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ABSTRACT
We introduce the calculus of neo-Peircean relations, a string dia-

grammatic extension of the calculus of binary relations that has the

same expressivity as first order logic and comes with a complete

axiomatisation. The axioms are obtained by combining two well

known categorical structures: cartesian and linear bicategories.
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1 INTRODUCTION
The modern understanding of first order logic (FOL) is the result
of an evolution with contributions from many philosophers and

mathematicians. Amongst these, particularly relevant for our ex-

position is the calculus of relations (CR) by Charles S. Peirce [59].

Peirce, inspired by De Morgan [53], proposed a relational analogue

of Boole’s algebra [13]: a rigorous mathematical language for com-

bining relations with operations governed by algebraic laws.

With the rise of first order logic, Peirce’s calculus was forgotten

until Tarski, who in [77] recognised its algebraic flavour. In the

introduction to [78], written shortly before his death, Tarski put

much emphasis on two key features of CR: (a) its lack of quantifiers
and (b) its sole deduction rule of substituting equals by equals. The

calculus, however, comes with two great shortcomings: (c) it is

strictly less expressive than FOL and (d) it is not axiomatisable.

Despite these limitations, CR had —and continues to have— a

great impact in computer science, e.g., in the theory of databases [22]

and in the semantics of programming languages [2, 39, 45, 46, 69].

Indeed, the lack of quantifiers avoids the usual burden of bindings,
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scopes and capture-avoid substitutions (see [27, 32, 35, 41, 63, 65]

for some theories developed to address specifically the issue of bind-

ings). This feature, together with purely equational proofs, makes

CR particularly suitable for proof assistants [44, 66, 67].

Less influential in computer science, there are two others quanti-

fier-free alternatives to FOL that are worth mentioning: first, predi-
cate functor logic (PFL) [70] that was thought by Quine as the first

order logic analogue of combinatory logic [24] for the 𝜆-calculus;

second, Peirce’s existential graphs (EGs) [73] and, in particular, its

variant named system 𝛽 . In this system FOL formulas are diagrams
and the deduction system consists of rules for their manipulation.

Peirce’s work on EGs remained unpublished during his lifetime.

Diagrams have been used as formal entities since the dawn of

computer science, e.g. in the Böhm-Jacopini theorem [3]. More

recently, the spatial nature of mobile computations led Milner to

move from the traditional term-based syntax of process calculi

to bigraphs [51]. Similarly, the impossibility of copying quantum

information and, more generally, the paradigm-shift of treating

data as a physical resource (see e.g. [33, 57]), has led to the use [1, 5,

7, 11, 23, 28, 29, 34, 54, 64, 76] of string diagrams [43, 75] as syntax.
String diagrams, formally arrows of a freely generated symmetric

(strict) monoidal category, combine the rigour of traditional terms

with a visual and intuitive graphical representation. Like traditional

terms, they can be equipped with a compositional semantics.

In this paper, we introduce the calculus of neo-Peircean relations,
a string diagrammatic account of FOL that has several key features:

(1) Its diagrammatic syntax is closely related to Peirce’s EGs,
but it can also be given through a context free grammar

equipped with an elementary type system;

(2) It is quantifier-free and, differently than FOL, its composi-

tional semantics can be given by few simple rules: see (8);

(3) Terms and predicates are not treated as separate syntactic

and semantic entities;

(4) Its sole deduction rule is substituting equals by equals, like

CR, but differently, it features a complete axiomatisation;

(5) The axioms are those of well-known algebraic structures,

also occurring in different fields such as linear algebra [12]

or quantum foundations [23];

(6) It allows for compositional encodings of FOL, CR and PFL;
(7) String diagrams disambiguate interesting corner cases where

traditional FOL encounters difficulties. One perk is that we

allow empty models —forbidden in classical treatments—

leading to (slightly) more general Gödel completeness;

(8) The corner case of emptymodels coincides with propositional
models and in that case our axiomatisation simplifies to the

deep inference Calculus of Structures [15, 36].

https://orcid.org/0000-0002-3433-723X
https://orcid.org/0000-0002-6428-6461
https://orcid.org/0000-0002-1604-9832
https://orcid.org/0000-0002-7992-9685
https://doi.org/10.1145/3661814.3662078
https://doi.org/10.1145/3661814.3662078
https://doi.org/10.1145/3661814.3662078


LICS ’24, July 8–11, 2024, Tallinn, Estonia Bonchi et al.

By returning to the algebraic roots of logic we preserve CR’s bene-
fits (a) and (b) while overcoming its limitations (c) and (d).

Cartesian syntax. To ease the reader into this work, we show how

traditional terms appear as string diagrams. Consider a signature

Σ consisting of a unary symbol 𝑓 and two binary symbols 𝑔 and ℎ.

The term ℎ( 𝑔(𝑓 (𝑥3), 𝑓 (𝑥3)), 𝑥1 ) corresponds to the string diagram
on the left below.

𝑓

𝑓

𝑔
ℎ

𝑓 𝑔
ℎ𝑓

The explicit treatment of copying and discarding distinguishes

diagrams from traditional syntax trees. The discharger informs

us that the variable 𝑥2 does not appear; the copier makes clear

that the variable 𝑥3 is shared by two sub-terms. The diagram on

the right represents the same term if one admits the equations

𝑐 =
𝑐

𝑐

and 𝑐 = . (Nat)

Fox [30] showed that (Nat) together with axioms asserting that

copier and discard form a comonoid ((◀◦-as), (◀◦-un), (◀◦-co) in
Fig. 2) force the monoidal category of string diagrams to be carte-
sian (⊗ is the categorical product): actually, it is the free cartesian
category on Σ.

Functorial semantics. The work of Lawvere [47] illustrates the

deep connection of syntax with semantics, explainingwhy cartesian

syntax is so well-suited to functional structures, but also hinting

at its limitations when denoting other structures, e.g. relations.

Given an algebraic theory T in the universal algebraic sense, i.e.,

a signature Σ with a set of equations 𝐸, one can freely generate a

cartesian category LT.Models –in the standard algebraic sense– are

in one-to-one correspondence with cartesian functors M from LT
to Set, the category of sets and functions. More generally, models

of the theory in any cartesian category C are cartesian functors

M : LT → C. By taking C to be Rel◦, the category of sets and

relations, one could wish to use the same approach for relational

theories but any such attempt fails immediately since the cartesian

product of sets is not the categorical product in Rel◦.

Cartesian bicategories. An evolution of Lawvere’s approach for

relational structures is developed in [8, 10, 74]. Departing from

cartesian syntax, it uses string diagrams generated by the first
row of the grammar in Fig. 1, where 𝑅 is taken from a monoidal

signature Σ – a set of symbols equipped with both an arity and

also a coarity – and can be thought of as akin to relation symbols

of FOL. The diagrams are subject to the laws of cartesian bicat-

egories [17] in Fig. 2: and form a comonoid, but the

category of diagrams is not cartesian since the equations in (Nat)

hold laxly ((◀◦-nat), (!◦-nat)). The diagrams and form a

monoid ((▶◦-as), (▶◦-un), (▶◦-co)) and are right adjoint to copier

and discard. Monoids and comonoids together satisfy special Frobe-
nius equations ((S◦),(F◦)). The category of diagrams CBΣ is the free

cartesian bicategory generated by Σ and, like in Lawvere’s func-

torial semantics, models are morphisms of cartesian bicategories

M : CBΣ → Rel◦. Importantly, the laws of cartesian bicategories

provide a complete axiomatisation for Rel◦, meaning that 𝑐, 𝑑 in

CBΣ are provably equal with the laws of cartesian bicategories iff

M(𝑐) = M(𝑑) for all modelsM.

𝑃

𝑄

The (co)monoid structures allow one to ex-

press existential quantification: for instance,

the FOL formula ∃𝑥2 .𝑃 (𝑥1, 𝑥2) ∧ 𝑄 (𝑥2) is de-
picted as the diagram on the right. The expressive power of CBΣ is,

however, limited to the existential-conjunctive fragment of FOL.

Cocartesian bicategories. To express the universal-disjunctive

fragment, we consider the category CBΣ of string diagrams gen-

erated by the second row of the grammar in Fig. 1 and subject to

the laws of cocartesian bicategories in Fig. 3: those of cartesian

bicategories but with the reversed order ≥. The diagrams of CBΣ

are photographic negative of those in CBΣ. To explain this change

of colour, note that sets and relations form another category: Rel•.
Composition ,• in Rel• is the De Morgan dual of the usual relational

composition: 𝑅 ,◦ 𝑆
def

= {(𝑥, 𝑧) | ∃𝑦.(𝑥,𝑦) ∈ 𝑅 ∧ (𝑦, 𝑧) ∈ 𝑆} while
𝑅 ,•𝑆

def

= {(𝑥, 𝑧) | ∀𝑦.(𝑥,𝑦) ∈ 𝑅∨(𝑦, 𝑧) ∈ 𝑆}. While Rel◦ is a cartesian
bicategory, Rel• is cocartesian. Interestingly, this “black” composi-

tion ,• was used in Peirce’s approach [58] to relational algebra.

Just as CBΣ is complete with respect to Rel◦, dually, CBΣ is com-

plete wrt Rel•. The former accounts for the existential-conjunctive

fragment of FOL; the latter for its universal-disjunctive fragment.

This raises a natural question:

How do the white and black structures combine to form a

complete account of first order logic?

Linear bicategories. Although Rel◦ and Rel• have the same ob-

jects and arrows, there are two different compositions ( ,◦ and ,•).
The appropriate categorical structures to deal with these situations

are linear bicategories introduced in [19] as a horizontal categori-

fication of linearly distributive categories [21, 26]. The laws of

linear bicategories are in Fig. 4: the key law is linearly distribu-
tivity of ,◦ over ,• ((𝛿𝑙 ), (𝛿𝑟 )), that was already known to hold for

relations since the work of Peirce [58]. Another crucial property

observed by Peirce is that for any relation 𝑅 ⊆ 𝑋 × 𝑌 , the relation

𝑅⊥ ⊆ 𝑌 × 𝑋
def

= {(𝑦, 𝑥) | (𝑥,𝑦) ∉ 𝑅} is its linear adjoint. This op-
eration has an intuitive graphical representation: given 𝑐 , take

its mirror image 𝑐 and then its photographic negative 𝑐 . For

instance, the linear adjoint of 𝑅 is 𝑅 .

First order bicategories. The final step is to characterise how

cartesian, cocartesian and linear bicategories combine: (i) white
and black (co)monoids are linear adjoints that (ii) satisfy a “lin-

ear” version of the Frobenius law. We dub the result first order
bicategories. We shall see that this is a complete axiomatisation for

first order logic, yet all of the algebraic machinery is compactly

summarised at the right of Fig. 1.

Functorial semantics for first order theories. In the spirit of func-

torial semantics, we take the free first order bicategory FOBT gen-
erated by a theory T and observe that models of T in a first order

bicategory C are morphisms M : FOBT → C. Taking C = Rel, the
first order bicategory of sets and relations, these are models in the

sense of FOL with one notable exception: in FOL models with the

empty domain are forbidden. As we shall wee, theories with empty

models are exactly the propositional theories.
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𝑐 F | | 𝑅 | | | | | | 𝑐 𝑐 |
𝑐

𝑐

|

| | 𝑅 | | | | | | 𝑐 𝑐 |
𝑐

𝑐

OO

lin. adj.

��

left adj.

//
OO

lin. adj.

��

spec. Frob.

lin. Frob.

right adj.oo

spec. Frob.

lin. Frob.

Figure 1: Diagrammatic syntax of NPRΣ (left) and a summary of its axioms (right)

Completeness. We prove that the laws of first order bicategories

provide a complete axiomatisation for first order logic. The proof

is a diagrammatic adaptation of Henkin’s proof [38] of Gödel’s

completeness theorem. However, in order to properly consider

models with an empty domain, we make a slight additional step to

go beyond Gödel completeness.

A taste of diagrammatic logic. Before we introduce the calculus
of neo-Peircean relations, we start with a short worked example to

give the reader a taste of using the calculus to prove a non-trivial

result of first order logic. Doing so lets us illustrate the methodology

of proof within the calculus, which is sometimes referred to as

diagrammatic reasoning or string diagram surgery.

𝑅 ≦ 𝑅

Let 𝑅 be a symbol with arity 2

and coarity 0. The two diagrams

on the right correspond to FOL
formulas ∃𝑥 .∀𝑦. 𝑅(𝑥,𝑦) and ∀𝑦. ∃𝑥 . 𝑅(𝑥,𝑦): see § 9 for a dictionary
of translating between FOL and diagrams. It is well-known that

∃𝑥 .∀𝑦. 𝑅(𝑥,𝑦) |= ∀𝑦. ∃𝑥 . 𝑅(𝑥,𝑦), i.e. in any model, if the first for-

mula evaluates to true then so does the second. Within our calculus,

this statement is expressed as the above inequality. This can be

proved by mean of the axiomatisation we introduce in this work:

𝑅 = 𝑅

(𝜂¡•)
≤ 𝑅

Prop. 6.4
=

𝑅

(𝜖¡•)
≤ 𝑅 = 𝑅

(1)

The central step relies on the particularly good behaviour of maps,
intuitively those relations that are functional. In particular is

an example. The details are not important at this stage.

Synopsis. We begin by recalling CR in § 2. The calculus of neo-

Peircean relations is introduced in § 3, together with the statement

of our main result (Theorem 3.2). We recall (co)cartesian and linear

bicategories in § 4 and § 5. The categorical structures most impor-

tant for our work are first-order bicategories, introduced in § 6. In

§ 7 we consider first order theories, the diagrammatic version of the

deduction theorem (Theorem 7.8) and some subtle differences with

FOL that play an important role on the proof of completeness in

§ 8. Translations of CR and FOL into the calculus of neo-Peircean

relations are given in § 8.1 and § 9. Fully detailed proofs and further

additional material can be found in [6].

2 THE CALCULUS OF BINARY RELATIONS
The calculus of binary relations, in an original presentation given

by Peirce in [58], features two forms of relational compositions ,◦
and ,•, defined for all relations 𝑅 ⊆ 𝑋 × 𝑌 and 𝑆 ⊆ 𝑌 × 𝑍 as

𝑅 ,◦ 𝑆
def

= {(𝑥, 𝑧) | ∃𝑦 ∈𝑌 . (𝑥,𝑦) ∈ 𝑅 ∧ (𝑦, 𝑧) ∈ 𝑆} ⊆ 𝑋 × 𝑍 and

𝑅 ,• 𝑆
def

= {(𝑥, 𝑧) | ∀𝑦 ∈𝑌 . (𝑥,𝑦) ∈ 𝑅 ∨ (𝑦, 𝑧) ∈ 𝑆} ⊆ 𝑋 × 𝑍
(2)

with units the equality and the difference relations respectively,

defined for all sets 𝑋 as

𝑖𝑑◦𝑋
def

= {(𝑥,𝑦) |𝑥 = 𝑦} ⊆𝑋×𝑋 and 𝑖𝑑•𝑋
def

= {(𝑥,𝑦) |𝑥 ≠ 𝑦} ⊆𝑋×𝑋 . (3)

Beyond the usual union ∪, intersection ∩, and their units ⊥ and ⊤,
the calculus also features two unary operations (·)† and (·) denoting
the opposite and the complement: 𝑅†

def

= {(𝑦, 𝑥) | (𝑥,𝑦) ∈ 𝑅} and
𝑅

def

= {(𝑥,𝑦) | (𝑥,𝑦) ∉ 𝑅}. In summary, its syntax is given by the

following context free grammar

𝐸 F 𝑅 | 𝑖𝑑◦ | 𝐸 ,◦ 𝐸 | 𝑖𝑑• | 𝐸 ,• 𝐸 |
𝐸† | ⊤ | 𝐸 ∩ 𝐸 | ⊥ | 𝐸 ∪ 𝐸 | 𝐸

(CRΣ)

where 𝑅 is taken from a given set Σ of generating symbols. The

semantics (4) is defined wrt a relational interpretation I, that is, a
set 𝑋 together with a binary relation 𝜌 (𝑅) ⊆ 𝑋 ×𝑋 for each 𝑅 ∈ Σ.

⟨𝑅⟩I
def

= 𝜌 (𝑅)
⟨𝐸† ⟩I

def

= ⟨𝐸⟩†I
⟨𝐸⟩I

def

= ⟨𝐸⟩I

⟨𝑖𝑑◦ ⟩I
def

= 𝑖𝑑◦
𝑋

⟨𝑖𝑑• ⟩I
def

= 𝑖𝑑•
𝑋

⟨⊥⟩I
def

= ∅
⟨⊤⟩I

def

= 𝑋 × 𝑋

⟨𝐸1 ,◦ 𝐸2 ⟩I
def

= ⟨𝐸1 ⟩I ,◦ ⟨𝐸2 ⟩I
⟨𝐸1 ,• 𝐸2 ⟩I

def

= ⟨𝐸1 ⟩I ,• ⟨𝐸2 ⟩I
⟨𝐸1 ∪ 𝐸2 ⟩I

def

= ⟨𝐸1 ⟩I ∪ ⟨𝐸2 ⟩I
⟨𝐸1 ∩ 𝐸2 ⟩I

def

= ⟨𝐸1 ⟩I ∩ ⟨𝐸2 ⟩I

(4)

Two expressions 𝐸1, 𝐸2 are said to be equivalent, written 𝐸1 ≡CR 𝐸2,

if and only if ⟨𝐸1⟩I = ⟨𝐸2⟩I , for all interpretations I. Inclusion,
denoted by ≤CR, is defined analogously by replacing = with ⊆. For
instance, the following inclusions hold, witnessing the fact that ,◦
linearly distributes over ,•.

𝑅 ,◦ (𝑆 ,•𝑇 ) ≤CR (𝑅 ,◦ 𝑆) ,•𝑇 (𝑅 ,• 𝑆) ,◦𝑇 ≤CR 𝑅 ,• (𝑆 ,◦𝑇 ) (5)

Along with the boolean laws, in ‘Note B’ [58] Peirce states (5) and

stresses the importance of this fact. However, since 𝑅 ,• 𝑆 ≡CR 𝑅 ,◦ 𝑆
and 𝑖𝑑• ≡CR 𝑖𝑑◦, both ,• and 𝑖𝑑• are often considered redundant,

for instance by Tarski [77] and much of the later work.

Tarski asked whether≡CR can be axiomatised, i.e., is there a basic

set of laws from which one can prove all the valid equivalences?

Unfortunately, there is no finite complete axiomatisations for the

whole calculus [52] nor for several fragments, e.g., [4, 31, 40, 68, 72].
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Our work returns to the same problem, but from a radically

different perspective: we see the calculus of relations as a sub-

calculus of a more general system for arbitrary (i.e. not merely

binary) relations. The latter is strictly more expressive than CRΣ –

actually it is as expressive as first order logic (FOL)– but allows for

an elementary complete axiomatisation based on the interaction of

two influential algebraic structures: that of linear bicategories and

cartesian bicategories.

3 NEO-PEIRCEAN RELATIONS
Here we introduce the calculus of neo-Peircean relations (NPRΣ).

The first step is to move from binary relations 𝑅 ⊆ 𝑋 × 𝑋 to

relations 𝑅 ⊆ 𝑋𝑛 ×𝑋𝑚
where, for any 𝑛 ∈ N, 𝑋𝑛

denotes the set of

row vectors (𝑥1, . . . , 𝑥𝑛) with all 𝑥𝑖 ∈ 𝑋 . In particular, 𝑋 0
is the one

element set 1
def

= {★}. Considering this kind of relations allows us to
identify two novel fundamental constants: the copier ◀◦

𝑋
⊆ 𝑋 × 𝑋 2

which is the diagonal function ⟨𝑖𝑑◦
𝑋
, 𝑖𝑑◦

𝑋
⟩ : 𝑋 → 𝑋 ×𝑋 (considered

as a relation) and the discharger !◦
𝑋

⊆ 𝑋 × 1 which is, similarly, the

unique function from 𝑋 to 1. By combining them with opposite

and complement we obtain, in total, 8 basic relations.

◀◦
𝑋

def

= {(𝑥, (𝑦, 𝑧)) | 𝑥 = 𝑦 ∧ 𝑥 = 𝑧} !
◦
𝑋

def

= {(𝑥,★) | 𝑥 ∈ 𝑋 }
▶◦
𝑋

def

= {((𝑦, 𝑧), 𝑥) | 𝑥 = 𝑦 ∧ 𝑥 = 𝑧} ¡◦
𝑋

def

= {(★, 𝑥) | 𝑥 ∈ 𝑋 }

◀•
𝑋

def

= {(𝑥, (𝑦, 𝑧)) | 𝑥 ≠ 𝑦 ∨ 𝑥 ≠ 𝑧} !
•
𝑋

def

= ∅
▶•
𝑋

def

= {((𝑦, 𝑧), 𝑥) | 𝑥 ≠ 𝑦 ∨ 𝑥 ≠ 𝑧} ¡•
𝑋

def

= ∅

(6)

Together with 𝑖𝑑◦
𝑋
and 𝑖𝑑•

𝑋
and the compositions ,◦ and ,• from (3),

there are black and white symmetries: 𝜎◦
𝑋,𝑌

def

= {( (𝑥,𝑦), (𝑦, 𝑥) ) |
𝑥 ∈ 𝑋,𝑦 ∈ 𝑌 } and 𝜎•

𝑋,𝑌

def

= 𝜎◦
𝑋,𝑌

. The calculus does not feature the
boolean operators nor the opposite and the complement: these can

be derived using the above structure and two monoidal products ⊗
and �×, defined for 𝑅 ⊆ 𝑋 × 𝑌 and 𝑆 ⊆ 𝑉 ×𝑊 as

𝑅 ⊗ 𝑆
def

= {( (𝑥, 𝑣), (𝑦,𝑤) ) | (𝑥,𝑦) ∈ 𝑅 ∧ (𝑣,𝑤) ∈ 𝑆}
𝑅 �× 𝑆

def

= {( (𝑥, 𝑣), (𝑦,𝑤) ) | (𝑥,𝑦) ∈ 𝑅 ∨ (𝑣,𝑤) ∈ 𝑆} .
(7)

Syntax. Terms are defined by the following context free grammar

𝑐 F ◀◦
1
| !◦
1
| 𝑅◦ | ¡◦

1
| ▶◦

1
| 𝑖𝑑◦

0
| 𝑖𝑑◦

1
| 𝜎◦

1,1
| 𝑐 ,◦ 𝑐 | 𝑐 ⊗ 𝑐 |

◀•
1
| !•
1
| 𝑅• | ¡•

1
| ▶•

1
| 𝑖𝑑•

0
| 𝑖𝑑•

1
| 𝜎•

1,1
| 𝑐 ,• 𝑐 | 𝑐 �× 𝑐

(NPRΣ)

where 𝑅, like in CRΣ, belongs to a fixed set Σ of generators. Differ-
ently than in CRΣ, each 𝑅 ∈ Σ comes with two natural numbers:

arity 𝑎𝑟 (𝑅) and coarity 𝑐𝑜𝑎𝑟 (𝑅). The tuple (Σ, 𝑎𝑟, 𝑐𝑜𝑎𝑟 ), usually sim-

ply Σ, is a monoidal signature. Intuitively, every 𝑅 ∈ Σ represents

some relation 𝑅 ⊆ 𝑋𝑎𝑟 (𝑅) × 𝑋𝑐𝑜𝑎𝑟 (𝑅)
.

In the first row of (NPRΣ) there are eight constants and two

operations: white composition ( ,◦) and white monoidal product (⊗).
These, together with identities (𝑖𝑑◦

0
and 𝑖𝑑◦

1
) and symmetry (𝜎◦

1,1
)

are typical of symmetric monoidal categories. Apart from 𝑅◦, the
constants are the copier (◀◦

1
), discharger (!

◦
1
) and their opposite

cocopier (▶◦
1
) and codischarger (¡

◦
1
). The second row contains the

“black” versions of the same constants and operations. Note that

our syntax does not have variables, no quantifiers, nor the usual

associated meta-operations like capture-avoiding substitution.

We shall refer to the terms generated by the first row as the

white fragment, while to those of second row as the black fragment.

Sometimes, we use the gray colour to be agnostic wrt white or

black. The rules in top of Table 1 assigns to each term at most one

type 𝑛 →𝑚. We consider only those terms that can be typed. For

all 𝑛,𝑚 ∈ N, 𝑖𝑑•◦𝑛 : 𝑛 → 𝑛, 𝜎•◦𝑛,𝑚 : 𝑛 +𝑚 → 𝑚 + 𝑛, ◀•◦𝑛 : 𝑛 → 𝑛 + 𝑛,

▶•◦𝑛 : 𝑛+𝑛 → 𝑛, !•◦𝑛 : 𝑛 → 0 and ¡
•◦
𝑛 : 0 → 𝑛 are as in middle of Table 1.

Semantics. As for CRΣ, the semantics of NPRΣ needs an inter-

pretation I = (𝑋, 𝜌): a set 𝑋 , the semantic domain, and 𝜌 (𝑅) ⊆
𝑋𝑎𝑟 (𝑅) × 𝑋𝑐𝑜𝑎𝑟 (𝑅)

for each 𝑅 ∈ Σ. The semantics of terms is:

I♯ (◀•◦
1
) def

=◀•◦
𝑋

I♯ (!•◦
1
) def

= !
•◦
𝑋

I♯ (▶•◦
1
) def

=▶•◦
𝑋

I♯ (¡•◦
1
) def

= ¡•◦
𝑋

I♯ (𝑖𝑑•◦
0
) def

= 𝑖𝑑•◦
1

I♯ (𝑖𝑑•◦
1
) def

= 𝑖𝑑•◦
𝑋

I♯ (𝜎•◦
1,1 )

def

= 𝜎•◦
𝑋,𝑋

I♯ (𝑅◦ ) def

= 𝜌 (𝑅)
I♯(𝑐 ,•◦𝑑 ) def= I♯ (𝑐 ) ,•◦I♯ (𝑑 ) I♯(𝑐 �⊗𝑑 ) def= I♯ (𝑐 ) �⊗ I♯ (𝑑 ) I♯(𝑅• ) def= 𝜌 (𝑅)†

(8)

The constants and operations appearing on the right-hand-side

of the above equations are amongst those defined in (2), (3), (6), (7).

A simple inductive argument confirms that I♯
maps terms 𝑐 of type

𝑛 →𝑚 to relations 𝑅 ⊆ 𝑋𝑛 × 𝑋𝑚
. In particular, 𝑖𝑑•◦

0
: 0 → 0 is sent

to 𝑖𝑑•◦
1
⊆ 1 × 1, since 𝑋 0 = 1 independently of 𝑋 . Note that there

are only two relations on the singleton set 1 = {★}: the relation
{(★,★)} ⊆ 1 × 1 and the empty relation ∅ ⊆ 1 × 1. These are, by
(3), 𝑖𝑑◦

1
and 𝑖𝑑•

1
, embodying truth and falsity.

Example 3.1. Take Σ with two symbols 𝑅 and 𝑆 with arity and

coarity 1. From Table 1, the two terms below have type 1 → 1.

!
◦
1
,◦ ¡◦

1
◀◦
1
,◦((𝑅◦ ⊗ 𝑆◦) ,◦ ▶◦

1
) (9)

For any interpretation I = (𝑋, 𝜌), I♯ (!◦
1
,◦ ¡◦

1
) is the top 𝑋 × 𝑋 :

I♯ (!◦
1
,◦ ¡◦

1
) = !

◦
𝑋 ,◦ ¡◦𝑋 = {(𝑥,★) | 𝑥 ∈ 𝑋 } ,◦ {(★, 𝑥) | 𝑥 ∈ 𝑋 }

= {(𝑥,𝑦) | 𝑥,𝑦 ∈ 𝑋 } = 𝑋 × 𝑋 = ⟨⊤⟩I .

Similarly, I♯ (◀◦
1
,◦((𝑅◦ ⊗ 𝑆◦) ,◦ ▶◦

1
) = 𝜌 (𝑅) ∩ 𝜌 (𝑆) = ⟨𝑅 ∩ 𝑆⟩I .

Remark 1. NPRΣ is as expressive as FOL. We draw the reader’s
attention to the simplicity of the inductive definition of semantics com-
pared to the traditional FOL approach where variables and quantifiers
make the definition more involved. Moreover, in traditional accounts,
the domain of an interpretation is required to be a non-empty set. In
our calculus this is unnecessary and it is not a mere technicality: in
§ 7 we shall see that empty models capture the propositional calculus.

Two terms 𝑐, 𝑑 : 𝑛 → 𝑚 are semantically equivalent, written
𝑐 ≡ 𝑑 , if and only if I♯ (𝑐) = I♯ (𝑑), for all interpretations I.
Semantic inclusion (≦) is defined analogously replacing = with ⊆.

By definition≡ and ≦ only relate terms of the same type. Through-

out the paper, we will encounter several relations amongst terms of

the same type. To avoid any confusion with the relations denoted

by the terms, we call them well-typed relations and use symbols

I rather than the usual 𝑅, 𝑆,𝑇 . In the following, we write 𝑐I𝑑 for

(𝑐, 𝑑) ∈ I and pc(I) for the smallest precongruence (w.r.t. ,◦, ,•, ⊗ and

�×) generated by I, i.e., the relation inductively generated as

𝑐I𝑑

𝑐 pc(I) 𝑑 (𝑖𝑑)
−

𝑐 pc(I) 𝑐 (𝑟 )
𝑎 pc(I) 𝑏 𝑏 pc(I) 𝑐

𝑎 pc(I) 𝑐 (𝑡 )

𝑐1 pc(I) 𝑐2 𝑑1 pc(I) 𝑑2
𝑐1 ,•◦ 𝑑1 pc(I) 𝑐2 ,•◦ 𝑑2

(,•◦)
𝑐1 pc(I) 𝑐2 𝑑1 pc(I) 𝑑2
𝑐1 �⊗ 𝑑1 pc(I) 𝑐2 �⊗ 𝑑2

(�⊗)
(10)

Diagrams. The terms of our calculus enjoy a convenient graph-

ical representation inspired by string diagrams [43, 75], formally

arrows of a free symmetric (strict) monoidal category. A term

𝑐 : 𝑛 →𝑚 is depicted as a diagram with 𝑛 ports on the left and𝑚

ports on the right; ,•◦ is depicted as horizontal composition while

�⊗ by vertically “stacking” diagrams. However, since there are two
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Table 1: Typing rules (top); inductive definitions of syntactic sugar (middle); structural congruence (bottom)

𝑖𝑑•◦
0
: 0 → 0 𝑖𝑑•◦

1
: 1 → 1 𝜎•◦

1,1
: 2 → 2

◀•◦
1
: 1 → 2 !

•◦
1
: 1 → 0 ▶•◦

1
: 2 → 1 ¡•◦

1
: 0 → 1

𝑎𝑟 (𝑅) = 𝑛 𝑐𝑜𝑎𝑟 (𝑅) =𝑚

𝑅◦ : 𝑛 →𝑚

𝑎𝑟 (𝑅) = 𝑛 𝑐𝑜𝑎𝑟 (𝑅) =𝑚

𝑅• : 𝑚 → 𝑛

𝑐 : 𝑛
1
→𝑚

1
𝑑 : 𝑛

2
→𝑚

2

𝑐 �⊗ 𝑑 : 𝑛
1
+𝑛

2
→𝑚

1
+𝑚

2

𝑐 : 𝑛 →𝑚 𝑑 : 𝑚 → 𝑜

𝑐 ,•◦𝑑 : 𝑛 → 𝑜

◀•◦
0
= 𝑖𝑑•◦

0
◀•◦
𝑛+1= (◀•◦

1
�⊗◀•◦𝑛 ) ,•◦ (𝑖𝑑•◦

1
�⊗ 𝜎•◦

1,𝑛
�⊗ 𝑖𝑑•◦𝑛 )

▶•◦
0
= 𝑖𝑑•◦

0
▶•◦
𝑛+1= (𝑖𝑑•◦

1
�⊗ 𝜎•◦

1,𝑛
�⊗ 𝑖𝑑•◦𝑛 ) ,•◦ (▶•◦

1
�⊗▶•◦𝑛 )

!
•◦
0
= 𝑖𝑑•◦

0
!
•◦
𝑛+1 = !

•◦
1
�⊗ !

•◦
𝑛

¡•◦
0
= 𝑖𝑑•◦

0

¡•◦
𝑛+1 = ¡•◦

1
�⊗ ¡•◦

𝑛

𝑖𝑑•◦
0
= 𝑖𝑑•◦

0

𝑖𝑑•◦
𝑛+1 = 𝑖𝑑•◦

1
�⊗ 𝑖𝑑•◦𝑛

𝜎•◦
0,0

= 𝑖𝑑•◦
0

𝜎•◦
1,0

= 𝜎•◦
0,1

= 𝑖𝑑•◦
1

𝜎•◦
1,𝑛+1 = (𝜎•◦

1,𝑛
�⊗ 𝑖𝑑•◦

1
) ,•◦ (𝑖𝑑•◦𝑛 �⊗ 𝜎•◦

1,1
) 𝜎•◦

𝑚+1,𝑛 = (𝑖𝑑•◦
1
�⊗ 𝜎•◦

𝑚,𝑛 ) ,•◦ (𝜎•◦
1,𝑛
�⊗ 𝑖𝑑•◦𝑚 )

𝑎 ,•◦ (𝑏 ,•◦ 𝑐 ) = (𝑎 ,•◦𝑏) ,•◦ 𝑐 𝑖𝑑•◦𝑛 ,•◦ 𝑐 = 𝑐 = 𝑐 ,•◦ 𝑖𝑑•◦𝑚 (𝑎 �⊗ 𝑏) �⊗ 𝑐 = 𝑎 �⊗ (𝑏 �⊗ 𝑐 ) 𝑖𝑑•◦
0
�⊗ 𝑐 = 𝑐 = 𝑖𝑑•◦

0
�⊗ 𝑐 (𝑎 �⊗ 𝑏) ,•◦ (𝑐 �⊗ 𝑑 ) = (𝑎 ,•◦ 𝑐 ) �⊗ (𝑏 ,•◦𝑑 ) 𝜎•◦

1,1
,•◦ 𝜎•◦

1,1
= 𝑖𝑑•◦

2
(𝑐 �⊗ 𝑖𝑑•◦𝑜 ) ,•◦ 𝜎•◦

𝑚,𝑜 = 𝜎•◦
𝑛,𝑜 ,•◦ (𝑖𝑑•◦𝑜 �⊗ 𝑐 )

compositions ,◦ and ,• and two monoidal products ⊗ and �×, to dis-

tinguish them we use different colours. All constants in the white

fragment have white background, mutatis mutandis for the black

fragment: for instance 𝑖𝑑◦
1
and 𝑖𝑑•

1
are drawn and . In-

deed, the diagrammatic version of (NPRΣ) is given by the grammar

on the left of Fig. 1.

𝑅

𝑆

Note that one diagram may correspond to more

than one term: for instance the diagram on the right

does not only represent the rightmost term in (9),

namely ◀◦
1
,◦((𝑅◦ ⊗ 𝑆◦) ,◦ ▶◦

1
), but also (◀◦

1
,◦(𝑅◦ ⊗ 𝑆◦)) ,◦ ▶◦

1
. In-

deed, it is clear that traditional term-based syntax carries more

information than the diagrammatic one (e.g. associativity). From

the point of view of the semantics, however, this bureaucracy is

irrelevant and is conveniently discarded by the diagrammatic nota-

tion. To formally show this, we recall that diagrams capture only

the axioms of symmetric monoidal categories [43, 75], illustrated

in Table 1; we call structural congruence, written ≈, the well-typed
congruence generated by such axioms and we observe that ≈⊆≡.

Axioms. Figs. 2, 3, 4, 5 illustrate the axioms of first-order bicate-

gories, the categorical structure that we shall introduce in § 6. These

laws also provide a complete axiomatisation for NPRΣ: from each

picture of these figures, one can obtain a diagram by substituting

the letters 𝑋,𝑌 with arbitrary 𝑛,𝑚 ∈ N and the letter 𝑎, 𝑏, 𝑐, 𝑑 with

arbitrary diagrams of the appropriate type. For instance the left

and the right hand sides of the axiom (◀◦-nat) in Figure 2 become

𝑐
𝑚

𝑚
𝑛 and

𝑐

𝑐

𝑚

𝑚
𝑛 for all 𝑛,𝑚 ∈ N and 𝑐 : 𝑛 → 𝑚

generated by the grammar in Fig.1.
1
Let FOB be the well-typed

relation containing the pairs of diagrams (𝑐, 𝑑) obtained via such

substitutions for the axioms in Figs. 2, 3, 4, 5 and call its precongru-

ence closure syntactic inclusion, written ≲. In symbols ≲= pc(FOB).
We will also write �

def

=≲ ∩ ≳. Our main result is:

Theorem 3.2. For all diagrams 𝑐, 𝑑 : 𝑛 →𝑚, 𝑐 ≲ 𝑑 iff 𝑐 ≦ 𝑑 .

Note that axiomatisation is far from minimal and is redundant in

several respects. We chose the more verbose presentation in order

to emphasise both the underlying categorical structures and the

various dualities that we will highlight in the next sections.

Proofs as diagrams rewrites. Proofs in NPRΣ are rather different

from those of traditional proof systems: since the only inference

rules are those in (10), any proof of 𝑐 ≲ 𝑑 consists of a sequence

of applications of axioms. As an example consider (1) from the

Introduction (see [6, App. B.1] for a proof not using Prop. 6.4). Note

that, when applying axioms, we are in fact performing diagram

rewriting: an instance of the left hand side of an axiom is found

1
An axiomatisation on terms, rather than on diagrams, is illustrated in [6, Fig. 9].

within a larger diagram and replaced with the right hand side. Since

such rewrites can happen anywhere, there is a close connection

between proofs in NPRΣ and deep inference [15, 36, 42]: see Ex. 7.7.

4 (CO)CARTESIAN BICATEGORIES
Although the term bicategory might seem ominous, the beasts

considered in this paper are actually quite simple. We consider

poset enriched symmetric monoidal categories: every homset carries

a partial order ≤, and composition ,•◦ and monoidal product �⊗ are

monotone. That is, if 𝑎 ≤ 𝑏 and 𝑐 ≤ 𝑑 then 𝑎 ,•◦ 𝑐 ≤ 𝑏 ,•◦ 𝑑 and

𝑎 �⊗ 𝑐 ≤ 𝑏 �⊗ 𝑑 . A poset enriched symmetric monoidal functor
is a (strong, and usually strict) symmetric monoidal functor that

preserves the order ≤. The notion of adjoint arrows, which will play

a key role, amounts to the following: for 𝑐 : 𝑋 → 𝑌 and 𝑑 : 𝑌 → 𝑋 ,

𝑐 is left adjoint to 𝑑 , or 𝑑 is right adjoint to 𝑐 , written 𝑑 ⊢ 𝑐 , if

𝑖𝑑•◦
𝑋

≤ 𝑐 ,•◦ 𝑑 and 𝑑 ,•◦ 𝑐 ≤ 𝑖𝑑•◦
𝑌
. We extend such terminology to pairs

of arrows: (𝑎, 𝑏) is left adjoint to (𝑐, 𝑑) iff 𝑐 ⊢ 𝑎 and 𝑑 ⊢ 𝑏.
For a symmetric monoidal bicategory (C, �⊗, 𝐼 ), we will write

Cop
for the bicategory having the same objects as C but homsets

Cop [𝑋,𝑌 ] def

= C[𝑌,𝑋 ]: ordering, identities and monoidal product

are defined as in C, while composition 𝑐 ,•◦𝑑 in Cop
is 𝑑 ,•◦ 𝑐 in C. Sim-

ilarly, we will write Cco
to denote the bicategory having the same

objects and arrows of C but equipped with the reversed ordering ≥.
Composition, identities and monoidal product are defined as in C.
In this paper, we will often tacitly use the facts that, by definition,

both (Cop)op and (Cco)co are C and that (Cco)op is (Cop)co.
All monoidal categories considered throughout this paper are

tacitly assumed to be strict [48], i.e. (𝑋 �⊗ 𝑌 ) �⊗ 𝑍 = 𝑋 �⊗ (𝑌 �⊗ 𝑍 )
and 𝐼 �⊗ 𝑋 = 𝑋 = 𝑋 �⊗ 𝐼 for all objects 𝑋,𝑌, 𝑍 . This is harmless:

strictification [48] allows to transform any monoidal category into

a strict one, enabling the sound use of string diagrams. These will be

exploited in this and the next two sections to describe the categori-

cal structures of interest. In particular, in the following definition

◀◦
𝑋
: 𝑋 → 𝑋 ⊗ 𝑋 , !

◦
𝑋
: 𝑋 → 𝐼 , ▶◦

𝑋
: 𝑋 ⊗ 𝑋 → 𝑋 and ¡

◦
𝑋
: 𝐼 → 𝑋 are

drawn, respectively, as 𝑋
𝑋

𝑋
, 𝑋 , 𝑋

𝑋

𝑋
and 𝑋 .

Definition 4.1. A cartesian bicategory (C, ⊗, 𝐼 , ◀◦, !◦, ▶◦, ¡◦), short-
hand (C, ◀◦, ▶◦), is a poset enriched symmetric monoidal category

(C, ⊗, 𝐼 ) and, for every object 𝑋 in C, arrows ◀◦
𝑋
: 𝑋 → 𝑋 ⊗ 𝑋 ,

!
◦
𝑋
: 𝑋 → 𝐼 , ▶◦

𝑋
: 𝑋 ⊗ 𝑋 → 𝑋 ,

¡◦
𝑋
: 𝐼 → 𝑋 s.t.

1. (◀◦
𝑋
, !◦
𝑋
) is a comonoid and (▶◦

𝑋
, ¡◦
𝑋
) a monoid (i.e., (◀◦-as),

(◀◦-un), (◀◦-co) and (▶◦-as), (▶◦-un), (▶◦-co) in Fig. 2 hold);

2. arrows 𝑐 : 𝑋 → 𝑌 are lax comonoidmorphisms ((◀◦-nat), (!◦-nat));
3. (◀◦

𝑋
, !◦
𝑋
) are left adjoints to (▶◦

𝑋
, ¡◦
𝑋
) ((𝜂 ◀◦), (𝜖 ◀◦), (𝜂!◦), (𝜖!◦));

4. (◀◦
𝑋
, !◦
𝑋
) and (▶◦

𝑋
, ¡◦
𝑋
) form special Frobenius algebras ((F

◦
), (S

◦
));
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𝑋
𝑋
𝑋

𝑋

(◀◦-as)
= 𝑋

𝑋
𝑋

𝑋

𝑋
𝑋

(◀◦-un)
= 𝑋 𝑋 𝑋

𝑋

𝑋
(◀◦-co)
= 𝑋

𝑋

𝑋
𝑋𝑋

(S
◦
)

= 𝑋 𝑋 𝑐
𝑌

𝑌
𝑋

(◀◦-nat)
≤

𝑐

𝑐

𝑌

𝑌
𝑋

𝑋
𝑋
𝑋

𝑋

(▶◦-as)
= 𝑋

𝑋
𝑋

𝑋

𝑋
𝑋

(▶◦-un)
= 𝑋 𝑋 𝑋

𝑋

𝑋
(▶◦-co)
= 𝑋

𝑋

𝑋 𝑋

𝑋
𝑋

𝑋 (F
◦
)

= 𝑋

𝑋
𝑋

𝑋

𝑐𝑋

(!
◦
-nat)

≤ 𝑋

𝑋

(𝜖!◦)
≤ 𝑋 𝑋

(𝜂!◦)
≤ 𝑋𝑋

𝑋

𝑋

𝑋

𝑋

(𝜖 ◀◦)
≤ 𝑋

𝑋

𝑋

𝑋
𝑋 𝑋

(𝜂 ◀◦)
≤ 𝑋𝑋

Figure 2: Axioms of cartesian bicategories

𝑋
𝑋
𝑋

𝑋

(◀•-as)
= 𝑋

𝑋
𝑋

𝑋

𝑋
𝑋

(◀•-un)
= 𝑋 𝑋 𝑋

𝑋

𝑋
(◀•-co)
= 𝑋

𝑋

𝑋
𝑋𝑋

(S
•
)

= 𝑋 𝑋
𝑐

𝑐

𝑌

𝑌
𝑋

(◀•-nat)
≤ 𝑐

𝑌

𝑌
𝑋

𝑋
𝑋
𝑋

𝑋

(▶•-as)
= 𝑋

𝑋
𝑋

𝑋

𝑋
𝑋

(▶•-un)
= 𝑋 𝑋 𝑋

𝑋

𝑋
(▶•-co)
= 𝑋

𝑋

𝑋 𝑋

𝑋
𝑋

𝑋 (F
•
)

= 𝑋

𝑋
𝑋

𝑋

𝑋

(!
•
-nat)

≤ 𝑐𝑋

𝑋𝑋

(𝜖¡•)
≤ 𝑋 𝑋

(𝜂¡•)
≤ 𝑋

𝑋𝑋

(𝜖 ▶•)
≤ 𝑋 𝑋

𝑋

𝑋

𝑋

𝑋

(𝜂 ▶•)
≤ 𝑋

𝑋

𝑋

𝑋

Figure 3: Axioms of cocartesian bicategories

5. (◀◦
𝑋
, !◦
𝑋
) and (▶◦

𝑋
, ¡◦
𝑋
) satisfy the coherence conditions:

2

◀◦
𝐼
= 𝑖𝑑◦

𝐼
◀◦
𝑋⊗𝑌 = (◀◦

𝑋
⊗◀◦

𝑌
) ,◦ (𝑖𝑑◦

𝑋
⊗ 𝜎◦

𝑋,𝑌
⊗ 𝑖𝑑◦

𝑌
)

▶◦
𝐼
= 𝑖𝑑◦

𝐼
▶◦
𝑋⊗𝑌 = (𝑖𝑑◦

𝑋
⊗ 𝜎◦

𝑋,𝑌
⊗ 𝑖𝑑◦

𝑌
) ,◦ (▶◦

𝑋
⊗▶◦

𝑌
)

!
◦
𝐼
= 𝑖𝑑◦

𝐼
!
◦
𝑋⊗𝑌 = !

◦
𝑋

⊗ !
◦
𝑌

¡◦
𝐼
= 𝑖𝑑◦

𝐼
¡◦
𝑋⊗𝑌 = ¡◦

𝑋
⊗ ¡◦

𝑌

C is a cocartesian bicategory if Cco
is a cartesian bicategory. A

morphism of (co)cartesian bicategories is a poset enriched strong

symmetric monoidal functor preserving monoids and comonoids.

Remark 2. The structures in the above definition were originally
referred as “cartesian bicategory of relations” in [17].

The archetypal example is (Rel◦, ◀◦, ▶◦). Rel◦ is the bicategory
of sets and relations ordered by inclusion ⊆ with white composition

,◦ and identities 𝑖𝑑◦ defined as in (2) and (3). The monoidal product

on objects is the cartesian product of sets with unit 𝐼 the singleton

set 1. On arrows, ⊗ is defined as in (7). It is immediate to check that,

for every set 𝑋 , the arrows ◀◦
𝑋
, !
◦
𝑋
defined in (6) form a comonoid

in Rel◦, while ▶◦
𝑋
, ¡
◦
𝑋
a monoid. Simple computations also proves

all the (in)equalities in Fig. 2.

The fact that relations are lax comonoid homomorphisms is the

most interesting to show: since 𝑅 ,◦ ◀◦
𝑌
= {(𝑥, (𝑦,𝑦)) | (𝑥,𝑦) ∈ 𝑅}

is included in {(𝑥, (𝑦, 𝑧)) | (𝑥,𝑦) ∈ 𝑅 ∧ (𝑥, 𝑧) ∈ 𝑅} =◀◦
𝑋

,◦(𝑅 ⊗ 𝑅)
and 𝑅 ,◦ !◦

𝑌
= {(𝑥,★) | ∃𝑦 ∈ 𝑋 . (𝑥,𝑦) ∈ 𝑅} in {(𝑥,★) | 𝑥 ∈ 𝑋 } = !

◦
𝑋

for any relation 𝑅 ⊆ 𝑋 ×𝑌 , (◀◦-nat) and (!◦-nat) hold. The reversed
inclusions are interesting to consider: 𝑅 ,◦ ◀◦

𝑌
⊇◀◦

𝑋
,◦(𝑅 ⊗ 𝑅) holds

iff the relation 𝑅 is single valued, while 𝑅 ,◦ !◦
𝑌

⊇ !
◦
𝑋
iff 𝑅 a total.

That is, the two inequalities in Definition 4.1.(2) are equalities iff

the relation 𝑅 is a function. This justifies the following:

Definition 4.2. An arrow 𝑐 : 𝑋 → 𝑌 is a map if

𝑐
𝑌

𝑌
𝑋 ≥

𝑐

𝑐

𝑌

𝑌
𝑋 𝑐𝑋 ≥ 𝑋

It is easy to see that maps form a monoidal subcategory of C [17],

hereafter denoted by Map(C). In fact, it is cartesian.

2
Note that the coherence conditions are not in Fig. 2 since they hold in NPRΣ , given

the inductive definitions in the middle of Tab. 1.

Given a cartesian bicategory (C, ◀◦, ▶◦), one can take Cop
, swap

monoids and comonoids and thus, obtain a cartesian bicategory

(Cop, ▶◦, ◀◦). Most importantly, there is an identity on objects

isomorphism (·)† : C → Cop
defined for all arrows 𝑐 : 𝑋 → 𝑌 as

𝑐†
def

= 𝑐

𝑌

𝑋

(11)

Proposition 4.3. (·)† : C → Cop is an isomorphism of cartesian
bicategories, namely the laws in the first three rows of Table 2.(a) hold.

Hereafter, we write 𝑐 for 𝑐
†
and we call it the mirror image

of 𝑐 . Note that in § 2, we used the same symbol (·)† to denote the

converse relation. This is no accident: in the cartesian bicategory

(Rel◦, ◀◦, ▶◦), 𝑅† as in (11) is exactly {(𝑦, 𝑥) | (𝑥,𝑦) ∈ 𝑅}.
In a cartesian bicategory, one can also define, for all arrows

𝑐, 𝑑 : 𝑋 → 𝑌 , 𝑐 ⊓ 𝑑 and ⊤ as follows.

𝑐 ⊓ 𝑑
def

=
𝑐

𝑑
𝑋 𝑌 ⊤ def

= 𝑋 𝑌 (12)

We have already seen in Example 3.1 that these terms, when in-

terpreted in Rel◦, denote respectively intersection and top. It is

easy to show that in any cartesian bicategory C, ⊓ is associative,

commutative, idempotent and has ⊤ as unit. Namely, C[𝑋,𝑌 ] is a
meet-semilattice with top. However, C is usually not enriched over

meet-semilattices since ,◦ distributes only laxly over ⊓. Indeed, in
Rel◦, 𝑅 ,◦ (𝑆 ∩𝑇 ) ⊆ (𝑅 ,◦ 𝑆) ∩ (𝑅 ,◦𝑇 ) holds but the reverse does not.

Let us now turn to cocartesian bicategories. Our main example is

(Rel•, ◀•, ▶•). Rel• is the bicategory of sets and relations ordered

by ⊆ with composition ,•, identities 𝑖𝑑• and �× defined as in (2), (3)

and (7). Comonoids (◀•
𝑋
, !•
𝑋
) and monoids (▶•

𝑋
, ¡•
𝑋
) are those of (6).

To see that Rel• is a cocartesian bicategory, observe that the com-

plement (·) is a poset-enriched symmetric monoidal isomorphism

(·) : (Rel◦)co → Rel• preserving (co)monoids.

We draw arrows of cocartesian bicategories in black: ◀•
𝑋
,!
•
𝑋
,

▶•
𝑋

and ¡•
𝑋

are drawn 𝑋
𝑋

𝑋
, 𝑋 , 𝑋

𝑋

𝑋
and 𝑋 .

Following this convention, the axioms of cocartesian bicategories
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are in Fig. 3; they can also be obtained from Fig. 2 by inverting both

the colours and the order.

It is not surprising that in a cocartesian bicategory C, every
homset C[𝑋,𝑌 ] carries a join semi-lattice with bottom, where 𝑐 ⊔𝑑

and ⊥ are defined for all arrows 𝑐, 𝑑 : 𝑋 → 𝑌 as follows.

𝑐 ⊔ 𝑑
def

=
𝑐

𝑑
𝑋 𝑌 ⊥ def

= 𝑋 𝑌 (13)

5 LINEAR BICATEGORIES
We have seen that Rel◦ forms a cartesian, and Rel• a cocartesian
bicategory. Categorically, they are remarkably similar — as evi-

denced by the isomorphism (·) — but from a logical viewpoint they

represent two complementary parts of FOL: Rel◦ the existential

conjunctive fragment, and Rel• the universal disjunctive fragment.

To discover the full story, we must merge them into one entity and

study the algebraic interactions between them. However, the coex-

istence of two different compositions ,◦ and ,• brings us out of the
realm of ordinary categories. The solution is linear bicategories [19].

Here ,◦ linearly distributes over ,•, as in Peirce’s calculus. To keep

our development easier, we stick to the poset enriched case and

rely on diagrams, using white and black to distinguish ,◦ and ,•.

Definition 5.1. A linear bicategory (C, ,◦, 𝑖𝑑◦, ,•, 𝑖𝑑•) consists of
two poset enriched categories (C, ,◦, 𝑖𝑑◦) and (C, ,•, 𝑖𝑑•) with the

same objects, arrows and orderings but possibly different identities

and compositions such that ,◦ linearly distributes over ,• (i.e., (𝛿𝑙 )
and (𝛿𝑟 ) in Fig. 4 hold). A symmetric monoidal linear bicategory
(C, ,◦, 𝑖𝑑◦, ,•, 𝑖𝑑•, ⊗, 𝜎◦, �×, 𝜎•, 𝐼 ), shortly (C, ⊗, �×, 𝐼 ), consists of a lin-
ear bicategory (C, ,◦, 𝑖𝑑◦, ,•, 𝑖𝑑•) and two poset enriched symmetric

monoidal categories (C, ⊗, 𝐼 ) and (C, �×, 𝐼 ) such that ⊗ and �× agree

on objects, i.e., 𝑋 ⊗ 𝑌 = 𝑋 �× 𝑌 , share the same unit 𝐼 and

1. there are linear strengths for (⊗, �×), (i.e., (𝜈◦
𝑙
), (𝜈◦𝑟 ), (𝜈

•
𝑙
), (𝜈•𝑟 ));

2. �× preserves 𝑖𝑑◦ colaxly and ⊗ preserves 𝑖𝑑• laxly ((⊗•
), (�×◦

)).

A morphism of symmetric monoidal linear bicategories F : (C1, ⊗
, �×, 𝐼 ) → (C2, ⊗, �×, 𝐼 ) consists of two poset enriched symmetric

monoidal functors F ◦
: (C1, ⊗, 𝐼 ) → (C2, ⊗, 𝐼 ) and F •

: (C1, �×
, 𝐼 ) → (C2, �×, 𝐼 ) that agree on objects and arrows: F ◦ (𝑋 ) = F • (𝑋 )
and F ◦ (𝑐) = F • (𝑐) for all objects 𝑋 and arrows 𝑐 .

Remark 3. In the literature ,◦, 𝑖𝑑◦, ,• and 𝑖𝑑• are written with the
linear logic notation ⊗,⊤, ⊕ and⊥. Modulo this, the traditional notion
of linear bicategory (Definition 2.1 in [19]) coincides with the one in
Definition 5.1 whenever the 2-structure is collapsed to a poset.

Monoidal products on linear bicategories are not much studied
although the axioms in Definition 5.1.1 already appeared in [55]. They
are the linear strengths of the pair (⊗, �×) seen as a linear functor
(Definition 2.4 in [19]), a notion of morphism that crucially differs
from ours on the fact that the F ◦ and F • may not coincide on arrows.
Instead the inequalities (⊗•

)and (�×◦
)are, to the best of our knowledge,

novel. Beyond being natural, they are crucial for Lemma 5.2 below.

All linear bicategories in this paper are symmetric monoidal. We

therefore omit the adjective symmetric monoidal and refer to them

simply as linear bicategories. For a linear bicategory (C, ⊗, �×, 𝐼 ),
we will often refer to (C, ⊗, 𝐼 ) as the white structure, shorthand C◦

,

and to (C, �×, 𝐼 ) as the black structure, C•
. Note that a morphism F

is a mapping of objects and arrows that preserves the ordering, the

white and black structures; thus we write F for both F ◦
and F •

.

If (C, ⊗, �×, 𝐼 ) is linear bicategory then (Cop, ⊗, �×, 𝐼 ) is a linear
bicategory. Similarly (Cco, �×, ⊗, 𝐼 ), the bicategory obtained from C
by reversing the ordering and swapping the white and the black

structure, is a linear bicategory.

Our main example is the linear bicategory Rel of sets and rela-

tions ordered by ⊆. The white structure is the symmetric monoidal

category (Rel◦, ⊗,1), introduced in the previous section and the

black structure is (Rel•, �×,1). Observe that the two have the same

objects, arrows and ordering. The white and black monoidal prod-

ucts ⊗ and �× agree on objects and are the cartesian product of sets.

As common unit object, they have the singleton set 1. We already

observed in (5) that the white composition ,◦ distributes over ,• and
thus (𝛿𝑙 ) and (𝛿𝑟 ) hold. By using the definitions in (2), (3) and (7), the

reader can easily check also the inequalities in Definition 5.1.1,2.

Lemma 5.2. Let (C, ⊗, �×, 𝐼 ) be a linear bicategory. For all arrows
𝑎, 𝑏, 𝑐 the following hold:

(1) 𝑖𝑑•𝐼 ≤ 𝑖𝑑◦𝐼 (2) 𝑎 ⊗ 𝑏 ≤ 𝑎 �× 𝑏 (3) (𝑎 �× 𝑏) ⊗ 𝑐 ≤ 𝑎 �× (𝑏 ⊗ 𝑐)
Remark 4. As ⊗ linearly distributes over �×, it may seem that

symmetric monoidal linear bicategories of Definition 5.1 are linearly
distributive [21, 26]. Moreover (1), (2) of Lemma 5.2 may suggest that
they are mix categories [20]. This is not the case: functoriality of ⊗
over ,• and of �× over ,◦ fails in general.

Closed linear bicategories. In § 4, we recalled adjoints of arrows

in bicategories; in linear bicategories one can define linear adjoints.
For 𝑎 : 𝑋 → 𝑌 and 𝑏 : 𝑌 → 𝑋 , 𝑎 is left linear adjoint to 𝑏, or 𝑏 is

right linear adjoint to 𝑎, written 𝑏 ⊩ 𝑎, if 𝑖𝑑◦
𝑋

≤ 𝑎 ,•𝑏 and 𝑏 ,◦𝑎 ≤ 𝑖𝑑•
𝑌
.

Next we discuss some properties of right linear adjoints. Those of

left adjoints are analogous but they do not feature in our exposition

since in the categories of interest — in next section — left and right

linear adjoint coincide. As expected, linear adjoints are unique.

Lemma 5.3. If 𝑏 ⊩ 𝑎 and 𝑐 ⊩ 𝑎, then 𝑏 = 𝑐 .

𝑋
𝑎 // 𝑌

𝑍

𝑏

??

𝑏 ,•𝑎⊥
OO

𝑐

>>By virtue of the above result we can write

𝑎⊥ : 𝑌 → 𝑋 for the right linear adjoint of

𝑎 : 𝑋 → 𝑌 . With this notation one can write

the left residual of 𝑏 : 𝑍 → 𝑌 by 𝑎 : 𝑋 → 𝑌

as 𝑏 ,• 𝑎⊥ : 𝑍 → 𝑋 . The left residual is the greatest arrow 𝑍 → 𝑋

making the diagram on the right commute laxly in C◦
, namely if

𝑐 ,◦ 𝑎 ≤ 𝑏 then 𝑐 ≤ 𝑏 ,• 𝑎⊥. This can be equivalently expressed as:

Lemma 5.4 (Residuation). 𝑎 ≤ 𝑏 iff 𝑖𝑑◦
𝑋

≤ 𝑏 ,• 𝑎⊥.

Definition 5.5. A linear bicategory (C, ⊗, �×, 𝐼 ) is said to be closed
if every 𝑎 : 𝑋 → 𝑌 has both a left and a right linear adjoint and the

white symmetry is both left and right linear adjoint to the black

symmetry, i.e. (𝜏𝜎◦), (𝛾𝜎◦), (𝜏𝜎•) and (𝛾𝜎•) in Fig. 4 hold.

Rel is a a closed linear bicategory: both left and right linear

adjoints of a relation 𝑅 ⊆ 𝑋 ×𝑌 are given by 𝑅
†
= {(𝑦, 𝑥) | (𝑥,𝑦) ∉

𝑅} ⊆ 𝑌 × 𝑋 . With this, it is easy to see that 𝜎• ⊩ 𝜎◦ ⊩ 𝜎• in Rel.
Observe that if a linear bicategory (C, ⊗, �×, 𝐼 ) is closed, then also

(Cop, ⊗, �×, 𝐼 ) and (Cco, �×, ⊗, 𝐼 ) are closed. The assignment 𝑎 ↦→ 𝑎⊥

gives rise to an identity on objects functor (·)⊥ : C → (Cco)op.
Proposition 5.6. (·)⊥ : C → (Cco)op is a morphism of linear

bicategories, i.e., the laws in the first two columns of Table 2.(b) hold.
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𝑏 𝑐𝑎𝑋 𝑌

(𝛿𝑙 )
≤ 𝑏 𝑐𝑎𝑋 𝑌 𝑏𝑎 𝑐𝑋 𝑌

(𝛿𝑟 )
≤ 𝑏𝑎 𝑐𝑋 𝑌

𝑋

𝑌

𝑋

𝑌

(�×◦
)

≤ 𝑋

𝑌

𝑋

𝑌

𝑋

𝑌

𝑋

𝑌

(⊗•
)

≤ 𝑋

𝑌

𝑋

𝑌

𝑏𝑎

𝑑𝑐

𝑋

𝑍

𝑌

𝑊

(𝜈◦
𝑙
)

≤
𝑎 𝑏

𝑐 𝑑

𝑋

𝑍

𝑌

𝑊

𝑎 𝑏

𝑐 𝑑

𝑋

𝑍

𝑌

𝑊

(𝜈•
𝑙
)

≤
𝑏𝑎

𝑑𝑐

𝑋

𝑍

𝑌

𝑊

𝑋

𝑍

𝑌

𝑊

𝑏𝑎

𝑑𝑐

𝑋

𝑍

𝑌

𝑊

(𝜈◦𝑟 )≤
𝑏𝑎

𝑑𝑐

𝑋

𝑍

𝑌

𝑊

𝑏𝑎

𝑑𝑐

𝑋

𝑍

𝑌

𝑊

(𝜈•𝑟 )≤
𝑏𝑎

𝑑𝑐

𝑋

𝑍

𝑌

𝑊

𝑋

𝑍

𝑌

𝑊

𝑋

𝑌

𝑋

𝑌

(𝜏𝜎◦
)

≤
𝑌

𝑋

𝑌

𝑋

𝑌

𝑋

𝑌

𝑋
(𝛾𝜎◦

)

≤ 𝑋

𝑌

𝑋

𝑌

𝑋

𝑌

𝑋

𝑌

(𝜏𝜎•
)

≤
𝑌

𝑋

𝑌

𝑋

𝑌

𝑋

𝑌

𝑋
(𝛾𝜎•

)

≤ 𝑋

𝑌

𝑋

𝑌

𝑋 𝑋

(𝜏𝑅◦
)

≤ 𝑅 𝑅𝑋 𝑋 𝑅 𝑅𝑌 𝑌

(𝛾𝑅◦
)

≤ 𝑌 𝑌

𝑌 𝑌

(𝜏𝑅•
)

≤ 𝑅𝑅 𝑌𝑌 𝑅𝑅 𝑋𝑋

(𝛾𝑅•
)

≤ 𝑋 𝑋

Figure 4: Axioms of closed symmetric monoidal linear bicategories

Hereafter, the diagram obtained from 𝑐 , by taking its mirror

image 𝑐 and then its photographic negative 𝑐 will denote 𝑐
⊥
.

6 FIRST ORDER BICATEGORIES
Here we focus on the most important and novel part of the ax-

iomatisation. Indeed, having introduced the two main ingredients,

cartesian and linear bicategories, it is time to fire up the Bunsen

burner. The remit of this section is to understand how the carte-

sian and the linear bicategory structures interact in the context

of relations. We introduce first order bicategories that make these

interactions precise. The resulting axioms echo those of cartesian

bicategories but in the linear bicategory setting: recall that in a

cartesian bicategory the monoid and comonoids are adjoint and

satisfy the Frobenius law. Here, the white and black (co)monoids are

again related, but by linear adjunctions; moreover, they also satisfy

appropriate “linear” counterparts of the Frobenius equations.

Definition 6.1. A first order bicategory (C, ⊗, �×, 𝐼 , ◀◦, !◦, ▶◦, ¡◦, ◀•
, !•, ▶•, ¡•), shorthand fo-bicategory (C, ◀◦, ▶◦, ◀•, ▶•), consists of
1. a closed linear bicategory (C, ⊗, �×, 𝐼 ),
2. a cartesian bicategory (C, ⊗, 𝐼 , ◀◦, !◦, ▶◦, ¡◦) and
3. a cocartesian bicategory (C, �×, 𝐼 , ◀•, !•, ▶•, ¡•), such that

4. the white comonoid (◀◦, !◦) is left and right linear adjoint to

black monoid (▶•, ¡•) and (▶◦, ¡◦) is left and right linear adjoint to

(◀•, !•), i.e. the inequalities on the left of Figure 5 hold;

5. white and black (co)monoids satisfy the linear Frobenius laws,

i.e. the equalities on the right of Fig. 5 hold.

Amorphism of fo-bicategories is a morphism of linear bicategories

and of (co)cartesian bicategories.

We have seen that Rel is a closed linear bicategory, Rel◦ a carte-
sian bicategory and Rel• a cocartesian bicategory. Given (6), it is

easy to confirm linear adjointness and linear Frobenius.

Now if (C, ◀◦, ▶◦, ◀•, ▶•) is a fo-bicategory then (Cop, ▶◦, ◀◦

, ▶•, ◀•) and (Cco, ◀•, ▶•, ◀◦, ▶◦) are fo-bicategories: the laws of
Fig. 5 are closed under mirror-reflection and photographic nega-

tive. The fourth condition in Definition 6.1 entails that the linear

bicategory morphism (·)⊥ : C → (Cco)op (see Prop. 5.6) is a mor-

phism of fo-bicategories and, similarly, the fifth condition that also

(·)† : C → Cop
(Prop. 4.3) is a morphism of fo-bicategories.

Proposition 6.2. Let (C, ◀◦, ▶◦, ◀•, ▶•) be a fo-bicategory. Then
(·)† : C → Cop and (·)⊥ : C → (Cco)op are isomorphisms of fo-
bicategories, namely the laws in Table 2.(a) and (b) hold.

Corollary 6.3. The laws in Table 2.(c) hold.

The corollary follows from (12) and (13) and the laws in Ta-

bles 2.(a) and (b). For instance, (𝑎 ⊓ 𝑏)⊥ = 𝑎⊥ ⊔ 𝑏⊥ is proved as:

𝑎

𝑏

⊥

=
⊥
,•

𝑎

𝑏

⊥

,•
⊥
= ,•

𝑎

𝑏
,• =

𝑎

𝑏

The next result about maps (Definition 4.2) plays a crucial role.

Proposition 6.4. For all maps 𝑓 : 𝑋 → 𝑌 and arrows 𝑐 : 𝑌 → 𝑍 ,
𝑓 ,◦ 𝑐 = (𝑓 †)⊥ ,• 𝑐 and thus

𝑐 = 𝑐 𝑐 = 𝑐 𝑐 = 𝑐 𝑐 = 𝑐

Proof. Recall that, in any cartesian bicategory an arrow 𝑓 : 𝑋 →
𝑌 is a map iff it is a left adjoint (see e.g. [6, Prop. C.3]), namely

𝑖𝑑◦𝑋 ≤ 𝑓 ,◦ 𝑓 † 𝑓 † ,◦ 𝑓 ≤ 𝑖𝑑◦𝑌 (14)

The following two derivations prove the two inclusions.

𝑓 ,◦ 𝑐

= 𝑖𝑑◦𝑋 ,◦ 𝑓 ,◦ 𝑐

≤ ((𝑓 †)⊥ ,• 𝑓 †) ,◦ 𝑓 ,◦ 𝑐
(𝑓 † ⊩ (𝑓 †)⊥)

≤ (𝑓 †)⊥ ,• (𝑓 † ,◦ 𝑓 ,◦ 𝑐) (𝛿𝑟 )

≤ (𝑓 †)⊥ ,• (𝑖𝑑◦𝑌 ,◦ 𝑐) (14)

= (𝑓 †)⊥ ,• 𝑐

𝑓 ,◦ 𝑐

= 𝑓 ,◦ (𝑖𝑑•𝑋 ,• 𝑐)

≥ 𝑓 ,◦ ((𝑓 † ,◦ (𝑓 †)⊥) ,• 𝑐)
((𝑓 †) ⊩ (𝑓 †)⊥)

≥ 𝑓 ,◦ 𝑓 † ,◦ ((𝑓 †)⊥ ,• 𝑐) (𝛿𝑙 )

≥ 𝑖𝑑◦𝑋 ,◦ ((𝑓 †)⊥ ,• 𝑐) (14)

= (𝑓 †)⊥ ,• 𝑐

Note that 𝑓 † ⊩ (𝑓 †)⊥ holds since, by Prop. 6.2, in any fo-bicategory

left and right linear adjoint coincide (namely (𝑎⊥)⊥ = 𝑎).

To check the four equivalences, first observe that

𝑐 ,◦ 𝑓 † = (𝑓 ,◦ 𝑐)† = ((𝑓 †)⊥ ,• 𝑐)† = 𝑐 ,• 𝑓 ⊥

and conclude by taking as map 𝑓 either ◀◦ or !◦. □

For fo-bicategory C, we have the four

isomorphisms in the diagram on the right,

which commutes by Corollary 6.3. We can

thus define the complement as the diagonal

of the square, namely (·) def

= ((·)⊥)†.

C
( ·)† //

( ·)⊥
��

Cop

( ·)⊥
��

(Cco)op
( ·)†

// Cco

In diagrams, given 𝑐 , its negation is ( 𝑐
⊥)† = 𝑐

†
= 𝑐 .

Clearly (·) : C → Cco
is an isomorphism of fo-bicategories. More-

over, it induces a Boolean algebra on each homset of C.
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Table 2: Properties of first order bicategories.

(a) Properties of ( ·)† : (C, ◀◦, ▶◦, ◀•, ▶•) → (Cop, ▶◦, ◀◦, ▶•, ◀•)

if 𝑐 ≤ 𝑑 then 𝑐† ≤ 𝑑† (𝑐†)† = 𝑐

(𝑐 ,◦𝑑 )† = 𝑑† ,◦ 𝑐† (𝑖𝑑◦
𝑋

)† = 𝑖𝑑◦
𝑋

(▶◦
𝑋

)† =◀◦
𝑋

(¡◦
𝑋

)† = !
◦
𝑋

(𝑐 ⊗ 𝑑 )† = 𝑐† ⊗ 𝑑† (𝜎◦
𝑋,𝑌

)† = 𝜎◦
𝑌,𝑋

(◀◦
𝑋

)† =▶◦
𝑋

(!◦
𝑋

)† = ¡◦
𝑋

(𝑐 ,•𝑑 )† = 𝑑† ,• 𝑐† (𝑖𝑑•
𝑋

)† = 𝑖𝑑•
𝑋

(▶•
𝑋

)† =◀•
𝑋

(¡•
𝑋

)† = !
•
𝑋

(𝑐 �× 𝑑 )† = 𝑐† �× 𝑑† (𝜎•
𝑋,𝑌

)† = 𝜎•
𝑌,𝑋

(◀•
𝑋

)† =▶•
𝑋

(!•
𝑋

)† = ¡•
𝑋

(b) Properties of ( ·)⊥ : (C, ◀◦, ▶◦, ◀•, ▶•) → ( (Cco )op, ▶•, ◀•, ▶◦, ◀◦)

if 𝑐 ≤ 𝑑 then 𝑐⊥ ≥ 𝑑⊥ (𝑐⊥)⊥ = 𝑐

(𝑐 ,◦𝑑 )⊥ = 𝑑⊥ ,• 𝑐⊥ (𝑖𝑑◦
𝑋

)⊥ = 𝑖𝑑•
𝑋

(▶◦
𝑋

)⊥ =◀•
𝑋

(¡◦
𝑋

)⊥ = !
•
𝑋

(𝑐 ⊗ 𝑑 )⊥ = 𝑐⊥ �× 𝑑⊥ (𝜎◦
𝑋,𝑌

)⊥ = 𝜎•
𝑌,𝑋

(◀◦
𝑋

)⊥ =▶•
𝑋

(!◦
𝑋

)⊥ = ¡•
𝑋

(𝑐 ,•𝑑 )⊥ = 𝑑⊥ ,◦ 𝑐⊥ (𝑖𝑑•
𝑋

)⊥ = 𝑖𝑑◦
𝑋

(▶•
𝑋

)⊥ =◀◦
𝑋

(¡•
𝑋

)⊥ = !
◦
𝑋

(𝑐 �× 𝑑 )⊥ = 𝑐⊥ ⊗ 𝑑⊥ (𝜎•
𝑋,𝑌

)⊥ = 𝜎◦
𝑌,𝑋

(◀•
𝑋

)⊥ =▶◦
𝑋

(!•
𝑋

)⊥ = ¡◦
𝑋

(c) Interaction of ·† and ·⊥ with ⊓ and ⊔

(𝑐 ⊓𝑑 )† = 𝑐† ⊓𝑑† ⊤† = ⊤
(𝑐 ⊔𝑑 )† = 𝑐† ⊔𝑑† ⊥† = ⊥
(𝑐 ⊓𝑑 )⊥ = 𝑐⊥ ⊔𝑑⊥ (⊤)⊥ = ⊥
(𝑐 ⊔𝑑 )⊥ = 𝑐⊥ ⊓𝑑⊥ (⊥)⊥ = ⊤

(𝑐†)⊥ = (𝑐⊥)†

(d) Laws of Boolean algebras

𝑐 ⊓ (𝑑 ⊔ 𝑒 ) = (𝑐 ⊓𝑑 ) ⊔ (𝑐 ⊓ 𝑒 )
𝑐 ⊔ (𝑑 ⊓ 𝑒 ) = (𝑐 ⊔𝑑 ) ⊓ (𝑐 ⊔ 𝑒 )
(𝑐 ⊓𝑑 ) = 𝑐 ⊔𝑑 ⊤ = ⊥
(𝑐 ⊔𝑑 ) = 𝑐 ⊓𝑑 ⊥ = ⊤

𝑐 ⊓ 𝑐 = ⊥ 𝑐 ⊔ 𝑐 = ⊤

(e) Enrichment over

join-meet semilattices

𝑐 ,◦ (𝑑 ⊔ 𝑒 ) = (𝑐 ,◦𝑑 ) ⊔ (𝑐 ,◦ 𝑒 ) (𝑑 ⊔ 𝑒 ) ,◦ 𝑐 = (𝑑 ,◦ 𝑐 ) ⊔ (𝑒 ,◦ 𝑐 ) 𝑐 ,◦ ⊥ = ⊥ = ⊥ ,◦ 𝑐 𝑐 ⊗ (𝑑 ⊔ 𝑒 ) = (𝑐 ⊗ 𝑑 ) ⊔ (𝑐 ⊗ 𝑒 ) (𝑑 ⊔ 𝑒 ) ⊗ 𝑐 = (𝑑 ⊗ 𝑐 ) ⊔ (𝑒 ⊗ 𝑐 ) 𝑐 ⊗ ⊥ = ⊥ = ⊥ ⊗ 𝑐

𝑐 ,• (𝑑 ⊓ 𝑒 ) = (𝑐 ,•𝑑 ) ⊓ (𝑐 ,• 𝑒 ) (𝑑 ⊓ 𝑒 ) ,• 𝑐 = (𝑑 ,• 𝑐 ) ⊓ (𝑒 ,• 𝑐 ) 𝑐 ,• ⊤ = ⊤ = ⊤ ,• 𝑐 𝑐 �× (𝑑 ⊓ 𝑒 ) = (𝑐 �× 𝑑 ) ⊓ (𝑐 �× 𝑒 ) (𝑑 ⊓ 𝑒 ) �× 𝑐 = (𝑑 �× 𝑐 ) ⊓ (𝑒 �× 𝑐 ) 𝑐 �× ⊤ = ⊤ = ⊤ �× 𝑐

𝑋 𝑋

(𝜏 ◀◦)
≤ 𝑋𝑋

𝑋 𝑋

(𝜏 !◦)
≤ 𝑋 𝑋

𝑋

𝑋

𝑋

𝑋

(𝜏 ▶◦)
≤

𝑋

𝑋

𝑋

𝑋

(𝜏 ¡◦)
≤ 𝑋

𝑋

𝑋

𝑋

𝑋
(𝛾 ◀◦)
≤ 𝑋

𝑋

𝑋

𝑋

𝑋
(𝛾 !◦)
≤

𝑋 𝑋

(𝛾 ▶◦)
≤ 𝑋 𝑋

𝑋 𝑋

(𝛾 ¡◦)
≤ 𝑋 𝑋

𝑋 𝑋

(𝜏 ◀•)
≤ 𝑋 𝑋

𝑋 𝑋

(𝜏 !•)
≤ 𝑋𝑋

𝑋

𝑋

𝑋

𝑋

(𝜏 ▶•)
≤

𝑋

𝑋

𝑋

𝑋

(𝜏 ¡•)
≤ 𝑋

𝑋

𝑋

𝑋

𝑋
(𝛾 ◀•)
≤ 𝑋

𝑋

𝑋

𝑋

𝑋
(𝛾 !•)
≤

𝑋𝑋

(𝛾 ▶•)
≤ 𝑋 𝑋

𝑋𝑋

(𝛾 ¡•)
≤ 𝑋 𝑋

𝑋

𝑋

𝑋

𝑋
(F

•◦)
=

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

(F
◦•)
= 𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋
(F

◦• )

=
𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

(F
•◦ )

= 𝑋

𝑋

𝑋

𝑋

Figure 5: Additional axioms for fo-bicategories

Proposition 6.5. Let (C, ◀◦, ▶◦, ◀•, ▶•) be a fo-bicategory. Then
every homset of C is a Boolean algebra: the laws in Tab. 2.(d) hold.
Further, (C, ⊗, 𝐼 ) is monoidally enriched over ⊔-semilattices with ⊥,
while (C, �×, 𝐼 ) over ⊓-semilattices with ⊤: the laws in Tab. 2.(e) hold.

The monoidal enrichment is interesting: as we mentioned in § 4,

the white structure is not enriched over ⊓, but it is enriched over

⊔. In Rel, this is the fact that 𝑅 ,◦ (𝑆 ∪𝑇 ) = (𝑅 ,◦ 𝑆) ∪ (𝑅 ,◦𝑇 ).
We conclude with a result that extends Lemma 5.4 with five

different possibilities to express the concept of logical entailment.

Lemma 6.6. In a fo-bicategory, the following are equivalent:

(1) 𝑎𝑋 𝑌 ≤ 𝑏𝑋 𝑌 (2) 𝑋 𝑋 ≤ 𝑏 𝑎𝑋 𝑋

(3) 𝑌 𝑌 ≤ 𝑎 𝑏𝑌 𝑌 (4) 𝑋 𝑌 ≤
𝑎

𝑏
𝑋 𝑌

(5) ≤ 𝑏𝑎

6.1 The calculus of neo-Peircean relations as a
freely generated first order bicategory

We now return to NPRΣ. Recall that ≲ is the precongruence ob-

tained from the axioms in Figs. 2, 3, 4 and 5. Its soundness (half of

Theorem 3.2) is immediate since Rel is a fo-bicategory.

Proposition 6.7. For all terms 𝑐, 𝑑 : 𝑛 →𝑚, if 𝑐 ≲ 𝑑 then 𝑐 ≦ 𝑑 .

Next, we show how NPRΣ gives rise to a fo-bicategory FOBΣ.

Objects are natural numbers andmonoidal products �⊗ are defined as

addition, with unit object 0. Arrows from𝑛 to𝑚 are terms 𝑐 : 𝑛 →𝑚

modulo syntactic equivalence �, namely FOBΣ [𝑛,𝑚] def

= {[𝑐]� |
𝑐 : 𝑛 →𝑚}. Observe that this is well defined since � is well-typed.

Since � is a congruence, the operations ,•◦ and �⊗ on terms are well

defined on equivalence classes: [𝑡1]� ,•◦[𝑡2]�
def

= [𝑡1 ,•◦𝑡2]� and [𝑡1]� �⊗
[𝑡2]�

def

= [𝑡1 �⊗ 𝑡2]� . By fixing as partial order the syntactic inclusion
≲, one can easily prove the following.

Proposition 6.8. FOBΣ is a first order bicategory.

A useful consequence is that, for any interpretation I = (𝑋, 𝜌),
the semantics I♯

gives rise to a morphism I♯
: FOBΣ → Rel of

fo-bicategories: it is defined on objects as 𝑛 ↦→ 𝑋𝑛
and on arrows

by the inductive definition in (8). To see that it is a morphism, note

that, by (8), all the structure of (co)cartesian bicategories and of

linear bicategories is preserved (e.g. I♯ (◀◦
1
) =◀◦

𝑋
). Moreover, the

ordering is preserved by Prop. 6.7. Note that, by construction,

I♯ (1) = 𝑋 and I♯ (𝑅◦) = 𝜌 (𝑅) for all 𝑅 ∈ Σ. (15)

Actually, I♯
is the unique such morphism of fo-bicategories.

This is a consequence of a more general universal property: Rel
can be replaced with an arbitrary fo-bicategory C. To see this, we

first need to generalise the notion of interpretation.

Definition 6.9. Let Σ be a monoidal signature and C a first order

bicategory. An interpretation I = (𝑋, 𝜌) of Σ in C consists of an

object 𝑋 of C and an arrow 𝜌 (𝑅) : 𝑋𝑛 → 𝑋𝑚
for each 𝑅 ∈ Σ[𝑛,𝑚].

With this definition, we can state that FOBΣ is the fo-bicategory

freely generated by Σ.

Proposition 6.10. Let Σ be a monoidal signature, C a first order
bicategory and I = (𝑋, 𝜌) an interpretation of Σ in C. There exists
a unique morphism of fo-bicategories I♯

: FOBΣ → C such that
I♯ (1) = 𝑋 and I♯ (𝑅◦) = 𝜌 (𝑅) for all 𝑅 ∈ Σ.
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𝑐

(◀◦-nat)
≤ 𝑐

𝑐
(c↑)

𝑐

𝑐 ∧ 𝑐
𝑐

(!
◦
-nat)

≤ (w↑)
𝑐

⊤
𝑐

𝑐

(◀•-nat)
≤ 𝑐 (c↓)

𝑐 ∨ 𝑐

𝑐

(!
•
-nat)

≤ 𝑐 (w↓)
⊥
𝑐

(𝜏𝑅◦
)

(𝜏𝑅•
)

≤ 𝑅 𝑅 (i↓)
⊤

𝑐 ∨ 𝑐
𝑅 𝑅

(𝛾𝑅◦
)

(𝛾𝑅•
)

≤ (i↑)
𝑐 ∧ 𝑐

⊥
𝑏 𝑐𝑎

(𝛿𝑙 )

(𝛿𝑟 )
≤ 𝑏𝑎 𝑐 (s)

𝑎 ∧ (𝑏 ∨ 𝑐)
(𝑎 ∧ 𝑏) ∨ 𝑐

Figure 6: The axioms in Figures 2, 3 and 4 reduce to those above for diagrams of type 𝐼 → 𝐼 . In this case, the axioms correspond
to rules of SKSg in [15]. By the laws of symmetric monoidal categories ,◦ and ⊗ coincide: they both correspond to ∧. Moreover
they are associative, commutative and with unit 𝑖𝑑◦

𝐼
, corresponding to ⊤. Symmetrically ,• and �× coincide and correspond to ∨.

7 DIAGRAMMATIC FIRST ORDER THEORIES
Here we take the first steps towards completeness and show that

for first order theories, fo-bicategories play an analogous role to

cartesian categories in Lawvere’s functorial semantics [47].

A first order theory T is a pair (Σ, I) where Σ is a signature and I
is a set of axioms: pairs (𝑐, 𝑑) for 𝑐, 𝑑 : 𝑛 →𝑚 in FOBΣ. Amodel of T
is an interpretation I of Σ where if (𝑐, 𝑑) ∈ I, then I♯ (𝑐) ⊆ I♯ (𝑑).

Example 7.1. The simplest case is Σ = I = ∅. An interpretation

is a set: all sets, including the empty set ∅, are models.

Next take Σ = ∅ and I = {( , )}. An interpretation I
is a set 𝑋 . By (8), I♯ ( ) = {(★, 𝑥) | 𝑥 ∈ 𝑋 } ,◦ {(𝑥,★) | 𝑥 ∈ 𝑋 },
so I♯ ( ) = {(★,★)} if 𝑋 ≠ ∅, but ∅ if 𝑋 = ∅. Instead,
I♯

( ) = {(★,★)} always, since 𝑋 0
is always 1. Succinctly,

I♯
( ) ⊆ I♯ ( ) iff 𝑋 ≠ ∅: models are non-empty sets.
Finally, take Σ = {𝑅 : 1 → 1} and let I be as follows:

{ ( , 𝑅 ), ( 𝑅 𝑅 , 𝑅 ), ( 𝑅

𝑅
, ), ( ,

𝑅

𝑅
) }.

An interpretation is a set 𝑋 and a relation 𝑅 ⊆ 𝑋 × 𝑋 . It is a model

iff 𝑅 is an order, i.e., reflexive, transitive, antisymmetric and total.

Monoidal signatures Σ, differently from usual FOL alphabets, do

not have function symbols. The reason is that, by adding the axioms

below to I, one forces a symbol 𝑓 : 𝑛 → 1 ∈ Σ to be a function.

𝑓

𝑓
𝑛 ≤ 𝑓𝑛 𝑛 ≤ 𝑓𝑛 (M𝑓 )

Indeed, as we remarked in § 4, 𝑓 ⊆ 𝑋𝑛 ×𝑋 satisfiesM𝑓 if and only

if it is single valued and total, i.e. a function. We depict functions

as 𝑓𝑛 and constants, being 0 → 1 functions, as 𝑘 .

The axioms of a theory together with ≲ form a deduction system.

Formally, the deduction relation induced by T = (Σ, I) is the closure
(see (10)) of ≲ ∪ I, i.e. ≲T

def

= pc(≲ ∪ I). We write �T for ≲T ∩ ≳T.

Proposition 7.2. Let T = (Σ, I) be a theory. If 𝑐 ≲T 𝑑 , then
I♯ (𝑐) ⊆ I♯ (𝑑) for all models I.

Example 7.3. Consider the theory T with Σ = {𝑘 : 0 → 1} and
axiomsM𝑘 . By the definitions of ◀◦

0
and !

◦
0
in Tab. 1, these are:

𝑘

𝑘 ≤ 𝑘 ≤ 𝑘 (M𝑘 )

An interpretation I of Σ consists of a set𝑋 and a relation 𝑘 ⊆ 1×𝑋 .

An interpretation is a model iff 𝑘 is a function of type 1→ 𝑋 . One

can easily prove that in all models the domain is non-empty:

(M𝑘 )

≲T 𝑘

(𝜂!◦)
≲T 𝑘

(!
◦
-nat)

≲T (16)

Contradictory vs trivial theories. The following two notions play

a key role in the proof of our main result however, as we will explain

in Remark 6, their distinction is invisible in FOL.

Definition 7.4. A theory T is contradictory if ≲T . It is

trivial if ≲T .

Triviality implies all models have domain∅:I♯ ( ) = {(★, 𝑥) |
𝑥 ∈ 𝑋 } is included in ∅ = I♯ ( ) iff 𝑋 = ∅. On the other hand,

contradictory theories cannot have a model, not even when 𝑋 = ∅:
since I♯ ( ) = {(★,★)} and I♯ ( ) = ∅ independently of 𝑋 .

As expected, every contradictory theory is trivial.

Lemma 7.5. Let T be a theory. If T is contradictory then it is trivial.

In trivial theories diagrams of type 0 → 0 can be quite interesting

(see Example 7.7), while those with a different type collapse:

Lemma 7.6. Let T be a trivial theory and 𝑐 : 𝑛 →𝑚+1, 𝑑 : 𝑚+1 →
𝑛 be arrows in FOBΣ. Then ⊤ ≲T 𝑐 ≲T ⊥ and ⊤ ≲T 𝑑 ≲T ⊥.

Example 7.7 (The trivial theory of propositional calculus). Let
T = (Σ, I) be the theory where Σ contains only symbols 𝑃,𝑄, 𝑅 . . .

of type 0 → 0 and I = {( , )}. In any model of T, the

domain 𝑋 must be ∅, because of the only axiom in I. A model

is a mapping of each of the symbols in Σ to either {(★,★)} or ∅.
In other words, 𝑃,𝑄, 𝑅, . . . act as propositional variables and any

model is just an assignment of boolean values. By Lemma 7.6 all

arrows collapse, with the exception of those of type 0 → 0, that

are exactly propositional formulas (see [6, Prop. B.1]). In this case,

our axiomatisation reduces to the one in Fig. 6 that, moreover,

corresponds to the deep inference system SKSg in [15].

Diagrams 𝑐 : 0 → 0, which can be thought of as closed formu-

las of FOL, also play an important role in the following result: a

diagrammatic analogue of the deduction theorem (the reader may

check [6, App. F.1] for a detailed comparison with theories in FOL).

Theorem 7.8 (Deduction theorem). Let T = (Σ, I) be a theory
and 𝑐 : 0 → 0 in FOBΣ. Let I′ = I ∪ {(𝑖𝑑◦

0
, 𝑐)} and let T′ denote the

theory (Σ, I′). Then, for every 𝑎, 𝑏 : 𝑛 →𝑚 arrows of FOBΣ,

if 𝑎 ≲T′ 𝑏 then
𝑐

≲T 𝑏 𝑎 .
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Proof. By induction on the rules of (10). We show only the case

for (,◦). The remaining ones can be found in [6, App. F].

Assume 𝑎 = 𝑎1 ,◦ 𝑎2 and 𝑏 = 𝑏1 ,◦ 𝑏2 for some 𝑎1, 𝑏1 : 𝑛 →
𝑙, 𝑎2, 𝑏2 : 𝑙 → 𝑚 such that 𝑎1 ≲T′ 𝑏1 and 𝑎2 ≲T′ 𝑏2. By induction

hypothesis 𝑐 ⊗ 𝑖𝑑◦𝑛 ≲T 𝑏1 ,• 𝑎⊥
1
and 𝑐 ⊗ 𝑖𝑑◦𝑛 ≲T 𝑏2 ,• 𝑎⊥

2
. Thus:

𝑐 (◀◦-nat)
≲T

𝑐

𝑐

Ind. hyp.

≲T
𝑏1 𝑎1

𝑐

≈
𝑏1 𝑎1

𝑐 (𝜈◦𝑟 )
≲T

𝑏1 𝑎1

𝑐

≈

𝑏1 𝑎1

𝑐
Ind. hyp.

≲T 𝑏1 𝑏2 𝑎2 𝑎1

(𝛿𝑙 )
≲T 𝑏1 𝑏2 𝑎2 𝑎1 □

Corollary 7.9. Let T = (Σ, I) be a theory, 𝑐 : 0 → 0 in FOBΣ

and T′ = (Σ, I ∪ {(𝑖𝑑◦
0
, 𝑐)}). Then 𝑖𝑑◦

0
≲T 𝑐 iff T′ is contradictory.

7.1 Functorial semantics for first order theories
Recall that the notion of interpretation of a signature Σ in Rel has
been generalised in Definition 6.9 to an arbitrary fo-bicategory. As

expected, the same is possible also with the notion of model.

Definition 7.10. Let T = (Σ, I) be a theory and C a first order

bicategory. An interpretation I of Σ in C is a model iff, for all

(𝑐, 𝑑) ∈ I, I♯ (𝑐) ≤ I♯ (𝑑).

For any theory T = (Σ, I), one can build a fo-bicategory FOBT:
this is like FOBΣ, but homsets are now FOBT [𝑛,𝑚] = {[𝑑]�T | 𝑑 ∈
FOBΣ [𝑛,𝑚]} ordered by ≲T. Since, by definition, ≲⊆≲T, FOBT is a
fo-bicategory. Thus, one can take an interpretationQT of Σ in FOBT:
the domain 𝑋 is 1 and 𝜌 (𝑅) = [𝑅◦]�T for all 𝑅 ∈ Σ. By Prop. 6.10,

QT induces a fo-bicategory morphism Q♯

T
: FOBΣ → FOBT.

Proposition 7.11. Let T = (Σ, I) be a theory, C a fo-bicategory
andI an interpretation of Σ inC.I is amodel ofT inC iffI♯

: FOBΣ →
C factors uniquely through Q♯

T
: FOBΣ → FOBT.

FOBΣ

I♯

$$

Q♯

T // FOBT

I♯

T
��
C

In other words, there is a unique fo-bicategory

morphism I♯

T
: FOBT → C s.t. the diagram on

the right commutes. The assignment I ↦→ I♯

T
yields a 1-to-1 correspondence between models and morphisms.

Corollary 7.12. To give amodel of T inC is to give a fo-bicategory
morphism FOBT → C.

By virtue of the above, we can tacitly identify models and mor-

phisms. Proposition 7.11 can also be used to obtain the following

result, useful for showing completeness in the next section.

Lemma 7.13. LetT = (Σ, I) andT′ = (Σ′, I′) be theories s.t. Σ ⊆ Σ′

and I ⊆ I′. Then there exists an identity on objects fo-bicategory
morphism F : FOBT → FOBT′ mapping each 𝑑 of FOBT to [𝑑]�T′ .

8 BEYOND GÖDEL’S COMPLETENESS
Let T = (Σ, I) be a theory. First, we prove Gödel completeness

if T is non-trivial, then T has a model (Gödel)

by adapting Henkin’s [38] proof to NPRΣ. We begin with two addi-

tional definitions. Note that when referring to arrows in the context

of T, we mean arrows of FOBT (or of FOBΣ, it is immaterial).

Definition 8.1. T is syntactically complete if for all 𝑐 : 0 → 0 either

𝑖𝑑◦
0
≲T 𝑐 or 𝑖𝑑◦

0
≲T 𝑐 . T has Henkin witnesses if for all 𝑐 : 1 → 0

there is a map 𝑘 : 0 → 1 s.t. 𝑐 ≲T 𝑐𝑘 .

These properties do not hold for the theories we have considered

so far. In terms of FOL, syntactic completeness means that closed

formulas either hold in all models of the theory or in none. A

Henkin witness is a term 𝑘 such that 𝑐 (𝑘) holds: a theory has

Henkin witnesses if for every true formula ∃𝑥 .𝑐 (𝑥), there exists
such a 𝑘 . We shall see in Theorem 8.3 that non-trivial theories can

be expanded to have Henkin witnesses, be non-contradictory and

syntactically complete. The key idea of Henkin’s proof, Theorem 8.6,

is that these three properties yield a model.

To add a witness for 𝑐 : 1 → 0, one

adds a constant 𝑘 : 0 → 1 and the ax-

iomW𝑐
𝑘
, asserting that 𝑘 is a witness.

This preserves non-triviality.

W𝑐
𝑘

def

= {( ,
𝑐

𝑐

𝑘 )}

Lemma 8.2 (Witness Addition). Let T = (Σ, I) be a theory and
consider an arbitrary 𝑐 : 1 → 0. Let T′ = (Σ ∪ {𝑘 : 0 → 1}, I ∪M𝑘 ∪
W𝑐

𝑘
). If T is non-trivial then T′ is non-trivial.

Remark 5. Observe that the distinction between trivial and contra-
dictory theories is essential for the above development. Indeed, under
the conditions of Lemma 8.2, it does not hold that

if T is non-contradictory, then T′ is non-contradictory.
As counter-example, take as T the theory consisting only of the triv-
ialising axiom (𝑡𝑟 ) def

= ( , ). By definition T is trivial but
non-contradictory. Instead, by Example 7.3, T′ is contradictory:

(16)

≲T′
(𝑡𝑟 )
≲T′

(𝛾 !◦)
≲T′ (17)

This shows that adding Henkin witnesses to a non-contradictory
theory may end up in a contradictory theory. Therefore, the usual
Henkin proof for FOL works just for our non-trivial theories.

By iteratively using Lemma 8.2, one can transform a non-trivial

theory into a non-trivial theory with Henkin witnesses. To obtain

a syntactically complete theory, we use the standard argument

featuring Zorn’s Lemma (see [6, Prop. G.4]). In summary:

Theorem 8.3. Let T = (Σ, I) be a non-trivial theory. There exists
a theory T′ = (Σ′, I′) such that Σ ⊆ Σ′ and I ⊆ I′; T′ has Henkin
witnesses; T′ is syntactically complete; T′ is non-contradictory.

Before introducing Henkin’s interpretation, observe that any

map 𝑐 : 0 → 𝑛 can be decomposed as 𝑘1 ⊗ . . . ⊗ 𝑘𝑛 where each

𝑘𝑖 : 0 → 1 is a map (see [6, Prop. G.4]). We thus write such 𝑐 as ®𝑘 ,
depicted as ®𝑘 𝑛 , to make explicit its status as a vector.

Definition 8.4. Let T = (Σ, I) be a theory. The Henkin interpreta-
tion H of Σ, consists of a set 𝑋

def

= Map(FOBT) [0, 1] and a function

𝜌 , defined for all 𝑅 : 𝑛 →𝑚 ∈ Σ as:

𝜌 (𝑅) def

= {(®𝑘, ®𝑙) ∈ 𝑋𝑛 × 𝑋𝑚 | ≲T 𝑅®𝑘 ®𝑙 }

The domain is the set of constants of the theory. Then 𝑅 : 𝑛 →𝑚

is mapped to all pairs (®𝑘, ®𝑙) of vectors that make 𝑅 true in T. The

following characterisation of H ♯
: FOBΣ → Rel is crucial.
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Proposition 8.5. Let T = (Σ, I) be a non-contradictory, syntacti-
cally complete theory with Henkin witnesses. Then, for any 𝑐 : 𝑛 →𝑚,
H ♯ (𝑐) = {(®𝑘, ®𝑙) ∈ 𝑋𝑛 × 𝑋𝑚 | ≲T 𝑐®𝑘 ®𝑙 }.

Theorem 8.6. If T is non-contradictory, syntactically complete with
Henkin witnesses, then H is a model.

Proof. We show that 𝑐 ≲T 𝑑 gives H ♯ (𝑐) ⊆ H ♯ (𝑑). If (®𝑘, ®𝑙) ∈
H ♯ (𝑐) then ≲T 𝑐®𝑘 ®𝑙 by Prop. 8.5. Since 𝑐 ≲T 𝑑 , ≲T

𝑐®𝑘 ®𝑙 ≲T 𝑑®𝑘 ®𝑙 and by Prop. 8.5, (®𝑘, ®𝑙) ∈ H ♯ (𝑑). □

Theorems 8.3 and 8.6 give us a proof for (Gödel).

Proof of (Gödel). Let T′ = (Σ′, I′) be obtained via Theorem 8.3.

Since Σ ⊆ Σ′ and I ⊆ I′, by Lemma 7.13, we have F : FOBT →
FOBT′ . Since T′ has Henkin witnesses, is syntactically complete

and non-contradictory, Theorem 8.6 gives H ♯

T′ : FOBT′ → Rel. We

thus have a morphism FOBT → Rel. □

Now,wewould like to conclude Theorem 3.2 bymeans of (Gödel),

but this is not possible since, for the former one needs a model for

all non-contradictory theories, while (Gödel) provides it only for

non-trivial ones. Thankfully, the Henkin interpretationH gives us,

once more, a model (see [6, Prop. G.13]) that allows us to prove

if T is trivial and non-contradictory, then T has a model. (Prop)

From (Prop) and (Gödel) we can prove general completeness

if T is non-contradictory, then T has a model (General)

and thus deduce our main result.

Proof of (General) and Theorem 3.2. To prove (General) take

T to be a non-contradictory theory. If T is trivial, then it has a model

by (Prop). Otherwise, it has a model by (Gödel). Now, by means of

traditional FOL arguments exploiting Corollary 7.9, one can show

that (General) entails Theorem 3.2 (see [6, Prop. G.14]). □

8.1 The Calculus of Binary Relations (revisited)
The map E(·) defined in Table 3 is an encoding of the calculus of re-

lations into NPRΣ. Since E(·) preserves the semantics (see [6, Prop.

G.15]), from Theorem 3.2 it follows that one can prove inclusions

of expressions of CRΣ by translating them into NPRΣ via E(·) and
then using the axioms in Figs. 2, 3, 4 and 5.

Corollary 8.7. For all 𝐸1, 𝐸2, 𝐸1 ≤CR 𝐸2 iff E(𝐸1) ≲ E(𝐸2).

9 FIRST ORDER LOGIC WITH EQUALITY
As we already mentioned in the introduction the white fragment

of NPRΣ is as expressive as the existential-conjunctive fragment

of first order logic with equality (FOL). The semantic preserving

encodings between the two fragments are illustrated in [10]. From

the fact that the fullNPRΣ can express negation, we get immediately

semantic preserving encodings between NPRΣ and the full FOL. In
this section we illustrate anyway a translation E(·) : FOL → NPRΣ
to emphasise the subtle differences between the two. To go in the

other way, the reader is referred to [6, App. B.4].

To ease the presentation, we consider FOL formulas 𝜑 to be

typed in the context of a list of variables that are allowed (but

not required) to appear in 𝜑 . Fixing x𝑛
def

= {𝑥1, . . . , 𝑥𝑛} we write

𝑛 :𝜑 if all free variables of 𝜑 are contained in x𝑛 . It is standard to

present FOL in two steps: first terms and then formulas. For every

function symbol 𝑓 of arity𝑚 in FOL, we have a symbol 𝑓 : 𝑚 → 1

in the signature Σ together with the equationsM𝑓 forcing 𝑓 to be

interpreted as a function. The translation of a term 𝑛 : 𝑡 to an NPRΣ
diagram 𝑛 → 1 is given inductively in the left part of Fig. 7.

Formulas 𝑛 : 𝜑 translate to NPRΣ diagrams 𝑛 → 0. For every

𝑛-ary predicate symbol 𝑅 in FOL there is a symbol 𝑅 : 𝑛 → 0 ∈ Σ.
In order not to over-complicate the presentation with bureaucratic

details, we assume that it is always the last variable that is quantified

over. Additional variable manipulation can be introduced: see [6,

App. B.3] for an encoding of Quine’s predicate functor logic.

The full encoding in Fig. 7 should give the reader the spirit of

the correspondence between NPRΣ and traditional syntax. There is

one aspect of the above translation that merits additional attention.

Remark 6. By the definition of !•◦𝑛 in Table 1, we have that:

E(0 :⊤) def
= E(0 :⊥) def

=

Thus ⊤ and ⊥ translate to, respectively 𝑖𝑑◦
0
, 𝑖𝑑•

0
in the absence of

free variables or to !◦𝑛 , !
•
𝑛 , respectively, when 𝑛 > 0. This can be seen

as an ambiguity in the traditional FOL syntax, which obscures the
distinction between inconsistent and trivial theories in traditional
accounts, and as a side effect requires the assumption on non-empty
models in formal statements of Gödel completeness. Instead, the syntax
of NPRΣ ensures that this pitfall is side-stepped.

10 CONCLUDING REMARKS
The diagrammatic notation of NPRΣ is closely related to system

𝛽 of Peirce’s EGs [60–62, 73]. Consider the two diagrams on the

left of Fig. 8 corresponding to the closed FOL formula ∃𝑥 . 𝑝 (𝑥) ∧
∀𝑦. 𝑝 (𝑦) → 𝑞(𝑦). In existential graph notation the circle enclosure

(dubbed ‘cut’ by Peirce) signifies negation. To move from EGs to
diagrams of NPRΣ it suffices to treat lines and predicate symbols

in the obvious way and each cut as a color switch.

A string diagrammatic approach to existential graphs appeared

in [37]. This exploits the white fragment of NPRΣ with a primitive

negation operator rendered as Peirce’s cut, namely a circle around

diagrams. However, this inhibits a fully compositional treatment

since, for instance, negation is not functorial. As an example con-

sider Peirce’s (de)iteration rule in Fig. 8: in NPRΣ on the center, and

in [37] on the right. Note that the diagrams on the right require

open cuts, a notational trick, allowing to express the rule for arbi-

trary contexts, i.e. any diagram eventually appearing inside the cut.

InNPRΣ this ad-hoc treatment of contexts is not needed as negation

is not a primitive operation, but a derived one. A derivation of the

law in the middle of Fig. 8 can be found in Fig. 9.

Other diagrammatic calculi of Peirce’s EGs appear in [50] and [14].
The categorical treatment goes, respectively, through the notions of

chiralities and doctrines. The formers consider a pair of categories

(Rel•,Rel◦) that are significantly different from our Rel◦ and Rel•:
to establish a formal correspondence, it might be convenient to

first focus on doctrines. To this aim, we plan to exploit the equiva-

lence in [9] between cartesian bicategories and certain doctrines

(elementary existential with comprehensive diagonals and unique

choice [49]). Preliminary attempts suggests the same equivalence



Diagrammatic Algebra of First Order Logic LICS ’24, July 8–11, 2024, Tallinn, Estonia

Table 3: The encoding E(·) : CRΣ → NPRΣ

E(𝑅) def

= 𝑅◦ E(𝑖𝑑◦ ) def

= 𝑖𝑑◦
1

E(𝐸1 ,◦ 𝐸2 )
def

= E(𝐸1 ) ,◦ E(𝐸2 ) E (⊤) def

= !
◦
1
,◦ ¡◦

1
E(𝐸1 ∩ 𝐸2 )

def

=◀◦
1
,◦(E (𝐸1 ) ⊗ E (𝐸2 ) ) ,◦ ▶◦

1
E(𝐸 ) def

= E(𝐸 )
E (𝐸† ) def

= E(𝐸 )† E(𝑖𝑑• ) def

= 𝑖𝑑•
1

E(𝐸1 ,• 𝐸2 )
def

= E(𝐸1 ) ,• E(𝐸2 ) E (⊥) def

= !
•
1
,• ¡•

1
E(𝐸1 ∪ 𝐸2 )

def

=◀•
1
,•(E (𝐸1 ) �× E(𝐸2 ) ) ,• ▶•

1

E(𝑛 :𝑥𝑖 )
def

=
𝑖 − 1

𝑛 − 𝑖

E(𝑛 : 𝑓 (𝑡1, .., 𝑡𝑚 ) ) def

=

E(𝑛 : 𝑡1 )
𝑛

E(𝑛 : 𝑡𝑚 )
𝑓

.

.

.

E(𝑛 :𝜑1 ∧ 𝜑2 )
def

=

E(𝑛 :𝜑1 )
𝑛

E(𝑛 :𝜑2 )
E (𝑛 :𝜑1 ∨ 𝜑2 )

def

=

E(𝑛 :𝜑1 )
𝑛

E(𝑛 :𝜑2 )
E (𝑛 :𝑅 (𝑡1, .., 𝑡𝑚 ) ) def

=

E(𝑛 : 𝑡1 )
𝑛

E(𝑛 : 𝑡𝑚 )
𝑅

.

.

.

E(𝑛 :⊤) def

= 𝑛 E(𝑛 :⊥) def

= 𝑛 E(𝑛 : 𝑡1 = 𝑡2 )
def

=

E(𝑛 : 𝑡1 )
𝑛

E(𝑛 : 𝑡2 )

E (𝑛−1 : ∃𝑥𝑛 . 𝜑 )
def

= E(𝑛 :𝜑 )𝑛 − 1

E(𝑛−1 : ∀𝑥𝑛 . 𝜑 )
def

= E(𝑛 :𝜑 )𝑛 − 1

E(𝑛 :¬𝜑 ) def

= E(𝑛 :𝜑 )𝑛

Figure 7: FOL encoding in NPRΣ.

𝑝

𝑞
𝑝 ↭

𝑝

𝑞
𝑝 𝑐 𝑑 �

𝑐
𝑑

𝑐

Figure 8: An EG and its encoding in NPRΣ (left); Peirce’s (de)iteration rule in NPRΣ (middle) and in [37] (right).

𝑐 𝑑

(◀◦-un)
(▶•-un)
�

𝑐
𝑑

Prop. 6.4
�

𝑐
𝑑

Prop. 6.5
≲

𝑐
𝑑

𝑐

𝑐
𝑑

𝑐 wrong way

≲
𝑐

𝑐 𝑑
𝑐 (𝛿𝑙 )

≲ 𝑐
𝑐 𝑑

𝑐
(𝑐⊥⊩𝑐 )
≲ 𝑐 𝑑

Figure 9: Derivation of Peirce’s (de)iteration rule in Figure 8. The step marked with “wrong way” holds in any cartesian
bicategory, see e.g. [6, Lemma E.12].

restrict to fo-bicategories and boolean hyperdoctrines but many

details have to be carefully checked. A relational understanding of

doctrines has been initiated in [25] with the notion of relational

doctrines. The latter are as expressive as regular logic, i.e. the white

fragment of NPRΣ, thus it might be interesting to understand the

role of the black structure in this setting. The connection with alle-

gories [31] is also worth to be explored: since cartesian bicategories

are equivalent to unitary pretabular allegories, Prop. 6.5 suggests

that fo-bicategories are closely related to Peirce allegories [56].

It is worth remarking thatNPRΣ only deals with classical FOL, as
hinted by the fact that the homsets of a fo-bicategory are Boolean

algebras (Prop. 6.5). Hopefully, the intuitionistic case might be

handled by relaxing some of the conditions of Def. 6.1.

To conclude it is worth mentioning a further research direction.

We plan to extend to FOL, the combinatorial characterisation of its

regular fragment in terms of hypergraphs [18] and the associated

rewriting approach [5]. In particular, we foresee the possibility of

defining a deep inference system having as rules the inequalities of

our axiomatisation and compare its proof theory with [16, 42, 71].
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