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Abstract. Learning in deep neural networks is known to depend critically on
the knowledge embedded in the initial network weights. However, few theoretical
results have precisely linked prior knowledge to learning dynamics. Here we derive
exact solutions to the dynamics of learning with rich prior knowledge in deep
linear networks by generalising Fukumizu’s matrix Riccati solution (Fukumizu
1998 Gen 1 1E–03). We obtain explicit expressions for the evolving network
function, hidden representational similarity, and neural tangent kernel over train-
ing for a broad class of initialisations and tasks. The expressions reveal a class
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of task-independent initialisations that radically alter learning dynamics from
slow non-linear dynamics to fast exponential trajectories while converging to a
global optimum with identical representational similarity, dissociating learning
trajectories from the structure of initial internal representations. We characterise
how network weights dynamically align with task structure, rigorously justifying
why previous solutions successfully described learning from small initial weights
without incorporating their fine-scale structure. Finally, we discuss the implic-
ations of these findings for continual learning, reversal learning and learning of
structured knowledge. Taken together, our results provide a mathematical toolkit
for understanding the impact of prior knowledge on deep learning.

Keywords: deep learning, learning theory, machine learning
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1. Introduction

A hallmark of human learning is our exquisite sensitivity to prior knowledge: what
we already know affects how we subsequently learn (Carey 1985). For instance, hav-
ing learned about the attributes of nine animals, we may learn about the tenth more
quickly (McClelland et al 1995, Murphy 2004, McClelland 2013, Flesch et al 2018).
In machine learning, the impact of prior knowledge on learning is evident in a range
of paradigms including reversal learning (Erdeniz and Atalay 2010), transfer learning
(Taylor and Stone 2009, Thrun and Pratt 2012, Lampinen and Ganguli 2018, Gerace
et al 2022), continual learning (Kirkpatrick et al 2017, Zenke et al 2017, Parisi et al
2019), curriculum learning (Bengio et al 2009), and meta learning (Javed and White
2019). One form of prior knowledge in deep networks is the initial network state, which
is known to strongly impact learning dynamics (Saxe et al 2014, Pennington et al 2017,
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Figure 1. Learning with prior knowledge. (A) In our setting, a deep linear network
with Ni input, Nh hidden and No output neurons is trained from a particular
initialisation using gradient descent. (B)–(D) Network output for an example task
over training time when starting from (B) small random weights, (C) large random
weights, and (D) the weights of a previously learned task. The dynamics depend
in detail on the initialisation. Solid lines indicate simulations, dotted lines indicate
the analytical solutions we derive in this work.

Bahri et al 2020). Even random initial weights of different variance can yield qual-
itative shifts in network behaviour between the lazy and rich regimes (Chizat et al
2019), imparting distinct inductive biases on the learning process. More broadly, rich
representations such as those obtained through pretraining provide empirically fertile
inductive biases for subsequent fine-tuning (Raghu et al 2019). Yet while the importance
of prior knowledge to learning is clear, our theoretical understanding remains limited,
and fundamental questions remain about the implicit inductive biases of neural net-
works trained from structured initial weights. A better understanding of the impact of
initialisation on gradient-based learning may lead to improved pretraining schemes and
illuminate pathologies like catastrophic forgetting in continual learning (McCloskey and
Cohen 1989).

Here, we address this gap by deriving exact solutions to the dynamics of learning
in deep linear networks as a function of network initialisation, revealing an intricate
and systematic dependence. We consider the setting depicted in figure 1(A), where a
network is trained with standard gradient descent from a potentially complex initial-
isation. When trained on the same task, different initialisations can radically change
the network’s learning trajectory (figures 1(B)–(D)). Our approach, based on a matrix
Riccati formalism (Fukumizu 1998), provides explicit analytical expressions for the net-
work output over time (figures 1(B)–(D) dotted). While simple, deep linear networks
have a non-convex loss landscape and have been shown to recapitulate several features
of nonlinear deep networks while retaining mathematical tractability.

1.1. Contributions

• We derive an explicit solution for the gradient flow of the network function, internal
representational similarity, and finite-width neural tangent kernel (NTK) of over- and
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under-complete two-layer deep linear networks for a rich class of initial conditions
(section 3).

• We characterise a set of random initial network states that exhibit fast, exponential
learning dynamics and yet converge to rich neural representations. Dissociating fast
and slow learning dynamics from the rich and lazy learning regimes (section 4).

• We analyse how weights dynamically align to task-relevant structure over the course
of learning, going beyond prior work that has assumed initial alignment (section 5).

• We provide exact solutions to continual learning dynamics, reversal learning dynamics
and to the dynamics of learning and revising structured representations (section 6).

1.2. Related work

Our work builds on analyses of deep linear networks (Baldi and Hornik 1989, Fukumizu
1998, Saxe et al 2014, 2019, Lampinen and Ganguli 2018, Arora et al 2018a, Tarmoun
et al 2021, Atanasov et al 2022), which have shown that this simple model neverthe-
less has intricate fixed point structure and nonlinear learning dynamics reminiscent of
phenomena seen in nonlinear networks. A variety of works has analysed convergence
(Arora et al 2018b, Du and Hu 2019), generalisation (Lampinen and Ganguli 2018,
Poggio et al 2018, Huh 2020), and the implicit bias of gradient descent (Gunasekar
et al 2018, Ji and Telgarsky 2018, Laurent and Brecht 2018, Arora et al 2019a). These
works mostly considers the tabula rasa case of small initial random weights, for which
exact solutions are known (Saxe et al 2014). By contrast our formalism describes
dynamics from a much larger class of initial conditions and can describe alignment
dynamics that do not occur in the tabula rasa setting. Most directly, our results build
from the matrix Riccati formulation proposed by Fukumizu (1998). Connecting this
formulation and matrix factorisation problems yields a better characterisation of the
convergence rate (Tarmoun et al 2021). We extend and refine the matrix Riccati res-
ult to obtain the dynamics of over- and under-complete networks; to obtain numeric-
ally stable forms of the matrix equations; and to more explicitly reveal the impact of
initialisation.

A line of theoretical research has considered online learning dynamics in teacher-
student settings (Biehl and Schwarze 1995, Saad and Solla 1995, Goldt et al 2019),
deriving ordinary differential equations for the average learning dynamics even in non-
linear networks. However, solving these equations requires numerical integration. By
contrast, our approach provides explicit analytical solutions for the more restricted
case of deep linear networks.

Other approaches for analysing deep network dynamics include the NTK (Jacot
et al 2018, Lee et al 2019, Arora et al 2019b) and the mean field approach (Mei
et al 2018, Rotskoff and Vanden-Eijnden 2018, Sirignano and Spiliopoulos 2020). While
the former can describe nonlinear networks but not the learning dynamics of hid-
den representations, the later yields a description of representation learning dynam-
ics in wide networks in terms of a partial differential equation. Our work is similar
in seeking a subset of more tractable models that are amenable to analysis, but we
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focus on the impact of initialisation on representation learning dynamics and explicit
solutions.

A large body of work has investigated the effect of different random initialisations on
learning in deep networks. The role of initialisation in the vanishing gradient problem
and proposals for better initialisation schemes have been illuminated by several works
drawing on the central limit theorem (Glorot and Bengio 2010, Saxe et al 2014, He et al
2015, Pennington et al 2017, Xiao et al 2018), reviewed in Carleo et al (2019), Arora
et al (2020), Bahri et al (2020). These approaches typically guarantee that gradients
do not vanish at the start of learning, but do not analytically describe the resulting
learning trajectories. Influential work has shown that network initialisation variance
mediates a transition from rich representation learning to lazy NTK dynamics (Chizat
et al 2019), which we analyse in our framework.

2. Preliminaries and setting

Consider a supervised learning task in which input vectors xn ∈ RNi from a set of P
training pairs {(xn,yn)}n=1...P have to be associated with their target output vectors
yn ∈ RNo. We learn this task with a two-layer linear network model (figure 1(A)) that
produces the output prediction

ŷn =W2W1xn, (1)

with weight matrices W1 ∈ RNh×Ni and W2 ∈ RNo×Nh, where Nh is the number of hid-
den units. The network’s weights are optimised using full batch gradient descent with
learning rate η (or respectively time constant τ = 1

η ) on the mean squared error loss

L(ŷ,y) =
1

2

〈
||ŷ−y||2

〉
, (2)

where ⟨·⟩ denotes the average over the dataset. The input and input-output correlation
matrices of the dataset are

Σ̃
xx

=
1

P

P∑
n=1

xnx
T
n ∈ RNi×Ni and Σ̃

yx
=

1

P

P∑
n=1

ynx
T
n ∈ RNo×Ni. (3)

Finally, the gradient optimisation starts from an initialisation W2(0),W1(0). Our goal
is to understand the full time trajectory of the network’s output and internal repres-
entations as a function of this initialisation and the task statistics.

Our starting point is the seminal work of Fukumizu (Fukumizu 1998), which showed
that the gradient flow dynamics could be written as a matrix Riccati equation with
known solution. In particular, defining

Q=

[
WT

1

W2

]
and F=

 0
(
Σ̃

yx
)T

Σ̃
yx

0

 , (4)
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the continuous time dynamics of the matrix QQT from initial state Q(0) is

QQT (t) = eF
t
τ Q(0)

[
I+

1

2
Q(0)T

(
eF

t
τ F−1eF

t
τ −F−1

)
Q(0)

]−1

Q(0)T eF
t
τ , (5)

if the following four assumptions hold:

Assumption 2.1. The dimensions of the input and target vectors are identical, that is
Ni =No.

Assumption 2.2. The input data is whitened, that is Σ̃xx = I.

Assumption 2.3. The network’s weight matrices are zero-balanced at the beginning of train-
ing, that is W1(0)W1(0)

T =W2(0)
TW2(0). If this condition holds at initialisation, it

will persist throughout training (Saxe et al 2014, Arora et al 2018a).

Assumption 2.4. The input-output correlation of the task and the initial state of the net-
work function have full rank, that is rank(Σ̃xy) = rank(W2(0)W1(0)) =Ni =No. This
implies that the network is not bottlenecked, i.e. Nh ⩾ min(Ni,No).

For completeness, we include a derivation of this solution in appendix A.
Rather than tracking the weights’ dynamics directly, this approach tracks several

key statistics collected in the matrix

which can be separated into four quadrants with intuitive meaning: the off-diagonal
blocks contain the network function

while the on-diagonal blocks contain the correlation structure of the weight matrices.
These permit calculation of the temporal evolution of the network’s internal rep-
resentations including the task-relevant representational similarity matrices (RSMs)
(Kriegeskorte et al 2008), i.e. the kernel matrix ϕ(x)Tϕ(x ′), of the neural represent-
ations in the hidden layer

where + denotes the pseudoinverse; and the network’s finite-width NTK (Jacot et al
2018, Lee et al 2019, Arora et al 2019b)

where I is the identity matrix and ⊗ is the Kronecker product. For a derivation of these
quantities see appendix B. Hence, the solution in equation (5) describes important
aspects of network behaviour.
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However, in this form, the solution has several limitations. First, it relies on general
matrix exponentials and inverses, which are a barrier to explicit understanding. Second,
when evaluated numerically, it is often unstable. And third, the equation is only valid for
equal input and output dimensions. In the following section we address these limitations.
Implementation and simulation. Simulation details are in appendix H. Code to replicate
all simulations and plots are available online6 under a GPLv3 license and requires <6 h
to execute on a single AMD Ryzen 5950x.

3. Exact learning dynamics with prior knowledge

In this section we derive an exact and numerically stable solution for QQT that bet-
ter reveals the learning dynamics, convergence behaviour and generalisation proper-
ties of two-layer linear networks with prior knowledge. Further, we alter the equations
to be applicable to equal and unequal input and output dimensions, overcoming
assumption 2.1.

To place the solution in a more explicit form, we make use of the compact singu-
lar value decomposition. Let the compact singular value decomposition of the initial
network function and the input-output correlation of the task be

SVD(W2 (0)W1 (0)) =USVT and SVD
(
Σ̃

yx
)
= ŨS̃ṼT. (10)

Here, U and Ũ ∈ RNo×Nm denote the left singular vectors, S and S̃ ∈ RNm×Nm the square
matrix with ordered, non-zero eigenvalues on its diagonal and V and Ṽ ∈ RNi×Nm the
corresponding right singular vectors. For unequal input-output dimensions (Ni ̸=No)
the right and left singular vectors are therefore not generally square and orthonormal.
Accordingly, for the case Ni >No, we define Ũ⊥ ∈ RNo×(No−Ni) as a matrix containing
orthogonal column vectors that complete the basis, i.e. make

[
Ũ Ũ⊥

]
orthonormal.

Conversely, we define Ṽ⊥ ∈ RNi×(Ni−No) for the case of Ni >No.

Assumption 3.1. Define B=UTŨ+VTṼ and C=UTŨ−VTṼ. B is non-singular.

Theorem 3.1. Under the assumptions of whitened inputs, 2.2, zero-balanced weights 2.3,
full rank 2.4, and B non-singular 3.1, the temporal dynamics of QQT are

QQT (t) = Z
[
4e−S̃ t

τ B−1S−1
(
BT)−1

e−S̃ t
τ +
(
I− e−2S̃ t

τ

)
S̃−1

− e−S̃ t
τ B−1C

(
e−2S̃ t

τ − I
)
S̃−1CT

(
BT
)−1

e−S̃ t
τ

+4
t

τ
e−S̃ t

τ B−1
(
VTṼ⊥Ṽ

T
⊥V+UTŨ⊥Ũ

T
⊥U
)(

BT)−1
e−S̃ t

τ

]−1

ZT (11)

6 https://github.com/saxelab/deep-linear-networks-with-prior-knowledge.
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Figure 2. Exact learning dynamics (A) the temporal dynamics of the numerical
simulation (coloured lines) of the loss, network function, correlation of input and
output weights and the NTK (columns 1–5 respectively) are exactly matched by the
analytical solution (black dotted lines) for small initial weight values and (B) large

initial weight values. (C) Each line shows the deviation of the analytical loss L̂ from
the numerical loss L for one of n =50 networks with random architecture and train-
ing data (details in appendix H) across a range of learning rates η ∈ [0.05,0.0005].
The deviation mutually decreases with the learning rate. (D) Numerical and ana-
lytical learning curves for five randomly sampled example networks (coloured x in
(C)).

with

Z=

Ṽ(I− e−S̃ t
τ CT

(
BT)−1

e−S̃ t
τ

)
+2Ṽ⊥Ṽ

T
⊥V
(
BT)−1

e−S̃ t
τ

Ũ
(
I+ e−S̃ t

τ CT
(
BT)−1

e−S̃ t
τ

)
+2Ũ⊥Ũ

T
⊥U
(
BT)−1

e−S̃ t
τ

 . (12)

For a proof of theorem 3.1 please refer to appendix C.
With this solution we can calculate the exact temporal dynamics of the loss, network

function, RSMs and NTK (figures 2(A) and (B)). As the solution contains only negative
exponentials, it is numerically stable and provides high precision across a wide range of
learning rates and network architectures (figures 2(C) and (D)).

We note that a solution for the weightsW1(t) andW2(t), i.e.Q(t), can be derived up
to a time varying orthogonal transformation as demonstrated in appendix C. Further,
as time-dependent variables only occur in matrix exponentials of diagonal matrices of
negative sign, the network approaches a steady state solution.

Theorem 3.2. Under the assumptions of theorem 3.1, the network function converges to
the global minimum ŨS̃ṼT and acquires a rich task-specific internal representation,
that is WT

1W1 = ṼS̃ṼT and W2W
T
2 = ŨS̃ŨT.

The proof of theorem 3.2 is in appendix C. We now turn to several implications of
these results.

4. Rich and lazy learning regimes and generalisation

Recent results have shown that large deep networks can operate in qualitatively distinct
regimes that depend on their weight initialisations (Chizat et al 2019, Flesch et al 2022),
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Figure 3. Rich and lazy learning. (A) Semantic learning task, (B) SVD of the
input-output correlation of the task (top) and the respective RSMs (bottom). Rows
and columns in the SVD and RSMs are identically ordered as the order of items
in the hierarchical tree. (C) Final QQT matrices after training converged when
initialised from random small weights, (D) random large weights (note how the
upper left and lower right quadrant differ from the task’s RSMs) and (E) large
zero-balanced weights. (F) Learning curves for the three different initialisations as
in (C) (green), (D) (pink) and (E) (blue). While both large weight initialisations
lead to fast exponential learning curves, the small weight initialisation leads to a
slow step-like decay of the loss.

the so called rich and lazy regimes. In the rich regime, learning dynamics can be highly
nonlinear and lead to task-specific solutions thought to lead to favourable generalisation
properties (Chizat et al 2019, Saxe et al 2019, Flesch et al 2022). By contrast, the lazy
regime exhibits simple exponential learning dynamics and exploits high-dimensional
nonlinear projections of the data produced by the initial random weights, leading to
task-agnostic representations that attain zero training error but possibly lower general-
isation performance (Jacot et al 2018, Lee et al 2019, Arora et al 2019b). Traditionally,
the rich and lazy learning regimes have been respectively linked to low and high variance
initial weights (relative to the network layer size).

To illustrate these phenomena, we consider a semantic learning task in which a set of
living things have to be linked to their position in a hierarchical structure (figure 3(A))

(Saxe et al 2014). The representational similarity of the input of the task (ṼS̃ṼT)
reveals its inherent structure (figure 3(B)). For example, the representations of the two
fishes are most similar to each other, less similar to birds and least similar to plants.
Likewise, the representational similarity of the task’s target values (ŨS̃ŨT) reveals the
primary groups among which items are organised. As a consequence, one can for example
predict from an object being a fish that it is an animal and from an object being a plant
that it is not a bird. Reflecting these structural relationships in internal representations
can allow the rich regime to generalise in ways the lazy regime cannot. Crucially,QQT(t)
contains the temporal dynamics of the weights’ representational similarity and therefore
can be used to study if a network finds a rich or lazy solution.

When training a two layer network from random small initial weights, the weights’
input and output RSM (figure 3(C), upper left and lower right quadrant) are identical to
the task’s structure at convergence. However, when training from large initial weights,
the RSM reveals that the network has converged to a lazy solution (figure 3(D)). We
emphasise that the network function in both cases is identical (figures 3(C) and (D),
lower left quadrant). And while their final loss is identical too, their learning dynamics
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evolve slow and step-wise in the case of small initial weights and fast and exponentially
in the case of large initial weights (figure 3(F)), as predicted by previous work (Chizat
et al 2019).

However, from theorem 3.2 it directly follows that our setup is guaranteed to
find a rich solution in which the weights’ RSM is identical to the task’s RSM, i.e.
WT

1 W1 = ṼS̃ṼT and W2W
T
2 = ŨS̃ŨT. Therefore, as zero-balanced weights may be

large, there exist initial states that converge to rich solutions while evolving as rapid
exponential learning curves (figures 3(E) and (F)). Crucially, these initialisations are
task-agnostic, in the sense that they are independent of the task structure (see Mishkin
and Matas 2015). This finding applies to any learning task with well defined input-
output correlation. For additional simulations see appendix D. Hence our equation
can describe the change in dynamics from step-like to exponential with increasing
weight scale, and separate this dynamical phenomenon from the structure of internal
representations.

5. Decoupling dynamics

The learning dynamics of deep linear networks depend on the exact initial values of the
synaptic weights. Previous solutions studied learning dynamics under the assumption
that initial network weights are ‘decoupled’, such that the initial state of the network
and the task share the same singular vectors, i.e. that U= Ũ and V = Ṽ (Saxe et al
2014). Intuitively, this assumption means that there is no cross-coupling between differ-
ent singular modes, such that each evolves independently. However, this assumption is
violated in most real-world scenarios. As a consequence, most prior work has relied on
the empirical observation that learning from tabula rasa small initial weights occurs in
two phases: First, the network’s input-output map rapidly decouples; then subsequently,
independent singular modes are learned in this decoupled regime. Because this decoup-
ling process is fast when training begins from small initial weights, the learning dynamics
are still approximately described by the temporal learning dynamics of the singular val-
ues assuming decoupling from the start. This dynamic has been called a silent alignment
process (Atanasov et al 2022). Here we leverage our matrix Riccati approach to analyt-
ically study the dynamics of this decoupling process. We begin by deriving an alternate
form of the exact solution that eases the analysis.

Theorem 5.1. Let the weight matrices of a two layer linear network be initialised by
W1 =A(0)ṼT and W2 = ŨA(0)T, where A(0) ∈ RNh×Ni is an arbitrary, invertible
matrix. Then, under the assumptions of equal input-output dimensions 2.1, whitened
inputs 2.2, zero-balanced weights 2.3 and full rank 2.4, the temporal dynamics of QQT

are fully determined by

ATA(t) =

[
e−S̃ t

τ

(
A(0)TA(0)

)−1

e−S̃ t
τ +
(
I− e−2S̃ t

τ

)
S̃−1

]−1

. (13)
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Figure 4. Decoupling dynamics. (A) Analytical (black dotted lines) and numerical
(solid lines) of the temporal dynamics of the on- and off-diagonal elements of ATA
in blue and red, respectively. (B) Schematic representation of the decoupling pro-
cess. (C) Three target matrices with dense, unequal diagonal, and equal diagonal
structure. (D)and (F) Decoupling dynamics for the top (D), middle (E), and bot-
tom (F) tasks depicted in panel (C). Row F contains analytical predictions for the
time of the peak of the off-diagonal (dashed green). The network is initialised as
defined in appendix E with small, intermediate and large variance.

For a proof of theorem 5.1, please refer to appendix E. We remark that this form
is less general than that in theorem 3.1, and in particular implies UV = ŨṼ. Here the
matrix ATA represents the dynamics directly in the SVD basis of the task. Off-diagonal
elements represent counterproductive coupling between different singular modes (for
instance, [ATA]21 is the strength of connection from input singular vector 1 to output
singular vector 2, which must approach zero to perform the task perfectly), while on-
diagonal elements represent the coupling within the same mode (for instance, [ATA]11
is the strength of connection from input singular vector 1 to output singular vector 1,
which must approach the associated task singular value to perform the task perfectly).
Hence the decoupling process can be studied by examining the dynamics by which ATA
becomes approximately diagonal.

The outer inverse in equation (13) renders it difficult to study high dimensional
networks analytically. Therefore, we focus on small networks with input and output
dimension Ni = 2 and No = 2, for which a lengthy but explicit analytical solution is
given in appendix E. In this setting, the structure of the weight initialisation and task
are encoded in the matrices

A(0)TA(0) =

[
a1 (0) b(0)
b(0) a2 (0)

]
and S̃=

[
s1 0
0 s2

]
, (14)

where the parameters a1(0) and a2(0) represent the component of the initialisation that
is aligned with the task, and b(0) represents cross-coupling, such that taking b(0) = 0
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recovers previously known and more restricted solutions for the decoupled case (Saxe
et al 2014). We use this setting to demonstrate two features of the learning dynamics.

Decoupling dynamics. First, we track decoupling by considering the dynamics of the
off-diagonal element b(t) (figures 4(D)–(F) red lines). At convergence, the off-diagonal
element shrinks to zero as shown in appendix E. However, strikingly, b(t) can exhibit
non-monotonic trajectories with transient peaks or valleys partway through the learning
process. In particular, in appendix E we derive the time of the peak magnitude as tpeak =
τ
4s ln s(s−a1−a2)

a1a2−b(0)2 (figure 4(F) green dotted line), which coincides approximately with the

time at which the on-diagonal element is half learned. If initialised from small random
weights, the off-diagonal remains near-zero throughout learning, reminiscent of the silent
alignment effect (Atanasov et al 2022). For large initialisations, no peak is observed and
the dynamics are exponential. At intermediate initialisations, the maximum of the off-
diagonal is reached before the singular mode is fully learned (appendix E). Intuitively, a
particular input singular vector can initially project appreciably onto the wrong output
singular vector, corresponding to initial misalignment. This is only revealed when this
link is amplified, at which point corrective dynamics remove the counter-productive
coupling, as schematised in figure 4(B). We report further measurements of decoupling
in appendix E.

Effect of initialisation variance. Next, we revisit the impact of initialisation scale for
the on-diagonal dynamics. As shown in figures 4(D)–(F), as the initialisation variance
grows the learning dynamics change from sigmoidal to exponential, possibly displaying
more complex behaviour at intermediate variance (appendix E). In this simple set-
ting we can analyse this transition in detail. Taking s1 = s2 = s as in figure 4(F) and
|a1(0)|, |a2(0)|, |b(0)| ≪ 1, we recover a sigmoidal trajectory,

a1 (t) =
sa1 (0)

e
−2st
τ [s− a1 (0)− a2 (0)]+ a1 (0)+ a2 (0)

, (15)

while for |a1(0)|, |a2(0)|, |b(0)| ≫ 0 the dynamics of the on-diagonal element a1 is close
to exponential (figures 4(D)–(F) left and right columns). We examine larger networks
in appendix E.

6. Applications

The solutions derived in sections 3 and 5 provide tools to examine the impact of prior
knowledge on dynamics in deep linear networks. So far we have traced general features of
the behaviour of these solutions. In this section, we use this toolkit to develop accounts
of several specific phenomena.

Continual Learning. Continual learning (see Parisi et al 2019 for a review) and the
pathology of catastrophic forgetting have long been a challenge for neural network
models (McCloskey and Cohen 1989, Ratcliff 1990, French 1999). A variety of theoretical
work has investigated aspects of continual learning (Tripuraneni et al 2020, Asanuma
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Figure 5. Continual learning. (A) Top: network training from small zero-balanced
weights on a sequence of tasks (coloured lines show simulation and black dotted
lines analytical results). Bottom: evaluation loss for tasks of the sequence (dotted)
while training on the current task (solid). As the network function is optimised on
the current task, the loss of other tasks increases. (B) Comparison of the numerical
and analytical amount of catastrophic forgetting on a first task after training on
a second task for n =50 linear (red), tanh (blue) and ReLU (green) networks. (C)
Weight alignment before and after training on a sequence of two tasks for n =50
networks in linear (red), tanh (blue) and ReLU (green) networks. Shaded area
shows ±std. (D) Evaluation loss for each of 5 tasks during training a linear (red),
tanh (blue) and ReLU (green) network. (E) Same data es in (D) but evaluated as
relative change (i.e. amount of catastrophic forgetting). The top half of each square
shows the pre-computed analytical amount of forgetting and the bottom half the
numerical value.

et al 2021, Doan et al 2021, Lee et al 2021, Shachaf et al 2021). In this setting, starting
from an initial set of weights, a network is trained on a sequence of tasks with respective
input-output correlations T1 = Σ̃yx

1 ,T2 = Σ̃yx
2 ,T3 = Σ̃yx

3 , . . .. As shown in figure 5(A), our
dynamics immediately enable exact solutions for the full continual learning process,
whereby the final state after training on one task becomes the initial network state
for the next task. These solutions thus reveal the exact time course of forgetting for
arbitrary sequences of tasks.

Training on later tasks can overwrite previously learned knowledge, a phenomenon
known as catastrophic forgetting (McCloskey and Cohen 1989, Ratcliff 1990, French
1999). From theorem 3.2 it follows that from any arbitrary zero-balanced initialisation
2.3, the network converges to the global optimum such that the initialisation is com-
pletely overwritten and forgetting is truly catastrophic. In particular, the loss of any
other task Ti after training to convergence on task Tj is Li(Tj) = 1/2||Σ̃yx

j − Σ̃yx
i ||F 2+ c,

where c is a constant that only depends on training data of task Ti (appendix F). As a
consequence, the amount of forgetting, i.e. the relative change of loss, is fully determined
by the similarity structure of the tasks and thus can be fully determined for a sequence
of tasks before the onset of training (figures 5(B) and (E), appendix F). For example,
the amount of catastrophic forgetting in task Ta, when training on task Tc after hav-
ing trained the network on task Tb is La(Tc)−La(Tb). As expected, our results depend
on our linear setting and tanh or ReLU nonlinearities can show different behaviour,
typically increasing the amount of forgetting (figures 5(B), (D) and (E)). Further, in
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Figure 6. Reversal learning and revising structured knowledge. Scale of x -axis
varies in top and bottom rows. (A) Analytical (black dotted) and numerical (solid)
learning dynamics of a reversal learning task. The analytical solution gets stuck
on a saddle point, whereas the numerical simulation escapes the saddle point and
converges to the target. (B) In a shallow network, training on the same task as in A
converges analytically (black dotted) and numerically (solid). (C) Semantic learning
tasks. Revised living kingdom (top) and colour hierarchy (bottom). (D) SVD of the
input-output correlation of the tasks and respective RSMs. (E) Analytical (black
dotted) and simulation (solid) loss and (F) learning dynamics of first training on the
living kingdom (figure 3(A)) and subsequently on the respective task in (C). The
analytical solution fails for the revised animal kingdom as it gets stuck in a saddle
point, while the simulation escapes the saddle (top, green circle). Initial training
on the living kingdom task from large initial weights and subsequent training on
the colour hierarchy have similar convergence times (bottom) (G) multidimensional
scaling (MDS) of the network function for initial training on the living kingdom
task from small (top) and large initial weights (bottom). Note how despite the
seemingly chaotic learning dynamics when starting form large initial weights, both
simulations learn the same representation. (H) MDS of subsequent training on the
respective task in (C).

nonlinear networks, weights become rapidly unbalanced and forgetting values that are
calculated before the onset of training do not predict the actual outcome (figures 5(B)–
(E)). In summary, our results link exact learning dynamics with catastrophic forgetting
and thus provide an analytical tool to study the mechanisms and potential counter
measures underlying catastrophic forgetting.

Reversal learning. During reversal learning, pre-existing knowledge has to be
relearned, overcoming a previously learned relationship between inputs and outputs.
For example, reversal learning occurs when items of a class are mislabelled and later
corrected. We show analytically, that reversal learning in fact does not succeed in deep
linear networks (appendix G). The pre-existing knowledge lies exactly on the separatrix
of a saddle point causing the learning dynamics to converge to zero (figure 6(A)). In
contrast, the learning still succeeds numerically, as any noise will perturb the dynamics
off the saddle point, allowing learning to proceed (figure 6(A)). However, the dynamics
still slow in the vicinity of the saddle point, providing a theoretical explanation for cata-
strophic slowing in deep linear networks (Lee et al 2022). We note that the analytical
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solution requires an adaptation of theorem 3.1, as B is generally not invertible in the
case of reversal learning (appendix G). Further, as is revealed by the exact learning
dynamics (appendix G), shallow networks do succeed without exhibiting catastrophic
slowing during reversal learning (figure 6(B)).

Revising structured knowledge. Knowledge is often organised within an underlying,
shared structure, of which many can be learned and represented in deep linear networks
(Saxe et al 2019). For example, spatial locations can be related to each other using
the same cardinal directions, or varying semantic knowledge can be organised using
the same hierarchical tree. Here, we investigate if deep linear networks benefit from
shared underlying structure. To this end, a network is first trained on the three-level
hierarchical tree of section 4 (eight items of the living kingdom, each with a set of eight
associated features), and subsequently trained on a revised version of the hierarchy.
The revised task varies the relation of inputs and outputs while keeping the same
underlying tree structure. If the revision involves swapping two neighbouring nodes
on any level of the hierarchy, e.g. the identity of the two fish on the lowest level of
the hierarchy (figure 6(C), top), the task is identical to reversal learning, leading to
catastrophically slowed dynamics (figures 6(E) and (F), top). When training the network
on a new hierarchical tree with identical items but a new set of features, like a colour
hierarchy (figure 6(C), bottom), there is no speed advantage in comparison to a random
initialisation with similar initial variance (figures 6(E) and (F), bottom). Importantly,
from theorem 3.2 it follows, that the learning process can be sped up significantly by
initialising from large zero-balanced weights, while converging to a global minimum with
identical generalisation properties as when training from small weights (figures 6(G) and
(H). In summary, having incorporated structured knowledge before revision does not
speed up or even slows down learning in comparison to learning from random zero-
balanced weights. Notably, that is despite the tasks’ structure being almost identical
(figures 3(B) and 6(D).

7. Discussion

We derive exact solutions to the dynamics of learning with rich prior knowledge in a
tractable model class: deep linear networks. While our results broaden the class of two-
layer linear network problems that can be described analytically, they remain limited
and rely on a set of assumptions (2.1)–(2.4). In particular, weakening the requirement
that the input covariance be white and the weights be zero-balanced would enable
analysis of the impact of initialisation on internal representations. Nevertheless, these
solutions reveal several insights into network behaviour. We show that there exists a
large set of initial values, namely zero-balanced weights 2.3, which lead to task-specific
representations; and that large initialisations lead to exponential rather than sigmoidal
learning curves. We hope our results provide a mathematical toolkit that illuminates
the complex impact of prior knowledge on deep learning dynamics.
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Appendix A. Fukumizu approach

For completeness, we reproduce the derivation from Fukumizu (1998) of equation (5).
We consider the learning setting describe in section 2. Under the assumptions of equal
input-output dimensions 2.1, whitened inputs 2.2 and zero-balanced weights 2.3, the
weights dynamics yield

τ
d

dt
W1 =WT

2

(
Σ̃

yx−W2W1Σ̃
xx
)
, (16)

τ
d

dt
W2 =

(
Σ̃

yx−W2W1Σ̃
xx
)
WT

1 . (17)

Under the assumption of whitened inputs 2.2, the dynamics simplify to

τ
d

dt
W1 =WT

2

(
Σ̃

yx−W2W1

)
, (18)

τ
d

dt
W2 =

(
Σ̃

yx−W2W1

)
WT

1 . (19)

We introduce the variables

Q=

[
WT

1

W2

]
and QQT =

[
WT

1 W1 WT
1 W

T
2

W2W1 W2W
T
2

]
. (20)

We compute the time derivative

τ
d

dt

(
QQT

)
= τ

[
dWT

1

dt W1+WT
1
dW1

dt
dWT

1

dt WT
2 +WT

1
dWT

2

dt

dW2

dt W1+W2
dW1

dt
dW2

dt WT
2 +W2

dWT
2

dt

]
. (21)

Using equations (18) and (19) we compute the four quadrant separately giving

τ

(
dWT

1

dt
W1+WT

1

dW1

dt

)
(22)

=
(
Σ̃

yx−W2W1

)T
W2W1+WT

1 W
T
2

(
Σ̃

yx−W2W1

)
(23)
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=
(
Σ̃

yx
)T

W2W1+WT
1 W

T
2 Σ̃

yx−WT
1 W

T
2 W2W1− (W2W1)

TW2W1 (24)

=
(
Σ̃

yx
)T

W2W1+WT
1 W

T
2 Σ̃

yx−WT
1 W

T
2 W2W1−WT

1 W1W
T
1 W1, (25)

τ

(
dWT

1

dt
WT

2 +WT
1

dWT
2

dt

)
(26)

=
(
Σ̃

yx−W2W1

)T
W2W

T
2 +WT

1 W1

(
Σ̃

yx−W2W1

)T
(27)

=
(
Σ̃

yx
)T

W2W
T
2 +WT

1 W1

(
Σ̃

yx
)T

−WT
1 W1 (W2W1)

T− (W2W1)
TW2W

T
2 , (28)

=
(
Σ̃

yx
)T

W2W
T
2 +WT

1 W1

(
Σ̃

yx
)T

−WT
1 W1W

T
1 W

T
2 −WT

1 W
T
2 W2W

T
2 , (29)

τ

(
dW2

dt
W1+W2

dW1

dt

)
(30)

=
(
Σ̃

yx−W2W1

)
WT

1 W1+W2W
T
2

(
Σ̃

yx−W2W1

)
(31)

= Σ̃
yx
WT

1 W1+W2W
T
2 Σ̃

yx−W2W
T
2 W2W1−W2W1W

T
1 W1, (32)

τ

(
dW2

dt
WT

2 +W2
dWT

2

dt

)
(33)

=
(
Σ̃

yx−W2W1

)
WT

1 W
T
2 +W2W1

(
Σ̃

yx−W2W1

)T
(34)

= Σ̃
yx
WT

1 W
T
2 +W2W1

(
Σ̃

yx
)T

−W2W1W
T
1 W

T
2 −W2W1 (W2W1)

T (35)

= Σ̃
yx
WT

1 W
T
2 +W2W1

(
Σ̃

yx
)T

−W2W1W
T
1 W

T
2 −W2W1W

T
1 W

T
2 (36)

= Σ̃
yx
WT

1 W
T
2 +W2W1

(
Σ̃

yx
)T

−W2W1W
T
1 W

T
2 −W2W

T
2 W2W

T
2 , (37)

where we have used the assumption of zero-balanced weights 2.3 to simplify
equations (25) and (37).

Defining

F=

 0
(
Σ̃

yx
)T

Σ̃
yx

0

 , (38)
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the gradient flow dynamics of QQT(t) can be written as a differential matrix Riccati
equation

τ
d

dt

(
QQT

)
= FQQT+QQTF−

(
QQT

)2
. (39)

We write τ d
dt(QQT) for completeness

τ
d

dt

(
QQT

)
=

 0
(
Σ̃

yx
)T

Σ̃
yx

0

[WT
1 W1 WT

1 W
T
2

W2W1 W2W
T
2

]

+

[
WT

1 W1 WT
1 W

T
2

W2W1 W2W
T
2

]T 0
(
Σ̃

yx
)T

Σ̃
yx

0

−

[
WT

1 W1 WT
1 W

T
2

W2W1 W2W
T
2

]2
(40)

=

 0
(
Σ̃

yx
)T

Σ̃
yx

0

[WT
1 W1 WT

1 W
T
2

W2W1 W2W
T
2

]

+

[
WT

1 W1 WT
1 W

T
2

W2W1 W2W
T
2

] 0
(
Σ̃
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)T

Σ̃
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0


−

[
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1 W1 WT
1 W

T
2

W2W1 W2W
T
2

][
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1 W1 WT
1 W

T
2
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T
2

]
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W2W1
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T
2
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1 W1 Σ̃
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−

[
WT

1 W1W
T
1 W1+WT

1 W
T
2 W2W1 WT

1 W1W
T
1 W

T
2 +WT

1 W
T
2 W2W

T
2

W2W1W
T
1 W1+W2W

T
2 W2W1 W2W1W

T
1 W

T
2 +W2W

T
2 W2W

T
2

]
(43)
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=



(
Σ̃

yx
)T

W2W1+WT
1 W

T
2 Σ̃

yx

−WT
1 W

T
2 W2W1−WT

1 W1W
T
1 W1

(
Σ̃

yx
)T

W2W
T
2 +WT

1 W1

(
Σ̃

yx
)T

−WT
1 W1W

T
1 W

T
2 −WT

1 W
T
2 W2W

T
2

Σ̃
yx
WT

1 W1+W2W
T
2 Σ̃

yx

−W2W
T
2 W2W1−W2W1W

T
1 W1 Σ̃

yx
WT

1 W
T
2 +W2W1

(
Σ̃

yx
)T

−W2W1W
T
1 W

T
2 −W2W

T
2 W2W

T
2


(44)

□

The four quadrant of (44) are equivalent to equations (25), (29), (32) and (37)
respectively.

Assuming that Q(0) is full rank, the continuous differential equation (39) has a
unique solution for all t⩾ 0

QQT (t) = eF
t
τ Q(0)

[
I+

1

2
Q(0)T

(
eF

t
τ F−1eF

t
τ −F−1

)
Q(0)

]−1

Q(0)T eF
t
τ . (45)

Appendix B. Network’s internal representations

B.1. Representational similarity analysis

The task-relevant representational similarity matrix (Kriegeskorte et al 2008) of the
hidden layer, calculated from the inputs H=W1X is

RSMI (t) =HT (t)H(t) (46)

= (W1 (t)X)TW1 (t)X (47)

=XT
(
WT

1 W1

)
(t)X. (48)

Similarly, the representational similarity matrix of the hidden layer, calculated from the
outputs H̃=W+

2 Y , where + denotes the pseudoinverse, is

RSMO (t) = H̃T (t)H̃(t) (49)

=
(
W+

2 (t)Y
)T

W+
2 (t)Y (50)

= Y T
(
W2W

T
2 (t)

)+
Y. (51)

B.2. Finite-width neural tangent kernel

In the following, we derive the finite-width neural tangent kernel (Jacot et al 2018) for
a two-layer linear network. Starting with the network function at time t

Ft (X) =W2W1X, (52)
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the discrete time gradient descent dynamics of the next time step yields

Ft+1 (X) =

(
W2− η

∂L
∂W2

)(
W1− η

∂L
∂W1

)
X (53)

=W2W1X− η

(
W2

∂L
∂W1

+
∂L
∂W2

W1− η
∂L
∂W2

∂L
∂W1

)
X. (54)

The network function’s gradient flow can then be derived as

Ft+1 (X)−Ft (X)

η
=−

(
W2

∂L
∂W1

+
∂L
∂W2

W1− η
∂L
∂W2

∂L
∂W1

)
X (55)

[η → 0]
d

dt
F (X) =−

(
W2

∂L
∂W1

+
∂L
∂W2

W1

)
X. (56)

Substituting the partial derivatives

∂L
∂W1

=
1

2

∂

∂W1
||W2W1X−Y||2F (57)

=WT
2 (W2W1X−Y)XT (58)

and

∂L
∂W2

=
1

2

∂

∂W2
||W2W1X−Y||2F (59)

= (W2W1X−Y)XTWT
1 (60)

then yields

d

dt
F (X) =−W2W

T
2 (W2W1X−Y)XTX− (W2W1X−Y)XTWT

1 W1X. (61)

Finally, we introduce the identity matrix INo of sizeNo and apply row-wise vectoriasation
vecr(F (X)) := f(X) and the identity vecr(ABC) = (A⊗CT)vecr(B) to derive the neural
tangent kernel

d

dt
F (X) =−W2W

T
2 (W2W1X−Y)XTX− INo (W2W1X−Y)XTWT

1 W1X (62)

⇔ d

dt
f (X) =−

W2W
T
2 ⊗XTX+ I⊗XTWT

1 W1X︸ ︷︷ ︸
NTK

vecr (W2W1X−Y) (63)

=−
([

W2⊗XT,I⊗XTWT
1

][
W2⊗XT,I⊗XTWT

1

]T)vecr

(
∂L
∂F

)
(64)

=−
(
[∇W1f,∇W2f ] [∇W1f,∇W2f ]

T
) ∂L
∂f

(65)

=−
(
∇θf∇θf

T
) ∂L
∂f

, (66)

where [A,B] denotes concatenation.

https://doi.org/10.1088/1742-5468/ad01b8 21

https://doi.org/10.1088/1742-5468/ad01b8


Exact learning dynamics of deep linear networks with prior knowledge

J.S
tat.

M
ech.(2023)

114004

Appendix C. Exact learning dynamics with prior knowledge

C.1. Proof of theorem 3.1

In the following, we prove that equation (11) is in fact a solution to the matrix Riccati
equation arising from gradient flow (equation (39)). We prove the theorem by directly
substituting our solution for QQT(t) into the matrix Riccati equation.

C.1.1. Unequal input-output dimension. We start with the following equation

QQT (t) =
[
OeΛ

t
τ OT+2MMT

]
Q(0)︸ ︷︷ ︸

L

×
[
I+

1

2
Q(0)T

(
O
(
e2Λ

t
τ − I

)
Λ−1OT+4

t

τ
MMT

)
Q(0)

]−1

︸ ︷︷ ︸
C−1

(67)

×Q(0)T
[
OeΛ

t
τ OT+2MMT

]
︸ ︷︷ ︸

R

=LC−1R, (68)

which is identical to equation (11) in the main text, as we verify in section C.2 (by
reversing the derivation from equation (152) to equation (128)). Substituting our solu-
tion into the matrix Riccati equation then yields

τ
d

dt
QQT = FQQT+QQTF−

(
QQT

)2
(69)

⇒ τ
d

dt
LC−1R

?
= FLC−1R+LC−1RF−LC−1RLC−1R. (70)

Next, we note that

OTO=
1√
2

[
Ṽ Ṽ

Ũ −Ũ

]T
1√
2

[
Ṽ Ṽ

Ũ −Ũ

]
= I, (71)

OTM=
1√
2

[
ṼT ŨT

ṼT −ŨT

]
1√
2

[
Ṽ⊥
Ũ⊥

]
(72)

=
1

2

[
ṼTṼ⊥+ ŨTŨ⊥
ṼTṼ⊥− ŨTŨ⊥

]
(73)

= 0 (74)
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and

MTO=
1√
2

[
ṼT

⊥ ŨT
⊥
] 1√

2

[
Ṽ Ṽ

Ũ −Ũ

]
(75)

=
1

2

[
ṼT

⊥Ṽ+ ŨT
⊥Ũ

ṼT
⊥Ṽ− ŨT

⊥Ũ

]
(76)

= 0. (77)

Then, using the chain rule ∂(AB) = (∂A)B+A(∂B) and the identities

d

dt

(
A−1

)
=A−1

(
d

dt
A

)
A−1 and

d

dt

(
etA
)
=AetA = etAA (78)

we get

τ
d

dt
QQT = τ

d

dt

(
LC−1R

)
(79)

= τ

(
d

dt
L

)
C−1R+ τL

(
d

dt
C−1R

)
(80)

= τ

(
d

dt
L

)
C−1R+ τLC−1

(
d

dt
R

)
+ τL

(
d

dt
C−1

)
R, (81)

with

τ

(
d

dt
L

)
C−1R= τO

1

τ
ΛeΛ

t
τ OTQ(0)C−1R (82)

=OΛeΛ
t
τ OTQ(0)C−1R (83)

=

[
OΛOTOeΛ

t
τ OTQ(0)+ 2OΛOTM︸ ︷︷ ︸

0

MTQ(0)

]
C−1R (84)

= FLC−1R, (85)

τLC−1

(
d

dt
R

)
= τLC−1Q(0)TO

1

τ
eΛ

t
τ ΛOT (86)

= LC−1Q(0)TOeΛ
t
τ ΛOT (87)

= LC−1

[
Q(0)TOeΛ

t
τ OTOΛOT+2Q(0)TMMTO︸ ︷︷ ︸

0

ΛOT

]
(88)

= LC−1RF (89)
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and

τL

(
d

dt
C−1

)
R=−τLC−1

(
d

dt
C

)
C−1R (90)

=−LC−1

[
τ
1

2
Q(0)TO2

1

τ
e2Λ

t
τ ΛΛ−1OTQ(0) (91)

+ τ
1

2
Q(0)T 4

1

τ
MMTQ(0)

]
C−1R

=−LC−1

[
Q(0)TOe2Λ

t
τ OTQ(0)+ 2Q(0)TMMTQ(0)

]
C−1R (92)

=−LC−1

[
Q(0)TOeΛ

t
τ OTOeΛ

t
τ OTQ(0)

+ 2Q(0)TOeΛ
t
τ OTM︸ ︷︷ ︸

0

MTQ(0) (93)

+ 2Q(0)TMMTO︸ ︷︷ ︸
0

eΛ
t
τ OTQ(0)

+ 4Q(0)TMMTMMTQ(0)

]
C−1R

=−LC−1RLC−1R. (94)

Finally, substituting equations (82), (86) and (90) into the left hand side of equation (70)
proves equality.

□

C.1.2. Equal input-output dimension. In the case of equal input-output dimensions
Ũ⊥ = Ṽ⊥ = 0 equation (67) reduces to

QQT (t) =OeΛ
t
τ OTQ(0)︸ ︷︷ ︸

L

×
[
I+

1

2
Q(0)TOe2Λ

t
τ Λ−1OTQ(0)− 1

2
Q(0)TOΛ−1OTQ(0)

]−1

︸ ︷︷ ︸
C−1

(95)

×Q(0)TOeΛ
t
τ OT︸ ︷︷ ︸

R

= LC−1R. (96)
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Therefore, analogously to the proof for unequal input-output dimensions, it follows that

τ
d

dt
QQT = τ

d

dt
LC−1R (97)

= τ

(
d

dt
L

)
C−1R+ τL

(
d

dt
C−1R

)
(98)

= τ

(
d

dt
L

)
C−1R+ τLC−1

(
d

dt
R

)
+ τL

(
d

dt
C−1

)
R, (99)

with

τ

(
d

dt
L

)
C−1R= τOΛ

1

τ
eΛ

t
τ OTQ(0)C−1R (100)

=OΛOTOeΛ
t
τ OTQ(0)C−1R (101)

= FLC−1R, (102)

τLC−1

(
d

dt
R

)
= τLC−1Q(0)TO

1

τ
eΛ

t
τ ΛOT (103)

= LC−1Q(0)TOeΛ
t
τ OTOΛOT (104)

= LC−1RF, (105)

and

τL

(
d

dt
C−1R

)
=−τLC−1

(
d

dt
C

)
C−1R (106)

=−τLC−1

(
1

2
Q(0)TOe2Λ

t
τ
2

τ
ΛΛ−1OTQ(0)

)
C−1R (107)

=−τLC−1Q(0)TOeΛ
t
τ OTOeΛ

t
τ Q(0)C−1R (108)

=−LC−1RLC−1R. (109)

Finally, substituting equations (100), (103) and (106) into the left hand side of
equation (70) proves equality.

□

C.2. Derivation of the exact learning dynamics

In the following, we outline how the solution to the matrix Ricatti equation can
be acquired. Let the input and output dimension of a two-layer linear network
(equation (1)) be denoted by Ni and No respectively. Further, let Nm = min(Ni,No)
denote the smaller one of the two. The compact singular value decomposition of the
initial network function and the input-output correlation of the task is then

SVD(W2 (0)W1 (0)) =USVT andSVD
(
Σ̃

yx
)
= ŨS̃ṼT. (110)

Here, U and Ũ ∈ RNo×Nm denote the left singular vectors, S and S̃ ∈ RNm×Nm the square
matrix with ordered, non-zero eigenvalues on its diagonal and V and Ṽ ∈ RNi×Nm the
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corresponding right singular vectors. Please note that when using compact singular
value decomposition, in the case of unequal input-output dimensions (Ni ̸=No) the
right and left singular vectors are not generally square and orthonormal.

More specifically, in the case of Ni <No, ŨTŨ= ṼTṼ = ṼṼT = I ∈ RNi×Ni but
ŨŨT ̸= I ∈ RNo×No. In this case, we use Ũ⊥ ∈ RNo×(No−Ni) to denote the matrix that
contains orthogonal column vectors such that the concatenation

[
Ũ Ũ⊥

]
is orthonor-

mal and Ṽ⊥ ∈ RNi×(No−Ni) to denote a matrix of zeros.
Conversely, in the case of Ni >No, ŨŨT = ŨTŨ= ṼTṼ = I ∈ RNo×No but ṼTṼ ̸=

I ∈ RNi×Ni and we define Ṽ⊥ ∈ RNi×(Ni−No) such that
[
Ṽ Ṽ⊥

]
is orthonormal and Ũ⊥ ∈

RNo×(No−Ni) to denote a matrix of zeros.

C.2.1. Inverse and matrix exponential of F. The solution to the matrix Riccati equation
as provided by Fukumizu (1998) requires calculation of the inverse F−1 and the matrix

exponential eF
t
τ . To this end, we diagonalise F by completing its basis by incorporating

zero eigenvalues as illustrated below

F=

[
0 ṼS̃ŨT

ŨS̃ṼT 0

]
(111)

=
1√
2

[
Ṽ Ṽ

√
2Ṽ⊥

Ũ −Ũ
√
2Ũ⊥

]S̃ 0 0

0 −S̃ 0
0 0 0

 1√
2

[
Ṽ Ṽ

√
2Ṽ⊥

Ũ −Ũ
√
2Ũ⊥

]T
(112)

=PΓPT. (113)

Note that PTP=PPT = I and therefore PT =P−1. We then use the diagonalisation of
F to rewrite the matrix exponential

eF
t
τ =PeΓPT (114)

=
1√
2

[
Ṽ Ṽ

√
2V⊥

Ũ −Ũ
√
2U⊥

]eS̃ t
τ 0 0

0 e−S̃ t
τ 0

0 0 e0

 1√
2

[
Ṽ Ṽ

√
2V⊥

Ũ −Ũ
√
2U⊥

]T
(115)

=
1

2

[
ṼeS̃

t
τ ṼT+ Ṽe−S̃ t

τ ṼT+2Ṽ⊥Ṽ
T
⊥ ṼeS̃

t
τ ŨT− Ṽe−S̃ t

τ ŨT+2Ṽ⊥Ũ
T
⊥

ŨeS̃
t
τ ṼT− Ũe−S̃ t

τ ṼT+2Ũ⊥Ṽ
T
⊥ ŨeS̃

t
τ ŨT− Ũe−S̃ t

τ ŨT+2Ũ⊥Ũ
T
⊥

]
(116)

=
1√
2

[
Ṽ Ṽ

Ũ −Ũ

][
eS̃

t
τ 0

0 e−S̃ t
τ

]
1√
2

[
Ṽ Ṽ

Ũ −Ũ

]T
+2

1√
2

[
Ṽ⊥
Ũ⊥

]
1√
2

[
Ṽ⊥
Ũ⊥

]T
(117)

=OeΛ
t
τ O+2MMT. (118)

As the inverse F−1 =PΓ−1PT is not well defined for a Γ with zero eigenvalues. We
study eigenvalues of value zero by analysing the limiting behaviour of

eF
t
τ F−1eF

t
τ −F−1 (119)
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for a single mode

lim
ϵ→0

[
e

ϵt
τ
1

ϵ
e

ϵt
τ − 1

ϵ

]
= lim

ϵ→0

[
e

2ϵt
τ − 1

ϵ

]
(120)

L’Hospital−−−−−→ lim
ϵ→0

 ∂
∂ϵ

(
e

2ϵt
τ − 1

)
∂
∂ϵϵ

 (121)

= lim
ϵ→0

2
t

τ
e

2ϵt
τ (122)

= 2
t

τ
. (123)

which reveals the time dependent contribution of zero eigenvalues. Thus

eF
t
τ F−1eF

t
τ −F−1 =OeΛ

t
τ OTOΛ−1OTOeΛ

t
τ OT−OΛ−1OT+4

t

τ
MMT. (124)

We continue by substituting the above results into Fukumizu’s equation

QQT (t) =
[
OeΛ

t
τ OT+2MMT

]
Q(0) (125)

×
[
I+

1

2
Q(0)T

(
OeΛ

t
τ OTOΛ−1OTOeΛ

t
τ OT−OΛ−1OT+4

t

τ
MMT

)
Q(0)

]−1

×Q(0)T
[
OeΛ

t
τ OT+2MMT

]
=
[
OeΛ

t
τ OT+2MMT

]
Q(0)

×
[
I+

1

2
Q(0)T

(
OeΛ

t
τ Λ−1eΛ

t
τ OT−OΛ−1OT+4

t

τ
MMT

)
Q(0)

]−1

(126)

Q(0)T
[
OeΛ

t
τ OT+2MMT

]
=
[
OeΛ

t
τ OT+2MMT

]
Q(0)

×
[
I+

1

2
Q(0)T

(
O
(
e2Λ

t
τ Λ−1−Λ−1

)
OT+4

t

τ
MMT

)
Q(0)

]−1

(127)

×Q(0)T
[
OeΛ

t
τ OT+2MMT

]
=
[
OeΛ

t
τ OT+2MMT

]
Q(0)

×
[
I+

1

2
Q(0)T

(
O
(
e2Λ

t
τ − I

)
Λ−1OT+4

t

τ
MMT

)
Q(0)

]−1

(128)

×Q(0)T
[
OeΛ

t
τ OT+2MMT

]
.
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Then, matrix multiplication on the left side of the equation yields

OeΛ
t
τ =

1√
2

[
Ṽ Ṽ

Ũ −Ũ

][
eS̃

t
τ 0

0 e−S̃ t
τ

]
(129)

=
1√
2

[
ṼeS̃

t
τ Ṽe−S̃ t

τ

ŨeS̃
t
τ −Ũe−S̃ t

τ

]
(130)

and

OTQ(0) =
1√
2

[
Ṽ Ṽ

Ũ −Ũ

]T[
V
√
SRT

U
√
SRT

]
(131)

=
1√
2

[
ṼTV

√
SRT+ ŨTU

√
SRT

ṼTV
√
SRT− ŨTU

√
SRT

]
(132)

=
1√
2

(ṼTV+ ŨTU
)√

SRT(
ṼTV− ŨTU

)√
SRT

 , (133)

such that

OeΛ
t
τ OTQ(0) =

1

2

[
ṼeS̃

t
τ Ṽe−S̃ t

τ

ŨeS̃
t
τ −Ũe−S̃ t

τ

][
ṼTV

√
SRT+ ŨTU

√
SRT

ṼTV
√
SRT− ŨTU

√
SRT

]
(134)

=
1

2

Ṽ(eS̃ t
τ

(
ṼTV+ ŨTU

)
+ e−S̃ t

τ

(
ṼTV− ŨTU

))√
SRT

Ũ
(
eS̃

t
τ

(
ṼTV+ ŨTU

)
− e−S̃ t

τ

(
ṼTV− ŨTU

))√
SRT

 . (135)

We continue by calculating

4MMTQ(0) = 4
1√
2

[
Ṽ⊥
Ũ⊥

]
1√
2

[
Ṽ⊥
Ũ⊥

]T[
V
√
SRT

U
√
SRT

]
(136)

= 2

[
Ṽ⊥Ṽ

T
⊥ Ṽ⊥Ũ

T
⊥

Ũ⊥Ṽ
T
⊥ Ũ⊥Ũ

T
⊥

][
V
√
SRT

U
√
SRT

]
(137)

= 2

[
Ṽ⊥Ṽ

T
⊥ 0

0 Ũ⊥Ũ
T
⊥

][
V
√
SRT

U
√
SRT

]
(138)

= 2

[
Ṽ⊥Ṽ

T
⊥V

√
SRT

Ũ⊥Ũ
T
⊥U

√
SRT

]
(139)
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and

1

2
Q(0)T 4

t

τ
MMTQ(0) =

t

τ

[
R
√
SVTR

√
SUT

][Ṽ⊥Ṽ
T
⊥V

√
SRT

Ũ⊥Ũ
T
⊥U

√
SRT

]
(140)

=
t

τ

[
R
√
S
(
VTṼ⊥Ṽ

T
⊥V+UTŨ⊥Ũ

T
⊥U
)√

SRT
]

(141)

Next, we define B=UT Ũ+VT Ṽ and C=UT Ũ−VT Ṽ and rewrite the inverse as

[
I+

1

2
Q(0)TO

(
e2Λ

t
τ − I

)
Λ−1OTQ(0)+ 2

t

τ
Q(0)TMMTQ(0)

]−1

(142)

=

[
I+

1

4
R
√
S

([
B −C

](
e2Λ

t
τ − I

)
Λ−1

[
BT

−CT

]

+4
t

τ

(
VTṼ⊥Ṽ

T
⊥V+UTŨ⊥Ũ

T
⊥U
))√

SRT

]−1

. (143)

Working from the centre out, we have

[
B −C

]
Λ−1

[
BT

−CT

]
=
[
B −C

][S̃−1 0

0 −S̃−1

][
BT

−CT

]
(144)

=
[
B −C

][S̃−1BT

S̃−1CT

]
(145)

=BS̃−1BT−CS̃−1CT (146)

and

[
B −C

]
e2Λ

t
τ Λ−1

[
BT

−CT

]
=
[
B −C

][e2S̃ t
τ S̃−1 0

0 −e−2S̃ t
τ S̃−1

][
BT

−CT

]
(147)

=
[
B −C

][ e2S̃
t
τ S̃−1BT

e−2S̃ t
τ S̃−1CT

]
(148)

=Be2S̃
t
τ S̃−1BT−Ce−2S̃ t

τ S̃−1CT. (149)
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Finally, using AB−1 = (BA−1)−1 (and A−1B = (B−1A)−1) to move terms into the
inverse, we rewrite

QQT(t) =
1

2

(Ṽ(eS̃ t
τ BT− e−S̃ t

τ CT
)
+2Ṽ⊥Ṽ

T
⊥V
)√

SRT(
Ũ
(
eS̃

t
τ BT+ e−S̃ t

τ CT
)
+2Ũ⊥Ũ

T
⊥U
)√

SRT


×
[
I+R

√
S

(
1

4
B
(
e2S̃

t
τ − I

)
S̃−1BT− 1

4
C
(
e−2S̃ t

τ − I
)
S̃−1CT

+
t

τ

(
VTṼ⊥Ṽ

T
⊥V+UTŨ⊥Ũ

T
⊥U
))√

SRT

]−1

(150)

1

2

(Ṽ(eS̃ t
τ BT− e−S̃ t

τ CT
)
+2Ṽ⊥Ṽ

T
⊥V
)√

SRT(
Ũ
(
eS̃

t
τ BT+ e−S̃ t

τ CT
)
+2Ũ⊥Ũ

T
⊥U
)√

SRT

T

=
1

2

Ṽ(eS̃ t
τ BT− e−S̃ t

τ CT
)
+2Ṽ⊥Ṽ

T
⊥V

Ũ
(
eS̃

t
τ BT+ e−S̃ t

τ CT
)
+2Ũ⊥Ũ

T
⊥U


×
[
S−1+

1

4
B
(
e2S̃

t
τ − I

)
S̃−1BT− 1

4
C
(
e−2S̃ t

τ − I
)
S̃−1CT

+
t

τ

(
VTṼ⊥Ṽ

T
⊥V+UTŨ⊥Ũ

T
⊥U
)]−1

(151)

1

2

Ṽ(eS̃ t
τ BT− e−S̃ t

τ CT
)
+2Ṽ⊥Ṽ

T
⊥V

Ũ
(
eS̃

t
τ BT+ e−S̃ t

τ CT
)
+2Ũ⊥Ũ

T
⊥U

T

=

Ṽ(I− e−S̃ t
τ CT

(
BT
)−1

e−S̃ t
τ

)
+2Ṽ⊥Ṽ

T
⊥V
(
BT
)−1

e−S̃ t
τ

Ũ
(
I+ e−S̃ t

τ CT
(
BT
)−1

e−S̃ t
τ

)
+2Ũ⊥Ũ

T
⊥U
(
BT
)−1

e−S̃ t
τ


×
[
4e−S̃ t

τ B−1S−1
(
BT
)−1

e−S̃ t
τ +
(
I− e−2S̃ t

τ

)
S̃−1

− e−S̃ t
τ B−1C

(
e−2S̃ t

τ − I
)
S̃−1CT

(
BT
)−1

e−S̃ t
τ

+4
t

τ
e−S̃ t

τ B−1
(
VTṼ⊥Ṽ

T
⊥V+UTŨ⊥Ũ

T
⊥U
)(

BT
)−1

e−S̃ t
τ

]−1

×

Ṽ(I− e−S̃ t
τ CT

(
BT
)−1

e−S̃ t
τ

)
+2Ṽ⊥Ṽ

T
⊥VB−Te−S̃ t

τ

Ũ
(
I+ e−S̃ t

τ CT
(
BT
)−1

e−S̃ t
τ

)
+2Ũ⊥Ũ

T
⊥UB−Te−S̃ t

τ

T

. (152)
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C.3. Proof of theorem 3.2: Limiting behaviour

As training time increases, all terms including a matrix exponential with negative expo-
nent in equation (11) vanish to zero, as S̃ is a diagonal matrix with entries larger zero

lim
t→∞

e−S̃ t
τ = 0. (153)

Therefore, in the temporal limit, equation (11) reduces to

lim
t→∞

QQT (t) = lim
t→∞

[
WT

1 W1 (t) WT
1 W

T
2 (t)

W2W1 (t) WT
2 W2 (t)

]
(154)

=

[
Ṽ

Ũ

][
S̃−1
]−1 [

ṼT ŨT
]

(155)

=

[
ṼS̃ṼT ṼS̃ŨT

ŨS̃ṼT ŨS̃ŨT

]
. (156)

□

C.4. Dynamics of Q(t)

The solution for the weights W1(t) and W2(t) can be derived up to a time varying
orthogonal transformation as demonstrated by Yan et al (1994).

Under the assumptions of whitened inputs 2.2, zero-balanced weights 2.3, full rank
2.4, and equal input-output dimension, the temporal dynamics of Q(t) is given as

Q(t) = eF
t
τ Q(0)

[
I+

1

2
Q(0)T

(
eF

t
τ F−1eF

t
τ −F−1

)
Q(0)

]− 1
2

D(t) . (157)

where D(t) is an orthogonal matrix of size Nh×Nh. From this definition, computing
Q(t)Q(t)T, we recover equation (45).

Equation (157) shows that the individual weight matrices are not directly described
by parts of the Q(t)Q(t)T solution. Instead, they are fixed only up to a time-
dependent orthogonal transformation. To verify this, we numerically compute D(t)
as D(t) = q(t)+Qsim(t) where Qsim(t) denotes weights obtained from numerical simu-

lations of gradient descent, + denotes the pseudoinverse ( q+(t) = (qT(t)q(t))−1q(t)T

where q(t) is rectangular) and

q(t) = eF
t
τ Q(0)

[
I+

1

2
Q(0)T

(
eF

t
τ F−1eF

t
τ −F−1

)
Q(0)

]− 1
2

. (158)

We numerically show in figure 7(D) right panel that D(t) generally changes over
time. Letting Qd(t) denote the estimated Q(t) using the numerically recovered D(t),
figure 7(D) left and centre panels show that both the dynamics ofQd(t) andQd(t)Qd(t)

T

match the temporal dynamics of the simulation. The small derivation between the
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Figure 7. (A) Loss under gradient descent learning two random input-output cor-
relation task with learning rate η = 0,001 up to precision 1× 10−7. The green dot-
ted line marks the time at which the target is switched from task 1 to task 2. (B)
Numerical (coloured line) and analytical (black dotted line) temporal dynamics of
QQT(t) as given by equation (159). (C) Numerical (coloured line) and analytical
(black dotted line) temporal dynamics of q(t) and q(t)q(t)T (158) (D) Temporal
dynamics of D(t). Numerical (coloured line) and analytical (black dotted line) tem-
poral dynamics of Qd(t)Qd(t)

T and Qd(t) as given by equation (157) where (D) was
computed numerically.

simulation and the analytical solution for later time points, is due to the imprecision of
the pseudoinverse.

In figure 7(C), we report the implementation of equation (158). As expected, the
analytical solution does not match the numerical temporal dynamics. However, the
solution for q(t)q(t)T recovers the correct dynamics.

Appendix D. Rich and lazy learning regimes and generalisation

Under the assumptions of theorem 3.1, the network function acquires a rich task-specific
internal representation at convergence, that is WT

1 W1 = ṼS̃ṼT and W2W
T
2 = ŨS̃ŨT.

Therefore, there exist initial states with large zero-balanced weights that lead to rich
solutions.

We more quantitatively capture this phenomena in figure 8. We define the error on
the internal representation as figure 3 ||WT

1 W1− ṼS̃ṼT||F 2 and ||W2W
T
2 − ŨS̃ŨT|F 2

for W1 and W2 respectively. Effectively, we measure the richness of the representation
and in turn it is generalisation ability. In figure 8, the error remains zero for increas-
ing gain for any network initialised with zero-balanced weights. In other words, the
representation at convergences is rich. In contrast, for random initialisation the error
increase consequently with increasing gain. As the network is moving away from the
small random weight initialisation, the network converges to lazier representation.
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Figure 8. (A) and (B) Mean and standard deviation on the error on the internal
representation error defined as in section D for the learning the living kingdom
task (figure 6(A)), a random 7× 7 matrix (blue), a random 5× 7 matrix (yellow), a
7× 5 matrix (green), a 8× 8 matrix (red). All the task ran were ran with learning
rate η=0.001 enforcing initial zero-balanced weights 2.3 (dotted line) and breaking
the assumption of zero-balanced initial weights 2.3 (line). Nh = 10 for all networks.

Appendix E. Decoupling dynamics

E.1. Proof for theorem 5.1

Let the input and output dimension of a two-layer linear network (equation (1)) be
equal, i.e. Ni =No, then equation (11) simplifies to

QQT (t) =

Ṽ(I− e−S̃ t
τ CT

(
BT
)−1

e−S̃ t
τ

)
Ũ
(
I+ e−S̃ t

τ CT
(
BT
)−1

e−S̃ t
τ

)
×
[
4e−S̃ t

τ B−1S−1
(
BT
)−1

e−S̃ t
τ +
(
I− e−2S̃ t

τ

)
S̃−1

−e−S̃ t
τ B−1C

(
e−2S̃ t

τ − I
)
S̃−1CT

(
BT
)−1

e−S̃ t
τ

]−1

×

Ṽ(I− e−S̃ t
τ CT

(
BT
)−1

e−S̃ t
τ

)
Ũ
(
I+ e−S̃ t

τ CT
(
BT
)−1

e−S̃ t
τ

)T

. (159)

Further, let the singular value decomposition of the input-output correlation of the
task be

SVD
(
Σ̃

yx
)
= ŨS̃ṼT (160)

and suppose that the initial state of the network can be written in the form

SVD(W2 (0)W1 (0)) =USVT = ŨA(0)TA(0)ṼT. (161)
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First, we note that the initial weights in this setting are not independent of the
structure of the target task. In particular,

U
√
S= ŨA(0)T (162)

⇔ ŨTU
√
S=A(0)T (163)

⇔
√
SUTŨ=A(0) (164)

and

√
SVT =A(0)ṼT (166)

⇔
√
SVTṼ =A(0) (167)

and therefore

√
SUTŨ=

√
SVTṼ (168)

⇔UVT = ŨṼT. (169)

This further simplifies the equation, as

U
√
S= ŨA(0)T (170)

⇔U= ŨA(0)T
√
S
−1

(171)

and

√
SVT =A(0)ṼT (172)

⇔VT =
√
S
−1
A(0)ṼT (173)

⇔V = ṼA(0)T
√
S
−1
, (174)

then recollecting the definition of B and C we get

BT = ŨTU+ ṼTV (175)

= ŨTŨA(0)T
√
S

−1
+ ṼTṼA(0)T

√
S

−1
(176)

=
(
ŨTŨ+ ṼTṼ

)
A(0)T

√
S

−1
(177)

= 2A(0)T
√
S

−1
(178)

and

CT = ŨTU− ṼTV (179)

=
(
ŨTŨ− ṼTṼ

)
A(0)T

√
S

−1
(180)

= 0. (181)
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Substituting the new values of B and C into equation (159) then yields

QQT (t) =

[
Ṽ

Ũ

][
4e−S̃ t

τ
1

4
A(0)−1

√
SS−1

√
SA(0)−T e−S̃ t

τ +
(
I− e−2S̃ t

τ

)
S̃−1

]−1[
Ṽ

Ũ

]T
(182)

=

[
Ṽ

Ũ

][
e−S̃ t

τ

(
A(0)T A(0)

)−1

e−S̃ t
τ +
(
I− e−2S̃ t

τ

)
S̃−1

]−1[
Ṽ

Ũ

]T
. (183)

Finally, we note that the dynamics can thus be written as

QQT (t) =

[
ṼATA(t)ṼT ṼATA(t)ŨT

ŨATA(t)ṼT ŨATA(t)ŨT

]
(184)

where

ATA(t) =

[
e−S̃ t

τ

(
A(0)T A(0)

)−1

e−S̃ t
τ +
(
I− e−2S̃ t

τ

)
S̃−1

]−1

. (185)

□

E.2. Solution for 2× 2 dynamics

We consider small networks with input and output dimension Ni = 2 and No = 2. In this
setting, the structure of the weight initialisation and task are encoded in the matrices

A(0)TA(0) =

[
a1 (0) b(0)
b(0) a2 (0)

]
and S̃=

[
s1 0
0 s2

]
, (186)

where the parameters a1(0) and a2(0) represent coupling within a singular mode, and
b(0) represents counterproductive cross-coupling between different singular modes.

From equation (13), we have

ATA(t) =

[[
e

−s1t
τ 0

0 e
−s2t
τ

][
a1 (0) b(0)
b(0) a2 (0)

]−1
[
e

−s1t
τ 0

0 e
−s2t
τ

]

+

[[
1 0
0 1

]
−

[
e

−2s1t
τ 0

0 e
−2s2t

τ

]][
s1 0
0 s2

]−1
]−1

(187)

=

[
1

a1 (0)a2 (0)− b(0)2

[
e

−s1t
τ 0

0 e
−s2t
τ

][
a2 (0) −b(0)
−b(0) a1 (0)

][
e

−s1t
τ 0

0 e
−s2t
τ

]

+

[[
1 0
0 1

]
−

[
e

−2s1t
τ 0

0 e
−2s2t

τ

]][ 1
s1

0

0 1
s2

]]−1

, (188)
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where we use

[
a b
c d

]−1

=
1

ad− bc

[
d −b

−c a

]
. (189)

We continue with

ATA(t) =
[

1
a1(0)a2(0)−b(0)2

[
e

−2s1t
τ 0

0 e
−2s2t

τ

][
a2 (0) −b(0)
−b(0) a1 (0)

][
e

−2s1t
τ 0

0 e
−2s2t

τ

]

+

[ 1
s1

0

0 1
s2

]
−

[
1
s1
e

−2s1t
τ 0

0 1
s2
e

−2s2t
τ

]]−1 (190)

=

[
1

a1(0)a2(0)−b(0)2

[
e

−2s1t
τ a2 (0) −e

−s1t
τ b(0)e

−s2t
τ

−e
−s2t
τ b(0)e

−s1t
τ e

−2s2t
τ a1 (0)

]

+

[ 1
s1

0

0 1
s2

]
−

[
1
s1
e

−2s1t
τ 0

0 1
s2
e

−2s2t
τ

]]−1 (191)

=

 e
−2s1t

τ a2(0)

a1(0)a2(0)−b(0)2
+ 1

s1
− 1

s1
e

−2s1t
τ − e

−s1t
τ b(0)e

−s2t
τ

a1(0)a2(0)−b(0)2

− e
−s2t
τ b(0)e

−s1t
τ

a1(0)a2(0)−b(0)2
e
−2s2t

τ a1(0)

a1(0)a2(0)−b(0)2
+ 1

s2
− 1

s2
e

−2s2t
τ


−1

. (192)

We use equation (189) and simplify the denominator

ATA(t)

=
1(

e
−2s2t

τ a1(0)

a1(0)a2(0)−b(0)2
+ 1

s2
− 1

s2
e

−2s2t
τ

)(
e
−2s1t

τ a2(0)

a1(0)a2(0)−b(0)2
+ 1

s1
− 1

s1
e

−2s1t
τ

)
−
(
− e

−s2t
τ b(0)e

−s1t
τ

a1(0)a2(0)−b(0)2

)2

×

 e
−2s2t

τ a1(0)

a1(0)a2(0)−b(0)2
+ 1

s2
− 1

s2
e

−2s2t
τ

e
−s1t
τ b(0)e

−s2t
τ

a1(0)a2(0)−b(0)2

e
−s2t
τ b(0)e

−s1t
τ

a1(0)a2(0)−b(0)2
e
−2s1t

τ a2(0)
a1(0)a2(0)−b(0)2 +

1
s1
− 1

s1
e

−2s1t
τ

 . (193)
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The diagonal element a1(t) is given as

a1 (t)

=

e
−2s2t

τ a1(0)

a1(0)a2(0)−b(0)2
+ 1

s2
− 1

s2
e

−2s2t
τ(

e
−2s2t

τ a1(0)

a1(0)a2(0)−b(0)2
+ 1

s2
− 1

s2
e

−2s2t
τ

)(
e
−2s1t

τ a2(0)

a1(0)a2(0)−b(0)2
+ 1

s1
− 1

s1
e

−2s1t
τ

)
−
(
− e

−s2t
τ b(0)e

−s1t
τ

a1(0)a2(0)−b(0)2

)2 ,

(194)

and interchanging subscripts 1 and 2 yields a2(t). As a check on this result, by setting
b(0) = 0 we recover the expression

a1 (t) =
a1 (0)

e
−2s1t

τ + a1(0)
s1

(
1− e

−2s1t
τ

) , (195)

from Saxe et al (2019).
We further simplify the denominator to

ATA(t)

=
1

1
a1(0)a2(0)−b(0)2

(
e

−2(s1+s2)t
τ

(
1− a1(0)

s1
− a2(0)

s2

)
+ e

−2s2t
τ

a1(0)
s1

+ e
−2s1t

τ
a2(0)
s2

)
+ 1

s2s1

×

 e
−2s2t

τ a1(0)

a1(0)a2(0)−b(0)2
+ 1

s2
− 1

s2
e

−2s2t
τ

e
−s1t
τ b(0)e

−s2t
τ

a1(0)a2(0)−b(0)2

e
−s2t
τ b(0)e

−s1t
τ

a1(0)a2(0)−b(0)2
e
−2s1t

τ a2(0)
a1(0)a2(0)−b(0)2 +

1
s1
− 1

s1
e

−2s1t
τ

 (196)

E.3. Off-Diagonal decoupling dynamics

We track the decoupling by considering the dynamics of the off-diagonal element b(t).

b(t) =

e
−s2t
τ b(0)e

−s1t
τ

a1(0)a2(0)−b(0)2

1
a1(0)a2(0)−b(0)2

(
e

−2(s1+s2)t
τ

(
1− a1(0)

s1
− a2(0)

s2

)
+ e

−2s2t
τ

a1(0)
s1

+ e
−2s1t

τ
a2(0)
s2

)
+ 1

s2s1

. (197)

As t tends to infinity limt→∞ b(t) = 0 the off-diagonal element shrinks to zero.
We can further simplify the off-diagonal to

b(t) =
b(0)

e
−(s1+s2)t

τ

(
1− a1(0)

s1
− a2(0)

s2

)
+ e

(s1−s2)t
τ

a1(0)
s1

+ e
(s2−s1)t

τ
a2(0)
s2

+ a1(0)a2(0)−b(0)2

s2s1

. (198)

Equation (198) can exhibit non-monotonic trajectories with transient peaks as shown
in figure 4. The qualitative observations for the 2× 2 network hold for larger target
matrices as shown in figure 9. For large initialisation, the dynamics are exponential.
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At intermediate and small initialisation, the maximum of the off-diagonal is reached
before the singular mode is fully learned. In the small initialisation scheme, the peak is
of negligible size. The respective target matrix for panel (A)–(D), (B)–(E) and (C)–(F)
in figure 9 are

dense


5 6 3 0 1
4, 1 0 1 2
3 0 2 4 0
3 4 0 3 2
2 0 1 3 4

 , diagonal

5 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

and equal diagonal


5 0 0 0 0
0 5 0 0 0
0 0 5 0 0
0 0 0 5 0
0 0 0 0 5

 .

We characterise these dynamics considering the case where s1 = s2 = s for the two-
by-two solution (i.e. equal diagonal target y) for which we can compute the time of the
peak. In this particular case, we can further simplify the off-diagonal to

b(t) =
b(0)

e
−2(s)t

τ

(
1− a1(0)+a2(0)

s

)
+ a1(0)+a2(0)

s + a1(0)a2(0)−b(0)2

s2

. (199)

We find the time of the maximum of the off-diagonal elements to be tpeak =
τ
4s ln s(s−a1(0)−a2(0))

a1(0)a2(0)−b(0)2 .

The presence of a peak in the off-diagonal values, indicates the decoupling, but as
shown in figures 4(D)–(F), the peak size is negligible in comparison to the size of the
on-diagonal values for small initial weights. This difference is reminiscent of the silent
alignment effect described by Atanasov et al (2022). We further note, that the time
scale of decoupling is on the same order as the one reported for the silent alignment
effect tsa =

1
s .

E.4. On-diagonal dynamics and the effect of initialisation variance

In this section we revisit the impact of initialisation scale for the on-diagonal dynamics.
We now start with

a1 (t) =

e
−2s2t

τ a1(0)

a1(0)a2(0)−b(0)2
+ 1

s2
− 1

s2
e

−2s2t
τ

1
a1(0)a2(0)−b(0)2

(
e

−2(s1+s2)t
τ

(
1− a1(0)

s1
− a2(0)

s2

)
+ e

−2s2t
τ

a1(0)
s1

+ e
−2s1t

τ
a2(0)
s2

)
+ 1

s2s1

. (200)

The diagonal elements simplify in the cases where s1 = s2 = s (i.e. target Y is diagonal),

a1 (t) =

e
−2st
τ a1(0)

a1(0)a2(0)−b(0)2
+ 1

s −
1
se

−2st
τ

1
a1(0)a2(0)−b(0)2

(
e

−4st
τ

(
1− a1(0)

s − a2(0)
s

)
+ e

−2st
τ

a1(0)
s + e

−2st
τ

a2(0)
s

)
+ 1

s2

. (201)

We consider when |a1(0)|, |a2(0)|, |b(0)| ≪ 1, and recover a sigmoidal trajectory,

a1 (t) =
sa1 (0)

e
−2st
τ [s− a1 (0)− a2 (0)]+ a1 (0)+ a2 (0)

. (202)
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Figure 9. (A)–(C) Network function dynamics (Diagonal elements: blue, Off-
diagonal elements: red) learning with learning rate η=0.01 on the target 5× 5
diagonal matrices shown in equation (198). The network was initialised as defined
in section E with Small (σ = 1× 10−6), Intermediate (σ=0.1) and Large (σ=2)
variance, and hidden layer size Nh = 10. (A), Dense. (B), Diagonal. (C), Equal
diagonal. (D)–(F). Corresponding numerical temporal dynamics of the projection
of the network function on- and off-diagonal elements into the singular-basis of the
initialisation. Equivalently, the temporal dynamics of the elements of AAT bottom
left quadrant. (D), Dense. (E), Diagonal. (F), Equal diagonal.

We can compute the time at which a1(t) rises to half its asymptotic value to be

thalf =
τ

2s
log
(
s− a1 (0)− a2 (0)

a1 (0)− a2 (0)

)
. (203)

For |a1(0)|, |a2(0)|, |b(0)| ≫ 0 the dynamics of the on-diagonal element a1 is close to
exponential.

The observation for 2× 2 network hold for larger target matrices as shown in figure 9.
For large variance initialisations, the dynamics are exponential. At intermediate variance
initialisations, we observe more complex behaviour. While at small variance initialisa-
tions, the on-diagonal element describes a sigmoidal trajectory.

Appendix F. Continual learning

We consider the case of training a two-layer deep linear network on a sequence of tasks
Ta, Tb, Tc, ... with corresponding correlation functions Ta = Σ̃yx

a , Tb = Σ̃yx
b .... Then, the

full batch loss of the ith task at any point in training time is

Li =
1

2P
||W2W1Xi −Yi||F

2. (204)

From theorem 3.2 it follows that after training the network to convergence on task Tj, the
network function is W2W1 = ŨS̃ṼT = Σ̃yx

j . Further, using the assumption of whitened
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inputs 2.2 and the identities ||A||F 2 =Tr(AAT) and Tr(A)+Tr(B) = Tr(A+B), the
full batch loss of the i -th task is then

Li (Tj) =
1

2P

∣∣∣∣∣∣Σ̃yx

j Xi −Yi

∣∣∣∣∣∣
F

2 (205)

=
1

2P
Tr
((

Σ̃
yx

j Xi −Yi

)(
Σ̃

yx

j Xi −Yi

)T)
(206)

=
1

2P
Tr
(
Σ̃

yx

j XiX
T
i Σ̃

yxT

j

)
− 1

P
Tr
(
Σ̃

yx

j XiY
T
i

)
+

1

2P
Tr
(
YiY

T
i

)
(207)

=
1

2
Tr
(
Σ̃

yx

j Σ̃
yxT

j

)
− Tr

(
Σ̃

yx

j Σ̃
yxT

i

)
+

1

2
Tr
(
Σ̃

yy

i

)
(208)

=
1

2
Tr
((

Σ̃
yx

j − Σ̃
yx

i

)(
Σ̃

yx

j − Σ̃
yx

i

)T
− Σ̃

yx

i Σ̃
yxT

i

)
+

1

2

(
Σ̃

yy

i

)
(209)

=
1

2

∣∣∣∣∣∣Σ̃yx

j − Σ̃
yx

i

∣∣∣∣∣∣
F

2−1

2
Tr
(
Σ̃

yx

i Σ̃
yxT

i

)
+

1

2

(
Σ̃

yy

i

)
︸ ︷︷ ︸

c

. (210)

Therefore, the amount of forgetting F on task Ti when training on task Tk after having
trained the network on task Tj, i.e. the relative change of loss, is fully determined by
the similarity structure of the tasks

Fi (Tj,Tk) = Li (Tk)−Li (Tj) (211)

=
1

2

∣∣∣∣∣∣Σ̃yx

k − Σ̃
yx

i

∣∣∣∣∣∣
F

2+ c− 1

2

∣∣∣∣∣∣Σ̃yx

j − Σ̃
yx

i

∣∣∣∣∣∣
F

2− c (212)

=
1

2

(∣∣∣∣∣∣Σ̃yx

k − Σ̃
yx

i

∣∣∣∣∣∣
F

2−
∣∣∣∣∣∣Σ̃yx

j − Σ̃
yx

i

∣∣∣∣∣∣
F

2
)
. (213)

Appendix G. Revising structured knowledge

G.1. Reversal learning dynamics

In the following, we assume that the input dimension is equal to the output dimension.
Further, we denote the i -th column of the left and right singular vectors as ui , ũi and
vi , ṽi respectively.

Reversal learning occurs when the task and the initial network function share the
same left and right singular vectors, i.e. U= Ũ and V = Ṽ, except for one or multiple
columns of the left singular vectors, for which the direction is reversed:

−ui = ũi. (214)

We note that, if there is any reversal in the right singular vectors −vi = ṽi, this can be
written as a reversal in the left singular vectors, as the signs of the right and left singular
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vectors are interchangeable. In the reversal learning setting, both B=UT Ũ+VT Ṽ
and C=UT Ũ−VT Ṽ are diagonal matrices. The diagonal entries of C are zero if the
singular vectors are aligned and 2 if they are reversed. Similarly, diagonal entries of B are
2 if the singular vectors are aligned and zero if they are reversed. Therefore, in the case
of reversal learning, B is a diagonal matrix with 0 values and thus is not invertible. As
a consequence, the learning dynamics cannot be described by equation (11). However,
as B and C are diagonal matrices, the learning dynamics simplify. Let bi , ci , si and s̃i
denote the i -th diagonal entry of B, C, S and S̃ respectively, then the network dynamics
can be rewritten as

W2W1 (t) =
1

2
Ũ
(
eS̃

t
τ BT+ e−S̃ t

τ CT
)

×
[
S−1+

1

4
B
(
e2S̃

t
τ − I

)
S̃−1BT− 1

4
C
(
e−2S̃ t

τ − I
)
S̃−1CT

]−1

(215)

1

2

(
eS̃

t
τ B− e−S̃ t

τ C
)
ṼT

=

Ni∑
i=1

b2
i e

2s̃i
t
τ − c2i e

−2s̃i
t
τ

4s−1
i +b2

i e
2s̃i

t
τ s̃−1

i −b2
i s̃

−1
i − c2i e

−2s̃i
t
τ s̃−1

i + c2i s̃
−1
i

ũiṽ
T
i (216)

=

Ni∑
i=1

sib
2
i s̃i − sic

2
i s̃ie

−4s̃i
t
τ

4s̃ie
−2s̃i

t
τ + sib2

i

(
1− e−2s̃i

t
τ

)
+ sic2i

(
e−2s̃i

t
τ − e−4s̃i

t
τ

) ũiṽ
T
i . (217)

It follows, that in the reversal learning case, i.e. b= 0, for each reversed singular vector,
the dynamics vanish to zero

lim
t→∞

−sic
2
i s̃ie

−4s̃i
t
τ

4s̃ie
−2s̃i

t
τ + sic2i

(
e−2s̃i

t
τ − e−4s̃i

t
τ

) ũiṽ
T
i = 0. (218)

Analytically, the learning dynamics are initialised and remain on the separatrix of a
saddle point, until the corresponding singular value of the network function has vanished
and remains zero, corresponding to convergence to the saddle point. When simulated
numerically, the learning dynamics escape the saddle points due to imprecision of float-
ing point arithmetic. However, numerical optimisation still suffers from catastrophic
slowing (Lee et al 2022), as escaping the saddle point takes time (figure 6(A)). In con-
trast, in the case of aligned singular vectors (c= 0), we recover the equation for the
temporal dynamics as described in Saxe et al (2014). Training succeeds, as the singular
value of the network function converges to its target value

lim
t→∞

Ni∑
i=1

sib
2
i s̃i

4s̃ie
−2s̃i

t
τ + sib2

i

(
1− e−2s̃i

t
τ

) ũiṽ
T
i =

sib
2
i s̃i

sib2
i

ũiṽ
T
i (219)

= s̃iũiṽ
T
i . (220)

https://doi.org/10.1088/1742-5468/ad01b8 41

https://doi.org/10.1088/1742-5468/ad01b8


Exact learning dynamics of deep linear networks with prior knowledge

J.S
tat.

M
ech.(2023)

114004

In summary, in the case of aligned singular vectors, the learning dynamics can be
described by the convergence of singular values. However in the case of reversal learning,
analytically, training does not succeed. In simulations, the learning dynamics escape the
saddle point due to numerical imprecision, but the learning dynamics are catastrophic-
ally slowed in the vicinity of the saddle point.

G.2. Exact learning dynamics in shallow networks

To provide a point of comparison to our deep linear network results, here we derive a
solution for the temporal dynamics of reversal learning in a shallow network.

The network’s weights are optimised using full batch gradient descent with learning
rate η (or equivalently time constant τ = 1/η) on the mean squared error loss given in
equation (2), yielding the first task dynamics

τ
d

dt
W = Σ̃

yx−WΣ̃
xx
, (221)

where Σ̃xx and Σ̃yx is the input and input-output correlation matrices of the dataset.
We define

SVD(W (0)) =USVTand SVD
(
Σ̃

yx
)
= ŨS̃ṼT. (222)

motivating the change of variable W =UWVT. We project the weight into the basis
of the initialisation

τ
d

dt
UWVT = Σ̃

yx−UWVTΣ̃
xx

(223)

τ
d

dt
UWVT =UUTΣ̃

yx
VVT−UWVTΣ̃

xx
(224)

τ
d

dt
W =UTΣ̃

yx
V−WΣ̃

xx
. (225)

Under the assumption of whitened inputs 2.2, the dynamics yields

τ
d

dt
W =UTΣ̃

yx
V−W. (226)

Defining W ii = bi the diagonal element of the matrix, encoding the strength of the
mode i transmitted by the input-to-output weight. Similarly, we write (UTΣ̃yxV)ii = ki.
Assuming decoupled initial conditions, we obtain the scalar dynamics

τ
d

dt
bi = ki− bi (227)

with solution

bi = ki

(
1− e

−t
τ

)
+ b0i e

−t
τ . (228)
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Reverting the change of variable, the weight trajectory yields

W =UB(t)VT. (229)

This solution is very similar to the one proposed by Saxe et al (2019). However,
the key here is that k i can have negative values. k i is negative whenever a vector
is in the opposite direction to the initialisation (as in the reversal learning setting).
We show in figure 6 that the analytical solution derived above matches the numerical
temporal dynamics. From equation (228), we note that the shallow network cannot
display catastrophic slowing.

Appendix H. Simulations

In the following, we describe the details of the simulation studies. Generally, Ni, Nh and
No denote the dimension of the input, hidden layer and output (target) respectively.
The number of training samples is N and the learning rate is denoted by η = 1

τ .

H.1. Zero-balanced weight initialisation

The initial network weights are zero-balanced 2.3 when they satisfy

W1 (0)W1 (0)
T =W2 (0)

TW2 (0) . (230)

In practice, we use algorithm 1 to initialise the network weights, where α is a scaling
factor which is used to control the variance of the weights, i.e. to vary between small
and large weight initialisations.

Algorithm 1. Zero-balanced weight initialisation.

Require: Ni,Nh,No,σ

W1 ∼N (µ= 0,σ) ∈ RNh×Ni

W2 ∼N (µ= 0,σ) ∈ RNo×Nh

U,S,V← SVD(W2W1)

S←
√
S

R∼N (µ= 0,σ = 1) ∈ RNh×Nh

R, , ← SVD(R)
ifNi ̸=Nothen

Ns←Ni ifNi <No elseNo

S1←
[

S
0Nh−Ns×Ns

]
S2←

[
S 0Ns×Nh−Ns

]
W1←RS1V

T

W2←US2R
T

else

W1←RSVT

W2←USRT

end if
returnW1W2
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H.2. Tasks

In the following, we describe the different tasks that are used throughout the simulation
studies.

H.2.1. Random regression task. In a random regression task the inputs X ∈ RNi,N are
sampled from a random normal distribution X∼N (µ= 0,σ = 1). The input data X
is then whitened, such that 1

NXXT = I. The target values Y ∈ RNo,N are also sampled
from a random normal distribution, however, with variance adjusted to the number
of output nodes Y ∼N (µ= 0,α= 1√

No
). Thus, network inputs and target values are

uncorrelated Gaussian noise and therefore, a linear solution does not always exist.

H.2.2. Teacher-student task. In order to guarantee that a linear solution exists, we use
the teacher-student setup. First, inputs X are sampled as in the random regression
task. Then, target values Y are generated by sampling a pair of random zero-balanced
weights W1 ∈ RNh×Ni and W2 ∈ RNo×Nh and then calculating Y =W2W1X. Like this, it
is ensured that a linear solution exists. The variance of the output is varied by changing
the variation within the zero-balanced weights σ.

H.2.3. Semantic hierarchy. Input items in the semantic hierarchy task are encoded as
one-hot vectors, i.e. X= I. The corresponding target vectors yi encoded the position
in the hierarchical tree. Where a 1 encoded being a left child of a node, a −1 encoded
being a right child of a node and a 0 encoded that the item is not a child of that node.
For example, the blue fish is a blue fish, it is a left child of the root node, a left child
of the animal node, not part of the plant branch, a right child of the fish node, and not
part of the bird, algae or flower branch, leading to the label [1,1,1,0,−1,0,0,0]. The
labels for all objects in the semantic tree as depicted in figure 3(A) is then

Y =



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1


. (231)

The singular value decomposition for the corresponding correlation matrix Σ̃yx are not
unique. The first two, the third and the fourth and the last four singular values are
identical. In order to match the numerical and analytical solution, this permutation
invariance is removed by adding a small constant perturbation to each column yi, i ∈
1, . . .,N of the labels

yi = yi ∗
(
1+

0.1

i

)
, (232)

leading to almost but not exactly identical singular values.
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H.2.4. Colour hierarchy. Following the same procedure as described for the semantic
hierarchy, the labels for the colour hierarchy as depicted in figure 6(C) are then

Y =



1 1 1 1 1 1 1 1
−1 1 1 −1 1 1 −1 −1
0 −1 1 0 −1 1 0 0
1 0 0 −1 0 0 −1 1
0 0 1 0 0 −1 0 0
0 −1 0 0 1 0 0 0
1 0 0 0 0 0 0 −1
0 0 0 1 0 0 −1 0


. (233)

H.3. Figure 1

Figure 1 panels (B)–(D) show three simulations from varying initial weights on the same
teacher-student task. The task was created with σ=0.35. Farther, Ni = 5, Nh = 10,
No = 2 and N =10. The learning rate was η=0.1 and the initial network weights were
sampled with σ=0.01, σ=0.25 and σ=0.25 in panels (B), (C) and (D) respectively.

H.4. Figure 2

Figure 2 panels (A) and (B) show a simulation on the same teacher-student task
(σ=0.25), once from small initial weights (σ=0.01) and once from large ini-
tial weights (σ=0.15). Dimensions were Ni = 4, Nh = 5, No = 3 and N =10 and
the learning rate was η=0.05. Panel (C) was generated by running 50 sim-
ulations, each with a different initial random seed. For each of the simula-
tions, dimensions were sampled randomly, such that Ni ∈ [2,50], No ∈ [2,50], Nh =
[min(Ni,No),50] and N ∈ [2max(Ni,Nh,No),3max(Ni,Nh,No)]. Then, a random regres-
sion task was generated. Subsequently, a linear network was initialised with σ ∼
U [ 0.01√

max(Ni,No,Nh)
, 0.5√

max(Ni,No,Nh)
]. The network was then trained until convergence on

the same task from the same initial weights for seven different learning rates η ∈
{0.05,0.0232,0.0107,0.005,0.0023,0.0011,0.0005}.

H.5. Figure 3

Panels (C)–(F) in figure 3 were generated by training a linear network with Ni = 8,
Nh = 14, No = 8 on the N =8 items of the semantic hierarchy task. The learning rate
was η=0.05 and the initial weights in panels (C), (D) and (E) were sampled from
a normal distribution with σ=0.0001 and σ=0.42 and zero-balanced weights with
σ=0.44 respectively.

H.6. Figure 4

Figure 4 panel (A) was generated by training a linear network with Ni = 5, Nh = 10,
No = 5 on the target Y as shown in equation (198) (equal diagonal). The network was
initialised with σ=0.1. The learning rate was η=0.01.
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Figure 4 panels (D)–(F) was generated by training a linear network with Ni = 2,
Nh = 10, No = 2 on the target Y as shown in figure 4(C) and input X= bfi. The
network was initialised with small σ=0.000 01, intermediate σ=0.3 and large σ=2
synaptic weights. The learning rate was η=0.0001.

H.7. Figure 5

Figure 5 panel (A) was generated by training a linear network with Ni = 5, Nh = 10,
No = 6 subsequently on four different random regression tasks with N =25. The learning
rate was η=0.05 and the initial weights were small (σ=0.0001).

Panels (B) and (C) were generated by running 50 simulations on two subsequent
random regression tasks, each with a different initial random seed. The simulation was
repeated three times, the first time with a linear, the second time with a tanh and the
last time with a ReLU activation function in the hidden layer. Dimension were ran-
domly sampled such that Ni ∈ [2,30], No ∈ [2,30], Nh = [min(Ni,No),30] and N =100.
The standard deviation of the initial weight was chosen such that σ = 0.5√

0.5(Ni+Nh)
. The

learning rate was η=0.075.
For panel (D) and (E) the same simulation was repeated for three times, the first

time with a linear, the second time with a tanh and the last time with a ReLU activation
function. Each time, five random regression tasks with dimensions Ni = 15, Nh = 18,
No = 21 and N =50 were generated. Then a network with initial weight scale α=0.025
was sequentially trained with learning rate η=0.1 on the five random regression tasks.

H.8. Figure 6

Figure 6 panel (A) was generated by training a linear network with Ni = 4, Nh = 6,
No = 4 on a reversal learning task (see section G.1), which was derived from a random
regression task. The learning rate was η=0.05 and initial weights had a standard devi-
ation of σ=0.25. Panel (B) was generated by training a shallow linear network (see
section G.2) on the same reversal learning task, with identical hyperparameters as in
panel (A).

For the top and bottom rows of panels (E) and (F) a linear network with Ni = 8,
Nh = 14, No = 8 was trained on the semantic hierarchy task, followed by training the
network on the adapted semantic hierarchy as depicted in figure 6(C) top, which is
a reversal learning task and the colour hierarchy respectively. The learning rate was
η=0.05 and σ was set to 0.001 and 0.35 respectively.
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learning and the physical sciences Rev. Mod. Phys. 91 045002
Chizat L, Oyallon E and Bach F 2019 On lazy training in differentiable programming Advances in Neural

Information Processing Systems vol 32
Doan T, Abbana Bennani M, Mazoure B, Rabusseau G and Alquier P 2021 A theoretical analysis of catastrophic

forgetting through the ntk overlap matrix Int. Conf. on Artificial Intelligence and Statistics (PMLR) pp
1072–80

Erdeniz B and Bedin Atalay N 2010 Simulating probability learning and probabilistic reversal learning using the
attention-gated reinforcement learning (agrel) model 2010 Int. Joint Conf. on Neural Networks (IJCNN)
(IEEE) pp 1–6

Flesch T, Balaguer J, Dekker R, Nili H and Summerfield C 2018 Comparing continual task learning in minds and
machines Proc. Natl Acad. Sci. 115 E10313–22

Flesch T, Juechems K, Dumbalska T, Saxe A and Summerfield C 2022 Orthogonal representations for robust
context-dependent task performance in brains and neural networks Neuron 110 4212–19

French R M 1999 Catastrophic forgetting in connectionist networks Trends Cogn. Sci. 3 128–35
Fukumizu K 1998 Effect of batch learning in multilayer neural networks Int. Conf. Neural Information Processing

(ICONIP) pp 67–70
Gerace F, Saglietti L, Sarao Mannelli S, Saxe A and Zdeborová L 2022 Probing transfer learning with a model of
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