
An Empirical Study of the Non-determinism of ChatGPT in Code
Generation
SHUYIN OUYANG, King’s College London, United Kingdom
JIE M. ZHANG, King’s College London, United Kingdom
MARK HARMAN, University College London, United Kingdom
MENGWANG, University of Bristol, United Kingdom

There has been a recent explosion of research on Large Language Models (LLMs) for software engineering tasks, in particular
code generation. However, results from LLMs can be highly unstable; nondeterministically returning very different code
for the same prompt. Such non-determinism affects the correctness and consistency of the generated code, undermines
developers’ trust in LLMs, and yields low reproducibility in LLM-based papers. Nevertheless, there is no work investigating
how serious this non-determinism threat is.

To fill this gap, this paper conducts an empirical study on the non-determinism of ChatGPT in code generation. We chose
to study ChatGPT because it is already highly prevalent in the code generation research literature. We report results from a
study of 829 code generation problems across three code generation benchmarks (i.e., CodeContests, APPS, and HumanEval)
with three aspects of code similarities: semantic similarity, syntactic similarity, and structural similarity. Our results reveal that
ChatGPT exhibits a high degree of non-determinism under the default setting: the ratio of coding tasks with zero equal test
output across different requests is 75.76%, 51.00%, and 47.56% for three different code generation datasets (i.e., CodeContests,
APPS, and HumanEval), respectively. In addition, we find that setting the temperature to 0 does not guarantee determinism in
code generation, although it indeed brings less non-determinism than the default configuration (temperature=1). In order to
put LLM-based research on firmer scientific foundations, researchers need to take into account non-determinism in drawing
their conclusions.

1 INTRODUCTION
Large Language Models (LLMs) are nondeterministic by nature [34]. This is because LLMs predict the probability
of a word or token given the context, represented by a sample of words. The randomness in LLMs typically comes
from the sampling methods used during text generation, such as top-k sampling or nucleus sampling [31, 50]. As
a result, identical instructions or prompts can yield completely different responses to separate requests.

This non-determinism (i.e., the inconsistency in the code candidates generated in different requests with
identical prompts)1 is an essential consideration when using LLM in practice [59]. Unreliable and inconsistent
code snippets can have significant negative effects on the process of software development, particularly in
safety-critical applications where consistency and reliability are paramount [11, 30]. It may also undermine
developers’ trust in LLMs when completely different suggestions are given at different times [64].

1There are other terms in the literature that also refer to non-determinism, such as inconsistency, variance, randomness, and instability.

Authors’ addresses: Shuyin Ouyang, King’s College London, London, United Kingdom; Jie M. Zhang, King’s College London, London, United
Kingdom; Mark Harman, University College London, London, United Kingdom; Meng Wang, University of Bristol, Bristol, United Kingdom.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2024 Copyright held by the owner/author(s).
ACM 1557-7392/2024/9-ART
https://doi.org/10.1145/3697010

ACM Trans. Softw. Eng. Methodol.

https://orcid.org/0009-0007-0056-3101
https://orcid.org/0000-0003-0481-7264
https://orcid.org/0000-0002-5864-4488
https://orcid.org/0000-0001-7780-630x
https://orcid.org/0009-0007-0056-3101
https://orcid.org/0000-0003-0481-7264
https://orcid.org/0000-0002-5864-4488
https://orcid.org/0000-0001-7780-630x
https://doi.org/10.1145/3697010
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3697010&domain=pdf&date_stamp=2024-09-26

2 • Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

Moreover, non-determinism affects the reliability and reproducibility of empirical software engineering [54].
Indeed, compared to other tasks of ChatGPT, such as question answering and text summarization, the non-
determinism threat in code-related tasks is much more serious, because the inconsistency (especially semantic
inconsistency) often indicates errors in the generated code [28]. It is therefore of vital importance to understand
how serious the non-determinism is for LLM-based software engineering tasks and call for actionable solutions
to alleviate this issue.

This paper presents the first systematic empirical study on the threat of non-determinism of ChatGPT in
code generation tasks. We choose the code generation tasks because code generation with Large Language
Models (LLMs), such as ChatGPT, has recently attracted significant attention due to its impressive and cutting-
edge performance [10, 15, 37]. Indeed, many publications have emerged from both the software engineering
community and the machine learning community on evaluating the capability of ChatGPT in code generation
[6, 10, 16, 41, 69].

This paper focuses on ChatGPT (including GPT-3.5 and GPT-4), rather than other LLMs, for the following two
reasons: 1) ChatGPT is the most widely adopted LLM in code generation in the literature [15, 16, 23, 42, 44, 65, 72];
2) ChatGPT has the best performance in code generation and represents the state-of-the-art so far [4, 15]. Thus,
as the first work on the non-determinism of LLMs in software engineering tasks, we focus on ChatGPT in this
paper but encourage other work to continue to investigate the non-determinism issue in other LLMs.

We conduct a series of experiments using the ChatGPT models on three widely-studied code generation
benchmarks (i.e. CodeContests, APPS, and HumanEval) with 829 coding problems. For each code generation
task, we let ChatGPT make five predictions. We then compare the similarity of the five code candidates from
three aspects, namely semantic similarity, syntactic similarity, and structural similarity. We also explore the
influence of temperature (i.e., a parameter that controls the randomness of the response generated by ChatGPT)
on non-determinism, as well as the correlation between non-determinism and coding task features such as the
length of coding instruction and the difficulty of the task. We show the non-determinism with different models
of ChatGPT, namely, GPT-3.5 and GPT-4. Finally, we compare the non-determinism of code generation with
different prompt engineering strategies.

Our results reveal that the threat of non-determinism in ChatGPT for code generation is serious, especially
under default setting: In particular, 1) the ratio of problems with not a single equal test output among the top-five
code candidates is above 50% for all the benchmarks we study; 2) the maximum difference of the test pass rate
reaches 1.00 for all three datasets, and accounts for 39.63% of the problems in HumanEval, the most widely used
code generation benchmark; In addition, contrary to the widely held belief (and practice followed to minimize
nondeterminism) [7, 13, 39], setting the temperature to zero does not guarantee determinism in code generation.
Also interestingly, our result analysis suggests that the length of coding instructions has a negative correlation
with almost all our similarity measurements, meaning that longer description length tends to yield code candidates
with less similarity and more buggy code. Different prompt engineering strategies also yield different degrees of
non-determinism in code generation.

To understand how the literature handles the non-determinism threat, we collect 76 LLM-based code generation
papers that appeared in the last 2 years. Our manual analysis results highlight that only 21.1% of these papers
consider the non-determinism threat in their experiments. These results highlight that there is currently a
significant threat to the validity of scientific conclusions. We call for researchers to take into account the
non-determinism threat in drawing their conclusions.

To summarize, this paper makes the following contributions:

• We present the first study of the non-determinism threat in code generation tasks on ChatGPT, with three
widely-studied datasets (CodeContest, APPS, HumanEval) and three types of similarity measurements. Our

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Non-determinism of ChatGPT in Code Generation • 3

results reveal that the non-determinism threat is serious and deserves attention from both academia and
industry.

• We study the influence of temperature on the non-determinism of ChatGPT and find that setting temperature
to zero does not guarantee determinism in code generation, which is contrary to many people’s beliefs.

• We study the correlation between coding task features and the degree of non-determinism. The results reveal
that the length of coding instruction has a negative correlation with syntactic and structural similarity, as well
as the average correctness of the generated code.

• We study the influence of different prompt engineering techniques on code generation non-determinism. We
find that prompts with a Chain-of-Thought strategy leads to more non-determinism when temperature=0,
while code candidates generated from prompts requesting simple and concise code are more stable.
We release our data, code, and results at our homepage [3]. The rest of the paper is organized as follows.

Section 2 introduces the main procedure of our study. Section 3 describes the design of the experiments, including
research questions, benchmarks, selected models, and measurement tools. Section 4 presents the results and
discusses some interesting findings based on the experimental results we obtained. Section 5 discusses the threats
to validity in two aspects, as well as the limitations of this study. Section 6 introduces the related work of our
study. Section 7 discusses the implications for software developers and researchers and future work. Section 8
concludes.

2 METHOD
Fig 1 shows an overview of our experimental procedure. For each code generation task, our study first produces
a prompt with a coding instruction, then feeds this prompt to ChatGPT API [2] to generate code (zero-shot). We
call the API five times to let ChatGPT make five predictions with the same prompt. We then extract code from
each of the five responses, to get five code candidates. Our non-determinism analysis compares the five code
candidates in terms of their semantic similarity, syntactic similarity, and structural similarity.

datasets

Optimised
code

Bugs
existence?

Generated
code

S

context-similar
mutation

structural
filtering

similarity
analysis

probability or
 cross reference

machine
translator

automatic test input generation automatic test oracle generation automatic inconsistency repair

mutant
candidates

filtered
mutants

original
translation

mutant
translations

final
translation

Inconsistency?

Yes
best

translation

original
sentence

machine
translator

tr
an

sl
at

io
n

m

ap
p

in
g

original translation input

t(S)

translation output for S

S?

transformed
translation input

t(S?)

translation output for S?

machine translator

machine translator

sim(t(S), t(S')) < r?similarity analysis
between t(S) and t(S')

repair t(S)

repair t(S')

Yes

repair with the best
mutant translation

R(t(S))

R(t(S'))

similarity analysis between
R(t(S))and R(t(S'))

sim(R(t(S)), R(t(S')))
< r?

Is the similarity between
the two translations

smaller than threshold r?

Is the similarity between the
two repaired translations
smaller than threshold r?

repair t(S') with another
mutant translation

Yes

end No

 a
ut

om
at

ic
 in

co
ns

is
te

nc
y

re
pa

ir
au

to
m

at
ic

 te
st

in
g

t(S') has other mutant
translations?

Does t(S') have mutant
translations that have not

been used ?

Yes

No

repair results

repair with the next-best
mutant translation

Learning
program

Conversational AI
model building

Offline
validation

Online
deployment

chatbot

user

User input
Original bot
response

Online fairness
testing

Online fairness
enhancement

Fair bot
response

Explainability
improvement via
per-mutation and
causal analysisTraining data

 data
generation

algorithm improvement

 data
augementation

mutation

filtering

fairness
analysis

 ensemble

chatbot

 WP1: test input and oracle design

mutant
candidates

filtered
mutants

resonse for
mutants

final bot
response

unfairness?

best and fair
response

user input

re
sp

o
n

se

ed
it

in
g

chatbot

augmented
data

fine-tuning

WP2: automatic fairness testing

mutation

filtering

fairness
analysis

 ensemble

chatbot

mutant
candidates

filtered
mutants

original bot
reponse

resonse for
mutants

final bot
response

unfairness?
best and fair

response

user input

re
sp

o
n

se

ed
it

in
g

chatbot

augmented
data

fine-tuning

Yes

 WP3: automatic fairness enhancement

Yes

original bot
reponse

WP4: Data augmentation
and fine-tuning

AI code
generator

WP1: Bug
prediction

WP2:
Automatic

testing

WP3:
Automatic bug

localisation

WP4:
Automatic
bug repair

Developers

Yes

Bug corpus

Black-box optimisation

Return original code to developers

No

 WP5: Tool and dataset developoment

Automatic bug detection Automatic bug repair

Understanding

W1:
Capabilitites

and risks

W2: Influence
on the society

Correctness and Performance

Security, Fairness, and Privacy

Robustness and Stability

Understandability and Evolvability

Industry

Education

Research

Before code
generation

W4: Code
assessment

W5: Code
optimisation

W3: Prompt
engineering

Assuring

After code
generation

Assessing

Before code
generation

Code testing

Code
optimisation

Prompt
engineering

Assuring

After code
generation

Piloting Influence on
the society

Industry

Education

Research

Government

 Trustworthiness
of code

Correctness and
Performance

Security, Fairness,
and Privacy

Robustness and
Stability

Understandability
and Evolvability

prompt

ChatGPT

problem
description

response 1

response 2

response n

...

program 1

program 2

program n

...

test execution
results

text analysis

AST

Semantic
similarity

Syntactic
similarity

Structural
similarity

test suite

Fig. 1. Overview of the experimental procedure.

Prompt synthesis: The first step in our study is prompt preparation. There are many ways to conduct prompt
engineering for code generation. In this paper, we follow the common practice in LLM-based code generation
assessment [5, 15]. In particular, 1) we ask ChatGPT to generate Python code for each code generation task with
zero-shot prompting; 2) we use the basic prompt design directly followed by programming task descriptions.
To guarantee that ChatGPT produces code rather than pure natural languages in its response, we augment the
original coding problem description with an instruction to request for Python code.

One challenge in extracting the code from the API response is that there is no clear signal to distinguish code
with plain text in the response, which is different from ChatGPT’s web chat window (i.e. in the chat window,

ACM Trans. Softw. Eng. Methodol.

4 • Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

codes are returned with Markdown code blocks). To address this problem, we specify the format of the generated
code into ‘Markdown’. Thus, for each code generation task, our prompt is shown as follows:

Generate Python3 code (Markdown):

this is the original coding problem description.

Code Extraction: After receiving the response from ChatGPT, we apply code extraction to retrieve the code
from the generated text. We compile the code directly without making any modifications. Our experiments are
mainly run on Google Deep Learning VM instances, with the Linux environment pre-installed from open images2.
All of the necessary libraries are pre-installed. In this way, it can ensure to the greatest extent that the generated
code will not cause import errors caused by the library not being installed during running.
Test Case Execution: To evaluate the semantics of ChatGPT’s generated code, we use the test suite that is
suited to each benchmark. We not only record whether each test passes or not but also record every specific
test output, which enables us to compare the similarity of test outputs even if they both fail. For CodeContests
and HumanEval datasets, every problem has a certain timeout value of 3 seconds. The APPS dataset does not
provide a default timeout value, and we set the value to be 3 seconds as well. We use single-threaded scripts to
run the tests to ensure that the test cases are executed sequentially to avoid race conditions that may arise from
concurrent executions.
Similarity Checking: To measure the similarity between code candidates, we introduce similarity measurement
tools that evaluated the semantic, syntactic, and structural similarity between the generated code solutions.
The semantic similarity is measured by comparing test execution outputs. The syntactic similarity is measured
by comparing the text similarity between codes. The structural similarity is evaluated by comparing the code
candidates’ abstract syntax trees (ASTs). More details about our similarity measurement methods are mentioned
in Section 3.4.

3 EXPERIMENTAL DESIGN

3.1 ResearchQuestions
This study answers the following questions:
RQ1: To what extent is ChatGPT susceptible to non-determinism in code generation under the default
setting? This RQ investigates the non-determinism of ChatGPT in terms of the semantic, syntactic, and structural
similarity among the code candidates generated with identical instructions under the default setting. There are
three sub-RQs:
• Sub-RQ1.1: To what extent is ChatGPT susceptible to non-determinism in terms of semantic similarity?
• Sub-RQ1.2: To what extent is ChatGPT susceptible to non-determinism in terms of syntactic similarity?
• Sub-RQ1.3: To what extent is ChatGPT susceptible to non-determinism in terms of structural similarity?

RQ2: How does temperature affect the degree of non-determinism? Temperature is a hyperparameter of
LLMs for controlling the randomness of the predictions. This RQ checks and compares the non-determinism of
ChatGPT in code generation with different choices of temperature.
RQ3: How does the non-determinism compare to the similarity of the top code candidates generated
within the same prediction? ChatGPT can be configured to generate multiple candidates for one prediction,
which are ranked by their predictive probability. This RQ compares the similarity of the code candidates obtained
in different predictions with those obtained within the same prediction.
RQ4: What types of coding tasks have a higher degree of non-determinism? To understand what affects
non-determinism, this RQ studies the correlation between the features of coding tasks (e.g., the length of code

2https://cloud.google.com/compute/docs/images

ACM Trans. Softw. Eng. Methodol.

https://cloud.google.com/compute/docs/images

An Empirical Study of the Non-determinism of ChatGPT in Code Generation • 5

generation instructions, the code problem difficulty, and labels) and the similarity metrics used in our study. We
also conduct qualitative analysis on specific cases for deep analysis.
RQ5: How is GPT-4’s non-determinism compared with GPT-3.5? This RQ compares GPT-3.5 and GPT-4 in
their degree of non-determinism in generating code.
RQ6: How do different prompt engineering strategies influence the degree of non-determinism? This RQ
compares the degree of non-determinism for different prompt engineering strategies (i.e., Chain-Of-Thought and
requesting generated code as concise as possible) when using ChatGPT to generate code.

3.2 Code Generation Benchmarks
Our experiments use the three most widely studied code generation benchmarks: CodeContest [37], APPS
[26], and HumanEval [12]. Table 1 shows their details. Each of these datasets has unique characteristics, which
are introduced below. The distribution of difficulty and problem tags of these datasets are available on our
homepage [3].

Table 1. Code generation benchmarks

Name Mean Length No. of Mean No. of Mean No. of Provided
of description Problems Test Cases Correct Solutions

CodeContests 1989.19 165 203.84 49.99
APPS 1663.94 500 80.43 20.92
HumanEval 450.60 164 9.24 1.00

CodeContests: CodeContests is used when training AlphaCode, which comprises coding problems from various
sources such as Aizu3, AtCoder4, CodeChef5, CodeforcesCodeChef6, and HackerEarthCodeChef7. In our experi-
ment, following the assessment practice of AlphaCode, we use the test set of CodeContests to benchmark the
code generation tasks of ChatGPT.
APPS: APPS includes 10,000 coding problems (both the training set and testing set). This dataset is exclusively
designed for Python program synthesis evaluation. The original test set contains 5,000 code-generation problems,
and we randomly sample 500 problems, among which there are 60.20% interview problems, 19.60% introductory
problems, and 20.20% competition problems. APPS evaluates models not only on their ability to code syntactically
correct programs but also on their ability to understand task descriptions and devise algorithms to solve these
tasks [27].
HumanEval: The HumanEval dataset is an evaluation set first proposed in [12], which contains 164 hand-written
coding problems. Each problem includes a function signature, docstring, body, and several unit tests, with an
average of 9.24 test cases per problem. We use the whole dataset to benchmark our experiments.

As mentioned in Section 2, we especially focus on the code generated with Python3 language, since it is one of
the most widely studied programming languages in code generation [5, 12, 17, 37, 61, 63, 66].

3.3 Configuration of ChatGPT
ChatGPT has gained widespread popularity and recognition in multiple tasks including question-answering,
language translation, sentiment analysis, and text summarising, among which code generation is one of the most

3https://judge.u-aizu.ac.jp
4https://atcoder.jp
5https://www.codechef.com
6https://codeforces.com
7https://www.hackerearth.com

ACM Trans. Softw. Eng. Methodol.

https://judge.u-aizu.ac.jp
https://atcoder.jp
https://www.codechef.com
https://codeforces.com
https://www.hackerearth.com

6 • Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

impressive tasks [10, 37]. There are several reasons why we have chosen ChatGPT as our research target among all
large language models. Firstly, ChatGPT has the ability to generate highly coherent and contextually appropriate
responses to a wide variety of textual prompts [25]. This makes it an ideal tool for conducting research in areas
of code generation by designing specific prompts. Secondly, the GPT-3.5 series is a particularly attractive option
due to its impressive performance and large-scale training data, which allows for more accurate and nuanced
language processing capabilities [43]. Thirdly, the model API ‘gpt-3.5-turbo’ and ‘gpt-4’ released with ChatGPT
have not been extensively studied in academia, and their capabilities in terms of code generation are thus still
unknown. Therefore, we choose them as our experiment target models. Written in ChatGPT’s official website8,
using ChatGPT’s model API requires various parameters. We use the default values for most of the parameters in
addition to the following ones:
• model: ID of the model to use. This parameter is strictly required, and in our case, we set this parameter to

‘gpt-3.5-turbo-0125’ or ‘gpt-4-0613’.
• message: A list of messages describing the conversation so far, where two key values ‘role’ and ‘content’

should be filled. This parameter is also strictly required. In our experiments, the message’s ‘role’ is ‘user’ and
the ‘content’ contains the prompt we used for requesting for all of the RQs.

• temperature: What sampling temperature to use, between 0 and 2 (Default value is 1). Higher values will
make the output more random, while lower values will make it more focused and deterministic. In our study,
we study the influence of temperature in RQ2 with three temperature values: 0, 1, and 1.5. For RQ1, we use
temperature=1 only, and for the rest of the RQs, we present results with both temperature=1 and temperature=0.

• top_p: An alternative to sampling with temperature, called nucleus sampling, where the model considers the
results of the tokens with top_p probability mass. In our experiment, we do not take it into consideration and
set this value to remain at its default setting (i.e., top_p=1).

• n: How many code candidates (the so-called “chat completion choices” according to the ChatGPT API web-
site [2]) to generate for each input message (with 1 being the default value). The default value of n is 1. In
RQ3, we set n=5 to investigate how the non-determinism of code candidates from the same request compares
with those from different requests. We choose n=5, since 5 is a widely used figure in the papers studying
variance [51]. n=5 is only used in RQ3.

3.4 Non-determinism Measurement
In order to answer our research questions, we introduce the following tools for measuring the degree of non-
determinism.

3.4.1 Semantic similarity. We measure the semantic similarity of different code candidates by checking their
similarity in test execution results, including test pass rate and output equivalence rate . The test pass rate
calculates the ratio of the passed test case number against the total test case number for code candidates. It is one
of the most widely used measurement metrics for assessing code generation capabilities9 [5, 12, 26, 37, 73]. Each
code generation problem has five test pass rates, one for each code candidate. We use the variance and maximum
difference of the five values to indicate semantic similarity. We also calculate the mean of the five values for the
purpose of understanding correctness as well as the correlation between correctness and non-determinism (RQ4).

The output equivalence rate records the ratio of identical test outputs (across different code candidates for the
same code generation instruction) against the total test outputs. Each instruction has one output equivalence
rate. For tests that produce specific outputs (without exceptions or errors), we check whether the output values
of different code candidates are equal to each other. In the following parts of this paper, we use OER to represent
8https://platform.openai.com/docs/api-reference/chat/create
9Although the benchmarks are very widely studied, their test suites can be inadequate. This paper is less affected by the inadequate test suite
issue as we focus on the similarity of test pass rate, rather than the absolute value of test pass rate.

ACM Trans. Softw. Eng. Methodol.

https://platform.openai.com/docs/api-reference/chat/create

An Empirical Study of the Non-determinism of ChatGPT in Code Generation • 7

output equivalence rate and use OER (no ex.) to represent output equivalence rate (without exceptions or errors)
for short. Each code generation problem has only one OER and OER (no ex.). Additionally, we measure the OER
and OER (no ex.) in pairs and report the mean output equivalence rate of the combinations of every two code
candidates for a coding problem. For tests that yield exceptions or timeout errors, we consider the test outputs to
be the same if the exception or error messages are the same.

Some papers use the pass@k metric [12, 32] (i.e., the ratio of coding tasks with 100% test pass rate) to indicate
the high-level code generation correctness of a code generation approach. We do not use this metric in our main
body of experiments because we focus on the non-determinism threat, while pass@k ignores the correctness of
each single coding task and concentrates only on the ratio of correct code candidates in all the tasks, which can
cover the non-determinism across different requests. In addition, pass@k does not reflect the practical application
scenario of LLMs in code generation, because developers are less likely to try the model for k times until they
finally get one correct solution.

3.4.2 Syntactic similarity. The syntactic similarity in this study treats different code candidates as texts and
checks their textual similarity. We choose the Longest Common Subsequence and Levenshtein Edit Distance
as evaluation tools [35, 36, 47, 68]. In the following content, we use LCS and LED to represent the Longest
Common Subsequence and Levenshtein Edit Distance for short respectively. LCS measures the similarity via the
normalized length of the longest common subsequence between two sequences. LED measures the minimum
number of single-token edits (insertions, deletions, or substitutions) required to change one code into the other.
LCS and LED both regard the token as the smallest unit, and the token is divided by the .split() method, that
is, any whitespace is used as the separator to divide the code into tokens. We measure the syntactic similarity
with LCS/LED by comparing the first code candidate with each of the remaining four code candidates. Thus, each
code-generation problem has four values of each metric. We use the mean, mean worst value (i.e., mean highest
value for LED and mean lowest value for LCS), and pair mean (by comparing all the combinations of two code
candidates in pairs) to indicate the syntactic similarity measured by each metric.

Below are the formulas for the LCS and LED:

!�(=
;4=(;2B (B, C))

;4=(B)
where B is reference string, C is the string to be compared, ;2B (B, C) is the longest common subsequence between B

and C .

LEDB,C (8, 9) =

max(8, 9) if min(8, 9) = 0

min

ledB,C (8 − 1, 9) + 1
ledB,C (8, 9 − 1) + 1
ledB,C (8 − 1, 9 − 1) + 1(B8≠C 9)

otherwise

where LEDB,C (8, 9) is the LED between the first 8 characters of B and the first 9 characters of C , and diff (B8 , C 9) is 0
if the 8-th character of B is the same as the 9-th character of C , and 1 otherwise.

3.4.3 Structural similarity. We design structural similarity to measure the code similarity in terms of the Abstract
Syntax Tree (AST). AST is a tree-like representation of the source code in which each node in the tree represents a
construct in the code, such as variable, function, or control structure, and the edges between nodes represent the
relationships between these constructs. We use a Python library called pycode_similar10 [38, 67] to calculate
the similarity. The pycode_similar normalizes Python code into AST representation and uses Python library
difflib to get the modification from referenced code to target code. There are two different measurement
settings, i.e. Unified_Diff and Tree_Diff. Unified_Diff measures the difference of normalized function AST
10https://github.com/fyrestone/pycode_similar

ACM Trans. Softw. Eng. Methodol.

https://github.com/fyrestone/pycode_similar

8 • Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

string lines, while Tree_Diff measures the difference in tree edit distance between two given ASTs. Similar to
syntactic similarity, for each code generation problem, we report the mean, smallest similarity values, and pair
mean among the five candidates.

3.4.4 Statistical Analysis. We conduct statistical analysis to demonstrate the significance of the differences among
the outputs. We choose Kruskal-Wallis test [48] which does not require assumptions of normal distribution.
The Kruskal-Wallis test stands as a non-parametric method for analyzing data, serving as an extension of the
Mann-Whitney U test [49] to more than two independent groups. The essence of the Kruskal-Wallis test lies in
comparing the median ranks among groups, rather than the means, which makes it robust against outliers and
non-normal distribution of data.

4 RESULTS AND FINDINGS
This section introduces the experimental results as well as the analysis and discussion for each RQ.

4.1 RQ1: Non-determinism of ChatGPT with Three Types of Similarities under default setting
4.1.1 RQ1.1: Semantic Similarity. Semantic similarity is measured by the following metrics: test pass rate and
OER (output equivalence rate), and OER excluding exceptions. As mentioned in Section 3.4, each coding problem
has five test pass rates, we use the variance and maximum difference of these five values to indicate ChatGPT’s
non-determinism in generating code for the task. We also report the mean value, which represents the average
correctness of the generated code. For OER or OER (no ex.), we compare the equivalence across all the five code
candidates as well as between every two candidates. For each dataset, we report the distribution of different
measurements in Figure 2 and Figure 3. The mean measurement values for all the coding problems (the mean
value inside each bar in each bar chart) in a dataset are shown in Table 2. The max diff refers to the maximum
value of the max diff among all the coding problems. In addition, Table 2 also shows the “Ratio of worst cases”,
which is the ratio of problems with maximum diff of test pass rate being 1 or OER being 0.

CodeContests

APPS

HumanEval
0.0

0.1

0.2

(a) Variance

CodeContests

APPS

HumanEval
0.00

0.25

0.50

0.75

1.00

(b) Mean

CodeContests

APPS

HumanEval
0.00

0.25

0.50

0.75

1.00

(c) Max Diff

Fig. 2. RQ1.1: Distribution of semantic similarity in terms of test pass rate.

From Figure 2, Figure 3, and Table 2, we observe that ChatGPT is very unstable in generating semantically
consistent code candidates. In particular, the ratios of tasks with zero equal test output (i.e., OER=0) among the
five code candidates are 75.76%, 51.00%, and 47.56% for the three datasets, respectively. This indicates that for the
majority of the cases, ChatGPT generates code candidates with completely different semantics from identical
instructions.

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Non-determinism of ChatGPT in Code Generation • 9

CodeContests

APPS

HumanEval
0.00

0.25

0.50

0.75

1.00

(a) OER

CodeContests

APPS

HumanEval
0.00

0.25

0.50

0.75

1.00

(b) OER (no ex.)

Fig. 3. RQ1.1: Distribution of semantic similarity in terms of test output equivalence rate (OER and OER (no ex.)).

Table 2. RQ1.1: Results of semantic similarity. OER and OER (no ex.) are the output equivalence rate and the equivalence
rate excluding exceptions.

Semantic similarity Metric CodeContests APPS HumanEval

Test pass rate

Mean value 0.16 0.42 0.63
Mean variance 0.03 0.04 0.09
Mean max diff 0.24 0.35 0.53
Max diff 1.00 1.00 1.00
Ratio of worst cases 3.64% 10.40% 39.63%

OER
Mean value 0.09 0.27 0.39
Pair mean value 0.27 0.47 0.67
Worst value 0.00 0.00 0.00
Ratio of worst cases 75.76% 51.00% 47.56%

OER (no ex.)
Mean value 0.06 0.25 0.35
Pair mean value 0.19 0.42 0.61
Worst value 0.00 0.00 0.00
Ratio of worst cases 81.21% 53.40% 51.22%

The mean variance of the test pass rate is relatively small from Table 2, ranging between 0.03 and 0.09, this is
because the test pass rate of different code candidates is often equally worse, as can be observed from Figure 2.(a).
However, the max diff of the test pass rate reaches 1.00 for all three datasets and accounts for 39.63% of the
problems in HumanEval, the most widely used code generation benchmark. This indicates the correctness of code
candidates generated from the same instruction can vary significantly. The large difference in different datasets
also sheds light on the importance of using multiple datasets when assessing the code generation performance
for large language models.

Our statistical analysis with Kruskal-Wallis test shows that, in 92.1% of CodeContests, 39.4% of APPS, and 40% of
HumanEval, the outputs of the code are indeed significantly different, where the p-value under the Kruskal-Wallis
test is less than 0.05.

ACM Trans. Softw. Eng. Methodol.

10 • Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

Answer to RQ1.1: The semantic difference among the code generated by ChatGPT in different requests
is significant. In particular, the ratio of coding tasks with not a single equal test output among the five
different requests is 75.76%, 51.00%, and 47.56% for CodeContests, APPS, and HumanEval, respectively. In
addition, the maximum difference of the test pass rate reaches 1.00 for all three datasets and accounts for
39.63% of the problems in HumanEval, the most widely used code generation benchmark.

4.1.2 RQ1.2: Syntactic Similarity. Syntactic similarity measures the text similarity among code candidates. In
our experiment, the syntactic similarity is evaluated by the following metrics: LCS and LED (more details in
Section 3.4). For the five code candidates for each coding problem, we use the first code candidate as a reference
and calculate the LCS and LED between the reference and the remaining four candidates. In addition, we calculate
LCS and LED with code candidates in pairs, for each pair combination. Thus, each problem has four LCS values
and LED values, and 20 LCS and LED values in pairs, each value indicating a syntactic similarity. We use the
mean of these four values as well as the worst of them (i.e., the smallest value for LCS and the largest value for
LED), and the mean of these 20 values calculated in pairs to represent each problem’s syntactic similarity. Figure
4 shows the distribution of LCS and LED for all the problems in each dataset. Table 3 shows the mean, mean
worst, and pair mean LCS and LED values for all the coding problems (the mean value inside each bar in the
figures) in a dataset.

Table 3. RQ1.2: Syntactic similarity. Lower LCS and higher LED indicate lower syntactic similarity.

Syntactic Similarity Metric CodeContests APPS HumanEval

LCS Mean value 0.22 0.23 0.42
Mean worst value 0.16 0.16 0.25
Pair mean value 0.23 0.24 0.41

LED Mean value 58.80 47.37 26.56
Mean worst value 77.46 61.55 43.91
Pair mean value 58.86 46.94 27.10

We observe that the code candidates generated from the same instruction also differ largely in the syntactic
measure. Specifically, the mean LCS is 0.22, 0.23, and 0.42 for CodeContests, APPS, and HumanEval, respectively,
indicating the mean ratio of the longest common subsequences among the code candidates.

For the three datasets, we could see from Table 3 that the lowest LCS and largest LED values both happen for
the CodeContests dataset. By contrast, the largest LCS and smallest LED values both happen for HumanEval. This
indicates that ChatGPT is most unstable syntactically for the code generation tasks in CodeContests, and most
stable for HumanEval. We further explore the correlation between different similarities and code task features in
Section 4.4.

Answer to RQ1.2: Code candidates generated by ChatGPT in different requests also differ significantly
in syntax. The mean syntax similarity (LCS) is only 0.22, 0.23, and 0.42 for CodeContests, APPS, and
HumanEval, respectively.

4.1.3 RQ1.3: Structural Similarity. Structural similarity measures the codes’ similarity based on their AST. In our
experiment, the structural similarity is mainly measured by the tool pycode_similar with two different settings,
namely United_Diff and Tree_Diff (more details in Section 3.4). For the five code candidates for each coding
problem, we use the first code candidate as a reference and calculate the structural similarity between the first

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Non-determinism of ChatGPT in Code Generation • 11

CodeContests

APPS

HumanEval
0.00

0.25

0.50

0.75

1.00

(a) LCS mean

CodeContests

APPS

HumanEval
0.00

0.25

0.50

0.75

1.00

(b) LCS Worst

CodeContests

APPS

HumanEval
0.00

0.25

0.50

0.75

1.00

(c) Pair LCS

CodeContests

APPS

HumanEval
0

200

400

600

(d) LED Mean

CodeContests

APPS

HumanEval
0

200

400

600

(e) LED Worst

CodeContests

APPS

HumanEval
0

100

200

300

(f) Pair LED

Fig. 4. RQ1.2: Distribution of syntactic similarity (LCS & LED). Lower LCS and higher LED indicate less syntactic similarity.

candidate with the remaining four candidates under United_Diff and Tree_Diff settings. We also calculate the
structural similarity with code candidates in pairs, with a total of 20 pair mean values. Thus, each problem has
four mean values and 20 pair mean values for United_Diff and Tree_Diff respectively, with each value indicating
a structural similarity measure. We use the mean of these four values, the worst of them, and their pair mean
values (i.e., the smallest value for United_Diff and Tree_Diff) to represent each problem’s structural similarity.
Fig 5 shows the distribution of United_Diff and Tree_Diff for all the problems in each dataset. Table 4 shows
the mean, mean worst values, and pair mean values under United_Diff and Tree_Diff settings for all the coding
problems (the mean value inside each bar in the figures) in a dataset.

Table 4. RQ1.3: Structural similarity.

Structural Similarity Metric CodeContests APPS HumanEval

United_Diff Mean value 0.33 0.43 0.60
Mean worst value 0.27 0.35 0.47
Pair mean value 0.46 0.52 0.67

Tree_Diff Mean value 0.41 0.54 0.62
Mean worst value 0.33 0.47 0.48
Pair mean value 0.56 0.63 0.70

ACM Trans. Softw. Eng. Methodol.

12 • Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

CodeContests APPS HumanEval
0.00

0.25

0.50

0.75

1.00
UnifiedDiff TreeDiff

(a) Mean

CodeContests APPS HumanEval
0.00

0.25

0.50

0.75

1.00
UnifiedDiff TreeDiff

(b) Mean Worst

CodeContests APPS HumanEval
0.00

0.25

0.50

0.75

1.00
UnitedDiff TreeDiff

(c) Pair Mean

Fig. 5. RQ1.3: Structural Similarity (United_Diff & Tree_Diff).

We observe that the code candidates generated from the same instruction show great similarity in structure.
Specifically, the mean values are 0.33, 0.43, and 0.60 under the United_Diff setting, and 0.41, 0.54, and 0.62 under
Tree_Diff setting for CodeContests, APPS, and HumanEval, respectively.

For the three datasets, we could see from Table 4 that the lowest values under United_Diff and Tree_Diff happen
for the CodeContests dataset. By contrast, the largest values under the two settings both happen for HumanEval.
This indicates that ChatGPT is most unstable in structure for the code generation tasks in CodeContests, and
most stable for HumanEval. We further explore the correlation between different similarities and task features in
RQ4.

Answer to RQ1.3: Code candidates show high structural similarity under UnitedDiff and TreeDiff
settings. We observe that the code candidates generated from the same instruction have high similarity
in structure. Specifically, the mean values are 0.33, 0.43, and 0.60 under the United_Diff setting, and 0.41,
0.54, and 0.62 under Tree_Diff setting for CodeContests, APPS, and HumanEval, respectively.

4.2 RQ2: Influence of Temperature
The default temperature of ChatGPT is 111. This RQ explores whether the code generation non-determinism
of ChatGPT changes with the temperature changes. We use identical measurements as in RQ1. We show our
experiment results on CodeContests only. Results for other datasets are on our homepage [3].

Table 5 shows the results. Overall, we observe that when temperature=0, ChatGPT has better determinism than
the default configuration (temperature=1) for all three types of similarities. However, setting the temperature to 0
does not completely avoid non-determinism. Take OER as an example, there are still 43.64% (CodeContests), 27.40%
(APPS), and 18.29% (HumanEval) of problems with no equal test output among the five code candidates. This is
contrary to many people’s belief that setting the temperature to 0 can make ChatGPT deterministic [7, 13, 39],
because when setting the temperature to 0, the model applies greedy sampling which should indicate full
determinism, with the logit value for the next token being a pure function of the input sequence and the model
weights. The reason for such non-determinism with the temperature being zero is still controversial [1], with
different hypotheses such as floating point, unreliable GPU calculations, and its sparse MoE architecture failing
to enforce per-sequence determinism [33, 55]. The details for all the non-deterministic coding tasks and their test
outputs with temperature=0 are on our homepage [3].

11https://platform.openai.com/docs/api-reference/chat/create#chat-create-temperature

ACM Trans. Softw. Eng. Methodol.

https://platform.openai.com/docs/api-reference/chat/create#chat-create-temperature

An Empirical Study of the Non-determinism of ChatGPT in Code Generation • 13

Table 5. RQ2: Influence of temperature (CodeContests).

Temperature Test Pass Rate

Mean value Mean variance Mean max diff Max diff Ratio of worst cases

0 0.15 0.01 0.11 1.00 1.82%
0.5 0.16 0.02 0.15 1.00 2.42%
1 0.16 0.03 0.24 1.00 3.64%

Temperature OER OER (no ex.)

Mean value Ratio of worst cases Pair mean value Mean value Ratio of worst cases Pair mean value

0 0.37 43.64% 0.59 0.27 54.55% 0.46
0.5 0.18 62.42% 0.37 0.13 68.48% 0.28
1 0.09 75.76% 0.27 0.06 81.21% 0.19

Temperature LCS LED

Mean value Mean worst value Pair mean value Mean value Mean worst value Pair mean value

0 0.61 0.44 0.62 23.45 35.87 22.31
0.5 0.33 0.23 0.34 44.48 62.02 44.89
1 0.22 0.16 0.23 58.80 77.46 58.86

Temperature United_Diff Tree_Diff

Mean value Mean worst value Pair mean value Mean value Mean worst value Pair mean value

0 0.41 0.39 0.67 0.50 0.46 0.74
0.5 0.61 0.49 0.63 0.69 0.58 0.71
1 0.33 0.27 0.46 0.41 0.33 0.56

When temperature=0.5, we observe that ChatGPT tends to generate code candidates that are more deterministic
than temperature=1, but less deterministic than temperature=0.This is as expected because the higher temperature
brings more creativity to ChatGPT and affects its ability to generate similar code (as can be observed from the
other measurements, such as LCS and LED). Nevertheless, we observe that the value of test pass rates among the
three different temperatures are similar, which indicates that low temperature might be a better choice given the
comparable test pass rate and the low degree of non-determinism.

Answer to RQ2: Contrary to the widely held belief (and common practices), setting the temperature to 0
does not guarantee determinism in code generation, although it indeed brings more determinism than the
default configuration (temperature=1) for all three types of similarities. We also observe that the values of
test pass rate among the three different temperatures are similar, indicating that low temperature might
be a better choice for code generation tasks.

4.3 RQ3: Non-determinism Comparison with Top Candidates in the Same Prediction
RQ1 and RQ2 compare the similarity of 5 code candidates generated in multiple requests. Each candidate is the
top candidate in each request. However, ChatGPT can also generate 5 code candidates within the same request
(the top 5 candidates ranked by their predictive probabilities). This RQ compares the non-determinism degree of
code candidates for the two request configurations mentioned above (with temperature = 1 and temperature =0).
Table 6 shows the results for CodeContests, the results for the two other datasets are on our homepage [3]. For
ease of presentation, we use R1 to refer to one-time requests, and R2 to refer to multiple requests.

Our results reveal that when setting temperature=1, it is difficult to tell which way of requesting is more
deterministic. For semantic similarity, R1 and R2’s performance are similar among three datasets. Code candidates
requested in R1 are slightly more random than those requested in R2 in terms of syntactic similarity since those

ACM Trans. Softw. Eng. Methodol.

14 • Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

requested in R1 have lower LCS values and higher LED values. However, code candidates requested in R1 are
slightly more stable than those requested in R2 when it comes to similarity because those requested in R1 have
higher structural similarity values in both United_Diff and Tree_Diff settings.

When temperature is 0, the difference between the two request ways is obvious. Code Candidates requested
by R1 show higher determinism than those requested by R2. When requesting by R1, the ratio of worst cases,
where max diff is close to 0 (1.20%), and the OER and OER (no ex.) are higher than R2 and close to 1. The LCS
values are higher than the values under other temperatures and LED values are lower than the values under
other temperatures, which indicates higher determinism. Among the three datasets, the structural similarity
values are also higher than the values in other temperatures, which means the code candidates are more close to
each other in terms of their AST structure.

Table 6. RQ3: Similarity for different request ways (CodeContests), where t represents the temperature setting.

Request Test Pass Rate

Way Mean value Mean variance Mean max diff Max diff Ratio of worst cases

R1 (t=1) 0.17 0.03 0.28 1.00 8.70%
R2 (t=1) 0.16 0.03 0.24 1.00 3.64%
R1 (t=0) 0.18 0.00 0.00 0.00 1.20%
R2 (t=0) 0.15 0.01 0.11 1.00 1.82%

Request OER OER (no ex.)

Mean value Ratio of worst cases Pair mean value Mean value Ratio of worst cases Pair mean value

R1 (t=1) 0.09 76.09% 0.27 0.04 83.70% 0.18
R2 (t=1) 0.09 75.76% 0.27 0.06 81.21% 0.19
R1 (t=0) 1.00 1.20% 1.00 0.81 12.05% 0.81
R2 (t=0) 0.37 43.64% 0.59 0.27 54.55% 0.46

Request LCS LED

Way Mean value Mean worst value Pair mean value Mean value Mean worst value Pair mean value

R1 (t=1) 0.21 0.15 0.20 61.30 82.73 63.09
R2 (t=1) 0.22 0.16 0.23 58.80 77.46 58.86
R1 (t=0) 1.00 1.00 1.00 0.00 0.00 0.00
R2 (t=0) 0.61 0.44 0.62 23.45 35.87 22.31

Request United_Diff Tree_Diff

Way Mean value Mean worst value Pair mean value Mean value Mean worst value Pair mean value

R1 (t=1) 0.98 0.98 0.98 0.98 0.98 0.98
R2 (t=1) 0.33 0.27 0.46 0.41 0.33 0.56
R1 (t=0) 1.00 1.00 1.00 1.00 1.00 1.00
R2 (t=0) 0.41 0.39 0.67 0.50 0.46 0.74

Answer to RQ3: Under default temperature, the top-5 code candidates from one single request have
similar non-determinism with the 5 top-1 candidates from different requests for ChatGPT when the
temperature is 1 (default temperature of ChatGPT), but higher determinism when the temperature is 0.

4.4 RQ4: Coding Tasks Features and Non-determinism Degree
Our previous experiments demonstrate that there are many non-determinisms in ChatGPT in code generation.
This RQ investigates what affects such non-determinism by checking the correlation between characteristics of
coding tasks and similarity metric values. We use three datasets for this RQ. For all the datasets, we consider
description length as one of their extrinsic features. Because only the CodeContests dataset has various extrinsic

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Non-determinism of ChatGPT in Code Generation • 15

features for each coding task, including difficulty, time limit, and CF rating, we consider these features as extrinsic
features for the CodeContest dataset as well. Although APPS does have difficulty features, the difficulty features
in APPS are shown as categories, namely, ‘introductory’, ‘interview’, and ‘competition’, which makes it hard to
map them into numerical values. Therefore, our experiment does not include difficulty as an extrinsic feature for
the APPS dataset.

In CodeContests, the CF rating of a problem is a quantitative measure that represents the problem’s relative
difficulty level compared to other problems on the Codeforces platform. The difficulty of a problem is a qualitative
measure that indicates the problem’s level of complexity and the programming knowledge and skills required to
solve it. The timeout indicates the program’s maximum running time limitation. In addition, we also consider
description length (i.e., number of characters) for each coding task. Note that in this section, we only focus on
correlation analysis, and we do not aim to obtain any causal conclusions.

Figure 6 shows the results for code problems in CodeContests under temperature=1. The rest figures can be
found on our homepage [3]. We observe that description length has a negative correlation with most of the
measurements, except LED. This means that problems with longer descriptions tend to generate code with more
randomness. We suspect that this is because a longer description may reduce ChatGPT’s understanding of the
coding requirements. With longer descriptions, different code candidates tend to be uniformly worse in their
pass rates. Moreover, the description length has a negative correlation with LCS and structural measurements
and a positive correlation with LED, which means that problems with longer descriptions tend to yield more
inconsistent code candidates in syntax and structure. For temperature = 0, we observe that description length
still has a negative correlation with most of the measurements, except LED, which is similar to the correlation
result under temperature=1.

The difficulty has a positive correlation with the LED and a negative correlation with LCS, which means that
the problem with a higher difficulty level has high non-determinism in syntax. Similar to difficulty, CF rating also
has a positive correlation with the LED and a negative correlation with LCS.

In the following, we provide some specific examples to further illustrate our observations above. In exploring
the relationship between the length of a code problem description and the degree of non-determinism, two
contrasting examples in the CodeContests dataset corroborate our findings. The first example, ‘1599_E. Two
Arrays’, with a description length of 2149, show a pattern that code generation with a longer description code
problem has a higher degree of non-determinism. Below is the description of the first code problem, where we
present only the core part of the description due to the extensive length of the overall content.

1599_E. Two Arrays
You are given two integer arrays of length N, A1, and A2. You are also given Q queries of 4 types:
1 : ; A G : B4C�:8 :=<8=(�:8 , G) for each ; ≤ 8 ≤ A .
2 : ; A G : B4C�:8 :=<0G (�:8 , G) for each ; ≤ 8 ≤ A .
3 : ; A G : B4C�:8 := �:8 + G for each ; ≤ 8 ≤ A .
4 ; A : 5 8=3Cℎ4 (∑A

8=;
� (�18 +�28))%(109 + 7)

where � (:) is the k-th Fibonacci number (� (0) = 0, � (1) = 1, � (:) = � (: − 1) + � (: − 2)), and G%~ denotes
the remainder of the division of G by ~. You should process these queries and answer each query of the fourth
type.

This problem exhibits high non-determinism, as indicated by its measurement results across multiple tests
(i.e., the test case rate variance is 0.13, the OER value is zero, the LCS mean value is 0.15, the mean LED value is
111.5, and both the United_Diff and Tree_Diff values are zero), suggesting a rather high fluctuation. The detailed
description potentially covers a wide array of scenarios, which may distract the attention from LLMs, which
results in inconsistent test results and higher non-determinism.

ACM Trans. Softw. Eng. Methodol.

16 • Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

TP
R

m
ea

n
va

lu
e

TP
R

m
ea

n
va

ria
nc

e
TP

R
m

ea
n

m
ax

 d
iff

OE
R

m
ea

n
OE

R_
no

ex
 m

ea
n

LC
S

m
ea

n
LC

S
wo

rs
t

LE
D

m
ea

n
LE

D
wo

rs
t

Un
ite

d_
Di

ff
m

ea
n

Un
ite

d_
Di

ff
wo

rs
t

Tr
ee

_D
iff

 m
ea

n
Tr

ee
_D

iff
 w

or
st

de
sc

rip
tio

n
le

ng
th

di
ffi

cu
lty

tim
e_

lim
it

cf
_r

at
in

g

TPR mean value

TPR mean variance

TPR mean max diff

OER mean

OER_noex mean

LCS mean

LCS worst

LED mean

LED worst

United_Diff mean

United_Diff worst

Tree_Diff mean

Tree_Diff worst

description length

difficulty

time_limit

cf_rating

1.0 0.47 0.53 0.46 0.65 0.22 - -0.16 - 0.18 - 0.19 0.16 -0.22 - - -

0.47 1.0 0.93 - - - - - - - - - - - - - -0.16

0.53 0.93 1.0 -0.16 - - - - - - - - - - - - -

0.46 - -0.16 1.0 0.79 - - - - - - - - - - - -

0.65 - - 0.79 1.0 0.27 0.2 -0.17 - 0.21 0.18 0.24 0.22 -0.17 - - -

0.22 - - - 0.27 1.0 0.89 -0.71-0.64 0.42 0.45 0.35 0.4 -0.29-0.22 - -0.31

- - - - 0.2 0.89 1.0 -0.63-0.59 0.42 0.48 0.35 0.43 -0.27-0.22-0.16-0.28

-0.16 - - - -0.17-0.71-0.63 1.0 0.95 -0.37-0.38-0.28-0.34 0.38 0.2 - 0.3

- - - - - -0.64-0.59 0.95 1.0 -0.38-0.39-0.29-0.35 0.36 - - 0.26

0.18 - - - 0.21 0.42 0.42 -0.37-0.38 1.0 0.92 0.95 0.87 -0.27 - -0.2 -

- - - - 0.18 0.45 0.48 -0.38-0.39 0.92 1.0 0.86 0.94 -0.21 - -0.18 -0.2

0.19 - - - 0.24 0.35 0.35 -0.28-0.29 0.95 0.86 1.0 0.91 -0.24 - -0.21 -

0.16 - - - 0.22 0.4 0.43 -0.34-0.35 0.87 0.94 0.91 1.0 -0.21 - -0.18 -

-0.22 - - - -0.17-0.29-0.27 0.38 0.36 -0.27-0.21-0.24-0.21 1.0 - - -

- - - - - -0.22-0.22 0.2 - - - - - - 1.0 0.28 0.64

- - - - - - -0.16 - - -0.2 -0.18-0.21-0.18 - 0.28 1.0 0.44

- -0.16 - - - -0.31-0.28 0.3 0.26 - -0.2 - - - 0.64 0.44 1.0

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6. RQ4: Correlations between coding tasks and non-determinism (CodeContests, temperature=1). Only significant
correlations will be displayed on the heatmap, while the insignificant correlations (i.e. p-value > 0.05) are masked by ‘-’.

The second example ‘1575_M. Managing Telephone Poles’, with a description length of 1511, shows a pattern
that a shorter description leads to more stability in code generation. Below is the description of the second code
problem, where we present only the core part of the description due to the extensive length of the overall content.

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Non-determinism of ChatGPT in Code Generation • 17

1575_M. Managing Telephone Poles
Mr. Chanek’s city can be represented as a plane. He wants to build a housing complex in the city. There are
some telephone poles on the plane, which is represented by a grid of size (= + 1) (< + 1).
There is a telephone pole at (G,~) if 0G,~ = 1. For each point (G,~), define ((G,~) as the square of the Euclidean
distance between the nearest pole and (G,~).
Formally, the square of the Euclidean distance between two points (G1, ~1) and (G2, ~2) is (G2−G1)2+ (~2−~1)2.
To optimize the building plan, the project supervisor asks you the sum of all ((G,~) for each 0 ≤ G ≤ = and
0 ≤ ~ ≤ <. Help him by finding the value of

∑=
G=0

∑<
~=0 ((G,~).

The test pass rates are consistently 1.0 across all tests, with a variance of 0.0, showing no deviation in the
generated code candidates. The LCS mean value is 0.74, and the LED mean value is 3.5, which indicates a high
syntactical stability. Structural similarity is 0.21 and 0.38 under United_Diff and Tree_Diff settings, which shows
the code candidates still vary in their AST. Here, the shorter description does not introduce ambiguity but
rather lets ChatGPT focus on critical details, leading to a uniform understanding of the code problem and better
generation performance.

Answer to RQ4: A coding task with a longer description and higher difficulty tends to suffer from more
non-determinism in the generated code in terms of code syntax and structure. The generated code also
tends to be more buggy.

4.5 RQ5: GPT-4 vs. GPT-3.5
GPT-4 is believed to be “more reliable, creative, and able to handle much more nuanced instructions than GPT-
3.5” [52]. This research question compares GPT-3.5 and GPT-4 in the non-determinism degree of code generation.
To answer this research question, we keep the default setting and use all the measurements listed in RQ1. In this
paper we report the results only on the CodeContests dataset (with temperature=1). For the results in the other
two datasets, we list them on our homepage [3].

For temperature=1, we can observe that GPT-4 is slightly more deterministic than GPT-3.5, with lower test
pass rate variance, lower ratio of worst cases, lower OER and OER (no ex.), lower LCS, higher LED, and lower
structural similarity under two settings. However, for temperature=0, the analysis, as evidenced by the results
in tables comparing GPT-4 across CodeContests, APPS, and HumanEval datasets, demonstrates that GPT-4’s
non-determinism is pronounced and largely parallels that of GPT-3.5. Across these datasets, similarity metrics
indicate comparable levels of non-determinism across three different evaluation methods.

Answer to RQ5: The non-determinism issue of GPT-4 is lightly less severe than GPT-3.5 under tempera-
ture=1, while the non-determinism issue of GPT-4 is similar to GPT-3.5 under temperature=0.

4.6 RQ6: Influence of Prompt Engineering Strategies on the Non-determinism
This research question explores how different prompt engineering strategies influence the degree of non-
determinism in code generation. We design two extra prompts in addition to the default one used for previous
RQs. The first prompt is “Generate Python3 code (Markdown), make the code as concise as possible”. This prompt
aims to lead ChatGPT to generate short and concise programs, which may make the results more deterministic.
The second prompt is “Generate Chain-of-Thought steps of how to solve the problem first, and then generate
Python3 code (Markdown)”, thereby demanding an initial conceptual explanation followed by the code. Then,

ACM Trans. Softw. Eng. Methodol.

18 • Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

Table 7. RQ5: Non-determinism of GPT-4 v.s. GPT-3.5 (CodeContests)

Model Test Pass Rate

Mean value Mean variance Mean max diff Max diff Ratio of worst cases

GPT-4 (t=1) 0.14 0.01 0.09 1.00 1.21%
GPT-3.5 (t=1) 0.16 0.03 0.24 1.00 3.64%
GPT-4 (t=0) 0.14 0.01 0.08 1.00 1.21%
GPT-3.5 (t=0) 0.15 0.01 0.11 1.00 1.82%

Model OER OER (no ex.)

Mean value Ratio of worst cases Pair mean value Mean value Ratio of worst cases Pair mean value

GPT-4 (t=1) 0.35 46.06% 0.58 0.25 55.76% 0.46
GPT-3.5 (t=1) 0.09 75.76% 0.27 0.06 81.21% 0.19
GPT-4 (t=0) 0.37 41.21% 0.59 0.27 52.73% 0.46
GPT-3.5 (t=0) 0.37 43.64% 0.59 0.27 54.55% 0.46

Model LCS LED

Mean value Mean worst value Pair mean value Mean value Mean worst value Pair mean value

GPT-4 (t=1) 0.61 0.45 0.62 24.54 39.74 24.81
GPT-3.5 (t=1) 0.22 0.16 0.23 58.80 77.46 58.86
GPT-4 (t=0) 0.61 0.44 0.61 24.45 40.14 24.12
GPT-3.5 (t=0) 0.61 0.44 0.62 23.45 35.87 22.31

Model United_Diff Tree_Diff

Mean value Mean worst value Pair mean value Mean value Mean worst value Pair mean value

GPT-4 (t=1) 0.78 0.68 0.79 0.82 0.74 0.84
GPT-3.5 (t=1) 0.33 0.27 0.46 0.41 0.33 0.56
GPT-4 (t=0) 0.78 0.68 0.79 0.83 0.75 0.84
GPT-3.5 (t=0) 0.41 0.39 0.67 0.50 0.46 0.74

each prompt is followed by the code problem description. In the following, we use ‘Concise prompt’ to refer to
the first prompt engineering strategy, and use ‘CoT prompt’ to refer to the second one for short.

The results in Table 8 show that for temperature=1, the difference of non-determinism between different
prompt engineering techniques is not very obvious in the three datasets. With more instruction information
provided in the prompt, Concise and CoT prompts have similar performance with each other. However, under
temperature=0, in CodeContests, requests with CoT prompt show high mean test pass rates but this kind of
prompt suffers from high randomness. Compared with the Base prompt and Concise prompt, the CoT prompt
has a higher mean-variance (0.02), higher mean maximum difference (0.15), and a rather higher ratio of worst
cases (1.82%). Also, the results in OER and OER (no ex.) show that CoT’s mean value of OER and OER (no ex.) are
lower than Base and Concise, which can also be told from the high ratio of worst cases in both OER and OER
(no ex.) with 46.06% and 54.55%. Opposite from CoT, code candidates generated from Concise prompt are more
semantically deterministic. Code candidates generated by the CoT prompt have a low mean LCS value (0.38) and
high LED value (39.31), while those generated from the Concise prompt have a high mean LCS value (0.07) and
low LED value (11.77). The other measurements in LCS and LED also support the above phenomenon. When it
comes to structural similarity, under two different measurement settings, code candidates generated from the CoT
prompt have significantly higher randomness than the code generated from Concise prompt. Our experiment
results show a similar situation in both APPS and HumanEval, where code generated from the Concise prompt
ends up way more deterministic than code generated from the CoT prompt.

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Non-determinism of ChatGPT in Code Generation • 19

Table 8. RQ6: Prompt engineering techniques (CodeContests), where t refers to temperature.

Prompt Test Pass Rate

Mean value Mean variance Mean max diff Max diff Ratio of worst cases

Concise (t=1) 0.15 0.02 0.19 1.00 3.64%
Base (t=1) 0.16 0.03 0.24 1.00 3.64%
CoT (t=1) 0.15 0.02 0.19 1.00 3.64%
Concise (t=0) 0.16 0.01 0.10 1.00 0.61%
Base (t=0) 0.15 0.01 0.11 1.00 1.82%
CoT (t=0) 0.19 0.02 0.15 1.00 1.82%

Prompt OER OER (no ex.)

Mean value Ratio of worst cases Pair mean value Mean value Ratio of worst cases Pair mean value

Concise (t=1) 0.10 76.36% 0.26 0.06 81.82% 0.17
Base (t=1) 0.09 75.76% 0.27 0.06 81.21% 0.19
CoT (t=1) 0.10 73.94% 0.26 0.08 80.0% 0.19
Concise (t=0) 0.39 41.82% 0.63 0.31 49.09% 0.54
Base (t=0) 0.37 43.64% 0.59 0.27 54.55% 0.46
CoT (t=0) 0.28 46.06% 0.50 0.19 54.55% 0.36

Prompt LCS LED

Mean value Mean worst value Pair mean value Mean value Mean worst value Pair mean value

Concise (t=1) 0.22 0.16 0.22 61.53 83.01 62.52
Base (t=1) 0.22 0.16 0.23 58.80 77.46 58.86
CoT (t=1) 0.23 0.15 0.23 59.55 77.68 57.05
Concise (t=0) 0.70 0.53 0.71 11.77 20.55 12.14
Base (t=0) 0.61 0.44 0.62 23.45 35.87 22.31
CoT (t=0) 0.38 0.24 0.39 39.31 58.28 39.81

Prompt United_Diff Tree_Diff

Mean value Mean worst value Pair mean value Mean value Mean worst value Pair mean value

Concise (t=1) 0.44 0.34 0.48 0.54 0.42 0.59
Base (t=1) 0.33 0.27 0.46 0.41 0.33 0.56
CoT (t=1) 0.45 0.35 0.51 0.55 0.43 0.61
Concise (t=0) 0.83 0.74 0.84 0.88 0.82 0.89
Base (t=0) 0.41 0.39 0.67 0.50 0.46 0.74
CoT (t=0) 0.71 0.58 0.72 0.78 0.67 0.79

Answer to RQ6: Under temperature=1, the difference in non-determinism among different prompt
engineering techniques is not obvious. When setting temperature=0, the code candidates generated from
the Concise prompt are more deterministic than our Base prompt, while those code candidates generated
from the CoT prompt suffer from higher randomness than our Base prompt.

5 THREATS TO VALIDITY
The threats to internal validity mainly lie in the implementation of our experiment and result analysis. To reduce
the first threat, we checked our code twice, once during the experiment stage, and once during the record analysis
stage. To reduce the second threat, the two authors independently analyzed the experiment results and drew
experimental conclusions separately. Once their analysis results were different, the third author discussed with
them to determine the final result.

The threats to external validity mainly lie in the datasets, GPT versions, and prompt design in our study.
To reduce the threat in datasets, we use three diverse datasets that are widely used in code generation tasks.
Additionally, the problems in our dataset are from different contests with different difficulties. For example,

ACM Trans. Softw. Eng. Methodol.

20 • Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

CodeContests is the most challenging dataset, while HumanEval is the easiest, in terms of the average difficulty
of coding problems. To reduce the threat in GPT versions, we consider the two newest versions of GPT: GPT-3.5
and GPT-4, and compare their non-determinism from multiple aspects. To reduce the threat of prompt design, we
use the most typical prompts that are the most widely used in LLM-based code generation and design an RQ to
study their influence on non-determinism.

Another primary concern highlighted in our analysis revolves around the operationalization of semantic,
syntactic, and structural similarities into measurable metrics for assessing code similarity. The approach of
measuring semantic similarity through the comparison of test execution outputs, while practical, presents a
notable limitation. It potentially oversimplifies the multifaceted nature of semantic similarity, which should
ideally encapsulate the code’s meaning and functionality rather than merely its output. This method risks ignoring
the intricate logic and diverse correct solutions that different pieces of code may offer. To reduce the threat
in measurement tools, we consider three types of similarities and choose at least two measurements for each
type of similarity, and we also apply statistical analysis techniques to enhance our experiment results. For the
HumanEval dataset, we evaluate our measurement on an external testset, EvalPlus [42]. The result shows that
our measurements show similar evaluation results, which supports the robustness of our chosen measurements.

However, it is important to acknowledge certain limitations within our study that may affect the breadth of its
applicability and the generalizability of its findings. Firstly, our analysis does not extend to the impact that different
programming languages might have on the non-determinism of code generation. Programming languages vary
widely in syntax, semantics, and complexity, which can influence how LLMs like ChatGPT interpret and generate
code, potentially affecting the degree of non-determinism in the output. Secondly, our work only adopts a
few methods for measuring code similarity. There is no unified standard for measuring code similarity. It is
challenging to cover all the code similarity measurements. Other methods include embedding-based similarity
measure methods, using pre-trained code language models, such as CodeBERT [17] and GraphCodeBERT [22].
Thirdly, the influence of the prompt on non-determinism is not fully considered. The specificity, clarity, and
technical depth of prompts provided to ChatGPT can significantly influence the model’s output, suggesting that
prompts could be a crucial factor in understanding non-determinism. Fourthly, our study focuses exclusively on
ChatGPT. While ChatGPT is a prominent LLM used for code generation, it is not the only one. The landscape of
LLMs is diverse, with models trained on different datasets, architectures, and objectives. Therefore, our findings
may not apply to other LLMs used for similar purposes.

6 RELATED WORK

6.1 Code Generation
Code generation generates programs that need to satisfy all the constraints defined by the underlying task.
Usually, the constraints are represented in various forms, e.g. input/output pairs, examples, problem descriptions,
partial programs, and assertions. Relatively early work includes deductive synthesis approaches [19, 46] and
inductive synthesis approaches [8, 57, 58, 60]. The deductive synthesis approach operated under the assumption
that a comprehensive and precise formal specification of the user’s desired intention would be provided. However,
in many instances, this turned out to be just as intricate and challenging as creating the actual program. While the
inductive synthesis approach was based on inductive specifications such as input/output pairs and examples etc,
such as works on Lisp programs [8, 57, 60], Pygmalion [58] and more recently FlashFill [20]. More information
could be found in a survey [21], which covers notable work on the development of program synthesis approaches.

In recent years, more and more researchers apply neural networks in code generation. Yin and Neubig [70]
combine the grammar rules with the decoder and propose a syntax-driven neural architecture to improve code
generation performance. Instead of RNN, Sun et al. [61] propose a grammar-based structural CNN to capture
the long dependency in code. Bolin et al. [66] propose a dual learning framework that jointly trains the code

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Non-determinism of ChatGPT in Code Generation • 21

generation model and code summarization model together to achieve better performance in both tasks. Xu et
al.[68] present a user study in-IDE code generation, demonstrating challenges such as time efficiency, correctness,
and code quality, as well as the willingness to use code generation tools from developers.

6.2 Language Model for Code generation
The triumph of transformers in natural language modeling [9] has stimulated considerable interest among
researchers in applying transformer models for code generation. Existing research on code generation models
can be classified into three categories: sequence-based techniques, tree-based methods, and pre-trained models.
Sequence-based techniques take code as a sequence of tokens and employ language models to produce

source code one token at a time based on input descriptions. Ling et al. [40] propose a generative model for code
generation along with a character level softmax and multi-pointer network to address the problem of generating
code from a mixed language and structured specification, and receiving success in trading card games (Magic the
Gathering and Hearthstone). Hashimoto et al. [24] train a retrieval model with a noisy encoder-decoder to enable
similar code retrieving, and then use the similar code as an additional input to improve the performance of the
generator.
Tree-based methods generate a parse tree of the code, e.g. Abstract Syntax Tree (AST), based on the input

description, and then convert the parse tree into the corresponding code. Dong et al. [14] encode natural language
utterances into vectors and generate their corresponding logical forms as trees using the LSTM model. Yin
et al. [71] propose a semantic parser ‘Tranx’, which generates the tree-construction action sequence with a
transition-based neural model, and constructs the AST from the action sequence.

Pre-trainedmodels are obtained from training on massive data of source code, which could be later fine-tuned
on certain datasets for code generation purposes. Encoder pre-trained models, such as CodeBERT [17], usually
are trained with two objectives, i.e., Masked Language Modeling and Replaced Token Detection. During the
fine-tuning phase, the input should be fed in the same way as the pre-training phrase, so that semantic relevance
could be measured. Decoder pre-trained models are designed to predict the next token based on a given input
context. GPT-series [56] are typical Decoder pre-trained models, and based on GPT, there are many efforts
on code generation. Based on GPT-2, Lu et al. [45] provide CodeGPT for code completion and text-to-code
generation. After GPT-3 was developed, CodeX12 and GitHub Compilot13 was created and released their beta
version for trial by academia and industry. Due to neither Codex nor GitHub Copilot being open-sourced, there
are several attempts to reproduce their performance, like PYCODEGPT-CERT [73], CodeParrot14, and GPT-CC15.
Encoder-decoder pre-trained models are composed of an encoder and a decoder. AlphaCode [37], which is
pre-trained through GitHub repositories with 715.1 GB of code, uses an encoder-decoder transformer architecture.
It achieves on average a ranking in the top 54% in competitions with more than 5,000 participants in simulated
evaluations.

ChatGPT, a language model developed by the team of OpenAI, has the potential to play a role in code generation.
As it is widely known, ChatGPT offers a chat window to enable interaction in a conversational way. In addition to
its powerful capabilities for natural language processing tasks, ChatGPT inherits the code generation capabilities
from Codex and can perform even better, so the OpenAI team has announced the deprecation of Codex series
models in its official documents. There are several research works that mentioned its ability in code-related
areas, including mathematical capability [18], bug-solving capability [62], and software testing [29]. ChatGPT’s
‘Regenerate response’ function demonstrates the diversity of its output, but at the same time, it also raises
concerns about the consistency of its output given the same input. Currently, people are amazed by its superficial
12https://openai.com/blog/openai-codex
13https://github.com/features/copilot
14https://huggingface.co/codeparrot/codeparrot
15https://github.com/CodedotAl/gpt-code-clippy

ACM Trans. Softw. Eng. Methodol.

https://openai.com/blog/openai-codex
https://github.com/features/copilot
https://huggingface.co/codeparrot/codeparrot
https://github.com/CodedotAl/gpt-code-clippy

22 • Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

performance in terms of code generation, however, there is still no research work focused on the threat of
non-determinism. Therefore, we think it is necessary to make a comprehensive evaluation of ChatGPT’s ability
in code generation. More detailed information could be found on its official website’s blog [2].

6.3 Non-determinism Handling in the Literature
The non-determinism issue has been studied in traditional Deep Learning-related research: Pham et al. [53]
measure the influence of nondeterminism-introducing (NI)-factors in Deep Learning, and study the awareness
of this variance among researchers and practitioners. However, the severity of the non-determinism threat in
LLM-based coding studies remains unclear.

To understand how well LLM-based code generation papers handle the threat of non-determinism, we collect
research articles from Google Scholar with the query ‘code generation’ AND ‘Large Language Model’ in the
past 2 years (from January 2022 to July 2023). During the search, we search the full text of the paper (excluding
citations and appendixes) for keywords, such as non-determinism and its synonyms, the number of experimental
repetitions, and the variance of experimental results. After locating these keywords, we manually combine the
context to confirm whether the sentence means to declare that non-determinism exists in their study. If the
statement exists in the experimental section of the paper and the authors consider non-determinism in their
experiment setting and result report, we classify it as considering non-determinism in the experimental design
and mentioning non-determinism in the paper; otherwise, if non-determinism is mentioned elsewhere without
any actions to mitigate non-determinism, such as in the discussion section, we classify it as only mentioning
non-determinism, but not considering this factor in the experiment. If the above keywords are not mentioned in
the paper, we read the full text of the paper to ensure that there are no sentences mentioning non-determinism
in the paper. If relevant non-determinism statements were encountered, we classify the paper using the above
classification method and update our keyword library. After ensuring that our keyword database is up to date and
that the two search results are consistent, we searched all the papers twice to obtain our literature review data.

There are 107 papers obtained from Google Scholar according to their relevance rankings. In this survey, we
mainly focus on articles with experiments and exclude those with posters and visions only, which yields a set of
76 papers. After an in-depth reading of the experimental design and discussion in each paper, we find that only
35.5% (27/76) out of the 76 papers mention non-determinism or related terms (e.g., stability, randomness, and
variance) in their papers. Among them, 21.1% (16/76) papers consider non-determinism in their experimental
evaluation, including fixed random seeds, multiple runs of experiments with different fixed random seeds, and
report results with error bars or standard deviation. In addition, 14.5% (11/76) of the papers do not consider
non-determinism in their experiments, but discuss the threat of non-determinism in their paper.

7 DISCUSSION
In this section, we discuss the implications, trade-offs of non-determinism, and future research directions for
code generation with LLMs.

7.1 Implications for Software Developers and Researchers
For developers, it is essential to recognize the limitations of ChatGPT and the potential risks of using generated
code in production. If developers prefer a more stable code, they can use a smaller temperature but should keep in
mind that even the smallest temperature (i.e., temperature=0) could not guarantee the determinism. Moreover, our
observation on the correlation between the length of prompts and code correctness/non-determinism suggests
the importance of prompt engineering. Developers should thoroughly test the generated code before deploying
it, and even consider incorporating more robust testing and validation processes to ensure the determinism and
reliability of the generated code.

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Non-determinism of ChatGPT in Code Generation • 23

For researchers, the variance of the generated code raises questions about the quality and validity of the
results obtained from assessing LLMs in code generation. If the code generated from ChatGPT is unstable, it
can lead to non-reproducible results and unreliable conclusions. Therefore, researchers should carefully consider
the limitations of ChatGPT when designing experiments and interpreting results. To reduce the randomness
caused by the non-determinism issue, researchers can report the average results, variance, or distribution from
multiple requests. Also, it is important to use different datasets, since our study finds that both the correctness and
non-determinism of the generated code vary significantly from dataset to dataset. In addition, using a prompt with
detailed instructions, a clear structure, and concrete response requirements would help to reduce randomness in
generated code.

7.2 Trade-off of non-determinism
Our empirical study highlights the issue of non-determinism in code generation tasks when using ChatGPT. While
we underscore the challenges this non-determinism introduces, particularly in terms of ensuring consistency and
reliability in generated outputs, it is essential to also acknowledge the potential benefits that non-determinism
brings, especially in the realm of creativity.

The inherent non-deterministic nature of LLMs can foster a degree of creativity and diversity in the outputs that
deterministic systems may not achieve. This aspect is particularly valuable in applications requiring innovative
solutions or creative content generation, where the variety and uniqueness of the output are more critical than in
strictly rule-based or deterministic scenarios. In other words, the non-determinism implies that making multiple
requests to LLMs may increase the chance for developers to receive high quality code and therefore enhance
the code generation performance. For instance, through making five requests in RQ1 with temperature of 1, the
candidate that achieves the highest pass rate for a given code problem shows an improvement on average of
around 16.13 times (CodeContests), 3.12 times (APPS), and 1.98 times (HumanEval) over the candidate with the
lowest pass rate; it exhibits an overall improvement of 5.21 times (CodeContests), 1.40 times (APPS), and 0.59
times (HumanEval) against its mean performance among five candidates. Looking deeper into the consistency
of the error, we can find that generated code candidates are more likely (at least 65.85%, 73.83%, and 90.00% in
CodeContests, APPS, and HumanEval) to share the same error type if all of them fail to pass the test cases. The
most common error types they share are IndexError (46.03% in CodeContests), IndexError (34.78% in APPS), and
NameError (33.33% in HumanEval) respectively, under temperature=0.

7.3 Future work
Achieving an optimal balance between determinism and creativity is crucial for enhancing LLMs’ effectiveness
across a broad spectrum of applications. Too much determinism could stifle creativity, leading to predictable
and monotonous outputs, while excessive non-determinism might compromise the reliability and consistency
necessary for applications requiring precise and accurate results. To address these challenges and strike a balance
between determinism and creativity, future research could explore several promising directions:
Voting Mechanism: Implementing a voting mechanism wherein multiple candidates of the model generate

outputs, and a consensus approach should be used to select the most appropriate output. This method can help
mitigate the effects of non-determinism by leveraging the collective decision-making process to choose outputs
that are both creative and relevant to the task.
Repair Loop Driven by LLMs: Developing techniques for loop repair driven by LLMs can offer a novel

approach to addressing non-determinism. By automatically identifying and correcting inconsistencies or errors
in the generated code, such a system could enhance the reliability of outputs without significantly compromising
creativity.This approach would rely on the model’s ability to learn from feedback loops, improving its performance
over time.

ACM Trans. Softw. Eng. Methodol.

24 • Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

Hybrid Models: Investigating hybrid models that combine deterministic and non-deterministic components
might offer a pathway to achieving the desired balance. Such models could leverage the strengths of both
approaches, using deterministic methods to ensure reliability and consistency where needed, while allowing for
creative freedom through non-deterministic processes in aspects where innovation is prized.

Customizable Levels of Determinism: Developing LLMs that allow users to specify their preferred level of
determinism versus creativity could cater to a wide range of applications. This customization could enable users
to tune the model’s outputs according to the specific requirements (e.g. domain-specific) of their task, whether
that be generating highly creative content or producing consistent and reliable code.

8 CONCLUSION
This work studies the non-determinism threat of code generation with ChatGPT. We perform experiments on
three widely studied code generation benchmarks and find that the correctness, test outputs, as well as syntax
and structure of code candidates generated from the same instruction, vary significantly in different requests.
We hope that this paper could raise awareness of the threat of non-determinism in future code generation tasks
when using large language models.

9 ACKNOWLEDGEMENT
This work was supported by the UKRI Centre for Doctoral Training in Safe and Trusted Artificial Intelligence
(EP/S023356/1).

REFERENCES
[1] https://152334h.github.io/blog/non-determinism-in-gpt-4/.
[2] https://chat.openai.com/chat.
[3] https://github.com/ShuyinOuyang/LLM-is-a-box-of-chocolate.
[4] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt,

Sam Altman, Shyamal Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774 (2023).
[5] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael

Terry, Quoc Le, et al. 2021. Program synthesis with large language models. arXiv preprint arXiv:2108.07732 (2021).
[6] Y Bang, S Cahyawijaya, N Lee, W Dai, D Su, B Wilie, H Lovenia, Z Ji, T Yu, W Chung, et al. 2023. A multitask, multilingual, multimodal

evaluation of ChatGPT on reasoning, hallucination, and interactivity. arXiv.
[7] Bhavya Bhavya, Jinjun Xiong, and Chengxiang Zhai. 2022. Analogy generation by prompting large language models: A case study of

instructgpt. arXiv preprint arXiv:2210.04186 (2022).
[8] Alan W Biermann. 1978. The inference of regular LISP programs from examples. IEEE transactions on Systems, Man, and Cybernetics 8, 8

(1978), 585–600.
[9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,

Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. Advances in neural information processing systems 33
(2020), 1877–1901.

[10] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li,
Scott Lundberg, et al. 2023. Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712 (2023).

[11] Subhashis Chatterjee, Deepjyoti Saha, Akhilesh Sharma, and Yogesh Verma. 2022. Reliability and optimal release time analysis for multi
up-gradation software with imperfect debugging and varied testing coverage under the effect of random field environments. Annals of
Operations Research (2022), 1–21.

[12] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda,
Nicholas Joseph, Greg Brockman, et al. 2021. Evaluating large language models trained on code.(2021). arXiv preprint arXiv:2107.03374
(2021).

[13] Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang, and Lingming Zhang. 2023. Large language
models are edge-case fuzzers: Testing deep learning libraries via fuzzgpt. arXiv preprint arXiv:2304.02014 (2023).

[14] Li Dong and Mirella Lapata. 2016. Language to logical form with neural attention. arXiv preprint arXiv:1601.01280 (2016).
[15] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta, Shin Yoo, and Jie M Zhang. 2023. Large Language

Models for Software Engineering: Survey and Open Problems. arXiv preprint arXiv:2310.03533 (2023).

ACM Trans. Softw. Eng. Methodol.

An Empirical Study of the Non-determinism of ChatGPT in Code Generation • 25

[16] Yunhe Feng, Sreecharan Vanam, Manasa Cherukupally, Weijian Zheng, Meikang Qiu, and Haihua Chen. 2023. Investigating code
generation performance of ChatGPT with crowdsourcing social data. In 2023 IEEE 47th Annual Computers, Software, and Applications
Conference (COMPSAC). IEEE, 876–885.

[17] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al.
2020. Codebert: A pre-trained model for programming and natural languages. arXiv preprint arXiv:2002.08155 (2020).

[18] Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz, Philipp Christian Petersen, Alexis
Chevalier, and Julius Berner. 2023. Mathematical capabilities of chatgpt. arXiv preprint arXiv:2301.13867 (2023).

[19] Cordell Green. 1981. Application of theorem proving to problem solving. In Readings in Artificial Intelligence. Elsevier, 202–222.
[20] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output examples. ACM Sigplan Notices 46, 1 (2011),

317–330.
[21] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. 2017. Program synthesis. Foundations and Trends® in Programming Languages

4, 1-2 (2017), 1–119.
[22] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al.

2020. Graphcodebert: Pre-training code representations with data flow. arXiv preprint arXiv:2009.08366 (2020).
[23] Qi Guo, Junming Cao, Xiaofei Xie, Shangqing Liu, Xiaohong Li, Bihuan Chen, and Xin Peng. 2024. Exploring the potential of chatgpt in

automated code refinement: An empirical study. In Proceedings of the 46th IEEE/ACM International Conference on Software Engineering.
1–13.

[24] Tatsunori B Hashimoto, Kelvin Guu, Yonatan Oren, and Percy S Liang. 2018. A retrieve-and-edit framework for predicting structured
outputs. Advances in Neural Information Processing Systems 31 (2018).

[25] Hossein Hassani and Emmanuel Sirmal Silva. 2023. The role of ChatGPT in data science: how ai-assisted conversational interfaces are
revolutionizing the field. Big data and cognitive computing 7, 2 (2023), 62.

[26] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin Burns, Samir Puranik, Horace He,
Dawn Song, et al. 2021. Measuring coding challenge competence with apps. arXiv preprint arXiv:2105.09938 (2021).

[27] Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob Steinhardt. 2020. Aligning ai with shared
human values. arXiv preprint arXiv:2008.02275 (2020).

[28] Jeevana Priya Inala, Chenglong Wang, Mei Yang, Andres Codas, Mark Encarnación, Shuvendu Lahiri, Madanlal Musuvathi, and Jianfeng
Gao. 2022. Fault-aware neural code rankers. Advances in Neural Information Processing Systems 35 (2022), 13419–13432.

[29] Sajed Jalil, Suzzana Rafi, Thomas D LaToza, Kevin Moran, and Wing Lam. 2023. Chatgpt and software testing education: Promises &
perils. In 2023 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). IEEE, 4130–4137.

[30] Andrej Kiviriga. 2023. Efficient Model Checking: The Power of Randomness. (2023).
[31] Kalpesh Krishna, Yapei Chang, John Wieting, and Mohit Iyyer. 2022. Rankgen: Improving text generation with large ranking models.

arXiv preprint arXiv:2205.09726 (2022).
[32] Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy S Liang. 2019. Spoc: Search-based

pseudocode to code. Advances in Neural Information Processing Systems 32 (2019).
[33] Emanuele La Malfa, Aleksandar Petrov, Simon Frieder, Christoph Weinhuber, Ryan Burnell, Anthony G Cohn, Nigel Shadbolt, and

Michael Wooldridge. 2023. The ARRT of Language-Models-as-a-Service: Overview of a New Paradigm and its Challenges. arXiv preprint
arXiv:2309.16573 (2023).

[34] Mina Lee, Percy Liang, and Qian Yang. 2022. Coauthor: Designing a human-ai collaborative writing dataset for exploring language
model capabilities. In Proceedings of the 2022 CHI conference on human factors in computing systems. 1–19.

[35] Jia Li, Ge Li, Zhuo Li, Zhi Jin, Xing Hu, Kechi Zhang, and Zhiyi Fu. 2023. Codeeditor: Learning to edit source code with pre-trained
models. ACM Transactions on Software Engineering and Methodology 32, 6 (2023), 1–22.

[36] Jia Li, Yongmin Li, Ge Li, Zhi Jin, Yiyang Hao, and Xing Hu. 2023. Skcoder: A sketch-based approach for automatic code generation. In
2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE, 2124–2135.

[37] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno,
Agustin Dal Lago, et al. 2022. Competition-level code generation with alphacode. Science 378, 6624 (2022), 1092–1097.

[38] Zongjie Li, Chaozheng Wang, Zhibo Liu, Haoxuan Wang, Dong Chen, Shuai Wang, and Cuiyun Gao. 2023. Cctest: Testing and repairing
code completion systems. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE, 1238–1250.

[39] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and Andy Zeng. 2023. Code as policies:
Language model programs for embodied control. In 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
9493–9500.

[40] Wang Ling, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiskỳ, Andrew Senior, Fumin Wang, and Phil Blunsom. 2016. Latent
predictor networks for code generation. arXiv preprint arXiv:1603.06744 (2016).

[41] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is your code generated by chatgpt really correct? rigorous
evaluation of large language models for code generation. arXiv preprint arXiv:2305.01210 (2023).

ACM Trans. Softw. Eng. Methodol.

26 • Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang

[42] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2024. Is your code generated by chatgpt really correct? rigorous
evaluation of large language models for code generation. Advances in Neural Information Processing Systems 36 (2024).

[43] Yiheng Liu, Tianle Han, Siyuan Ma, Jiayue Zhang, Yuanyuan Yang, Jiaming Tian, Hao He, Antong Li, Mengshen He, Zhengliang Liu, et al.
2023. Summary of chatgpt/gpt-4 research and perspective towards the future of large language models. arXiv preprint arXiv:2304.01852
(2023).

[44] Yue Liu, Thanh Le-Cong, Ratnadira Widyasari, Chakkrit Tantithamthavorn, Li Li, Xuan-Bach D Le, and David Lo. 2023. Refining
ChatGPT-generated code: Characterizing and mitigating code quality issues. ACM Transactions on Software Engineering and Methodology
(2023).

[45] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin Clement, Dawn Drain, Daxin Jiang,
Duyu Tang, et al. 2021. Codexglue: A machine learning benchmark dataset for code understanding and generation. arXiv preprint
arXiv:2102.04664 (2021).

[46] Zohar Manna and Richard J Waldinger. 1971. Toward automatic program synthesis. Commun. ACM 14, 3 (1971), 151–165.
[47] Antonio Mastropaolo, Luca Pascarella, Emanuela Guglielmi, Matteo Ciniselli, Simone Scalabrino, Rocco Oliveto, and Gabriele Bavota.

2023. On the robustness of code generation techniques: An empirical study on github copilot. In 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE). IEEE, 2149–2160.

[48] Patrick E McKight and Julius Najab. 2010. Kruskal-wallis test. The corsini encyclopedia of psychology (2010), 1–1.
[49] Patrick E McKnight and Julius Najab. 2010. Mann-Whitney U Test. The Corsini encyclopedia of psychology (2010), 1–1.
[50] Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn. 2023. Detectgpt: Zero-shot machine-

generated text detection using probability curvature. arXiv preprint arXiv:2301.11305 (2023).
[51] Prabhat Nagarajan, Garrett Warnell, and Peter Stone. 2018. Deterministic implementations for reproducibility in deep reinforcement

learning. arXiv preprint arXiv:1809.05676 (2018).
[52] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[53] Hung Viet Pham, Shangshu Qian, JiannanWang,Thibaud Lutellier, Jonathan Rosenthal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan.

2020. Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th
IEEE/ACM international conference on automated software engineering. 771–783.

[54] Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and Sumit Gulwani. 2022. Synchromesh:
Reliable code generation from pre-trained language models. arXiv preprint arXiv:2201.11227 (2022).

[55] Joan Puigcerver, Carlos Riquelme, Basil Mustafa, and Neil Houlsby. 2023. From Sparse to Soft Mixtures of Experts. arXiv preprint
arXiv:2308.00951 (2023).

[56] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018. Improving language understanding by generative
pre-training. (2018).

[57] David E Shaw, William R Swartout, and C Cordell Green. 1975. Inferring LISP Programs From Examples.. In IJCAI, Vol. 75. 260–267.
[58] David Canfield Smith. 1975. Pygmalion: a creative programming environment. Stanford University.
[59] Ioana Baldini Soares, Dennis Wei, Karthikeyan Natesan Ramamurthy, Moninder Singh, and Mikhail Yurochkin. 2022. Your fairness may

vary: pretrained language model fairness in toxic text classification. In Annual Meeting of the Association for Computational Linguistics.
[60] Phillip D Summers. 1977. A methodology for LISP program construction from examples. Journal of the ACM (JACM) 24, 1 (1977),

161–175.
[61] Zeyu Sun, Qihao Zhu, Lili Mou, Yingfei Xiong, Ge Li, and Lu Zhang. 2019. A grammar-based structural cnn decoder for code generation.

In Proceedings of the AAAI conference on artificial intelligence, Vol. 33. 7055–7062.
[62] Nigar M Shafiq Surameery and Mohammed Y Shakor. 2023. Use chat gpt to solve programming bugs. International Journal of Information

Technology & Computer Engineering (IJITC) ISSN: 2455-5290 3, 01 (2023), 17–22.
[63] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020. Intellicode compose: Code generation using transformer.

In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1433–1443.

[64] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation vs. experience: Evaluating the usability of code generation
tools powered by large language models. In Chi conference on human factors in computing systems extended abstracts. 1–7.

[65] Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing Wang. 2024. Software testing with large language models:
Survey, landscape, and vision. IEEE Transactions on Software Engineering (2024).

[66] Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019. Code generation as a dual task of code summarization. Advances in neural
information processing systems 32 (2019).

[67] Xiongfei Wu, Liangyu Qin, Bing Yu, Xiaofei Xie, Lei Ma, Yinxing Xue, Yang Liu, and Jianjun Zhao. 2020. How are deep learning models
similar? an empirical study on clone analysis of deep learning software. In Proceedings of the 28th International Conference on Program
Comprehension. 172–183.

[68] Frank F Xu, Bogdan Vasilescu, and Graham Neubig. 2022. In-ide code generation from natural language: Promise and challenges. ACM
Transactions on Software Engineering and Methodology (TOSEM) 31, 2 (2022), 1–47.

ACM Trans. Softw. Eng. Methodol.

https://arxiv.org/abs/2303.08774

An Empirical Study of the Non-determinism of ChatGPT in Code Generation • 27

[69] Burak Yetiştiren, Işık Özsoy, Miray Ayerdem, and Eray Tüzün. 2023. Evaluating the Code Quality of AI-Assisted Code Generation Tools:
An Empirical Study on GitHub Copilot, Amazon CodeWhisperer, and ChatGPT. arXiv preprint arXiv:2304.10778 (2023).

[70] Pengcheng Yin and Graham Neubig. 2017. A syntactic neural model for general-purpose code generation. arXiv preprint arXiv:1704.01696
(2017).

[71] Pengcheng Yin and Graham Neubig. 2018. Tranx: A transition-based neural abstract syntax parser for semantic parsing and code
generation. arXiv preprint arXiv:1810.02720 (2018).

[72] Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang Wang, and Tao Xie. 2024. Codereval:
A benchmark of pragmatic code generation with generative pre-trained models. In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering. 1–12.

[73] Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu Kim, Bei Guan, Yongji Wang, Weizhu Chen, and Jian-Guang Lou. 2022. CERT:
Continual Pre-training on Sketches for Library-oriented Code Generation. arXiv preprint arXiv:2206.06888 (2022).

ACM Trans. Softw. Eng. Methodol.

	Abstract
	1 Introduction
	2 Method
	3 Experimental Design
	3.1 Research Questions
	3.2 Code Generation Benchmarks
	3.3 Configuration of ChatGPT
	3.4 Non-determinism Measurement

	4 Results and Findings
	4.1 RQ1: Non-determinism of ChatGPT with Three Types of Similarities under default setting
	4.2 RQ2: Influence of Temperature
	4.3 RQ3: Non-determinism Comparison with Top Candidates in the Same Prediction
	4.4 RQ4: Coding Tasks Features and Non-determinism Degree
	4.5 RQ5: GPT-4 vs. GPT-3.5
	4.6 RQ6: Influence of Prompt Engineering Strategies on the Non-determinism

	5 Threats to Validity
	6 Related Work
	6.1 Code Generation
	6.2 Language Model for Code generation
	6.3 Non-determinism Handling in the Literature

	7 Discussion
	7.1 Implications for Software Developers and Researchers
	7.2 Trade-off of non-determinism
	7.3 Future work

	8 Conclusion
	9 Acknowledgement
	References

