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A B S T R A C T

Traffic crashes present substantial challenges to human safety and socio-economic development in urban areas.
Developing a reliable and responsible traffic crash prediction model is crucial to address growing public
safety concerns and improve the safety of urban mobility systems. Traditional methods face limitations at
fine spatiotemporal scales due to the sporadic nature of high-risk crashes and the predominance of non-crash
characteristics. Furthermore, while most current models show promising occurrence prediction, they overlook
the uncertainties arising from the inherent nature of crashes, and then fail to adequately map the hierarchical
ranking of crash risk values for more precise insights. To address these issues, we introduce the Spatiotemporal
Zero-Inflated Tweedie Graph Neural Networks (STZITD-GNN), the first uncertainty-aware probabilistic graph
deep learning model in road-level daily-basis traffic crash prediction for multi-steps. Our model combines
the interpretability of the statistical Tweedie family with the predictive power of graph neural networks,
excelling in predicting a comprehensive range of crash risks. The decoder employs a compound Tweedie
model, handling the non-Gaussian distribution inherent in crash data, with a zero-inflated component for
accurately identifying non-crash cases and low-risk roads. The model accurately predicts and differentiates
between high-risk, low-risk, and no-risk scenarios, providing a holistic view of road safety that accounts for
the full spectrum of probability and severity of crashes. Empirical tests using real-world traffic data from
London, UK, demonstrate that the STZITD-GNN surpasses other baseline models across multiple benchmarks,
including a reduction in regression error of up to 34.60% in point estimation metrics and an improvement of
above 47% in interval-based uncertainty metrics.
1. Introduction

Traffic crashes persist as a major barrier to sustainable urban de-
velopment (Dai et al., 2018; Tu et al., 2020; Barahimi et al., 2021;
Rodrigue, 2020). The recent World Health Organisation (WHO) report
reveals that road traffic crashes claimed approximately 1.19 million
lives worldwide in 2021, making them the leading cause of mortality
and disability and imposing an economic burden of up to US$1.8
trillion, approximately 10%–12% of the global Gross Domestic Product
(GDP) (World Health Organization, 2023).

To support reductions in traffic crashes, there is a growing empha-
sis on the development of models aimed at predicting the location,

∗ Corresponding author.
E-mail addresses: xiaowei.gao.20@ucl.ac.uk (X. Gao), XinkeJiang@stu.pku.edu.cn (X. Jiang), j.haworth@ucl.ac.uk (J. Haworth), dingyi@mit.edu

(D. Zhuang), shenhaowang@ufl.edu (S. Wang), huanfa.chen@ucl.ac.uk (H. Chen), stephen.law@ucl.ac.uk (S. Law).

severity, and causes of crashes. The early approaches relied mainly
on linear regression models (Mountain et al., 1996; Greibe, 2003),
models that incorporate random parameters (El-Basyouny and Sayed,
2009; Dinu and Veeraragavan, 2011), and geographically weighted
regression (GWR) models (Li et al., 2013; Xu and Huang, 2015) to
predict regional traffic crashes. Recent research has turned to deep
learning-based methods, notably graph neural networks (GNNs), which
are able to handle large datasets and capture complex spatial and
temporal representations of urban road networks. Examples include
time-varying GNN (Zhou et al., 2020b), multiview fusion GNN (Trirat
et al., 2023) and subgraph-based GNN (Zhao et al., 2023). Despite
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substantial advancements in model development, accurately predicting
road crashes at a fine spatiotemporal granularity road presents several
challenges:

• Spatially Imbalanced Crash Occurrence:The prediction of road
crashes is challenging due to the uneven spatial distribution of
crashes. Firstly, zero-inflation is inherent to crash data, where
areas with no crashes are much more common than those with
crashes. This spatially skewed distribution causes models to be
biased towards predicting zero crashes, complicating the effective
training of predictive algorithms (Wu et al., 2022). Secondly,
where crashes do occur, they are predominantly minor, lead-
ing to an abundance of low-risk scores across the spatial grid.
This creates a misleading representation that underestimates the
potential severity of less frequent, more severe crashes (Shirazi
and Lord, 2019; Saha et al., 2020). The combination of these
factors — widespread zero-crash areas and the dominance of
minor crashes in crash-prone zones — results in a challenging
scenario for models that need to understand and predict the full
spectrum of crash severities across different areas (Wang et al.,
2023b).

• Temporal Constraints with Uncertainty: Building on the spatial
challenges, the temporal dynamics of traffic crashes introduce
additional complexity. Particularly, predictive models for traffic
crashes face the challenge of accurately forecasting not just imme-
diate but also future conditions, necessitating reliable multi-step
predictions (Soltani and Qadikolaei, 2024). The nature of traffic
crashes, characterised by their non-linearity and the variable
time intervals between events, adds complexity to this task. As
the prediction horizon extends, uncertainty increases, particularly
because future traffic conditions and potential crash triggers can
change substantially over time (Qian et al., 2022). Most current
deep learning methods do not fully address these challenges. They
tend to overlook the complexities of aleatoric uncertainty, which
arises from the inherent randomness in the data. These models of-
ten rely on assumptions of uniform variance across all data points,
producing point estimates from average outcomes (Wang et al.,
2023b; Zhuang et al., 2022; Jiang et al., 2023). This approach
fails to capture the temporal variability and the unpredictable
nature of crashes, resulting in predictions that do not adequately
reflect the true range of future possibilities.

To address the intricate challenges posed by the spatial and tempo-
al distribution of crash data, we introduce the Spatio-temporal Zero-
nflated Tweedie Graph Neural Network (STZITD-GNN). This model
ombines spatio-temporal graph machine learning with statistical meth-
ds, enabling enhanced uncertainty quantification over multi-step pre-
iction intervals. It is specifically designed to handle the probabilistic
ssessment of non-recurrent, road-level traffic crashes, providing a
obust solution to predict spatially and temporally varying crash data.

The proposed framework integrates a cohesive encoder that com-
ines a Gated Recurrent Unit (GRU) for capturing temporal dynamics
nd a Graph Attention Network (GAT) for spatial relationships, en-
uring a synchronised capture of spatio-temporal dependencies across
ndividual roads and time steps. The decoder leverages a Tweedie (TD)-
ased distribution, a flexible compound Poisson-gamma model that
imultaneously models both exact zero occurrences and continuous
ositive values. The choice of the TD distribution is motivated by its
stablished efficacy in fields challenged by nonnormal distributions,
uch as crash frequency estimation (Wang et al., 2019), insurance
laims (Smyth and Jø rgensen, 2002), actuarial studies (Shi, 2016), and
eteorological precipitation (Dunn, 2004). This approach allows the
odel to output the TD distribution parameters, explicitly determining

he upper and lower bounds for the prediction intervals of each sample,
hus providing a probabilistic representation of each road’s crash risk
cores.
2 
Given the inherent extreme imbalance that traditional TD mod-
els struggle to adequately capture (Khosravi et al., 2010; Abe and
Yadohisa, 2017), we have enhanced our model by incorporating an
additional parameter, 𝜋, to estimate the probability mass of zero values.
This adjustment leads to the creation of the Zero-Inflated Tweedie
(ZITD) distribution on the decoder, which offers a more comprehensive
and responsible depiction of real crash scenarios. This refinement en-
sures that our model not only captures the complexities of traffic crash
data, but also enhances the accuracy and reliability of its predictions.
Specifically, our main contributions can be summarised as follows.

• To address the limitations of ST-GNN in modelling complex spa-
tial and temporal relationships, our framework introduces an
end-to-end spatio-temporal encoder. This encoder is specifically
designed to simultaneously model pairwise relationships and in-
tegrate them into a cohesive embedding. This approach enhances
the ability of our model to capture and synthesise the intricate
dynamics between spatial and temporal data points.

• An innovative ZITD distribution is employed within our model to
effectively address the uncertainties associated with zero-inflation
and the long-tailed characteristics prevalent in road crash data.
This approach enhances the model’s capability to accurately rep-
resent the complex distribution patterns observed in traffic crash
data.

• To the best of our knowledge, the STZITD-GNN is the first work
to use probabilistic framework for granular, multistep road-level
crash forecasting. The use of Likelihood-based Loss minimisa-
tion rather than the traditional regression ones enhances its
uncertainty-aware predictive accuracy and reliability.

• Extensive testing with real-world data confirms the superior per-
formance of our framework compared to existing state-of-the-art
approaches. Notably, it achieves a reduction in regression error of
up to 34.60% in point estimation metrics and shows a significant
improvement, increasing at least by 55.07% in uncertainty-based
metrics.

This manuscript is structured as follows. In Section 2, we review
spatiotemporal modelling methodologies in predicting traffic risk. Sec-
tion 3 provides a detailed description of the proposed model. Section 4
compares our empirical results with state-of-the-art benchmark models,
further enhancing our assertions with illustrative visualisations. In
Section 5, we conclude the article by highlighting the advantages of
our model and suggesting avenues for future improvements.

2. Literature review

Predicting traffic crashes is essential for urban planning and mobil-
ity management. Initially, research in this area predominantly utilised
traditional statistical methods and classical machine learning tech-
niques, such as regression models (Chang, 2005; Lord et al., 2005;
Caliendo et al., 2007; Bergel-Hayat et al., 2013), Bayesian networks
(Martin et al., 2009; Mujalli and De Oña, 2011; Hossain and Muro-
machi, 2012), tree-based models (Chong et al., 2004; Chang and Chen,
2005; Wang et al., 2010; Lin et al., 2015), and the k-nearest-neighbour
method (Sayed and Abdelwahab, 1998; Tang and Gao, 2005; Lv et al.,
2009). These early studies were generally confined to small geograph-
ical areas and demonstrated limited effectiveness in capturing the
nonlinear and dynamic spatio-temporal patterns of the contributing
factors (Chang and Chen, 2005; Anderson, 2009; Zhang et al., 2014). In
addition, these methods often analyse crash data in isolation, neglecting
critical interdependencies between different locations (Wang et al.,
2013a, 2021). As a result, their broader applicability to city-wide
analysis with large data size was constrained, highlighting the need for
more advanced models capable of addressing these limitations.

Recent advances in deep learning techniques have shown promise in
urban traffic crash prediction by incorporating spatio-temporal charac-
teristics of the data. Convolutional neural networks (CNNs), recurrent
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neural networks (RNNs), and graph-based networks, such as graph-
convolution networks (GCNs), have demonstrated their effectiveness in
capturing intricate spatial patterns, capturing temporal dependencies,
and modelling complex interactions (Wang and Cao, 2021; Liu et al.,
2020). As summarised in Table 1, Chen et al. (2016) were among the
first to explore city level crash prediction employing a stack denoise
autoencoder. They integrated human mobility GPS data and historical
incident point data at the grid level to map the real-time crash situation
in Tokyo. However, while their approach attempted to capture a larger
spatial area, it did not consider urban geo-semantic information for
precise and long-term crash prediction. Later, Chen et al. (2018) intro-
duced a Stack Denoise Convolutional Autoencoder that incorporated
spatial dependencies using stacked CNNs. Nonetheless, both of these
studies overlooked the influence of temporal factors. Although RNNs
are capable of handling temporal information, they are more suitable
for short-term temporal learning (Ren et al., 2018). To better address
the temporal aspect, Ren et al. (2018) used Long-Short-Term Memory
(LSTM) to consider influential temporal factors between several loca-
tions. Their work represented the first attempt to incorporate temporal
factors into deep learning models for the prediction of city-wide traffic
crashes. Similarly, Moosavi et al. (2019) employed LSTM networks
for country-wide crash prediction, demonstrating their efficacy in pre-
dicting a binary outcome. Building on the LSTM framework, Yuan
et al. (2018) proposed a more advanced model known as the Convo-
lutional Long Short-Term Memory (Hetero-ConvLSTM) neural network
based on spatial heterogeneous data. This model aimed to jointly
address spatial heterogeneity and capture temporal features in state-
wide crash prediction. However, their approach relied on pre-defined
moving windows based on the spatial features of Iowa, United States,
limiting its generalisability to other cities. Bao et al. (2019) integrated
CNNs, LSTM as well as ConvLSTM into a spatiotemporal convolutional
long short-term memory network (STCL-Net). Their work presented a
more practical and feasible approach for the prediction of city-wide
traffic crashes. By combining the strengths of these models, STCL-Net
effectively captured spatiotemporal dependencies in crash data and
influential factors, leading to improved prediction performance.

To capture local and global dynamics with hierarchical spatial infor-
mation, Zhu et al. (2019) proposed the Deep Spatio-temporal Attention
Learning Framework, which incorporates a spatio-temporal attention
mechanism to effectively capture the dynamic impact of traffic crashes
at different spatial levels. One notable aspect of their work was the
emphasis on using real traffic administrative areas instead of manually
divided grids. However, this approach does not incorporate spatial
relationships, which limits its capacity to model the spatial hetero-
geneities that characterise traffic crashes. In a similar vein, Huang
et al. (2019b) introduced the Deep Dynamic Fusion Network (DFN)
framework, which aggregates heterogeneous external factors across
both spatial and temporal dimensions. Using a temporal aggregation
layer, the DFN framework is designed to automatically capture external
influences from latent temporal dimensions.

Although the mentioned studies effectively captured temporal and
spatial patterns in traffic crash data, yielding promising prediction out-
comes, their lack of consideration of latent spatial correlations within
urban structures can disrupt regional patterns in practical urban science
and lead to prediction inaccuracies. Therefore, Graph-based networks
have become a key method for city-wide traffic crash prediction by
leveraging spatial graph features from actual urban networks (Xue
et al., 2022; Cheng et al., 2022; Li et al., 2022).

Zhou et al. (2020b) developed the RiskOracle framework by con-
structing an urban graph of regions and integrating the Differential
Time-varying Graph Neural Network (DTGN) to identify dynamic cor-
relations between historical traffic conditions and risks, enabling simul-
taneous predictions of traffic flow and crashes. To tackle zero-inflation
in crash data, they introduced a data enhancement strategy based
on a priori knowledge (PKDE), defining subregional crash labels for

training. This approach adjusts zero crash values to a range between 0 r
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and 1, maintaining the hierarchy of actual crash levels. Expanding on
this foundation, Zhou et al. (2022b) refined the DTGN framework by
embedding an LSTM-based hierarchical sequence learning architecture,
accommodating multiscale historical spatio-temporal data for nuanced
long-term and short-term predictions. Wang et al. (2021,b) both focus
on the integration of geographical and semantic relationships through
different graph structures. While Wang et al. (2021) used crash, road,
and POI graphs to capture regional semantics and introduced modules
for geographical and semantic spatio-temporal correlations, Wang et al.
(2021b) combined attention-based LSTM, CNN, and GCN for multi-
view predictions of traffic crashes at various scales. Although both
approaches tackled the zero-inflation issue with promising results, they
share limitations in addressing dynamic geographical semantics and
alignment issues in graph structures. In contrast, Trirat et al. (2023)
proposed a multi-view graph neural network incorporating dynamic
and static similarity information, offering a more dynamic approach
to understanding traffic crashes. Using the Huber loss function, a
parameter-based regression loss, their model aimed at robust regression
that effectively accommodates zero inflation, showcasing an advanced
strategy for precise prediction of urban traffic crashes.

Recent attempts to apply graph-based deep learning for road-level
crash prediction have shown promise, but also highlight areas for
improvement. Yu et al. (2021) developed a Deep Spatiotemporal Graph
Convolutional Network with a unique three-layer network, treating the
road graph, spatio-temporal data, and embeddings separately. They
tackled zero inflation through undersampling, balancing the dataset
between risky and non-risky roads, and framing crash prediction as a
binary classification. While this method effectively predicts crashes at
the road level, the binary outcome overlooks the varying degrees of
crash risk across roads. Similarly, Wu et al. (2022) designed a fully con-
nected dynamic network to predict road-level crashes by focussing on
dynamic spatio-temporal correlations. To mitigate zero inflation, they
introduced a cost-sensitive learning module that enhances positive sam-
ple classification accuracy by considering the imbalance between zero
and non-zero crash values. However, this work only considered limited
road segments in New York City with binary crash occurrence outputs,
highlighting the need for further development to capture the full spec-
trum of crash severity and provide a more detailed understanding of
road-level crash scenarios.

In summary, despite significant progress in urban traffic crash pre-
diction yielding promising results, existing studies have yet to fully
address uncertainty quantification in their predictions and provide
multi-step crash assessments at the detailed road level.

3. Methodology

In this section, we first introduce the concepts and define the
framework for predicting road-level traffic crashes in Section 3.1. We
then illustrate the statistical innovations from the TD distribution to
ZITD in the context of uncertainty quantification in Section 3.2. Subse-
quently, we introduce our new STZITD-GNN model, a spatio-temporal
probabilistic modelling framework that combines the strengths of GRU
and GAT in Section 3.3. The section ends with an in-depth exploration
of the loss function employed within our model in Section 3.4. The
major notations used in this section are listed in Table 2.

3.1. Preliminaries and problem definition

This section presents the basic concepts and terminology relevant
to the study, followed by a description of the problem.

Definition 1 (Road Traffic Crash Risk Values). A traffic crash refers to
an crash that involves one or more road users that leads to physical
injury, loss of life, or property damage. We denote the set of roads as
𝑉 of size 𝑁 = |𝑉 |, where 𝑣𝑖 signifies the 𝑖th road. The traffic crash

𝑁×𝑇
isk on the roads is represented as 𝑌 ∈ R for a duration of total 𝑇
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Table 1
Summary of deep learning methods in traffic crash prediction.
Reference Methodology Spatial Unit Zero-Inflation Issue Prediction Steps Prediction Outcome

Chen et al. (2016) Stack Denoise Autoencoder Regions N/A Single Crash Risk Score
Ren et al. (2018) Long Short-term Memory

network
Regions N/A Multiple Crash Risk Score

Chen et al. (2018) Stack Denoise Convolutional
Autoencoder

Regions N/A Single Crash Risk Score

Yuan et al. (2018) Convolutional Long
Short-Term Memory

Regions N/A Multiple Crash Risk Score

Moosavi et al.
(2019)

Long Short-term Memory
Network

Regions N/A Single Crash Occurrence

Zhu et al. (2019) Deep Spatial–Temporal
Attention Learning Framework

Regions N/A Multiple Crash Risk Score

Huang et al.
(2019b)

Dynamic Fusion Network Regions N/A Single Crash Occurrence

Bao et al. (2019) Spatiotemporal Convolutional
LSTM

Regions N/A Single Crash Risk Score

Zhou et al. (2020b) DTGN with PKDE Regions Yes Single Crash Risk Score
Wang et al. (2021) GSNet with Weighted Loss Regions Yes Single Crash Risk Score
Wang et al. (2021b) MVMT-ST Networks Regions Yes Single Crash Risk Score
Yu et al. (2021) Deep ST-GCN with

Undersampling
Roads Yes Single Crash Occurrence

Wu et al. (2022) MADGCN with Cost-sensitive
Loss

Roads Yes Multiple Crash Occurrence

Zhou et al. (2022b) Enhanced DTGN Regions Yes Multiple Crash Risk Score
Trirat et al. (2023) MV-GNNs with Huber Loss Regions Yes Multiple Crash Risk Score
Table 2
Main notations in this paper.
Notation Description

𝑌 ∕ 𝑋 Road-level traffic crash risk score / Road-level spatiotemporal traffic feature
𝑉 ∕ 𝐸 ∕ 𝐴 Road set / Edge set / Road adjacency matrix
𝑣𝑖 ∕ (𝑣𝑖 , 𝑣𝑗 ) The 𝑖th road / Edge between the 𝑖th road and 𝑗th.
𝑁 ∕ 𝑇 Numbers of roads / Time length
𝐶𝑖𝑡 Number of crashes on road 𝑣𝑖 at time slot 𝑡
𝑙𝑗𝑖𝑡 The 𝑗th cardinality values of crash severities in the time slot 𝑡 for road 𝑣𝑖
𝑑 ∕ 𝐹 ∕ 𝐹 ′ Feature dimension/Temporal feature dimension/Spatio-Temporal feature dimension
 Spatiotemporal deep learning Model
𝑓TD(⋅) Probabilistic density function of Tweedie distribution
𝜌∕ 𝜙∕ 𝜇∕ 𝜋 Index parameter/ Dispersion parameter/ Mean parameter/ Zero-inflated parameter
𝜃 ∕ 𝜆 ∕ 𝛼, 𝛾 Natural parameter / Poisson mean parameter / Gamma parameters
𝑇 ∕  Temporal embedding / Spatiotemporal embedding
ReLU(⋅)∕ 𝜎(⋅)∕ LeakyReLU(⋅)∕ [⋅||⋅] ReLU activation/ Sigmoid activation/LeakyReLU activation/ Concatenation
𝑊𝑟 ,𝑊𝑢 ,𝑊𝑐 ,𝑊𝑎 , 𝑏𝑟 , 𝑏𝑢 , 𝑏𝑐 , 𝑎 Learnable weight matrices of GRU and GAT
𝑊𝜋 ,𝑊𝜇 ,𝑊𝜙 ,𝑊𝜌 , 𝑏𝜋 , 𝑏𝜇 , 𝑏𝜙 , 𝑏𝜌 Learnable weight matrices of the four Parameter Encoders
ℎ𝑡 ∕ 𝑟𝑡 ∕ 𝑢𝑡 Hidden feature / Reset gate / Update gate
𝛼𝑖,𝑗 Attention value between road 𝑣𝑖 and 𝑣𝑗
𝑀 Number of attention heads
𝜖 The minimum value
𝜂 L2 normalisation weight-parameter
periods, and 𝑦𝑖𝑡 denotes the crash risk in the 𝑡th time slot for the road
𝑣𝑖. Thus, 𝑌𝑡 ∈ N𝑁 signifies the crash risk for all roads in the 𝑡th time
interval, where 𝑦𝑖𝑡 is its constituent element. The calculation of traffic
crash risk score 𝑦𝑖𝑡 for the road 𝑣𝑖 at the time slot 𝑡 is given by:

𝑦𝑖𝑡 =
3
∑

𝑗=1
𝐶 𝑡
𝑖,𝑘 × 𝑙𝑗 , (1)

where 𝐶 𝑡
𝑖,𝑘 denotes the total number of 𝑘 crashes with the severity level

𝑙𝑗 at time slot 𝑡 for road 𝑣𝑖. We allocate the crash point to its closest
road. As per prior research (Wang et al., 2021; Trirat et al., 2023), 𝑙
is assigned the values 1, 2, and 3, representing minor injury, serious
injury, and fatal crash severities, respectively. 𝑦𝑖𝑡 equals 0 if there are
no traffic crashes.

Definition 2 (Spatio-temporal Features). The embedding features are
represented as 𝑋 ∈ R𝑁×𝑇×𝑑 , where 𝑑 is the dimension of the features.
We denote 𝑥𝑖𝑡 as the spatio-temporal feature of the road 𝑣𝑖 at the time
slot 𝑡th. Consequently, 𝑋𝑡 ∈ R𝑁×𝑑 signifies the features of all roads at
time slot 𝑡. Our study includes spatial features such as road types, road
lengths and widths, road conditions, POIs, and census characteristics
4 
for each lower layer super output area (LSOA) of roads. Temporal
features, which vary daily, encompass weather information such as
sunrise and sunset times, humidity, visibility, rainfall, etc., along with
the identification as a holiday or a working day.

Definition 3 (Road Connection Graph). The road network is represented
as a graph  = (𝑉 ,𝐸,𝐴), where each road segment is defined as a node
in the set 𝑉 . The set of edges 𝐸 represents the connections between
roads, while 𝐴 ∈ R𝑁×𝑁 denotes the adjacency matrix that formally
describes these connections. In the adjacency matrix, an entry 𝐴𝑖,𝑗 = 1
indicates the existence of an edge between roads 𝑣𝑖 and 𝑣𝑗 , denoted as
(𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸, while 𝐴𝑖,𝑗 = 0 implies no direct connection, represented as
(𝑣𝑖, 𝑣𝑗 ) ∉ 𝐸.

This approach differs from the common method of using intersec-
tions as nodes and road segments as edges, instead treating each road
segment as a node. This choice enables a more granular analysis of
crash risks and allows the incorporation of road-specific characteristics
directly into the node representations, thus enabling node prediction
outcomes to inform road-level crash risk (Tang et al., 2022). Fig. 1
provides a visual representation of this road-based graph structure.
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Fig. 1. Road-based Graph Structure: Visualisation of how the physical road network is transformed into a mathematical graph representation, with road segments as nodes and
their connections as edges (Zhang and Cheng, 2020).
The illustration demonstrates how individual road segments are repre-
sented as nodes and how their interconnections form the edges of the
graph. This visualisation helps to conceptualise the transformation of
a physical road network into a mathematical graph structure, which is
fundamental to our spatial–temporal analysis approach.

Tobler’s First Law of Geography posits that spatial correlation is
strongly linked to geographic proximity (Tobler, 1970; Yu et al., 2020;
Zhou et al., 2021; Wang et al., 2023a). In the context of traffic risk, this
principle manifests itself as spatial spillover effects, where risk at one
location can influence nearby areas. To capture this spatial attribute
and also to deal with the signal sparsity, we employ a diffusion process
based on spatiotemporal smoothing techniques (Perozzi et al., 2014;
Li et al., 2017; Hamilton, 2020). Specifically, we adopt the approach
proposed by Zhang and Cheng (2020), using the adjacency matrix 𝐴
to model the spread of traffic risks to neighbouring roads and also
incorporate temporal smoothing.

Problem Definition: Our model aims to predict the future crash risk
score in the next 𝑝 time windows (as daily) and the confidence interval
of the predicted results per road. The task is to use historical records
𝑋1∶𝑡, 𝑌1∶𝑡 and the graph structure 𝐴 as input data for training, to
predict the probabilistic density function 𝑓 (𝑌𝑡+1∶𝑡+𝑝) of the distribution
of 𝑌𝑡+1∶𝑡+𝑝.

 𝛩([𝑋1∶𝑡, 𝑌1∶𝑡], 𝐴) → 𝑓 (𝑌𝑡+1∶𝑡+𝑝), (2)

where 𝛩 denotes the learned parameters for the ST-GNN model (also
referred to as  ). The multistep predictions are made for a 14-day
output, as 𝑝 = 14.

3.2. From TD distribution to ZITD distribution

This subsection provides an in-depth exploration of the progression
from the TD to the ZITD distribution in the specific context of road
crash prediction. Building on the work of Lord and Mannering (2010)
and Smyth and Jø rgensen (2002), we recognise the effectiveness of
TD distribution to address overdispersed data, indicating its potential
applicability in multi-step road-level traffic crash prediction.

As illustrated in Section 3.1, when we aggregate crash data (incor-
porating various severities) from different roads or identical roads over
different time intervals, the resulting distribution of crash counts tends
to exhibit overdispersion. In detail, the crash value applied to both
crash counts and the associated severity — is the prevalence of ‘excess’
zeros, implying more zero entries than would be predicted under a
corresponding Poisson process. Meanwhile, in nonzero crash values,
a clearly left-skewed but long-tailed distribution presents a smaller
proportion of higher severity crashes. In these scenarios, the variance of
the crash counts outweighs the mean crash count, creating a deviation
from the Gaussian distribution, as underlined by the work of Halder
et al. (2019) and Wang et al. (2023b).
5 
3.2.1. TD distribution
In accordance with Eq. (1), we designate 𝑦𝑘 as the crash risk value

of the road 𝑖 on time slot 𝑡. As a special case of Exponential Dispersion
Models (EDMs), the TD model encompasses a broad family of statistical
distributions (Tweedie et al., 1984; Jørgensen, 1987; Jiang et al., 2023).
A random variable that follows the TD distribution has a probability
density function 𝑓𝑇𝐷 (Jørgensen, 1987), as follows :

𝑓TD(𝑦𝑘|𝜃, 𝜙) ≡ 𝑎(𝑦𝑘, 𝜙) exp
[ 𝑦𝑘(𝜃) − 𝜅(𝜃)

𝜙
]

, (3)

here, 𝜃 ∈ R represents the natural parameter, while 𝜙 ∈ R+ stands for
the dispersion parameter. The normalising functions 𝑎(⋅) and 𝜅(⋅) are
parameter functions for 𝜙 and 𝜃, respectively, detailed further in the
subsequent discussion. For a TD distribution of EDMs, the mean and
variance of variable 𝑦𝑘 are given by:

𝐸(𝑦𝑘) = 𝜇 = 𝜅(𝜃)′, 𝑉 𝑎𝑟(𝑦𝑘) = 𝜙𝜅(𝜃)′′, (4)

In these equations, 𝜅(𝜃)′ and 𝜅(𝜃)′′ represent the first and second
derivatives of 𝜅(𝜃), respectively. Meanwhile, the function 𝜇 ≥ 0 works
as the mean parameter. Since the mean 𝐸(𝑦𝑘) and variance 𝑉 𝑎𝑟(𝑦𝑘) are
dependent, 𝜅(𝜃)′′ can be directly expressed as 𝑉 (𝜇), thereby providing
a direct mean–variance relationship (Saha et al., 2020; Mallick et al.,
2022). Additionally, the TD family encompasses a number of vital
distributions for distinct index parameters 𝜌 as demonstrated by 𝑉 (𝜇) =
𝜇𝜌. These include the Normal (𝜌 = 0), Poisson (𝜌 = 1), Gamma (𝜌 = 2),
Inverse Gaussian (𝜌 = 3), and Compound Poisson-Gamma distribution
(1 < 𝜌 < 2) and could be referred to as Appendix A. The Compound
Poisson-Gamma distribution is particularly applicable, given its focus
on parameterising zero-inflated and long-tailed data, which aligns with
the observed characteristics of real traffic crash data. The 𝜇, 𝜙 and 𝜌 are
the three parameters that govern the probability and expected value of
the risk of traffic crashes, which can be found from Appendix B.

3.2.2. ZITD distribution
The TD model, introduced in Section 3.2.1, is designed to account

for the occurrence of zeros by allowing a positive probability of zero
outcomes, as demonstrated by formula P(𝑦𝑘 = 0) = P(𝐶𝑘 = 0) =
exp(−𝜆). However, this model struggles to accurately represent crash
data on roads where zero values overwhelmingly dominate, leading to
an extremely unbalanced distribution that can misrepresent the actual
crash rate (Mallick et al., 2022; Zhou et al., 2022a).

To address this issue, we introduce a refinement, known as the
Zero-Inflated Tweedie (ZITD) model with Four-parametric compound
distributions. The ZITD model includes a distinctive feature, a sparsity
parameter (𝜋) that specifically addresses the skewness of the data
characterised by an excess of zeros. The parameter 𝜋 signifies the
likelihood of zero inflation, effectively distinguishing between zero and
nonzero occurrences. In contrast, the complement probability (1 − 𝜋)
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Fig. 2. The overall framework of STZITD-GNNs. STZITD-GNNs utilise the ST-GNN Encoder  (composed of GRU and GAT encoders) to encode the history time window 1 ∶ 𝑡
crash risk 𝑌1∶𝑡 and road features 𝑋1∶𝑡 with the use of the road connection graph in the spatial–temporal embedding of the road . After encoding, the four parameter decoders
map  into the ZITD parameter space and obtain 𝜋𝑡+1∶𝑡+𝑝 , 𝜇𝑡+1∶𝑡+𝑝 , 𝜙𝑡+1∶𝑡+𝑝 , 𝜌𝑡+1∶𝑡+𝑝 for the predicted time window 𝑡 + 1 ∶ 𝑡 + 𝑝, which determine the predicted road traffic crash risk
distribution 𝑓 (𝑌𝑡+1∶𝑡+𝑝). Note: This figure is a simplified representation. For a complete list of features, including weather and road characteristics, please refer to Table 3.
aligns with the traditional TD, facilitating a balanced representation of
the crash risk values across the spectrum.

𝑦𝑘 =
{

0 with probability 𝜋
𝑌 with probability 1 − 𝜋, 𝑌 ∼ 𝑓𝑇𝐷(𝑌 |𝜇, 𝜙, 𝜌)

. (5)

Finally, denoting the ZITD model as 𝑦𝑘 ∼ 𝑓𝑍𝐼𝑇𝐷(𝜋, 𝜇, 𝜙, 𝜌), we
formulate the probability density function of this model as follows:

𝑓𝑍𝐼𝑇𝐷(𝑦𝑘|𝜋, 𝜇, 𝜙, 𝜌) =

{

𝜋 + (1 − 𝜋)𝑓𝑇𝐷(𝑦𝑘 = 0|𝜇, 𝜙, 𝜌) if 𝑦𝑘 = 0

(1 − 𝜋)𝑓𝑇𝐷(𝑦𝑘|𝜇, 𝜙, 𝜌) if 𝑦𝑘 > 0
.

(6)

In accordance with this specification, we tackle the problem of
extreme zero inflation by applying a linear weighting to the zero value,
such that P(𝑦𝑘 = 0) = 𝜋 + (1 − 𝜋) exp (− 1

𝜙
𝜇2−𝜌

2−𝜌 ). This probability is
significantly higher than the probability of observing a zero count from
the TD distribution, intuitively indicating a substantial zero inflation.
This modification ensures that the mean value of the ZITD distribution
is E(𝑦𝑘) = (1 − 𝜋)𝜇.

In the ZITD model, each parameter plays a distinct role in repre-
senting road-level crash risks. The sparsity parameter (𝜋) is adjusted
for instances without crashes, significantly influencing the dispersion
parameter (𝜙) to provide a weighted interpretation suitable for left-
skewed crash data. Higher 𝜙 values reflect the improved capability
of the model to represent scenarios with lower risk accurately. Addi-
tionally, the index parameter (𝜌) is essential to capture the long-tail
distribution of crash risk values. Values near 2 for 𝜌 indicate the robust
performance of the model in these scenarios.

3.3. The framework of spatiotemporal zero-inflated tweedie graph neural
networks (STZITD-GNNs)

In relation to the four parameters 𝜋, 𝜇, 𝜙, 𝜌 of the ZITD probability
distributions detailed above, we have designed a probabilistic spatio-
temporal graph learning module, named STZITD-GNNs. This module
extracts the spatiotemporal correlations  =  𝛩(𝑋1∶𝑡, 𝑌1∶𝑡, 𝐴) under
the assumption of ZITD for each road crash and predicts future results
for the subsequent 𝑝 time windows through 𝑓𝑍𝐼𝑇𝐷(𝑋𝑡+1∶𝑡+𝑝|), as
described in Eq. (7).

𝑓𝑍𝐼𝑇𝐷(𝑌𝑡+1∶𝑡+𝑝|𝜋𝑡+1∶𝑡+𝑝, 𝜇𝑡+1∶𝑡+𝑝, 𝜙𝑡+1∶𝑡+𝑝, 𝜌𝑡+1∶𝑡+𝑝)

= 𝑓𝑍𝐼𝑇𝐷(𝑌𝑡+1∶𝑡+𝑝| 𝛩(𝑋1∶𝑡, 𝑌1∶𝑡, 𝐴)) = 𝑓𝑍𝐼𝑇𝐷(𝑋𝑡+1∶𝑡+𝑝|).
(7)

As illustrated in Fig. 2, instead of performing two independent
estimations, our methodology starts with the deployment of a GRU
6 
acting as a temporal encoder. Subsequently, a GAT is implemented for
the purpose of spatial encoding. The combined output from the GRU
and GAT is utilised to parameterise the ZITD distribution. The proposed
approach is shown in Eq. (8). The architecture’s encoding component
applies a spatio-temporal embedding scheme complemented with an
extra sparsity parameter and distribution parameters. The decoding
component is responsible for probabilistic estimations of future multi-
step crash risk values, which can be construed as the set of parameters
of the outcome distribution. In contrast to the principles of variational
autoencoders, which restrict latent embedding with a specific Gaussian
distribution for the representation of latent variables (Kipf and Welling,
2016b; Hamilton, 2020), we echo the statistical domain by allowing
integration of deep learning methodologies into parameter learning.

𝜋𝑡+1∶𝑡+𝑝, 𝜇𝑡+1∶𝑡+𝑝, 𝜙𝑡+1∶𝑡+𝑝, 𝜌𝑡+1∶𝑡+𝑝 =  𝛩(𝑋1∶𝑡, 𝑌1∶𝑡, 𝐴). (8)

3.3.1. Parameter decoders
The detailed functions of the temporal encoder, GRU and the spatial

encoder, GAT are listed in the Appendices C and D. In this section,
we highlight the parameter decoders in detail. To transmute the ac-
quired spatio-temporal embeddings into ZITD parameter values, we
have devised four parameter decoders to operate on . Consequently,
four parameters, namely 𝜋𝑡+1∶𝑡+𝑝, 𝜇𝑡+1∶𝑡+𝑝, 𝜙𝑡+1∶𝑡+𝑝, and 𝜌𝑡+1∶𝑡+𝑝 can be
computed from , as detailed below:

𝜋𝑡+1∶𝑡+𝑝 = 𝜎(𝑊𝜋 ⋅ + 𝑏𝜋 )

𝜇𝑡+1∶𝑡+𝑝 = ReLU(𝑊𝜇 ⋅ + 𝑏𝜇)

𝜙𝑡+1∶𝑡+𝑝 = ReLU(𝑊𝜙 ⋅ + 𝑏𝜙) + 𝜖

𝜌𝑡+1∶𝑡+𝑝 = 𝜎(𝑊𝜌 ⋅ + 𝑏𝜌) + 1 + 𝜖

(9)

Here, 𝜋 lies within the range of [0, 1], 𝜇 falls within the interval [0,+∞),
𝜙 exists within (0,+∞), and 𝜌 spans the range of (1, 2). The learn-
able weight matrices are represented as 𝑊𝜋 ,𝑊𝜇 ,𝑊𝜙,𝑊𝜌, 𝑏𝜋 , 𝑏𝜇 , 𝑏𝜙, 𝑏𝜌 ∈
R𝐹 ′×𝑝. lim 𝜖 → 0 represents the smallest value, and ReLU(⋅) signifies the
ReLU activation function.

3.4. Learning framework of STZITD-GNNs

3.4.1. ZITD loss function
As previously mentioned, our encoding mechanism employs a

spatio-temporal embedding architecture complemented by a sparsity
parameter. The decoding component involves a probabilistic estimation
of future road traffic crashes. To accurately predict these crashes, the
overall learning objective can be seen as maximising the log-likelihood
function: max log𝑓 (𝑦 |𝜋, 𝜇, 𝜙, 𝜌). We use the negative likelihood as
𝑍𝐼𝑇𝐷 𝑘



X. Gao et al.

d
c

b

l

t
t
e
t
t
f
l
S

3

B
s
a

•

1

Accident Analysis and Prevention 208 (2024) 107801 
our loss function to better fit the distribution into the data. Here, 𝑦
enotes the ground-truth values corresponding to one of the predicted
rashes with the parameters 𝜋, 𝜇, 𝜙, 𝜌. The log-likelihood of ZITD is

made up of the parts 𝑦 = 0 and 𝑦 > 0:
For 𝑦 > 0, 𝑁𝐿𝐿𝑦>0 = − log 𝑓𝑍𝐼𝑇𝐷(𝑦 > 0|𝜋, 𝜇, 𝜙, 𝜌):

log 𝑓𝑍𝐼𝑇𝐷(𝑦 > 0|𝜋, 𝜇, 𝜙, 𝜌)

= log(1 − 𝜋) + log 𝑓TD(𝑦 > 0|𝜇, 𝜙, 𝜌)

= log(1 − 𝜋) + 1
𝜙
(

𝑦
𝜇1−𝜌

1 − 𝜌
−

𝜇2−𝜌

2 − 𝜌
)

+ log 𝑎(𝑦 > 0, 𝜙, 𝜌)

= log(1 − 𝜋) + 1
𝜙
(

𝑦
𝜇1−𝜌

1 − 𝜌
−

𝜇2−𝜌

2 − 𝜌
)

− log 𝑦

+ log
∞
∑

𝑗=1

𝑦−𝑗𝛼(𝜌 − 1)𝛼𝑗

𝜙𝑗(1−𝛼)(2 − 𝜌)𝑗𝑗!𝛤 (−𝑗𝛼)

≥ log(1 − 𝜋) + 1
𝜙
(

𝑦
𝜇1−𝜌

1 − 𝜌
−

𝜇2−𝜌

2 − 𝜌
)

− log(𝑗𝑚𝑎𝑥
√

−𝛼𝑦) + 𝑗𝑚𝑎𝑥(𝛼 − 1).

(10)

In this equation, 𝑗𝑚𝑎𝑥 = 𝑦2−𝜌

(2−𝜌)𝜙 and 𝛼 = 2−𝜌
1−𝜌 < 0. We optimise the lower

ound; hence, 𝑁𝐿𝐿𝑦>0 can be optimised in this manner.
For 𝑦 = 0, 𝑁𝐿𝐿𝑦=0 = − log 𝑓𝑍𝐼𝑇𝐷(𝑦 = 0|𝜋, 𝜇, 𝜙, 𝜌):

og 𝑓𝑍𝐼𝑇𝐷(𝑦 = 0|𝜋, 𝜇, 𝜙, 𝜌) = log(𝜋) + log(1 − 𝜋)𝑓TD(𝑦 = 0|𝜇, 𝜙, 𝜌)

= log(𝜋) + log(1 − 𝜋) + 1
𝜙
(

−
𝜇2−𝜌

2 − 𝜌
)

(11)

Here, 𝜋, 𝜇, 𝜙, 𝜌 are chosen and calculated in accordance with the index
of 𝑦 = 0 or 𝑦 > 0. The ultimate negative log-likelihood loss function is
given by:

𝑁𝐿𝐿𝑆𝑇𝑍𝐼𝑇𝐷 = 𝑁𝐿𝐿𝑦=0 +𝑁𝐿𝐿𝑦>0 + 𝜂𝛩2. (12)

Model parameter 𝛩 can be optimised by minimising the negative log-
likelihood loss: �̂� = argmin𝑁𝐿𝐿𝑆𝑇𝑍𝐼𝑇𝐷. 𝜂 stands for the weight
parameter for 𝐿2 Normalisation.

It is worth noting that our model can be extended to other dis-
ributions by modifying the probability layer. The main reason is
hat we learn the parameters that determine the distributions. For
xample, if we choose the Gaussian distribution, we can parame-
erise the probability layer using the spatio-temporal embedding of
he mean and variance, thereby quantifying the data uncertainty that
ollows the Gaussian distribution. Using the flexibility of the probability
ayer, we design a range of benchmark models for comparison to the
TZITD-GNNs. Our code is available on Github.1

.4.2. Time analysis & training algorithms
We summarise the STZITD-GNN training procedure in Algorithm 1.

ased on that, the time complexity can be analysed as follows (for the
ake of simplicity, we denote the hidden union of embedding 𝐹 ′ ≈ 𝐹
nd 𝐹 as 𝐹 ):

For temporal encoders, the time complexity can be formulated as
𝑂
(

𝑡𝑁(𝑑𝐹 + 𝐹 2 + 𝐹 )
)

.
• For spatial encoders, we assume that the number of road edges is
|𝐸|. Hence, when the graph attention encoder is implemented, the
complexity of computing attention becomes 𝑂(𝑀|𝐸|𝐹 ). Furthermore,
when performing 𝑊𝑎 multiplication, the cost is 𝑂(𝑀𝑁𝐹 2). This leads
to a total time complexity of 𝑂(𝑀|𝐸|𝐹 +𝑀𝑁𝐹 2).

• When generating the four parameters, the four one-layer MLPs re-
quire a time complexity of 𝑂

(

𝐹 2𝑝
)

.

1 https://github.com/STTDAnonymous/STTD
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Algorithm 1 The training of STZITD-GNNs.
Require: Spatiotemporal road feature 𝑋 ∈ R𝑁×𝑇×𝑑 , road network graph 𝐺 =

(𝑉 ,𝐸,𝐴), roads traffic crash 𝑌 ∈ R𝑁×𝑇 , model hyperparameters 𝑀,𝐹 ′, 𝐹 ,
and total time slot 𝑇 , time window 𝑡, 𝑝.

1: Calculate road traffic crash 𝑌 via Eq. (1).
2: Initialise parameters 𝛩 via Xavier Initialiser.
3: while STZITD-GNNs is not converged do ⊳ Train
4: Calculate temporal embedding 𝑇 via Eq. (C.2) by road feature 𝑋1∶𝑡;

⊳ Temporal Encode
5: Calculate spatiotemporal embedding  via Eq. (D.3) by graph 𝐺 and

𝑇 ; ⊳ Spatial Encode
6: Obtain four parameters 𝜋𝑡+1∶𝑡+𝑝, 𝜇𝑡+1∶𝑡+𝑝, 𝜙𝑡+1∶𝑡+𝑝, 𝜌𝑡+1∶𝑡+𝑝 via output layer

refer to Eq. (9);
7: Calculate distribution 𝑓𝑍𝐼𝑇𝐷(𝑦𝑡+1∶𝑡+𝑝|𝜋𝑡+1∶𝑡+𝑝, 𝜇𝑡+1∶𝑡+𝑝, 𝜙𝑡+1∶𝑡+𝑝, 𝜌𝑡+1∶𝑡+𝑝)

from four parameters via Eq. (6);
8: Minimising negative log-likelihood loss 𝑁𝐿𝐿𝑆𝑇𝑍𝐼𝑇𝐷 against 𝑌𝑡+1∶𝑡+𝑝 via

Eq. (12) using Adam Optimiser;
9: end while
0: End optimising model parameters 𝛩;

4. Experiments

In this section, we describe the detailed elements of the STZITD-
GNNs model by analysing its performance in crash prediction in three
boroughs of London, UK, namely Lambeth, Tower Hamlets and West-
minster, each characterised by distinct sociodemographic traits, road
networks, and traffic crash profiles. The crash data is accessed from
the UK STATS19 dataset, maintained by the Department for Transport.
It is made up of three interlinked tables that provide information about
crashes, their severity, and related vehicle data.2 We have configured
the model to forecast 14 steps ahead, achieving stable temporal horizon
results. Our evaluation focusses on two key aspects: first, demonstrating
the model’s ability to effectively quantify the uncertainty of road-level
traffic crash data, and second, showing its precision in predicting.

Section 4.1 introduces the datasets used in this study and justifies
the choice of data-driven strategies. This is followed by an outline
of the experimental setup in Section 4.2. Subsequently, we describe
the evaluation metrics in Section 4.3 and the baseline models used
for comparison in Section 4.4. The subsequent analysis includes a
comparison of the performance of our model against other methods in
Section 4.5. It concludes with a sensitivity analysis in Section 4.6

4.1. Traffic crash data description

The study focuses on the three most vulnerable boroughs of Greater
London, UK, known for their high crash frequency: Westminster, Lam-
beth, and Tower Hamlets, as illustrated in Fig. 3(a). The analysis covers
the period from January 1, 2019, to December 31, 2019. During this
time, these boroughs experienced an average of 3 to 5 daily crashes,
as detailed in Table 3. The data reveal a complex and challenging
pattern for road level analysis. A significant proportion of roads within
these boroughs report no crashes during the study period, resulting
in a pronounced zero-inflation problem. Specifically, after aggregating
and processing the risk data, the road-level daily basis spatio-temporal
graph risk matrix shows zero inflation rates of 95.72% in Westminster,
96.71% in Lambeth, and 96.28% in Tower Hamlets.

Furthermore, the distribution of crash risk values, as depicted in
Fig. 3(b), exhibits a non-Gaussian pattern as a long-tailed effect is
evident, where some instances of high-risk crash occurrences contrast
with most low-risk ones, creating an extended right tail in the distri-
bution. This combination of zero-inflation and long-tailed distribution
presents a significant challenge for traditional modelling approaches.
The prevalence of zero-risk roads alongside the sporadic occurrence

2 https://www.gov.uk/guidance/road-crash-and-safety-statistics-guidance

https://github.com/STTDAnonymous/STTD
https://www.gov.uk/guidance/road-crash-and-safety-statistics-guidance
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Fig. 3. Traffic crashes are depicted for the case studies.
Table 3
Data characteristics by region.

Regions Data Source Classes Observation Count

Westminster

Crash Counts Department for Transport, UK 1 1,745
Point of Interest Ordnance Survey 20 25,237
Roads Ordnance Survey 8 4,822
Date / 4 365
Meteorological Characteristics The Met Office 8 365
Socio-demographic Characteristics Census 2011 8 960

Lambeth

Crash Counts Department for Transport, UK 1 1,335
Point of Interest Ordnance Survey 20 10,102
Roads Ordnance Survey 8 5,659
Date / 4 365
Meteorological Characteristics The Met Office 8 365
Socio-demographic Characteristics Census 2011 8 1,456

Tower Hamlets

Crash Counts Department for Transport, UK 1 1,236
Point of Interest Ordnance Survey 20 10,989
Roads Ordnance Survey 8 4,688
Date / 4 365
Meteorological Characteristics The Met Office 8 365
Socio-demographic Characteristics Census 2011 8 48,220
of high-risk events creates a highly skewed dataset that defies normal
distribution assumptions, underscoring the suitability of our proposed
STZITD-GNN model for this dataset.

4.2. Experiment setup

The train, validation and test data are all from 2019, as the ratio
is 8:2:2. The parameters of STZITD-GNN are optimised with the Adam
optimiser (Kingma and Ba, 2014), where the learning rate is set to 0.01,
and weight decay is 0.01. In STZITD-GNN, 𝑁𝑒𝑝𝑜𝑐ℎ = 20, the hidden
unit is set to 42, GAT head is set to 3. The baseline parameters are
optimised using Adam Kingma and Ba (2014) with regularisation of 𝐿2
and a dropout rate of 0.2. The GNNs in STZITD-GNNs and baselines
are all two-layered. We also set the hidden units at 42. Similarly
to previous work, we also employ the early stopping strategy with
patience equal to 10 to avoid overfitting (Zhou et al., 2020a). STZITD-
GNNs is implemented in Pytorch 1.9.0 with Python 3.8. All experiments
were carried out on 1 NVIDIA GeForce RTX 3090, 24 GB.

4.3. Evaluation metrics

We use eight metrics to evaluate the performance of our STZITD-
GNNs from four perspectives, including the predictive regression effect
of road crash risk scores, the predictive effect of uncertainty-aware
distributional characteristics, the accuracy of zero crash road identifica-
tion, and the accurate identification of crashes occurring on predicted
high-risk roads.
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4.3.1. Crash accuracy metrics
For the aspect of the point estimate, we compare the prediction of

the numerical crash risk scores. For probabilistic distribution outputs
like our model, we use the mean value of the distribution as the numer-
ical output. For specific metrics, we use Mean Absolute Error (MAE),
Mean Absolute Percentage error (MAPE), and Root Mean Squared Error
(RMSE) to evaluate the predicted crash risk scores of each road. Specific
definitions are summarised:

MAE = 1
𝑝𝑁

𝑝
∑

𝑗=1

𝑁
∑

𝑖=1

|

|

|
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|

|

|
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𝑁
∑
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|

𝑦𝑖𝑗 − �̂�𝑖𝑗
𝑦𝑖𝑗
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,

RMSE =

√

√

√

√

√

1
𝑝𝑁

𝑝
∑

𝑗=1

𝑁
∑

𝑖=1
(𝑦𝑖𝑗 − �̂�𝑖𝑗 )2,

(13)

where �̂�𝑖𝑗 and 𝑦𝑖𝑗 are the predicted (i.e. distribution mean) and ground-
truth values of 𝑖th road at time slot 𝑗th respectively. 𝑝 = 14 days, and
the time interval 𝑗th is the predicted window index. Lower values of
these metrics mean better performance with fewer errors.

4.3.2. Uncertainty quantification metric
To quantify the uncertainty of the results, we use two typical

metrics: the mean prediction interval width (MPIW) and the prediction
interval coverage probability (PICP) are based on a confidence interval
5%–95% with a confidence level set at 5% (𝛼 = 5%). MPIW gauges the
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average width of the prediction interval, reflecting the distribution’s
specific characteristics. Ideally, a smaller MPIW indicates reduced vari-
ance and increased certainty, highlighting a more precise prediction.
The PICP, on the other hand, is implemented to evaluate whether
the ground truth value, denoted 𝑦𝑖𝑗 , lies within the predicted interval.

higher PICP indicates better performance. The goal is to achieve
prediction interval that is narrow and encompasses a significant

umber of data points.

PIW = 1
𝑝𝑁

𝑝
∑

𝑗=1

𝑁
∑

𝑖=1
(𝑈𝑖𝑗 − 𝐿𝑖𝑗 ),

PICP = 1
𝑝𝑁

𝑝
∑

𝑗=1

𝑁
∑

𝑖=1
(𝑈𝑖𝑗 < �̂�𝑖𝑗 < 𝐿𝑖𝑗 ),

(14)

𝐿𝑖𝑗 and 𝑈𝑖𝑗 correspond to the lower and upper bound of the confidence
interval for observation road 𝑖 at time slot 𝑗th. The (𝑈𝑖𝑗 < �̂�𝑖𝑗 < 𝐿𝑖𝑗 )
quals 1 if the condition is true, else 0.

.3.3. Zero crash identification metrics
Given the problem of zero-value data sparsity, highlighted in

ig. 3(b), it is essential to assess the ability of a model to accurately
epresent roads without crashes. We used the true zero rate (ZR) as a
etric to quantify whether a model reflects the zero sparsity seen in

he actual data. The formula is as follows:

R = 1
𝑝𝑁

𝑝
∑

𝑗=1

𝑁
∑

𝑖=1
(𝑦𝑖𝑗 = 0 ∩ �̂�𝑖𝑗 = 0), (15)

here the indicator function, (𝑦𝑖𝑗 = 0 ∩ �̂�𝑖𝑗 = 0), equals 1 if the
ondition holds true, and 0 otherwise.

.3.4. Accuracy Hit Rate Metric on Crash Occurrence
To evaluate the effectiveness of our model in identifying roads with

higher likelihood of crash occurrence, we use the accuracy hit rate in
(𝐴𝑐𝑐𝐻𝑅@20) metric. Specifically, we focus on the top 20% (𝑎 = 20%)
f roads considered high-risk to verify if these areas actually correspond
o actual crash occurrence. This alignment of predicted high-risk areas
ith real crash sites, as reported in Zhang and Cheng (2020), Zhang
t al. (2019a), allows Acc@𝑎 to effectively measure the precision of our
odel in forecasting roads at increased risk of crashes. The formula for

alculating Acc@𝑎 is as follows:

𝑐𝑐𝐻𝑅@𝑎 = 1
𝑝

𝑝
∑

𝑗=1

∑𝑁
𝑖=1 (𝑦𝑖𝑗 > 0 ∩ �̂�𝑖𝑗 ≥ Top(�̂�∶𝑗 , 𝑎))

∑𝑁
𝑖=1 (𝑦𝑖𝑗 > 0)

, (16)

The indicator function, (𝑦𝑖𝑗 > 0 ∩ �̂�𝑖𝑗 ≥ Top(�̂�∶ 𝑗, 𝑎)), is rated as
when a crash (denoted as 𝑦𝑖𝑗 > 0 for a crash occurrence on the 𝑖th

oad in the 𝑗th time interval) aligns with the top 𝑎 percent of predicted
risks (where �̂�𝑖𝑗 meets or exceeds the threshold Top(�̂�∶ 𝑗, 𝑎)), and 0
therwise.

.4. Baseline models

In evaluating our proposed model, we carefully select baseline
odels that allow evaluation of the features of the proposed model:
ncertainty quantification in multistep road-level crash risk predic-
ion. Our selection criteria favour traditional point estimation methods
nd the most recent interval prediction models. This approach is in
ine with recent studies Zhuang et al. (2022). Our baselines include
he mean-predict method (HA) and advanced spatial–temporal graph
eep learning techniques such as STGCN and STGAT. Additionally, we
onsider parameterisation approaches such as STG-GNN, STNB-GNN,
TTD-GNN, and STZINB-GNN. These probabilistic models have two or
hree parameter distributions, simpler than the four-parameter models
e propose.

Our focus on GNN-based models is motivated by the inherent
raph structure of road networks and the spatial dependencies in
9 
rash risk (Zhou et al., 2020b). GNNs are uniquely suited to capture
he complex relationships between road segments, incorporate hetero-
eneous road characteristics, and learn network-wide patterns while
reserving local details (Wu et al., 2023) The evolution from traditional
tatistical methods to GNNs represents a significant advancement in
odelling capabilities for road-level crash prediction. It is important

o note that the ST-GNN architecture remains consistent across the
robabilistic models (STG-GNN, STNB-GNN, STTD-GNN, STZINB-GNN,
nd STZITD-GNN), with the key distinction being the underlying sta-
istical distribution used for parameter estimation in each model. This
onsistency allows for a direct comparison of different probabilistic
pproaches while controlling for the neural network architecture. Ad-
itionally, it also mitigates the boundary edge affected bias in the
utcomes, as we compared all the methods using the same spatial
etwork representation (Zhang and Cheng, 2020).

The baseline models’ details are:

• HA (Liu and Guan, 2004): The historical average serves as the
minimum baseline. It is calculated by averaging road traffic
crashes in the same time intervals from historical data to predict
the future road traffic crash.

• STGCN (Yu et al., 2018): Spatio-temporal graph convolution net-
work, which utilises graph convolution and 1D convolution to
capture spatial dependencies and temporal correlations, respec-
tively.

• STGAT (Huang et al., 2019a): The Graph Attention Network
(GAT), originally proposed by Veličković et al. (2017), enhances
the representation of a node by focussing on its neighbouring
nodes, assigning varying attention weights to each based on
their importance. Building on the work of Huang et al. (2019a)
and Veličković et al. (2017), we replace the Graph Convolutional
Network (GCN) in the STGCN with GAT and then use LSTM
to capture the temporal dependencies, resulting in the modified
model, which we refer to as STGAT.

• STG-GNN (Wang et al., 2023b): Same as STZITD-GNN, we replace
the statistical assumption of road traffic crashes with Gaussian
distribution.

• STNB-GNN (Zhuang et al., 2022): Same as STZITD-GNN, we
replace the statistical assumption of road traffic crashes with
Negative Binomial Distribution.

• STTD-GNN: Same as STZITD-GNN, we replace the statistical as-
sumption of road traffic risks with TD Distribution.

• STZINB-GNN (Zhuang et al., 2022): Unlike STZITD-GNN, we
replace the statistical assumption of road traffic crashes with a
zero-inflated negative binomial distribution.

4.5. Performance comparison

We evaluated the performance of our proposed model, STZITD-
GNN, against several baseline models from four different aspects: ac-
curacy of point estimation, uncertainty quantification, non-risk road
identification and accurate prediction of crash occurrence, as shown
in Tables 4. The results are indicated by upward arrows, represent-
ing improvements over the second-best models. These enhancements
confirm the significant impact of probabilistic assumptions on the
accuracy and stability of our results, consistent with recent findings
by Wang et al. (2023b). The consistent performance of the STZITD-
GNN model underscores the critical importance of selecting appropriate
distributional assumptions that align with the characteristics of traffic
crash data.

For point estimation accuracy, the superior performance of the
STZITD-GNN model across all regression error metrics highlights the
effectiveness of the ZITD distribution. This distribution captures the
long-tail dynamics of road traffic crash risk data with greater accuracy,
making the mean value derived from the four parameters of the distri-
bution decoder more representative of the actual risk scores. STZITD-

GNN significantly improves the accuracy of the estimation of the crash



X. Gao et al. Accident Analysis and Prevention 208 (2024) 107801 
Table 4
Comparison of multi-step prediction performance (14 days) in three boroughs. The bold font indicates the best performing model, while underline indicates the second best. To
maintain clarity, detailed names of all GNNs in the final five statistically integrated deep learning models are omitted. Instead, abbreviations such as STG, STNB, STTD, STZINB,
and STZITD are used to emphasise the most significant modifications within the GNN models.

Metric Model HA STGCN STGAT STG STNB STTD STZINB STZITD

Dataset Lambeth

Point
Estimation

MAE 0.1348 0.0613 0.0302 0.1182 0.0802 0.0315 0.0544 𝟎.𝟎𝟐𝟑𝟖↑21.19%
MAPE 0.4142 0.4023 0.3203 0.4046 0.0363 0.0426 0.0265 𝟎.𝟎𝟏𝟑𝟓↑49.06%
RMSE 0.2107 0.1436 0.1122 0.1827 0.1390 0.1098 0.1191 𝟎.𝟎𝟗𝟒𝟕↑13.75%

Uncertainty
Quantification

MPIW / / / 0.4871 0.1946 0.1349 0.0454 𝟎.𝟎𝟐𝟎𝟒↑55.07%
PICP / / / 0.7328 0.8903 0.9873 0.9796 𝟎.𝟗𝟖𝟗𝟗↑00.26%

Non crash Quantification ZR 0.5203 0.5305 0.5986 0.1992 0.5621 0.6838 0.6408 𝟎.𝟕𝟖𝟕𝟎↑15.09%
Hit Rate 𝐴𝑐𝑐𝐻𝑅@20 0.4520 0.6113 0.6422 0.2666 0.4471 0.7123 0.6184 𝟎.𝟕𝟔𝟓𝟗↑07.52%
Dataset Tower Hamlets

Point
Estimation

MAE 0.0939 0.2385 0.0305 0.1741 0.2475 0.0433 0.2135 𝟎.𝟎𝟐𝟕𝟏↑11.15%
MAPE 0.2896 0.2017 0.1205 0.2662 0.0399 0.0246 0.0594 𝟎.𝟎𝟐𝟐𝟏↑10.16%
RMSE 0.1987 0.1325 0.1355 0.3896 0.1548 0.1186 0.1368 𝟎.𝟎𝟗𝟏𝟖↑22.60%

Uncertainty
Quantification

MPIW / / / 0.5321 0.2263 0.0810 0.0296 𝟎.𝟎𝟏𝟓𝟔↑47.30%
PICP / / / 0.6439 0.9442 0.9845 0.9845 𝟎.𝟗𝟖𝟕𝟏↑00.26%

Non crash Quantification ZR 0.4998 0.4896 0.5234 0.1351 0.5158 0.6420 0.7526 𝟎.𝟖𝟖𝟕𝟔↑17.94%
Hit Rate 𝐴𝑐𝑐𝐻𝑅@20 0.4752 0.5869 0.6950 0.2647 0.5022 0.6368 0.5827 𝟎.𝟕𝟐𝟐𝟒↑03.94%
Dataset Westminster

Point
Estimation

MAE 0.1467 0.0784 0.0847 0.1055 0.3266 0.0579 0.3240 𝟎.𝟎𝟑𝟓𝟕↑38.34%
MAPE 0.1884 0.8976 0.6012 2.9295 0.0330 0.0973 0.0415 𝟎.𝟎𝟐𝟓𝟗↑21.52%
RMSE 0.5999 0.2384 0.2433 0.6681 0.2909 0.1552 0.2751 𝟎.𝟏𝟎𝟏𝟓↑34.60%

Uncertainty
Quantification

MPIW / / / 0.8542 0.6272 0.2021 0.0493 𝟎.𝟎𝟐𝟓𝟗↑47.46%
PICP / / / 0.6036 0.9363 0.9801 0.9796 𝟎.𝟗𝟖𝟗𝟑↑00.94%

Non crash
Quantification

ZR 0.5981 0.1431 0.2922 0.2071 0.5393 0.5079 0.6288 𝟎.𝟕𝟑𝟐𝟖↑16.54%

Hit Rate 𝐴𝑐𝑐𝐻𝑅@20 0.4217 0.5020 0.4808 0.2933 0.4503 0.6075 0.5139 𝟎.𝟔𝟖𝟗𝟖↑13.55%
risk score, demonstrating a 49.06% increase in MAPE compared to
the second-best model in the Lambeth case study, which has the most
significant zero-inflation. Traditional deterministic models like HA,
STGCN, and STGAT show varied performance, with HA consistently un-
derperforming. GAT-based models, utilising predefined adjacency ma-
trices that embed domain spatial knowledge, generally outperform GCN
models by incorporating spatial proximity and contextual similarity,
thereby better representing spatial dependencies. Among probabilistic
models, those that assume Gaussian distributions perform poorly. They
are significantly outperformed by deterministic models and show far
worse performance 50% compared to the STZITD-GNN model, which
uses skewed distribution assumptions. This underscores the importance
of selecting appropriate distributional assumptions for probabilistic
models.

Second, the variation in uncertainty quantification across different
models highlights the significant impact of distributional assumptions.
The four-parameter distribution model (STZITD-GNN) shows substan-
tial improvements, most notably in effectively capturing a narrow dis-
tribution while encompassing a wider range of actual crash risk values.
In contrast, the worst-performing model, STG-GNNs, illustrates how
improper distributional assumptions can degrade the quality of the es-
timation, introducing greater uncertainty into the results. The MPIW of
this model is approximately 1.5 times that of the least uncertain three-
parameter model, due to its constraints that enforce equal mean and
variance in the distribution. Although ideally, outcome distributions
would have a narrow interval, traditionally a wider MPIW suggests
a higher PICP, indicating a trade-off in measuring uncertainty (Wang
et al., 2023b; Zhu et al., 2022; Zhuang et al., 2022). The STZINB-GNN
and STTD-GNN models show that in scenarios characterised by extreme
zero-inflation and heavier tails, a higher MPIW is associated with better
PICP performance. This correlation suggests that broader prediction
intervals, which encompass more observations, are beneficial in more
extreme cases as they cover a wider range of observed values, de-
spite reducing the ability to achieve narrower intervals. However, the
STZITD-GNN model shows a promising improvement in MPIW, ranging
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from 47.30% to 55.07% in all case studies, highlighting its efficacy.
In terms of PICP, it also shows a marginal increase of approximately
0.2% over the next best model, STTD-GNNs. This modest improvement
still validates the impact of leveraging long-tailed and zero-inflated TD
distributions, which contribute to a larger PICP and reduced variance
in the predicted outcomes.

In scenarios characterised by a high prevalence of non-crash roads,
the STZITD-GNN model not only aims to precisely quantify crash risk
values but also effectively differentiates non-crash roads. The integra-
tion of the sparsity parameter (𝜋) significantly enhances the ability of
the traditional TD assumption to address the prevalent zeros in the
dataset, thereby reducing uncertainties associated with zero outcomes.
The TD and ZINB distributions provide distinct parametric approaches
to tackle the issue of zero-inflation. The TD distribution naturally
integrates zero-inflation through its end-to-end structure, while the
ZI parameter in the ZINB model requires an additional interpreta-
tive step like ZITD model does. For example, in the Tower Hamlets
and Westminster cases, the ZI parameter significantly increases per-
formance in zero-rate predictions compared to the NB distribution,
showing improvements of 16.54% and 17.94%, respectively. In extreme
zero-inflation scenarios, such as in Lambeth, both the STTD and STZ-
INB models perform poorly, with a 15.09% discrepancy in ZR results
compared to the STZITD-GNN model. Although the ZI paradigm is
integrated into both the TD and the NB models, the ZITD model has
a continuous parameter space, which can be advantageous for fitting
data with a mix of zero inflation and continuous positive values. In
contrast, traditional ZINB models operate under a discrete probabilistic
assumption and struggle with complex data structures, particularly
when the positive values are continuous rather than merely counts.

In analyses that correlate high-risk roads with actual crashes, the
STZITD-GNN model consistently demonstrates robust performance. In
particular, it achieved a significant 76.59% precision in identifying
actual crashes in the Lambeth case. Across all three distinct cases,
the model maintains a robust and accurate identification rate, with
a variance of only 7.61%. In contrast, models employing unsuitable
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Fig. 4. Real v.s. Predicted Crash Risks on Lambeth, Tower Hamlets, and Westminster.
distribution assumptions, such as STG-GNN, tend to significantly un-
derpredict crash occurrences, often yielding the poorest results. This
discrepancy underscores the importance of selecting the appropriate
distribution model again.

4.5.1. Visualisation of predicted road-level crash
To illustrate the results, we have generated Choropleth maps of

road-level crashes across three distinct boroughs over a 14-day period.
Considering the sparsity of crash data, which complicates the visuali-
sation, we selected the three most risk-intensive periods of the data for
display, as shown in Fig. 4. Each borough reveals distinct crash patterns
that correlate closely with the model’s predictions, offering a granular
view of its predictive accuracy.

These visualisations highlight the general sparsity of traffic crash
data, with most roads being non-risk (blue). Only a few roads exhibit
higher crash risk levels (red), while others are associated with low-
risk crashes. The STZITD-GNN model excels in identifying a range of
risk levels, from zero-risk to high-risk. It performs particularly well
in Westminster, accurately identifying a broader range of risk-prone
roads, aided by the area’s lower zero inflation rate and denser graph
structure. Furthermore, the model consistently and accurately maps the
spatial connectivity of high-risk crash roads across all three boroughs,
with risk areas typically clustering along major thoroughfares such as
A11 Whitechapel Road and A13 in Tower Hamlets and A3 in Lambeth.

In the three distinct boroughs, the STZITD-GNN model’s ability
to handle diverse spatial patterns and variations in daily crashes
demonstrates its adaptability and consistent performance. However, the
model occasionally misclassifies zero-risk roads as low-risk, particularly
in Lambeth and Tower Hamlets. Although these errors generally fall
within lower-risk categories and do not significantly impact the identi-
fication of higher-risk roads with actual crash occurrences, refining this
aspect of the model could further improve its overall accuracy.
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4.6. Sensitivity analysis

4.6.1. Temporal stability of metrics
Evaluating temporal stability is crucial for evaluating a model’s

performance over multiple prediction time steps, particularly in data-
driven methods, where superior results in specific instances might mask
potential underfitting issues (Ding et al., 2022; Mannering, 2018). Our
primary goal is to achieve consistently low uncertainty, as indicated
by the MPIW metric in three boroughs, depicted in Fig. 5. It illustrates
the temporal variation of MPIW for different models over the 14-day
prediction horizon. The 𝑥-axis represents each day of the prediction
period, allowing us to observe how the uncertainty (as measured by
MPIW) changes as we forecast further into the future. We strive to
maintain a narrow yet comprehensive MPIW throughout the prediction
steps to ensure reliable prediction intervals for traffic crashes.

Analysis shows that the MPIW of the top performing models, in-
cluding STZITD-GNNs, is significantly lower than that of the baseline
models, emphasising their superior performance throughout the study
period. Therefore, we focus on the temporal dynamics of these leading
models, presenting baseline performances as averages for contextual
clarity.

As indicated in Fig. 5, the MPIW is typically lowest on the first day
of testing and generally increases over time. However, this increase is
smoother in our STZITD-GNNs model compared to the more erratic
fluctuations observed in baseline models. This smoother increase re-
flects our model’s ability to handle the inherent uncertainties and the
variability of risk levels, which might be less accurately captured by
models with misspecified distributions. Moreover, boroughs like West-
minster and Lambeth, known for higher instances of zero-crash risk
values, show more fluctuating MPIWs, suggesting greater uncertainties
in prediction intervals due to the sparsity of traffic crashes. Despite
these challenges, our model consistently delivers stable and accurate
predictions across different boroughs.
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Fig. 5. Temporal variation of MPIW for baseline and STZITD-GNN models.
In the evaluation of the temporal stability for the estimation of
points, depicted in Fig. 6, the STZITD-GNN customised approach em-
phasises the advantages of applying the most appropriate probabilistic
assumptions, enhancing spatiotemporal representations, and managing
the various aspects of traffic crashes. It is apparent that the STG-GNN
model consistently shows the weakest performance across all temporal
prediction periods, with deterministic models also performing poorly.
Furthermore, models based on the Negative Binomial (NB) distribution
exhibit unsatisfactory performance characterised by higher fluctuation
and higher error rates. This inadequacy stems from the focus of NB
models on binary crash-occurrence outcomes, which often overlook
the complexities of long-tail crash risk values. In contrast, our model
exhibits significantly less variance across all three evaluated metrics
at each time step, demonstrating stability even towards the end of the
prediction horizon. This robust performance is attributed to the model’s
ability to dynamically fine-tune prediction intervals using four critical
parameters, effectively addressing the challenges posed by the sparsity
and skewed distribution of traffic crash data.

In terms of the zero rate, deterministic deep learning models tend
to conflate no-risk with lower-risk values. This occurs because deter-
ministic models do not adequately differentiate between the absence of
risk and the presence of minimal risk. As a result, these models often
misclassify low-risk scenarios as zero-risk, particularly in situations
with extreme zero inflation, leading to overfitting. For the hit rate,
the issue is inversely presented as low-risk predictions often being
incorrectly classified as no-risk. This misclassification is due to the
model’s inability to capture subtle variations in risk levels.

The final component of our evaluation focusses on quantifying
both non-crash roads and high-risk roads where actual crashes oc-
curred, as shown in Fig. 7. The STZITD-GNN model excels consistently
in both metrics, maintaining stable performance with less than 18%
variance throughout the 14-step period. Unlike deterministic models,
which exhibit less variability but struggle significantly with accurately
12 
identifying true noncrash roads, often misclassifying all roads as hav-
ing no crash risk, the STZITD-GNN model effectively addresses these
challenges.

In scenarios of extreme zero inflation, deterministic models fre-
quently misclassify roads, conflating no-risk with lower risk values,
thereby leading to overfitting. Conversely, probabilistic models using
Gaussian distributions struggle to manage the high prevalence of zero
values and lower risk values, resulting in poor performance and high
sensitivity in the ZR metrics over time. This problem occurs because
each time step may present unique scenarios of zero-valued roads,
which Gaussian models often misinterpret due to their uniform mean
and variance assumptions.

In the identification of actual crashes on high-risk crash roads, as
illustrated in Fig. 7(b), the ZITD distribution performs exceptionally
well. It employs a weighted dispersion parameter (𝜙) that effectively
distinguishes lower crash risks from non-crash roads, accurately re-
flecting the distribution of low, medium, and high-risk roads where
actual crashes occurred, shown as long-tailed data distributions. This
adaptability to the complex temporal dynamics of road-level crash
data at each time step not only mitigates overfitting for non-crash
scenarios, but also stabilises the model performance, enabling it to
reliably capture real crash occurrences in critical geographic locations.

4.6.2. Analysis of long-tail crash data characteristics
To explore the impact of inherently long-tailed data on our model,

we created a three-dimensional surface plot over four information
sources, as illustrated in Fig. 8. Due to visualisation constraints, it is not
feasible to represent all four parameters in a single plot. We therefore
focus on the TD parameters 𝜙, 𝜌, and 𝜇, with the understanding
that the sparsity parameter 𝜋 significantly influences the original TD
parameters. This plot illustrates the predicted crash values, with the
actual crash values 𝑦 represented by the colour gradient.

A distinct trend is evident in the learnt values of 𝜌, consistently
approaching 2, suggesting a preference for more skewed distributions
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Fig. 6. Time-wise Comparison for the Point Estimation Metrics.
as 𝜌 increases from 1 to 2 (Tweedie et al., 1984; Kurz, 2017). This
trend corresponds with the long-tailed nature of our data and validates
the probabilistic assumptions. The increase in 𝜌 serves as an adaptive
response to the component of the loss function 𝑦 𝜇1−𝜌

1−𝜌 (𝑦 > 0), effectively
penalising the underestimation of true, although infrequent, higher val-
ues of crash risk within the long tail. This adjustment directs the model
to focus more on such kinds of traffic crash rates, continually benefiting
from significant enhancements in model sensitivity and accuracy.

Additionally, significant variations in the values 𝜙 are observed, par-
ticularly concerning data with zero value, which serve as the dispersion
parameter. For example, in Westminster, 𝜙 is significantly lower than
in other boroughs, indicating fewer zero-inflation issues. Traditionally,
𝜙 in the TD distribution is crucial for managing the frequency of zero
occurrences to effectively address zero inflation. However, due to the
highly imbalanced nature of our data, a single 𝜙 parameter often fails
to capture the prevalence of zeros, as demonstrated by the overlap
of plots in areas of lower and zero crash values. In our ZITD model,
an enhanced 𝜙, augmented by the sparsity parameter 𝜋, manages
13 
these features, offering a precise depiction of the inherent sparsity and
discrete uncertainty in road-level crash predictions.

Moreover, the model parameter 𝜇, which denotes the mean of the
predicted crash values, shows a strong correlation with the actual crash
values 𝑦, as evidenced by the colour alignment in the graphs. This
correlation not only substantiates the effectiveness of the model in
estimating mean points, but also affirms its capability to accurately
mirror and adapt to the complexities of urban crash data.

5. Discussion, limitation and conclusion

5.1. Discussion

This paper introduces STZITD-GNN, a probabilistic deep learning
framework that, to the best of our knowledge, is the first model of
uncertainty-awareness specifically tailored for the prediction of road-
level crashes on a daily basis. Developed from data-driven insights, the
STZITD-GNN utilises predefined distribution characteristics of traffic
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Fig. 7. Time-wise Comparison for the Non-crash Roads Quantification and Accurate Crash Hit Metrics.
Fig. 8. Three Tweedie parameter visualisation on Lambeth, Tower Hamlet, and Westminster with multi-step predict. The colour bar shows the predicted crash from the highest
to zero.
crash data to enhance the representation of sparse traffic crash sce-
narios. It effectively detects finer-level correlations in traffic crashes,
thereby delivering precise predictions with narrow prediction inter-
vals and reduced uncertainties. Through systematic multi-timescale
experiments conducted on three boroughs of London, our STZITD-
GNN model demonstrated superior performance across all metrics, with
improvements of up to 49.06% in MAPE for point estimation, 55.07%
in MPIW for uncertainty quantification for all levels of road risk, and
76. 59% precision in identifying actual crashes in high-risk areas. The
key contributions of this study are summarised as follows.

• Innovative Distribution Extension: We have adapted the con-
ventional TD to a ZITD distribution, introducing a sparsity pa-
rameter, 𝜋, integrated with the dispersion parameter 𝜙. This
modification tailors the model to our data-driven assumptions,
representing the dispersed and extreme zero-inflated nature of
crash data at the road level. Therefore, our methodology is specif-
ically designed to avoid the pitfall of focusing solely on high-risk
roads. Instead, it offers a holistic view of road safety, considering
the full range of risk profiles.
14 
• Integration with ST-GNN: The incorporation of the ZITD en-
coder into the ST-GNN framework makes the STZITD-GNN model
an end-to-end framework to handle the complex spatiotemporal
dynamics of crashes. It surpasses traditional point estimation
methods by enabling the mapping of output variance and predic-
tion intervals. Additionally, the model facilitates an interpretable,
uncertainty-aware process that elucidates the underlying factors
contributing to improved prediction accuracy.

• Empirical Validation Across Boroughs: The model has shown
improved predictive accuracy and minimal uncertainties com-
pared with benchmark models in three London boroughs, each
featuring unique spatial crash patterns in multi-step scenarios.
This performance confirms the robustness and generalisability of
the model across diverse urban settings, even with sparse datasets.
Additionally, the model’s stable performance across heteroge-
neous datasets, which vary in crash determination criteria, further
underscores its reliability and effectiveness in urban traffic risk
assessment.
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In addition, it should be recognised that the challenges of overdis-
persion and zero inflation extend beyond traffic crashes, affecting a
wide array of urban issues such as crime rates (Zhang and Cheng,
2020). This universality suggests that our proposed model could be
applicable to a broader range of contexts beyond its current usage.

5.2. Limitations

The computational requirements of our STZITD-GNN model require
further consideration, especially when considering its application to
larger urban areas or more extensive road networks. As the complex-
ity of the graph structure increases with the number of road seg-
ments, the time complexity of our model grows correspondingly (Tang
et al., 2022). Future research should explore advanced techniques
in AI efficiency and graph compression to address these scalability
challenges.

Furthermore, our parameter-based GNN model aims to interpret
different types of networks, recognising the complexities of urban
road structures and their potential impact on crashes. As demonstrated
by Amini et al. (2016), road configurations exhibit distinct structural
properties and traffic patterns. For instance, grid networks, charac-
terised by high cyclomatic numbers and degrees of connectivity, may
require a more nuanced understanding of crash risks at intersections
due to their regular structure. In contrast, radial networks, with lower
connectivity measures, emphasise central nodes and primary arterials,
potentially influencing crash patterns differently, especially under high
traffic demand conditions. These varying patterns highlight the need
for future research to explore how best to incorporate diverse structural
characteristics into the GNN framework, enhancing our understanding
of their influence on crash occurrences across different urban contexts.

While our model does not explicitly include traffic flow data as
a measure of exposure, previous studies have shown that historical
crash characteristics and characteristics of the road network can serve
as practical embeddings in crash prediction models, supporting the
self-supervised learning paradigm (Zhang and Cheng, 2020; Jin et al.,
2023, 2024; Cui et al., 2024). The strong performance of our model
suggests that the combination of spatial, temporal, and road char-
acteristics effectively captures the underlying patterns of crash risk.
However, future work that incorporates direct measures of traffic expo-
sure could potentially further refine prediction accuracy and enhance
the generalisability of the model across diverse urban settings.

Addressing these limitations in future research will contribute to
developing more comprehensive, efficient, and broadly applicable mod-
els for traffic crash prediction, capable of adapting to the diverse and
complex nature of urban environments around the world.

5.3. Conclusion

In conclusion, the development of the STZITD-GNN model marks
a significant advancement in the prediction of urban road-level traffic
crashes. The high accuracy and granularity of our model’s predictions
have significant implications for urban planning and traffic safety poli-
cies. By identifying high-risk road segments with greater precision, city
planners and traffic engineers can prioritise safety interventions more
effectively. For instance, resources for road improvements or increased
traffic enforcement could be allocated to areas predicted to have the
highest crash risks. Furthermore, the ability of the model to quantify
the uncertainty in its predictions can help decision makers to assess
the confidence level of risk assessments in different areas, potentially
informing more nuanced and targeted safety strategies. However, this
is just the beginning of an ongoing effort to refine and improve this
model. By integrating additional data sources and continually improv-
ing our methodologies, our goal is to develop a tool that not only
mitigates traffic risks but also significantly contributes to global urban

safety strategies. c
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Appendix A. Tweedie table

Tweedie EDMs 𝜌 𝜅(𝜃) 𝜙 𝜃 𝑎(𝑦, 𝜙)

Normal 0 𝜃2

2
𝜎2 𝜇 exp (−𝑦2)∕2𝜎2 − log 2𝜋∕2

Poisson 1 exp (𝜃) 1 log𝜇 1∕𝑦!

Poisson-Gamma (1,2) (𝜃−𝜌𝜃)
2−𝜌
1−𝜌

2−𝜌
𝜙 𝜇1−𝜌

1−𝜌
Eq. (B.1)

Gamma 2 − log(−𝜃) 𝜙 −1∕𝜇 𝜙−1∕𝜙𝑦1∕𝜙−1

𝛤 (1∕𝜙)

where 𝜇, 𝜎 is the mean and the standard values of Gaussian Distri-
ution.

ppendix B. Tweedie parameters

The frequency of traffic crashes 𝐶𝑘 adheres to a Poisson distribution
epresented by 𝑃𝑜𝑖𝑠(𝜆) with a mean of 𝜆, expressed as 𝐶𝑘 ∼ 𝑃𝑜𝑖𝑠(𝜆). This
s natural, as frequency often appears as the main prediction target in
he previous literature (Zhou et al., 2020b; Trirat et al., 2023; Bonera
t al., 2024). Currently, the severity of the crash 𝑙(𝑗)𝑘 is modelled as
ndependent and identically distributed 𝑖.𝑖.𝑑 Gamma random variables,
𝑘 ⟂ 𝑙(𝑗)𝑘 and ∀𝑗, denoted as 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛾). These variables have a mean
f 𝛼𝛾 and a variance of 𝛼𝛾2, such as 𝑙(𝑗)𝑘

𝑖𝑖𝑑∼ Gamma(𝛼, 𝛾). 𝐶𝑘 and 𝑙(𝑗)𝑘
ogether form the model of the occurrence of a single crash. Conse-
uently, the traffic crash risk 𝑦𝑘 is formulated as a Poisson sum of these
.i.d. Gamma random variables. Considering Eq. (1) and considering
< 𝜌 < 2, we can finally reformulate the random variable 𝑦𝑘 as follows:

𝑘 =

{

0 if 𝐶𝑘 = 0,
∑𝐶𝑘

𝑗=1 𝑙
(𝑗)
𝑘 = 𝑙(1)𝑘 + 𝑙(2)𝑘 +⋯ + 𝑙(𝐶𝑘)

𝑘 if 𝐶𝑘 > 0.
. (B.1)

In the scenario where 𝐶𝑘 = 0, we correspondingly have 𝑦𝑘 = 0.
he probability density at zero for traffic crash risk, therefore, becomes
(𝑦𝑘 = 0) = P(𝐶𝑘 = 0) = exp(−𝜆). In contrast, when 𝐶𝑘 > 0, 𝑦𝑘 is
educed from the sum of 𝐶𝑘 independent Gamma random variables. For

larity, following the work of Zhou et al. (2022a), we re-parameterise
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the TD distribution, setting 𝜃 = 𝜇1−𝜌∕(1 − 𝜌) and 𝜅(𝜃) = 𝜇2−𝜌∕(2 − 𝜌).
his results in the revised TD distribution as:

TD(𝑦𝑘|𝜃, 𝜙) = 𝑓TD(𝑦𝑘|𝜇, 𝜙, 𝜌) = 𝑎(𝑦𝑘, 𝜙, 𝜌) exp
[ 1
𝜙
(𝑦𝑘

𝜇1−𝜌

1 − 𝜌
−

𝜇2−𝜌

2 − 𝜌
)
]

,

(B.2)

where

𝑎(𝑦𝑘, 𝜙, 𝜌) =

⎧

⎪

⎨

⎪

⎩

1 if 𝑦𝑘 = 0,

1
𝑦𝑘

∑∞
𝑗=1

𝑦−𝑗𝛼𝑘 (𝜌−1)𝛼𝑗

𝜙𝑗(1−𝛼)(2−𝜌)𝑗 𝑗!𝛤 (−𝑗𝛼) if 𝑦𝑘 > 0.
. (B.3)

In this case, 𝜇, 𝜙 and 𝜌 are the three parameters that govern the
probability and expected value of the risk of traffic crashes. Parame-
ters in the Gamma and Poisson distributions (𝜆, 𝛼, 𝛾) can be obtained
as (Kurz, 2017; Halder et al., 2019; Mallick et al., 2022), :

𝜆 = 1
𝜙

𝜇2−𝜌

2 − 𝜌
, 𝛼 =

2 − 𝜌
𝜌 − 1

, 𝛾 = 𝜙(𝜌 − 1)𝜇𝜌−1. (B.4)

Appendix C. Temporal encoder – GRU

Traffic crashes demonstrate a significant temporal correlation, un-
derscoring the idea that the dynamic temporal features of the roads
encapsulate a wealth of information. This observation has been ac-
knowledged and exploited in prior methodologies (Wang et al., 2021;
Zhao et al., 2019). As shown in Fig. 2, to seize these temporal prox-
imity features, we implement a GRU (Chung et al., 2014). The GRU,
in comparison to traditional LSTM networks, offers the advantage of
learning relatively long-term dependencies without facing issues of
vanishing and exploding gradients. In the GRU framework, there isn’t a
segregation of internal and external states, as seen in LSTM networks.
Instead, it addresses the gradient vanishing and exploding problem by
directly integrating a linear dependency between the current network
state ℎ𝑡 and the preceding state ℎ𝑡−1. Consequently, while a GRU
preserves the capabilities of an LSTM network, its architecture remains
more streamlined (Gu et al., 2019; Mahmoud et al., 2021; Ma et al.,
2022).

Specifically, this component accommodates the feature sequence
over past time windows 1 ∶ 𝑡, thereby learning temporal dependencies.

e represent the temporal embedding as 𝑇 , taking into account both
historical spatiotemporal road features and traffic crashes as input:

𝑇 = GRU(𝑋1∶𝑡, 𝑌1∶𝑡), (C.1)

Once the input features have been processed via the GRU, we
obtain historical temporal embeddings 𝑇 for all roads. These are
subsequently directed to graph neural encoders. The GRU, in particular,
consists of two gates: the update gate and the reset gate. The encoder
processes a single input 𝑋𝑡, 𝑌𝑡 at time slot 𝑡 and prior hidden features
ℎ𝑡−1 in sequence:

𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑋𝑡, 𝑌𝑡] + 𝑏𝑟),

𝑢𝑡 = 𝜎(𝑊𝑢 ⋅ [ℎ𝑡−1, 𝑋𝑡, 𝑌𝑡] + 𝑏𝑢),

ℎ̃𝑡 = tanh(𝑊𝑐 ⋅ [𝑟𝑡 ⋅ ℎ𝑡−1, 𝑋𝑡, 𝑌𝑡] + 𝑏𝑐 ),

ℎ𝑡 = (1 − 𝑢𝑡) ⋅ ℎ𝑡−1 + 𝑢𝑡 ⋅ ℎ̃𝑡

(C.2)

In the equation above, ℎ𝑡 and ℎ𝑡−1 represent hidden features at the
current and preceding time steps, respectively, while ℎ̃𝑡 denotes the
candidate state that temporarily stores information from reset and
update gates (𝑟𝑡, 𝑢𝑡). The variables 𝑊 and 𝑏 (i.e. 𝑊𝑟,𝑊𝑢,𝑊𝑐 , 𝑏𝑟, 𝑏𝑢, 𝑏𝑐)
represent learnable weight and bias matrices, respectively. Importantly,
𝑟𝑡 acts as the reset gate, determining the extent of integration of hidden
features from previous time steps into features at the current time
step. Meanwhile, 𝑢𝑡 serves as the update gate, controlling how much
information from previous time steps will be carried over to the next
time step. The tanh(⋅) is the hyperbolic tangent function. We perform
the GRU gate operations step by step and select the final layer’s hidden
features ℎ𝑡 as the temporal embedding 𝑇 ∈ R𝑁×𝐹 , where 𝐹 denotes
the dimension of road temporal embedding.
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Appendix D. Spatial encoder – GAT

Within our research, road data is fundamentally perceived as having
an inherent graph structure. This perspective facilitates the interpreta-
tion of node features as graph signals. To accommodate such graph-
structured information, we employ the GAT (Veličković et al., 2017),
an effective methodology renowned for enabling potential model deep-
ening while concurrently incorporating dynamic spatial correlation
into our network, achieved through real-time adjustment of attention
weights in response to data changes (Wang et al., 2022; Zhang et al.,
2019b).

Distinct from GCN of a spectral-domain convolution (Kipf and
Welling, 2016a), GAT operates as a spatial-domain convolutional net-
work. Instead, GAT emphasises the magnitude of the graph signal value
at distinct points and their inter-distance to execute the convolution
process. This trait empowers GAT to alleviate the over-smoothing issue
associated with GCN deepening, thus increasing prediction precision
regarding peaks and valleys (Zhao et al., 2019).

Initially, we compute the attention coefficient 𝛼𝑖𝑗 between roads 𝑣𝑖
and 𝑣𝑗 as per the following equation:

𝛼𝑖𝑗 =
exp (LeakyReLU

(

𝑎𝖳[𝑊𝑎𝑇𝑖∥𝑊𝑎𝑇𝑗 ]
)

)
∑

𝐴𝑖,𝑜>0 exp (LeakyReLU
(

𝑎𝖳[𝑊𝑎𝑇𝑖∥𝑊𝑎𝑇𝑜]
)

)
, (D.1)

In this equation, 𝐴𝑖,𝑜 > 0 represents the neighbourhood or connected
roads of the road 𝑣𝑖. 𝑊𝑎 ∈ R𝐹×𝐹 ′ and 𝑎 ∈ R2𝐹 ′ are learnable weights,
where 𝐹 ′ denotes the hidden dimension. We apply the concatenation
unction [⋅∥⋅] to concatenate the embedding of 𝑣𝑖 and its neighbours,
tilising the learnable parameter 𝑊𝑎 and mapping function 𝑎. Subse-
uently, we employ an activation function LeakyReLU(⋅), and normalise
he attention coefficient 𝛼𝑖𝑗 using the exp(⋅) function. The embedding
f road 𝑣𝑖 is consequently updated with a linear combination of the
eighbourhood of road 𝑣𝑖 and itself, wherein these computed attention
oefficients are used.

In order to preemptively address potential inaccuracies in attention
ssignments, we have incorporated multiple attention assignments,
therwise known as multiple attention heads, into our approach. This
actic greatly amplifies the expressive capacity of the model. The
ulti-head attention mechanism facilitates concurrent consideration of

nformation from a wide range of representation subspaces at various
ositions. This enables each head to learn and focus on different aspects
f the input data, thus improving the model’s ability to comprehend
nd accurately represent the data (Reza et al., 2022; Tang and Zeng,
022; Ding et al., 2023). Herein, 𝑀 symbolises the number of attention
echanisms, with the output embeddings of these mechanisms being

oncatenated in the following manner:

𝑖 = ∥𝑀𝑚=1𝜎
⎛

⎜

⎜

⎝

∑

𝐴𝑖,𝑗>0
𝛼𝑚𝑖𝑗𝑊𝑎

𝑚𝑇𝑗

⎞

⎟

⎟

⎠

, (D.2)

In this equation, superscript 𝑚 denotes a different head. The embed-
ing of the road 𝑣𝑖 is optimised by aggregating the embedding of its
eighbours with the attention coefficients 𝛼𝑚𝑖𝑗 , and we apply learnable
eights 𝑊𝑎

𝑚 for different heads. After this, we apply a nonlinear
igmoid function and concatenate different heads of embedding. The
ulti-head attention mechanisms hereby ensure stability in the atten-

ion mechanisms learning process and encapsulate diverse perspectives
f road-level graph features. In particular, in Eq. (D.2), the dimension
f the output feature is 𝑀×𝐹 ′, rather than 𝐹 ′. To ensure consistency in
he output feature’s dimension, we compute the average of each road’s
mbedding in the last layer as follows:

𝑖 = 𝜎
⎛

⎜

⎜

⎝

1
𝑀

𝑀
∑

𝑚=1

∑

𝐴𝑖,𝑗>0
𝛼𝑚𝑖𝑗𝑊𝑎

𝑚𝑇𝑗

⎞

⎟

⎟

⎠

. (D.3)

Finally, we input temporal embedding 𝑇 into GAT to capture
patial dependency and obtain spatiotemporal 𝑖 ∈ R𝐹 ′ of road 𝑣𝑖. After

that, we use  to infer the four-parameter STZITD-GNNs model.
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