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We investigate the nature of the topological quantum phase transition between the gapless and gapped
Kitaev quantum spin liquid phases away from the exactly solvable point. The transition is driven by
anisotropy of the Kitaev couplings. At the critical point, the two Dirac points of the gapless Majorana
modes merge, resulting in the formation of a semi-Dirac point with quadratic and linear band touching
directions. We derive an effective Gross-Neveu-Yukawa-type field theory that describes the topological
phase transition in the presence of additional magnetic interactions. We obtain the infrared scaling form of
the propagator of the dynamical Ising order parameter field and perform a renormalization-group analysis.
The universality of the transition is found to be different from that of symmetry-breaking phase transitions
of semi-Dirac electrons. However, as in the electronic case, the Majorana fermions acquire an anomalous
dimension, indicative of the breakdown of the fractionalized quasiparticle description.
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The spin-1=2 honeycomb Kitaev model [1] [Fig. 1(a)] has
been at the forefront of research into quantum spin liquids
(QSLs) [2–6] since it is exactly solvable after fractionalizing
the spin operators into a set of Majorana fermions [1,7,8].
Some of these correspond to local bond excitations that are
linked to Z2 fluxes through the plaquettes of the honeycomb
lattice. Since the fluxes are conserved, the Kitaev model can
be diagonalized for each flux configuration, resulting in a
noninteracting Hamiltonian for the remaining Majorana
fermion species. In the ground-state, zero-flux sector, this
results in a Dirac dispersion identical to that of electrons in
graphene.
Anisotropy of the Kitaev couplings can drive a topo-

logical phase transition from a gapless to a gapped Z2

Kitaev QSL [1]. In the regime of large anisotropy, the latter
can be mapped to the toric code model which exhibits
anyonic excitations and plays an important role in the
context of quantum computation and quantum error cor-
rection [9]. Approaching the topological phase transition
from the gapless QSL side, the Dirac points of the gapless
Majorana bands move along the edge of the Brillouin zone
[Fig. 1(b)] and eventually merge, forming a semi-Dirac
point with a quadratic and a linear band touching direction.
For larger anisotropies, the spectrum becomes gapped. This
anisotropy-driven topological phase transition is not char-
acterized by Chern numbers of the bands in the gapped

state, unlike the topological phase transitions driven by
magnetic fields [10,11]. It is instead similar to the topo-
logical phase transition of real electrons in strained honey-
comb lattices [12–14], which was observed experimentally
in black phosphorus [15,16].
At first glance, the bond-directional exchange of the

Kitaev model seems artificial, but it was realized that
because of strong spin-orbital mixing [17,18], the Kitaev
model can be approximately realized in layered honeycomb
iridates [19–25] and the halide α-RuCl3 [26–28]. Although
in these materials the additional magnetic interactions are
still slightly too large, leading to magnetic ordering at low
temperatures, the experimental realization of a Kitaev QSL
is certainly within reach.
In the presence of additional magnetic interactions, such

as Heisenberg or Γ couplings [3,29], the model is no longer
exactly solvable since the flux plaquette operators do not
commute with the full Hamiltonian and the gapped
Majorana modes, which correspond to flux excitations,
acquire dynamics. While the selection of magnetically
ordered states crucially depends on the nature of the
additional couplings, the topological phase transition
between the gapless and gapped Kitaev QSLs is expected
to be universal.
In this Letter, we analyze the nature of the topological

quantum phase transition away from the exactly solvable
point. To achieve this we perform a renormalization-group
(RG) analysis of the effective Gross-Neveu-Yukawa (GNY)
quantum field theory that describes the coupling of the
dynamical Ising order parameter field to the gapless
Majorana fermion semi-Dirac modes.
Instead of starting with the generic form of the effective

field theory, we explicitly derive it for a specific microscopic
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model. Our starting point is the Kitaev model with cou-
plings Kγ > 0 along nearest-neighbor bonds hi; jiγ (γ ¼ x,
y, z), perturbed by an antiferromagnetic nearest-neighbor
Ising exchange J > 0 [30,31],

Ĥ ¼
X

γ¼x;y;z

X
hi;jiγ

Kγσ̂
γ
i σ̂

γ
j þ J

X
hi;ji

σ̂zi σ̂
z
j: ð1Þ

Here the operators σ̂γi denote spin-1=2 operators in
units of ℏ=2, satisfying the spin-commutation algebra
½σ̂αi ; σ̂βj � ¼ 2δijϵαβγσ̂

γ
i . In order to drive a topological phase

transition, we allow for anisotropyKz > Kx ¼ Ky ¼ K. For
J ¼ 0, the topological phase transition is known to occur at
Kz=K ¼ 2 [1].
We map this Kitaev-Ising model to a Hamiltonian in

terms of spinless fermions, using a two-dimensional
Jordan-Wigner transformation with a string operator
along the one-dimensional contour shown in Fig. 1(c).
The mapping, which was used as an alternative
way to obtain the exact solution of the pure Kitaev model
[7], is defined as σ̂zn ¼ 1–2ĉ†nĉn ¼ ðĉ†n þ ĉnÞðĉ†n − ĉnÞ,
σ̂xn ¼ D̂nðĉ†n þ ĉnÞ, and σ̂yn ¼ iD̂nðĉ†n − ĉnÞ. Here n labels
the position along the string and the string operator
D̂n ¼

Q
l<nð1 − 2ĉ†lĉlÞ is required to match the spin-

commutation and fermion-anticommutation relations.
The x and y bonds on the honeycomb lattice are near-
est-neighbor bonds along the string. Although the coupling

terms along these bonds involve spin components σ̂x and
σ̂y, the property D̂nD̂nþ1 ¼ 1–2ĉ†nĉn ensures that the
fermionized Hamiltonian remains local in the sense that
no terms beyond nearest-neighbor coupling arise. The z
bonds connect spins that are not nearest neighbors along
the snake string. As a result, any Hamiltonian that involves
couplings between the x or y spin components along the z
bonds would become nonlocal. This, however, is not the
case for the Kitaev Ising model (1).
In terms of Majorana fermions ψ̂AðrÞ ¼ i½ĉ†AðrÞ−

ĉAðrÞ�, η̂AðrÞ ¼ ĉ†AðrÞ þ ĉAðrÞ, ψ̂BðrÞ ¼ ĉ†BðrÞ þ ĉBðrÞ,
and η̂BðrÞ ¼ i½ĉ†BðrÞ − ĉBðrÞ� the Hamiltonian is

Ĥ ¼ −iK
X
r

X
i¼1;2

ψ̂AðrÞψ̂Bðrþ aiÞ

þ J
X
r

X
i¼1;2

½iψ̂AðrÞψ̂Bðrþ aiÞ�½iη̂AðrÞη̂Bðrþ aiÞ�

þ ðKz þ JÞ
X
r

½iψ̂AðrÞψ̂BðrÞ�½iη̂AðrÞη̂BðrÞ�; ð2Þ

where fψ̂αðrÞ; ψ̂α0 ðr0Þg ¼ fη̂αðrÞ; η̂α0 ðr0Þg ¼ 2δα;α0δr;r0 and
fψ̂αðrÞ; η̂α0 ðr0Þg ¼ 0.
Even for the pure Kitaev model, J ¼ 0, this seems to be

an interacting problem. However, in this case the η̂Majorana
fermions only live on isolated z bonds and the bond
operators B̂zðrÞ ¼ iη̂AðrÞη̂BðrÞ, which have eigenvalues
�1, commute with the Hamiltonian, ½B̂zðrÞ; Ĥ� ¼ 0. In
the absence of flux excitations, corresponding to the
ground-state sector [32], we can replace all operators
B̂zðrÞ with the negative eigenvalue. This results in a non-
interacting Hamiltonian for the ψ̂ Majorana fermions with
energy dispersion ϵψ ;�ðkÞ ¼ �jKz þ Kðeik·a1 þ eik·a2Þj.
For Kz=K < 2 we obtain gapless excitations with a pair
of Dirac points. These merge atKz=K ¼ 2 into a semi-Dirac
point at Ks ¼ ½0; ð2π=3Þ�. For Kz=K > 2 the spectrum is
gapped.
For nonzero J the η̂ Majorana fermions acquire dy-

namics and ½B̂zðrÞ; Ĥ� ≠ 0. In this case the model is no
longer exactly solvable. An approximate phase diagram
of the Kitaev-Ising model can be obtained using mean-
field theory [31], where the bond expectation values
Aγ ¼ hiψ̂AðrÞψ̂Bðrþ δγÞi and Bγ ¼ hiη̂AðrÞη̂Bðrþ δγÞi
(δx ¼ a1, δy ¼ a2, δz ¼ 0), as well as the staggered
magnetization m ¼ hiψ̂AðrÞη̂AðrÞi ¼ −hiψ̂BðrÞη̂BðrÞi are
determined self-consistently. This results in the phase
diagram shown in Fig. 2, which is adapted from Ref. [31].
As expected, a small Ising exchange J leads to a first-

order transition to a magnetically ordered state [30,31,33].
Importantly, a continuous topological phase transition
between a gapless and a gapped Kitaev QSL still occurs
for sufficiently small J. The insets of Fig. 2 show the
evolution of the mean-field dispersion across this transition.
While the gapless ψ̂ Majorana modes behave in the same

(a) (b)

(c)

FIG. 1. (a) Illustration of the bond-directional Ising exchanges
Kγ σ̂

γ
i σ̂

γ
j along the bonds γ ¼ x, y, z of the honeycomb Kitaev

model. The unit cell contains two lattice sites (A, B) and is
spanned by a1;2 ¼ ½�ð ffiffiffi

3
p

=2Þ; 3
2
�. (b) As a function of anisotropy

ðKz − KÞ=K the Dirac points of the gapless Majorana bands
move along the edge of the Brillouin zone and merge at the
topological phase transition between the gapless and gapped QSL
states. (c) Snake string operator used for the two-dimensional
Jordan-Wigner transformation.
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way as for the pure anisotropic Kitaev model, a key
difference is that the gapped η̂ modes become dispersive.
In order to understand the nature of the topological

quantum phase transition, it is essential to include fluctua-
tions beyond mean-field theory, arising from the interaction
vertex. We recast the problem using a Grassmann path
integral with action [34]

S ¼
Z
k
ψ†

k

�−ik0 −iξ�k
iξk −ik0

�
ψk þ

Z
k
η†k

�−ik0 −iλ�k
iλk −ik0

�
ηk

þ
X
γ

gγ
X
r

Z
τ
½iψAðr; τÞψBðrþ δγ; τÞ�

× ½iηAðr; τÞηBðrþ δγ; τÞ�; ð3Þ

where τ denotes imaginary time, k is the two-dimensional
momentum, k0 is frequency, and k ¼ ðk0;kÞ. The fields ψk
and ηk are two component spinors in sublattice space and
we have written ψ†

k ¼ ðψAð−kÞ;ψBð−kÞÞ, for brevity. The
complex functions ξk ¼ P

γ aγe
ikδγ and λk ¼ P

γ bγe
ikδγ

are linked to the mean-field dispersions, ϵψ ;�ðkÞ ¼ �jξkj
and ϵη;�ðkÞ ¼ �jλkj, respectively. We have written the
interactions as gγ , for brevity. Because of symmetry
gx ¼ gy, ax ¼ ay, and bx ¼ by. Note that bz=bx;y > 2 since
the η Majorana fermion bands are gapped.

As the next step, we integrate out the gapped Majorana
modes η, which results in an effective interaction for the
gapless ψ Majorana fermions,

Sint ¼
X
αβγ

ργαβ
X
r

Z
τ
½iψAðr − δα þ δγ; τÞψBðrþ δγ; τÞ�

× ½iψAðr; τÞψBðrþ δβ; τÞ�; ð4Þ

ργαβ ¼
1

2

X
ϵ

gαgβbγbϵ

Z
q

e−iqðδαþδβ−δγ−δϵÞ

ðq20 þ jλqj2Þ2
; ð5Þ

with α ≠ γ and β ≠ γ. The different types of interactions
ργαβ are visualized in Fig. 3 and correspond to the coupling

of bond operators Âα and Âβ linked through a γ bond.
It is important to stress that for J ¼ 0 we obtain gx ¼

gy ¼ 0 and bx ¼ by ¼ 0 since interactions are restricted to
the z bonds and the η bands are dispersionless. In this case,
all interactions ργαβ are equal to zero and we obtain a theory
of noninteraction ψ Majorana fermions.
As the final step, we perform a Hubbard-Stratonovich

decoupling of the interactions. For reasons that will be-
come clear later, we only need to work out the cou-
pling between the dynamical order parameter field and
the semi-Dirac Majorana fermions. The form of the
coupling can be obtained more easily from a mean-field
decoupling with ϕγðrÞ ¼ hiψ̂AðrÞψ̂Bðrþ δγÞi. This re-
sults in

P
r;γ ΩγðrÞ½iψ̂AðrÞψ̂Bðrþ δγÞ�, where the fields

ΩγðrÞ are certain combinations of ϕγðrÞ, e.g., ΩzðrÞ ¼
2ðρxzz þ ρyzzÞϕzðrÞ þ 2ρyxzϕxðrÞ þ 2ρxyzϕyðrÞ. After Fourier
transform and expansion around the semi-Dirac point
Ks ¼ ½0; ð2π=3Þ� we obtain the Yukawa coupling term
of the low energy field theory,

FIG. 2. Mean-field phase diagram as a function of the anisotropy
ðKz − KÞ=K and the Ising exchange J=K, which leads to a first-
order transition to an antiferromagnetic (AFM) state. The evolution
of the Majorana fermion spectrum across the topological phase
transition between the gapless and gapped quantum spin liquid
phases is shown in the insets. Adapted from Ref. [31].

FIG. 3. Illustration of the interaction terms between the bond
operators Âij ¼ iψ̂ iψ̂ j of the gapless Majorana modes ψ̂ , ob-
tained after integrating the gapped modes η̂.
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SY ½ϕ;ψ� ¼
gffiffiffiffi
N

p
Z
k;q

ϕðqÞψ†ðkÞσyψðkþ qÞ; ð6Þ

where σy denotes a Pauli matrix in sublattice space and the
Ising fluctuation field is given by ðg= ffiffiffiffi

N
p ÞϕðqÞ ¼ ΩzðqÞ−

ΩxðqÞ − ΩyðqÞ. Note that we generalized from two (A, B)
to an even number of N Majorana fermion flavors and
scaled the coupling accordingly. Expanding the quadratic
part S0½ψ� of the action (3) around Ks, we obtain

S0½ψ� ¼
Z
k
ψ†

k

�
−ik0 þ kLσx þ ðk2Q þ ΔÞσy

�
ψk; ð7Þ

where kL ¼ 3aky and kQ ¼ ð ffiffiffiffiffiffi
3a

p
=2Þqx (a ¼ ax ¼ ay) are

the rescaled momenta along the linear and quadratic
directions, respectively, and Δ ¼ az − 2a is the tuning
parameter of the topological phase transition, where Δ ¼ 0
at the critical point. As one might have anticipated, the
dynamical bosonic fluctuation fieldϕðqÞ in SY (6) couples in
the same way as the static tuning parameter Δ in S0 (7). The
bosonic action S½ϕ� that is generated under the perturbative
RG is of the conventional Ginzburg-Landau form. However,
this neglects the nonanalytic bosonic self-energy correction
ΠðqÞ due to the Landau damping of the order parameter
fluctuations by gapless fermionic particle-hole fluctuations.
Since ΠðqÞ dominates over the regular terms in the IR, it is
crucial to use the quadratic bosonic action

S0½ϕ� ¼
Z
k
ϕð−kÞG−1

ϕ ðkÞϕðkÞ; ð8Þ

with G−1
ϕ ðqÞ ¼ ΠðqÞ as starting point for subsequent

perturbative RG calculation [36]. Using the correct in-
frared (IR) scaling form of the propagator, the fluc-
tuation corrections under RG are independent of the
choice of the ultraviolet (UV) cutoff scheme and are,
therefore, universal [37]. The bosonic self-energy ΠðqÞ ¼
g2=N

R
k Tr½GψðkÞσyGψðkþ qÞσy� is obtained by calculat-

ing the fermion polarization bubble diagram [Fig. 4(a)]
over the full range of frequencies and momenta where the
nonanalyticity arises from the IR contribution (k → 0).
Unfortunately, for the case of semi-Dirac fermions this
integral cannot be computed analytically. As shown in
Supplemental Material [38], we obtain

ΠðqÞ ¼ g2

8π2
jqQjF

�
q20 þ q2L

q4Q

�
; ð9Þ

where the function FðuÞ for u∈ ½0;∞Þ is defined through
the integral

FðuÞ ¼
Z

1

0

dt
Z

∞

−∞
dp

×

�ðpþ 1Þ4 þp2ðpþ 1Þ2 þ ð1− tÞu
ðpþ 1Þ4tþp4ð1− tÞ þ tð1− tÞu − 2

�
: ð10Þ

Equation (9) smoothly connects the asymptotic forms
ΠðqÞ ∼ jqQj for q0 ¼ qL ¼ 0 and ΠðqÞ ∼ ðq20 þ q2LÞ1=4
for qQ ¼ 0.
The field theory S0½ψ� þ S0½ϕ� þ SY ½ϕ;ψ� for the topo-

logical phase transition between the gapless and gapped
Kitaev QSL states is very similar to the GNY theory that
describes the quantum criticality of semi-Dirac fermions
in 2þ 1 dimensions due to spontaneous symmetry break-
ing [37,39–42]. A key difference, however, is that for the
symmetry-breaking transitions the Yukawa coupling is
through the σz channel, which upon condensation of the
order parameter results in the opening of a conventional
mass gap in the fermion spectrum. The different form of
the Yukawa coupling (6) through σy changes the form of
the IR propagator GϕðqÞ and of perturbative RG diagrams,
resulting in distinct critical behavior.
To set up the RG calculation, we consider shells in

frequency-momentum space, ϵ2 ¼ k20 þ k2L þ k4Q with cut-
off ϵ ≤ Λ and integrate out modes from the infinitesimal
shell Λe−dl ≤ ϵ ≤ Λ, followed by a rescaling k0 → k0e−dl,
kL → kLe−dl, and kQ → kQe−zQdl to the old cutoff. Note
that at tree level zQ ¼ 1=2. We further rescale the fields as
ψ → ψe−ðΔψ=2Þdl and ϕ → ϕe−ðΔϕ=2Þdl.
The fermionic self-energy correction ΣðkÞdl ¼

−g2=N
R
>
q GϕðqÞσyGψðkþ qÞσy, which corresponds to

the diagram in Fig. 4(b), is of the same form as the original
kernel in S0½ψ�,
ΣðkÞdl ¼ ½Σ0ð−ik0σ0 þ kLσxÞ þ ðΣQk2y þ ΣΔΔÞσy�dl;

ð11Þ
where the coefficients are evaluated as (see Supplemental
Material [38])

Σ0 ¼
1

2N

Z
∞

0

du
1

ðuþ 1Þ2FðuÞ ≈
0.0755
N

; ð12Þ

ΣQ ¼ −
1

2N

Z
∞

0

du
u2 − 12uþ 3

ðuþ 1Þ3FðuÞ ≈
0.0081
N

; ð13Þ

ΣΔ ¼ −
1

2N

Z
∞

0

du
u − 1

ðuþ 1Þ2FðuÞ ≈ −
0.2156
N

: ð14Þ

(a) (b) (c)

FIG. 4. (a) Fermionic polarization bubble diagram that gives
rise to the nonanalytic IR propagator of the bosonic fluctuation
field. (b),(c) Diagram that contributes to the perturbative renorm-
alization of the free-fermion action and the Yukawa coupling,
respectively.

PHYSICAL REVIEW LETTERS 133, 146603 (2024)

146603-4



From the diagram shown in Fig. 4(c) we obtain the
correction Ωσydl ¼ ðg2=NÞ R>

q GϕðqÞσyGψðqÞσyGψðqÞσy
to the Yukawa coupling matrix, where the shell integral
gives Ω ¼ ΣΔ (see Supplemental Material [38]).
From the perturbative RG corrections, we can extract

critical exponents. Demanding that the fermion propa-
gator at the transition (Δ ¼ 0) remains scale invariant,
we obtain the scaling exponent zQ ¼ 1

2
þ 1

2
ΣQ − 1

2
Σ0 of

the quadratic momentum direction kQ relative to the
linear directions k0 and kL, and the scaling dimension
Δψ ¼ − 7

2
þ 3

2
Σ0 − 1

2
ΣQ ¼ − 7

2
þ ηψ of the Majorana fer-

mion field, where ηψ denotes the anomalous dimension.
The correlation length exponent νΔ of the topological phase
transition is defined through the RG equation for Δ,
∂lΔ ¼ ð1 − Σ0 þ ΣΔÞΔ ¼ ν−1Δ Δ. Finally, imposing that
the Yukawa coupling g remains scale invariant, we obtain
the scaling dimension of the bosonic fluctuation field,
Δϕ ¼ −3þ ηϕ with ηϕ ¼ 2Ω − Σ0 − ΣQ.
The resulting numerical values of the critical exponents

are summarized in Table I. For completeness, let us also
investigate the relevance of the ϕ4 vertex at the topological
phase transition. At tree level, the scaling dimension of the
coefficient is equal to ½λ� ¼ −3ð2þ zQÞ − 2Δϕ ¼ −3=2,
demonstrating that the vertex is strongly irrelevant and
hence can be neglected.
To summarize, we have derived the effective field theory

for the topological quantum phase transition between the
gapless and gapped Kitaev QSL phases. For the pure,
exactly solvable Kitaev model, the problem reduces to a
free-fermion field theory. Away from the exactly solvable
point, the field theory is of the GNY type and describes the
coupling between an Ising fluctuation field to the gapless
semi-Dirac Majorana fermion modes. We determined the
critical exponents from an RG analysis and demonstrated
that the universality of the topological phase transition is
different from that describing symmetry-breaking phase
transitions of semi-Dirac electrons.
It is also important to compare with the nature of the

topological phase transition of semi-Dirac electrons subject
to long-range Coulomb repulsions [36]. In this case, the
Hubbard-Stratonovich decoupling results in a GNY theory
with a bosonic fluctuation field that couples to the local
density of electrons. Note that such density operators do not
exist for a single Majorana fermion mode. As we have
demonstrated, the fluctuation fields in Kitaev QSLs instead
couple to bond operators of pairs of Majorana fermions,

resulting in an off-diagonal Yukawa coupling matrix
proportional to σy. Because of this crucial difference, the
IR boson propagator acquires a different form and the
critical exponents are different.
Let us briefly discuss potential links with experiments.

Tuning across the topological phase transition, one would
expect to see crossovers in the specific heat at temperatures
much smaller than the energy gap of flux excitations. While
the separated Dirac points in the gapless Kitaev QSL result
in a quadratic temperature dependence of the specific heat,
C ∼ T2, the distinct density of states of semi-Dirac fer-
mions would give rise to a C ∼ T3=2 dependence above the
critical point. Finally, in the gapped Kitaev QSL phase the
specific heat is exponentially suppressed, C ∼ e−T=Δ. As
suggested in the literature [43], a quantum critical fan-
shape temperature dependence across the zero-temperature
topological quantum phase transition could be uncovered
through measurements of thermal Hall conductivity.
Unlike for electronic Dirac semimetals, the band struc-

ture of the emergent Majorana fermions of Kitaev QSLs
cannot be directly probed experimentally. However, the
magnetic excitation continua measured by inelastic neu-
tron scattering are linked to fermionic particle-hole exci-
tations, making it possible, in principle, to extract the
exponent νΔ. The topological phase transition results in the
opening of an energy gap in the Majorana fermion
spectrum, Δ ∼ ðδ − δcÞνΔ , corresponding to an energy gap
2Δ of the magnetic excitation continuum. Approaching
the topological phase transition from the gapless QSL
side, the separation of the Dirac points vanishes as
δk ¼ ffiffiffiffiffiffiffi

−Δ
p

∼ ðδc − δÞνΔ=2. For this momentum transfer,
particle-hole excitations with zero energy are possible,
resulting in a gap closing of the magnetic excitation
continuum at δk. One might also anticipate signatures
of the topological phase transition in the quantum Fisher
information [44], which is a witness for quantum entan-
glement and can be calculated from the measured dynami-
cal susceptibility [45].
The Kitaev QSL is a novel and exotic state of matter due

to its long-range entanglement and the fractionalization of
spin degrees of freedom into Majorana fermions. Our Letter
shows that the quantum criticality associated with a
topological phase transition adds another layer of complex-
ity. At the transition, the emergent Majorana fermions
acquire an anomalous dimension, indicative of a break-
down of the quasiparticle picture and the formation of a
Majorana non-Fermi liquid state.
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