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Abstract

Decentralized trading motivates financial innovation, making synthetic products like

derivatives nonredundant, even when all traders trade all assets. This nonredundancy

arises because derivatives affect cross-security inference (information) and, in markets

with large traders, equilibrium price impact (liquidity). The efficient securities differ from

the underlying assets. While the market index/mutual funds are efficient in decentralized

markets with competitive investors, heterogeneous portfolios that balance index tracking

with liquidity transformation become efficient in markets with large traders. Efficient

securities facilitate the trading of all fundamental risks but generally forgo hedging all

contingencies to minimize the price impact costs associated with risk sharing and diversi-

fication.
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1 Introduction

Since their inception, synthetic financial products have been one of the great successes of fi-

nancial markets.1 Derivatives and related products like ETFs have assumed a significant role

in portfolio strategy and risk management. Apart from their potential tax-related benefits

and greater transparency, derivatives are typically traded for one of three primary reasons: to

improve the liquidity (lower the price impact) of the underlying assets, or to diversify pay-

offs for contingencies not covered by the underlying assets (i.e., due to some form of market

incompleteness), or because trading the underlying assets is restricted.2

Regulators often classify the derivatives market as challenging, in part because it is difficult

to assess the impact and the scope for innovating nonredundant derivatives. In the standard

equilibrium model, the introduction of securities whose payoffs relate linearly to the payoffs of

traded assets is neutral to equilibrium and welfare. Textbook methods of derivative pricing ei-

ther assume the existence of a replicating portfolio, thereby assuming derivatives are redundant

or endow a market with an exogenously given demand for a derivative product. An equilib-

rium model of nonredundant derivatives would help address the following question: “Given the

structure of the underlying assets, which derivatives should be introduced in markets?” This

paper contributes to the growing literature on nonredundant derivatives, which we will review

below.

We start with the following observation. The standard multi-asset equilibrium model of

financial markets assumes that traders submit fully contingent schedules: The demand for each

asset is contingent on the prices of all assets, qik(p1, ..., pK) : RK → R. While some providers

employ contingent orders in practice,3 such orders are not prevalent. Orders submitted for one

asset typically do not depend on the prices of other traded assets, i.e., demands are uncontingent,

qik(pk) : R → R. The absence of contemporaneous-round cross-asset conditioning in traders’

demands not only aligns more closely with market practice but, as we show, also renders

derivatives nonredundant. Namely, the introduction of securities that do not alter the traded

assets’ span changes the traders’ equilibrium payoffs, even if the new securities are in zero

supply, the underlying assets are not scarce due to regulatory restrictions such as short-selling

constraints or margin requirements, and access to the underlying assets is the same for all

traders—the assumptions we maintain throughout our analysis.4

1In 2022, the gross market value of contracts in the derivatives market reached $18.3 trillion. The to-
tal notional amounts outstanding for contracts during the first half of 2022 were estimated at $632 trillion;
https://stats.bis.org/statx/toc/DER.html. The daily average turnover of ETF futures and options was
$9.8 trillion in 2022; https://www.bis.org/statistics/extderiv.htm. At year-end 2022, assets in ETFs
accounted for 22% of the 28.9 trillion total net assets in investment companies (https://www.ici.org/faqs).

2For an overview of the derivatives market, see, e.g., Stulz (2004).
3Types of contingent orders are available in trading platforms for financial assets, such as Active Trader Pro,

Etrade, Street Smart, and Tradehawk, as well as in electricity markets and auctions of spectrum.
4It is well understood that the introduction of a security with a non-zero supply would change prices and utili-

ties. However, our analysis does not rely on these effects—even with a zero supply, derivatives are nonredundant.
Instead, our results point to the role of limited versus full cross-asset demand conditioning for nonredundancy.
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Derivative products come in many varieties. We consider the introduction of new securities

that capture the defining property of standard derivative products: Their payoffs are linear

combinations of the payoffs of traded assets (e.g., ETFs, ETPs, futures). Our analysis is cast in

the double-auction model for K > 1 assets and I < ∞ strategic traders based on the uniform-

price mechanism (e.g., Wilson (1979), Klemperer and Meyer (1989), Kyle (1989), Vives (2011))

in the quadratic-Gaussian setting. Traders have private information about their asset holdings.

We build on the recently introduced version of this model with uncontingent demand schedules

(Chen and Duffie (2021), Rostek and Yoon (2021), Wittwer (2021)) and extend it to allow

designs with derivatives and/or the underlying assets.

In hindsight, accounting for endogenous transaction costs due to price impact is critical to

the efficient design and regulation of synthetic products. Many markets for financial assets are

dominated by large institutional investors whose behavior impacts prices. In practice, dealing

with strategic behavior (price impact) often serves as a primary motivation for establishing

alternative trading venues or introducing new financial products.5 Our equilibrium model with

large traders allows an explicit treatment of price impact and directly relates to that motive

for innovation. We present four sets of results.

Demand conditioning determines how the market clears. With fully contingent demands,

all securities in the market must clear jointly. In contrast, with uncontingent demands, the

market can clear independently for each security; in this sense, trading is decentralized.6 We

first show that when the (sole) assumption that assets are cleared jointly is dispensed with,

derivatives become generally nonredundant even if all traders trade all assets (Theorem 1 and

Corollary 6). Although their payoffs are neutral to the underlying assets’ span, derivatives are

payoff-relevant because they affect traders’ cross-security price inference. They thus change

traders’ information in the total demand for the underlying assets. In imperfectly competitive

markets, another, potentially countervailing, effect of synthetic products arises: Namely, traders

have price impact. We show that derivatives improve the liquidity per unit of the underlying

assets provided the covariances between these assets are not too heterogeneous (Lemma 3);

5E.g., Biais, Bisière, and Spatt (2010), Knight Capital Group (2010), Angel, Harris, and Spatt (2011); see also
Bollen and Whaley (2004), Gârleanu, Pedersen, and Poteshman (2009), Frazzini, Israel, and Moskowitz (2018),
Zhang (2022), Bali, Beckmeyer, Moerke, and Weigert (2023), and references there. The global derivatives
market is notably concentrated, with the top five largest counterparties, excluding the central counterparty
(CCP), accounting for nearly 50% of the outstanding notional amount across all asset classes (EU Derivatives
Market Report 2023). Significant price impacts in derivative markets have been observed in various markets,
including inflation swaps (Bahaj et al. (2023)), synthetic and cash dollar rates in FX derivatives (Wallen (2022)),
and commodity ETFs (Todorov (2023)). Furthermore, concerns about price manipulation, both in derivative
and underlying asset markets, are closely linked to the observed price impact (e.g., Zhang (2022)).

6If traders were able to choose the type of demands they submit, individual optimization would imply the
choice of fully contingent schedules, given that they permit conditioning on the actual asset price realizations and
subsequent trades. However, in practice, the available types of schedules are determined by the providers, and
fully contingent schedules are not commonly offered. Our analysis indicates that providers generally lack incen-
tives to allow fully contingent demands. The benefits derived from appropriately designed securities primarily
stem from improving liquidity and increasing trading volume.
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otherwise, derivatives may worsen liquidity.7 Both effects are present except when all asset

payoffs are either independent or perfectly correlated, regardless of whether the underlying

assets are traded.

The nonredundancy of synthetic products implies that collections of securities that share

the same span are not payoff-equivalent—in fact, none of them are. Our second set of results

examines the efficient design of securities in markets where securities are cleared independently.

If efficiency is the objective, which securities should traders trade? Should they opt for an index

(a “market portfolio,” i.e., the security whose weight is proportional to the average trading

needs) or multiple funds (i.e., securities that hedge the same risk as the underlying assets), or

could trading factors be efficient, considering that independent payoffs eliminate inference error

across securities due to limited demand conditioning? In the absence of weight regulations like

the ETF Rule 2019, derivatives offer flexibility in designing security payoffs and hence designing

inference error and price impact.

Per the standard (fully contingent) multi-asset equilibrium model’s recommendation, only

the number of funds with linearly independent payoffs matters so long as they have the same

span as the underlying assets. Instead of trading the K underlying assets, traders can equiv-

alently trade the same or a smaller number of funds. Specifically, the same funds are efficient

for any investor class, regardless of their trading needs’ size, direction, or heterogeneity, as well

as the distribution of asset payoffs.

However, these results do not match institutional portfolio data: Institutional investors tend

to have heterogeneous portfolio holdings that deviate from the market portfolio. Institutions

often hold several dozen stocks and funds, and they frequently work directly with investment

banks and issuers to create custom investments tailored to their desired risk profile. (See, e.g.,

Koijen and Yogo (2019) and Lettau, Ludvigson, and Manoel (2021)).

Dispensing with the assumption that all assets are cleared jointly qualifies the efficiency

of trading mutual funds in the competitive (I → ∞) versus imperfectly competitive (I <

∞) markets: The same-funds-for-all recommendation does not apply when traders have price

impact. In fact, any set of securities can increase or lower the welfare that can be attained with

funds—the characteristics of assets (other than their payoff span) and traders (distributions of

traders’ asset holdings) (Proposition 1) determine which securities are efficient. Furthermore,

the efficient design generally involves more than K yet a limited number of securities—strictly

between K and K(K+1)
2

securities (Corollary 3 and Proposition 1).

If traders have no price impact, the same-funds-for-all recommendation continues to hold

with independent market clearing, albeit in a stronger sense: Rather than being equivalent to

the underlying assets, either sufficiently many funds (at least K(K+1)
2

) or factors (i.e., securities

with independent payoffs) would be strictly more efficient than any other securities, irrespective

7Derivatives can introduce potentially complex effects on the equilibrium price impact—of the underlying
assets as well as those not included in the new security—whose structural properties change when the assumption
of fully contingent demands is relaxed (Appendix A.1).
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of the characteristics of assets and traders (Corollaries 1 and 2). In particular, when traders have

no impact on prices, efficiency entails that all contingencies be hedged.8 Our results support

the promotion of financial innovation across all levels of market competition while indicating

an efficiency-based rationale for institutional and small investors to trade different securities.

Third, in markets with any traders and assets, derivatives can be designed so that the mar-

ket that clears securities independently can reproduce the equilibrium from the market with

the underlying assets alone cleared jointly (in which synthetic products would be redundant).

Two results are of note: Market structures with securities independent of trader characteristics

implement a welfare guarantee in markets with any number of traders (Corollary 1). Further-

more, in markets with any (imperfectly correlated) underlying assets, synthetic products can

be designed to strictly improve efficiency relative to both such welfare-guaranteeing securities

(Proposition 1) and underlying assets (Theorem 2 and Example 3).

Despite allowing inference error, the efficient set of derivatives decreases the costs associated

with the endogenous price impact. A key question is which synthetic products mitigate the

inefficiencies due to price impact. The efficient design of securities with independent market

clearing can be understood by considering two opposing effects that derivatives have on price

impact: specifically, on the trading costs due to own-asset and cross-asset price impact, which

affect sharing and diversification, respectively. Derivatives cannot be too strongly correlated

since higher correlation increases the own-asset price impact due to cross-asset inference.9 Con-

sequently, when assets are not cleared jointly, using an index or funds that align with traders’

ex ante trading needs (or target portfolios ;10 Gârleanu and Pedersen (2013), Kyle, Obzihaeva,

and Wang (2017)) may be too costly in terms of the own-asset price impact. On the other

hand, trading factors, which have independent payoffs, forgoes the benefit of designing cross-

asset price impact to enhance diversification: Derivatives can transform price impact avoidance

into price impact seeking when it comes to cross-asset price impacts, as appropriate deriva-

tive weights can induce the desired sign of per-unit cross-asset price impact given the trading

positions across assets.

In the competitive market, financial innovation’s efficiency role lies in the elimination of

inference errors among the underlying assets to replicate the fully contingent outcome. Our

analysis indicates that in markets with large traders where securities are cleared independently,

8In a competitive market, if full demand conditioning were restricted and hence nonredundant innovation
were allowed, the only result would be the introduction of inference errors, leading to a decrease in overall
welfare. However, in markets with large traders, cross-asset price inference modifies the traders’ price impacts
within and across underlying assets. These changes in liquidity can offset the inefficiency due to inference error,
and the efficient design depends on market characteristics.

9This finding corresponds with the 2019 revision of the SEC ETF rule, which permits the composition of
baskets to diverge from closely mirroring indices or diversified portfolios, a measure intended to boost liquidity
(SEC (2019, Section II.C.5)). It also coincides with the strategy of actively managing corporate bond ETFs by
adjusting their baskets to deviate from index tracking, thereby reducing transaction costs (Koont, Ma, Pastor,
and Zeng (2023)).

10Traders’ target portfolios coincide with the market portfolio when trading needs are symmetric across assets
(i.e., E[qi

0] = ξijE[qj
0] for some ξij ∈ R, for all i and j ̸= i) but not otherwise.
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the role of securities that do not alter the underlying asset span is not to mimic diversification

facilitated by these assets but to (1) improve upon it and (2) enhance risk sharing alongside

diversification. As a general principle, in contrast to markets where all assets are cleared jointly,

efficient securities (i) must correlate security payoffs to enhance portfolio diversification while

compromising on own-asset price impact, (ii) correlate differently from the underlying assets,

and (iii) imperfectly so, thus letting traders trade in the direction “around” the target rather

than perfectly matching it, thus reducing the own-asset price impact; and (iv) the efficient

security correlations differ between one- and two-sided markets and depend on the correlations

among the underlying assets (Theorem 2).

Taken together, our results show that decentralized trading weakens the role of spanning

methods—which represent risk through state-contingent securities. In particular, when markets

do not clear all assets jointly, the implied representation of risk depends on the endogenous price

impact and is thus not invariant to counterfactual changes in market structure. We discuss some

of the implications for asset pricing and financial innovation in Section 7.

Fourth, decentralized trading not only motivates the design of financial innovation within

the underlying asset payoff span but also encourages suitable innovation on unspanned risks.

To show this, we also consider markets where the payoffs of K traded assets only span a

subset of Z > K fundamental risks. In contrast to markets that clear assets jointly, where the

introduction of arbitrary securities for unspanned risk (i.e., in the span of Z \K assets) always

increases welfare with quasilinear utilities, the introduction of such securities may lower welfare

when trading is decentralized (Proposition 2).11 Nonetheless, if the securities on the Z risks can

be designed, then opening markets with fewer than Z securities is inefficient; however, listing

fewer than Z(Z+1)
2

securities is generally efficient when traders face price impact. Thus, our

results underscore the derivatives’ role in treating the incompleteness associated with unspanned

fundamental risks differently than limited information given the span: Allowing trading on all

fundamental risks while limiting the cross-asset information traders’ demands can condition on

is efficient. The key difference lies in the fact that fundamental risks can be factorized, allowing

for the introduction of securities without creating an externality on the traded assets’ price

impact—but risks due to imperfect information cannot.

Related literature. This paper highlights decentralized trading as a source of synthetic

products’ nonredundancy: Accounting solely for the fact that assets are not all (or typically)

cleared jointly in financial markets implies that derivatives are nonredundant, except under

trivial conditions. This perspective complements the growing body of research that investigates

the nonredundancy of securities brought by fixed costs of issuing them (Allen and Gale (1988)),

differences in margin requirements between derivatives and the underlying assets (Gârleanu and

11This result thus differs from the competitive equilibrium price effects in the literature following Hart (1975),
which are absent with quasilinear utilities. The effect we investigate, which applies to innovation within and
outside the traded assets’ span, can be seen as an imperfectly competitive counterpart of these effects: Innovation
is not neutral if and only if it alters the relative price impacts of the traded assets rather than their price levels.
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Pedersen (2011)), derivatives’ ability to relax binding short-sale constraints when the underlying

security is scarce (Banerjee and Graveline (2014)), heterogeneous beliefs among the traders

(Fostel and Geanakoplos (2012), Simsek (2013), Che and Sethi (2014), Oehmke and Zawadowski

(2015)), and limited pledgeability (Biais, Hombert, and Weill (2021)).

More generally, our results underscore the role of financial innovation in imperfectly compet-

itive markets, particularly in enhancing risk sharing and diversification for spanned risks. The

competitive markets literature has emphasized the value of financial innovation in improving

the risk-sharing of unspanned risks; Allen and Gale (1994) and Duffie and Rahi (1995) provide

surveys on the spanning motive as a determinant of financial innovation.

There has been significant interest in understanding how market fragmentation influences

security design (e.g., Rahi and Zigrand (2009), Babus and Hachem (2021, 2023), Biais, Hombert,

and Weill (2021); see also Cabrales, Gale, and Gottardi (2015)). In decentralized market

settings, prior literature has examined the impact of derivatives on financial stability (Allen

and Carletti (2006)) and on facilitating the hedging of counterparty exposures within financial

networks (Zawadowski (2013)). While these studies consider market fragmentation in the sense

of limited trader participation, our results instead explore the effects of market fragmentation in

the sense of limited demand conditioning. Thus, our analysis most directly applies to exchange-

traded products, but analogous results will apply to over-the-counter derivative markets, where

both types of effects are present. In this sense, one expects the derivatives’ nonredundancy and

its implications to be even more robust in other fragmented market structures.

Our paper also contributes to the literature on financial market design with large traders.12

Several authors have recently challenged the assumption that assets are cleared jointly to ex-

plore the potential welfare benefits of market fragmentation (Chen and Duffie (2021), Rostek

and Yoon (2021), Wittwer (2021)).13 In both this paper and Rostek and Yoon (2021), we ob-

serve that accounting for independence in market clearing among traded assets is not only more

realistic but also makes nonredundant financial innovation that does not alter the underlying

asset span, traders’ initial asset holdings, or asset supply—spanning no longer holds. Rostek

and Yoon (2021) studies the design of market-clearing technology in a model that incorporates

contingent demands for subsets of assets traded in different exchanges, without bundling asset

payoffs. Changes in market-clearing technology encompass the introduction of new exchanges

12E.g., Du and Zhu (2017a,b), Malamud and Rostek (2017), Kyle and Lee (2017, 2022), Babus and Kondor
(2018), Baisa and Burkett (2018), Duffie (2018), Yang and Zhu (2020, 2021), Antill and Duffie (2021), Baldauf
and Mollner (2021), Rostek and Yoon (2021), Somogyi (2021), Babus and Hachem (2021, 2023), Babus and
Parlatore (2022), Cespa and Vives (2022), Chen (2022), Zhang (2022), Allen and Wittwer (2023).

13Wittwer (2021) and Rostek and Yoon (2021) focus on the welfare implications of allowing traders to submit
orders contingent on cross-exchange prices. These studies show when market fragmentation, understood as
a departure from fully contingent demands, can enhance efficiency. Chen and Duffie (2021) consider orders
contingent on prices within the same exchange to assess how fragmentation, understood as increasing the number
of exchanges, influences allocative efficiency and price informativeness, also incorporating a dynamic market
perspective. The authors demonstrate that sufficient fragmentation can lead to allocative efficiency. Cespa
(2004) examined competitive uncontingent markets with two assets and noise traders and also characterized
how uncontingent trading affects price informativeness.
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for underlying assets, mergers of exchanges, and the listings of assets in exchanges where they

were not previously traded. This paper instead examines the efficient design of financial prod-

ucts in fragmented markets. While technology innovations enable the joint clearing of some

assets by modifying traders’ strategies, synthetic products cleared independently change the

joint distribution of securities’ payoffs. Our paper is the first to draw a connection between the

independent clearing of securities and the nonredundancy of derivatives, while also identifying

how market fragmentation in this “minimal” sense revises the efficient security design.

Recognizing that assets are not cleared jointly in practice motivates the study of various

other types of innovation. In particular, the design of exchanges (contingent demands for asset

subsets), the design of financial products (uncontingent demands for asset bundles), and the

joint design of both innovations are not equivalent for traders’ payoffs and involve synergies

and tradeoffs. Essentially, these designs transform the game and, consequently, the equilibrium

price impact in different ways, as discussed by Rostek and Yoon (2024a); see also ft. 30.

Although motivated by different considerations from market fragmentation, the design proposed

by Budish, Cramton, Kyle, Lee, and Malec (2021) serves as another example of innovation that

remains neutral to the asset span and is not equivalent to the aforementioned innovations: It

involves each trader submitting a demand R → R for a single asset portfolio of their choice

rather than demands for individual assets.

2 Model

Our model is based on the uniform-price double auction in the quadratic-Gaussian setting.

Unlike the standard multi-asset version of that model, where all assets are cleared jointly, we

consider markets where assets are cleared independently.14

2.1 Traders, Assets, and Synthetic Products

Consider a market with I ≥ 3 traders and K risky assets. The payoffs of the K risky assets are

jointly normally distributed r ≡ (rk)k ∼ N (δ,Σ) with a vector of expected payoffs δ ≡ (δk)k ∈
RK and a positive semidefinite covariance matrix Σ ≡ (σkℓ)k,ℓ ∈ RK×K . There is also a riskless

asset (a numéraire).

Each trader i has a quadratic in the quantity of risky assets (mean-variance) utility:

ui(qi) = δ · (qi + qi
0)−

α

2
(qi + qi

0) ·Σ(qi + qi
0), (1)

where qi = (qik)k ∈ RK is the vector of trader i’s traded quantities of risky assets, qi
0 = (qi0,k)k ∈

14Our main characterization result, Theorem 3 and the corresponding lemmas in Appendix A.1 extend the
equilibrium characterization in Rostek and Yoon (2021) to markets where synthetic products are traded alongside
or instead of the underlying assets. Example 1 Cont’d in Appendix A.2 compares equilibrium with fully
contingent and uncontingent demands.
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RK represents the units of risky assets with which trader i is initially endowed, and α ∈ R+

is the risk aversion parameter. Asset holdings qi
0 are trader i’s private information distributed

according to N (E[qi
0], σ

2
qId) and are independent across assets and independent of asset payoffs

r. Specifically, trader i is uncertain about other traders’ asset holdings {qj
0}j ̸=i, and thus, about

the per-capita aggregate asset holdings q0 = 1
I

∑
j q

j
0 (equivalently, prices).15 Given that the

traders share the same prior on the asset payoffs (δ,Σ) and risk aversion α, gains from trade

come from the desire to hedge and diversify risk in asset holdings, which are heterogeneous.

In markets with K assets, we consider the introduction of D ≥ 0 synthetic products (deriva-

tives) whose payoffs derive from theK underlying assets’ payoffs without altering the asset span:

The payoff of derivative d is a linear combination of asset payoffs rd = w′
dr ∈ span({rk}k) for

some weight vector wd ≡ (wdk)k ∈ RK , where wdk ∈ R for any k ∈ K and d ∈ D. In particular,

weights can be of any sign, i.e., a derivative can be a combination of long and short positions

of the assets. The span of random variables {rk}k is the set of random variables that are linear

combinations of {rk}k,

span({rk}k) ≡ {r =
∑

k
wkrk : wk ∈ R for each k}. (2)

The payoffs of K +D securities (assets and derivatives) are thus jointly normally distributed

according to N (δ+,Σ+) with the moments

δ+ ≡

[
δ

W′
dδ

]
∈ RK+D and Σ+ ≡

[
Σ ΣWd

W′
dΣ W′

dΣWd

]
∈ R(K+D)×(K+D), (3)

where in the weight matrix Wd ≡ (w1, · · · ,wD) ∈ RK×D, the dth column wd corresponds to

the dth derivative.

In practice, synthetic products are traded because they help increase the liquidity of the

underlying assets or because the underlying assets are harder to trade. Accordingly, our model

encompasses two types of security innovations in Eq. (3) whose payoffs lie in the span of the

payoffs of the K underlying assets:

• The introduction of D securities to be traded with the K underlying assets; Example 4

in Appendix A.2, i.e., the weight matrix is W =
[
Id Wd

]
∈ RK×(K+D).

• A delisting of some or all K underlying assets while listing new securities whose payoffs

have the same span, i.e., W ∈ RK×N for N ≤ K +D securities to be arbitrary; Example

2.

The introduction of derivatives does not change the market primitives: Traders’ initial

holdings for the derivatives are zero: qi0,d = 0 for all i and d and the derivative supply is zero.

15To ensure that q0 is random in the limit large market (I → ∞), we allow traders’ asset holdings to be
correlated across traders through a common value component (Eq. (19) in Appendix A.1).
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We make this assumption to focus the analysis on the core reasons for the nonredundancy,

which are not related to the non-zero supply of derivatives. Given a vector of trades of the K

assets, qi
a ≡ (qik)k ∈ RK , and a vector of trades of D derivatives, qi

d ≡ (qid)d ∈ RD, the utility

of trader i as a function of the vector of total trades qi
a +Wdq

i
d is ui(qi

a +Wdq
i
d), using (1).

By the definition of δ+ and Σ+ in Eq. (3), we can equivalently treat the derivatives in utility

(1) as distinct assets:

ui(qi) = δ+ · (qi + qi,+
0 )− α

2
(qi + qi,+

0 ) ·Σ+(qi + qi,+
0 ), (4)

where qi = (qi
a,q

i
d) ∈ RK+D is the vector of trades for all K + D securities and qi,+

0 =

(qi
0,0) ∈ RK+D is the asset holdings vector whose elements corresponding to derivatives are

zeros. Equilibrium is invariant to any split of initial asset holdings among the underlying assets

and synthetic products.

Remark. In the rest of this section and in Section 3, we omit the superscript ‘+’ unless it is

helpful.

2.2 Market Structure

Each of the N ≤ K + D securities is traded in an exchange. All traders participate in all

exchanges (i.e., they trade all securities). The securities are cleared independently across N

exchanges. Each exchange n is organized as a uniform-price double auction (e.g., Kyle (1989),

Vives (2011)) in which traders submit (net) demand schedules. The schedule qin(·) : R → R
represents the limit orders (i.e., a menu of (qin, pn)) a trader submits, each specifying a quantity

demanded qin for the price pn that may occur.

Definition 1 (Double Auction) Each trader i submits N uncontingent demand schedules

qi(·) ≡ (qi1(p1), . . . , q
i
N(pN)), with qin(·) : R → R specifying the quantity of security n demanded

for any realization of price pn. If q
i
n > 0, the trader is a buyer of security n; if qin < 0, the trader

is a seller. The market clears independently across securities: The market-clearing price pn is

determined by the zero aggregate net demand in exchange n,
∑

i q
i
n(pn) = 0.16 Trader i trades

{qin}n, pays
∑

n pnq
i
n, and receives a payoff of ui(qi)− p · qi.

The standard multi-asset equilibrium model is instead based on fully contingent schedules :

Each trader i submits N demand schedules qi,c(·) ≡ (qi,c1 (p), . . . , qi,cN (p)), with the demand

qi,cn (·) : RN → R for each security n specifying the quantity demanded of that security for

all price realizations of all assets p ≡ (p1, . . . , pN). With fully contingent demands, securities

must be cleared jointly : Market-clearing applies to all assets simultaneously to determine the

16As is customary in defining the game, if pn is such that
∑

i q
i
n(pn) = 0 does not exist or is not unique, the

market ends with no trade, i.e., qin = 0 for all i.
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equilibrium price vector
∑

i q
i,c(p1, · · · , pN) = 0 ∈ RN .17 This paper shows that the fact that

not all assets are cleared jointly in financial markets implies that synthetic products that would

be neutral under joint market clearing become nonredundant.

We study the Bayesian Nash Equilibrium in linear demand schedules.18 All traders are

strategic and consider the impact of their demands on prices.

Definition 2 (Equilibrium) A profile of (net) demand schedules {{qin(·)}n}i is a linear Bayesian
Nash equilibrium if, for each i, {qin(·)}n maximizes the expected payoff:

max
{qin(·)}n

E[δ · (qi + qi
0)−

α

2
(qi + qi

0) ·Σ(qi + qi
0)− p · qi|qi

0], (5)

given other traders’ schedules {{qjn(·)}n}j ̸=i and market clearing
∑

j q
j
n(·) = 0 for all n.

Remark. This paper focuses on derivatives whose payoffs lie in the linear span of underlying

asset payoffs (Eq. (2)) in the quadratic-Gaussian setting that supports equilibrium with linear

demands and hence tractability of equilibrium, welfare, and design analysis of derivatives. The

assumption on the linear combination of asset payoffs also facilitates a clear demonstration of

how accounting for market fragmentation in the sense of independent market clearing weakens

the spanning methods; see Section 7.1.

ETFs, ETPs, and futures are examples of synthetic products whose payoffs are in the linear

span of the underlying assets. Although we do not study exotic derivatives and options whose

payoffs are non-linear functions of the underlying asset payoffs, the qualitative effects we report

for welfare results and portfolio analysis will apply there; see Section 7.2.

In addition, we assume that the introduction of derivatives does not change the markets’

trading mechanism (Definition 1). Consequently, our analysis focuses on exchange-traded prod-

ucts. However, the main effects we explore do not depend on a specific price mechanism and

will be present in over-the-counter derivative markets with private information; see Section 7.3.

3 Equilibrium

In this paper, we show that decentralized trading—the independent rather than joint clearing

of assets—leads to the nonneutrality of security innovations (Section 4; e.g., Examples 2 and 4),

alters the efficient portfolio recommendations (Section 5), and impacts asset pricing properties—

linear pricing no longer holds for security innovations (Section 7.1). In this section, we explain

17Some electronic trading platforms for financial assets, including Active Trader Pro, Etrade, Street Smart,
and Tradehawk, offer traders the ability to express their demands for an asset contingent on the prices of other
assets. Still, such conditioning is limited to only a small number of assets and need not be mutual across assets;
see also ft. 6. The effects we explore in this paper are applicable as long as not all assets are cleared jointly
(i.e., not all asset demands are fully contingent).

18Equilibrium is linear if schedules have the functional form of qi(·) = ai −Biqi
0 −Cip.
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the mechanisms that motivate security innovation in a market with N ≤ K + D securities,

where D derivatives can be traded with all or only some of the K underlying assets (Section

3.1). Example 2 illustrates these effects (Section 3.2).

3.1 Equilibrium Effects of Independent Market Clearing

Traders submit their schedules before prices are realized. Nevertheless, as is well known, equi-

librium is ex post when demands are fully contingent:19 A trader can express his demand for

security n as a function of the actual quantities traded of all other securities that will be realized,

and the price vector is one-to-one with the quantity vector. The key implication of independent

market clearing is price uncertainty, which affects traders’ equilibrium price impacts: A trader’s

demand for security n is contingent on, and hence measurable only with respect to the price

pn. Given the technological constraint on the schedules traders can submit, as captured by the

uncontingent demands, a trader’s optimization differs from maximizing the ex post payoff.

Optimization problem and cross-security inference. Consider the optimization problem

(5) of trader i who submits (net) demand schedules qin(·) : R → R in N > 1 exchanges, each

for one security n (an asset or a derivative). The first-order conditions of trader i equalize, for

each security n, his expected marginal utility with expected marginal payment pointwise for all

pn ∈ R: Denoting the nth row of A by An, these conditions can be written as:

δn − αΣnE[qi + qi
0|pn,qi

0] = pn + λi
nq

i
n ∀pn ∈ R, (6)

each taking as given the trader’s residual market {{qjℓ(·)}ℓ}j ̸=i and his own demands for other

securities {qiℓ(·)}ℓ ̸=n. Here, λ
i
n ≡ dpn

dqin
∈ R+ represents the price impact of trader i (i.e., “Kyle’s

lambda”) for security n. The second-order condition (−αΣ−Λi − (Λi)′ < 0) is satisfied when

λi
n > 0 for all i and n, or equivalently, when traders’ demands are downward-sloping, i.e.,

∂qin(·)
∂pn

< 0 for all i and n (Eq. (7)).

Since schedules are not fully contingent, a trader’s demand for security n depends on his

expected trades E[qiℓ(pℓ)|pn,qi
0] (equivalently expected prices E[pℓ|pn,qi

0]) of other securities ℓ ̸=
n (Eq. (6)).20 Cross-asset inference becomes relevant, except when the payoff Hessian (Σ) is

separable, i.e., the security payoffs are independent. As a result, even though all securities are

cleared independently, the equilibrium outcome is not independent across exchanges. When the

market is imperfectly competitive (I < ∞), the imperfect cross-security price inference under

19Equilibrium is ex post if the equilibrium demands {qin(·;qi
0)}n are optimal for all i, for all realizations of

asset holdings of all traders {qj
0}j :

{qin(·;qi
0)}n = argmax

{qin(·)}n

E[δ · (qi + qi
0)−

α

2
(qi + qi

0) ·Σ(qi + qi
0)− p · qi|{qj

0}j ].

20Intuitively, with uncontingent schedules, a trader’s choices are based on his best estimate of the prices:
Price pn contains information about the aggregate holdings for security n and, due to the nonseparability of Σ,
also contains information about the aggregate holdings for all other securities and hence their respective prices.
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independent market clearing also affects the equilibrium price impacts {λi
n}n (Eq. (7)).

Residual market and price impact. Trader i’s price impact λi
n in the exchange for security

n is determined by the slope of the inverse residual supply:

λi
n = −(

∑
j ̸=i

∂qjn(·)
∂pn

)−1. (7)

Since the market clears independently across securities, the cross-asset price impacts {λi
nℓ ≡

dpℓ
dqin

}n,ℓ ̸=n of traders are zero. Therefore, the price impact matrices of all traders are diagonal:

Λi ≡ diag(λi
n)n ∈ RN×N for all i. Here, diag(xn)n = diag(x1, · · · , xN) denotes a diagonal

matrix in RN×N , where the nth diagonal element is xn and all off-diagonal elements are zero.

The interdependence among traders’ demands for different securities manifests itself through

the price impacts within the exchanges, which, in contrast to joint clearing (see Example 1)

depend on cross-security price inference.

Example 1 (Market That Clears All Securities Jointly) Suppose that, in the same mar-

ket, traders submit fully contingent (net) demand schedules for N securities. The familiar

counterparts of optimization and price impact conditions (6) and (7) are: for all i,

δn − αΣn(q
i + qi

0) = pn +Λi
nq

i ∀p ∈ RN , (8)

where Λi ≡ ( dp
dqi )

′ ∈ RN×N is the price impact of trader i and

Λi = −((
∑
j ̸=i

∂qj(·)
∂p

)−1)′ =
α

I − 2
Σ. (9)

□

Independent market clearing transforms the relationship between traders’ incentives (the

equilibrium price impact Λi) and the fundamental risk (covariance Σ) in two ways: Due to the

imperfect cross-asset price inference, the price impact (i) depends not only on the fundamental

asset covariance but also on the distribution of traders’ privately known initial holdings, and

(ii) is no longer separable across assets (i.e., the price impact for any pair of assets depends on

the covariance of all asset payoffs). Mathematically, the transformation of risk is captured by

the lack of proportionality between Λi and Σ, which holds in the case of joint clearing (Eq.

(9)).

Equilibrium. As is common in demand submission games, equilibrium is characterized by two

conditions for all traders: (i) a trader’s optimization (the first-order condition (6)), given his

residual supply; and (ii) the requirement that trader’s residual supply is correct (Eq. (7)). Our

main characterization result, Theorem 3 in Appendix A.1, shows that the profile of all traders’

price impact matrices {Λi}i is sufficient for equilibrium. In particular, the inference’s effect
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on equilibrium is accounted for by a profile of traders’ price impacts.21 We will highlight the

crucial role that price impact plays in security design with independent market clearing.

Definition 3 (Competitive Market, Competitive Equilibrium) Letting {qi,I(·)}i be the

equilibrium in the market with I < ∞ traders, the competitive equilibrium {qi(·)}i is the limit

of equilibria {qi,I(·)}i as I → ∞: qi(·) = limI→∞ qi,I(·) for all i.

In the competitive market, Λ → 0 as I → ∞ (Lemma 1 in Appendix A.1). While traders’

price inference is imperfect with independent market clearing irrespective of the market size

(see Eq. (6) with λi
n = 0 for all i and n), security innovation plays a limited role in efficient

design when traders are price-takers.22

Proposition 5 in Appendix A.4 shows that an equilibrium exists and is unique in markets

with K symmetric assets and D derivatives with symmetric weights (Definition 5).23

3.2 Motivating Example

Example 2 elaborates on the equilibrium effects of traders’ cross-security inference and price

impact to illustrate a key result: Independence in market clearing renders financial innovation

that is neutral to security payoff span nonneutral to traders’ equilibrium payoffs (Section 4).

Example 2 (Assets vs. Factors) Consider K = 2 imperfectly correlated assets with covari-

ance Σ =
[

σ2 σ2ρ

σ2ρ σ2

]
. Suppose that instead of trading the underlying assets, traders engage

in trading two factors with independent payoffs r+1 = w11r1 + w12r2 and r+2 = w21r1 + w22r2

whose span coincides with that of the underlying assets’ payoffs {r1, r2}. The factors are con-

structed with the weight matrix W ∈ RK×K that orthogonalizes the asset covariance Σ: The

joint distribution of the K securities is N (δ+,Σ+), where Σ+ ≡ W′ΣW = σ2Id is a diagonal

matrix and δ+ = W′δ; qi,+
0 ≡ W−1qi

0 for all i are each trader’s initial holdings qi
0 in units of

the traded securities.

We show that with independent market clearing (part (i)), but not with joint market clearing

(part (ii)), securities whose prices are imperfectly correlated give rise to cross-asset inference

effects and thus alter traders’ price impacts and outcomes.

21This result holds even though, in contrast to markets with fully contingent demands, a trader’s price impact
is not sufficient for his best-response problem due to imperfect cross-security price inference.

22In competitive markets, equilibrium is characterized by a fixed point in the demand Jacobian (substitution)

matrix C ≡ diag(
∂qin(·)
∂pn

)n, thus with zero off-diagonal elements (vs. Cc = (αΣ)−1 with fully contingent

demands). Similarly, in imperfectly competitive markets (I < ∞, Theorem 3 in Appendix A.1), the equilibrium
fixed point for Λ can be written as a fixed point for C, given the one-to-one map between Λ and C (Eq. (7)).

23In extensive simulations that consider asymmetric assets or weights, the numerical iteration that solves the
equilibrium fixed point equation (Theorem 3 in Appendix A.1) converges to the same equilibrium, allowing for
random initial values, using different forms of the fixed point equation, and considering fixed points defined
with respect to different variables.
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(i) (Independent market clearing) Suppose the market clears securities independently. The

first-order condition (6) for the underlying assets with payoffs {r1, r2} is

(ασ2 + λ1)q
i
1 = δ1 − p1 − ασ2qi0,1 − ασ2ρqi0,2 − ασ2ρE[qi2|p1,qi

0], (10)

and the first-order condition for the factors with payoffs {r+1 , r+2 } is

(ασ2 + λ+
1 )q

i,+
1 = δ+1 − p+1 − ασ2qi,+0,1 − ασ2ρ+E[qi,+2 |p+1 ,qi

0]︸ ︷︷ ︸
=0

.

The change in security payoffs via W is not neutral to the first-order condition. This is because

the change from the correlated contingent variables in traders’ demands {p1, p2} to independent

variables {p+1 , p+2 } eliminates cross-asset inference (i.e., E[qi2|p1,qi
0]). With no cross-asset infer-

ence, the price impact coincides with its contingent-market counterpart, Λ+ = Λc,+. The total

equilibrium trade of underlying asset 1 in both exchanges is the same as with fully contingent

demands, i.e., w11q
i,+
1 +w21q

i,+
2 = qi,c1 , where qi,c = (qi,c1 , qi,c2 ) is the equilibrium outcome for the

underlying assets with joint market clearing.

This equilibrium outcome fails to satisfy the first-order condition (10) in the market for the

underlying assets unless ρ = 0 (i.e., the underlying assets are independent, then λ1 = λc
1) or

|ρ| = 1 (the underlying assets are perfectly correlated, then, λ1 = 2λc
1 and E[qi2|p1,qi

0] = qi2).

The changes to price impact and expected trades do not generally offset each other since the

fixed point between inference and price impact is non-linear (Eq. (7)).

(ii) (Joint market clearing) If the market clears all securities jointly, the standard result applies:

Trading factors is payoff-equivalent to trading the underlying assets. This equivalence can be

seen from the fact that the first-order condition (8) is invariant to changes in security payoffs

throughW, as neither cross-asset inference nor the price impact per unit of the underlying assets

are affected. Specifically, changes to security payoffs via W preserve the ex post property of the

equilibrium with fully contingent demands. Furthermore, due to the proportional relationship

between the equilibrium price impactΛ and the covarianceΣ (Eq. (9)), traders’ marginal utility

and marginal payment per unit of the underlying assets are invariant to such simultaneous

transformations. See Example 2 Cont’d in Appendix A.2 for further details. □

Example 2 shows that allowing traders to trade securities with independent payoffs instead

of the underlying assets is not neutral to welfare. Theorem 1 establishes that no set of K secu-

rities with the same span as the underlying assets is payoff-equivalent. This nonredundancy of

security innovation under independent market clearing holds in both competitive and imper-

fectly competitive markets. The redundancy of these securities with fully contingent demands

applies irrespective of market size as well: Then, changes to the traded securities do not affect

traders’ inference and price impact, and equilibrium is ex post.

Example 4 in Appendix A.2 shows that allowing traders to trade additional securities whose
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payoffs lie within the span of the underlying assets is also non-neutral. In fact, no such security

is redundant, except for one that duplicates a traded asset (Corollary 6(ii) in Appendix A.3).

4 Security Innovation

In the standard multi-asset equilibrium model with fully contingent demands, the introduction

of securities whose payoffs lie in the span of the traded assets, such as either type of innovation in

Examples 2 and 4, is redundant, i.e., does not change traders’ equilibrium payoffs.24 This result

holds in imperfectly competitive (I < ∞) and competitive (I → ∞) markets. However, when

assets are cleared independently, the introduction of such synthetic products, without altering

any traders’ asset holdings or creating a non-zero supply of the securities, is generally not

neutral. It changes traders’ cross-asset price inference and their price impact. Notably, synthetic

products remain payoff-relevant in markets with large traders even when there is no inference

error (i.e., the uncertainty in aggregate asset holdings or prices vanishes, σ2
q → 0),25 as they

still modify the equilibrium price impact. Table 1 provides a summary of the nonredundancy

results.

Table 1: Nonredundancy of Security Innovation

Joint Market Clearing Independent Market Clearing

I → ∞ X ✓

Information

I < ∞ X ✓

Information and Liquidity Information and Liquidity

Notes. When securities are cleared independently, security innovation that preserves the span of the traded
assets is not neutral to traders’ equilibrium payoffs, as it changes cross-security inference (information) and/or
the equilibrium price impact (liquidity).

Taking as an objective the traders’ ex ante total welfare,
∑

iE[ui(qi)−p ·qi] (Eq. (13)), we

present two main results: A market with a sufficiently large number of independently clearing

derivatives can reproduce the equilibrium from the market with only the underlying assets,

cleared jointly, where synthetic products would be redundant (Section 4.2). However, when

traders have price impact, securities that do not reproduce the contingent-market outcome are

more efficient, except in trivial cases (Section 5).

24New securities are redundant in the sense of equilibrium outcomes (Corollary 5 in Appendix A.1) and payoffs
(Eq. (13)), not equilibrium demands {qi,+(·)}i.

25In contrast, with limited demand conditioning, new securities are nonredundant in the competitive market
(I → ∞) only if there is inference error (i.e., σ2

q > 0). While our main interest is in the incomplete information
environment, the complete information scenario (i.e., σ2

q → 0) is useful for isolating the effects of price impact;
see Eq. (13) in Section 5.1. Defining the complete information benchmark as the limit equilibrium sidesteps
the equilibrium multiplicity issue with σ2

q = 0 (e.g., Klemperer and Meyer (1989)).
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4.1 Synthetic Products Are Nonredundant

At its core, security design is payoff-relevant because the variables it introduces in traders’

expected trades affect inference, regardless of whether the underlying assets are traded directly.

Our main results in this section show that security design is nonredundant when it modifies

cross-asset inference or, equivalently (with imperfect competition), when it alters price impact

across assets (Theorem 1), and derivatives are nonredundant except under special conditions

on the underlying asset and derivative payoffs (Corollary 6 in Appendix A.3).

Assessing the nonredundancy of innovation necessitates comparing equilibrium payoffs across

different market structures. In each, the fixed point among traders’ schedules is equivalent to

the fixed point among their price impact matrices (Theorem 3 in Appendix A.1). However,

price impact matrices Λ cannot be compared directly across market structures, as their dimen-

sion and the securities for which they are defined may differ. Example 2 motivates the key

analytic tool, which also provides insights into the analysis of nonredundancy.

Definition 4 (Per-Unit Price Impact) In a market for N securities whose payoffs are de-

fined for K underlying assets, let q̂i ≡ (q̂ik)k = Wqi,+ ∈ RK be trader i’s total equilibrium

trade vector of all assets traded across N exchanges for all securities. The per-unit price im-

pact Λ̂ ∈ RK×K is a positive semi-definite matrix, such that for all i and any ex ante initial

holdings {E[qi
0]}i ∈ RIK,

E[q̂i] ≡ E[Wqi,+] = (αΣ+ Λ̂)−1αΣ(E[q0]− E[qi
0]); (11)

i.e., if the price impact in a market structure with a single exchange for K assets were Λ̂, then

the expected trade of each asset k ∈ K in the counterfactual exchange would be equal to its

expected total equilibrium trade in the market with N securities.26

The proof of Theorem 1 (Lemma 2) shows that by examining the single-exchange coun-

terfactual for the K underlying assets that determines Λ̂, one can, first, compare equilibrium

outcomes across markets with arbitrary securities and, second, identify nonredundant innova-

tion with the change in Λ̂ without the need to consider changes in expected trades.27

26Λ̂ is not defined as an equilibrium variable in a single-exchange game. The proof of Lemma 2 in Appendix
A.1 demonstrates the existence and uniqueness of Λ̂ when Σ is non-singular. With N = K +D securities, the
inverse of the per-unit price impact matrix is characterized as (Eq. (28) in Lemma 2):

Λ̂−1 = Λ−1
a + WdΛ

−1
d W ′

d.︸ ︷︷ ︸
Basis change from D derivatives

to K underlying assets through Wd︸ ︷︷ ︸
Projection of derivatives to the underlying asset

(12)

Eq. (12) shows that the per-unit price impact Λ̂ projects the liquidity risk from derivative trades’ units to the
liquidity risk per unit of total trades of the K underlying assets from all exchanges, thus transforming the basis
of liquidity risk from derivative trades’ units to the underlying assets.

27In competitive markets (I → ∞), Λ̂ becomes a zero matrix for any securitiesN and nonredundant innovation
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Theorem 1 (Nonredundancy of Derivatives) Let I < ∞, K > 1, and suppose that Σ is

non-singular. Consider two markets: One for N ≥ 1 securities with payoffs rN ≡ (rn)n∈N =

W′
Nr and another for N ′ ≥ 1 securities with payoffs rN ′ ≡ (rn′)n′∈N ′ = W′

N ′r. The security

innovation is redundant, i.e., ui,N = ui,N ′
for all i, if and only if one of the following conditions

holds for these two markets:

(i) (Price impact) The per-unit price impacts for the underlying assets coincide: Λ̂N = Λ̂N ′
.

(ii) (Inference) The expected total trades E[q̂ik|pℓ,qi
0], ℓ ̸= k, are the same in both markets

for each k.

(iii) (Market structure) The span of the contingent variables in the total demand of each asset

is the same: span({pn|wnk ̸= 0}n∈N) = span({pn′|wn′k ̸= 0}n′∈N ′) for each k.

In which markets should one expect derivatives not to be neutral? Corollary 6 in Appendix

A.3 establishes that no nonredundant derivatives can be created if and only if the payoffs

of all underlying assets are either independent or perfectly correlated; see also Example 2(i).

However, in all other markets, synthetic products alter the correlation of traded asset prices

and, as a result, affect traders’ price impacts. Notably, only derivatives that correlate perfectly

with some traded assets or assets they replace are neutral. See Example 4 in Appendix A.2.

4.2 Bound on Security Innovation

Are there limits to introducing nonredundant derivatives? Theorem 1 implies a bound on the

number of derivatives that can be introduced and remain nonredundant. Corollary 1 shows that

the market structure with derivatives and/or the underlying assets that are cleared indepen-

dently can reproduce the equilibrium in the fully contingent market for the underlying assets

state by state (i.e., for all realizations of initial asset holdings); then, equilibrium becomes ex

post and additional derivatives would be redundant.

Corollary 1 (Redundancy of Derivatives and Equivalence with Joint Market Clearing)

Suppose that I < ∞ and consider a market with N ≥ 1 securities defined for K > 1 underlying

assets. Assume that Σ is non-singular. All derivatives traded with the N securities are redun-

dant if and only if either (i) the N securities orthogonalize the payoffs of K assets or (ii) in the

total trade of each asset k, the number of linearly independent contingent variables in expected

trades of other assets ℓ ̸= k is at least K: for each k, span({rn|wnk ̸= 0}n∈N) = span({rℓ}ℓ∈K).

A couple of implications of this result are worth highlighting. First, Corollary 1 characterizes

the nonredundant derivatives that can be introduced in the market. With K = 2 assets,

can be identified by the change in the Jacobian matrix of total demands Ĉ ≡ WCW′ ∈ RK×K ; see also ft. 22.
The conditions (ii) and (iii) in Theorem 1 apply to both competitive and imperfectly competitive markets.
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the introduction of just one nonreplicating derivative is sufficient for the market where the

derivative and the underlying assets are cleared independently to function as the market where

the underlying assets are cleared jointly—equilibrium is as if traders could condition their

demands on the price vector. For markets with K ≥ 2 assets, the result places a bound on

the number of such derivatives at K(K−1)
2

, which applies for any underlying assets’ payoffs

and traders’ trading needs; the only requirement for such derivatives’ weights is that their

joint payoffs with the underlying assets are linearly independent. Intuitively, for the traders’

inference about expected trades to be perfect, it must be that for every pair of assets, some

derivative weighs their assets’ payoffs. Once K(K−1)
2

derivatives are introduced, any additional

derivatives are redundant.

Second, derivatives allow the implementation of the fully contingent outcome with lower-

dimensional schedules (R1 → R1). In a market where such a complete set of securities is cleared

independently, the cross-exchange price inference mimics the cross-asset price impact from a

single exchange that clears the underlying assets jointly;28 then, the per-unit price impact

satisfies Λ̂ = Λc. Intuitively, in the counterfactual that defines the price impact of trader i,

other traders react to the additional demand of trader i as if their inference was perfect.

WithK ≥ 2 assets, Corollary 1 shows that the complete set of securities comprises either the

K factors in place of the underlying assets or K(K+1)
2

imperfectly correlated securities (whether

or not the underlying assets are included). However, in Section 5, we show that a market

with a limited (incomplete) set of derivatives cleared independently generally improves upon

the welfare bound of the joint market clearing when traders have price impact. Example 4 in

Appendix A.2 illustrates Corollary 1.

Rostek and Yoon (2021) showed that it is possible to achieve the fully contingent outcome

with an alternative design that features exchanges for multiple assets and no synthetic products,

where demands are contingent on the prices of the assets traded within each exchange but

uncontingent across exchanges. However, this design requires contingent schedules for every

pair of assets. On the other hand, Corollary 1 shows that by introducing synthetic products

instead of relying on a technology that clears multiple underlying assets jointly, a simpler design

where traders’ demands are all uncontingent can mimic the fully contingent outcome.

In fact, the result of Corollary 1 extends to subsets of the underlying assets L ⊂ K: The

number of nonredundant derivatives whose payoffs underlie L assets is bounded by L(L−1)
2

—

the set of L securities is locally complete. Furthermore, in markets with K underlying assets,

if the correlation among some assets is sufficiently similar, it is possible to achieve a welfare

outcome close to the fully contingent outcome using fewer derivatives than the bound K(K−1)
2

.

For example, when the correlation between any pair of assets is ρkℓ = ρ < 0 for all k and ℓ ̸= k,

a single derivative with the payoff rd = 1
K

∑
k rk can implement the outcome of joint market

28This result holds whether or not the underlying assets are traded alongside derivatives. Example 4 in
Appendix A.2 illustrates the former case by introducing a sufficient number of derivatives with K = 2 underlying
assets, while Example 2 demonstrates the latter by replacing the underlying assets with factors.
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clearing. The general result is provided by Lemma 9 in Appendix A.4. These results do not

have counterparts with multi-asset exchanges.29,30

5 Welfare Impact of Derivatives

We have shown that in markets that clear securities independently, no set of K securities with

the same span as the underlying assets can achieve the same equilibrium payoffs as those assets,

except in trivial cases (Corollary 6 in Appendix A.3). Taking efficiency as the objective, which

securities should traders then trade? Should they trade an index (a “market portfolio” with

weights proportional to average trading needs) or multiple funds? Or, might trading factors be

efficient, given that independent payoffs would eliminate the cross-security inference effects in

price impact, thereby reproducing the fully contingent outcome (Corollary 1)?

The standard model, which assumes joint clearing of assets, suggests that traders can achieve

equivalent outcomes by trading the same or a smaller number of funds instead of individual

assets. Moreover, the same funds are efficient and recommended for all investor classes, regard-

less of their trading needs or the joint distribution of assets. Only the number of funds with

linearly independent payoffs matters as long as they have the same span.

However, we show that in markets where assets are not cleared jointly, the recommendation

of using the same funds for all traders (analogous to the Mutual Fund Theorem) is only appli-

cable under specific conditions. Specifically, it holds in competitive markets (Theorem 2 and

Proposition 1) or when traders’ motives for trade are purely speculative (i.e., they have zero

trading needs E[q0] − E[qi
0] = 0 for all i; see Eq. (13)). When traders have price impact and

nontrivial trading needs, the mutual-fund-type results do not hold, even in a weaker sense.

29With multi-asset exchanges, the outcome that coincides with the fully contingent market outcome must
involve at least K contingent variables in each trader’s total demand for each asset. This requirement holds
regardless of whether or not the market is symmetric.

30Furthermore, a comparative analysis by Rostek and Yoon (2024a) shows that the equilibrium payoffs from
designs involving exchanges for multiple assets (as investigated in Rostek and Yoon (2021)) cannot reproduce
or be reproduced by synthetic products studied in this paper on a state-by-state basis. For example, the

introduction of L(L−1)
2 derivatives with uncontingent demands does not generally enable perfect inference among

these assets, in contrast to the effect of creating new exchanges for L ⊂ K assets. More generally, these two
types of innovations have different effects on the per-unit price impact. Independently cleared derivatives offer
the flexibility to adjust the weights bundling asset payoffs, thereby achieving the desired own- and cross-asset
per-unit price impacts. On the other hand, the joint clearing of multiple assets in a single venue generally leads
to asymmetries in cross-asset price impacts, which are absent when clearing is done independently (or jointly)
for all assets. Essentially, only with independent or joint clearing of all assets does the demand for any asset
allow for symmetric inference regarding the prices of other assets. Otherwise, even if every pair of assets in L is
jointly traded in some exchange, introducing new exchanges can still be nonredundant unless L = K (i.e., the
fully contingent outcome).
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5.1 Welfare Effects of Derivatives

A key observation so far is that synthetic products are generally nonneutral because they affect

traders’ price impact and inference. By utilizing the welfare decomposition in Eq. (13), we can

further attribute the welfare impact of derivatives to three effects. Namely, we can express the

expected equilibrium payoff of trader i as a function of Λ̂:

E[ui(qi)− p · qi] = E[δ · qi
0 −

1

2
qi
0 · αΣqi

0]︸ ︷︷ ︸
Payoff without trade

+(E[q0]− E[qi
0]) ·Υ(Λ̂)(E[q0]− E[qi

0])︸ ︷︷ ︸
Equilibrium surplus from trade

(13)

+
1

2

I − 2

I − 1
σ2
q tr

(
αΣ

)
︸ ︷︷ ︸

Payoff term due to V ar[q0|qi
0] > 0

− I − 1

I
σ2
q tr

(
(Bc − B̂(Λ̂))′αΣ(Bc − B̂(Λ̂)) +

2

I − 1
αΣ(Bc − B̂(Λ̂))

)
︸ ︷︷ ︸

Inference error

,

where the equilibrium surplus matrix coefficient Υ(Λ̂) = 1
2
αΣ −Θ(Λ̂) captures how liquidity

risk Θ(Λ̂) (see ft. 31) modifies the fundamental risk 1
2
αΣ, E[q0] − E[qi

0] is the vector of ex

ante trading needs (i.e., the target portfolio; cf. Eq. (26)), and B̂(Λ̂) and Bc are the matrix

coefficients on qi
0 in the uncontingent and the fully contingent demands, respectively.31 The

second line pertains to the variance of realized equilibrium surplus, where the term V ar[q0|qi
0]

is due to the uncertain aggregate asset holdings and the second term is due to the inference

error resulting from limited demand conditioning.

From Eq. (13), security design affects welfare via Λ̂ through32

(i) Own-asset price impact : λ̂k captures the marginal cost component of risk sharing for a

specific asset;

(ii) Cross-asset price impact : Derivatives introduce non-zero off-diagonal elements of Λ̂ (see,

e.g., Example 2 Cont’d below); λ̂kℓ ̸= 0 captures the marginal cost or benefit components

of diversification across assets;

(iii) Inference error.

To seed the intuition for the welfare effects of derivatives, it is helpful to consider a com-

petitive market (i.e., I → ∞) where assets are cleared independently. There, security design

involving at least K securities affects the inference error alone, which can be minimized with

the complete set of securities as characterized by Corollary 1, ensuring zero inference error.33

31Lemma 2 in Appendix A.1 characterizes Θ(Λ̂) = 1
2Λ̂(αΣ + Λ̂)−1αΣ(αΣ + Λ̂)−1Λ̂, B̂(Λ̂) = WB =

((1− σ0)αΣ+ (1 + (I − 2)σ0)Λ̂)−1αΣ, and Bc = I−2
I−1Id. In the fully contingent market, the inference error in

Eq. (13) is zero since B̂(Λc) = Bc, i.e., equilibrium is ex post.
32In light of Theorem 1, the selection of a more efficient design involves choosing among the price impacts

induced by the designs. Indeed, a design modifies the inference error in Eq. (13) if and only if it changes the

per-unit price impact (I < ∞), since B̂ is a function of Λ̂.
33Fewer than K securities are not efficient. This can be observed in Eq. (13), where with zero price impact
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Thus, in competitive markets where assets are cleared independently, an analogous principle

to the Mutual Fund Theorem holds, implying the suitability of using the same funds for all

traders.

Corollary 2 (Competitive Markets: Mutual Funds) Suppose I → ∞. The market struc-

ture with the complete set of securities is efficient for all distributions of asset payoffs and

traders’ asset holdings.

However, we will show that in imperfectly competitive markets where assets are cleared

independently, one can generally improve upon the efficiency of the complete set of securities

despite allowing inference error. This can be accomplished by designing derivatives that miti-

gate the welfare costs associated with price impact (effects (i) and (ii) above). These derivatives

effectively transform traders’ equilibrium liquidity risk Θ(Λ̂) and offset the welfare loss caused

by imperfect inference. Therefore, unlike in markets that clear assets jointly, the role of se-

curities is not merely to mimic the diversification achieved by the assets, as in the traditional

Mutual Fund Theorem. Instead, their purpose is (1) to improve upon that diversification and

(2) to facilitate more effective risk sharing.

To focus on the effects of price impact on equilibrium surplus, we subsequently assume

that the inference error is zero, i.e., σ2
q → 0. Under this assumption, both variance terms in

Eq. (13) become zero. The means of initial holdings can be arbitrary; we will show that the

heterogeneity in asset holdings plays a crucial role in determining the efficient security design.

5.2 Price Impact Benefits of Derivatives

Example 2 illustrates the significance of price impact in security design and highlights the

main result of this section: Which securities should traders trade? Notably, the own-asset and

cross-asset price impact components encourage different types of security design: Trading the

independent factors (Example 2 in Section 3.2) minimizes the own-asset price impact while

allowing an index (Eq. (17) below) can induce the cross-asset price impact beneficial for the

trader’s equilibrium payoff.

Example 2 Cont’d (Welfare Improvement with Securities). In the setting of Example 2,

the design with N = 2 factors with payoffs defined by the weight vector W that orthogonalizes

the underlying assets’ payoffs would be efficient in the competitive market (I → ∞; Corollary

2). However, when traders have price impact, changing the security weight from W to W+

that correlates security payoffs while preserving their span can increase traders’ payoffs. This

welfare change results from the interplay of two countervailing effects.

Λ̂ = 0, both the equilibrium surplus and the first variance term depend solely on the asset span and not the
market structure. Both terms are maximized and remain constant with any K or more securities.
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(Cross-asset price impact: diversification) When the security payoffs are independent (i.e.,

σ+
12 = 0), an increase in demand for one security does not affect the prices of other securities:

p+1 + λ+
11q

i,+
1 + 0 qi,+2 and pc,+1 + λc,+

11 qi,c,+1 + 0 qi,c,+2 .

Consider a change in one security’s weight vector from w1 to w+
1 , resulting in a new security

payoff of r++
1 = w+

11r
+
1 +w+

12r
+
2 , given the factors’ payoffs {r+1 , r+2 }. Relative to factors, the new

weights induce non-zero cross-security per-unit price impact λ̂+
12 ̸= 0: in the unit of factors,

p+1 + λ̂+
11q

i,+
1 + λ̂+

12q
i,+
2 , (14)

which may (or may not) reduce the marginal payment (i.e., the RHS of Eq. (14)) and be

beneficial to a trader’s equilibrium payoff. The desired condition for the cross-security per-unit

price impact is34

sign(λ̂+
12) = −sign(

E[q+0,1]− E[qi,+0,1 ]

E[q+0,2]− E[qi,+0,2 ]
). (15)

Recall that with joint market clearing, sign(λ̂+
12) = sign(ρ+12) always holds (Example 1),

so condition (15) cannot be satisfied for all trading needs. However, with independent market

clearing, the sign of the off-diagonal per-unit price impact induced by security weight w+
1 does

not necessarily match the sign of the covariance. In fact, the security weight vector w+
1 can

always be chosen to reduce the trading cost of diversification across securities. Using Eq. (28),

Λ̂+ =

[
1 w+

11

0 w+
12

][
λ+
1 0

0 λ+
2

]−1 [
1 0

w+
11 w+

12

]−1

=
1

(w+
12)

2

[
(w+

12)
2λ+

1 −w+
11w

+
12λ

+
1

−w+
11w

+
12λ

+
1 (w+

11)
2λ+

1 + λ+
2

]
,

(16)

we have that sign(λ̂+
12) = −sign(w+

11/w
+
12). For example, choosing security weight w+

1 =

(w+
11, w

+
12) to be proportional to a trader’s expected trading needs E[q+

0 ]− E[qi,+
0 ], i.e.,

w+
1 = ξ(E[q+

0 ]− E[qi,+
0 ]) (17)

for a proportionality coefficient ξ ∈ R, ensures that Eq. (15) holds for any E[q+
0 ] − E[qi,+

0 ]

irrespective of Σ+. Thus, derivatives can transform price impact avoidance into price impact

seeking when it comes to cross-security per-unit price impact. Lemmas 3 and 5 in Appendix A.1

provide additional insights into the effects of derivatives on the per-unit price impact, effects

that cannot be achieved with contingent demands.

(Own-asset price impact: risk sharing) Nevertheless, the securities in Eq. (17), which aim to

34That is, the cross-security per-unit price impact is beneficial when λ̂+
12 < 0 and the trader takes the same

positions (buying or selling) in the securities, or when λ̂+
12 > 0 and the trader takes opposite positions across

securities.
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induce the desired cross-security price impact by aligning with traders’ target portfolios, are

typically not welfare-maximizing, because they fail to account for the change in the securities’

own price impacts {λ̂+
k }k brought by the inference effects they induce. Specifically, when a

security with weight w+
1 is traded instead of one of the factors, the non-zero covariance increases

the securities’ price impact λ̂+
11 (Lemma 4 in Appendix A.1). □

The effects of security innovation on the own- and cross-asset price impact λ̂+
11 and λ̂+

12 in

Eq. (14) give rise to a trade-off that shapes the efficient design characterized by Theorem 2.

5.3 Which Derivatives Are Efficient?

For markets with K ≥ 2 underlying assets, Theorem 2 characterizes the N = K efficient

securities in the span of the underlying assets. In particular, neither factors (or the complete

set; Corollary 1) nor the index (Eq. (17)) are generally efficient when traders have price impact.

Theorem 2 (Efficient Security Design) Let I < ∞, K > 1, and assume no inference error,

i.e., σ2
q → 0. Suppose that the payoffs of the K underlying assets are symmetric (i.e., σkk = σ2

and σkℓ = σ2ρ for all k and ℓ ̸= k) and traders’ ex ante trading needs are symmetric across

assets and traders (i.e., E[q0,k] − E[qi0,k] = E[q0,ℓ] − E[qi0,ℓ] for all k, ℓ, and i). For all market

structures with K symmetrically correlated securities (i.e., σ+
kk = σ2 and σ+

kℓ = σ2ρ+ for all k

and ℓ ̸= k), the following results hold:

(a) (Design with underlying assets is inefficient) For any I,K, and ρ, there exists a unique

security correlation ρ+(ρ; I,K) that maximizes ex ante welfare. Furthermore, there exists

a unique cutoff ρ such that ρ+(ρ; I,K) = ρ, and correlation ρ+(ρ; I,K) is higher than the

underlying asset correlation ρ if and only if the latter is below the cutoff ρ:

ρ+(ρ; I,K) > ρ if and only if ρ < ρ.

The following weight matrix characterizes the securities with the optimal correlation ρ+:

W =

√
1− ρ+√
1− ρ

Id−
√
1− ρ+

K
√
1− ρ

11′ +

√
1 + (K − 1)ρ+

K
√

1 + (K − 1)ρ
11′. (18)

(b) (Correlating securities is efficient) The ex ante welfare is maximized with the securities

whose payoffs orthogonalize those of the underlying assets (i.e., ρ+(ρ; I,K) = 0) if and

only if the market is competitive (i.e., I → ∞).

(c) (Index is not efficient) The ex ante welfare is maximized with the securities whose weights

mimic the target portfolio (i.e., w = 1, equivalently ρ+(ρ; I,K) = 1) if and only if ρ = 1

or the market is competitive (i.e., I → ∞).
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With price impact, design matters. Theorem 2 underscores several implications of price

impact. First, synthetic products can be designed to strictly increase ex ante welfare compared

to both the underlying assets and the market with the complete set of securities. In Section

5.5, we show that allowing more than K securities can further increase welfare.

Second, in the presence of price impact, the efficient security design is no longer invariant

to trader or asset characteristics other than their span. Asset payoff correlation ρ and traders’

target portfolios {E[q0] − E[qi
0]}i, which are determined by their initial holdings, become rel-

evant. As a result, the efficient set of derivatives differs between one-sided markets (where

some traders buy and others sell all securities, such as the primary market for Treasury securi-

ties) and two-sided markets (where traders buy and sell different securities, such as inter-dealer

markets).35 See Table 2 below.

The results in the presence of price impact contrast sharply with those in competitive

markets, where K factors or any other complete set of securities are weakly efficient for any

Σ and {E[q0] − E[qi
0]}i, as we discussed in Section 5.1. Neither the Mutual Fund Theorem

(Corollary 2) nor the Separation Theorem (Corollary 3) hold when traders have price impact.

Next, we highlight several implications of Theorem 2 for security design.

How to design efficient derivatives? Example 2 anticipates the design recommendation of

Theorem 2: The optimal level of security correlations ρ+(ρ; I,K) balances two countervailing

effects on the price impact cost components associated with diversification and risk sharing,

given the symmetry of trading needs across traders and assets. Each effect favors different

securities.

• Cross-asset price impact favors an index: Holding fixed the own-asset price impacts {λ̂k}k,
the welfare benefit due to cross-asset price impact (condition (15)) is maximal when

ρ+ = 1. The proportional to traders’ target portfolios E[q0] − E[qi
0] weight w for all i

(Eq. (17)), as implied by ρ+ = 1, indicates that there is a single efficient security: the

index (Eq. (18)).36

• Own-asset price impact favors factors: Holding fixed the cross-asset price impacts {λ̂kℓ}k,ℓ̸=k,

ρ+ = 0 minimizes the inference errors and the own-asset price impacts λ+
k for all k (Lemma

4 in Appendix A.1). Thus, factors would be efficient (Example 2).

It follows that an index is too costly in terms of the own-asset price impacts, while trading

factors ignores the benefit of the cross-asset price impacts for diversification (Fig. 1(A); the

35In one-sided markets, the optimal asset covariance for trading the underlying assets is positive (i.e., ρ > 0).
However, in two-sided markets, it is negative (i.e., ρ < 0), given the joint symmetry ofΣ and {E[q0,k]−E[qi0,k]}i,k.
The proof of Theorem 2 encompasses both one- and two-sided markets, but for simplicity of exposition, we
present the result for one-sided markets here.

36Similarly, in the symmetric two-sided market, securities correlation ρ+ = − 1
K−1 (i.e., the bound imposed by

the positive semidefiniteness of Σ+) minimizes the cost of diversification (see Fig. 5 and the proof of Theorem
2 in Appendix A.4).
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red lines in Fig. 1(B)). Therefore, the efficient design of securities (i) correlates security payoffs

(Theorem 2(b)) (ii) differently from the underlying assets (except when ρ = ρ, Theorem 2(a)),

but (iii) not perfectly (except when ρ = 1, Theorem 2(c)).

Figure 1: Optimal Security Correlations in Theorem 2
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Notes. Panel A: The figure plots the optimal security correlation ρ+ as a function of the underlying asset
correlation ρ. The underlying assets are the optimal securities (i.e., ρ = ρ+) only if ρ = ρ (Theorem 2(a)). The
dashed line is the 45◦ degree line, i.e., ρ = ρ+.

Panel B: Cast in terms of trading towards a trader’s target portfolio (Gârleanu and Pedersen (2013), Kyle,
Obzihaeva, and Wang (2017)), the following principle summarizes the efficient securities. The efficient securities
align with the traders’ target portfolio (which favors an index, ρ+ = 1; the 45◦ line) subject to trading costs
{λk}k (which favor factors, ρ+ = 0; the axes). If the underlying asset correlation ρ is small (the solid lines),
the efficient securities act as closer substitutes than the underlying assets; if the underlying asset correlation ρ
is large (the dashed lines), the efficient securities are weaker substitutes than the underlying assets. The index,
which matches the traders’ target, is not welfare-maximizing except in the competitive market with no inference
error (Corollary 2).

Moreover, the trade-off between two components of price impact determines whether the

efficient securities are more or less strongly correlated relative to the underlying assets: Because

λ+
k is convex in ρ+ (Lemma 4 in Appendix A.1), the securities’ effect on risk sharing dominates

when the underlying asset payoffs are strongly correlated. Fig. 1 summarizes this result.

• When the underlying asset payoffs are strongly correlated (the dashed lines in Fig. 1(B)),

efficient securities lower the correlation to decrease the cost of risk sharing while sacrificing

some level of diversification: ρ+ < ρ.

• When the payoffs of the underlying assets are close to independent (the solid lines in Fig.

1(B)), efficient securities increase the correlation to improve risk diversification while

limiting the benefit of risk sharing: ρ+ > ρ.

Table 2 summarizes the efficient securities’ weights, characterized in Eq. (18).

Theorem 2 focuses on markets with symmetric asset covariance and trading needs. When

either is heterogeneous, the own- and cross-asset price impacts are not necessarily monotone in
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Table 2: Efficient Design Correlates Securities

ρ < ρ− < 0 ρ− < ρ < ρ+ 0 < ρ+ < ρ

One-sided positive weights positive weights positive and negative weights

Two-sided positive weights positive and negative weights positive and negative weights

Notes. The cutoffs for the underlying asset correlations ρ+ and ρ− in one- and two-sided markets, respectively,
are characterized in the proof of Theorem 2. In one-sided markets, increasing security correlations relative to
the underlying asset correlations (i.e., positive weights; Eq. (18)) is welfare-improving when the underlying
asset correlations are not too large so the inference effects in λ+

k are not too strong (ρ < ρ+; Theorem 2(a)). In
two-sided markets, increasing security correlations (i.e., positive weights; Eq. (18)) is welfare-improving when
the underlying asset correlations are sufficiently large so the inference effects in λ+

k are strong (ρ < ρ−).

securities correlation ρ+. Nevertheless, the key implications continue to apply: Trading factors

or the underlying assets is generally suboptimal and the optimal security weight is determined

by the trade-off between own- and cross-asset price impacts (see Example 3).

5.4 Index Trading?

Theorem 2 and Example 2 illuminate the role of price impact for the decentralized market’s

analog of the Mutual-Fund-Theorem. This result continues to apply when traders are price-

takers—then, K or fewer (linearly independent) funds, which are the same for all traders, will

be efficient as long as a sufficient number of funds are available; only the number of funds

matters (Corollary 2)—with one difference. Namely, a stronger (viz. fully-contingent-demand

theory) recommendation applies with independent market clearing: Instead of being merely

payoff-equivalent, funds are strictly more efficient than the underlying assets.

However, this result no longer applies when traders have price impact. To appreciate the

extent to which the mutual-fund-style results fail once one accounts for the fact that not all

assets are cleared jointly, consider markets where traders are ex ante symmetric, i.e., E[qi
0] =

ξijE[qj
0] for some ξij ∈ R and for all i and j ̸= i. If traders are price-takers and assuming

zero inference error, a single fund—an index that matches the trading needs E[q0] − E[qi
0]

for all i (Eq. (17))—maximizes ex ante welfare. All traders hold a combination of the index

(or “market portfolio”) wm and the risk-free asset (numéraire).37 However, in an imperfectly

competitive market, an index is not efficient, even when traders are ex ante symmetric and there

is zero information loss. In fact, a stronger result emerges: Trading fewer than K securities is

suboptimal.

37When the vector of asset trading needs is asymmetric across traders, the two-fund separation theorem fails to
hold, irrespective of whether the market is contingent or uncontingent, competitive or imperfectly competitive.
In such cases, it is not possible for any single security to replicate the equilibrium outcome attained with
the underlying assets. In Eq. (17), the derivative is tailored to the traders’ individual ex ante trading needs
E[q+

0 ] − E[qi,+
0 ]. It follows from Theorem 2, in imperfectly competitive decentralized markets, the securities

implied by the Mutual Fund Theorem (Corollary 2) do not correspond to the efficient design even with symmetric
trading needs.
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Corollary 3 (Two-Fund Separation Does Not Hold) When a market with K securities

is imperfectly competitive (i.e., I < ∞), fewer than K securities give a lower welfare compared

to the maximum welfare with K securities for any asset covariance Σ and initial holdings

F (qi
0)i.

By Theorem 2, the optimal security correlation with price impact satisfies |ρ+| < 1, except

in trivial cases (see also Lemma 7 in Appendix A.3). Therefore, efficiency requires traders

to trade more securities than just an index. Furthermore efficiency dictates that the security

design must be tailored to the traders’ trading needs (F (qi
0)i) and the distribution of assets

(Σ) (Theorem 2 and Proposition 1 in the next section), even if the ex ante trading needs are

symmetric across assets.

These findings are in line with the rationale for the SEC’s 2019 revision of ETF regulations.

The updated rule eased the previous mandate that ETFs’ basket compositions must closely align

with indices or diversified portfolios, due to concerns that “ETFs without basket flexibility [...]

could result in wider bid-ask spreads and potentially less efficient arbitrage.” The agency em-

phasized that the flexibility to use custom ETF baskets can be in the best interests of investors

and shareholders. See SEC (2019, Section II.C.5). Koont, Ma, Pastor, and Zeng (2023) find

that corporate bond ETFs adjust their baskets to lower the transaction costs, which constrains

their index-tracking capacity. The study indicates that ETFs are active—create issuer-specific

portfolios rather than passively following market indices—driven by considerations for both in-

dex tracking and liquidity transformation. It’s this active management of baskets that enables

ETFs to effectively balance these objectives.

Our analysis implies that even a weaker version of the mutual-fund result, which states that

“sufficiently many funds are efficient irrespective of trader characteristics,” does not hold when

traders have price impact. Regarding the number of securities, the complete set of securities

is generally inefficient (Theorem 2 and Proposition 1). In fact, as we will show next, efficient

design involves strictly more than K securities, yet still a limited number (Proposition 1 and

Example 3).

5.5 Additional Derivatives?

So far, we established that a design with K securities with the same span as the underlying

assets generally increases ex ante welfare compared to the underlying assets (Theorem 2). This

section shows that whether more than K securities can further enhance welfare depends on

the heterogeneity in security covariances Σ+ and trading needs across securities {E[q+
0 ] −

E[qi,+
0 ]}i. It turns out that when both are symmetric, as in Theorem 2, the introduction of any

nonredundant securities in a market with K correlated ones decreases welfare. However, when

either is heterogeneous, a market structure with more than K securities, suitably designed,

can always improve ex ante welfare relative to designs with any K securities. The additional
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flexibility provided by the new securities helps to induce asymmetries in trading costs across

assets, which can be beneficial precisely when there are heterogeneities in either the covariances

or trading needs across K securities. However, too many securities are generally inefficient

(Proposition 1).

Example 3 (Derivatives and Welfare) Let I < ∞ and σ2
q → 0. Consider a market with

K = 3 securities, two of which (securities 2 and 3) have symmetric covariances and ex ante

trading needs:38

Σ+ =

 1 ρ+k ρ+k
ρ+k 1 ρ+ℓ
ρ+k ρ+ℓ 1

 and E[q+
0 ]− E[qi,+

0 ] =

 E[q+0,k]− E[q+0,k]

E[q+0,ℓ]− E[q+0,ℓ]

E[q+0,ℓ]− E[q+0,ℓ]

 .

Suppose an additional derivative with payoff rd = wkr
+
1 + wℓr

+
2 + wℓr

+
3 is introduced. We

compare the ex ante welfare in the market with just the K securities and the market with

the additional security, considering an arbitrary weight vector (wk, wℓ, wℓ). Fig. 2 illustrates

the welfare change with the welfare-maximizing derivative as a function of relative security

correlations ρ+k /ρ
+
ℓ and relative trading needs (E[q+0,k]− E[qi,+0,k ])/(E[q+0,ℓ]− E[qi,+0,ℓ ]).

(a) (Symmetric markets) When the security covariances in Σ+ and trading needs E[q+
0 ] −

E[qi,+
0 ] are both symmetric across securities (i.e., ρ+k /ρ

+
ℓ = 1 and (E[q+0,k]−E[qi,+0,k ])/(E[q+0,ℓ]−

E[qi,+0,ℓ ]) = 1 in Fig. 2(A)), no additional derivative d increases the ex ante welfare.

(b) (Heterogeneity matters) When either security covariances Σ+ or trading needs E[q+
0 ] −

E[qi,+
0 ] are heterogeneous across securities, there exists a derivative d that increases ex

ante welfare relative to markets with the K securities.

(c) (Welfare-maximizing derivatives) Derivatives help lower the per-unit price impacts of

securities strongly correlated with other securities or associated with larger trading needs

by placing a larger weight on such securities. It follows from the comparative statics of

per-unit price impact (Lemmas 3 and 5 in Appendix A.1) that such derivatives reduce

the per-unit price impact λ̂k as well as the relative per-unit price impact λ̂k/λ̂ℓ for those

securities. See Fig. 2(B). □

Example 3 shows that, compared to the market with K securities, additional derivatives can

generally be designed to increase ex ante welfare even when these traded securities cannot be

delisted, for any security covariances Σ+ and trading needs E[q+
0 ] − E[qi,+

0 ]. Clearly, when

38The example extends to markets with either K underlying assets or K welfare-maximizing securities. Given
the symmetry between assets 2 and 3, the set of K welfare-maximizing securities includes two symmetric
securities.
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Figure 2: Security Design and Asset Heterogeneity

(A) (B)

Notes. Panel A: For any K securities, ex ante welfare weakly increases with additional derivatives optimized
to maximize welfare, relative to the uncontingent and fully contingent markets (Example 3(a) and (b)). The
figure illustrates this increase relative to the maximum welfare achieved by the two benchmarks.

Panel B: The optimal weights that characterize the additional derivative are larger for securities that exhibit
stronger correlation or larger trading needs (e.g., |wk| > |wℓ| when |ρ+k | > |ρ+ℓ | or |q+k | > |q+ℓ |). Table 2 gives
the weight signs that induce the joint substitution; see also Example 3(c).

The payoff variance of the derivative is normalized to match the security payoff variances; ρ+ℓ = −0.1, E[q+0,ℓ]−
E[qi,+0,ℓ ] = 10, and I = 10.

combined with delisting K securities (Theorem 2 and Proposition 4 in Appendix A.3), the

design of the number and payoffs (weights) of securities can further improve the ex ante welfare.

Too many derivatives are inefficient. Proposition 1 shows that, unlike in the competitive

market (Corollary 2), markets with large traders generally achieve higher welfare with fewer

derivatives than required to complete the market. In fact, any set of securities that does not

mimic the equilibrium of the fully contingent market can result in higher or lower welfare

for some distributions of asset holdings (see also Example 3). The proof of Proposition 1

encompasses markets where the underlying assets can be traded as well as those where they

cannot.

Proposition 1 (Welfare with Securities and Underlying Assets) Let I < ∞ and K >

1. Assume that Σ is non-singular and there is no inference error, i.e., σ2
q → 0. Suppose an

arbitrary set of D derivatives is introduced and the equilibrium with K + D securities is not

ex post. The ex ante welfare is strictly larger than with the complete set of securities for some

distribution of asset holdings F ((qi
0)i).

The key observation underlying Proposition 1 is as follows (Lemma 8 in Appendix A.3): The

per-unit price impact Λc for the fully contingent design (which matches the covariance, up to

a scaling factor) is not unambiguously ranked with Λ̂ in the positive-semidefinite sense in any

uncontingent design with K+D securities. Consequently, the liquidity risk matrices Θ(Λc) and
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Θ(Λ̂) in Eq. (13) are also not unambiguously ranked. Hence, unlike the competitive-market

case, where the complete set of securities is efficient irrespective of the traders’ trading needs

and the asset distribution, the efficient design responds to market characteristics. Proposition

1 shows that heterogeneity in either traders’ trading needs across the underlying assets or asset

covariances further amends the efficient weights of Theorem 2. This captures that the welfare-

maximizing weights balance the securities’ effects on the trading costs of diversification and

risk sharing while taking into account the assets’ relative importance to traders’ trading needs

and price impact.

Table 3 provides a summary of the efficient number of securities.

Table 3: Efficient Number of Securities

(A) Ex ante heterogeneous traders (B) Ex ante symmetric traders

Contingent Uncontingent Contingent Uncontingent

I → ∞ K A complete set I → ∞ 1 1

I < ∞ K Strictly between K and K(K+1)
2

∗
I < ∞ 1 Strictly between K and K(K+1)

2

∗

Notes. This table provides information on the efficient number of securities. Panel B assumes no inference
error (i.e., σ2

q → 0). The symbol “∗” denotes markets where the complete set of securities, such as K factors, is
efficient. In imperfectly competitive uncontingent markets, the efficient number of securities is generally strictly

between K and K(K+1)
2 .

If there is a non-zero inference error, Table 3(A) applies regardless of whether traders are ex ante symmetric or
heterogeneous. The first variance term in Eq. (13) increases in the securities’ span, so it is minimized with only
1 security and maximized with K linearly independent securities.

6 Innovating Securities Outside the Span

Thus far, our analysis has focused on introducing securities in the span of the K underlying

assets. However, independent market clearing also impacts the welfare effects of securities

outside the K assets’ span. Suppose that each trader i holds qi
0 = (qi0,z)z ∈ RZ units of Z

assets, but only a subset K ⊂ Z of the assets is traded in the market. Theorem 3 and Lemma

2 in Appendix A.1, as well as Theorem 1, can be extended to apply to such markets.39

It is worth noting that in a competitive contingent market, the introduction of any securities

for unspanned risk—i.e., whose payoffs weigh the Z \K underlying assets—always leads to a

weak Pareto improvement with quasilinear utilities. This result extends to imperfectly compet-

itive markets as well (Corollary 8 in Appendix A.3). However, when the market clears securities

independently, Proposition 2 shows that the introduction of any securities for unspanned risk

can lower welfare even with quasilinear utilities; see also Fig. 3.

39Duffie and Jackson (1989, 1990) investigate the impact of introducing securities outside the traded asset
span in a dynamic model with exogenous transaction costs.
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Proposition 2 (Welfare with Securities Outside the Span of Traded Assets) Let I <

∞ and K < Z, and assume no inference error, i.e., σ2
q → 0. Suppose we introduce D ≥ 1 securi-

ties outside the span of the K traded assets; for each d ∈ D, rd =
∑

k∈K wdlkrk +
∑

z∈Z\K wdzrz

with wdz ̸= 0 for some z ∈ Z \K. The ex ante welfare with K assets and any such D securities

is strictly lower than in the market with only K assets for some distribution of initial holdings

F ((qi
0)i).

The introduction of securities outside the span of the K traded assets enables risk sharing

for the Z\K securities (i.e., {E[q0,z]−E[qi0,z]}z∈Z\K ; Eq. (56)) in any market structure, whether

it is competitive or imperfectly competitive, contingent or uncontingent. However, the price

inference among the K assets and Z \K securities changes the price impacts of the K traded

assets, unless the security payoffs are independent of those of the K assets. Consequently,

despite the welfare benefits of risk sharing, the Z \ K securities can decrease welfare. This

occurs when these securities either significantly increase the price impact on the traded assets

K (e.g., when |ρ| and |ρ+| are large in Fig. 3), or fail to align with the target portfolio (i.e., Eq.

(17) applied to security weights w ∈ RZ and trading needs for all risks E[q0]−E[qi
0] ∈ RZ ; see

Fig. 3).

Figure 3: Welfare Change with Securities Outside the Underlying Asset Span

Notes. K = D = 2. For any assets with σ+
kℓ = σ2ρ, k ∈ Z, and ℓ ̸= k, one can design D = Z −K securities that

strictly increase the ex ante welfare compared to the market with only the K assets (Corollary 7 in Appendix
A.3): The payoffs of these D securities are correlated with the payoffs of the K traded assets (σ+

kd = σ2ρ+,
k ∈ K, and d ∈ D) and are independent among the D securities (σ+

dd′ = 0, d, d′ ∈ D, and d′ ̸= d). However,
D securities that are strongly correlated with the K assets (i.e., a large |ρ+|) can lower the ex ante welfare
(Proposition 2). In the figure, traders’ ex ante trading needs, E[q0,z]−E[qi0,z] > 0 for all z ∈ Z, are symmetric
among assets K and among assets Z −K, and I = 10.

Suppose that all the additional Z −K securities can be designed. In light of Proposition 1,

one might wonder whether the efficient number of securities could be lower than Z. It is not.

Instead, the efficient set of securities allows for trading all Z fundamental risks (Corollary 7,
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Appendix A.3) but generally limits the cross-asset information upon which traders’ demands can

condition (Theorem 2, Proposition 1). The efficient number of securities can be characterized

using an argument analogous to that of Corollary 3 and Table 3, but with Z replacing K.

In conclusion, efficient design treats market incompleteness resulting from unspanned risk

differently from limited conditioning. (The dimension of fundamental risk in the aggregate

initial holdings is Z, but the minimum number of securities required to hedge all contingencies

and eliminate inference error is Z(Z+1)
2

.) While the fundamental risk can be factorized into

independent components up to Z factors, it cannot be factorized with more than Z securities.

7 Conclusion and Discussion

By accounting for the independence in market clearing, we may gain insights into why there are

active markets for many types of financial products that would be neutral in the standard theory,

and we can determine which markets should be active, given asset and trader characteristics

and the level of imperfect competition. The equilibrium model of nonredundant derivatives

implied by the independence in market clearing in an otherwise standard framework offers rich

opportunities for empirical research.

Our main focus has been on the welfare-improving effects of derivatives, though it is clear

that derivatives can also lower welfare. Arguments akin to those in the proof of Theorem 2 can

be applied to show that derivatives that enhance welfare in certain markets can decrease welfare

in others. Specifically, derivatives that induce correlations opposite to those characterized by

these results lead to lower welfare (Corollary 9 in Appendix A.4). In essence, derivatives

detract from welfare if they create inadequate correlations among underlying assets, whether

by introducing excessive or insufficient correlation, thus failing to mitigate the trading costs

associated with price impact.

We conclude with a discussion of the additional implications of independent market clearing.

7.1 Pricing Derivatives

The classical techniques based on spanning have laid the foundation for the analysis of equi-

librium and asset pricing. These techniques involve the representation of uncertainty through

the implied state space over which contingent securities are defined. However, these techniques

and the implied representation of risk are not generally applicable when markets clear securities

independently.

With fully contingent trading, any security whose payoff lies in the span of the traded assets

can be priced via a linear combination of the traded assets’ prices. It follows from our analysis

(Corollary 5 in Appendix A.1 and Corollary 6 in Appendix A.3) that linear pricing does not

generally hold for new securities whose payoffs are synthetically created in markets that clear

the underlying assets independently.
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Corollary 4 (Linear Pricing Does Not Hold) Consider a market with K traded assets

that are cleared independently. Assume that Σ is non-singular. For any non-traded security

with payoff rd = w′
dr, linear pricing p+d = w′

dp holds for any wd ∈ RK if and only if equilibrium

with K assets is ex post.

This result holds in competitive and imperfectly competitive markets. It implies that factor

prices are not useful in the same way in markets that clear securities independently, except when

the security payoffs are all independent, or there are at least K(K+1)
2

securities with linearly

independent payoffs traded (Corollary 1). The latter result can be seen as the counterpart of

the spanning number (Duffie (1986)) for markets that clear securities independently.40 In more

general market structures like the efficient ones, the implied representation of risk is not solely

determined by the fundamental covariance but also depends on the endogenous price impact.

The approach to characterizing Bayesian Nash equilibrium in demand schedules as a fixed

point in price impacts could be useful for the counterfactual pricing and valuation of financial

innovation, including new assets, exchanges, or contracts. For instance, recent work by Gabaix

and Koijen (2022) and Koijen and Yogo (2019) introduces methods for estimating demand

elasticities across securities. Combined with these methods, the techniques based on the per-

unit price impact matrix would allow counterfactual pricing and analysis of security and market

design—the first-order conditions in our model can be estimated for general utility functions

(see Wittwer (2021, Appendix F)). These techniques can be extended to enable comparative

design analysis of different instruments, utilizing the per-unit price impacts derived from the

matrix representations of the corresponding fixed points.

7.2 Other Security Innovations

We do not examine options and exotic derivatives whose payoffs are non-linear functions of

the underlying asset payoffs. While we should acknowledge that additional effects would arise

in a nonlinear equilibrium, amending the welfare analysis accordingly, the main findings of

this paper concerning independent market clearing remain applicable: the nonredundancy of

financial innovation, the liquidity-information welfare trade-off, and the alternative implemen-

tation of fully contingent outcomes. These results do not rely on linearity, only the imperfect

inference among independently cleared securities. Regardless of linearity, introducing deriva-

tives affects traders’ inference across different securities, thereby influencing price impacts; see

also Chabakauri, Yuan, and Zachariadis (2021) and Keller and Tseng (2023). In settings with

40In a continuous-time model with fully contingent demands and K diffusion state variables, Duffie (1986)
introduced the concept of a spanning number, which represents the minimum number of security markets
necessary for market completeness: With K securities (in addition to the riskless asset), any additional security
in the span of K state variables can be priced linearly using the prices of these K securities. In the uncontingent

market with K state variables q0 ∈ RK , Corollary 1 implies that the spanning number is K(K+1)
2 . Unlike with

the K securities that are cleared jointly, however, the K(K+1)
2 securities’ payoffs cannot be independent.
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non-linear demands, our model’s first-order conditions can be written analogously to those in

Wittwer (2021, Appendix F) and Glebkin, Malamud, and Teguia (2023).

We have assumed (correlated) private values to isolate the core effects that underlie the

nonredundancy of financial innovation. These effects relate to price inference across assets and

do not rely on inference among traders related to common values. In decentralized markets

with common values, there are additional reasons to innovate derivatives.

7.3 Over-the-Counter Derivatives

The focus on exchange-traded derivatives has allowed us to isolate independence in market

clearing as a source of nonredundancy. For financial products traded over the counter, transac-

tions tend to occur through protocols that resemble bargaining rather than a price mechanism

(see, e.g., Atkeson, Eisfeldt, and Weill (2015)). Nevertheless, the key effects we explore are not

reliant on a particular price mechanism such as the uniform-price auction, and apply to other

games in contracts. Rather, the essence of our results is rooted in the presence of inefficiency

resulting from two-sided (buyer and seller) private information among strategic traders in any

(budget-balanced) mechanism, and how changes in the available financial products affect that

inefficiency.

On the other hand, an over-the-counter market structure modifies the information on which

traders can condition their demands with different counterparties and introduces counterparty

heterogeneity. The design of over-the-counter derivatives motivated by the joint effects merits

its own study.

7.4 Dynamic Trading

Dynamic trading strategies can reproduce the outcomes of static joint clearing in markets

where trading rounds are frequent relative to shocks (to information or liquidity) that renew

the gains from trade (Lyu, Rostek, and Yoon (2022a)). More generally, the ability to submit

demands for different assets contingent on contemporaneously determined prices has distinct

implications from conditioning demands on past prices in dynamic markets. Conditioning on

past prices allows demands—of any type—to at least partially incorporate the information

from past shocks. On the other hand, conditioning demands on contemporaneous-round prices

affects how current-round shocks impact behavior. If shocks renewing the gains from trade

occur as frequently as trading rounds, or frequently enough, the effects of independent market

clearing that we examine will be present even in the continuous trading limit.

In such dynamic markets, demand conditioning on past prices—potentially of all securi-

ties—induces intertemporal inference effects in price impact, which interact with the per-period

inference vs. price impact tradeoff. Lyu, Rostek, and Yoon (2022b) show that the innovation

of dynamic securities (whose payoffs and prices are determined in different rounds, e.g., futures
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and repo contracts) can further improve efficiency. A study of how static and dynamic security

design interacts in markets with large traders would be worthwhile.
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A Appendix

Appendix A.1. Equilibrium Characterization

Appendix A.2. Comparison with Contingent Demands

Appendix A.3. Results for General Markets

Appendix A.4. Results for Symmetric Markets

A.1 Equilibrium Characterization

We consider markets for an arbitrary set of N ≤ K +D securities, with K underlying assets and D

derivatives. Matrix W ≡ (w1, · · · ,wN ) ≡ (wnk)k,n ∈ RK×N represents the security weights, and the

distribution of security payoffs is jointly Normal, N (δ+,Σ+), where δ+ = W′δ andΣ+ = W′ΣW. We

allow asset holdings to be imperfectly correlated across the underlying assets, Ω ≡ (Cov[qi0,k, q
i
0,ℓ])k,ℓ ∈

RK×K for all i. In particular, to ensure that the per-capita aggregate asset holdings (equivalently,

price) are random in the limit large market (I → ∞), we allow for the common value component

qcv
0 = (qcv0,k)k ∈ RK in traders’ asset holdings. For each asset k, privately known asset holdings {qi0,k}i

are correlated among traders through qcv0,k ∼ N (E[qcv0,k], σ
2
cv): for each i,

qi0,k = qcv0,k + qi,pv0,k and qi,pv0,k ∼ N (E[qi,pv0,k ], σ2
pv), (19)

where qi,pv0,k are independent across i and k.41 Trader i knows his asset holdings qi
0 but not its com-

ponents qcv
0 or qi,pv

0 = (qi,pv0,k )k ∈ RK . The asset holdings {qi0,k}i and the common value qcv0,k are

independent across assets k.

Equilibrium characterization (Theorem 3, Corollary 5, Lemma 2) adapts the steps from Rostek

and Yoon (2021) to extend their Theorem 1 to a model with D derivatives, whose asset holdings

are zero, traded along with K underlying assets; additionally, W is a weight matrix rather than an

indicator matrix.

Theorem 3 shows that a fixed point in demand schedules is equivalent to one in price impacts. We

parameterize the best response demand (6) of trader i for security n as follows:

qin(pn) ≡ ain − bi
nq

i
0 − cinpn ∀pn ∈ R ∀qi

0 ∈ RK , (20)

with the demand intercept ain ∈ R, the demand coefficients bi
n ∈ R1×K , and the demand slope

cin ∈ R+. To write the fixed point problem in matrix form, we denote the matrix demand coefficient

on qi
0 by Bi ≡ (bi

n)n ∈ RN×K , and denote the slope of a trader’s demand for N securities by

Ci ≡ diag(cin)n ∈ RN×N . The matrix operator [·]d : RN×N → RN×N is defined such that for any

matrix A ∈ RN×N , [A]d ≡ diag(ann)n is a matrix whose diagonal elements coincide with those of A

and off-diagonal elements equal zero.

41The presence of a common value component in {qi
0}i does not qualitatively affect any results and only

impacts the magnitude of inference coefficients. For simplicity, we have assumed that asset holdings have a
symmetric variance across traders and are independent across assets. The results hold qualitatively without
these assumptions. The equilibrium characterization allows for correlation in asset holdings, which changes the
magnitude of price impacts but not the nonredundancy result.
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Theorem 3 (Equilibrium: Fixed Point in Demand Schedules) The equilibrium (net) demand

schedules, defined by matrix coefficients {ai}i,B, and C, and price impact Λ are characterized by the

following conditions: for each trader i,

(i) (Demand coefficients, given price impact) Given price impact matrix Λ, the coefficients of (net)

demands ai,B, and C are characterized by

ai = C
(
δ+ − (αW′Σ−C−1B)E[q0]

)
︸ ︷︷ ︸

=p−C−1Bq0

+
(
(αΣ+ +Λ)−1αW′Σ−B

)
(E[q0]− E[qi

0])︸ ︷︷ ︸
Adjustment due to cross-asset inference

, (21)

B =
(
(1− σ0)(αΣ

+ +Λ) + σ0C
−1︸ ︷︷ ︸

Adjustment due to
cross-asset inference

)−1
αW′Σ, (22)

C =
[
(αΣ+ +Λ) (BV ar[q0]B

′)[BV ar[q0]B
′]−1
d︸ ︷︷ ︸

Inference coefficient

V ar[s−i|qi
0][V ar[s−i|qi

0]]
−1
d

]−1

d
, (23)

where q0 ≡ 1
I

∑
j q

j
0 ∈ RK is the aggregate asset holdings and σ0 ≡

σ2
cv+

1
I
σ2
pv

σ2
cv+σ2

pv
∈ R+.

(ii) (Correct price impact) Price impact Λ equals the transpose of the Jacobian of the trader’s inverse

residual supply function:

Λ =
1

I − 1
(C−1)′. (24)

Corollary 5 (Equilibrium Prices and Allocations) Given the equilibrium demand coefficients

{ai}i,B,C, and price impact Λ in Theorem 3, the equilibrium prices and trades are

p = δ+ − (αW′Σ−C−1B)E[q0]−C−1Bq0, (25)

qi =
(
(αΣ+ +Λ)−1αW′Σ−B

)
(E[q0]− E[qi

0]) +B(q0 − qi
0). (26)

A trader’s equilibrium trade depends on their ex ante trading needs E[q0]−E[qi
0] and ex post trading

needs q0 − qi
0.

Lemma 1 states that the equilibrium price impact Λ converges to 0 in the competitive market

(i.e., I → ∞). Its proof mimics that of Lemma 3 from Rostek and Yoon (2021).

Lemma 1 (Price Impact in Competitive Markets) In a market for N ≥ 1 securities, let αI be

the traders’ risk aversion, and suppose ΛI is the equilibrium price impacts for all I < ∞ and in the

limit market as I → ∞. The equilibrium price impact becomes zero as I → ∞ if αI = αγI ∈ R+

increases slower than linearly with γI ∼ o(I1−ε) for some ε > 0: Λ = limI→∞ΛI = 0.

Lemma 2 shows that the per-unit price impact Λ̂ (Eq. (11)) is a sufficient statistic for a trader’s

ex ante equilibrium payoff. The cross-asset inference B̂ is the coefficient on the privately known asset

holdings qi
0 in a trader’s total demand that matches the variance of the total equilibrium trade (cf.

Eq. (22)): for all i,

V ar[q̂i] ≡ V ar
[
Wqi,+

]
= B̂V ar[q0 − qi

0]B̂
′ =

I − 1

I
σ2
pvB̂B̂′; (27)
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(B̂B̂′)kℓ(B̂B̂′)−1
kk is the cross-asset inference coefficient in the expected total trade E[q̂iℓ|q̂ik,qi

0] (see Eq.

(26)). Appendix A.3 provides the proof of Lemma 2.

Lemma 2 (Sufficient Statistic for Equilibrium Payoffs) Consider a market with I < ∞ and N

securities defined by W ≡ (wnk)k,n ∈ RK×N . Assume that Σ is non-singular.42

(1) (Per-unit price impact) The per-unit price impact Λ̂ ∈ RK×K , defined by condition (11), is

characterized as

Λ̂ =
(
WΛ−1W′)−1

, (28)

and cross-asset inference B̂ ∈ RK×K is characterized as a function of Λ̂:

B̂(Λ̂) ≡
(
(1− σ0)(αΣ+ Λ̂) + σ0(I − 1)Λ̂

)−1
αΣ. (29)

(2) (Expected payoff) The expected equilibrium payoff of trader i as a function of Λ̂ is:

E[ui(qi)− p · qi] = E[δ · qi
0 −

1

2
qi
0 · αΣqi

0]︸ ︷︷ ︸
Payoff without trade

+(E[q0]− E[qi
0]) ·Υ(Λ̂)(E[q0]− E[qi

0])︸ ︷︷ ︸
Equilibrium surplus from trade

(30)

+
1

2

I − 2

I − 1
σ2
pvtr

(
αΣ

)
︸ ︷︷ ︸

Payoff term due to V ar[q0|qi
0] > 0

− I − 1

I
σ2
pvtr

(
(Bc − B̂(Λ̂))′αΣ(Bc − B̂(Λ̂)) +

2

I − 1
αΣ(Bc − B̂(Λ̂))

)
︸ ︷︷ ︸

Inference error

,

where Bc = I−2
I−1Id is the coefficient of the contingent demand on qi

0 and

Υ(Λ̂) ≡ 1

2
Σ−Θ(Λ̂) ≡ 1

2
αΣ(αΣ+ Λ̂)−1(αΣ+ 2Λ̂)(αΣ+ Λ̂)−1αΣ ∈ RK×K

represents the marginal payoff per unit of ex ante trading needs E[q0]− E[qi
0].

In the contingent market, the inference error in Eq. (30) is zero (i.e., equilibrium is ex post).

New securities and equilibrium price impact. From Theorem 3 and Lemma 2 (Eqs. (23) and

(28)), new securities affect price impact in two ways: They

(i) provide more exchanges to trade units of the underlying assets when N > K and

(ii) change inference across securities.

See also Eq. (31) for (i) and Eq. (32) for (ii). Because of the joint effect of (i) and (ii), the introduction

of a derivative may increase or lower the per-unit price impact. We present three results:

First, the introduction of derivatives that cover (weigh) all assets indeed lowers the per-unit price

impact of the underlying assets when asset correlations Σ and derivative weights Wd are not too

heterogeneous (Lemma 3(i)). When covariances Σ+ are heterogeneous—either because Σ or Wd

are—the same derivative can increase or lower the per-unit price impact λ̂k on an asset included in

the derivative (Fig. 4).

Second, the introduction of a derivative alters the liquidity of the assets not included in the new

security (Lemma 5 and Fig. 4).

42The proof allows a singular covariance matrix Σ. Then, the uniqueness of Λ̂ holds up to payoff equivalence.
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Third, even if derivatives cover all assets, fewer derivatives that each cover more assets lower the

price impact more than a large number of derivatives that each cover fewer assets (Lemma 3(ii)). This

occurs because the cross-security inference effect is weaker with the former design.

These results have no analogs with contingent demands.

Lemma 3 (Equilibrium Price Impact: Symmetric Markets) Let I < ∞, K = DL > 1, L ≥
1, D ≥ 1, and suppose that asset covariances are symmetric (σkk = σ2 for all k and σkℓ = σ2ρ < 0

for all k and ℓ ̸= k). Apart from the K assets, there are D = K
L derivatives whose payoffs are each

defined by the unweighted average of L asset payoffs; the assets underlying derivatives are disjoint,

rd = 1
L

∑L
m=1 rL(d−1)+m for each d ∈ D. The equilibrium per-unit price impact Λ̂ satisfies the following

properties:

(i) The per-unit price impacts are lower than the price impacts in the uncontingent market (and

higher than those in the contingent market) for only K assets: λc
kk ≤ λ̂k ≤ λu

k . The first equality

holds when L = K or ρ = 0, and the second equality holds when L = 1 or ρ = 0.

(ii) The per-unit price impacts decrease as L increases: ∂λ̂k
∂L < 0 and ∂λ̂kℓ

∂L < 0.

Lemma 4 (Comparative Statics of Equilibrium Price Impact: Symmetric Markets) In the

setting of Lemma 3, the equilibrium per-unit price impact Λ̂ satisfies the following properties:

(i) The per-unit price impacts increase as |ρ| increases: ∂(λ̂k−λc
kk)

∂|ρ| > 0 and
∂(λ̂kℓ−λc

kℓ)

∂|ρ| > 0.

(ii) The per-unit price impacts decrease as I increases:
∂(λ̂k−λc

kk)
∂I < 0 and

∂(λ̂kℓ−λc
kℓ)

∂I < 0.

Lemma 5 (Equilibrium Price Impact: Derivatives for an Asset Subset) Let I < ∞ andK >

1, and suppose that the covariances are symmetric for all assets (i.e., σkk = σ2 for all k; σkℓ = σ2ρ

for all k and ℓ ̸= k). We introduce a derivative whose payoff is an unweighted average of a strict

asset subset K1 = K/2, rd = 1
K1

∑
m∈K1

rm. The equilibrium per-unit price impact Λ̂ = diag((λ̂k1 −
λ̂kℓ)Id+ λ̂kℓ11

′, λ̂k2Id) satisfies

λc
k ≤ λ̂k1 ≤ λu

k ∀k ∈ K1 and λc
k ≤ λu

k ≤ λ̂k2 ∀k ∈ K \K1,

where Λ = λu
kId and Λc = α

I−2Σ are the equilibrium price impacts in the uncontingent and contingent

markets, respectively, before the derivative is introduced.

Lemma 3 and Lemma 5 give sufficient conditions on the primitives for a derivative to lower the per-

unit price impact of the assets that underly the derivative: When the covariances Σ+ are sufficiently

symmetric across securities, the introduction of derivatives that weigh assets symmetrically lowers the

per-unit price impact λ̂k for all assets k underlying the derivative, with effect (i) dominating effect

(ii), as described above. The proofs of the lemmas are presented in Appendix A.4. Here we elaborate

on the two effects underlying these lemmas.

(Part (i): Per-unit price impact of the underlying assets) For (i), trading the same asset

in more than one exchange through derivatives can reduce the per-unit price impact. Suppose D
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Figure 4: Derivative-Induced Changes in the Per-Unit Price Impacts λ̂k and λ̂n
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Notes. With heterogeneous derivative weights, the per-unit price impacts with the derivative can be higher than
in the uncontingent market (the dotted lines) or lower than in the contingent market (the dashed lines). The
plots are based on a market with K = 4 assets in which a derivative is introduced with heterogeneous weights
on two assets rd = wk

1
K1

∑
k∈K1

rk + wm
1
K2

∑
m∈K2

rm. I = 10, α = 10, σ0 = 0.1, ρ = −0.25, and wm and wk

are such that V ar[rd] = 1.

Lemma 5 shows that when a derivative weighs a subset of assets K1 ⊂ K (i.e., wk = 1 in Panels A and

B), the per-unit price impacts satisfy λc
k ≤ λ̂k ≤ λu

k for assets k ∈ K1, and λc
m ≤ λu

m ≤ λ̂m holds for
m ∈ K2. Moreover, when asset covariances and derivative weights are sufficiently symmetric, the per-unit
diagonal price impact λ̂k is lower with derivatives for the assets whose payoffs are assigned higher weights:
λ̂k < λc

k = λc
m(the dashed lines) < λ̂m if wk > 0.7.

derivatives rd = W′
dr for some Wd ∈ RK×D are traded along with the existing securities. Eq. (28)

can be written as follows:

Λ̂ = Λa︸︷︷︸
Price impact of K underlying assets

changes with new securities

− (ΛaWd(Λd +W′
dΛaWd)

−1W′
dΛa)︸ ︷︷ ︸

Per-unit price impact decreases
due to projection

, (31)

where the equilibrium price impact Λ+ = diag(Λa,Λd) is a block diagonal matrix, with blocks corre-

sponding to the K underlying asset and D derivatives. The reduction of per-unit price impact relative

to the price impact in exchanges for existing securities (Λa − Λ̂) occurs only for the assets underlying

the derivatives.

(Part (ii): Introduction of securities affects inference across securities) For (ii), the intro-

duction of a new security—with or without delisting an existing security—can increase or lower the

price impact by altering inference effects ∂qin
∂pℓ

∂E[pℓ|pn,qi
0]

∂pn
among the existing securities and give rise to

inference effects ∂qin
∂pd

∂E[pd|pn,qi
0]

∂pn
between the price of each traded security n and the expected price of
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each derivative d:43

λi
n = −

(∑
j ̸=i

∂qjn
∂pn︸︷︷︸

Direct effect

+
∑
ℓ̸=n

∂qjn
∂pℓ

∂E[pℓ|pn,qi
0]

∂pn︸ ︷︷ ︸
Inference effect among

existing securities

+
∑
d

∂qin
∂pd

∂E[pd|pn,qi
0]

∂pn︸ ︷︷ ︸
Inference effect between

security n and derivatives d

)−1
. (32)

The inference effects depend on the substitutabilities and complementarities in all security payoffs,

which are arbitrary (subject to Σ being positive semidefinite). Derivative weights affect security

covariances, and hence, the cross-security inference effects in price impact. Derivatives do not change

the direct effects in price impact.

When security correlations and derivative weights on all underlying assets are sufficiently symmet-

ric (i.e., σnℓ = σ2ρ for all n and ℓ ̸= n and wdn = wdℓ for all underlying n and ℓ ̸= n, for all derivatives

d), the introduction of new derivatives—or replacing a security by another that is more strongly corre-

lated with other securities—increases price impact λm (Lemma 3). Larger security covariances increase

inference effects in Eq. (32).

When either security correlations or derivative weights are heterogeneous, however, a security

innovation can lower the price impact λn for some securities. This result is due to the nonseparability

of the price impact for any security pair in all security payoffs. For example, prices of complementary

securities (σℓn < 0) can be positively correlated (Cov[pℓ, pn] > 0).

43Differentiating the first-order condition (6) of trader j ̸= i for asset n with respect to pn gives the price

elasticity
∂qjn(·)
∂pn

: for each n and j ̸= i,

−ασnn
∂qjn(·)
∂pn

−
∑
ℓ ̸=n

σnℓ(−cjℓ)
∂E[pℓ|pn,qj

0]

∂pn
−
∑
d

σnd(−cjd)
∂E[pd|pn,qj

0]

∂pn
= 1 + λj

n

∂qjn(·)
∂pn

.

The partials
∂qjn
∂pn

≡ 1

ασnn+λj
n
and

∂qjn
∂pℓ

≡ σnℓc
j
ℓ

ασnn+λj
n
characterize the direct and inference effects in λi

n (Eq. (32)).
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Data Availability

Code replicating the figures in this article can be found in Rostek and Yoon (2024b) in the

Harvard Dataverse, https://doi.org/10.7910/DVN/IBGXQU.
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