu et al., 2013). The concept of VoI is based on the average value a stakeholder 

is willing to pay for more information to support their decision making (e.g., Howard, 1966). In this context, it denotes 

the savings from the loss-mitigation measures triggered by the information from an EEW system. VoI began to play 

an important part in civil infrastructure decisions with the pioneering works of Pozzi and Der Kiureghian (2011) and 

Thons and Faber (2013) on the VoI of structural health monitoring. A comprehensive review of VoI-based civil 

infrastructure decision-making can be found in Zhang et al. (2021). However, to the authors’ knowledge, the VoI 

concept has not yet been applied to quantify benefits of EEW across possible earthquake scenarios that could affect a 

railway bridge. 

To address the identified gaps and ongoing challenges, this paper develops a risk-informed earthquake early 

warning decision support system (DSS) for the seismic risk management of railway bridges. This work is an extended 

version of this recent conference paper (Ozer et al. 2023). The DSS is based on the engineering-oriented MCDM 

methodology introduced in Cremen and Galasso (2021) but innovates by integrating enhanced time-dependent 

intermediate engineering and loss calculations that account for the seismic behaviour of trains and railway bridges. 

The VoI concept is then used in a novel procedure for investigating the benefits of the EEW-DSS in terms of 

earthquake risk mitigation of railway bridges. This involves the development of an effectiveness assessment 

framework that considers the range of earthquake scenarios affecting a railway bridge and the corresponding reduction 

in losses that may result due to informed decision making with increasingly accurate earthquake information leveraged 

in the EEW-DSS (relative to the losses that would occur if the facility would continue to operate as usual). The 

proposed framework inherently accounts for diversity in stakeholder preferences towards different types of losses 

(casualties, downtime, and/or monetary costs).  

The remainder of the paper is organised as follows. Section 2 illustrates the proposed EEW-DSS for railway 

bridges; Section 3 introduces the EEW-DSS effectiveness assessment framework; Section 4 demonstrates the 

methodologies of Sections 2 and 3 for a testbed railway bridge structure in Northeastern Spain, the results of which 

are presented in Section 5. Finally, Section 6 draws conclusions and proposes potential avenues for future research. 
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2. Developing a Risk-informed EEW-DSS for Railway Bridges   
This section presents the methodological details of the proposed risk-informed EEW-DSS for railway bridges, 

which involves (1) a performance-based earthquake engineering procedure for estimating real-time seismic losses 

induced by train derailment; and (2) integration of the outputs of (1) within an MCDM framework that accounts for 

diverse perspectives on seismic risk. Figure 1 presents a workflow across the components of (1) and (2). Time-varying 

information used to estimate the magnitude (M) and the source-to-site distance (R) of the ongoing event via EEW 

algorithms is collated in the vectors d and s, respectively. Ground-motion models (GMMs, or suitable alternatives) 

are used to predict the probability density function (PDF) 𝑓(𝒊𝒎|𝒅, 𝒔) of the ground-motion intensity measures (IMs) 

of interest at the considered railway bridge site (collected in a vector, IM), based on estimates of M and R constructed 

from d and s and following the real-time probabilistic seismic hazard assessment (RTPSHA) approach proposed by 

Iervolino et al. (2006).  

A probabilistic seismic demand model links the IMs to the engineering demand parameters (EDPs – collected in 

a vector, EDP) of interest via the PDF 𝑓(𝒆𝒅𝒑|𝒊𝒎), which are then used to evaluate the occurrence of train derailment, 

𝑝(𝐷𝑑𝑒𝑟|𝒊𝒎).  Each j-th type of  loss consequence associated with train derailment for triggering (A) or not (�̅�) an 

EEW-induced slow-down of trains at or near the bridge at the time (𝑡𝐸𝐸𝑊) of a triggered alarm - 𝐸(𝐶𝑗
𝐴|𝒅, 𝒔, 𝑡𝐸𝐸𝑊) - is 

determined through appropriate damage-to-loss models. These losses - and the importance stakeholders place on 

reducing them 𝑤𝑗 , (i.e., the weight 𝑤 associated with the j-th criterion) - are input to an MCDM procedure to determine 

the optimal real-time EEW-related action to take, 𝐴𝑜𝑝𝑡. The next subsections describe the various models and variables 

involved in detail.  

  
Figure 1. Workflow of the EEW-DSS. Note that 𝑓′(.) denotes a generic function.  

 

2.1 Step 1: RTPSHA for EEW, 𝑓(𝒊𝒎|𝒅).  

The first step of the methodology is a real-time adaptation of Cornell (1964) probabilistic seismic hazard analysis 

formulation, following the approach proposed by Iervolino et al. (2006).  It estimates the PDF of the site-specific 

ground-shaking intensities (i.e., IM) associated with the incoming event, conditional on the current knowledge of 

event characteristics from an EEW system, as follows:  

𝑓(𝒊𝒎|𝒅, 𝒔) = ∫ ∫ 𝑓(𝒊𝒎|𝑚, 𝑟)𝑓(𝑚|𝒅)𝑓(𝑟|𝒔)𝑑𝑚
𝑅

𝑑𝑟
𝑀

 (1)  

where 𝒅 and 𝒔 are physical measurements or relevant information (e.g., the order in which the seismic stations detect 

the earthquake) from a seismic network that evolve in time and are respectively leveraged in EEW algorithms to 

estimate M and  R; 𝑓(𝑚|𝒅) is the real-time PDF of magnitude conditioned on 𝒅; 𝑓(𝑟|𝒔) is the real-time PDF of source-

to-site distance conditioned on 𝒔; and 𝑓(𝒊𝒎|𝑚, 𝑟) can be determined using appropriate GMMs, for instance, in 

combination with suitable ground-motion correlation models (where appropriate). The exact intensity measures output 

from this step depend on the probabilistic seismic demand model to be developed (see Section 2.2).  

In line with previous work (e.g., Iervolino et al., 2006), it is assumed that 𝑓(𝑚|𝒅) can be computed according to 

the following Bayesian approach: 

𝑓(𝑚|𝒅) = 𝑓(𝑚|𝑑1, 𝑑2, … , 𝑑𝑛) =
𝑓(𝑑1, 𝑑2, … , 𝑑𝑛|𝑚)𝑓(𝑚)

∫ 𝑓(𝑑1, 𝑑2, … , 𝑑𝑛|𝑚)𝑓(𝑚)𝑑𝑚
𝑀𝑚𝑎𝑥
𝑀𝑚𝑖𝑛

 (2) 
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for n magnitude-related real-time measurements (from n seismic sensors, for example), where 𝑓(𝑑1, 𝑑2, … , 𝑑𝑛|𝑚) 

represents the likelihood function (i.e., the joint conditional PDF of 𝒅) and 𝑓(𝑚) is the prior PDF of the magnitude. 

𝑀𝑚𝑖𝑛 and 𝑀𝑚𝑎𝑥  are respectively the minimum and maximum considered magnitudes. The prior distribution of the 

magnitude, 𝑓(𝑚), is assumed to be represented by the Gutenberg-Richter (G-R) relationship in this study: 

𝑓(𝑚) =
𝛽𝑒−𝛽𝑚 

𝑒−𝛽𝑀𝑚𝑖𝑛  − 𝑒−𝛽𝑀𝑚𝑎𝑥
 (3) 

where 𝛽 = 𝑙𝑛(10)𝑏, b is the slope of the G-R relation, and all other variables are as defined previously. The likelihood 

component of Equation (4) is computed using the approach adopted by Iervolino et al. (2006). The components of 𝒅 

are assumed to be independent and identically distributed lognormal random variables (Iervolino et al., 2009). Thus, 

𝑓(𝑑1, 𝑑2, … , 𝑑𝑛|𝑚) = ∏ 𝑓(𝑑𝑘|𝑚)
𝑛
𝑘=1       (4) 

 

where:  

𝑓(𝑑𝑘|𝑚) =
1

√2π𝜎𝑙𝑛(𝑑)𝑑𝑘
 𝑒
−1

2
(
𝑙𝑛𝑑𝑘−�̅�𝑙𝑛(d)

𝜎𝑙𝑛(𝑑)
)

2

     (5) 

 

The parameters of the lognormal distribution (𝜉�̅�𝑛(𝑑) and σ𝑙𝑛(𝑑)) depend on the magnitude-scaling relationship of 

the associated EEW algorithm adopted (e.g., Allen & Kanamori, 2003) and could also be assumed to depend on k and 

be adjusted to describe the measurement uncertainty, if relevant. Location uncertainty is herein neglected, given its 

effects are negligible compared with that of either magnitude or any considered GMM (Iervolino et al., 2009). 

Therefore, 𝑓(𝑟|𝒔) reduces to a single (deterministic) value R*, and Equation (1) simplifies to: 

𝑓(𝒊𝒎|𝐝) = ∫ 𝑓(𝒊𝒎|𝑚, 𝑅∗)𝑓(𝑚|𝒅)𝑑𝑚
𝑀

 (6) 

 

2.2 Step 2: Probabilistic Seismic Demand Modelling, 𝑓(𝒆𝒅𝒑|𝒊𝒎) 

This step establishes the relationship between the IMs produced in Step 1 (IM) and engineering demand 

parameters (EDPs; EDP) at the railway bridge. Probabilistic seismic demand models characterising 𝑓(𝒆𝒅𝒑|𝒊𝒎) are 

determined through cloud analysis (e.g., Bazurro et al., 1998), which should account for all sources of uncertainty 

related to structural modelling, where possible. The EDPs included in 𝑬𝑫𝑷 depend on how derailment is defined (see 

Section 2.3).  

 

2.3 Step 3: Derailment Analysis, 𝑝(𝐷𝑑𝑒𝑟|𝒊𝒎). 

Train derailment is interpreted in terms of EDPs exceeding designated thresholds. Three modes of train 

derailment on the bridge are considered, in line with Guillaud (2006): i) derailment due to transient vibratory motions 

of the bridge 𝐷𝑡𝑟𝑎𝑛𝑠; and derailment due to permanent deformations on the bridge 𝐷𝑝𝑒𝑟𝑚 caused by a damage level 

DL, which refers to either ii) structural damage; or iii) bridge collapse. Fragility curves are developed to quantify the 

probability of the der-th type of derailment for the ground-shaking IM outputs from Step 1 (or an adapted version of 

these), 𝑝(𝐷𝑑𝑒𝑟|𝒊𝒎), using Monte Carlo sampling to first determine the probability of derailment occurrence as a 

function of EDPs, 𝑝(𝐷𝑑𝑒𝑟|𝒆𝒅𝒑), i.e.,  

𝑝(𝐷𝑑𝑒𝑟|𝒊𝒎) = ∫ 𝑝(𝐷𝑑𝑒𝑟|𝒆𝒅𝒑)𝒆𝒅𝒑
 𝑓(𝒆𝒅𝒑|𝒊𝒎)𝑑(𝒆𝒅𝒑) (7) 

 

2.4 Step 4:  Consequence Modelling, 𝐸(𝐶𝑗
𝐴|𝒅, 𝑡𝐸𝐸𝑊)   

This component of the methodology computes the real-time expected j-th consequence associated with 

implementing (A) or not (�̅�) an EEW-triggered slow-down of trains approaching the railway bridge for an incoming 

earthquake 𝐸(𝐶𝑗
𝐴|𝒅, 𝑡𝐸𝐸𝑊), leveraging the derailment fragilities developed in Step 3 and time-dependent information 

on train locations, speed, deceleration ability, and the amount of EEW lead time available. Only derailment-related 

consequences are considered in this study; consequences associated with structural damage (e.g., repair cost) are 
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ignored, given that they cannot be reduced through EEW. The examined consequences are expressed in the form of 

downtime hours (H) and casualties (I). 

 

2.4.1 Quantifying the number of trains at risk of derailment   

The consequences associated with either A or  �̅� depend on the number of trains that may be derailed at the 

bridge due to the earthquake, which is time-dependent. Let 𝑡𝐸𝑄 denote the time the seismic event initiates, 𝑡𝐸𝐸𝑊 the 

time that the EEW alarm is issued, 𝑡𝑆 the time of arrival of the S wave at the bridge location and 𝑡𝑆𝑀 the time the 

strong motion ends, i.e., when 95% of the ground motion’s Arias intensity is achieved. The lead time due to earthquake 

early warning is then 𝑡𝑙𝑒𝑎𝑑 = 𝑡𝑆 − 𝑡𝐸𝐸𝑊 (note that only positive 𝑡𝑙𝑒𝑎𝑑 values are considered in this study). Two 

different derailment timeframes are considered: (1) 𝑡𝑆<t<𝑡𝑆𝑀 (when 𝐷𝑡𝑟𝑎𝑛𝑠 is possible); and (2) t>𝑡𝑆𝑀 (when 𝐷𝑝𝑒𝑟𝑚 is 

possible). Figure 2 summarises this derailment timeline. 

 
Figure 2. Timeline for earthquake early warning, seismic wave arrival, and the occurrence of derailment. 

To identify the potential number of trains that can be derailed, a broad “risk zone” is defined (Figure 3), within 

which derailment may occur. The risk zone is divided into two separate subzones associated with the two different 

derailment conditions 𝐷𝑡𝑟𝑎𝑛𝑠  and 𝐷𝑝𝑒𝑟𝑚 . Note that train derailment may also occur outside this zone, but it would be 

unrelated to the bridge response/damage and is therefore outside the scope of this study. It is assumed that each train 

travels at speed 𝑣0, and starts decelerating with negative acceleration a at some time (e.g., when an EEW alarm is 

issued in the case of A), which determines the length of the risk zone. Any trains present within the risk zone at the 

time of deceleration or the arrival of the s-wave (whichever is sooner) are subject to potential derailment.  The longer 

it takes trains to start decelerating, the longer the risk zone and the higher the number of trains that can potentially 

derail. This is now described mathematically for both possible actions.  

If an EEW-induced slow-down of trains is triggered (A), trains start to decelerate at time 𝑡𝐸𝐸𝑊. All trains that 

cannot decelerate to a stop before entering the bridge are subject to the potential consequences of derailment; therefore, 

the risk zone extends a length upstream of the bridge equivalent to the theoretical stopping distance (𝑣𝑜
2/2𝑎 m) .  A 

train located towards the end of the bridge at 𝑡𝐸𝐸𝑊 can exit the bridge before the S-wave arrival at 𝑡𝑠 (and therefore 

avoid possible derailment) if there is sufficient lead time. Thus, the end of the risk zone for A is defined by the distance 

𝑣𝑜(𝑡𝑆 − 𝑡𝐸𝐸𝑊) − 𝑎(𝑡𝑆 − 𝑡𝐸𝐸𝑊)
2/2, which is the distance travelled by a train during the lead time afforded by the 

warning that extends back into the bridge starting from one train length (𝐿𝑡𝑟𝑎𝑖𝑛) downstream (see Figure 3). The end 

of the 𝐷𝑡𝑟𝑎𝑛𝑠 subzone is defined by the location 𝑣𝑜(𝑡𝑆𝑀 − 𝑡𝐸𝐸𝑊) − 𝑎(𝑡𝑆𝑀 − 𝑡𝐸𝐸𝑊)
2/2 upstream of the bridge, which 

is the distance travelled by a train between the time the EEW is issued and the time the earthquake ends (when 𝐷𝑝𝑒𝑟𝑚 

becomes possible). Decelerating trains upstream of this distance within  𝑣𝑜
2/2𝑎 m of the start of the bridge will enter 

the bridge at t>𝑡𝑆𝑀 , and will therefore be subject to potential 𝐷𝑝𝑒𝑟𝑚. 

 
Figure 3. Derailment risk zones and subzones associated with A. Note that 𝐿𝑏𝑟𝑖𝑑𝑔𝑒  and 𝐿𝑡𝑟𝑎𝑖𝑛 respectively 

denote the length of the bridge and the length of a train.  
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For �̅�, it is assumed that trains will start decelerating at a time 𝑡𝑊 > 𝑡𝑆. This means that they will travel some 

distance at the original speed after the s-wave arrives  - equal to 𝑣𝑜(𝑡𝑊 − 𝑡𝑆) — that must also be included as part of 

the risk zone. If the true ground-motion exceeds a high-shaking detection threshold on the train line 

(𝑰𝑴∗>𝑰𝑴𝒖𝒑𝒑𝒆𝒓),  𝑡𝑊 is the time at which a corresponding local warning is issued. Otherwise, it is assumed that 𝑡𝑤 =

𝑡𝑆𝑀, resulting in a larger risk zone. As in the case of A, the risk zone extends the stopping distance of a train upstream 

of the bridge entrance, and the threshold separating both subzones occurs at the upstream distance travelled by a train 

before 𝑡𝑆𝑀.  These two distances can respectively be expressed as 𝑣𝑜(𝑡𝑊 − 𝑡𝑆) + 𝑣𝑜
2/2𝑎 and 𝑣𝑜(𝑡𝑊 − 𝑡𝑆) +

𝑣𝑜(𝑡𝑆𝑀 − 𝑡𝑊) −  𝑎(𝑡𝑆𝑀 − 𝑡𝑊)
2/2. Since trains start to decelerate after (rather than before) 𝑡𝑆, all trains on the bridge 

at 𝑡𝑊 are subject to potential derailment, so the end of the risk zone is simply a train length downstream of the bridge 

(see Figure 4).  

 
Figure 4. Derailment risk zones and subzones associated with �̅�. Note that 𝐿𝑏𝑟𝑖𝑑𝑔𝑒  and 𝐿𝑡𝑟𝑎𝑖𝑛 respectively 

denote the length of the bridge and the length of a train.  

For each case and risk subzone (sz), the expected number of trains at risk of derailment can be evaluated as: 

𝑁𝑡𝑟𝑎𝑖𝑛
𝐴(𝑡𝐸𝐸𝑊) 𝑠𝑧 𝑑𝑒𝑟  =  

𝑄

𝑣0
𝐿𝐴(𝑡𝐸𝐸𝑊)𝑠𝑧 𝑑𝑒𝑟  (8) 

where A and  𝑡𝐸𝐸𝑊 are replaced with �̅� and 𝑡𝑤 for no action,  𝑄/𝑣0 is the average number of trains per unit length, Q 

is the train flow (i.e., number of trains per given time interval), and 𝐿𝐴(𝑡𝐸𝐸𝑊)𝑠𝑧 𝑑𝑒𝑟  is the action- and time-dependent 

length of the subzone associated with the der-th type of derailment.  

2.4.2 Quantifying consequences    

Consequences of the j-th type (either H or I) for �̅� may then be expressed as: 

𝐸(𝐶𝑗
�̅�|𝒅, 𝑡𝑤) = ∫ [𝐸(𝐶𝑗

�̅�|𝒊𝒎, 𝑡𝑤)𝒊𝒎
𝑓(𝒊𝒎|𝒅) + 𝑐(𝑡𝑤)𝑗

𝑰𝑴𝒖𝒑𝒑𝒆𝒓] 𝑑(𝒊𝒎) (9) 

 

where 𝑐(𝑡𝑤)𝑗
𝑰𝑴𝒖𝒑𝒑𝒆𝒓

 is the j-th type of consequence associated with exceeding the high-shaking detection threshold 

(and is 0 otherwise). 𝑐(𝑡𝑤)𝑗
𝑰𝑴𝒖𝒑𝒑𝒆𝒓

 for  H represents an inspection time for each train present within the derailment risk 

zone of the bridge, and is calculated according to: 

𝑐(𝑡𝑤)1
𝑰𝑴𝒖𝒑𝒑𝒆𝒓 = ℎ(𝑡𝑤)

𝑰𝑴𝒖𝒑𝒑𝒆𝒓 = ∑ 𝑁𝑡𝑟𝑎𝑖𝑛
�̅�(𝑡𝑤)

𝑠𝑧 𝑑𝑒𝑟𝑑𝑒𝑟 ℎ𝑖𝑛𝑠𝑝,𝑡𝑟𝑎𝑖𝑛 (10) 

 

where ℎ𝑖𝑛𝑠𝑝,𝑡𝑟𝑎𝑖𝑛 is the inspection time per train. It is assumed that there are no casualties directly associated with 

exceeding 𝑰𝑴𝒖𝒑𝒑𝒆𝒓, i.e.,  𝑐(𝑡𝑤)2
𝑰𝑴𝒖𝒑𝒑𝒆𝒓

= 𝑖(𝑡𝑤)
𝑰𝑴𝒖𝒑𝒑𝒆𝒓 = 0.  

 

 𝐸(𝐶𝑗
�̅�|𝒊𝒎, 𝑡𝑤) can be divided into separate losses caused by 𝐷𝑡𝑟𝑎𝑛𝑠 and 𝐷𝑝𝑒𝑟𝑚 according to:  

𝐸(𝐶𝑗
�̅�|𝒊𝒎, 𝑡𝑤) = 𝐸 (𝐶𝑗

�̅�

𝑡𝑟𝑎𝑛𝑠
|𝒊𝒎, 𝑡𝑤) + 𝐸 (𝐶𝑗

�̅�

𝑝𝑒𝑟𝑚
|𝒊𝒎, 𝑡𝑤)   (11) 

 

where, for the der-th type of derailment:  
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𝐸 (𝐶𝑗
�̅�

𝑑𝑒𝑟
|𝒊𝒎, 𝑡𝑤) =  𝐸(𝐶𝑗,𝑡𝑟𝑎𝑖𝑛,𝑑𝑒𝑟)(𝑁𝑡𝑟𝑎𝑖𝑛

�̅�(𝑡𝑤)
𝑠𝑧 𝑑𝑒𝑟

)𝑝(𝐷𝑑𝑒𝑟)       (12) 

 

and 𝐸(𝐶𝑗,𝑡𝑟𝑎𝑖𝑛,𝑑𝑒𝑟) is the expected derailment-induced consequence per train. If 𝒊𝒎>𝑰𝑴𝒖𝒑𝒑𝒆𝒓 , 𝑝(𝐷𝑑𝑒𝑟) =

𝑝(𝐷𝑑𝑒𝑟|𝑀
∗, 𝑅∗) = ∫ 𝑝(𝐷𝑑𝑒𝑟|𝒆𝒅𝒑)𝒆𝒅𝒑

 𝑓(𝒆𝒅𝒑|𝑀∗, 𝑅∗)𝑑(𝒆𝒅𝒑), where 𝑓(𝒆𝒅𝒑|𝑀∗, 𝑅∗) =

∫ 𝑓(𝒆𝒅𝒑|𝒊𝒎)
𝒊𝒎∗  𝑓(𝒊𝒎|𝑀∗, 𝑅∗)𝑑(𝒊𝒎∗),𝑀∗ is the true magnitude of the incoming event and 𝑅∗ is as previously 

defined. In words, this means that the true source parameters of the earthquake are used to calculate the probability of 

derailment occurrence for cases in which the high ground-shaking detection threshold is estimated to be exceeded. 

Otherwise,  𝑝(𝐷𝑑𝑒𝑟) = 𝑝(𝐷𝑑𝑒𝑟|𝒊𝒎), computed from Equation (7). 𝐸(𝐶1,𝑡𝑟𝑎𝑖𝑛,𝑑𝑒𝑟) =  𝐸(𝐻𝑡𝑟𝑎𝑖𝑛,𝑑𝑒𝑟) is the expected 

time required to rerail a train from the der-th type of derailment.  𝐸(𝐶2,𝑡𝑟𝑎𝑖𝑛,𝑑𝑒𝑟) =  𝐸(𝐼𝑡𝑟𝑎𝑖𝑛,𝑑𝑒𝑟) =𝑁𝑝, where 𝑁𝑝 is the 

number of passengers on each train, such that a train detailment results in casualties to all persons onboard. It is 

assumed that 𝑡𝑤 is exclusively dependent on the source-parameters of the incoming earthquake (represented by 𝒅 and  

𝑅∗), and thus 𝐸(𝐶𝑗
�̅�|𝒅, 𝑡𝑤) simplifies to 𝐸(𝐶𝑗

�̅�|𝒅).  

 

Consequences of the j-th type (either H or I) for 𝐴 are expressed similarly to those for �̅� as: 

𝐸(𝐶𝑗
𝐴|𝒅, 𝑡𝐸𝐸𝑊) = ∫ 𝐸(𝐶𝑗

𝐴|𝒊𝒎, 𝑡𝐸𝐸𝑊)𝒊𝒎
𝑓(𝒊𝒎|𝒅)𝑑(𝒊𝒎)  +  𝑐(𝑡𝐸𝐸𝑊 )𝑗

𝑬𝑬𝑾 (13) 

 

where 𝐸(𝐶𝑗
𝐴|𝒊𝒎, 𝑡𝐸𝐸𝑊) is computed using Equations (11) and (12), substituting 𝐴 for �̅�,  𝑡𝐸𝐸𝑊 for 𝑡𝑤, and 𝑝(𝐷𝑑𝑒𝑟|𝒊𝒎) 

for 𝑝(𝐷𝑑𝑒𝑟). 𝑐(𝑡𝐸𝐸𝑊 )1
𝑬𝑬𝑾 = ℎ(𝑡𝐸𝐸𝑊 )

𝑬𝑬𝑾 is the downtime consequence directly associated with triggering the EEW 

alarm, is calculated analogously to 𝑐(𝑡𝑤)1
𝑰𝑴𝒖𝒑𝒑𝒆𝒓

.  It is assumed that 𝑐(𝑡𝐸𝐸𝑊 )2
𝑬𝑬𝑾 = 𝑖(𝑡𝐸𝐸𝑊 )

𝑬𝑬𝑾 = 0.  

 

Equations (9) to (13) reveal inherent trade-offs between A and �̅�. A typically results in a reduced risk zone 

compared to �̅� (since 𝑡𝐸𝐸𝑊 < 𝑡𝑤, as explained in Section 2.4.1). However, A causes 𝑐(𝑡𝐸𝐸𝑊 )𝑗
𝑬𝑬𝑾 losses to occur every 

time it is issued; the analogous losses for �̅�, 𝑐(𝑡𝑤)𝑗
𝑰𝑴𝒖𝒑𝒑𝒆𝒓 , are only incurred if the high-shaking detection threshold is 

exceeded.  

 

2.5 Step 5: Multi-Criteria Decision-Making, 𝐴𝑜𝑝𝑡(𝒅, 𝑡𝐸𝐸𝑊) = 𝑓′(𝐸(𝐶𝑗
𝐴|𝒅, 𝑡𝐸𝐸𝑊), 𝑤𝑗) 

This component of the methodology accounts for stakeholders’ preferences towards the j-th type of consequence 

examined (𝑤𝑗)  as well as the time-dependent expected magnitude of each consequence 𝐸(𝐶𝑗
𝐴|𝒅, 𝑡𝐸𝐸𝑊), to determine 

the real-time optimal decision to take (𝐴𝑜𝑝𝑡 , i.e., trigger or not a slow-down of trains). The methodology proposed by 

Cremen and Galasso (2021) is used to determine 𝐴𝑜𝑝𝑡 , leveraging the Technique for Order Preference by Similarity 

to Ideal Solution method (TOPSIS; Yoon & Hwang, 1995) for decision evaluation.  

Stakeholder preferences towards each type of consequence are first used to weight the consequence values 

determined for A and �̅� , according to:   

𝑟𝐴,𝐶𝑗 =
𝐸(𝐶𝑗

𝐴|𝒅,𝑡𝐸𝐸𝑊) 

√𝐸(𝐶𝑗
�̅�
|𝒅)

2

+𝐸(𝐶𝑗
𝐴|𝒅,𝑡𝐸𝐸𝑊)

2

× 𝑤𝑗        (14) 

 

where 𝑤𝑗  measures the importance of the j-th consequence to the decision maker. A and 𝐸(𝐶𝑗
𝐴|𝒅, 𝑡𝐸𝐸𝑊) are 

appropriately substituted with  �̅� and 𝐸(𝐶𝑗
�̅�|𝒅) for the case of no action. The optimal action 𝐴𝑜𝑝𝑡(𝒅, 𝑡𝐸𝐸𝑊) ∈

{𝐴, �̅�) leads to the maximum value of 𝑆𝑖 according to: 

𝑆𝑖 =
𝑦𝑖
−

𝑦𝑖
++𝑦𝑖−

          (15) 

 

where 𝑦𝑖
− = 𝑦1

− for A is computed from:  



9 
 

𝑦1
− = √∑ (𝑣j

− — 𝑟𝐴,𝐶𝑗)
2

𝑁𝑐
𝑗=1  (16) 

 

𝑣j
− is the maximum value of {𝑟𝐴,𝐶𝑗 , 𝑟�̅�,𝐶𝑗} and 𝑁𝑐 = 2 is the total number of considered consequences. 𝑦1

+ is also 

calculated from Equation (16) by substituting vj
+ for vj

−, where vj
+ represents the minimum value of {𝑟𝐴,𝐶𝑗 , 𝑟�̅�,𝐶𝑗}. (𝑦2

− 

and 𝑦2
+ are calculated from Equations (14) and (16) by substituting �̅� for A).  

 

2.5 Framework for Assessing the Effectiveness of the Developed EEW-DSS System 

The concept of VoI is used to quantify the benefits of the developed EEW-DSS in terms of minimising the 

consequences. Two measures of VoI are used in this study. The first measure 𝑉𝑜𝐼1,𝑛𝑒𝑞,𝑗(𝒅, 𝑡𝐸𝐸𝑊) compares, for a 

given 𝑛𝑒𝑞 −th earthquake event, the j-th consequences associated with 𝐴𝑜𝑝𝑡(𝒅, 𝑡𝐸𝐸𝑊) to those that correspond with 

EEW information being ignored or unavailable (Wu et al., 2013) where the bridge is operated as usual (action �̅�). 

𝑉𝑜𝐼1,𝑛𝑒𝑞,𝑗(𝒅, 𝑡𝐸𝐸𝑊) for a generic earthquake event can therefore be expressed as follows: 

𝑉𝑜𝐼1,𝑛𝑒𝑞,𝑗(𝒅, 𝑡𝐸𝐸𝑊) = 𝐸(𝐶𝑗
�̅�|𝑀∗)  −  𝐸(𝐶

𝑗

𝐴𝑜𝑝𝑡(𝒅,𝑡𝐸𝐸𝑊)|𝑀∗, 𝑡𝐴𝑜𝑝𝑡)          (17) 

where 𝑡𝐴𝑜𝑝𝑡 = 𝑡𝐸𝐸𝑊 if 𝐴𝑜𝑝𝑡(𝒅, 𝑡𝐸𝐸𝑊) = 𝐴 and 𝑡𝐴𝑜𝑝𝑡 = 𝑡𝑊 (completely dependent on d and 𝑅∗) otherwise.  𝐸(𝐶𝑗
�̅�|𝑀∗) 

and 𝐸(𝐶
𝑗

𝐴𝑜𝑝𝑡(𝒅,𝑡𝐸𝐸𝑊)|𝑀∗, 𝑡𝐴𝑜𝑝𝑡) are respectively computed based on Equations (9) and (13), by substituting 𝑀∗ for d.  

A second EEW VoI measure 𝑉𝑜𝐼2,𝑛𝑒𝑞,𝑗(𝒅, 𝑡𝐸𝐸𝑊) is introduced, which compares for a given available lead time, 

the j-th consequence incurred by taking 𝐴𝑜𝑝𝑡(𝒅, 𝑡𝐸𝐸𝑊)  to the j-th consequence corresponding to 𝐴𝑜𝑝𝑡(𝑀
∗, 𝑡𝐸𝐸𝑊) that 

is determined based on perfect knowledge of the magnitude (M*) and location (R*) of the 𝑛𝑒𝑞-th event being available: 

𝑉𝑜𝐼2,𝑛𝑒𝑞,𝑗(𝒅, 𝑡𝐸𝐸𝑊) = 𝐸(𝐶
𝑗

𝐴𝑜𝑝𝑡 (𝒅,𝑡𝐸𝐸𝑊)|𝑀∗, 𝑡𝐴𝑜𝑝𝑡) −  𝐸(𝐶𝑗
𝐴𝑜𝑝𝑡(𝑀

∗,𝑡𝐸𝐸𝑊)|𝑀∗, 𝑡𝐴𝑜𝑝𝑡∗ ) (18) 

 

where 𝑡𝐴𝑜𝑝𝑡∗  refers to 𝐴𝑜𝑝𝑡(𝑀
∗, 𝑡𝐸𝐸𝑊) and all other variables are as previously defined. 𝑉𝑜𝐼2,𝑛𝑒𝑞,𝑗(𝒅, 𝑡𝐸𝐸𝑊) therefore 

measures the marginal benefits of an ideal EEW system that produces certain and accurate source-parameter 

information over an EEW system that is affected by the uncertainty in the estimates of source parameters.  

A complete quantification of the EEW benefits should account for the range of earthquake scenarios that could 

affect the bridge site. To address this requirement, the concept of pre-posterior VoI is introduced, which is the expected 

value of VoI accounting for multiple possible events i.e., 𝐸[𝑉𝑜𝐼𝑛𝑉𝑂𝐼,𝑗(𝒅, 𝑡𝐸𝐸𝑊)], where 𝑛𝑉𝑂𝐼  =  1 or 2. This is 

obtained with a plain Monte Carlo sampling approach by generating a set of earthquake events (𝑛𝑒𝑞=1,2,… 𝑁𝑒𝑣𝑒𝑛𝑡𝑠) 

according to the characteristics of area or fault sources potentially affecting the bridge, and then averaging the values 

of the 𝑉𝑜𝐼𝑛𝑉𝑂𝐼,𝑘,𝑗(𝒅, 𝑡𝐸𝐸𝑊) values obtained for each kth event with  𝑡𝑙𝑒𝑎𝑑>0, considering a set of n seismic-sensor 

measurements used to compute d. 

 

3. Case Study  
This section demonstrates the development and evaluation of an EEW-DSS for the testbed railway bridge of 

Mugo Viaducto del Rio in Northeastern Spain (42o 18’ 51.26” N; 2o 55’ 26.75” E). It is noteworthy that in the absence 

of comprehensive engineering details as well as validated risk- and EEW-related models for the specific bridge of 

interest, some (potentially simplified) assumptions are made throughout the case study (with relevant details to 

follow). Therefore, the results of this demonstration should be treated as hypothetical; further site-specific 

investigations would be needed to determine their validity for a real-life implementation of the EEW-DSS at the 

bridge.  

3.1 Background Information 

 



10 
 

3.1.1 Bridge Design Details  

The testbed structure is a twelve-span railroad bridge viaduct. Figure 5 presents the bridge location and the 

seismic stations used in the EEW process. This seismic station network comprises 15 accelerometers, 14 high-fidelity 

broadband seismometers, and five Internet-of-Things-enabled low-cost seismometers (Raspberry Shake 4Ds). The 

bridge, which has been in service since 2009, spans a total length (i.e., 𝐿𝑏𝑟𝑖𝑑𝑔𝑒) of 690 m, supported by a reinforced 

concrete prestressed deck and rectangular hollow piers with heights ranging between 8 and 45 m. The design drawings 

and engineering details are not accessible; therefore, characteristic bridge features are obtained where available (Muga 

Viaduct, 2018; after Manterola Armisen et al., 2008) and augmented with information from Google Earth imagery. 

Figure 6 provides a reference image of the testbed structure. 

 

Figure 5. Seismic station network in the testbed region. 
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Figure 6. Testbed railroad bridge (Image Credit: Google Earth). 

Due to the lack of available design details, the pier and deck properties are inferred from those of similar railway 

bridge viaducts in the area (Martinez-Martin et al., 2013). It is assumed that pier sections are hollow with outer 

dimensions of 6.8x2.5 m2 and that longitudinal reinforcement fulfils the 1% minimum design requirement of Eurocode 

8. Dead and permanent deck loads are set as 217 kN/m (Martinez-Martin et al., 2013). This corresponds to an 

approximate 25000 kN axial load at the base of the tallest piers and 250000 kNm and 80000 kNm yield moments in 

the strong and weak axes, respectively. Figure 7 provides sketches that include the estimated bridge dimensions and 

pier details used for developing the nonlinear finite element model (see Section 3.1.2).  

 

Figure 7. Bridge a) elevation layout; b) deck reinforcement; c) pier cross-section; and d) example pier side views 

(the pier at the centreline). 

3.1.2 Structural Model Details  

A 3D finite element model of the bridge is constructed in the OpenSees platform (McKenna, 2011) based on the 

details of Figure 8, using beam elements and nonlinear fibre sections (at the base). Deck-pier connectivity is assumed 

to slide in the horizontal direction and transfer deck forces to the piers in the vertical and lateral directions. Deck 

elements are discretised into five segments of a typical 60-m span length, intersecting with pier pot bearings through 

fictitious beams. One abutment restrains movement in the longitudinal, vertical, transverse, and torsional directions, 

and the second abutment is free to move in all directions except the transverse and vertical ones. A “beamWithHinges” 

element is used to model nonlinearity in the pier base element. Figure 8a presents a three-dimensional view of the 

OpenSees model obtained with OpenSeesNavigator. Figures 8b and 8c display the first (1.03 s) and second (0.91 s) 

vibration modes in the transverse direction. 
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Figure 8. a) Bridge model developed in the OpenSees platform; (b) first (period at 1.03 s); and (c) second 

(period at 0.91 s) vibration modes in the transverse direction. 

3.1.3 Earthquake Scenario Details 

Stochastic earthquake scenarios affecting the bridge are generated by sampling events from the seismogenic 

sources surrounding the site. The G-R distribution parameters of these sources are obtained from the Seismic Hazard 

Harmonization in Europe (SHARE) project’s area source model (Giardini et al., 2013; Woessner et al., 2015; see 

Table 1). A minimum magnitude cut-off of 4.5 is chosen to prevent the sampling of non-damaging events. Note that 

a’ denotes the productivity parameter of the G-R distribution, and all other variables are as defined in Section 2.2.  

Table 1. Activity parameters for the selected seismogenic source areas (ss). 

Area ID 𝑀𝑚𝑖𝑛,𝑠𝑠 𝑀𝑚𝑎𝑥,𝑠𝑠 a’ss bss 

FRAS469 4.5 6.8 3.2500 1.00 

ESAS470 4.5 6.8 3.0000 1.00 

ESAS472 4.5 6.8 2.5845 1.03 

FRAS473 4.5 6.8 3.0000 1.00 

ESAS474 4.5 6.5 3.2000 1.00 

ESAS971 4.5 6.8 1.3968 1.03 

FRAS115 4.5 6.5 2.1000 1.00 

ESAS969 4.5 6.5 3.2707 1.00 

 

For sampling purposes, the weight of a seismogenic source ss (γs𝑠) is quantified as follows: 

γ𝑠𝑠 = 𝑒α𝑠𝑠
𝑒
−β𝑠𝑠𝑀𝑚𝑖𝑛𝑠𝑠−𝑒−β𝑠𝑠𝑀𝑚𝑎𝑥𝑠𝑠

1−𝑒−β𝑠𝑠𝑀𝑚𝑎𝑥𝑠𝑠
         (19) 

 

where α𝑠𝑠 =  𝑙𝑛(10) 𝑎′𝑠𝑠 and all other variables are as defined previously. Once a given source is sampled using the 

normalised values of γ𝑠𝑠, the event magnitude is obtained from the G-R distribution, and the event location is randomly 

generated within the spatial bounds of interest (i.e., assuming that earthquake events are uniformly distributed across 

the seismogenic source area). Finally, a maximum distance cut-off of 100 km (between the epicentre location and the 

bridge) is adopted to avoid sampling remote events, likely resulting in negligible damage and consequences. The total 

number of simulated events is 1000. Removing earthquakes that do not result in positive lead-time for any value of n 

(see Section 3.5 for more details) results in an expected final catalog of 𝑁𝑒𝑣𝑒𝑛𝑡𝑠 = 634.  

3.2 Step 1: RTPSHA 

The Allen and Kanamori (2003) EEW magnitude-scaling relationship is adopted in this study, and we neglect 

any deviations due to station-specific measurement uncertainty. This implies that 𝒅 = [ 𝜏1, 𝜏2, … 𝜏𝑘 , … , 𝜏𝑛], where 𝜏𝑘 

denotes the four-second predominant period evaluated from seismic-sensor measurements of the incoming P waves 

at station k. The parameters of the lognormal distribution in Equation (5) are then derived as follows:  

𝜉�̅�𝑛(τ) =
𝑚−5.9

7 𝑙𝑜𝑔(𝑒)
            (20) 

 

and 



13 
 

𝜎𝑙𝑛 𝜏 =
0.16

𝑙𝑜𝑔(𝑒)
 (21) 

 

In this case, the real-time magnitude distribution of Equation (2) for an earthquake from seismic source ss may 

be succinctly expressed as (Iervolino et al., 2009):  

𝑓(𝑚|𝒅) =
𝑒
(2μ𝑙𝑛τ(∑ 𝑙𝑛τ𝑘

𝑛
𝑘=1 )−𝑛�̅�𝑙𝑛 τ

2 )/2σ𝑙𝑛τ
2

𝑒−βss𝑚

∫ 𝑒
𝑀𝑚𝑎𝑥
𝑀𝑚𝑖𝑛

(2μ𝑙𝑛τ(∑ 𝑙𝑛τ𝑘
𝑛
𝑘=1 )−𝑛�̅�𝑙𝑛τ

2 )/2σ𝑙𝑛τ
2

𝑒−βss𝑚𝑑𝑚

 (22) 

For each considered earthquake, we simulate information available from an EEW system as follows. 𝜏𝑘  values 

are first generated at the 34 seismic stations surrounding the site, considering the magnitude of the given event and 

using Equation (5). These values are then used to compute 𝑓(𝑚|𝒅) according to Equation (22). In this case, the 

intensity measure of interest is the spectral acceleration at the fundamental period of the bridge, i.e., 𝑰𝑴 = 𝐼𝑀 =

𝑆𝑎(1.03). 𝑓(𝑆𝑎(1.03)|𝑚, 𝑅∗) is determined from the epicentral version of the Akkar et al. (2014) GMM for European 

seismicity, assuming the most common style of faulting in the region (i.e., thrust) and the time-averaged shear-wave 

velocity to a depth of 30 meters (Vs30) value for the bridge site from the database of Wald and Allen (2007). 500 

event-dependent ground-shaking intensity values are finally sampled according to Equation (6). The “true” ground-

motion intensity distribution for each earthquake 𝑓(𝑆𝑎(1.03)|𝑀∗, 𝑅∗) is determined from the same GMM; 500 

samples are also used in this case. 

3.3 Step 2: Probabilistic Seismic Demand Modelling 

To develop the probabilistic seismic demand model, 221 ground motion records are used as input excitations in 

the two orthogonal directions for nonlinear time history analyses (NLTHAs). Detailed features of this ground motion 

dataset can be found in Tubaldi et al. (2021). Uncertainties related to structural modelling are neglected in the absence 

of relevant data.  Bilinear excitation is imposed on the nonlinear finite element model with a Rayleigh damping ratio 

of 5%. The following set of EDP is obtained from the NLTHAs: (1) peak pier acceleration (a) responses, both absolute 

(abs) and relative (rel) to the ground in the longitudinal (x) and traverse (y) directions,   aabs, x max, aabs, y max, arel, x max, 

arel, y max; and (2) peak pier displacement (δ) responses δabs, x max δabs, y max δrel, x max δrel, y max. The relationship between 

each EDP and the IM is characterised by:  

𝐸𝐷𝑃 = 𝑔 ∙ 𝐼𝑀′𝜆 (23) 

 

𝐼𝑀′ = 𝑆𝑑𝑔𝑒𝑜𝑚, the geometric mean of spectral displacement at the bridge’s fundamental period, obtained from   
𝑆𝑎(1.03)

𝜔2
 ; where 𝜔 is the circular frequency). g and 𝜆 are constant parameters that define the appropriate probabilistic 

seismic demand model 𝑓(𝑒𝑑𝑝|𝑆𝑑𝑔𝑒𝑜𝑚), based on least squares optimisation in the logarithmic domain. Figure 9 

provides the probabilistic seismic demand models for some of the EDPs (aabs, y, max, δabs, y, max and δrel, y, max).  
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Figure 9. Probabilistic seismic demand model 𝑓(𝑒𝑑𝑝|𝑆𝑑𝑔𝑒𝑜𝑚)  for a) peak pier displacement relative to the ground; 

b) peak absolute pier displacement, and c) peak absolute acceleration, all in the transverse direction. 

3.4 Step 3: Derailment Analysis 

𝐷𝑡𝑟𝑎𝑛𝑠  is controlled by aabs, y max and δabs, y max, based on research by the East Japan Railway Company (Shimamura 

& Yamamura, 2006). 𝑝(𝐷𝑡𝑟𝑎𝑛𝑠|𝒆𝒅𝒑) can then be calculated as follows: 

p(𝐷𝑡𝑟𝑎𝑛𝑠|𝒆𝒅𝒑) = {
1 𝑖𝑓 𝑎𝑎𝑏𝑠 𝑦 𝑚𝑎𝑥  ≥ 𝑎𝑎𝑏𝑠 𝑦 𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  ∩  𝛿𝑎𝑏𝑠 𝑦 𝑚𝑎𝑥 ≥ 𝛿𝑎𝑏𝑠 𝑦 𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

0 otherwise
 (24) 

 

where 𝑎𝑎𝑏𝑠 𝑦 𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝛿𝑎𝑏𝑠 𝑦 𝑚𝑎𝑥  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ respectively denote corresponding acceleration and displacement thresholds, which 

are equal to 0.3g and 0.07m, according to Guillaud (2006). 

This study employs a numerical approach to evaluate bridge global damage (DL), assuming it is controlled by 

the maximum transient deflections of the piers, i.e., DL is controlled by δrel, x max and δrel, y max (e.g., Attarchian et al., 

2018). In particular, the following conditions are considered to define various DL, from 0 (no damage) to 3 (global 

collapse): 

𝐷𝐿 =  

{
 
 
 

 
 
 0   𝑖𝑓

𝛿𝑟𝑒𝑙,𝑦 𝑚𝑎𝑥

𝛿𝑦𝑖𝑒𝑙𝑑 𝑦
+ 0.5 

𝛿𝑟𝑒𝑙,   𝑥 𝑚𝑎𝑥

𝛿𝑦𝑖𝑒𝑙𝑑 𝑥
≤ 1

1 𝑖𝑓 
𝛿𝑟𝑒𝑙,   𝑦 𝑚𝑎𝑥

𝛿𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑦
+ 0.5 

𝛿𝑟𝑒𝑙,   𝑥 𝑚𝑎𝑥

𝛿𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑥
≤ 1 ∩ 

𝛿𝑟𝑒𝑙,   𝑦 𝑚𝑎𝑥

𝛿𝑦𝑖𝑒𝑙𝑑 𝑦
+ 0.5 

𝛿𝑟𝑒𝑙,   𝑥 𝑚𝑎𝑥

𝛿𝑦𝑖𝑒𝑙𝑑 𝑥
> 1 

2 𝑖𝑓 
𝛿𝑟𝑒𝑙,   𝑦 𝑚𝑎𝑥

𝛿𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 𝑦
+ 0.5 

𝛿𝑟𝑒𝑙,   𝑥 𝑚𝑎𝑥

𝛿𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 𝑥
≤ 1 ∩ 

𝛿𝑟𝑒𝑙,   𝑦 𝑚𝑎𝑥

𝛿𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑦
+ 0.5 

𝛿𝑟𝑒𝑙,𝑥 𝑚𝑎𝑥

𝛿𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑥
> 1

3 𝑖𝑓 
𝛿𝑟𝑒𝑙,   𝑦 𝑚𝑎𝑥

𝛿𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 𝑦
+ 0.5 

𝛿𝑟𝑒𝑙,   𝑥 𝑚𝑎𝑥

𝛿𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 𝑥
> 1

 (25) 

where the structure-specific values of 𝛿𝑦𝑖𝑒𝑙𝑑 , 𝛿𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 , 𝛿𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒  , respectively denote the yield, moderate, and collapse 

displacement limit states and are based on the capacity curves of the pier along x and y, which are developed for a 

representative pier at the midspan per Attarchian et al. (2018)  (see Figure 10). Note that the collapse capacity is based 

on the displacement corresponding to 80% of the maximum strength. Damage states are respectively described as i) 

initial cracks on columns indicating a transition to inelastic behaviour (DL =1); ii) post-cracking/spalling and loss of 
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column anchorage (DL=2); and iii) complete column failure (DL=3) (e.g., Banerjee et al., 2008). Note that DL could 

also be defined in terms of curvature or drift (Muntasir Billah et al., 2015) or damage index (Karim et al., 2001).  

  
Figure 10. Capacity curves along the a) transverse; and b) longitudinal directions. V denotes shear force and all 

other variables are as previously defined. 

 

The probability of derailment occurrence due to permanent bridge damage, 𝐷𝑝𝑒𝑟𝑚, can then be evaluated as 

follows: 

𝑝(𝐷𝑝𝑒𝑟𝑚|𝒆𝒅𝒑) =

{
 
 

 
 

1 𝑖𝑓 𝐷𝐿 = 3
⋮

𝑑𝑎𝑚𝑖  𝑖𝑓 𝐷𝐿 = 𝑖 (0 < 𝑖 < 3 & 0 < 𝑑𝑎𝑚𝑖 < 1)
⋮

0 𝑖𝑓 𝐷𝐿 = 0

 (26) 

 

where 𝑑𝑎𝑚1 = 0.25 and  𝑑𝑎𝑚2 = 0.5, based on engineering judgement in the absence of appropriate data.  

𝐷𝑝𝑒𝑟𝑚 governs over 𝐷𝑡𝑟𝑎𝑛𝑠 , such that the final value of  p(𝐷𝑡𝑟𝑎𝑛𝑠 |𝒆𝒅𝒑)  is computed from:  

p(𝐷𝑡𝑟𝑎𝑛𝑠|𝒆𝒅𝒑) =  p(𝐷𝑡𝑟𝑎𝑛𝑠𝑚|𝒆𝒅𝒑) − [p(𝐷𝑡𝑟𝑎𝑛𝑠𝑚  |𝒆𝒅𝒑)  ∩ p(𝐷𝑝𝑒𝑟𝑚  |𝒆𝒅𝒑)] (27) 

 

where p(𝐷𝑡𝑟𝑎𝑛𝑠𝑚  |𝒆𝒅𝒑) is determined from Equation (24).  

The derailment fragility curves, expressed in terms of 𝑆𝑑𝑔𝑒𝑜𝑚, are displayed in Figure 11, along with the collapse 

fragility curve, p(𝐷𝐿 = 3| 𝑆𝑑𝑔𝑒𝑜𝑚).  

 
Figure 11. Derailment fragilities and bridge collapse fragility. 

 3.5 Step 4: Consequence Modelling 

In the absence of appropriate available data, the inspection time  per train ℎ𝑖𝑛𝑠𝑝,𝑡𝑟𝑎𝑖𝑛 is assumed to be one hour, 

and 𝑰𝑴𝒖𝒑𝒑𝒆𝒓 = 𝐼𝑀𝑢𝑝𝑝𝑒𝑟 is taken as Sa(1.03)= 0.05 m/s2. 𝐸(𝐻𝑡𝑟𝑎𝑖𝑛,𝑡𝑟𝑎𝑛𝑠) and 𝐸(𝐻𝑡𝑟𝑎𝑖𝑛,𝑝𝑒𝑟𝑚) are respectively set as 

five and 48 hours, using engineering judgment based on similarly observed derailment phenomena (e.g., Ebrahimi et 

al., 2021). Trains are assumed to be travelling with full passenger capacity, i.e., 𝑁𝑝 is 508 people, equivalent to the 

capacity of a Train à Grande Vitesse (TGV) Duplex (2022) train that uses the bridge. Twelve trains per day pass the 

bridge, based on relevant example timetables from Red Nacional de los Ferrocarriles Españoles (RENFE) – Société 

Nationale des Chemins de fer Français (SNCF) (2021), such that Q =0.5 trains/h.  
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In addition to the parameters above, 𝑎 is assumed to be -3 m/s2 , 𝑣0  is set equal to 83m/s,  𝑡𝑙𝑒𝑎𝑑 = 𝑡𝑆 − 𝑡𝐸𝐸𝑊 =

𝑡𝑠 − 𝑡𝑝 − 𝜀 (where 𝑡𝑝 and 𝜀 respectively indicate the time of the p-wave arrival at the n-th station and a trigger delay 

of 4 seconds, respectively) is computed assuming uniform respective P- and S-wave velocities of 𝑣𝑝= 3.55 m/s and 

𝑣𝑠= 6.1 m/s per the CRUST 1.0 model  (Laske et al., 2013) and an earthquake depth of 10km (i.e., the most common 

depth across most of the considered seismogenic sources according to the SHARE area source model). Further 

assumptions are that 𝑡𝑆𝑀 = 𝑡𝑠 + 10 (since 10 seconds corresponds to the median time at which 95% of the Arias 

intensity is achieved across the ground-motion dataset used), 𝑡𝑤 = 𝑡𝑠 + 5 (when 𝐼𝑀∗>𝐼𝑀𝑢𝑝𝑝𝑒𝑟), and 𝐿𝑡𝑟𝑎𝑖𝑛= 200m. 

3.5.1 Consequence Modelling Results  

Some example consequence modelling results are now examined. Figure 12 presents two of the simulated 

earthquake scenarios,  associated with relatively low (Scenario 149, 𝑀∗ = 4.7, 𝑅∗ = 82 𝑘𝑚, 𝐸[𝑆𝑑𝑔𝑒𝑜𝑚|𝑀
∗, 𝑅∗] =

 0.3mm) and high (Scenario 746, 𝑀∗ = 6.7, 𝑅∗ = 57 𝑘𝑚, 𝐸[𝑆𝑑𝑔𝑒𝑜𝑚|𝑀
∗, 𝑅∗]=20.7mm) IM values at the bridge, for 

different numbers of stations n in the seismic network used to compute d in Equations (1) to (6). It can be observed 

that the empirical cumulative distribution functions 𝐹(𝑆𝑑𝑔𝑒𝑜𝑚  |𝒅) estimated from 500 𝑆𝑑𝑔𝑒𝑜𝑚 samples for different 

values of n are similar for the low-intensity scenario (Scenario 149). This may be explained by the similar nature of 

the underlying magnitude distributions, which are lower-bounded close to 𝑀∗; even for low values of n, the 

Guternberg-Richter prior components that dominate the distributions ensure that the expected magnitudes are close to 

𝑀∗.  𝐹(𝑆𝑑𝑔𝑒𝑜𝑚  |𝒅)  distributions differ significantly in the case of the high-intensity scenario (Scenario 746) for 𝑛 ≤

16 (approximately), where the Guternberg-Richter prior components of the underlying magnitude distributions 

produce expected magnitudes much smaller than 𝑀∗.  

Figure 13 visualises – for different values of n used to compute d and the same scenarios depicted in Figure 12 

– the expected consequences associated with both issuing and not issuing the alarm, i.e, 𝐸(𝐻𝐴|𝒅, 𝑡𝐸𝐸𝑊 ), 

𝐸(𝐼𝐴|𝒅, 𝑡𝐸𝐸𝑊), 𝐸(𝐻
�̅�|𝒅), and 𝐸(𝐼�̅�|𝒅) respectively. Also shown are 𝐸(𝐻𝐴|𝑀∗, 𝑡𝐸𝐸𝑊), 𝐸(𝐼

𝐴|𝑀∗, 𝑡𝐸𝐸𝑊), 𝐸(𝐻
�̅�|𝑀∗), 

and 𝐸(𝐼�̅�|𝑀∗), i.e., the expected consequences for both outcomes given perfect knowledge of the source parameters. 

For the low-intensity earthquake scenario (149), and most examined values of n (in the case of d) or all examined 

values of n (for perfect source-parameter knowledge), A induces inspection downtime losses that are not present for 

�̅�, and provides no benefit in terms of casualty reduction.  

For the high-intensity earthquake scenario (746), it can be observed that 𝐴 reduces casualty consequences relative 

to �̅� in (almost) all examined cases. However, the increase or decrease in downtime predicted for 𝐴 relative to �̅� 

depends on 𝑡𝐸𝐸𝑊, which determines the length of the risk zone and underlying subzones, as described in Section 2.4, 

and increases with increasing n. Increasing 𝑡𝐸𝐸𝑊 expands the risk zone and the consequences associated with A. This 

means that it is only beneficial (from a downtime mitigation perspective) to issue the alarm for relatively low 𝑡𝐸𝐸𝑊 

(i.e., low numbers of n), even if there is high uncertainty in the source parameters. The consequence estimates for d 

generally tend to approach those estimated for M* as the value of n increases and the accuracy of 𝑓(𝑚|𝒅) typically 

improves. 
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Figure 12. 𝐹(𝑆𝑑𝑔𝑒𝑜𝑚  |𝒅) for (a) a low-intensity (Scenario 149); and (b) a high-intensity (Scenario 746) 

scenario. Legends indicate the number of triggered stations n from which information is used to compute the 

distributions; also shown are the true distributions, i.e., 𝐹(𝑆𝑑𝑔𝑒𝑜𝑚  |𝑀
∗, 𝑅∗) 

 
Figure 13. Downtime (H) and casualty (I) consequences associated with (a) a low-intensity (Scenario 149); and 

(b) a high-intensity (Scenario 746) scenario for a given number of triggered stations, n. 

3.6 Step 5: Multi-Criteria Decision Making 

This subsection investigates the effects of different 𝑤𝑗  on 𝐴𝑜𝑝𝑡(d, 𝑡𝐸𝐸𝑊) and 𝐴𝑜𝑝𝑡(M*, 𝑡𝐸𝐸𝑊). Table 2 presents 

the 𝑤𝑗  values considered in these analyses, which are selected to investigate an incremental transition from a casualty-

dominant (Case 1) to a downtime-dominant (Case 7) set of stakeholder preferences.  

 

Table 2. Various cases of 𝑤𝑗  sets examined in this study. 

Consequence/Case 1 2 3 4 5 6 7 

Downtime 0. 0.05 0.333 0.5 0.667 0.95 1.0 

Casualty 1.0 0.95 0.667 0.5 0.333 0.05 0. 

 

Figure 14 demonstrates how 𝐴𝑜𝑝𝑡(d, 𝑡𝐸𝐸𝑊) and 𝐴𝑜𝑝𝑡(M*,  𝑡𝐸𝐸𝑊) are influenced by the different sets of 𝑤𝑗  

examined, for 𝑛 = 1 and  𝑛 = 34 (and the associated 𝑡𝐸𝐸𝑊) and all corresponding  earthquake scenarios considered. 

The results are expressed in terms of 𝐸[𝑆𝑑𝑔𝑒𝑜𝑚|𝑀
∗, 𝑅∗] values obtained for each earthquake scenario. Cases in which 

minimising downtime is prioritised (e.g., Case 6) result in an optimal decision of �̅� for most values of examined 

𝐸[𝑆𝑑𝑔𝑒𝑜𝑚|𝑀
∗, 𝑅∗], whereas cases in which minimising casualties are heavily prioritised (e.g., Case 2) tend to result 

in an optimal decision of 𝐴 , particularly for higher values of examined 𝐸[𝑆𝑑𝑔𝑒𝑜𝑚|𝑀
∗, 𝑅∗]. Note that there is no sharp 

transition between an optimal decision of  �̅�  and A in terms of  𝐸[𝑆𝑑𝑔𝑒𝑜𝑚|𝑀
∗, 𝑅∗], since 𝐴𝑜𝑝𝑡 also depends on 𝑡𝐸𝐸𝑊 

(and thus n) and possibly d. It is also observed that 𝐴𝑜𝑝𝑡(d, 𝑡𝐸𝐸𝑊) approaches 𝐴𝑜𝑝𝑡(M*,  𝑡𝐸𝐸𝑊) for  𝑛 = 34 . The cases 

shown demonstrate the inherent EEW trade-off between efficient decisions that maximise the risk-mitigation 
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opportunity of A and more accurate decisions that require waiting for further information from a larger number of 

triggered stations.  

3.7 Assessing the Effectiveness of the Developed EEW-DSS System  

Tables 3 to 6 present values of 𝐸[𝑉𝑜𝐼1,𝑗(𝒅, 𝑡𝐸𝐸𝑊)]and 𝐸[𝑉𝑜𝐼2,𝑗(𝒅, 𝑡𝐸𝐸𝑊)] associated with various n, which can 

be used to further investigate EEW benefits for variations in the trade-off between accuracy and timeliness, across 

different sets of 𝑤𝑗  (detailed in Table 2). 𝐸[𝑉𝑜𝐼1,1(𝒅, 𝑡𝐸𝐸𝑊)] values in Table 3 display convergence towards zero for 

downtime-dominated weighting cases, but are negative for casualty-dominated cases in which 𝐴𝑜𝑝𝑡(d, 𝑡𝐸𝐸𝑊)=A creates 

unnecessary inspection downtimes. 𝐸[𝑉𝑜𝐼1,2(𝒅, 𝑡𝐸𝐸𝑊)] values presented in Table 4 are positive for casualty-

dominated weighting strategies and gradually become zero for 𝑤𝑗  cases that place increasing priority on minimising 

downtime (towards Case #7), as 𝐴𝑜𝑝𝑡(d, 𝑡𝐸𝐸𝑊) tends to transition from A to �̅� (see Figure 14).  

𝐸[𝑉𝑜𝐼2,1(𝒅, 𝑡𝐸𝐸𝑊)] and 𝐸[𝑉𝑜𝐼2,2(𝒅, 𝑡𝐸𝐸𝑊)] values are presented in Tables 5 and 6, respectively, where it may 

be observed that an EEW based on perfect source-parameter estimates provides no (or little) value: (1) if n is relatively 

high, when losses associated with d become close to those of 𝑀∗; and/or (2) if a stakeholder is only interested in 

minimising casualties (Case #1) because 𝐴𝑜𝑝𝑡(M*,  𝑡𝐸𝐸𝑊) =  𝐴𝑜𝑝𝑡(d) = 𝐴 for all n and earthquake scenarios considered 

(see Figure 14). Positive values of (1) 𝐸[𝑉𝑜𝐼2,2(𝒅, 𝑡𝐸𝐸𝑊)] (for larger weighting cases and smaller n values) and (2) 

𝐸[𝑉𝑜𝐼2,1(𝒅, 𝑡𝐸𝐸𝑊)] values (for Case #2 in particular) respectively underline the benefits of avoiding missed and false 

alarms with perfect information. 

 
Figure 14. Optimal decisions for different 𝑤𝑗  cases (numbered in bold). The top row displays decisions for n=1 (and 

the associated lead time), and the bottom row provides these for the lead time and information associated with n=34. 

 

 

 

 

 

Table 3. 𝐸[𝑉𝑜𝐼1,1(𝒅, 𝑡𝐸𝐸𝑊)]  ∙ 10
3 for various n used to compute d  

 n 

1 2 4 8 16 32 

𝑤
𝑗  C

ase n
o

 

1 -2.2173 -2.3060 -2.4375 -2.6327 -2.9696 -3.3028 

2 -2.2106 -2.2199 -2.0893 -1.7451 -0.8987 -0.2652 

3 0.0000 0.0011 -0.0001 -0.0048 -0.0033 0.0000 

4 0.0000 0.0000 0.0000 -0.0014 -0.0001 0.0000 

5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Table 4. 𝐸[𝑉𝑜𝐼1,2(𝒅, 𝑡𝐸𝐸𝑊)]  ∙ 10
3 for various n used to compute d  

 n 
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1 2 4 8 16 32 

𝑤
𝑗  C

ase n
o

 

1 0.4734 0.4344 0.3823 0.3201 0.2338 0.1624 

2 0.4734 0.4303 0.3819 0.3140 0.2275 0.1495 

3 0.0000 0.0636 0.0694 0.0911 0.0810 0.0000 

4 0.0000 0.0000 0.0000 0.0090 0.0326 0.0000 

5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Table 5. 𝐸[𝑉𝑜𝐼2,1(𝒅, 𝑡𝐸𝐸𝑊)]  ∙ 10
3 for various n used to compute d  

 n 

1 2 4 8 16 32 

𝑤
𝑗  C

ase n
o

 

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

2 1.2002 1.1875 1.0483 0.7962 0.3150 -0.0042 

3 -0.0043 -0.0044 -0.0035 0.0028 0.0022 -0.0015 

4 0.0005 0.0012 0.0010 0.0017 -0.0002 0.0000 

5 0.0022 0.0019 0.0010 0.0002 -0.0003 0.0000 

6 0.0022 0.0019 0.0010 0.0005 0.0000 0.0000 

7 0.0022 0.0019 0.0011 0.0005 0.0000 0.0000 

 

Table 6. 𝐸[𝑉𝑜𝐼2,2(𝒅, 𝑡𝐸𝐸𝑊)]  ∙ 10
3 for various n used to compute d  

 n 

1 2 4 8 16 32 

𝑤
𝑗  C

ase n
o

 

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

2 -0.0006 0.0035 -0.0005 0.0048 0.0035 0.0077 

3 0.3034 0.1889 0.1427 0.0477 -0.0011 0.0357 

4 0.2285 0.1725 0.1292 0.0999 0.0306 0.0000 

5 0.1631 0.1524 0.1292 0.1090 0.0632 0.0000 

6 0.1631 0.1524 0.1292 0.0823 0.0000 0.0000 

7 0.1631 0.1524 0.0963 0.0823 0.0000 0.0000 

 

4. Conclusions 
This paper introduced a novel EEW-DSS that is specifically designed for mitigating seismic risk at a railroad 

bridge. An enhanced engineering-oriented approach was used to create this system, which also integrates multi-criteria 

decision making (MCDM) theory to account for varying stakeholder priorities towards different types of seismic risk. 

The benefits of the proposed EEW-DSS were uniquely quantified in terms of bespoke VoI metrics that accounted for 

the risk preferences input to the MCDM component, as well as the range of possible earthquake scenarios that may 

affect the bridge. Below is a list of the most important outcomes from this study:  

• It is found that optimal EEW decisions or actions strongly depend on which consequence is prioritised based 

on stakeholder interests. This is consistent with the conclusions of previous studies that have incorporated 

MCDM in EEW decision making. For example, prioritising the minimisation of casualties can result in 

issuing EEW alarms even at small levels of shaking (since false alarms do not cause related losses), which is 

not the case when priority is placed on minimising downtime. Optimal decisions are also influenced by the 

accuracy of EEW estimations (increasing with the number of stations triggered) as well as the lead time 

available for risk-reduction efforts (decreasing with the number of stations triggered).  

• Thus, the number of triggered stations used in the EEW-DSS (and the decreasing lead time available to 

facilitate EEW) has competing effects on its effectiveness. Increasingly accurate source-parameter 

predictions yielded by larger amounts of recording station data result in more accurate optimal decisions but 

also decrease the effectiveness of EEW due to the amplified risks of train derailment as lead time shortens.  

• Findings of the case study indicate that there is often no (or even negative) gain in risk mitigation achieved 

from an EEW-DSS system, particularly for minimising downtime. This is due to the fact that no action (i.e., 

not slowing down trains) is often the optimal decision for the low ground-shaking values that dominate the 
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seismic hazard of the case-study area, for which issuing an EEW alarm would only unnecessarily trigger a 

disruptive bridge inspection.  

• The benefits of having perfect source-parameter information in the EEW-DSS can depend on the loss 

priorities of stakeholders. Findings of the case study imply that stakeholders who only care about minimising 

casualties would experience little to no marginal benefits in having a perfect EEW-DSS, since the more 

uncertain loss estimates obtained with the raw EEW parameters still lead to the correct optimal decision (i.e., 

trigger the alarm). On the other hand, stakeholders that heavily prioritise the minimisation of downtime losses 

do benefit from the use of perfect information, since it can eliminate some missed alarm opportunities 

associated with the more uncertain source-parameter estimates.   

• The benefits of having perfect source-parameter information in the EEW-DSS also depends (as expected) on 

the number of triggered stations used in the EEW-DSS. Larger numbers of triggered stations result in more 

reliable source-parameter estimates that then diminish the value of a perfect system.  

It is important to acknowledge that while the results of the case-study application provide some useful insights 

on the benefits of adopted risk-informed EEW decision making for railway bridges, they have not been validated in a 

real-life setting and should only be considered demonstrative.   Furthermore, seismic hazard is low for the specific 

testbed examined and findings could change for regions with higher seismic hazard. This study considered one 

possible EEW risk-mitigation action, whereas a more realistic EEW strategy could involve multiple possible actions 

that slow the train to different speeds or even activate structural control systems for the case-study bridge. More 

advanced derailment mechanisms can be simulated through vehicle-bridge interaction techniques, which have 

received attention in the last two decades, some of which centre on earthquake-induced derailment.  

This study considered only one node (i.e., a bridge) in a railway system; a more advanced methodology would 

be required to measure the benefits of EEW on a holistic system-level scale that captures all nodes in the network. 

This methodology would involve: (1) computing consequences for multiple bridges; (2) accounting for the cascading 

implications of node-level actions, such as the knock-on disruptions caused by a bridge closure across the entire 

network; and (3) developing an approach for unifying the complete set of consequences in MCDM. (1) and (3) would 

require an advanced network-level analysis technique, such as agent-based modelling (Feng et al., 2020), For (2), the 

MCDM process might involve the use of spatially-dependent weightings for the different loss metrics (i.e., criteria), 

if necessary. Spatial discrepancies in weightings may reflect diverse socioeconomic or political backgrounds of 

stakeholders in different regions, for instance. However, the network-level version of the EEW-DSS could also 

account for consequences in a more aggregated manner (e.g., total disruption in railway traffic flow). Furthermore, 

the EEW-DSS could take advantage of any structural health monitoring infrastructure installed on transportation 

network. This type of infrastructure, which would consist of additional accelerometers, could help to better constrain 

the estimated characteristics of an incoming event as well as the seismic demand to be experienced by the bridge.  
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