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Consider a Dirac operator on an oriented compact surface endowed with a Riemannian metric and spin
structure. Provided the area and the conformal class are fixed, how small can the k-th positive Dirac
eigenvalue be? This problem mirrors the maximization problem for the eigenvalues of the Laplacian,
which is related to the study of harmonic maps into spheres. We uncover the connection between the
critical metrics for Dirac eigenvalues and harmonic maps into complex projective spaces. Using this
approach we show that for many conformal classes on a torus the first nonzero Dirac eigenvalue is
minimised by the flat metric. We also present a new geometric proof of Bär’s theorem stating that the
first nonzero Dirac eigenvalue on the sphere is minimised by the standard round metric.

1 Introduction and Main Results
1.1 Dirac operator on surfaces
Dirac operator is a first-order differential operator defined on the sections of the spinor bundle of
an oriented Riemannian manifold (M, g). The construction of a spinor bundle relies on an additional
structure on (M, g), called the spin structure. An oriented manifold with a fixed spin structure is referred
to as spin manifold. In general, not all manifolds admit spin structures; however, in the present article
we are concerned with the case dim M = 2. All oriented surfaces have spin structures and, furthermore,
the spinor bundle and the Dirac operator can be described using the complex structure associated with
the orientation and the metric, see [2]. This is the point of view that we assume below.

Let M be a compact orientable surface of genus γ with a complex structure, and let K = (T(1,0)M)∗

be its canonical line bundle (here and further on, we refer to [26] for basic facts and terminology from
complex geometry). A spin structure on M is a holomorphic line bundle S together with a holomorphic
isomorphism S ⊗ S ∼= K, which makes S a square root of K. The spinor bundle �M on M is S ⊕ S̄. Two spin
structures S and S′ are said to be equivalent if there exists a holomorphic bundle isomorphism that
commutes with the respective isomorphisms S ⊗ S ∼= K and S′ ⊗ S′ ∼= K. One can show that there are 22γ

non-equivalent spin structures on M.
A Hermitian metric on M is a global section h of K⊗ K̄ satisfying hp(ξ , ξ̄ ) > 0 for all ξ ∈ T(1,0)

p M. It induces
a Riemannian metric g on M by taking the real part g = Re(h), and a Hermitian metric on S, such that
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2 | M. Karpukhin et al.

for any section s of S one has |s|2 = |s ⊗ s|. In local holomorphic coordinates z, if h = e2ωdz ⊗ dz̄, then
g = e2ω(dx2+dy2) and if s0 is a local section of S such that s0⊗s0 = dz, then |s0| = e−ω. Viewing a Hermitian
metric on S as a map S ⊗ S̄ → C, where C is a trivial line bundle, one defines

∂̄g : �(S)
∂̄→ �(S ⊗ K̄) → �(S̄),

where the second map corresponds to the bundle isomorphisms S⊗ K̄ ∼= S⊗ S̄⊗ S̄ ∼= |S|2 ⊗ S̄ ∼=g S̄. In local
coordinates,

∂̄g(fs0) = |s0|2g∂z̄f s̄0,

for a locally defined complex-valued function f . Similarly, one can define ∂g : �(S̄) → �(S) from the
corresponding ∂-operator.

The Dirac operator Dg is defined as

Dg : S ⊕ S̄ → S ⊕ S̄(
ψ+
ψ−

)
	→ 2

(
0 ∂g

−∂̄g 0

)(
ψ+
ψ−

)
.

The Dirac operator is elliptic and essentially self-adjoint provided the manifold is complete; moreover,
since M is compact, it has a discrete spectrum consisting of real eigenvalues (see, for instance, [24,
Theorem 1.3.7]). An easy calculation shows that if ψ = (ψ+, ψ−) is a Dirac eigenspinor with eigenvalue
λ, then (ψ+, −ψ−) is also a Dirac eigenspinor with the eigenvalue −λ. Thus, Dirac eigenvalues are
symmetric with respect to 0. Furthermore, (ψ̄−, −ψ̄+) is an eigenspinor with the eigenvalue λ. In fact,
the map (ψ+, ψ−) 	→ (ψ̄−, −ψ̄+) commutes with Dg and can be seen as a quaternionic structure on the
spinor bundle, see [22, Section 5] and Remark 2.3. We use the following notation for the spectrum of Dg:

−∞· · · ≤ λ−2 ≤ λ−1 < 0 < λ1 ≤ λ2 ≤ · · · + ∞,

where λk = −λ−k and the eigenvalues are counted with their quaternionic multiplicity. For example, if the
λ1-eigenspace is spanned (over C) by (ψ+, ψ−) and (ψ̄−, −ψ̄+), then its quaternionic dimension is equal to
one and λ2 > λ1. If the kernel of Dg is non-empty, we do not enumerate the zero eigenvalues. Finally, we
remark that the (quaternionic) dimension d of the kernel of D depends only on the spin structure and the
conformal class. For example, on the sphere d = 0, and on the torus d = 1 for the trivial spin structure,
while d = 0 for the other three spin structures. In general, d ≤

[
γ+1

2

]
on a surface of genus γ [30].

1.2 Optimisation of Dirac eigenvalues
Let C be a given conformal class on the surface M. To obtain a quantity invariant under rescaling of the
metric, we normalise the Dirac eigenvalues by the area of M:

λ̄k(M, g, S) := λk(M, g, S) Area(M, g)1/2.

It is known that for all metrics g ∈ C, the normalised eigenvalue λ̄k(M, g, S) is bounded away from zero
[4, 35]. In particular, if M is diffeomorphic to the sphere S

2, then there is a unique spin structure S on M,
and Bär’s inequality [7] states that for all metrics g on S

2,

λ̄1(S
2, g, S) ≥ λ̄1(S

2, gS2 , S) = 2
√

π . (1.1)

The equality holds if and only if g is a constant curvature metric on S
2, that is, iff g is homothetic

to the standard round metric gS2 on the unit sphere in R
3. Bär’s inequality could be seen as a Dirac

analogue of the celebrated Hersch’s inequality [28] for the first eigenvalue of the Laplacian, although
their original proofs differ substantially. In section 3.1 we present a new proof of (1.1) using geometric
methods inspired by recent results on optimisation of Laplace eigenvalues, cf. [33].

Finding an explicit value for

�1(M,C, S) := inf
g∈C λ1(M, g, S) Area(M, g)1/2

on other surfaces is an open question. The study of λ̄1-conformally minimal metrics g, that is, metrics
achieving �1(M,C, S), and in particular the question of their existence has been initiated in [3].
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Theorem 1.1 ([3]). Let M be a compact orientable surface of genus γ , S a spin structure on it, and
C a conformal class of metrics. If

inf
g∈C λ1(M, g, S) Area(M, g)1/2 < 2

√
π ,

then there exists gmin ∈ C achieving the infimum. Moreover, the metric gmin is smooth outside
of possibly at most γ − 1 conical singularities.

Our goal is to study critical metrics for the functionals λ̄k(M, g, S) for all k > 0, both in the conformal
class and in the space of all metrics. Recall that for Laplace and Steklov eigenvalues, the criticality
conditions yield connections to the theory of harmonic maps and minimal surfaces in the sphere and
the unit ball, respectively [16, 21]. In fact, we observe that, similarly to those problems, critical metrics
for Dirac eigenvalues correspond to a certain class of harmonic maps and minimal surfaces, but the
ambient spaces are now complex projective spaces CP

n.

1.3 Critical metrics and harmonic maps
Note that the normalised eigenvalue λ̄k does not necessarily vary smoothly under smooth variations
of the metric, since different branches of λ̄k intersect at points of multiplicity. The now standard
techniques, see [16, 21, 31, 37], allow one to circumvent this difficulty, properly define critical metrics,
and obtain the corresponding Euler–Lagrange equations. In the case of λ̄k-conformally critical metrics,
we obtain the following characterisation.

Proposition 1.2. Let M be a compact oriented surface with a fixed conformal class C and the spin
structure S. Suppose that g ∈ C is a critical metric for λ̄k(M, g, S) in its conformal class. Then
there exist eigenspinors ψ1, . . . , ψm ∈ Ek(g) such that

m∑
j=1

|ψj|2 = 1 on M. (1.2)

Conversely, if ψ1, . . . , ψm ∈ Ek(g) are eigenspinors satisfying (1.2) and λk < λk+1 or λk > λk−1, then
g is conformally critical for λ̄k.

Remark 1.3. The Euler–Lagrange equations for the eigenvalues of the Dirac operator have been
first obtained by Bourguignon and Gauduchon in [10]. However, the definition of criticality used
in that paper is more restrictive compared to ours. It coincides with ours if the eigenvalue is
simple, and in this case [10, Proposition 27] yields the same criticality condition as Proposition
1.2. The main difference is that with our definition all minimisers for λ̄k (including the local
ones) are necessarily λ̄k-critical, even if the corresponding eigenvalues are multiple. As a result,
we obtain many more examples of critical metrics with multiple eigenvalues, see Section 2.5.

Remark 1.4. Note that the extremality condition (1.2) is analogous to the one arising in the case
of the Laplacian [37]. The reason is that the Dirac operator on surfaces behaves in a similar
manner as the Laplacian under a conformal change of the metric: De2ω g = e−ωDg, that is, the
operator is multiplied by a function on the left. Another manifestation of this phenomenon
can be found in [38, Theorem 1.1].

Remark 1.5. If we consider a locally minimal metric for λ1, then we can always take m = 1 in
the criticality condition (1.2). Indeed, for such a metric, tangent lines to different eigenvalue
branches for λ1 cannot intersect at one point, as that would imply that some variations of the
metric decrease λ̄1, contradicting the minimality. Hence, all those tangent lines are horizontal
and the derivatives of all the branches of λ1 evaluated at such a metric must vanish. The
exact expression for the derivative obtained in (2.1) implies that all λ1-eigenspinors must have
constant length.

A statement analogous to Proposition 1.2 holds for conformally critical metrics for Laplace eigenval-
ues. In that case, condition (1.2) can be phrased as existence of a map to a unit sphere by eigenfunctions
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4 | M. Karpukhin et al.

with the same eigenvalue, which turns out to be equivalent to the harmonicity of the map. Since
eigenspinors are sections of non-trivial bundles, they do not form a map to a sphere, but rather to a
projective space (see [26, Chapter 1.4]).

Let ψ1, . . . , ψm be Dg-eigenspinors such that ψj = (ψj+, ψj−) where ψj+ ∈ �(S), ψj− ∈ �(S̄). It follows
that (ψj+, ψ̄j−) is a section of S ⊕ S. If Z = {p ∈ M |ψ1(p) = · · · = ψm(p) = 0}, then we can define a map
� : M \ Z → CP

2m−1 given by

� = [ψ1+ : ψ̄1− : · · · : ψm+ : ψ̄m−]. (1.3)

We show that the map � extends continuously to the whole surface M, see Lemma 2.2. One of the main
observations of the present paper is that if the eigenspinors satisfy the criticality condition (1.2), then
the map � is harmonic. This should be compared to the analogous result for the Laplacian [15, 37].

Theorem 1.6. Let (M, g) be a compact oriented surface with spin structure S. Suppose that
ψ1, . . . , ψm are eigenspinors on M with Dgψj = λψj, λ �= 0 and |ψ1|2g + . . . + |ψm|2g = 1 on M. Then
the map � : M → CP

2m−1 given in homogeneous coordinates by [ψ1+ : ψ̄1− : . . . : ψm+ : ψ̄m−] is
harmonic.

Observe that not all harmonic maps to CP
2m−1 have the form (1.3). In Definition 2.4 we identify a

class of harmonic maps called quaternionic harmonic, which turn out to be exactly the maps formed by
Dirac eigenspinors satisfying (1.2). As a result, there is a two-way correspondence between conformally
critical metrics and quaternionic harmonic maps to CP

2m−1 for some m > 0. For the precise statement
we refer to Proposition 2.6 below.

Finally, we consider criticality condition in the space of all Riemannian metrics and spin structures.
It turns out that for a metric to be critical in this larger space, the quaternionic harmonic map � needs
to be additionally conformal, see Section 4 for precise statements.

1.4 Conformal minimisers on the torus
It has been observed in [33] that the conformal optimisation of the Laplace eigenvalues is closely
connected to the min-max theory for the energy functional on the space of sphere-valued maps. In
view of Theorem 1.6 and Proposition 2.6, it is natural to expect that conformal minimisation of Dirac
eigenvalues is related to the min-max theory for the energy functional on the space of maps to projective
spaces. In Section 3 we present first results in this direction yielding two applications: we obtain a
geometric proof of Bär’s inequality (1.1) and, more importantly, we show that the flat metric on a torus
is λ̄1-conformally minimising on many conformal classes for either spin structure. Below we state our
results for the trivial spin structure on the torus; see Section 3.2 for analogous statements for the non-
trivial spin structures.

For any vector (a, b) ∈ R
2, b �= 0, one has the lattice � = �(a,b) = Z(1, 0)+Z(a, b) and the corresponding

flat torus T
2 = R

2/�a,b with the flat metric ga,b induced by the projection map. It is well-known that any
conformal class contains a unique flat metric of unit area, and the moduli space of conformal classes
is parametrised by the points (a, b) such that 0 ≤ a ≤ 1/2 and a2 + b2 ≥ 1. Let [ga,b] be the conformal
class containing the metric ga,b.

The trivial spin structure S0 on a torus is a trivial line bundle, and the spinors can be simply viewed
as pairs of complex functions. An elementary computation shows that

λ̄1(T
2, ga,b, S0) = 2π√

b
.

The following theorem is one of the main results of the paper.

Theorem 1.7. For all 0 ≤ a ≤ 1/2 and b > 2π , one has

�1(T
2, [ga,b], S0) = λ̄1(T

2, ga,b, S0) = 2π√
b

.

Furthermore, the flat metric is the unique smooth minimiser.

The proof of Theorem 1.7 is given in Section 3.2; in fact, we prove a more general Theorem 3.5, which
also applies to non-trivial spin structures. It follows from the argument that for the trivial spin structure,
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Dirac Eigenvalue Optimisation | 5

the only natural smooth candidate for the minimiser is the flat metric. Together with the existence
result of Theorem 1.1, this leads us to the following conjecture.

Conjecture 1.8. For the trivial spin structure S0 on the torus T
2 one has

�1(T
2, [ga,b], S0) =

⎧⎨⎩ 2π√
b

if b ≥ π ;

2
√

π if b ≤ π .

In other words, we conjecture that either the minimiser is flat, or there is no smooth minimiser and
the minimising sequence degenerates to a “bubble”. If true, this contrasts with the case of the Laplacian,
for which bubbling cannot occur for conformally maximal metrics for the first eigenvalue on surfaces
of positive genus [39].

Remark 1.9. Theorem 1.7 and, more generally, Theorem 3.5, can be compared with the similar
statements for the first Laplace eigenvalue. In that case, flat metrics are only known to be
maximisers if a2 + b2 = 1 [17]. Moreover, as follows from [18, 39], flat metrics cannot be
maximisers for b ≥ π/2. We also refer to [1] for some earlier results on the comparison of
Dirac and Laplace eigenvalues on the 2-torus.

1.5 Plan of the paper
We start by proving Proposition 1.2 in Section 2.1, which is done similarly to the analogous results for
Laplace and Steklov eigenvalues [16, 21, 32, 37]. Section 2.2 contains the necessary background material
on harmonic maps to CP

n, which allows us to prove Theorem 1.6 in Section 2.3. We then investigate
additional properties satisfied by the maps given by eigenspinors (1.3), leading us to the notion of
quaternionic harmonic maps, see Definition 2.4. In particular, Section 2.4 contains Proposition 2.5 stating
that any quaternionic harmonic map � : M → CP

2m−1 induces a spin structure on M such that the
components of � are Dirac eigenspinors. This yields the converse to Theorem 1.6, see Proposition 2.6.
Some explicit examples of quaternionic harmonic maps are presented in Section 2.5.

In Section 3, we specialise to the first non-zero Dirac eigenvalue. For a conformal class C and
a spin structure S on M, Theorem 3.3 gives a characterisation of �1(M,C, S) in terms of the energy
of quaternionic harmonic maps. Recall that by Remark 1.5, the minimisers for λ1 yield a map to
CP

1. Furthermore, Definition 2.4 of a quaternionic harmonic map to CP
1 essentially reduces to non-

holomorphicity (up to a condition on branch points). Thus, informally, Theorem 3.3 states that the
conformal minimum of the first normalised Dirac eigenvalue equals to the square root of the lowest
possible energy of a non-holomorphic harmonic map to CP

1. Bär’s inequality then follows from a well-
known fact that for M = S

2, the lowest energy of a non-constant harmonic map M → CP
1 = S

2 is 4π

and can be achieved on an anti-holomorphic map given by reflection across the equator [11]. Our main
application of Theorem 3.3 is Theorem 3.5, which is an extension of Theorem 1.7. It characterises flat
metrics as unique λ̄1-conformal minimisers for many conformal classes on the torus. The proof uses
similar ideas as in the sphere case, with the main new ingredient being [22, Corollary 6.6], which states
that any harmonic map T

2 → S
2 of energy below 4π is a map to the equator S

1 ⊂ S
2.

Finally, in Section 4 we investigate globally critical metrics for Dirac eigenvalues. Our main result is
Proposition 4.12, which states that globally critical metrics correspond to quaternionic harmonic maps
to CP

2m−1 that are branched minimal immersions.

2 Conformally Critical Metrics and Harmonic Maps
2.1 Criticality condition in the conformal class
The following definition is a Dirac analogue of the notion of critical metrics for Laplace eigenvalues,
see [15, 16, 37] (note that the term “extremal” is sometimes used instead of “critical”). For an analytic
variation g(t) of g, the eigenvalues form analytic branches, see for example, [10] for an explanation of
this in the context of Dirac eigenvalues. However, for multiple eigenvalues, the multiplicity is usually
destroyed by the perturbation and the enumerated eigenvalues λk are not analytic due to the fact that
different analytic branches correspond to the k-th eigenvalue for t > 0 and t < 0. Nevertheless, the right
and left derivatives of λk(g(t)) exist and can be defined in the following way: if l is the multiplicity of
λk(g), then there exist analytic families of real numbers λ(1)(t), . . . , λ(l)(t) ∈ R and spinors φ(1)(t), . . . , φ(l)(t)
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6 | M. Karpukhin et al.

orthonormal in L2(g(t)), such that Dg(t)φ
(j)(t) = λ(j)φ(j)(t) for j = 1, . . . , l. Then the left derivative of λk(g(t))

at g is

d
dt

λk(g(t))
∣∣∣
t=0−

= d
dt

λ(j)(t)
∣∣∣
t=0

for some j such that λk(g(t)) = λ(j)(t) for t < 0. The right derivative is defined similarly.
The existence of the left and right derivatives makes the following definition possible.

Definition 2.1. Let M be an oriented surface endowed with a conformal class C and a spin
structure S. We say that g ∈ C is λ̄k-conformally critical if for any analytic family of smooth
metrics g(t) ∈ C, g(0) = g, t ∈ (−ε, ε), one has(

d
dt

λ̄k(M, g(t), S)

∣∣∣
t=0−

)(
d
dt

λ̄k(M, g(t), S)

∣∣∣
t=0+

)
≤ 0.

Proof of Proposition 1.2. Given an analytic one-parameter family of metrics g(t) = e2ω(t)g, t ∈ (−ε, ε)
with ω(0) = 0, let ψ(t) be an analytic family of eigenspinors associated to the analytic eigenvalue branch
λ(j)(t), λ(j)(0) = λk(g). Then the derivative of λ(j)(t) is

dλ(j)

dt
(t) = −λk(g)

∫
M

ω̇(t)|ψ |2g(t)dvg(t). (2.1)

Formula (2.1) was obtained in [10], but we provide a proof here for the sake of completeness. Taking
the derivative with respect to t of the eigenvalue equation Dg(t)ψ(t) = λ(j)(t)ψ(t) and using that Dg(t) =
e−ω(t)Dg(0) yields

0 = −ω̇(t)Dg(t)ψ(t) + Dg(t)ψ̇(t) − λ̇(j)(t)ψ(t) − λ(j)(t)ψ̇(t).

We then take the Hermitian product with ψ(t) and integrate over (M, g(t)), using that Dg(t) is self-adjoint:

0 =
∫

M
−ω̇(t)λ(j)(t)|ψ(t)|2g(t) + 〈ψ̇ ,Dg(t)ψ〉 − λ̇(j)(t)|ψ(t)|2g(t) − λ(j)(t)〈ψ̇ , ψ〉dvg(t)

= −λ(j)(t)
∫

M
ω̇(t)|ψ |2dvg(t) − λ̇(j)(t)

∫
M

|ψ |2dvg(t),

which gives the desired formula.
We now show that if g is λ̄k-conformally critical, then for any ω̇ ∈ C∞(M) with

∫
M ω̇dvg = 0, there exists

ψ ∈ Ek(g) such that

∫
M

ω̇|ψ |2gdvg = 0.

Let g(t) = eω̇tg. Since g is conformally critical, without loss of generality we have

dλ̄k

dt

∣∣∣
t=0−

≥ 0 and
dλ̄k

dt

∣∣∣
t=0+

≤ 0.

Since
∫

M ω̇dvg = 0, this implies the existence of φ1, φ2 ∈ Ek(g) such that

∫
M

ω̇|φ1|2gdvg ≥ 0 and
∫

M
ω̇|φ2|2gdvg ≤ 0,

and taking a linear combination of these two spinors yields the desired ψ .
Finally, we show that one can take a collection ψ1, . . . , ψm of λk(g)-eigenspinors such that

∑ |ψj|2 = 1.
Let

W = conv{|ψ |2, ψ ∈ Ek(g)} ⊂ C∞(M)
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Dirac Eigenvalue Optimisation | 7

be the convex hull of the |ψ |2, and suppose on the contrary that 1 /∈ W . Since W is a finite dimensional
convex cone, we can apply the Hahn–Banach theorem to separate 1 from W : there exists ξ ∈ C∞(M)

such that ∫
M

ξdvg > 0,∫
M

ξ |ψ |2dvg ≤ 0 ∀ψ ∈ Ek(g).

Let ξ0 = ξ − 1
Vol(M,g)

∫
M ξdvg, so that

∫
M ξ0 = 0. By the previous result, there exists ψ ∈ Ek(g) such that

0 =
∫

M
ξ0|ψ |2dvg

=
∫

M
ξ |ψ |2dvg − 1

Vol(M, g)

∫
M

ξdvg

∫
M

|ψ |2dvg < 0,

a contradiction so 1 ∈ W .
We now prove Proposition 1.2 in the other direction. Let ψ1, . . . , ψm ∈ Ek(g) be such that 1 = ∑ |ψj|2,

and assume without loss of generality that λk(g) < λk+1(g). Suppose, on the contrary, that g is not λ̄k-
conformally critical. Then there exists an analytic family of smooth metrics g(t) with constant volume
and dg

dt = ω̇g, such that the left and right derivatives of λ̄k at g(0) = g are either both negative or both
positive. Without loss of generality, assume they are both negative. There exists a basis φ1, . . . , φl ∈ Ek(g),
such that the derivative of any eigenvalue branch λ(j) at g is given by − ∫

M ω̇|φj|2dvg for some φj. Since
λk(g) < λk+1(g), the right derivative of λk(g(t)) at g must be the biggest right derivative of all the branches
at g. So for all φ ∈ Ek(g), − ∫

M ω̇|φ|2dvg must be negative. Then

0 =
∫

M
ω̇dvg =

m∑
j=1

∫
M

ω̇|ψj|2dvg > 0,

and we get a contradiction. �

2.2 Harmonic maps to CP
n

In this section we review the necessary facts about the geometry of harmonic maps. We are mainly
concerned with maps from surfaces to CP

n, so this falls into the setting of harmonic maps between
Kähler manifolds. We refer to [14] for a more comprehensive exposition.

Given a map � : (M, g) → (N, g̃), its energy E(�) is given by

E(�) = 1
2

∫
M

|d�|2dvg,

where | · | is the Hilbert–Schmidt norm computed with respect to metrics g, g̃. The critical points of the
energy functional are called harmonic maps.

The complexification dC� : TCM → TCN induces the maps ∂� : T(1,0)M → T(1,0)N and ∂̄� : T(0,1)M →
T(1,0)N, obtained by composing the restriction of dC� on a corresponding subspace of TCM with the
projection onto T(1,0)N. If manifolds (M, g) and (N, g̃) are Hermitian, then one can readily see that |d�|2 =
2(|∂�|2 + |∂̄�|2), and hence

E(�) =
∫

M
|∂�|2dvg︸ ︷︷ ︸
E(1,0)(�)

+
∫

M
|∂̄�|2dvg︸ ︷︷ ︸
E(0,1)(�)

.

In terms of the corresponding Kähler forms ωM, ωN, one has that

|∂�|2 − |∂̄�|2 = 〈ωM, �∗ωN〉. (2.2)
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8 | M. Karpukhin et al.

Therefore, if M, N are Kähler, then the difference E(1,0)(�)−E(0,1)(�) depends only on the homotopy class
of the map �. As a result, � is harmonic if and only if � is a critical point E(1,0), which is in turn if and
only if � is a critical point of E(0,1).

We now consider the case N = CP
n. The holomorphic tangent bundle T(1,0)

CP
n of the complex

projective space can be identified with the space HomC(L, L⊥) of C-linear maps from the tautological
bundle L over CP

n to its orthogonal complement L⊥. Explicitly, let h : T(1,0)
CP

n → HomC(L, L⊥) be this
identification. Then for a vector Z ∈ T(1,0)

p CP
n, the corresponding linear map h(Z) : L → L⊥ is given by

h(Z)(l) :=
⎧⎨⎩0 if l = 0

πL⊥
p

∂f
∂z (0) otherwise,

where Lp is a point p viewed as a line in C
n+1, l ∈ Lp, πL⊥

p
is the orthogonal projection onto L⊥

p , φ : U → CP
n

is a map from a neighbourhood of 0 in C such that φ(0) = p, ∂φ

∂z (0) = Z, and f : U → C
n+1 is such that

f (0) = l and f (z) ∈ φ(z). The map h(Z) does not depend on the choice of φ and f .
The space HomC(L, L⊥) is endowed with a Hermitian metric and a holomorphic connection ∇ induced

from a trivial Cn+1-bundle over CP
n. If we consider CP

n with its usual complex structure and Fubini-
Study metric gFS of constant holomorphic curvature 4, then h preserves both the metric and a complex
structure. For our purposes it is convenient to identify CP

1 with the unit sphere S
2, thus, instead we

consider the metric gCPn = 4gFS, so that this identification is an isometry.
Let (M, g) be a surface endowed with a complex structure. Any map � : M → CP

n is given locally in
homogeneous coordinates as � = [F] for some nonvanishing function F : M → C

n+1. Then for Z ∈ T(1,0)M
one has

h(∂�(Z))(F) = πL⊥ dCF(Z), h(∂̄�(Z̄))(F) = πL⊥ dCF(Z̄).

From now on, the identification h is kept implicit.
It is easy to see that � is critical for E(0,1) if and only if one has

∇∂/∂z∂̄� = 0, (2.3)

that is, if and only if ∂̄� is an anti-holomorphic element of HomC(�∗L, �∗L⊥). If � is not holomorphic,
that is, if ∂̄� �≡ 0, then outside of finitely many points the image of ∂̄� forms a line in �∗L⊥. One can use
anti-holomorphicity of ∂̄� to extend this line bundle across zeroes of ∂̄�. The resulting line bundle is
called L−1, while �∗L is referred to as L0. Let us endow L−1 with the holomorphic structure induced from
the Hermitian metric on C

n+1. Then the map ∂̄� : L0 → L−1 becomes anti-holomorphic. To every such
map � one can associate a whole sequence of complex line bundles Li called harmonic sequence, see [9,
43] for further details. In the present paper we only need L−1.

With our convention that gCPn = 4gFS we have

|∂�|2 = 4
|πL⊥ ∂zF|2
|∂z|2|F|2 , |∂̄�|2 = 4

|πL⊥ ∂z̄F|2
|∂z̄|2|F|2 , (2.4)

where we write ∂z and ∂z̄ for ∂
∂z and ∂

∂ z̄ , respectively. Finally, we note that with our convention, integrating
(2.2) gives (see [14, p. 247])

E(1,0)(�) − E(0,1)(�) = 4π deg(�). (2.5)

2.3 Geometric criticality condition in the conformal class
Lemma 2.2. The map � defined by (1.3) extends continuously to the whole manifold M.

Proof of Lemma 2.2. The proof proceeds in two steps: first we investigate the behavior of a single spinor
ψj near its zeroes, and then consider the projectivisation [ψ1+ : ψ̄1− : . . . ].

Fix an eigenspinor ψ , and let p ∈ M be a zero of ψ , ψ(p) = 0. Let z be a local holomorphic coordinate
centered at p, and s0 be a local section of S with s0 ⊗ s0 = dz. We write

ψ = (f+s0, f̄−s̄0). (2.6)
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Expanding around p, we have

f±(z, z̄) = P±(z, z̄) + R±(z, z̄),

where P± is a homogeneous polynomial of order k± and R± corresponds to higher order terms. Without
loss of generality, we assume k− ≤ k+.

From the fact that ψ is an eigenspinor, we have ∂z̄f− = λ√
2|s0 |2 f̄+, that is,

∂z̄P− + ∂z̄R− = λ

2|s0|2 (P̄+ + R̄+).

The term ∂z̄P− is of order strictly less than k− or identically zero, while the terms on the right-hand side
are of order k+ ≥ k−. Hence we conclude that ∂z̄P− = 0, so that P−(z, z̄) = azk− for some a �= 0.

Looking at f+ and using again that ψ is an eigenspinor, we obtain that

P+(z, z̄) =
∑

k′+k′′=k+
k′≥k−

bk′ ,k′′ zk′
z̄k′′

,

with at least one of the coefficients bk′ ,k′′ being non-zero.
We now consider a family of eigenspinors ψ1, . . . , ψm. We again write ψj = (fj+s0, f̄j−s̄0), and similarly

we have the expansion in terms of Pj± and Rj±. Let Kj = min{kj+, kj−} and K = minj Kj. Then by the

previous reasoning, the limits limq→p
fj±

z(p)K are well defined for all j±, and at least one of them is equal
to 1 (to simplify notation, we suppose it is the case for f1−). Hence,

[ψ1+ : ψ̄1− : · · · : ψm+ : ψ̄m−] = [f1+ : f1− : · · · : fm+ : fm−]

= [f1+/zK : f1−/zK : · · · : fm+/zK : fm−/zK]

= [f1+/zK : 1 : · · · : fm+/zK : fm−/zK]

is a well defined projective point if z = 0, and we can set �(p) equal to it. �

Proof. of Theorem 1.6 Let z be some local holomorphic coordinate and s0 be a local section of S such
that s0 ⊗ s0 = dz. Write ψj = (fj+s0, f̄j−s̄0) and F = (f1+, f1−, f2+, f2−, . . . ). Locally, � is the projectivisation [F]
of F. By (2.3), in order to prove that � is harmonic it is sufficient to show that (∇d�)(∂z, ∂z̄) = 0 for any
choice of local coordinates.

As before, let L ⊂ CP
2m−1 × C

2m be the tautological bundle and L⊥ its orthogonal complement. Then

d�(∂z̄)(F) = πL⊥ ∂z̄F,

and

(∇d�(∂z̄, ∂z))(F) = πL⊥ ∂z (πL⊥ ∂z̄F) − d�(∂z̄)(πL∂zF), (2.7)

where we use πE to denote the orthogonal projection on the subspace E.
From the eigenvalue equation Dψj = λψj, we obtain

2|s0|2∂z̄fj+ = −λf̄j−,

2|s0|2∂zf̄j− = λfj+.

As a result,

∂z̄(fj+, fj−) = λ

2|s0|2 (−f̄j−, f̄j+). (2.8)
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10 | M. Karpukhin et al.

In particular, ∂z̄F is orthogonal to F, hence

d�(∂z̄)(F) = πL⊥ ∂z̄F = ∂z̄F.

Then

(∇d�(∂z̄, ∂z))(F) = πL⊥ ∂z∂z̄F − d�(∂z̄)(πL∂zF).

The first term on the right-hand side of (2.7) gives

πL⊥ (∂z∂z̄F) = λ

2
∂z

(
1

|s0|2
)

(−f̄1−, f̄1+, . . . ) + λ

2|s0|2 πL⊥ ∂z(−f̄1−, f̄1+, . . . )

= λ

2
∂z

(
1

|s0|2
)

(−f̄1−, f̄1+, . . . ),

where the eigenvalue equation is used to conclude that ∂z(−f̄1−, f̄1+, . . . ) = − λ
2|s0 |2 F and is annihilated

by πL⊥ .
The second term on the right-hand side of (2.7) gives

πL⊥ ∂z̄

( 〈∂zF, F〉
|F|2 F

)
= 〈∂zF, F〉

|F|2 ∂z̄F

= λ

2|s0|2
〈∂zF, F〉

|F|2 (−f̄1−, f̄1+, . . . ).

It then suffices to show that ∂z

(
1

|s0 |2
)

= 〈∂zF,F〉
|s0 |2 |F|2 . This follows from the condition |ψ1|2 + · · · + |ψm|2 = 1.

Indeed,

1 = |ψ1|2 + · · · + |ψm|2 = |F|2|s0|2

so ∂z|F|2 = ∂z

(
1

|s0 |2
)
. But ∂z|F|2 = 〈∂zF, F〉 + 〈F, ∂z̄F〉 = 〈∂zF, F〉. �

We can also observe that the metric g and the value of λ̄k(M, g, S) can be computed in terms of the
map �. Indeed, by (2.8) one has

|∂̄�|2g = 4
|∂z̄F|2

|F2||∂z|2g
= λ2

k(M, g, S),

so that g is proportional to g� = |∂̄�|2gg. In particular, λk(M, g� , S) = 1. Furthermore,

λ̄k(M, g, S)2 =
∫

M
|∂̄�|2g dvg = E(0,1)

g (�).

2.4 Maps by eigenspinors
Consider the inverse problem: when can a harmonic map to CP

2m−1 be written in terms of eigenspinors?
We first investigate what conditions are satisfied by such a map. Let � = [ψ1+ : ψ̄1− : · · · : ψm+ : ψ̄m−],
where ψj = (ψj+, ψj−) are eigenspinorsDψj = λψj satisfying |ψ1|2+· · ·+|ψm|2 = 1. We write ψj = (fj+s0, f̄j−s̄0)

and F = (f1+, f1−, . . . , fm+, fm−).
Consider I : C2m → C

2m given by

I(z1, . . . , z2m) = (−z̄2, z̄1, −z̄4, z̄3, . . . , −z̄2m, z̄2m−1).
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Then from (2.8) we have

[
∂̄�(∂z̄)

]
(F) = πL⊥ ∂z̄F = λ

2|s0|2 I(F)

so ∂̄� = λ
2|s0 |2 I and thus L−1 = I(L0), where we recall that L−1 is the image of ∂̄� and L0 = �∗L, see

Section 2.2.

Remark 2.3. The map I can be viewed as the quaternionic structure on C
2m. Indeed, C

2m is
isomorphic to the quaternionic spaceH

m with the identification (z1, z2) → z1+jz2. Then the map
I is the multiplication by the element j on the right. We also note that the condition L−1 = I(L0)

appears naturally in the context of harmonic maps to quaternionic projective spaces, see [42,
p. 284] and Remark 2.9.

Furthermore, we have
[
∂̄�(∂z̄)

]
(F) = λ

2 |F|2I(F), and hence all the zeroes of ∂̄� correspond to the zeroes
of F (i.e., the common zeroes of ψ1, . . . , ψm), and are of even order.

This leads to the following definition.

Definition 2.4. A harmonic map � : (M,C) → CP
2m−1 is called quaternionic harmonic if

(1) L−1 = I(L0),
(2) all the zeroes of ∂̄� are of even order.

The geometric meaning behind this definition and examples are discussed in Section 2.5 below. We
have seen that all harmonic maps by eigenspinors arising from the critical points of Dirac eigenvalues
are quaternionic harmonic. The following proposition establishes the converse.

Proposition 2.5. Suppose that � : M → CP
2m−1 is a quaternionic harmonic map and let D = (∂̄�)

be the zero divisor of ∂̄�. Then � induces a natural spin structure S� = L∗
0 ⊗ [ 1

2 D
]

on M.
Furthermore, for a metric g� = |∂̄�|2gg (g ∈ C is arbitrary), one can choose a collection of Dg�

–
eigenspinors ψ1, . . . , ψm such that

� = [ψ1+ : ψ̄1− : · · · : ψm+ : ψ̄m−]

and

m∑
j=1

|ψj|2g�
= 1. (2.9)

Proof. Since � is harmonic, ∂̄� : T(0,1)M → Hom(L0, L−1) is an anti-holomorphic morphism of line
bundles.

We have the holomorphic isomorphism ι : L∗
0 → I(L0), given for any α ∈ L∗

0 by

α(l) = 〈ι(α), I(l)〉,

and by assumption, L−1 = I(L0). Thus, Hom(L0, L−1) ∼= L∗
0 ⊗ I(L0) ∼= L∗

0 ⊗ L∗
0. Furthermore, ∂̄� : T(0,1)M →

Hom(L0, L−1) is an anti-holomorphic map. Composing the two, one has an anti-holomorphic map

T(0,1)M → L∗
0 ⊗ L∗

0

whose dual is

L0 ⊗ L0 → K̄.
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12 | M. Karpukhin et al.

Taking the complex conjugate of both sides, one has a holomorphic map

L0 ⊗ L0 → K

and, finally, using the metric on L0, we arrive at a holomorphic map

A : L∗
0 ⊗ L∗

0 → K

given by

A(s1, s2) = dz ⇐⇒ 〈(∂̄0�)(∂z̄)(s
�

1), I(s�

2)〉 = 1, (2.10)

where s�

i ∈ L̄0 is defined via si(f ) = 〈f , s�

i 〉, f ∈ L0. In particular, if fi ∈ L0 is dual to si, that is, si(fi) = 1, then

fi = s�

i

|s�

i |2
= |fi|2fi = 1

|si |2 fi and

〈(∂̄�)(∂z̄)(f1), I(f2)〉 = |f1|2|f2|2. (2.11)

Similarly, if s0 is a local meromorphic section satisfying A(s0, s0) = dz, then s̃0, the dual of s�

0, is a local
anti-meromorphic of L∗

0 section satisfying (∂̄�)(∂z̄) = s̃0 ⊗ s̃0. Since the poles of s0 correspond to zeroes
of s̃0, we conclude that the zeroes of A have the same order as the zeroes of ∂̄�.

Let D be the zero divisor of A as a section of L0 ⊗ L0 ⊗ K, that is,

D := (A) =
∑
p∈M

ordp(A)p

and let [D] be the associated holomorphic line bundle. By construction

[D] ∼= L0 ⊗ L0 ⊗ K,

hence, combining it with A yields a holomorphic isomorphism

Ã :
(

L∗
0 ⊗

[
1
2

D
])

⊗
(

L∗
0 ⊗

[
1
2

D
])

∼−→ K,

where we used that the zeroes of ∂̄0� (and hence of A) are of even order in order to define
[ 1

2 D
]
. In

particular, this implies that S� := S = L∗
0 ⊗ [ 1

2 D
]

is a spin structure on M.
Let z be a local coordinate on M. Define s0 to be a local holomorphic section of S such that

Ã(s0 ⊗s0) = dz, and consider F0 to be a (non-vanishing) holomorphic section of S∗ = L0 ⊗[− 1
2 D

]
such that

s0(F0) = 1. If η is a (global) holomorphic section of
[ 1

2 D
]

such that (η) = 1
2 D, then one can write s0 = s⊗η,

F0 = F ⊗ η−1, where s, F are local sections of L∗
0 and L0, respectively, satisfying s(F) = 1. In particular, F is

a local holomorphic section of L0 satisfying the following three conditions:

(1) (F) − 1
2 D ≥ 0.

(2) As a section of L0, F is a local C2m-valued function such that F is a local lift of � outside of the
support of D. In particular, since s(F) ≡ 1, we see that F ⊗ s0 = F ⊗ s ⊗ η is a globally defined section
of C2m ⊗ S, whose projectivisation is equal to � outside of the support of D. Thus, the map � is a
map by spinors in the sense of (1.3).

(3) Since F is holomorphic, one has ∂z̄F ⊥ F. Hence,
[
∂̄�(∂z̄)

]
(F) = ∂z̄F, and by (2.11) one has

∂z̄F = |F|2I(F).

If we define the metric on M (with conical singularities at zeroes of F) by 2|s0|2g = |F|−2, then (2.8)
implies that � is a map by eigenspinors with eigenvalue λ = 1 and 2|F ⊗ s0|2 = 1. Moreover, (2.8)
implies that

|∂�|2g = 4
|∂z̄F|2

|F2||∂z|2g
= 4|F|4|s0|2g = 1,

that is, g = g� . Changing F to F̃ = √
2F we obtain that |F̃|2|s0|2 = 1 and F̃ ⊗ s0 defines the same

map �. Defining ψ as in (2.6) using F̃ instead of F yields (2.9). Finally, by Lemma 2.2 any map by
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eigenspinors can be extended to the set of common zeroes, and this extension has to coincide with
� on the support of D by continuity. �

We summarise the results of this section in the following proposition.

Proposition 2.6. Let M be an oriented surface and C be a conformal class of metrics on M. Suppose
that g ∈ C is λ̄k-conformally critical metric for a spin structure S. Then there exists a collection
ψj = (ψj+, ψj−), j = 1, . . . , m of λk-eigenspinors, such that the map � : (M,C) → CP

2m−1 given in
homogeneous coordinates by

� = [ψ1+ : ψ̄1− : · · · : ψm+ : ψ̄m−]

is a quaternionic harmonic map. Moreover, λ̄k(M, g, S)2 = E(0,1)
g (�) and g = αg� = α|∂̄�|2gg for

some α > 0.
Conversely, let � : (M,C) → CP

2m−1 be a quaternionic harmonic map, and let S� be the spin
structure induced by � in the sense of Proposition 2.5. Then the metric g� = |∂̄�|2gg is λk-
conformally critical metric for a spin structure S� , where k − 1 is the number of eigenvalues
λj(M, g� , S�) satisfying 0 < λj(M, g� , S�) < 1. Furthermore, one has λ̄k(M, g� , S�)2 = E(0,1)

C (�).

2.5 Examples of quaternionic harmonic maps
The condition (2) in Definition 2.4 is fairly geometric, so in this section we mainly focus on the geometric
meaning of the condition (1). The simplest case is m = 1, for which I(L0) = L⊥

0 and the condition L−1 = I(L0)

reduces to ∂̄� �≡ 0, that is, � is a non-holomorphic harmonic map. In particular, any non-constant anti-
holomorphic map satisfies condition (1) of Definition 2.4.

If m > 1, it is possible to construct maps satisfying L−1 = I(L0) from holomorphic maps to CP
2m−1

using [8, Section 4]. To any linearly full holomorphic map � : M → CP
2m−1 one can associate its

Frénet frame {� = �0, �1, . . . , �2m−1}, where �j : M → CP
2m−1 are mutually orthogonal and satisfy

Span{�0, . . . , �j} = Span{�, ∂z�, . . . , ∂ j
z�} as lines in C

2m−1. This is a special example of a harmonic
sequence [43], in particular, �j is harmonic for all j = 0, . . . , 2m − 1 and �2m−1 is anti-holomorphic.
In [8, Theorem 4.2] it is shown that if �2m−1 = I(�0), then �2m−1−j = I(�j) for all j = 0, . . . , 2m − 1 and, in
particular, �m−1 = I(�m). Setting � = �m yields L−1 = Span{�m−1}, thus, � is a harmonic map satisfying
condition (1) of Definition 2.4. For m = 2, the relation �2m−1 = I(�0) is satisfied if and only if � is horizontal
with respect to the projection π : CP3 → HP

1, that is, Span{�, ∂z�} ⊥ I(�), see [8, Theorem 4.5]. Indeed,
differentiating 〈∂z�, I(�)〉 = 0 yields 〈∂2

z �, I(�)〉 = 0, hence, I(�) = I(�0) = �3.

Example 2.7. Consider the holomorphic map � : CP1 → CP
3 given by �([1 : z]) = [1 : z3 : −√

3z :√
3z2]. It is easy to check that � is horizontal, �1 = [−3z̄ : 3z2 :

√
3(2|z|2 − 1) :

√
3z(2 − |z|2)],

�2 = I(�1). Setting � = �2 gives a harmonic map satisfying condition (1) of Definition 2.4. One
computes

g� = |∂̄�|2gg = 4
|〈∂z�1, I(�1)〉|2

|�1|4 dzdz̄ = 16dzdz̄
(1 + |z|2)2

= 4gS2 .

Hence, ∂̄� has no zeroes and � is a quaternionic harmonic map. Furthermore, this computation
shows that the round metric on the sphere is critical for a Dirac eigenvalue λk such that
λ̄k(S

2, g, S)2 = 16π , so that λk = 2, that is, k = 2. Therefore, we have established that the round
metric on the sphere is λ̄2-critical.

Example 2.8. The previous example is a special case of the so-called Veronese sequence [9, Section
5]. Namely, for any m one can consider a holomorphic map � : CP1 → CP

2m−1 given by

�([1 : z]) =
[

1 :
√

2m − 1z : . . . :

√(
2m − 1

j

)
zj : . . . : z2m−1

]
.
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14 | M. Karpukhin et al.

In [9, Theorem 5.2] it is computed that

�2m−1([1 : z]) =
[
−z̄2m−1 : . . . : (−1)2m−1−j

√(
2m − 1

j

)
z̄2m−1−j : . . . : 1

]
.

Therefore, �2m−1 = Ĩ(�0), where

Ĩ([z0 : . . . : z2m−1]) = [−z̄2m−1 : z̄2m−2 : . . . : (−1)2m−1−jz̄2m−1−j : . . . : 1].

Consider A ∈ PU(2m) given by

A([z0 : . . . : z2m−1]) =
[z0 : z2m−1 : −z1 : z2m−2 : . . . : (−1)jzj : z2m−1−j : . . . : (−1)m−1zm−1 : zm],

then AĨ = IA, so that A�2m−1 = I(A�0). Since A is an isometry, one has (A�)j = A�j, hence
� = A�m satisfies L−1 = I(L0). Furthermore, one computes using notation from [9, Theorem
5.2] that

g� = 4γm−1dzdz̄ = m2gS2 .

As a result, ∂̄� has no zeroes and � is a quaternionic harmonic map. In fact, one sees that
the map � is a map by Dirac eigenspinors on the round sphere associated with the eigenvalue
λk = m, that is, k = m(m+1)

2 + 1.

Remark 2.9. The notion of quaternionic harmonic maps is related to the notion of quaternionic
holomorphic maps studied in [22]. Consider the twistor projection π : CP2m−1 → HP

m−1, then
it follows from [22, Lemma 2.7] that � : M → CP

2m−1 satisfies L−1 = I(L0) if and only if π� is
a quaternionic holomorphic map. The latter is equivalent to saying that π∗∂̄� = 0, that is, the
∂̄-derivative of � is vertical.

3 �1(M, C, S) as Minimum of Energy
In the present section we aim to obtain a characterisation for the quantity �1(M,C, S) in terms of the
variational theory for the energy functional. We are motivated by the Hersch’s inequality [28] and the
min-max characterisation for maximisers of Laplace eigenvalues [33]. Since we are dealing exclusively
with the first eigenvalue, Remark 1.5 implies that it is sufficient to consider maps to CP

1.

3.1 Energy of maps by eigenspinors
For a given spin structure S on M and a conformal class C, we consider the set

�C,S = {� = [ψ+ : ψ̄−] : M → CP
1 | ∃g ∈ C, λ �= 0,Dgψ = λψ}

of all maps obtained from eigenspinors (with non-zero eigenvalues) as described in the previous section.

Lemma 3.1. Let ψ = (ψ+, ψ−) be an eigenspinor on (M, S, g), with eigenvalue λ �= 0. Let � = [ψ+ :
ψ̄−] : M → CP

1, so that � ∈ �C,S. Then

E(0,1)(�, [g]) = λ2 Vol(M, g).

In particular, for any conformal class C and any spin structure S on M one has

�1(M,C, S)2 = inf
�∈�C,S

E(0,1)(�,C). (3.1)
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Dirac Eigenvalue Optimisation | 15

Proof. Let Z = {p ∈ M : ψ(p) = 0} (note that it is a discrete set). Let

U(ψ , g) =
∫

M\Z

|Dgψ |2g
|ψ |2g

dvg,

so that U(ψ , h) = U(ψ , g) for any h ∈ [g].
Define the metric gψ = |ψ |4gg on M \ Z, so that |ψ |2gψ

= 1. On one hand, we have

U(ψ , gψ) =
∫

M\Z
|Dgψ

ψ |2gψ
dvgψ

=
∫

M\Z
|Dgψ |2gψ

dvg

=
∫

M\Z
λ2|ψ |2gψ

dvg

= λ2 Vol(M \ Z, g) = λ2 Vol(M, g).

On the other hand, let s0 be a local holomorphic section of S such that s0 ⊗ s0 = dz and write ψ =
(f+s0, f̄−s̄0), F = (f+, f−). Then

|Dgψ |2g
|ψ |2g

= 4
|s0|6g|∂z̄F|2
|s0|2|F|2 = 4

|∂z̄F|2
|∂z̄|2g|F|2

and since ψ is an eigenspinor, ∂z̄F ⊥ F so

|Dgψ |2g
|ψ |2g

= 4
|πF⊥ ∂z̄F|2
|∂z̄|2g|F|2 = |∂̄�|2g,

where we used (2.4) in the last equality. Integrating we obtain

U(ψ , g) =
∫

M\Z
|∂̄�|2dvg = E(0,1)(�, [g]).

Taking the infimum over all maps in �C,S yields (3.1). �

As a first application, we give a more geometric proof of (1.1).

Theorem 3.2 ([7]). Let M = S
2 with its unique spin structure S. Then for any Riemannian metric

g one has

λ2
1(M, g, S) Area(M, g) ≥ 4π ,

with equality if and only if g is a round metric.

Proof. Write S for the unique spin structure on M = S
2. Let ψ be a first eigenspinor, Dgψ = λ1ψ . It is

known that λ1 > 0. Let � = [ψ− : ψ̄+] : M → CP
1 be its associated map. Then

Index(∂̄�) = −χ(M) − deg(�)χ(CP1)

where Index(∂̄�) is the total number of zeroes of ∂̄� counted with multiplicity, χ is the Euler
characteristic and deg is the mapping degree (see e.g., [13] for the proof). Thus,

deg(�) = −χ(M) + Index(∂̄�)

χ(CP1)
≤ −1.
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16 | M. Karpukhin et al.

Set d = − deg(�) ≥ 1. By Lemma 3.1,

E(0,1)(�) = λ2
1 Area(S2, g).

Combining with (2.5) one has

λ2
1 Area(S2, g) = 4πd + E(1,0)(�) ≥ 4π .

Suppose we have the equality λ2
1 Area(S2, g) = 4π . Then d = 1 and E(1,0)(�) = 0, that is, � is an anti-

holomorphic diffeomorphism and, in particular, � is conformal. Hence, 1
2 |d�|2gg = �∗gCP1 and

1
2

|d�|2g = |∂�|2g + |∂̄�|2g = |∂̄�|2g = λ2
1(g).

So g is the round metric up to a constant scaling. �

Another possible way to use formula (3.1) is to apply calculus of variations techniques in order to
show that the infimum on the right-hand side is achieved on some critical point of the functional E(0,1),
that is, a harmonic map. This would provide an alternative way to establish the existence of minimising
metrics, that is, to reprove Theorem 1.1. However, the definition of the set �C,S is not particularly
geometric, which makes such an approach difficult. Instead, below we use Theorem 1.1 to provide a
more geometric formulation of (3.1).

We first observe that any non-holomorphic harmonic map to CP
1 satisfies condition (1) of Defini-

tion 2.4. Using this we can define

HC,S = {
� : (M, C) → CP

1 |� is harmonic � is non-holomorphic,

all the zeroes of ∂̄0� are of even order, and �∗L∗ ⊗
[

1
2

(∂̄0�)

]
∼= S

}
,

where the isomorphism on the right-hand side is given by Proposition 2.5. In particular, Proposition 2.5
implies that HC,S ⊂ �C,S. The following theorem states that the infimum on the right-hand side of (3.1)
is achieved on an element of HC,S, up to a formation of a bubble.

Theorem 3.3. Let S be a spin structure on M and C be a conformal class. Then

�1(M,C, S)2 = min
{

inf
�∈HC,S

E(0,1)
C (�), 4π

}
.

In particular, if inf�∈HC,S
E(0,1)
C (�) < 4π , then there exists � ∈ HC,S such that �1(M,C, S)2 =

E(0,1)
C (�).

Proof. It is known from [5] that �1(M,C, S)2 ≤ 4π , so it suffices to prove the equality in the case
inf�∈HC,S

E(0,1)(�) < 4π . In this case, let � ∈ HC,S such that E(0,1)(�) < 4π . Since HC,S corresponds to the
quaternionic harmonic maps, by Proposition 2.6 there exists a metric g� and eigenspinor ψ , Dg�

ψ = λψ ,
such that � = [ψ+ : ψ̄−]. Then by Lemma 3.1,

4π > E(0,1)(�) = λ2 Vol(M, g�) ≥ �1(M,C, S)2.

It follows from Theorem 1.1 that there exists a conformally minimal metric g with �1(M,C, S) =
λ̄1(M, g, S). By Theorem 1.6, we obtain a quaternionic harmonic map � : M → CP

1 induced by an
eigenspinor with eigenvalue λ1(M, g, S). So � ∈ HC,S and

�1(M,C, S)2 = λ̄1(M, g, S)2 = E(0,1)
C (�) ≥ inf

�∈HC,S

E(0,1)
C (�).

The reverse inequality is a consequence of Lemma 3.1 combined with the inclusion HC,S ⊂ �C,S. �
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Dirac Eigenvalue Optimisation | 17

3.2 Minimisers on the torus
In the last part of this section, we use the previous characterisation of conformally extremal metrics in
terms of harmonic maps to prove Theorem 3.5. As an example, and because this result will be needed
later, we compute the Dirac eigenvalues on the flat torus. We follow the method used in [24, Section
2.1] (see also [19]).

For any vector (a, b) ∈ R
2, b �= 0 one has a lattice � = �(a,b) = Z(1, 0)+Z(a, b) and the corresponding flat

torus T
2 = R

2/�a,b with the flat metric ga,b induced by the projection map. The spin structure is given
by a homomorphism χ : � → Z/2Z, so that the global sections of the spinor bundle S can be identified
with complex functions ψ on R

2 = C satisfying

ψ(z + γ ) = (−1)χ(γ )ψ(z) (3.2)

for all γ ∈ �, z ∈ C. The canonical bundle on T
2 is trivialised by a global section dz and the isomorphism

S ⊗ S → K is given by ψ1 ⊗ ψ2 	→ ψ1ψ2 dz. Since |dz|ga,b = 1, S̄ is identified with S via S̄ ⊗ K → S. With these
identifications, a global section of S ⊕ S̄ consists of two complex functions ψ+, ψ− on C, satisfying (3.2)
and the Dirac operator with respect to the flat metric ga,b is given by

D
(

ψ+
ψ−

)
= 2

(
0 ∂z

−∂z̄ 0

)(
ψ+
ψ−

)
.

The spectrum of D is best described in terms of the dual lattice �∗. Recall that �∗ is the lattice in
the dual space (R2)∗ defined as γ ∗ ∈ �∗ if and only if γ ∗(γ ) ∈ Z for all γ ∈ �. For a homomorphism
χ : � → Z/2Z, an affine lattice �∗

χ is defined as follows: ξ ∈ �∗
χ if and only if ξ(γ )+ 1

2 χ(γ ) ∈ Z. It is easy to
see that �∗

χ = �∗ + η, where η = 1
2

∑
j=1,2

χ(γj)γ
∗
j for some basis (γ1, γ2) of � and the dual basis (γ ∗

1 , γ ∗
2 ) of �∗.

Lemma 3.4. Let S be a spin structure on (T2, ga,b) and χ : � → Z/2Z be its associated homomor-
phism.

The Dirac spectrum on (T2, ga,b) is given by

Spec(D) = {±2π |ξ | : ξ ∈ �∗
χ

}
.

Proof. For a given constant spinor φ = (φ+, φ−) on R
2 and ξ ∈ �∗

χ consider the following spinor on R
2:

ψ(x, y) = e2π iξ(x,y)φ.

By construction, this spinor satisfies the periodicity conditions and corresponds to a spinor on T
2.

Complexifying ξ ∈ (R2)∗ gives an element in (C2)∗, which we denote by the same letter ξ . A quick
calculation gives

Dψ(x, y) = 4π i
2

(
0 ξ(1, −i)

−ξ(1, i) 0

)
︸ ︷︷ ︸

M

ψ(x, y).

Thus, the spinor ψ is an eigenspinor if it is an eigenvector of M, which happens if and only if φ has the
same property. It is easy to see that the eigenvalues of M are ±i|ξ |, hence

{±2π |ξ | : ξ ∈ �∗
χ } ⊂ Spec(D).

To have the equality between the two sets, it suffices to remark that {e2π iγ ∗
: γ ∗ ∈ �∗} is a basis of

L2(R2/�), so the spinors ψj, constructed from a basis of eigenvectors φj of M, form a basis of L2(�T)

when considering all γ ∗ ∈ �∗. �
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18 | M. Karpukhin et al.

Finally, let us describe the moduli space of flat tori with spin-structures. The spin structure S0

associated with a trivial homomorphism χ is accordingly called trivial. The moduli space of flat tori
endowed with S0 coincides with the usual moduli space of oriented flat tori, that is, one can always
arrange that |a| ≤ 1/2 and a2 + b2 ≥ 1. The Dirac operator for this structure has a non-trivial kernel
corresponding to constant spinors on R

2. For those values of a, b one has

λ1(T
2, ga,b, S0) = 2π

b
, λ̄1(T

2, ga,b, S0) = 2π√
b

. (3.3)

All the other spin structures are isomorphic after a change of basis of the lattice �, this spin-structure
is referred to as non-trivial and is denoted simply by S1. In this case we can arrange that χ(1, 0) = 0,
χ(a, b) = 1, |a| ≤ 1/2 and b2 + (|a| − 1/2)2 ≥ 1/4. The Dirac operator for S1 is invertible. For those values
of a, b one has λ1(T

2, ga,b, S1) = π
b and λ̄1(T

2, ga,b, S1) = π√
b
.

The main result of this section coincides with Theorem 1.7 for S0, and extends it to the case of S1.

Theorem 3.5. Let bS = 2π if S = S0 is the trivial spin structure on T
2, and bS = π

2 otherwise. Then
for all b > bS and all a, |a| ≤ 1/2, one has

�1(T
2, [ga,b], S) = λ̄1(T

2, ga,b, S) = dS
π√
b

,

where dS = 2 if S = S0 and dS = 1 otherwise. Furthermore, the flat metric is the unique smooth
minimiser.

We recall the following theorem, which appears as [22, Corollary 6.6]. Together with Theorem 3.3, it
is the main ingredient in the proof of Theorem 3.5.

Theorem 3.6 ([22]). If F : T2 → S
2 is a harmonic map with energy E(F) < 4π , then F is a map to a

circle S
1 ⊂ S

2.

Proof of Theorem 3.5. The proof proceeds in three steps: first Theorem 1.1 is used to show the existence
of a conformally minimal metric. Then, from this metric and the corresponding λ1-eigenspinors, we
obtain a harmonic map � : T2 → S

2 and compute its energy to apply Theorem 3.6. Finally, we use that
� is a harmonic map from the torus to S

1 constructed from eigenspinors to show that the conformal
factor |dz| = |s0|2 for the conformally minimal metric must be constant.

Let us first assume that the spin structure is trivial, that is, S = S0. Then by (3.3) we have that

�1(T
2, [ga,b], S0) ≤ 2π√

b
.

Hence, for b > π , the existence condition in Theorem 1.1 is satisfied and there exists a minimiser gmin

achieving �1(T
2, [ga,b], S0). Furthermore, since the genus of T2 is 1, this metric has no singularities.

For any such minimiser gmin by Proposition 1.6 and Remark 1.5, there exists an eigenspinor ψ =
(ψ+, ψ−) on T

2 such that

Dgmin ψ = λ1(T
2, gmin, S0)ψ and |ψ |2gmin

= 1 on T
2.

This eigenspinor gives rise to a harmonic map � : T2 → CP
1 = S

2, and by Lemma 3.1

λ1(T
2, gmin, S0)

2 Area(M, gmin) = E(0,1)(�).

Note that by [13], the degree d of a harmonic map from the torus to the sphere is either 0 or |d| ≥ 2.
In the second case, the map is holomorphic if d > 0 or anti-holomorphic if d < 0. Since � comes from
an eigenspinor with λ1 �= 0, it cannot be holomorphic (as that would imply Dψ = 0). At the same time,
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Dirac Eigenvalue Optimisation | 19

if � is anti-holomorphic, then λ1(T
2, gmin, S0)

2 = E(0,1)(�) = E(�) = 4|d|π > 4π , which contradicts the
upper bound on �1(T

2, [ga,b], S0). Hence, d = 0 and (2.5) implies that

E(�) = 2E(0,1)(�) + d = 2E(0,1)(�) = 2λ̄1(T
2, gmin, S0)

2 < 4π (3.4)

as long as b > 2π .
Therefore, by Theorem 3.6, � maps to a great circle S

1 ⊂ S
2 = CP

1. Up to a rotation of the sphere
we can assume that � = [φ : 1], where φ : T2 → S

1 ⊂ C is a harmonic map to a unit circle. By [12,
Section 7] one has φ(x, y) = e2π iγ ∗(x,y), γ ∗ ∈ �∗. By Proposition 1.6 one has that gmin is proportional to
g� = 1

2 |∂̄�|2ga,b
ga,b. Therefore, by (2.4) with F = (φ, 1) and L = CF we compute

g� = 2
|πL⊥ ∂zF|2

|F|2 ga,b = 2π2|γ ∗|2ga,b.

As a result, gmin is proportional to ga,b, and hence, flat.
For the non-trivial spin structure S1 the proof is the same with the main difference being

�1(T
2, [ga,b], S1) ≤ π√

b
,

so that the existence condition is satisfied for b > π/4. The corresponding map � to CP
1 has degree 0

and energy

E(�) = 2λ̄2
1(T

2, [ga,b], S1) = 2π2

b
,

which is smaller than 4π for b > π/2. Hence, � is a map to S
2 and the rest of the proof can be repeated

verbatim. �

Remark 3.7. Note that for b ≤ bS, it follows that �1(T
2, [ga,b], S) ≥ √

2π . Indeed, assuming
the opposite inequality, the arguments above imply that the harmonic map � : T2 → S

2,
corresponding to a λ̄1-conformally minimising metric gmin, has energy below 4π . It then
follows as above that gmin = ga,b. At the same time, by (3.3) (and its analogue for S1) one has
λ̄1(T

2, ga,b, S) ≥ √
2π , a contradiction.

Concerning the other conformal classes, (3.4) implies that if a minimising metric exists, then
it corresponds to a degree 0 harmonic map � : T

2 → CP
1 of energy less than 8π . According to

Proposition 2.5 any such map induces a spin structure on T
2, either the trivial S0 or the non-trivial

S1. For the trivial structure S0, to the best of our knowledge, the only known maps with these properties
are the maps to equator S

1 ⊂ CP
1, which by (3.3) and (3.4) have energy below 8π only for b > π . This

motivates Conjecture 1.8.

Remark 3.8. For the non-trivial spin-structure S1 and conformal classes [g0,b], 0 < b < 1
there exist maps of degree 0 into CP

1 with energy smaller than 8π . Those maps are Gauss
maps of rotationally symmetric cmc-surfaces in R

3 called Delaunay unduloids, see [3]. It was
conjectured in [3] that the corresponding (non-flat) metrics are conformally minimal for the
first eigenvalue. While the flat metric could be a minimiser for some b ≤ π

2 , it is difficult to
formulate a more precise conjecture in the case of S1. Note that it was shown in [6] that as
b → 0, �1(T

2, [ga,b], S1) → 2
√

π , which is consistent with the properties of the unduloids. It
seems plausible that in contrast to the trivial spin structure (cf. Conjecture 1.8), in the case of
S1, smooth minimisers exist for all conformal classes.

4 Minimal Surfaces and Critical Metrics
4.1 Dirac operator via Clifford multiplication
In the previous sections we used complex geometry to describe the Dirac operator. It is an especially
convenient point of view in the situation where the conformal class is fixed, because varying metric only
affects the metric on the spinor bundle. Once the conformal structure varies, the spinor bundle varies
as well. Thus, the complex geometric picture is not always the most convenient, and sometimes the
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20 | M. Karpukhin et al.

traditional definition of Dirac operator using the Clifford multiplication is more appropriate. We review
it in this section and present explicit formulas for the Clifford multiplication in local coordinates that
are used later on.

Throughout this section (M, g) is an oriented surface, S is a spin structure, �M = S ⊕ S̄ is a spinor
bundle and we consider the associated Hermitian metrics on S and S̄. The spin structure and the metric
define the maps μ

(1,0)
g : K ⊗ S̄ → S and μ

(0,1)
g : K̄ ⊗ S → S̄. Combining μ

(1,0)
g with

(
−μ

(0,1)
g

)
and zero maps

K ⊗ S̄ → S̄, K̄ ⊗ S → S, yields the map μg : TCM∗ ⊗ (S ⊕ S̄) → (S ⊕ S̄), which is sometimes called Clifford
multiplication. We will reserve this term for the adjoint map.

Definition 4.1. The Clifford multiplication is the C-bilinear map (·) : TCM ⊗ �M → �M given by
X · ψ = μg(X� ⊗ ψ), where X 	→ X� is an isomorphism between TCM and TCM∗ induced by the
Hermitian metric, see (2.10).

In local coordinates, if s0 is such that s0 ⊗ s0 = dz, then

∂z̄ ·
(

f+s0

f−s̄0

)
= 1

|s0|2
(

f−s0

0

)
∂z ·

(
f+s0

f−s̄0

)
= 1

|s0|2
(

0
−f+s̄0

)
. (4.1)

Lemma 4.2. Clifford multiplication satisfies the following properties:

(1) X · (Y · ψ) + Y · (X · ψ) = −2gC(X, Y)ψ , where gC is C-bilinear extension of g to TCM
(2) For the Hermitian metric 〈·, ·〉 on S ⊕ S̄ one has

〈X · ψ , φ〉 = −〈ψ , X̄ · φ〉.
In particular, Clifford multiplication by a real tangent vector is a skew-Hermitian operator.

Proof. (1) Writing X = a∂z + b∂z̄ and Y = c∂z + d∂z̄, one has

X · (Y·) + Y · (X·) = |s0|−4
g

(
0 b

−a 0

)(
0 d
−c 0

)
+ |s0|−4

g

(
0 d
−c 0

)(
0 b

−a 0

)
=

= −|s0|−4
g

(
ad + bc 0

0 ad + bc

)
.

Observing that g = |s0|−4(dx2 + dy2) one has gC(∂z, ∂z) = gC(∂z̄, ∂z̄) = 0 and gC(∂z, ∂z̄) = gC(∂z̄, ∂z) = |s0 |−4

2

completes the proof.
(2) By linearity and symmetry it is sufficient to check the equality for X = ∂z̄. Writing ψ = (f+s0, f−s̄0)

and φ = (k+s0, k−s̄0) one has

|s0|2〈X · ψ , φ〉 = f−k̄+ = −|s0|2〈ψ , X · φ〉. �

Recall that the Chern connection on a holomorphic bundle equipped with a Hermitian metric is the
unique connection that preserves the metric and whose (0, 1)-component coincides with ∂̄-operator [26].

Definition 4.3. The induced connection on �M is defined as

∇X(ψ+, ψ−) := (∇Ch
X ψ+, ∇Ch

X̄
ψ̄−),

where ∇Ch is the Chern connection on S.

Since the Chern connection preserves the metric, the induced connection does so as well. In local
coordinates,

∇∂z̄

(
f+s0

f−s̄0

)
=

(
(∂z̄f+)s0

(∂z̄f− + f−∂z̄ log |s0|2)s̄0

)

∇∂z

(
f+s0

f−s̄0

)
=

(
(∂zf+ + f+∂z log |s0|2)s0

(∂zf−)s̄0

)
.
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Lemma 4.4. The induced connection preserves Clifford multiplication, that is,

∇X(Y · ψ) = (∇LC
X Y) · ψ + Y · (∇Xψ), (4.2)

where ∇LC is the Levi–Civita connection.

Proof. Defining (ψ+, ψ−) = (ψ̄−, ψ̄+), we see from the definition that ∇Xψ = ∇X̄ψ̄ . Hence, by linearity it is
sufficient to check (4.2) in two cases: X = Y = ∂z and X = Ȳ = ∂z.

If X = Y = ∂z, then in local coordinates for ψ = (f+s0, f−s̄0) one has

∇X(Y · ψ) = ∇∂z

(
0

− f+
|s0 |2 s̄0

)
=

(
0

−∂z

(
f+

|s0 |2
)

s̄0

)
(4.3)

and

(∇LC
X Y) · ψ + Y · (∇Xψ) =

= ∂z(log |s0|−4)∂z ·
(

f+s0

f−s̄0

)
+ ∂z ·

(
(∂zf+ + f+∂z log |s0|2)s0

(∂zf−)s̄0

)
=

= 1
|s0|2

(
0

2f+∂z(log |s0|2) − (∂zf+ + f+∂z log |s0|2)

)

and it is easy to see that the expression on the right-hand side is the same as in (4.3).
If X = Ȳ = ∂z, then in local coordinates for ψ = (f+s0, f−s̄0) one has

∇X(Y · ψ) = ∇∂z

(
f−

|s0 |2 s0

0

)
=

((
∂z

(
f−

|s0 |2
)

+ f−
|s0 |2 ∂z log |s0|2

)
s0

0

)
=

(
∂zf−
|s0 |2 s0

0

)

and

(∇LC
X Y) · ψ + Y · (∇Xψ) = ∂z̄ ·

(
(∂zf+ + f+∂z log |s0|2)s0

(∂zf−)s̄0

)
=

(
∂zf−
|s0 |2 s0

0

)
.

�

Remark 4.5. As follows from Lemma 4.4, the induced connection coincides with the induced Levi–
Civita connection in the terminology of [23].

Usually, the spinor bundle �M is defined in terms of a Spinn-principal bundle Spin M over M and a
spinor representation ρ : Spinn → � of Spinn in the vector space �. The bundle Spin M correspond to a
choice of a non-trivial 2-fold cover of SOgM, the SOn-principal bundle of positively oriented orthonormal
bases of TM with respect to the metric g. Then �M is defined as the associated vector bundle to
(Spin M, ρ) : �M = Spin M ×ρ �. If M is a Kähler manifold, the spinor bundle takes a special form, which
in dimension 2 gives the isomorphism �M ∼= S ⊕ S̄ (see [20, Section 3.4] for details). This justifies our
definition of the spinor bundle as S ⊕ S̄.

The Dirac operator can be defined in any dimension as (see [23])

Dg =
n∑

j=1

ej · ∇ej ,

where (e1, . . . , en) is a local orthonormal basis of the tangent space. In dimension two, we compute

Dg = e1 · ∇e1 + e2 · ∇e2 = 2
(|s0|2∂z̄ · ∇|s0 |2∂z + |s0|2∂z · ∇|s0 |2∂z̄

)
,

so that

Dg

(
f+s0

f−s̄0

)
= 2|s0|2

(
(∂zf−)s0

−(∂z̄f+)s̄0

)
,
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which coincides with the definition of the Dirac operator (also known as the Dolbeault or the Dolbeault–
Dirac operator) we have been using earlier. In particular, we have recovered a well-known result that
in dimension two (and, in fact, more generally for Kähler manifolds) these definitions are equivalent
[23, 30].

4.2 Global criticality condition
In this section, we need to change the way we enumerate the Dirac eigenvalues. Indeed if we enumerate
the eigenvalues with λ1 being the first positive eigenvalue, then any change in the dimension of the
kernel of D, which may happen when the conformal class changes [30], would cause a discontinuity
of the eigenvalues. To have continuous eigenvalues λk, we instead index them by enumerating their
squares in an increasing order:

0 ≤ λ2
1

≤ λ2
2

≤ λ2
3

≤ · · · ↗ +∞.

Here we use a bar over the indices to distinguish this enumeration from the one we used previously.
In particular, note that λ1 is no longer the first positive eigenvalue and will be 0 if the kernel of D is
non-empty (this observation leads, in particular, to a positivity assumption in Proposition 4.12). Due to
the symmetry of the Dirac spectrum with respect to 0 in dimension 2, we don’t get any new eigenvalues
when considering λ2 instead of the non-negative eigenvalues, that is, for any k for which λk > 0, there
exists a k ≥ 1 such that λk = λk and the multiplicity of λk is twice the one of λk.

A formula for the variation of the Dirac eigenvalues under metric perturbations was obtained in [10].
It was shown that under analytic variations g(t) of the metric g, the derivative of an analytic branch
λ(j)(t) of an eigenvalue λ is given by

d
dt

λ(j)(t)
∣∣∣
t=0

= − 1
2

∫
M

〈ġ(0), Qψ 〉dvg(0), (4.4)

where the scalar product under the integral is understood as the scalar product of tensors induced by
the metric g, ψ is a L2(g)-normalised eigenspinor associated to the chosen branch λ(j) of λ, and

Qψ(X, Y) = 1
2

Re(〈X · ∇Yψ , ψ〉 + 〈Y · ∇Xψ , ψ〉).

The bilinear form Qψ is called the energy-momentum tensor, see [29, 36] for other applications and its use
in lower bounds for the first positive Dirac eigenvalue.

Before we can state the definition of a critical metric, we need a way to specify the choice of the spin
structure on M, which does not rely on the metric. Previously, when studying the conformally critical
case, the spin structure S could be defined solely in terms of the complex structure. But now that the
complex structure, that is the conformal class, is not fixed, we will use an alternative definition of the
spin structure.

Definition 4.6. Let G̃l
+
2 (R) be the universal cover of the linear positive group Gl+2 (R). A classical spin

structureS is a G̃l2(R)-principal bundle that is a 2-fold cover of the GL+
2 (R)-principal bundleF+M

of positively oriented frames of TM.

Remark 4.7. The notion of the classical spin structure was used in [10] and is essentially
equivalent to the definition we have been using previously. Given a metric g, a classical spin
structure yields a bundle Spin M → SOgM, by restricting S → F+M to the bundle Spin M ⊂ S
covering SOg ⊂ F+M. In our notation, this means that a classical spin structure S gives a
consistent way to associate to any metric g a spin structure S.

Similarly to the conformally critical metric, we define a globally critical metric by the condition that
the left and the right derivatives of the eigenvalue have opposite signs.

Definition 4.8. Let M be an oriented surface endowed with a classical spin structureS. We say that
the metric g is λ̄k-critical if for any analytic family of smooth metrics g(t), g(0) = g, t ∈ (−ε, ε),
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one has (
d
dt

λ̄k(M, g(t), S(t))
∣∣∣
t=0−

)(
d
dt

λ̄k(M, g(t), S(t))
∣∣∣
t=0+

)
≤ 0,

where S(t) is a spin structure associated to g(t) via the classical spin structure S.

Similarly to Remark 1.3, our definition of critical metrics agrees with that in [10] for simple
eigenvalues, whereas it is more general for multiple eigenvalues. The following result is an extension of
the criticality condition derived in [10, p. 596].

Proposition 4.9. Let M be a compact oriented surface with spin structure S. Suppose that g is a
critical metric for λ̄k(g, S). Then there exist eigenspinors ψ1, . . . , ψm ∈ Ek(g, Sg) such that

m∑
j=1

Qψj = 1
2

λk(g, S)g. (4.5)

Conversely, if ψ1, . . . , ψm ∈ Ek(g) are eigenspinors satisfying
∑m

j=1 Qψj = 1
2 λk(g, S)g and λk < λk+1

or λk > λk−1 then (g, S) is critical for λ̄k.

Proof. The proof is analogous to the proof of Proposition 1.2. If g is a critical metric, then formula (4.4)
yields that for any symmetric 2-tensor field η with

∫
M〈η, g〉dvg = 0, there exists ψ ∈ Ek(g, S), such that∫

M〈η, Qψ 〉dvg = 0.
Let W be the convex hull of {Qψ , ψ ∈ Ek(g, S)} in the space of bilinear forms. Then as before, we argue

to show that 1
2 λkg ∈ W. If not, by the Hahn–Banach theorem, there exists a symmetric 2-tensor field η

such that ∫
M

〈η, λkg〉dvg > 0∫
M

〈η, Qψ 〉dvg ≤ 0, for all ψ ∈ Ek(g, S).

Setting η0 = η − 1
2 Vol(M)

∫
M〈η, g〉dvgg, we have

∫
M〈η0, g〉dvg = 0, and thus there exists ψ ∈ Ek(g, S) such that

0 =
∫

M
〈η0, Qψ 〉dvg

=
∫

M
〈η, Qψ 〉dvg − 1

2 Vol(M)

∫
M

〈η, g〉dvg

∫
M

〈g, Qψ 〉dvg < 0,

where we used that the trace of Qψ is λk|ψ |2 since ψ is an eigenspinor. This contradiction concludes the
proof in one direction. The proof of the converse statement is also similar to the one in Proposition 1.2
and is left to the reader. �

4.3 Criticality condition and minimal surfaces
In this section we give a geometric interpretation of the condition (4.5), connecting the optimisation of
Dirac eigenvalues to minimal surfaces in projective spaces.

Theorem 4.10. Let (M, g) be a compact oriented surface with spin structure S. Suppose that

ψ1, . . . , ψm are eigenspinors on M with Dgψj = λψj, λ �= 0 and
m∑

j=1
Qψj = 1

2 λg. Then the map

� : M → CP
2m−1 given in homogeneous coordinates by [ψ1+ : ψ̄1− : . . . : ψm+ : ψ̄m−] is a branched

minimal immersion.

Proof of Theorem 4.10. Let e1, e2 be a local orthonormal basis of TM. Then

λk =
m∑

j=1

(Qψj (e1, e1) + Qψj (e2, e2)) = 1
2

m∑
j=1

Re(〈Dgψj, ψj〉 + 〈ψj,Dgψj〉) = λk

m∑
j=1

|ψj|2.

Hence, by Theorem 1.6, the map � is harmonic.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnae216/7810213 by U

niversity C
ollege London (inactive) user on 08 O

ctober 2024



24 | M. Karpukhin et al.

For the conformality of �, writing ∂z = 1
2 (e1 − ie2), we have

0 = g(e1, e1) − g(e2, e2) − 2ig(e1, e2)

=
m∑

j=1

Qψj (e1, e1) − Qψj (e2, e2) − 2iQψj (e1, e2)

= − 1
2

m∑
j=1

(〈∇e1 ψj, e1 · ψj〉 + 〈e1 · ψj, ∇e1 ψj〉
) + 1

2

m∑
j=1

(〈∇e2 ψj, e2 · ψj〉 + 〈e2 · ψj, ∇e2 ψj〉
)

+ i
2

m∑
j=1

(〈∇e1 ψj, e2 · ψj〉 + 〈∇e2 ψj, e1 · ψj〉 + 〈e2 · ψj, ∇e1 ψj〉 + 〈e1 · ψj, ∇e2 ψj〉
)

=
m∑

j=1

−〈∇∂z ψj, e1 · ψj〉 + i〈∇∂z ψj, e2 · ψj〉 − 〈e1 · ψj, ∇∂z̄ ψj〉 + i〈e2 · ψj, ∇∂z̄ ψj〉

= −2
m∑

j=1

(〈∇∂z ψj, ∂z̄ · ψj〉 + 〈∂z · ψj, ∇∂z̄ ψj〉
)
.

Writing ψj = (fj+s0, f̄j−s̄0), and using (4.1) to obtain that ∂z̄ ·
(

ψ+
ψ−

)
= 1

|s0 |2

(
0 1
0 0

)(
ψ+
ψ−

)
and ∂z ·

(
ψ+
ψ−

)
=

1
|s0 |2

(
0 0

−1 0

)(
ψ+
ψ−

)
in this basis, we get

0 =
m∑

j=1

∂zfj+(−f̄j−) + fj+∂z̄ f̄j− =
m∑

j=1

−fj−∂zfj+ + fj+∂zfj−.

Set F = (f1+, f1−, . . . , fm+, fm−) and I(a1+, a1−, . . . ) = (−ā1−, ā1+, . . . ). It follows that 〈∂zF, I(F)〉C2m = 0. By the
eigenvalue equation (2.8), I(F) = 2|s0 |2

λ
∂z̄F, and therefore,

〈∂zF, ∂z̄F〉C2m = 0. (4.6)

At the same time, a harmonic map � is a branched minimal immersion if and only if it is weakly
conformal [27], that is, 〈dC�(∂z), dC�(∂z̄)〉 = 0, or, equivalently, 〈∂�(∂z), ∂̄�(∂z̄)〉 = 0. Using the definition
of the metric on CP

2m−1, one has

〈∂�(∂z), ∂̄�(∂z̄)〉 = 4|s0|4 〈πL⊥ ∂zF, πL⊥ ∂z̄F〉
|F|2 = 4|s0|4 〈∂zF, πL⊥ ∂z̄F〉

|F|2 ,

where πL⊥ is an orthogonal projection to the orthogonal complement to the one-dimensional space
spanned by F. Finally, the eigenvalue equation (2.8) implies that πL⊥ ∂z̄F = ∂z̄F, so that (4.6) yields that �

is weakly conformal. �

We conclude the article by stating the analogue of Proposition (2.6) for a globally critical metric.

Definition 4.11. We say that a map � : (M,C) → CP
2m−1 is a quaternionic branched minimal immersion

if � is a quaternionic harmonic map and a branched minimal immersion.

Proposition 4.12. Let M be an oriented surface and S be a classical spin structure. Suppose that
g is λ̄k-critical, and λ̄k(M, g, S) > 0. Then there exists a collection ψj = (ψj+, ψj−), j = 1, . . . , m of
λk-eigenspinors such that the map � : (M,C) → CP

2m−1 given in homogeneous coordinates by

� = [ψ1+ : ψ̄1− : · · · : ψm+ : ψ̄m−]

is a quaternionic branched minimal immersion. Moreover, λ̄k(M, g, S)2 = E(0,1)
g (�) and g = αg� =

α|∂̄�|2gg for some α > 0.
Conversely, let � : (M,C) → CP

2m−1 be a quaternionic branched minimal immersion, and let S�

be the spin structure induced by � in the sense of Proposition 2.5. Then the metric g� is
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λk-critical for the classical spin structure S� corresponding to S� . The index k − 1 is the
number of eigenvalues λj(M, g� , S�) satisfying 0 < λj(M, g� , S�) < 1. Furthermore, one has

λ̄k(M, g� , S�)2 = E(0,1)
C (�) > 0.

Proof. To prove the first part, observe that we showed at the beginning of Section 2.4 that the maps by
eigenspinors satisfying

∑ |ψj|2 = 1 are quaternionic harmonic, and hence � is quaternionic harmonic.
Furthermore, it follows from Theorem 4.10 that � is a branched minimal immersion. The proofs of the
statements about g and the value of λ̄k(M, g, S) are analogous to the first part of Proposition 2.6.

To prove the converse, observe that if � is a quaternionic branched minimal immersion, then
according to Proposition 2.5 it is the map by g�-eigenspinors satisfying

∑ |ψj|2g�
= 1. Tracing the

computations in the proof of Theorem 4.10 in the opposite direction, we observe that weak conformality
of � implies

m∑
j=1

Qψj (e1, e1) =
m∑

j=1

Qψj (e2, e2),
m∑

j=1

Qψj (e1, e2) = 0,

where e1, e2 is g�-orthonormal basis. At the same time, by the eigenspinor equation

m∑
j=1

(Qψj (e1, e1) + Qψj (e2, e2)) =

1
2

m∑
j=1

Re(〈Dgψj, ψj〉 + 〈ψj,Dgψj〉) = λk

m∑
j=1

|ψj|2g�
= λk.

Thus,

m∑
j=1

Qψj = λk

2
g� ,

which by Proposition 4.9 means that (g� , S�) is critical for λ̄k. �

Remark 4.13. It is proved in [25] that if M is not a sphere,

inf
C

λ̄1(M,C, S) = 0,

and hence Proposition 4.12 does not yield any global λ̄1-minimisers. It would be interesting
to find out if Proposition 4.12 can be used to construct examples of quaternionic branched
minimal immersions of surfaces of positive genus. It is likely that the proof of [25] can
be generalised to higher eigenvalues. If true, it means that in order to obtain quaternionic
branched minimal immersions from Proposition 4.12, one would need to look for saddle points
rather than global minima.
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