
Big Data, Small Labels:
Contrastive Learning for Medical

Image Analysis

Luke Jenkinson

Supervised by: Paul Taylor and Watjana Lilaonitkul

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London





3

Declaration

I, Luke Jenkinson, confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indi-

cated in the work.





5

Acknowledgements

Firstly, I would like to thank my supervisors, Waty and Paul, for their support and

guidance throughout the PhD process, particularly through the COVID-19 pan-

demic and the many challenges that brought.

I’d also like to thank the many wonderful people who I have had the chance to work

with and learn from including my CDT colleagues (particularly, Mark, Francisca,

Santeri, Alistair, Toby, Adam, Ash, Anna, Mar, Morgan, Robert, Will) and my

IHI colleagues (Boyu, Vincent, Asma, Chris, Becky, Patrick, Peter, Ghada, Jude,

Bettina, Andre).

I’d like to thank my mum for her endless support and encouragement; my friends

for their distraction from writing; and finally, I’d also like to thank my partner,

Maddy.





7

Abstract

Deep neural networks have become the de facto standard for many computer vi-

sion tasks. Despite this, the uptake of these state-of-the-art methods to medical

imaging tasks has been lacking. One possible reason for this is the scarcity of large,

labelled medical image datasets for these models to train on. To combat this, numer-

ous semi-supervised methods have been suggested for improving performance when

faced with limited labelled training data. One such class of methods is contrastive

learning: these methods aim to learn powerful features from unlabelled data, which

can then be used, along with a small amount of labelled training data to produce

higher performance than could be achieved with the labelled data alone.

This thesis examines two distinct contrastive methods, Contrastive Predictive Cod-

ing and SimCLR, across multiple dimensions. In the first part of this thesis, the

ability of contrastive methods to increase performance on medical imaging tasks is

validated, exploring how the size of the labelled dataset changes the performance of

the downstream task compared with a powerful baseline. Additional work is under-

taken to understand how this improvement in accuracy may affect the robustness of

the model. In the second section of this thesis, design choices of the contrastive train-

ing protocol are examined to understand how to achieve the greatest performance.

Some contrastive methods, most notably SimCLR, make heavy use of augmentation

in their training protocol, and the impact of this has been under studied. This thesis

examines the impact of both the type and the magnitude of these augmentations.

Finally, a large study of the impact of unlabelled dataset on the downstream classi-

fication performance is presented, giving novel recommendations for how to improve

performance on a wide variety of tasks.
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Impact Statement

This thesis increases the utility and applicability of semi-supervised methods within

the field of medical imaging, and more broadly across label limited but data rich

problem sets. Three research questions were studied, with questions two and three

building on the findings of the first:

1. Are semi-supervised approaches useful within the medical domain?

2. How should the methods be adapted to produce the best results?

3. Are there features of the data itself that can predict whether a semi-supervised

method will work?

The first research question provides the foundation for the subsequent work. In the

first few chapters, I highlight that the technical evaluation of these semi-supervised

methods on datasets outside of general imaging datasets is lacking. There are two

contributions from this work: a) it provides further evidence for the use of semi-

supervised methods in medical imaging; b) it provides justification for the deeper

experimentation of the subsequent research questions. This first chapter shows that,

not only does Contrastive Predictive Coding have higher accuracy than a ResNet

baseline under a low data regime, but that other important attributes for medical

imaging are improved: model robustness to domain shift. In addition, section 4.3.2

of this chapter provides a technically novel solution for how to increase the robust-

ness of the model to perturbation, showing that including relevant augmentations

during unsupervised pre-training increases robustness to those perturbations during

downstream inference.

From these foundational results, results chapters 2 and 3 (chapters 6 and 7) delve

further into how the performance of these contrastive methods can be improved.

Using SimCLR as a case study, chapter 6 studies how augmentation impacts these

methods, finding that some of the results of [1] and [2] are overly reductive and

this chapter provides practical guidance on optimising how augmentation should

be applied. I argue that automated hyperparameter tuning should be used as best

practice, rather than relying on general rules for what augmentations to use. In this
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chapter, work is also conducted to evaluate often repeated, but never substantiated

claims that contrastive learning produces representations that encode high level fea-

tures that do not change under image augmentation. While often repeated, to the

best of my knowledge, this is the first time that this claim has been validated.

The final results chapter presents a substantial study into how the datasets them-

selves impact performance, and the work challenges a number of commonly held

beliefs. This chapter provides considerable expansion on the work of [3] [4] and [5],

a set of other pieces of work that studied the effects of dataset on performance. This

chapter extends several of their findings, and postulates that a significant problem

within the self-supervised learning space is underfitting on datasets. Because self-

supervised learning does not need the expensive label generation to produce good

embeddings, the datasets that can be used with them are multiple orders of mag-

nitude larger than those found in general deep learning. This work initially found

the same results as [3]: that larger datasets did not produce better results for self-

supervised learning. However, further investigation found that this was due to the

networks underfitting at the larger dataset sizes. By following the suggestion of this

chapter to introduce early stopping, one can increase performance. This thesis’s sug-

gestion to use early stopping within unsupervised training to increase performance

on the downstream task is technically novel. In the discussion section of this chapter,

I postulate that even the original SimCLR has underfit, and that performance gains

could be achieved through training for longer. This has significant impact on how

SSL should be approached in the future. I believe that greater performance can be

gained through engineering challenges: training larger models, on faster hardware,

for much longer, rather than through the invention of better models.
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Nomenclature

Acronyms

AI: Artificial Intelligence

CXR: Chest x-ray

CT: Computerised Tomography

ECG: Electrocardiogram

EEG: Electroencephalogram

GPU: Graphics Processing Unit

ML: Machine Learning

MRI: Magnetic Resonance Imaging

OCT: Optical Coherence Tomography

Methods

CPC: Contrastive Predictive Coding [6]

SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

[1]

ResNet: Deep Residual Learning for Image Recognition [7]

Other Definitions

Epochs: A complete pass of the training set through the model during training.

Iteration: One mini-batch passing through the model during training.
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Structure of the Thesis

This thesis has the following structure, which is designed to best guide the reader

through the work completed as part of this PhD. Chapter 1 serves as an introduc-

tion to the problem space, highlighting the issues within the medical industry that I

believe can be helped with artificial intelligence, and why I wished to study machine

learning as a possible solution to them. From this Chapter 2 introduces concepts

relating to learning from unlabelled data and evaluates the differing approaches that

could be taken to the problem case presented in chapter 1.

Chapters 3 and 5 serve as methods chapters, introducing the two contrastive learn-

ing approaches that I have chosen to study, but also contain a small literature review

of how these methods have been applied to medical tasks, with a strong preference

for imaging tasks.

Chapters 4, 6 and 7 each serve as results chapters which describe the experimental

setup and results. Additionally, these chapters also contain a small literature review

of the work directly related to the experiments undertaken, highlighting gaps in the

work, and the importance of conducting these experiments. Finally, each of these

chapters contains a text box which contains a statement outlining how this chapter

relates back to the aims of this thesis.

In addition to the main body of this work, two appendices are presented. Appendix

A contains interesting results that did not fit with the story of the PhD, these

may be referred to within the main body of work. Appendix B contains a stand

alone chapter which is designed to help the reader understand the Noise Contrastive

Estimator.
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Chapter 1

Introduction

From the Emergency Medical Hologram in Star Trek, to the medical droid in Star

Wars: artificially intelligent doctors have been prominent in science fiction; however,

with very few exceptions, they have not managed to make the jump from imagina-

tion to reality. Why is this? Artificial Intelligence (AI) investment has more than

doubled year-on-year to $77.5 billion in 2021 [17], and great strides have been made

in certain tasks: autonomous cars have driven billions of miles [18], and artificially

intelligent voice assistants are widely available to consumers [19] [20]. Compared to

this, the application of AI to medical tasks is underwhelming.

A large part of the reason for the growth of AI in certain sectors has been the huge

labelled datasets that are freely available. Traditional machine learning datasets

were of the order of tens of thousands of images (such as cifar-10 [21], cifar-100 [21]

and MNIST [22]), however, in the past decade, these have been surpassed by much

larger, richer datasets; most notably by the 1.2 million image ImageNet dataset [23]

in 2011. However, these freely-available, large-scale datasets are far less prevalent

within the medical imaging field due to ethical and data protection concerns. Be-

cause of this limitation, many of the high performing, data-hungry methodologies

available in the literature are not able to be applied to the medical imaging field.

One possible solution to this problem is to use a large, unlabelled dataset from which

to learn powerful representations. These representations can then be used alongside

29
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a small, labelled dataset to produce far greater performance than could be achieved

with the small labelled dataset alone. The main goal of this thesis is to understand

whether one class of methods, contrastive learning, can effectively use these large

unlabelled datasets to bypass the limitations of small medical datasets. If it can be

successfully applied, how should it be implemented to increase the chance of getting

the best performance.

1.1 Why do we want to use AI anyway?

To introduce this thesis, I start with why? : Why do we wish to create AI that is

able to augment the ability of physicians? A number of reasons are presented below:

Medical scarcity: Physician shortages often make headlines in the United King-

dom [24], however, the UK is far from unique on this issue: many countries, including

large healthcare spenders such as Germany [25] and the US [26], face the same is-

sues. It is estimated that there is a shortage of 6·4 million physicians globally [27].

This lack of physicians leads to worse health outcomes and increased mortality and

morbidity. While current AI methods cannot replace physicians completely, there

is scope for AI methods to reduce the workload from each patient, thus allowing a

healthcare worker to attend to a larger number of patients without compromising

care. In addition, in situations where access to specialists is limited or non-existent,

AI methods may be able to increase the competency of an individual physician to

allow for much improved care in unfavourable conditions.

Reducing medical mistakes: Misdiagnosis and missed diagnoses are a significant

problem which can lead to delayed treatment, thus increasing mortality and mor-

bidity. [28] found 26% of Parkinson’s sufferers were initially misdiagnosed, with 48%

of these receiving treatment for a condition they did not have, and with 34% re-

porting a worsening of their health due to this mistake. Cancer Research UK found

that the time interval between a patient presenting at a GP with cancer symptoms

and receiving treatment was substantially longer for those whose diagnosis was ini-

tially missed [29]. AI methods could highlight areas of concern and request a second
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opinion. For example, [30] [31] found that cancer detection rates from colonoscopy

increased when an software based ‘second observer’ worked in partnership with the

physician. Just as with the previous section, current methods are unlikely to replace

physicians, but it is certainly possible that these methods could reduce medical er-

rors [32].

Decreasing the delay at which high priority cases are seen: The speed at

which a patient is seen will not have a uniform impact on every patient: for example,

a wait of a week would not significantly impact the patient outcomes of someone

with cataracts, however, that same week could massively reduce a patient’s out-

come in the case of an aggressive cancer. When a patient is referred to specialist

treatment, a triage decision could be automatically made using AI, based upon the

referring physician’s request, highlighting the most severe cases for rapid review.

Increasing the speed at which some patients are seen, even in a zero sum setting,

could increase average patient outcomes.

Decreasing wasted time: An identified problem within medical imaging is as

follows: based on a set of symptoms a patient has, a physician orders an imag-

ing study to confirm or rule out the possible diagnosis. For a non-urgent test, the

patient may have to wait a number of days for this. The patient then undergoes

the imaging study, however, there is an issue with the image produced, the area

of concern may not have been fully imaged, the patient may have moved slightly,

leading to non-clinically useful images being produced. This mistake may only be

picked up once the images are reviewed by the requesting physician, at which point

another test must be ordered, restarting the whole process and wasting resources

and increasing the time between symptoms and diagnosis. AI techniques may be

able to help with this. Just as a smart phone camera can inform the user when

the images taken are blurry, current AI methods can be trained to detect non clini-

cally useful images, reducing the rate at which images would have to be retaken [33].

——————————————–



32 CHAPTER 1. INTRODUCTION

While artificial intelligence may be applicable to a very large number of problems

within the medical field, in this work I have specifically examined the problem of

medical imaging and how computer vision approaches may be able to solve this.

1.2 Computer Vision

In this thesis, high- and low-level features are referred to extensively: a theory

of vision is used in which there are various levels of features within the image,

with each successive level using the features of the previous section to build

the higher level features. These features can be thought of as low and high

frequency features respectively. Low level features refer to features that can

be represented by a small number of pixels, for example an edge or a corner.

These features are sometimes also referred to as high frequency features (or

signals) due to their rapidly changing nature. In contrast to this, this thesis

also refers to high level features. These features could be thought of as ‘human

level’ features, features that one could refer to in words, for example a face

or a lung. As with the low-level features, these are sometime referred to in

terms of frequency. High level features are called low frequency features as

they do not change much over the whole image. Generally, in the computer

vision field, we are exploring techniques that are able to analyse these ‘high

level’ features. For example, in self-driving cars, we are less concerned about

whether there is an edge in a specific place, rather, we care about whether

there is an obstacle in the road. Similarly, in the medical imaging domain we

are generally interested in macro, human level, features; such as the presence

of cancer or lesion. One analogy for how multi layered, neural networks work

is through learning successively higher levels of features, with the first layers in

a network learning the low-level features, and each layer after that combining

these features to create higher levels of abstraction. In this thesis, Contrastive

Predictive Coding and SimCLR are presented as methods to enforce that

the network learns these high level features, rather than relying on low level

features.
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Computer vision has a long history: famously being set as a summer challenge by

Seymour Papert in 1966 to design a system that could describe an image [34]. Tra-

ditionally, computer vision focused on constructing hand crafted features. These

hand crafted features do not need datasets to create: they take advantage of the a

priori knowledge instilled within them by the designer, for example an edge detector

does not have to be learned, it can be manually implemented. Scale Invariant Fea-

ture Transform [35] (SIFT) and Speeded Up Robust Features [36] (SURF) are both

traditional computer vision methods based upon matching local image features with

a dictionary of known features.

While these methods found some success, hand crafting features is a complex task,

with a separate design being taken for every imaging task. A different class of ma-

chine learning, deep learning, takes an alternate approach. These powerful models

are able to learn features directly from the raw data, with no hand crafting needed.

By taking an entirely data driven approach, the need for costly domain experts is

greatly reduced. This type of machine learning has risen to prominence over the past

decade due to its high performance compared to other computer vision approaches.

Deep learning networks rely on updating a set of weights and biases which define

a set of non-linear functions, to create estimates of underlying latent distributions.

These methods were initially developed within the field of neuroscience as a way to

model the behaviour of the brain, hence the name ‘neural network’.

There have been two major advancements that have allowed deep learning to outper-

form other computer vision methods: firstly, the introduction of large, open, freely

available datasets to train models on; and secondly, the development of Graphics

Processing Unit (GPU) based acceleration to make use of the large quantities of

data that these datasets gave researchers access to. These advancements together

led to the rise in popularity of deep learning [37]. While a large number of the initial

deep learning techniques had existed for decades, it was only with the production

of these large datasets, along with the compute hardware to train models on them,

that the real power of this class of machine learning could be achieved.



34 CHAPTER 1. INTRODUCTION

Despite the ability of deep learning to produce state of the art (SOTA) results, these

methods are extremely data intensive; sometime requiring hundreds of millions of

images to achieve this SOTA performance [3]. This is an acceptable trade off in

some fields, where labelled data is in abundance, however, this is not true for med-

ical imaging due to the vastly increased cost of collecting labelled data.

1.3 Learning from Small Datasets

In the previous section, it was noted that these deep learning methods are data hun-

gry approaches. This is a known problem within the machine learning community

and can lead to a number of problems if one does not have enough data to train the

model on. When creating an artificially intelligent model to do a prediction task,

it is imperative to train a model that performs well on data which has not been

seen by the model previously. This is usually estimated by using a held out test set,

which contain images that are not used within the training protocol. When data

is limited and the training set is small, the difference in the performance metric

between the test set and training set may be much larger than when training with a

large training set. This is because, when learning from a small dataset, there are a

number of issues that arise that impact the performance of the model on unseen data:

Overfitting: Using an over parameterised model to learn from limited data may

cause overfitting. Overfitting occurs when a model learns a decision boundary that

too closely matches the training data, at the expense of the ability to generalise.

This causes a large gap between the performance metric on a test set and on the

training set. Given an infinitely sized training set, overfitting would not be an issue

as the training set performance would accurately approximate the test set perfor-

mance, however, as the training set decreases in size, the approximation of the true

underlying distribution of the data may deviate.
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Figure 1.1: Example of underfitting, correctly parameterised, and overfitting on a

dataset. Taken from [8].

Out of Distribution Data: When learning from data, the learned representations

can only be as good as the data that they are learned from. When learning from

limited data, it is possible that the distribution of data used does not accurately

reflect the true underlying distribution of the data leading to lower performance on

some subsets of the data. This is particularly noticeable for edge cases. Edge cases

are “a problem or situation, [...] that only happens [...] in extreme situations” [38].

Within the context of medical imaging, this could be a pathology that sometimes

presents differently, e.g serrated polyps compared to normal polyps, or the presen-

tation found in paediatric patients compared with adults.

These highlighted issues are known problems within machine learning and so a num-

ber of mitigation strategies have been proposed to counter them:

Augmentation: For a powerful network to achieve good performance, it needs

large amounts of data. In situations where large amounts of data are not present,

one can ‘create’ new data by applying random augmentations [37] to the set of

training data. This helps to prevent overfitting by increasing the model invarience

to the random augmentations trained on. For example, a model trained to predict

whether an image is a dog or a cat: the image still contains a dog even if the im-

age has been reflected and rotated. Data augmentation is particularly effective for
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Figure 1.2: Dropout diagram, found in [9]. During training, a random subset of

weights is set to 0, which forces the network not to rely on any one, or any one

subset of nodes.

object classification tasks, particularly for natural images. Image augmentation will

be studied in depth in chapter 6.

Dropout: Dropout [9] is a regularisation technique designed to prevent units from

co-adapting too much. During training, the network is randomly ‘thinned’ (ran-

domly setting weights to zero) to reduce the reliance on certain inputs. This thin-

ning only happens during training. Figure 1.2 shows a visual representation of the

method: on the left, a fully connected network in which each node in a layer connects

to each node in the next layer. On the right, the network is ‘thinned’ by ‘removing’

some nodes. It is important to note that this dropping of nodes is done randomly

during each training period. Thus, because the network cannot rely on any one,

or any one set of nodes, a more resilient network is learned that is less prone to

overfitting.

Early Stopping: Early stopping [37] is a technique designed to reduce the effects

of overfitting. When training models with a large capacity on small datasets, over

time, the training loss will continue to reduce, however, the performance on unseen

data will start to decrease. Early stopping estimates this performance on unseen

data by calculating the performance metric on a validation set, not used for training.
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After the model’s validation performance has not improved for a set number of iter-

ations, known as the early stopping’s patience, the method returns the model which

has the lowest validation error. This should reduce the chance that the network has

overfit on the small dataset.

Transfer Learning: To learn good representations, networks need to be exposed to

large amounts of varying data, however, this is not always possible. Transfer learn-

ing [39] attempts to reduce the amount of data needed by firstly training a network

on a large labelled dataset (which can be somewhat unrelated to the downstream

task) and reusing the learned weights in a new network which can be fine-tuned

to complete a new task. It is hoped that the features learned on the first task will

transfer over to the second task, thus reducing the amount of labelled data needed to

achieve good performance. Transfer learning has studied in further detail in chapter

4.

——————————————–

While these mitigation strategies do reduce some of the performance loss associated

with small datasets, they do not solve the problem: ultimately, there is only so much

information that one can extract from a limited sized dataset. Transfer learning does

increase the amount of information available to the model, however, this relies on

access to a second labelled dataset that has sufficient distribution overlap with the

task that an implementer is trying to solve. This may not always be possible.

1.4 Problems with Collecting Data

While mitigation strategies exist for the issues caused by small datasets, they do

not solve all of the problems. So, why can we not just collect more data? In

some domains, it is relatively easy to create more labelled data: natural images

can be labelled relatively cheaply by untrained people on platforms such as Amazon

Mechanical Turk [40]. In contrast, medical images have to be labelled by highly
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specialised physicians. In addition, ethical considerations must be made about re-

leasing private medical records, to ensure that any data released cannot be traced

back to the individual. The most costly part of data collection, especially for medical

imaging is the collection of labels. There are a number of ways in which labels can

be generated for use with a machine learning algorithm, however, they each come

with drawbacks that may reduce their utility:

• Manual labelling: In this method, physicians are given medical images and

are asked to give their diagnosis. This process generally gives quite good

results, however, it is very costly due to the highly specialised nature of these

experts. Additionally, there can also be disagreement between physicians (as

would be the case in a real clinical setting), and a design decision must be

made for how to deal with this. A standard approach [23] to solving the

disagreement would be for multiple physicians to examine the same image,

and use a majority voting system, however, this increases cost by multiple

times. In addition to the increase in cost, majority voting does not ensure

that the correct answer has been found, it just reduces simple errors.

• Data Mining: When a patient is undergoing treatment where an imaging

study is conducted, this imaging study will (most often) be examined by a

radiologist, who will write a report. These reports can then be data mined to

attempt to find the diagnosis provided by the radiologist. While this is a far

cheaper solution than manual labelling, it will decrease the accuracy of the

labels, which will result in a machine learning algorithm being less accurate.

• Outcome Based Labelling: Doctors make mistakes. A user should, there-

fore, not treat labels provided by them as truth. A different type of labelling

process works by matching images with their outcome in a post hoc way, this

producing as close to ground truth as possible. This helps the labelling is-

sues raised by manual labelling, and decreases cost. However, this method

is limited to certain types of outcomes, and is not as fine grained for certain

diseases. Therefore, this method may not be suitable for all tasks that we wish

to apply machine learning to.
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Due to all of these methods’ inherent problems, because of either cost or inaccuracy,

it is often easier to acquire large volumes of unlabelled data than a smaller quantity

of labelled data. If methods could be developed that use large quantities of unla-

belled data to reduce the amount of labelled data needed, machine learning could

be applied to a larger number of problems.

One proposed way of doing this is semi-supervised learning. Under a semi-supervised

paradigm, a representation is learned from a large, unlabelled dataset by conduct-

ing some unsupervised task. This representation is then used, along with a small,

labelled dataset, to produce (hopefully) higher results than could be achieved with

the small dataset alone.

1.5 Problem Summary

Due to the especially large cost of acquiring labelled data, the medical domain is well

placed to be revolutionised by the recent advancements in semi-supervised learning.

In this chapter, the following problem description is introduced:

• Medical imaging has a number of problems, such as medical scarcity and med-

ical mistakes (section 1.1), that could hypothetically be solved or reduced by

artificial intelligence.

• Computer vision techniques have been developed in the past, however, these

methods have found limited success in being applied to medical tasks. These

methods are typically data driven methods (most notably, deep learning) and

thus require very large labelled sets of data to perform well.

• Techniques have been developed to reduce the amount of data needed to

achieve high performance, however, these do not increase the performance

to the level found with large datasets.

• While a huge amount of imaging studies take place, it is very costly to get

gold standard labels for these images. This reduces the ability of state of the

art methods to be applied to medical imaging tasks.
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• If methods could be developed that take advantage of the relatively cheap,

unlabelled data; the success of deep learning could be applied to more medical

imaging tasks.

Based on this problem specification, I present the following work: chapter 2 intro-

duces the concept of learning from unlabelled data, highlighting contrastive learning

as a possible solution to the issues discussed here. Chapters 3 and 4 introduce and

evaluate a method called Contrastive Predictive Coding across a number of medical

imaging tasks. Chapter 5 introduces a second contrastive method: SimCLR. In

chapter 6, the impact of augmentation strategy is tested to its limits within the con-

text of medical imaging. Finally, in chapter 7, the impact of the unlabelled dataset

on downstream classification performance is tested.

1.6 Datasets used

In this thesis, a number of imaging modalities have been used as example datasets

to test the presented methods on, namely: a colonoscopy dataset, an Optical Co-

herence Tomography (OCT) dataset, and a dermatology photography dataset, in

addition to some general imaging datasets similar to ImageNet [41]. In this section,

the datasets are outlined, the pathologies are explored and the physics behind the

imaging modalities is presented. Finally, for each of the sets of diseases, speculation

on why semi-supervised approaches may be suited for these tasks is given.

1.6.1 Colonoscopy

Colonoscopy is an imaging study which allow a physician to examine a patient’s

bowel. This allows visual inspection of a problem area, or allows a physician to

undertake a procedure such as biopsy or removal of a possible cancerous lesion.

Colonoscopy is often used to diagnose colon cancers, or to identify pre-cancerous

lesions, both of which are a leading cause of deaths in both males and females. A

colonoscope traditionally consisted of a fibre optic cable which allowed a clinician to

look inside of the colon. More recently, due to improvements in camera technology,
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a small camera can be placed on the end of the flexible and controllable endoscope.

In this thesis, focus has been placed on the identification of polyps within colonoscopy

images. Polyps are a precancerous, mushroom looking lesion that is often difficult

to identify in colonoscopy screening procedures. As many as 1 in 4 adults over the

age of 50 have bowel polyps [42] and the misidentification of polyps has been linked

to higher mortality. Therefore, identification of polyps is important. The identifica-

tion of polyps can be complicated by the variability in appearance, with some types

(such as flat polyps) being notably more difficult to detect. In addition to polyps,

in chapter 4, this thesis also attempts to classify a different pathology that can be

identified with colonoscopy: colitis. Colitis is a chronic illness in which the walls of

the bowls become inflamed, which can cause pain, discomfort and diarrhea. This

thesis uses various grades of colitis, with the more advanced stages being easier to

identify than earlier.

For this imaging modality, a randomly sampled subset (with equal numbers in each

class) of the HyperKvasir dataset [10] was used. This dataset used frames from

colonoscopy procedures collected as routine scans at a Norwegian hospital. Some

images contain a green box in the bottom left-hand corner which is used by the

radiographer to assist with the procedure, however, they are not in all images. To

ensure that this does not have an impact on performance of the network, this area

is blanked over in all images.

Colonoscopy procedures are well suited for use with semi-supervised networks due to

the large volume of unlabelled data that the procedure produces. Each colonoscopy

can take on the order of an hour to complete producing a large quantity of images

(i.e each frame in the image can be treated as a separate image from which to

learn representations from). If useful representations could be learned, then a small

quantity of labelled data could be used to produce higher results than could be

obtained with the labelled data alone, for limited extra cost.
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Figure 1.3: Colonoscopy example images, from left to right: Polyp, Colitis, Normal

Cecum. These examples were chosen as extreme examples of the pathology, there-

fore, are far easier to distinguish than the typical images. These images were taken

from the HyperKvasir dataset [10].

1.6.2 Optical Coherence Tomography

OCT is a three dimensional imaging modality used to take a tomography scan of

the eye. This can then be used to diagnose diseases of the eye such as diabetic

retinopathy or macular oedema. The OCT scan can image below the surface of the

retina, allowing for earlier diagnosis of certain eye diseases. By allowing earlier di-

agnosis, the earlier that treatment can be started leading to better patient outcomes.

Certain eye pathologies create lesions below the surface of the eye, and so standard

techniques of examining the eye, such as a Retinoscope, are insufficient for a full

diagnosis. In addition to providing advantages over standard equipment such as

a Retinoscope, OCT is able to provide much greater resolution than MRI at the

expense of a more limited area of view. In addition, OCT scans are extremely quick

to complete an imaging study, taking approximately six seconds to take a full scan

compared to 10-30 minutes for methods like fluorescein tomography [43]. OCT is

sometimes thought of as being similar to ultrasound scanning, using light rather

than sound. In an OCT scan, a beam of light is shone at the back of the eye and

the reflections of light are recorded. Interferometry is used to infer which beams of

light bounced around the eye, which can then be subtracted from the image. The

scanning laser is able to take a number of one dimensional scans of the eye (known

as a-scans) at various depths to produce an imaging scan of a single slice of the eye

(known as a b-scan). Multiple b scans can be taken of subsequent parts of the eye
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to produce a three dimensional volumetric image. This is similar to how a CT scan

takes images of slices of an object which can be taken multiple times on subsequent

slices to produce a three dimensional representation. These images are used in con-

junction with other imaging modalities to give a diagnosis.

In this thesis, an OCT dataset taken from [11] is used which contains the following

classes:

• Choroidal Neovascularization is a continuation of a pathology known as age-

related macular degeneration in which new blood vessels develop under the

retina. This pathology can cause vision blurring and over time is able to

damage the retina, leading to permanent sight loss. OCT scans are able to

be used to identify the fluid filled areas beneath the surface of the retina, and

therefore diagnose the condition which can then be treated with injections to

the eye [44].

• Diabetes-related Macular Oedema is a complication of a pathology known as

diabetic retinopathy. Diabetic retinopathy is caused when a patient has high

blood sugar over a long period of time, this causes changes to the blood vessels

at the back of the eye and bleeding can occur [45]. If left untreated this can

further develop into Diabetes related macular oedema, a serious complication

which affects the macula, and area of the eye that is responsible for “central

vision” [46]. OCT can be used to measure the thickness of the macular, thus

determining the extent of the damage caused by the disease.

• Drusen are small accumulations of lipids in the eye, that build up over time.

While a small number of drusen are found in most people [47], as we age

these deposits can grow in both size and number which may affect “central

vision” [48]. As these deposits grow, they can damage the macula leading

to partial vision loss. While more commonly identified through routine eye

exams, they are also able to be identified through OCT scans.

• No pathology present: In addition to the three pathologies presented above, a

class of images that contain no pathology is also included.
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As with colonoscopy, OCT scans produce a large volume of unlabelled data that is

able to be used for learning representations from. Each OCT scan produces a 3D

volume, each slice of which can be treated as a separate image and can be used

to train a network to produce representations. These representations along with a

few examples of each pathology could produce better results than the few examples

alone.

Figure 1.4: Example OCT images, from left to right:CNV, DME, Drusen, Normal

(no pathology detected). Image taken from [11]. OCT scans produce 3D scans of

the retina of the eye, these images consist of slices of this 3D representation which

show the pathology (or not in the case of normal).

1.6.3 Dermatology photography

The final medical imaging dataset that is used in this thesis is a dermatology pho-

tography dataset consisting of photographs of skin abnormalities arranged in three

classes: Benign lesions of the keratosis; Melanoma; and Melanocytic nevi. Dermatol-

ogy photography can be used for either tracking the progression of an abnormality,

or for telemedicine, allowing diagnosis of a disease without a specialist being present.

This can increase the speed at which patients can be seen, with the patient only

needing a single appointment to photograph the abnormality. The specialist may not

even be in the same country as the patient being seen, this could be especially useful

for accessing medical in remote regions of the world, increasing health outcomes and

increasing health equality. The following pathologies are explored:

• Benign lesions of the keratosis: A generic class of non-cancerous lesions. They

are grouped together due to their similar appearance. This class is included

due to the difficulty in distinguishing between these and melanoma.
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• Melanoma is a form of skin cancer that is capable of spreading to other parts

of the body. Melanoma is thought to be caused by excessive exposure to UV

radiation, which can cause damage to the DNA of skin cells. Melanoma can be

extremely common, 1 in 14 men in Australia will develop melanoma at some

point in their lives [49]. There are a number of sub types of melanomas that

have differing appearance, which may affect diagnosis. As with keratosis, no

specialist imaging device is needed to capture images of melanoma.

• Melanocytic nevi is the technical term for a skin mole [50]. Identification of

this is especially important to be able to differentiate between a harmless skin

condition and a condition that can possibly lead to death, such as melanoma.

As with melanoma, this pathology may present in many different forms which

can make it harder to differentiate between conditions, possibly leading to

lower health outcomes.

Unlike the previous two datasets, in which a large number of images are generated

during routine procedures that are able to be used for unsupervised training, der-

matology photography does not have the same advantage. However, in this thesis,

images of pathologies that are not part of the classes used for our training dataset

have been used as part of the unlabelled dataset for optimising the encoder.

Figure 1.5: Example dermatology images, from left to right: Benign lesions of

the keratosis; Melanoma; and Melanocytic nevi. These images are taken from the

HAM10000 [12] dataset.

1.6.4 General imaging datasets

In addition to the medical imaging datasets used in this thesis, a number of general

imaging datasets have been used. These datasets were chosen to provide domain
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agnostic results across the work in chapters 6 and 7. It is hoped that the results

found in these chapters, while especially relevant to medical imaging tasks, would

also be relevant to any arbitrary task. In this thesis, two main general imaging

datasets are used: subsets of the ImageNet dataset and the STL-10 dataset.

ImageNet: the ImageNet dataset is one of the most widely used imaging datasets,

consisting of 1,281,167 training images across 1000 classes. Due to its large size,

in this thesis, various sized subsets of the dataset are used to increase the speed at

which training can take place, the exact process by which these subsets are gener-

ated are detailed in the individual chapters.

STL-10: The STL-10 dataset is a predefined subset of the ImageNet dataset com-

monly used for evaluation of unsupervised and semi-supervised networks. It consists

of 100k unlabelled images used for learning representations from, and 13k labelled

images arranged in 10 classes between training and test subsets, with 500 to 800 in

each.

1.7 Aims of the thesis

The aim of this thesis is to study a set of semi-supervised, contrastive learning

methods to understand (1) how they work, (2) their strengths and weaknesses and

(3) to investigate how these methods could best be applied to the task of medical

imaging. Medical imaging has unique challenges that have been described in the

rest of this chapter, however, they often relate to the huge cost in acquiring la-

belled data to train the state-of-the-art models that are available in the literature.

In this thesis, contrastive methods are proposed as possible techniques that could

mitigate this challenge. In addition, work is undertaken to further investigate the

cost-performance trade off that occurs when one changes from a standard supervised

to semi-supervised approach. Based on the work presented here, chapter 8 gives a

set of recommendations for how best to apply contrastive methods.

How chapter 4 relates to the aims of the thesis: Chapter 4 presents an eval-
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uation of Contrastive Predictive Coding within the context of a medical imaging

task. The literature [2] has shown that CPC can reduce the amount of labelled data

needed for a network to achieve high performance, but it is yet to be seen whether

this improvement will transfer to a medical imaging task. In addition, the effects

of domain shift and transfer learning are investigated. The effect of these directly

affect the cost, and therefore utility, of semi-supervised methods. The use of trans-

fer learning can dramatically reduce the training times of large neural networks,

thus enabling performance to be achieved that would be uneconomical with training

from scratch. This relies on the distribution of features learned during pretraining to

closely match the distribution of features found in the downstream task. By showing

a high level of performance on a transfer learning task, this chapter validates one of

the most important use cases of semi-supervised learning: training once on a large

dataset, followed by cheap finetuning for task specific applications. Despite the ini-

tial promising results, this improvement in performance was not found to carry over

to all tasks.

How chapter 6 relates to the aims of the thesis: Chapter 6 evaluates Sim-

CLR as an alternative to CPC: while chapter 4 finds that CPC is able to improve

abnormality detection performance on colonoscopy images, this improvement did

not translate over to all modalities under study. SimCLR has the same theoretical

benefits as CPC, with more positive results from the literature. This chapter begins

to investigate aims 1 and 2 of this thesis: thereby increasing our understanding of

the methods presented. This chapter evaluates the usage of augmentations in con-

trastive approaches, investigating how best to apply them to achieve the greatest

performance. An additional investigation is conducted to show whether the internal,

learned representations are truly invarient to augmentation as claimed (aim 1).

How chapter 7 relates to the aims of the thesis: Chapter 7 continues this

secondary investigation into how best these contrastive methods should be applied,

specifically investigating the dataset requirements for these methods. Outside the

realms of academic research, datasets have to be created and this process is not

cost free. It is therefore imperative that the wider community understands how
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the design choices of this dataset will affect the performance of the subsequent

network, to achieve the most cost optimal solution. Initially the size of the dataset

is investigated, showing that merely increasing the size of the dataset is not enough

to increase performance, this must be combined with an increase in training time

(aim 1). To gain the best performance (aim 3), this thesis proposes using early

stopping in combination with the longest training time as an implementer’s budget

will allow. This chapter also shows that the variety of data used is not important

for the downstream classification performance of a SimCLR network, unlike what

would be found in supervised learning, the learned features are more general.



Chapter 2

Learning from Unlabelled Data

In chapter 1, the issues with applying state of the art deep learning methods to

medical imaging tasks were explored, concluding that - while AI systems could im-

prove healthcare outcomes - it is often uneconomical to generate the large, labelled

datasets needed to train the state of the art machine learning methods. However,

also highlighted was the fact that unlabelled data is often orders of magnitude

cheaper to collect. If it was possible to utilise this unlabelled dataset to increase the

efficiency of the labelled data that is available, machine learning could be applied

to more areas.

While some large scale labelled datasets exist, notably ImageNet [23], some unla-

belled datasets have been released which are three orders of magnitude larger in

scale. Commercial image datasets held privately by companies may be far larger

than this, with Google photos holding 4 trillion images as of 2020 [51]. This shows

the enormous scale at which unlabelled data can be collected. Not all of this data

may be able to be used, but it does highlight the relative ease in which unlabelled

data can be collected. This data could be utilised to pre-train a model to allow it

to learn powerful representations, which could then be used to reduce the amount

of labelled data needed to train high performing models.

This chapter summarises and evaluates approaches that could be taken to utilise this

large quantity of unlabelled data. Initially, a naive approach is introduced: labelling

49
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the unlabelled data. From there, a redefinition of the problem space is presented,

one that can make use of the unlabelled data itself, however, these methods are

shown to not be suitable for all tasks. Therefore, representation learning methods

are presented before, finally, presenting contrastive learning. Contrastive learning

is a subset of representation learning methods in which a contrastive loss is used.

This directly optimises the encoder to place ‘similar’ images together in the latent

space and ‘dissimilar’ images far apart.

2.1 Increasing the Number of Labels Available

Under a situation in which an implementer has a small amount of labelled data and

a large amount of unlabelled data, the most natural approach would be to label all

or some of the unlabelled dataset. Depending on the specifics of the task, different

methods could be taken.

Manual labelling: The most conceptually simple approach could be simply to la-

bel the unlabelled data, thus creating a large labelled dataset. It is well established

that larger labelled datasets produce better results [52], and it is likely that this

approach would work if the goal is purely to increase performance of the model,

with no other considerations. However, the main disadvantage of this approach is

the cost. As presented in chapter 1: labelling data is costly. Fortunately, methods

have been developed that allow for this unlabelled data to be leveraged without the

high cost associated with labelling.

Pseudo-labelling: Pseudo-labelling [53] is one such method. Pseudo-labelling is a

simple approach for improving performance when given small amounts of labelled

data but large amounts of unlabelled data. In this method, rather than manually

labelling the large unlabelled dataset, an automated approach is taken. Initially, a

network is trained to classify the images on the small amount of labelled data. This

trained network is then used to generate labels for the large unlabelled dataset, cre-

ating a set of pseudo-labels. This set of pseudo-labels is then used to train a second

network which, it is hoped, will have a higher performance than the first network.
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This approach’s efficacy will depend entirely on the ability of the first network to

correctly learn to classify the unlabelled dataset. If a poor classifier is trained, the

pseudo-labels will be extremely noisy, leading to poor performance. In addition,

pseudo-labelling can lead to low performance on edge cases, where the first classifier

did not correctly label the data.

Active Learning: The previous two methods attempt to increase performance

through increasing the number of labelled examples through brute force. Increasing

the number of labelled examples increases the probability that a query is similar to

an item already seen by the network, and therefore it is more likely to produce the

correct answer, however, this is a crude process in which exponentially increasing

the amount of data is only likely to linearly increase the performance of the network.

This can be mitigated somewhat through collecting more data for sub-populations;

however, this requires thorough investigation of the network, and for an implementer

to have access to labels on which sub-populations each datapoint belongs to. An-

other approach is active learning: active learning attempts to increase the power

of the network while labelling as few data points as possible [54]. Active learning

attempts to find an optimal subset of a dataset, for which learning on from this sub-

set would approximate the performance of learning from the full dataset, therefore,

saving the cost of labelling the full dataset [55]. Active labelling is an active area of

research, with some promising results, however it is beyond the scope of this thesis

to study.

——————————————–

While these methods may seem naive, labelling the unlabelled data may be the most

time and cost effective approach to take for some tasks, particularly those tasks in

which the labelling task can be undertaken by non specialists. Relatively large, 100k

image scale datasets can be created for only a few thousand US dollars in a short

amount of time [40]. While this thesis will focus on areas in which this does not

apply, (namely the medical domain, in which the costs and ethical considerations

would be far greater), there will be a large number of problem areas in which this

is the case. Before exploring whether semi-supervised learning could be right for
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a task, it is worth being cognisant of whether the same result can be obtained by

manually labelling the dataset.

2.2 Redefining the Problem

In situations where it is uneconomical to label more data, and automated labelling

produces sub-par results, a different approach may be taken. It is not always neces-

sary to develop a system that can classify an image, it may be sufficient to identify

when an image contains an abnormality. This is known as out-of-distribution de-

tection. For example, in chapter 1, “reducing medical mistakes” was highlighted as

one area where AI could be used for improving healthcare outcomes. An AI could

be trained to detect abnormalities for secondary review. Even if it cannot predict

the specific abnormality, flagging the image for human review could be enough to

improve health outcomes. Two different approaches for out-of-distribution detection

using different base methods are presented below.

Generative Adversarial Networks: Generative Adversarial Networks (GANs)

were first described in 2014 by deep learning pioneer Ian Goodfellow [56]. In this

work Goodfellow et al propose a minimax game (a zero sum game, where one

‘player’s’ loss is the other ‘player’s’ gain) in which one player tries to generate images

that the other player cannot discriminate from real data. “The generative model can

be thought of as analogous to a team of counterfeiters trying to produce fake cur-

rency and to spend it without detection, while the discriminative model is analogous

to the police, trying to detect the counterfeit currency” [56]. After this training,

the discriminator part of the network is discarded, leaving just the generator. The

trained generator can generate realistic images and is used in the next step of the

pipeline to detect abnormal images.

One method for using a GAN for abnormality detection is the work by Schlegl et

al [57]. This method uses a GAN to learn a latent space that represents the normal

variability of non-abnormal data, from which, it can be determined whether a query

datum lies within this latent space, thus, whether it is abnormal or not. This is
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achieved through gradient descent on the similarity between generated data and the

query data, using the discriminator to ensure the latent space is on the manifold.

This allows the closest image in the latent space to be found. The difference be-

tween the query image and its closest match on the manifold is found, giving its

abnormality score. If an image lies on the manifold, it will have a very low score, as

the closest image will be very similar. However, if the query image is nothing like

the manifold, as in the case of an abnormality, the difference between it and of any

image on the manifold will be high, giving a high score.

Autoencoders: An alternate method is to use autoencoders. Autoencoders are

models that attempt to learn to compress, and subsequently reconstruct, data with-

out explicit labels: in the process learning a latent representation of the data. As

with all semi-supervised methods, the autoencoder can be trained on the vast quan-

tities of easily available unlabelled data. Autoencoders are typically thought of as

having two sections: an encoder which projects the input down to a latent repre-

sentation; and a decoder, which attempts to reconstruct the image from the latent

embedding produced in the previous step. A loss based on the difference between the

reconstructed image and the true image is used to optimised the two sub-networks.

In a similar way to the method introduced by [57], the reconstruction loss can be

used as a method for detecting out of distribution images [58]. The autoencoder

is able to reconstruct the distribution of images that it has seen before. When it

encounters a query image that is dissimilar to the images that it has seen before,

the ability of the network to reconstruct it is diminished, thus the reconstruction

loss will be higher. A threshold can be applied to the loss to detect when an image

is out-of-distribution.

——————————————–

While these methods may excel at detecting when a specific example does not fit

within the distribution of the previously seen images; these methods are limited to

one task – detecting out of distribution images. In many cases, merely being able

to detect when a specific data point does not fit the training distribution is not
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enough: further analysis is needed. For example, in the case of a triaging system

that automatically flags anomalous OCT scans, one could imagine a case in which a

large proportion of scans are anomalous (as generally a scan will only be performed

if a physician feels there is something wrong). In that specific case, one would want

a system that could not only flag scans that are anomalous, but can flag the subset

which are likely to deteriorate rapidly, and therefore need to be treated faster than

other diseases. In the next section, other methods are presented which allow for any

arbitrary task to be performed.

2.3 Auxiliary Task Methods

In the previous two sections, two different conceptual frameworks for utilising unla-

belled data were presented. Neither approach solves the issues presented in chapter

1 for all tasks. A third approach to this is semi-supervised learning. In semi-

supervised learning, the unlabelled dataset is used to train an encoder to project

the data into a more efficient space. The small amount of labelled data can then be

used with these embeddings to produce higher performance at a lower labelled data

cost. This section examines a subset which I term ‘Auxiliary Task Methods’ 1, that

is, a set of methods that try to perform some upstream task to learn an embedding

that is useful for some downstream task.

Autoencoders: In addition to the out-of-distribution approach, based upon re-

construction loss; autoencoders can also be used as semi-supervised learners. The

network is trained in the same way as in section 2.2, however, after training the

‘decoder’ section is discarded. This leaves the ‘encoder’ portion of the network to

project the input query image into the learned latent space (Figure 2.1 for a di-

1Throughout this PhD, I have used the term ‘Auxiliary Task Method’ to refer to the type

of semi-supervised task in which an unrelated task is used to train an encoder to create useful

embeddings. I highlight here that this differs from the other usage of the term auxiliary task

within machine learning. This alternate usage refers to methods that have a second task that they

are performing at the same time as the primary task, usually to improve performance of their

primary task.
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Figure 2.1: An autoencoder network: successive (usually convolutional) layers com-

press the input down to a latent space, from which, the network must attempt to

reconstruct as much information as possible. Image taken from [13].

agram). This latent representation of the data can then be used by a secondary

learning mechanism for performing some task, such as image classification.

Autoencoders suffer from a problem that can be seen reoccurring across section 2.3:

the features that are optimal to be learned to complete the pretext task are not

necessarily the same features that will be useful for the downstream task. For ex-

ample, in a reconstruction loss the low level information that may not have much to

do with the classification of the image is equally weighted to any other pixel value,

one that may be very important to classification.

Rotation Prediction: Rotation prediction is a simplistic, auxiliary-task based

semi-supervised learning method. In this method, an image transformed through

a rotation, is fed to a network. The network must then predict which of the four

cardinal directions the image has been rotated. While a simple task, this pretext

task is still able to learn reasonable representations, for example [59] found that

using a simple rotation prediction sub task was able to match the performance of

the much more complex Contrastive Predictive Coding [6] pretraining, found later

in the chapter.
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While some success has been found; this methodology may not work for all tasks,

such as tasks in which the features are rotation invariant. In addition, it is possible

that the network learns to solve this task through learning features that are irrele-

vant to the downstream task. Imagine training a network on images of various dog

breeds with the intent to use the embeddings to classify images into their respective

breeds: however, the network could possibly learn to just predict the position of the

sky as a proxy for rotation of the image. However, this feature would not be useful

at all for predicting the breed of the dog. Thus the performance on the downstream

task would be low.

Jigsaw: Noroozi and Favaro [14] propose using a ‘jigsaw puzzle’ as a pretext task

for an unsupervised network. In this task, the network is fed shuffled patches of

an image, and it is trained to predict the correct positions of the said patches.

They have achieved 37.6% (top-12) accuracy on ImageNet when only adding fully

connected layers. A diagram of the method can be found in Figure 2.2. As with

other auxiliary task methods, the ImageNet performance of this network is far below

that of supervised networks. This is possibly because the network is able to learn

features that are useful for the pretext task, but are less useful for the subsequent

downstream task. For example, in general the downstream task will focus on high

level (section 1.2), human level features, such as whether the image contains a cat

or a dog, however, it is possible that the network has learned to solve the pretext

task through features that are less relevant to the downstream task, such as colour

distribution and continuity of edges.

2In this thesis, a number of references are made to “Top-x performance / accuracy”, usually

either top-1 or top-5 accuracy on the ImageNet challenge. Top-5 accuracy refers to the accuracy

where the correct value appears as one of the 5 highest probability classes for a model, whereas

top-1 accuracy refers to the normal accuracy of the model.
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Figure 2.2: Figure found in [14]. A visual guide to the jigsaw pre-training method.

In this method, patches are jumbled up, with a network predicting how to solve the

‘jigsaw’ that is given to it.

Context Prediction: Doersch [15], describe a similar method to jigsaw. Two

images are fed to the network in parallel, a context image (A) and a query image

(B). The network is trained to discern the relative position of B in relation to A.

During training, a random patch of an image is taken (blue in Figure 2.3), along

with one of eight neighbouring patches (red in Figure 2.3). This method relies on

a double headed encoder with shared weights between the encoders to embed the

two patches down to two latent encodings. From here a multi layered perceptron is

used to predict the location of the query patch relative to the context patch. After

unsupervised training, the encoder can be used to embed whole images down into

the same latent space, and train a linear layer on these embeddings for prediction.

This method achieved 45.7% Mean Average Precision on VOC-2007.

Context prediction suffers from the same issues as the jigsaw pretext task: the net-

work may rely on features that are not useful for the downstream task to solve the

pretext objective. The paper claims that this pretext task will force the network

to learn a “a rich visual representation”, however, this may not be the case, with

the network being able to rely on the same set of non optimal features to solve the

task. This issue was addressed in the paper: the authors included a gap between

patches and randomly jittered each patch to attempt to reduce the impact of this

trivial solution. However, they found that even with these mitigations the network

was still able to find trivial solutions. As a second set of mitigations the authors

explored using a colour projection and colour dropping, reporting the resuts of both.
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Figure 2.3: Context prediction. Image from [15]. Here, a dual headed network

encodes two image patches: a context patch (blue) and a query patch (red). The

model is trained to predict the correct relative position of the query patch in relation

to the context patch.

Despite the efforts to avoid trivial solutions, the network still performs substantially

below what is able to be achieved with supervised networks.

Colourisation: Colourisation [60] is another proposed unsupervised methodology

for learning to embed images. In this method, an autoencoder style network is

used, which takes in an artificially greyscaled image, and attempts to reconstruct

the coloured image. The latent embedding from the middle of the autoencoder can

then be used as the embedding for the image. This method would not be a suitable

method for use on medical images that are inherently greyscale , such as x-rays, CT

scans, or OCT images. In addition, the features that are useful for the colour re-

construction task may not be helpful for some downstream tasks, for example tasks

in which colour does not have an impact on class.

Inpainting: A method that builds upon the work found in Doersch et al [15] is

the work presented in [61]. Rather than learning context through a single classifi-

cation problem as presented in Doersch, inpainting presents a prediction problem

with a much larger set of predicted values. In inpainting, a whole block of pixels are

blanked over in an input image and an autoencoder style must predict the missing

pixel intensities, resulting in a much more complex problem. This will hopefully

lead to much better image representations learned by the encoder portion of the
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network. Despite the optimism presented in the paper, ImageNet classification per-

formance is still lower than can be found with supervised approaches. As with other

methods presented in this chapter, the optimal weights for the encoder to solve the

pretext task may not be the optimal weights to solve a downstream classification

task. The objective function presented in [61] combines an l2 loss of the pixel inten-

sities along with an adversarial loss which improves the infill quality. I posit that

while there is overlap between the features that are relevant for both tasks, they

will be non-optimal. As with the autoencoder, minor differences in pixel intensity

may make large differences to the l2 loss, but fail to capture any high level detail

that would be useful for a downstream task. In addition, while the adversarial loss

is useful to produce better looking infilled images, this does not necessarily create

better embedding spaces.

2.3.1 Discussion on Auxiliary tasks

Semi-supervised learning approaches have been touted as important areas for study

due to the belief that learning features from large, unlabelled datasets will lead

to better performance than learning from a relatively small, labelled dataset. The

methods presented in this section have failed to outperform supervised approaches

in their studies in the evaluation set up of the papers. The relative performance

of the semi-supervised vs supervised will be dependent on the specific experimen-

tal conditions of the test being conducted; this experimental set up may not lead

to an advantage being seen in the semi-supervised set up. A typical approach for

evaluating semi-supervised methods involves training an encoder network on a set

of unlabelled images, freezing the weights of the network, and evaluating the ability

of the network to produce linearly separable classes. This evaluation methodology

is different from how supervised approaches are evaluated, which may explain some

of the performance drop.

While some success has been found in the literature [62] improving upon a super-

vised baseline; the low relative performance of semi-supervised approaches seen in
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this chapter is disappointing. In this section, I have argued that this low relative

performance is due to the networks learning low-level features that do not map

across between the pretext and downstream tasks. It highlights that further work

is needed to explore new methods for semi-supervised learning that could possibly

outperform purely supervised approaches.

The goal of this chapter is to explore methods that can utilise the learned latent

space to boost the performance of these deep learning methods above what would

be possible with supervised approaches alone. If these methods are unable to out-

perform supervised baselines, they should be discarded as possible approaches for

the task set out in chapter 1. From this argument, the next section introduces

contrastive learning, a set of approaches that have found greater performance than

traditional approaches, through trying to learn a latent space that more accurately

embeds high level, human level features.

2.4 Contrastive Learning

In order to explore semi-supervised methods that could possibly outperform super-

vised methods, this section introduces contrastive learning, a set of related methods

in which the latent space of an encoder network is directly optimised. Contrastive

learning learns to place ‘similar’ elements together, and ‘dissimilar’ elements far

apart. It does this without the use of explicit labels for what constitutes ‘similar’

and ‘dissimilar’ elements.

It can be argued that all machine learning methods learn to place similar elements

together in their latent space, however, these methods typically require the use of

explicit labels. For example, a network trained to classify images of cats and dogs

will naturally create a latent space that separates cats and dogs, but only because

it has been provided with these explicit labels. In contrast, contrastive learning is

able to create this latent space without this set of labels, optimising the latent space

on the images directly.
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Contrastive methods also differ from the auxiliary task methods found in the pre-

vious section. The auxiliary task methods presented produce latent spaces that

are useful for conducting the pretext task, which may or may not be useful for the

downstream task. Contrastive approaches hope to learn a more general latent space

that is useful for a large number of tasks, however, this is dependant on a number

of assumptions. This is expanded upon later in this section.

Once the encoder is trained, it can be used in the same way as methods found

in the previous section: a linear layer can be added to the encoder network and

then finetuned on a task specific dataset. As with the methods presented in the

previous section, it is hoped that the use of this unlabelled dataset will improve the

downstream performance. This section presents a number of contrastive approaches:

2.4.1 Contrastive Predictive Coding (CPC)

This method is described in further detail in chapter 3.

Contrastive Predictive Coding [2] is a contrastive method to learn representations

of patches of images which will then be able to be utilised in a second step, reducing

the amount of data needed to reach a certain performance. The authors of [2] claim

that using their modification of CPC is able to reduce the need for labelled data

by 80%, replacing it with unlabelled data. CPC works by applying the contrastive

loss function to patches within the same image. Under this construct, an encoder

learns to place patches from the same image closer together in the latent space, while

also pushing patches from random images further apart. By not directly training

the model for one particular task, it is hoped that the embedding that the method

learns will be applicable to a number of tasks, such as classification and segmenta-

tion.

Figure 2.4 shows the reported results from [2] showing that CPC can either achieve

the same performance as a ResNet baseline using five times less data, or can have a

much increased performance at the low data regimes. The performance gained on a

general imaging task will not always transfer over to medical imaging tasks. Despite
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Figure 2.4: Reported [2] performance of Contrastive Predictive Coding on ImageNet

compared with a ResNet baseline. Given small amounts of data, the network is able

to achieve substantially increased accuracy. This graph also highlights how this can

be re-framed: as achieving the same accuracy as another network, but using 5x less

data.

this, given the potential reward, it appears to be a worthwhile area for investigation.

2.4.2 A Simplified method for Contrastive Learning Repre-

sentations (SimCLR)

This method is described in further detail in chapter 5.

SimCLR is a similar contrastive method to Contrastive Predictive Coding, how-

ever, rather than learning an embedding network that is invarient to patch location;

SimCLR attempts to train a encoder which is invarient to augmentation. In this

method, a pair of images are both stochastically augmented, resulting in two aug-

mented images. Each of these images are then embedded using the same encoder

producing two embeddings. The loss function then optimised the encoder to make
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the difference between the two vectors small in the case that they are augmented

copies of the same image, and large if they are of different images. By optimising this

objective function, an encoder is trained which should be invarient of augmentation

and purely encodes the high level features.

2.4.3 Supervised Contrastive Learning

In all contrastive learning approaches, the ultimate aim is to produce embeddings

in which two similar images are placed close together in the latent space, while at

the same time, ensuring that two dissimilar images are far apart in the latent space.

There are numerous ways in which ‘similar’ and ‘dissimilar’ can be defined, but

for supervised contrastive learning, they are defined as either belonging to, or not

belonging to a particular class respectively. There are a number of proposed loss

functions for supervised contrastive learning: triplet [63,64], and N-pairs loss [65].

Triplet loss: As with the semi-supervised methods for contrastive learning, the

triplet loss attempts to learn an embedding in which similar points are placed closer

together in the latent space and disimilar points are placed further apart. In some

situations, this can be useful as a task in itself, for example, for face similarity

networks such as Facenet [66] a network learns to produce embeddings in which

different views of the same person produce similar embeddings. This network can

then be used directly to identify users of a system. While some success for these

methods has been found, there has been much less exploration for these methods

for unsupervised pretraining. If one already has labels such as classes that are ap-

propriate for training this loss function, then a more classical and highly performant

loss function could be used directly.

SupCon: [67] propose a loss function which can, as opposed to the other supervised

contrastive losses, lead to state of the art results that outperform a standard cross

entropy loss function. The main notable change from prior work introduced by this

piece, is the ability of the loss function to contrast between an arbitrary number of

positives, as opposed to just one, as found normally. In most contrastive methods,
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a single positive example is used which is contrasted against a large number of

negatives; in SupCon, multiple positive examples are contrasted against the set of

negatives. Self supervised contrastive loss functions typically take the form:

∑
i∈I

log
exp(zizj/T )∑
a∈A exp(ziza/T )

(2.1)

This loss function minimises the difference between projections of ‘similar’ data (zi

and zj), while maximising the difference between a projection zi and a negative

example vector za. The set A refers to the set of possible negative examples that

a can be taken from, in most of the methods seen in this section, this would be

a random image taken from elsewhere in the dataset where i ̸= a. I refers to the

set of images that the anchors (positives, i) come from. T is a temperature scaling

parameter. Versions of this loss can be found in most semi-supervised contrastive

approaches explored here. However, as its name suggests, this method uses labelled

data to create its latent space, and therefore, based on the argument given earlier

in the chapter that no more labelled data is accessible, this method can be rejected

as one for study in this thesis.

2.4.4 Momentum Contrast (MoCo)

Momentum Contrast [68] (MoCo) is a somewhat similar method to SimCLR, in

that it tries to embed two images that are transforms of each other close together

with respect to a set of ‘negative’ 3 examples. The difference comes from how these

negatives are given. In the case of SimCLR, the negatives are held within the mini-

batch and the loss function attempts to minimise the distance between the ‘positive’

example and maximise the distance between all others in the mini-batch. In MoCo,

a memory bank is used. With this, the set of negatives embeddings are not taken

from the mini-batch themselves, rather they are in the form of a queue of previously

3Within the context of contrastive learning, the terms ‘positive’ and ‘negative’ examples are

used: as mentioned in 2.4, contrastive learning aims to train an encoder that embeds ‘similar’

examples together, and ‘dissimilar’ examples far apart. In this thesis, ‘similar’ examples are termed

‘positive’ examples, and dissimilar as ‘negative’, due to the contrastive objective function framing

the task as one in which the network must identify which of a set of elements correspond to a

specific query example. Further detail on this can be found in appendix B.
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seen examples. By separating the number of negative examples from the mini-batch

size, MoCo is able to use much greater amounts of negative examples, leading to

greater performance. The queue data structure allows for the algorithm to continu-

ously update the set of negative examples using the latest X mini-batches of images.

The MoCo training protocol uses this queue of embeddings from which to act as

the noise distribution sampling method. As a new batch of data is introduced, the

encodings from this batch are enqueued, and the oldest is dequeued, ensuring the

embeddings are relatively fresh. The use of this memory bank means that MoCo

does not have to recompute the negative examples on each batch and allows for the

set negative examples to be much larger than in SimCLR.

MOCOv2: The authors of MoCo released a short follow up note on the original

MoCo method. They proposed using a number of the features of the SimCLR

methodology to improve the performance of MoCo; namely the non-linear projection

head, and the stronger augmentation. They found that introducing these methods

lead to a 6.9 percentage point increase performance on ImageNet linear classification

accuracy. Chapter 6 investigates the claim that stronger augmentation leads to

higher performance.

2.4.5 Pretext Invariant Representation Learning (PIRL)

Pretext Invariant Representation Learning (PIRL) [16] is a closely related method

to SimCLR. The PIRL method attempts to force an encoder to learn representations

that are invariant to pretext augmentations, in their case the jigsaw transform (they

also extend to the rotation transform). PIRL consists of an encoder that embeds

two images to a latent space, one image is some arbitrary transformation of the

other image. The encoder is optimised, such that the latent code of images and

their transforms are close in the latent space. This is contrasted to a memory bank

of embeddings taken from other images. The PIRL method does not require any

one type of augmentation, they propose that it may work with any type. In [16],

the authors show their method using the ‘jigsaw’ transformation. In this transform,



66 CHAPTER 2. UNLABELLED DATA

an image is split into sub images, and the order of these sub images is jumbled as

can be seen in figure 2.5. The authors also generalise PIRL to use other pretext

tasks, namely rotation, that is, forcing an encoder to form rotation invariant image

representations, finding that this also produces useful representations.

Figure 2.5: The PIRL training method, taken from [16]. In the yellow shaded box,

the image shows how the same network is trained to produce representations that

are similar for images that are transforms of each other.

Comparison to SimCLR: Both SimCLR and PIRL are methods in which the

latent encodings produced by the training protocol are invarient to some kind of

transform. PIRL uses a ‘memory-bank’ rather than explicit negative samples to

contrast their examples to; this leads to a much larger amount of negative samples

than SimCLR, at the expense of a more complex implementation.

2.4.6 AMDIM

Augmented Multiscale Deep InfoMax (AMDIM) [69] is a similar method to Con-

trastive Predictive Coding, in that the objective of both methods is to maximise

the mutual information of a context with another ‘view’ of the same element. In
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CPC, this context is a summary of ‘past’ representations of an image, with ‘future’

representations of the same image (see chapter 3 for more information). In AMDIM,

the different views are independantly augmented derivative images of some base im-

age. This work is based upon Deep InfoMax [70]; in which the mutual information

between a global view of an image is maximised with a local view of the same image.

Rather than maximising the mutual information between views of the same image,

AMDIM attempts to maximise the information between two transformed images.

They randomly choose from random resize, colour jitter, random flip, and random

conversion to grayscale.

Comparison to SimCLR and CPC: AMDIM can be thought of as a halfway

point between CPC and SimCLR, with similarities to both. CPC and AMDIM

attempt to maximise mutual information between a context and a second view of

the same image, however, their ‘views’ are different. The ‘views’ used by AMDIM

are much similar to SimCLR, in which two augmentations of the same image are

used.

2.4.7 Contrastive Multiview Coding

Contrastive Multiview Coding (CMC) [71] is another contrastive method the aim

of which is to separate embeddings that represent related data, from embeddings

taken from a noise distribution. CMC attempts to learn image embeddings that

are invarient to different image channels such as: “luminance; chrominance; depth;

and optical flow” [71]. In other words, CMC attempts to represent the information

that is shared between these views of the same image, thus producing useful embed-

dings. As with most of the contrastive methods found in this section, this method

attempts to force the network to learn high level features that will be useful for most

downstream tasks, just differing in the aspect it is learning to be consistent between

different ‘views’ of the same image.
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2.5 Comparison to Other Neural Approaches

While a contrastive approach to semi-supervised learning has achieved good results,

it is not without its disadvantages. Some approaches have been proposed to solve

issues with contrastive approaches.

Bootstrap Your Own Latent: Boostrap Your Own Latent (BYOL) [72] is a

related but different method to contrastive networks, which relies solely on posi-

tive pairs of images. This differs from the contrastive learning, in which pairs of

positive examples are pushed together, and negative examples are pushed apart; in

BYOL, this pushing apart does not happen. In BYOL, the authors state that two

augmented views of the same image should “be predictive of each other”. Given a

view (transform T1) of an image I, the network should be able to predict how a

secondary transform (T2) will affect the image, resulting in T2(I). In BYOL, there

are two networks: an online network and a target network. The online network is

trained to predict the output of the target network, thus, training does not require

negative examples, decreasing the complexity of training. During training, an image

is augmented in two separate ways, one transformed image is then embedded using

the online network, and one by a frozen target network. Both embeddings are then

fed through a projection head to improve performance as with prior work. The em-

bedding is then fed to a predictor network whose goal is to predict the output of the

target network. Surprisingly, the embeddings produced by BYOL do not converge

to a collapsed solution. Due to the lack of negative examples, the network could

learn to output a constant embedding, thus minimising the loss; however, this does

not happen. The authors suggest that such equilibria could be unstable.

2.6 Summary of Contrastive Methods

Table 2.1 gives a high level comparison between the key methods outlined in this

chapter, highlighting the pretext task along with an indicative performance metric.
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2.7 Foundation Models

Since the main body of this work was completed, a new class of self supervised

models has become more widespread: foundation models. Initially used mainly

within the natural language processing community to describe a certain class of

large language models [74], the term foundation model is now broadly used across

the machine learning to refer to very large models that have been trained on inter-

net scale data 4. Foundational models are similar to the semi supervised methods

presented earlier in the chapter: they gain their power by using large unlabelled

dataset to learn features that are useful for a downstream task. The main difference

between methods we would refer to as semi-supervised and foundational models are

the scale. Foundational models are typically extremely large (many billions of pa-

rameters) and are trained on very large datasets. By training on these huge datasets,

these foundational models are able to learn more generalised features that should

be useful in a much larger number of areas.

Large Language Models: LLMs have become so synonymous with foundation modes

that they are often used interchangeably. Large Language Models are a type of neu-

ral network that aim to create a model with understanding of language through

pretraining on huge amounts of text data. Due to the commercial sensitivity of

these models, training information about the state of the art models is less readily

available than is ideal. Despite this, some open source models are available such as

the llama series of models [78] [76] as well as the Mistral series of models [79]. These

models are very similar to the semi supervised models presented in this chapter:

They are trained on an unsupervised task (for large language models, this is usually

an autoregressive task, i.e. predicting the next word in a block of text, however,

this can also be trained to predict a masked word, such as BERT [80]). From there,

either the embeddings can be used directly (as in some methods in this chapter), or

4There is no good definition for the amount of data that would be considered “very large”,

but to give the reader some examples: GPT-3 was trained on approx. 400 billion tokens [75],

llama-3 was trained on 15 trillion tokens [76], and the LAION dataset contains 5 billion uncurated

images [77].
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they can be finetuned for other tasks (eg instruction tuned LLMs). It is important

to note the scale of these models in comparison to the other models used in this

chapter. For example, the training of the SimCLR model took approximately 1.5h

using 128 TPU cores (approx. $300 for 1 training run to 100 epochs) whereas the

Llama 3.1 model used 16000 GPUs concurrently (no cost is given for the training,

however, the capital expenditure of the training cluster was likely to be in the 100s

of millions of dollars).

While more common in natural language processing, foundational models can also

be found in other domains. Most notably for this thesis are the computer vision

foundation models:

Segment Anything: segmentation models are typically trained to segment us-

ing application specific datasets [81] [82]. Segment Anything [83] takes a different

approach: by training a segmentation network on a suffficiently large and diverse

dataset, a network is able to be trained that achieves good performance on a wide

selection of tasks. Segment Anything is trained on 11 million images with an em-

phasis on collecting a wide range of images. The authors found that the zero-shot

performance of the network was comparable to networks trained for that task.

DINO v2: Meta AI research released a model they term DINO v2 [84]. This

model is a vision transformer trained on an extremely large (billion image scale),

uncurated image dataset. It is also important to note the sheer scale of the training

these models. The authors not that the full DINO v2 project consumed on the order

of 4.8 million GPU hours. There are very few organisations that are able to produce

work of this scale, and this is certainly far above the level available for use within a

PhD.

2.8 Discussion of the Literature

In chapter 1, I introduced the problem specification that forms the basis for the

work presented in this PhD thesis. While deep learning has revolutionised how we
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interact with the world in many fields, the application of deep learning methods to

the medical domain has been underwhelming. In chapter 1, I posit that this lack

of application is due to the increased cost of creating large, labelled datasets in the

medical domain in comparison with domains that do not need highly specialised

labellers. I also highlight that there is a large cost differential between the collection

of unlabelled and labelled datasets which can often be many orders of magnitude. If

it were possible to use this unlabelled data to effectively increase the performance of

deep learning methods with limited labelled data, the cost of applying these meth-

ods could be massively reduced.

Chapter 2 has identified a number of methods that could be used to reduce the cost

of applying the current state of the art deep learning methods to medical imaging

tasks.

Section 2.1 presents two methods in which the unlabelled data is ‘labelled’, with

the näıve approach being to label the data manually. This approach is described as

näıve, however, it could be the best approach for certain applications: it produces

gold standard, human verified labels and in certain circumstances can produce a

model that is faster to market (labels that can be given by non-specialised workers

can be created from a large number of commercial suppliers [85], [86] in a few days),

and with better performance than collecting an unlabelled dataset and trained using

a semi-supervised approach. Its use will depend on the exact problem circumstances.

The second approach to create a ‘labelled’ dataset is an approach known as pseudo-

labelling [53], while much cheaper than manually labelling, the performance of this

method will depend entirely on the performance of the initial network trained (that

is, the network that is used to label the rest of the unlabelled data). For the rest of

this thesis, I am working under the assumption that the cost differential of labelled

and unlabelled data is such that no more labelled data can be generated. This may

or may not be true of a reader’s problem space, and therefore care should be taken

before applying the work presented in this thesis.

Section 2.2 presents some alternative methods that could be used to solve a busi-
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ness problem. Many problems within the medical domain can be represented as

out of distribution detection: in many cases, it would be entirely appropriate for a

Machine Learning based system to highlight cases in which there is an abnormality

present which can be flagged for human review. These methods would not require

any labelled data, and so would not have the issues associated with manual labelling

(cost) or pseudo-labelling (lower performance). However, these methods would not

be able to perform classification: which may, or may not, be important for the prob-

lem space someone is trying to solve.

Due to these limitations, section 2.3 introduces a set of pre-training methodologies

that I term ‘Auxiliary task methods’. This set of pre-training methods incorporates

methods in which a pretext task is used to learn a set of weights for a model that

is more favourable for performance of the downstream task than randomly initial-

ising the weights. These weights can then either be frozen and used as a method

to project data down to a latent space or finetuned on the downstream task. Un-

fortunately, these methods have not found a level of performance greater than that

of supervised methods. This could be for a variety of factors, but I argue that this

is most likely due to the knowledge required for succeeding at the pretext task not

being the same knowledge that is required to succeed at the downstream task. For

example, the network used for context prediction may place heavy emphasis on en-

coding the low level features at the edges of the image, as they are most relevant

for predicting which patch is next to the context patch, however, this information

is not that relevant for a downstream task such as predicting if an image is a cat or

a dog. Similarly, for a method such as an autoencoder, slight variations in the hue

of an image will be penalised at the same level as completely missing a section of

the image, which could be extremely relevant for the downstream task. This lack of

transfer between the upstream and downstream tasks likely led to lower performance

than supervised training.

Some of the contrastive approaches introduced in section 2.4 attempt to solve the

issue of the lack of co-linearity between the performances on the upstream and down-

stream tasks by attempting to force the networks to learn high level features that
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are relevant for the downstream tasks. For example, Contrastive Predictive Coding

(CPC) v2 introduced patch-based augmentations (that is, random augmentations of

individual patches independent of the other patches). The authors claim that this

change forces the network to learn the high level features due to it not being able

to solve the problem using trivial solutions, such as continuity of lines or the colour

distributions of the patches. SimCLR also follows this approach by learning repre-

sentations that are consistent between images that have independently augmented

copies of the same image, thus learning features that are unchanging in between

these sets of augmentations. This does, however, assume that the high level fea-

tures that this learns are the same (or at least partially overlapping) with the set of

features that are useful for the downstream task. This would be dependent on the

specific task. This learning of high level features varies in its definition across the

various methodologies, but generally has lead to greater levels of performance than

the auxiliary task methods, seen in the previous section.

2.9 Conclusion

Chapter 1 introduced the problem that training state of the art, deep learning mod-

els requires huge amounts of labelled data. This is extremely challenging in many

domains, including the focus of this thesis: medical imaging. As discussed previ-

ously, labelling of data within the medical domain requires the knowledge of highly

specialised, and therefore expensive, domain experts. The creation of a labelled

medical image dataset could be orders of magnitude more expensive than a general

imaging task. For deep learning to be accepted into industry, the cost of application

must be substantially reduced.

In this chapter, a number of possible solutions were presented mainly focusing on

semi-supervised methodologies. However, these methods often provide lower levels

of performance than would be required for these methods to be applied into a pro-

duction environment, and a traditional supervised approach may be more suitable.

In the second half of the chapter, contrastive learning was introduced as a set of
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possible methods that have increased performance on some general imaging datasets

and are strong candidates for solving our problem case. In the next two chapters,

one of the methods highlighted in this chapter (Contrastive Predictive Coding) is

evaluated in its performance on a medical imaging diagnosis dataset. These chap-

ters lead on to further study in which a second method highlighted here, SimCLR,

is evaluated for its potential on medical imaging tasks. Based on this survey of

the literature, there are still unanswered questions as to whether these contrastive

methods would be suitable for use with medical imaging (aim 3) and if so, how

should they best be applied to achieve the best results (aims 1 and 2).

Contrastive learning has been chosen as an avenue of research due to the encouraging

results found in CPCv2 and SimCLR. Semi-supervised learning has long been touted

as a solution to the large cost associated with generating labels for a novel dataset,

however, a large amount of the methods studied here failed to achieve higher levels

of performance than a supervised baseline. CPCv2 claims that their contrastive

pretraining methodology increases the performance over supervised training in situ-

ations with limited labelled training data; fitting with the problem specification felt

acutely in the medical domain.
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Chapter 3

Contrastive Predictive Coding

Background

Chapters 1 and 2 outline the problem setting for how semi-supervised learning could

provide benefits when applied to a medical imaging task; outlining the difficulty in

acquiring labelled data, and how the contrastive learning framework can leverage the

power of large, unlabelled datasets. In this chapter, one such method of contrastive

learning, Contrastive Predictive Coding (CPC), is presented. Contrastive Predictive

Coding is a representation learning protocol which learns latent embeddings of data

that encodes high level information while discarding low level information. Prior

work has shown that Contrastive Predictive Coding is able to improve predictive

performance on ImageNet when given limited labelled data, along with large volumes

of unlabelled data. However, work investigating whether this method could be used

on medical imaging datasets is lacking. This chapter describes the design of the

protocol, and its iterative improvement - CPCv2 - before exploring its usage in the

literature and comparing and contrasting it to the Noise Contrastive Estimator.

3.1 Network Description

Contrastive Predictive Coding is a method for unsupervised learning, which can em-

bed useful information into a low dimensional latent encoding. The CPC objective

encodes contextual information into this latent encoding which allows the learned

83
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representation to more efficiently represent the data. It can be used on any data

which can be represented as a sequence and consists of three principles:

• Contrastive: the problem is framed as a contrastive learning problem , that

is: the network must ‘decide’ which embedding matches a query embedding,

out of a set of embeddings taken from a noise distribution. [6] proposes the

InfoNCE loss function based upon the Noise Contrastive Estimator.

• Predictive: the embeddings are not contrasted directly, instead a ‘context’

vector is used to predict ‘future’ embeddings. These ‘future’ embeddings are

subsequently contrasted with negative noise examples.

• Coding: The input data is represented as a latent code. Each datum is pro-

jected down to a low-dimensional, latent code using an encoder. As with most

work within this domain, this generally takes the form of ResNet, however,

any base encoder could be used.

The ultimate goal of the CPC protocol is to train an encoder to produce embed-

dings that encode high level features. The assumption behind the protocol is that

the optimal features for the downstream task are these high level features, more

discussion and investigation on the impact of this assumption can be found in chap-

ter 6. The method relies on two sub-networks: an encoder, and an autoregressive

predictor sub-network. The predictor sub-network attempts to predict the latent

representation of parts of the data surrounding the current data. For example, in

the case of images, the predictor attempts to predict the latent representation of the

patches below the current patch; and in the case of speech, attempts to predict the

latent representation of the word before and the word after.
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Figure 3.1: A diagram of the Contrastive Predictive Coding method. CPC is able to

be used on a number of modalities (here, signals are shown), but the same structure

remains. Sequential patches {xt − 3, xt − 2, xt − 1, xt} are each encoded by genc

down to a latent representation. Each of these latent encodings are fed to an autore-

gressive model (denoted gar) which summarises the data into a context vector (Ct).

Non-linear projections are then taken from this context vector to give the ‘future’

predictions. These predictions are then individually contrasted with a set of ‘noise’

vectors.

.
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Figure 3.2: A diagram of how image patches are encoded taken from [6]. Partially

overlapping image patches (left) are encoded down to a vector. After encoding, the

output of the model (middle) is a 7x7x1024 tensor. A sequence of these are then

summarised into a context vector Ct (right). From this context vector, predictions

are made (zt+2, zt+3, zt+4; note these are would be xt+1 from the figure 3.1). The

contrastive loss is then applied to these predictions vs the true future embeddings.
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3.2 Loss Function

The loss function attempts to learn useful features through two related goals: 1)

make similar images close in the latent space, and 2) make dissimilar images far

apart in the latent space. The inclusion of the second goal ensures that the encoder

does not just learn a constant embedding, as would be the case if only the first

goal existed 1. The CPC protocol defines these ‘similar images’ to be image patches

that are physically close together in the image. The loss must then ‘push’ patches

that are dissimilar to be far apart in the latent space. The CPC objective defines

dissimilar patches to be images taken from a noise distribution, defined as other

images within the full dataset. Through this process, it is hoped that the encoder

can learn embeddings that are useful no matter what task the encoder is used for,

from classification to segmentation. This is despite no explicit training for these

tasks.

Contrastive Predictive Coding optimises a contrastive loss function, InfoNCE: the

network is optimised to identify a target zi+k,j from a set of randomly sampled fea-

ture vectors zl. The probability given to each possible vector is calculated using a

softmax, and evaluated using cross-entropy loss. Summing over all patches achieves:

LCPC = −
∑
i,j,k

log
exp(ẑTi+k,jzi+k,j)

exp(ẑTi+k,jzi+k,j) +
∑

l exp(ẑ
T
i+k,jzl)

(3.1)

In this equation zi+kj represents the encoding of the kth offset of patch i,j using

the current encoder, with ẑi+k,j representing the projection from the context vector.

The rest of the equation is simply the categorical cross entropy of the softmax of

this, with zl being an encoding of a patch from elsewhere in the space of possible

images. Taken as a whole, this is the probability that the network assigns to the

predicted positive being the true positive. This loss function will optimise the net-

work to produce embeddings that put similar patches together in the latent space

1BYOL seen in chapter 2 does not use negative samples, and yet does not produce constant

embeddings: only hypotheses are given for why this could be the case and more investigation may

be required.
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and dissimilar images far apart in the latent space.

This loss function, introduced in [6], has been used both in its current form, and

with modifications, in numerous subsequent works. [1, 68, 71] all use a modification

of the InfoNCE loss function which incorporates l2 normalisation of vectors and tem-

perature scaling to improve performance. This modification is discussed in further

detail in chapter 5.

3.3 Improving Performance: CPCv2

Contrastive Predictive Coding version 2 [2] (figure 3.3) was introduced as an im-

provement to the original CPC method. Henaff et al introduced a number of changes

to the method, which in total improved the top-1 performance on 1% of the data from

23.1% to 52.7%. This is a marked improvement, however, it strays away from the

standard method for comparing the performance of unsupervised methods: adding

a linear layer to the output of the embedding. Therefore, the performance of CPCv2

cannot be directly compared to the other methods introduced in chapter 2, however,

it is still important as it is one of the first methods to claim to outperform supervised

learning.

The changes between CPCv1 and CPCv2 are summarised below:

• Changes to the Patch Size: In CPCv1 Oord et al used a 7x7 grid of patches;

in CPCv2, the size of the individual patches was increased, thus the network

was able to ‘see’ more of the image at once, meaning larger features could be

encoded. When evaluated on an arbitrary dataset, this improved performance

by 2%.

• Model Capacity: The width of the network at the site of latent embedding

was increased from 1024 dimensions in CPCv1 to 4096 dimensions in CPCv2.

When any type of unsupervised or semi-supervised learning task is performed,
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Figure 3.3: Visual representation of the CPC encoder training, along with how this

encoding is used in the supervised phase of the method. This image shows not only

the CPC encoder training, but also how the encoder can be utilised for efficient

classification. This image has been taken from [2]

.

information is lost. With a good pretext task, the information lost is not that

useful for the secondary task. By increasing the size of the latent embedding,

more features are learned, therefore, less information is lost. In addition to

network width, network depth is also increased. On an arbitrary task, these

improved performance by 5%.

• Patch-based Augmentation: CPCv2 introduces patch-based augmenta-

tion. Rather than the whole image being transformed once, each patch that

is created is independently augmented during sampling. This method was

previously seen in context prediction [15] (section 2.3) and is applied for the

same reason: without patch-based augmentation, it is possible for the network

to learn to recognise low level feature across patches, rather than learning

the high level contextual features. If the network is able to use these cues to

solve the pretext task, the network could achieve higher levels of pretraining

performance, which actually degrades downstream performance. Patch-based

augmentation should help mitigate some of this risk by making it harder for

the network to use these shortcuts. When evaluated on an arbitrary dataset,

this improved performance by 4.5%.



90 CHAPTER 3. CONTRASTIVE PREDICTIVE CODING BACKGROUND

• Increasing the Degrees of Prediction: In CPCv1, the goal of the CPC

objective was to correctly identify which set of patches came from the patches

proceeding the query image. CPCv2 extended this to force the objective to be

able to predict the embeddings of the patches surrounding the query sequence,

no matter which direction the patches are given. This includes top-to-bottom,

bottom-to-top, left-to-right, and right-to-left. When evaluated on an arbitrary

dataset, this improved performance by 2.5%

• Change from Linear Layer to ResNet: As explained before, the standard

method for evaluation of unsupervised methods is to add a linear layer to the

output of the network, this allows for evaluation of how linearly separable

the classes have become, a pseudo evaluation of how well the unsupervised

learning method has worked. However, this is unlikely to lead to the best

performance. Hénaff et al changed the secondary network to a ResNet, which

massively increased performance at the expense of comparability.

• Layer Normalisation: Hénaff et al found that the use of batch normalisa-

tion within the CPC protocol actually harmed performance. However, layer

normalisation can be used in its place to increase performance. Hénaff et al

hypothesised that this was due to the network taking advantage of the batch

statistics to make its prediction, in essence: cheating. By changing to layer

normalisation, and evaluating on an arbitrary dataset, this improved perfor-

mance by 2%

——————————————–

As with CPCv1, while there is a large amount of interest in the method, there has

been limited attempts to apply the method to datasets outside of general imaging

datasets such as ImageNet [41]. When applied to other datasets, CPC would often

report good, but not necessarily state of the art results: [87] [88] [89].
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3.4 Comparison to Related Methods

Contrastive Predictive Coding builds on a number of works. The contrastive loss

function, InfoNCE, was based upon the work of Gutmann in Noise Contrastive Es-

timation [90].

Noise Contrastive Estimation: Noise Contrastive Estimation (NCE) is a estima-

tion principle to model the underlying distribution of a set of data. This modelling

is accomplished through distinguishing between the real data within the set and

artificial noise. This loss function is conceptualised as a supervised learning prob-

lem: training a network to complete a binary classification problem, classifying real

data from noise. Given a set of real data: {X1, X2, X3, X4, ...XN} and a set of noise

{Y1, Y2, Y3, Y4, ...YN}, NCE optimises the objective function:

JT (θ) =
1

2T

∑
t

ln[h(xt; θ)]− ln[1− h(yt; θ)] (3.2)

Where:

h(u; θ) =
1

1 + exp(−G(u; θ))
(3.3)

G(u; θ) = lnpm(u; θ)− lnpn(u) (3.4)

The objective is to maximise the difference between a positive item and noise, and

minimise the distance between noise and noise. In equation 3.2, h(u; θ) is the sig-

moid function of the difference between the probability that the datum comes from

and the noise distribution (eq 3.3). In the equations above, theta (θ) is the model

parameters; with h(xt; θ) being the model with parameters θ and input xt.

Gutmann et al note that the closer the noise distribution is to the data distribution,

the better the model will be. It is important to point out that the representations

produced by the NCE are not normalised: the model must learn to produce nor-

malised vectors by itself. Optimisation of the objective will result in a statistical

model of the data which can then be used in a further task.
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In contrast to a lot of previous unsupervised methods such as PCA [91], the Noise

Contrastive Estimator method conceptualises the unsupervised task as a supervised

learning problem. From this building block, the InfoNCE loss function described in

section 3.2 was built. This extended the work from a binary classification problem

to a contrastive problem, in which the network has to identify the correct embedding

from a set of possible ‘noise’. The “noise model” used in CPC is images taken from

elsewhere in the full dataset, as opposed to any artificially constructed dataset. This

allows the noise model to be close to the true distribution, which should improve

performance.

3.5 Use in Literature

Semi-supervised learning is often proposed as a possible solution to a lack of la-

belled data in many fields. Contrastive Predictive Coding should help with data

acquisition problems that are acutely felt in the medical imaging domain. Despite

this, there is limited work looking to utilise CPC to improve results. This section

attempts to describe and evaluate the work that has been conducted.

Histology image interpretation has had by far the most interest in using CPC 2. [92]

applied a two stage process to detection and localisation of breast cancer in his-

tological data. They combined two different methods, CPC with multi-instance

learning. As with normal CPC, an encoder is trained on an unlabelled dataset of

histopathelogical images, learning an embedding of the data. This embedding is

then used in the secondary task: multi instance learning. Multi instance learning

(MIL) is a type of weakly-supervised learning in which a classifier learns to classify

a ‘bag’ of data points as either 0 or 1, with a bag labelled as 1 if it contains at least

one instance of the feature to be detected, and 0 if it contains no instances. This

allows both classification as well as localisation with no segmentation data. Segmen-

tation of medical images is a time consuming and expensive process, particularly

for medical images. While the method works for weak segmentation with no direct

labels, it usually suffers from very weak performance in comparison to a normal

2There does not appear to be any principled reason for this.
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supervised method. [92] reported a 62.6% ± 11.6% accuracy on a binary classifi-

cation task when just using MIL. However, when the authors trained the MIL on

a CPC trained embedding mechanism, performance was increased to 90.6% ± 2.88%.

In addition to image data, 3D adaptations of the CPC method have gained interest

due to 3D data being more prevalent in medical imaging than in other domains.

Modalities such as MRI, CT, and OCT all provide 3D scans, and methods that can

natively handle this data could possibly lead to better performance. [93] presented

a 3D adaptation of CPC along with other adapted self-supervised methods, and

evaluated on three distinct 3D datasets. They found that training on 3D data di-

rectly performed better than using a model trained on 2D data and used on 3D. [94]

evaluated 3D CPC along with other methods, and a performance increasing “task

related CPC” with 3D CPC performing on par with 3D jigsaw. [95] also found that

3D CPC outperformed most other comparable baselines.

As outlined previously, CPC is able to be applied to many different data types,

including signal data. One type of signal data that has received a large amount

of attention is electrocardiogram (ECG) classification. [96] applied various methods

found in computer vision to the interpretation of ECG data, they found that CPC

performed well; using CPC encodings and a linear layer was only 0.8% below super-

vised performance despite a significantly less complex learning model. [97] also used

an image based method for their analysis of CPC on ECG data. CPC was outper-

formed by more popular methods such as SimCLR and MoCo but performed well,

as with the previous method. [98] explored ECG abnormality classification among

other tasks, and found that CPC performed the worst out of tested methods, and

significantly worse (71.6% to 98.4% accuracy) than the supervised baseline. [99]

explored classifying electroencephalogram (EEG) data with various contrastive self-

supervised learning methods including CPC, finding that CPC performed worse

than their supervised baseline and 5 out of 6 of the other methods tested.

The large majority of the work completed on CPC has been focused on these small

areas of interest. For CPC to gain more utility, its evaluation needs to be taken on



94 CHAPTER 3. CONTRASTIVE PREDICTIVE CODING BACKGROUND

a greater amount of datasets across multiple imaging domains.

3.6 Direction of Future Work

Contrastive representation learning provides a possible framework that could alle-

viate some of the issues around data access for medical image analysis using AI.

Contrastive Predictive Coding is one such method that has found success on general

(ImageNet) datasets. Despite this theoretical utility there is a lack of replication

on datasets outside of general imaging datasets, and those replications that do exist

mainly focus on a limited number of domains (histology, ECG, and 3D adaptation

have a lot of attention). In addition to the lack of replication, the replications that do

exist does not show the same level of improvement that the original paper [2] showed.

Overall, Contrastive Predictive Coding [6] introduces an interesting semi-supervised

methodology with theoretical use cases within the medical imaging field. Oord,

Hénaff, and others have provided evidence for the utility within general imaging

tasks, however, the evaluative work on medical imaging task is limited. To address

this limitation, I present the following chapter: an evaluation of Contrastive Predic-

tive Coding on a novel polyp detection dataset. In addition, work is conducted to

examine how well the representations handle adversarial attack and domain shift.

In the next chapter, work is conducted to examine the effect of minor perturbations

of the input data on the ability of the network to produce good results. I use the

term ‘adversarial attack’ in this section, however, this will measure the ability of the

networks to withstand any such minor variation in input data, such as sensor noise

and artifacting. By increasing the body of work evaluating CPC, it is hoped that

this will add to the evidence for when CPC could be of use.



Chapter 4

An Evaluation Of Contrastive

Predictive Coding For Medical

Image Analysis

Abstract

Numerous semi-supervised methods, such as Contrastive Predictive Coding (CPC),

have been suggested for improving performance when faced with limited labelled

training data. This chapter tests whether the performance of a ResNet trained on

CPC embeddings is better for polyp detection in colonoscopy images than a ResNet

trained on the pure pixels. It shows that a ResNet trained on CPC embeddings

has higher classification performance (+11.2%) when given limited data. The re-

sistance of the two approaches to perturbation of the images is evaluated, showing

that ResNets trained on CPC embeddings could be more susceptible to random

perturbation than ResNets trained on the pixels and presents a technically novel

mitigation to this issue. In addition, an evaluation of how well these models handle

domain shift shows a statistically significant improvement in AUC when learning

from CPC embeddings. Due to the success of applying the CPC methodology to a

polyp detection task, the work is extended to a larger sample of medical imaging

tasks, finding that CPC improves performance on some, but not all datasets.

95
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4.1 Introduction

Contrastive Predictive Coding (CPC) [6] [2] is a representation learning method to

establish powerful image features without the need for labelled data. The original

CPC paper (CPCv1) proposed a universal self-supervised representation learning

approach that can embed shared contextual information across space between high-

dimensional signals while discarding less relevant local low-level information and

noise. Intuitively, CPC focuses on learning the context of the features within the

image, by learning representations that relate high-dimensional signals from one

area in the image with representations in other areas of the image. This representa-

tion can then be used by a second network to perform a classification task. In this

research, embeddings are obtained from training a CPC network on medical images

to enhance the performance of a classifier trained on small datasets. In this work,

this second phase of learning, using the small dataset to learn from the representa-

tion learned through CPC, is termed ‘the downstream task’. Existing work shows

that the advantage obtained from using CPC varies with the size of the dataset

available for the downstream task, and that CPC will be most beneficial where that

dataset is small. However, some published work [6] is based on comparisons where

an under-powered baseline is used. Therefore, this work explores whether the ad-

vantage remains when an equally powerful network is used for the comparison.

A further question for such representation learning methods is whether the use of

the method makes the network more or less robust to challenges known to affect

reliability and generalisability: this work investigates both domain shift and adver-

sarial attack. It is possible that representation learning techniques could make the

downstream learning less susceptible to such shifts, if the embeddings learned in the

initial task are more generalisable. Equally it is possible that the two-stage pipeline

builds in more dependencies, making the approach more susceptible to such shifts,

showing a large difference in the robustness of the two approaches.

In this chapter, the Contrastive Predictive Coding (CPC) framework is evaluated for

identifying polyps in colonoscopy images. Cancer of the colon is one of the leading
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cancers in both men and women [100]. Some studies [101] [102] have indicated that

having a second observer at a diagnostic procedure can increase the rate of detec-

tion of these cancers by up to 50%. It is possible that AI can act as that observer,

increasing detection rates [30] [31]. If this could be applied to clinical practice, mor-

tality from missed lesions could be reduced. In addition to colonoscopy images, this

chapter studies the effect of learning from CPC embeddings across three additional

datasets: an extended version of the polyp detection dataset; an Optical Coherence

Tomography scan dataset; and a dataset consisting of dermatology images.

It is hoped that this chapter can facilitate improvements in the state of the art when

performing machine learning on limited data.

4.2 Methodology

In 2018, [6] introduced the representation learning framework called Contrastive

Predictive Coding (CPC). The framework proposed a universal self-supervised rep-

resentation learning approach that can embed shared contextual information across

space between high-dimensional signals while discarding less relevant local low-level

information and noise. This representation can then be used by a second network to

perform a classification task. Figure 4.1 shows a visual representation of the CPC

framework, and how the CPC trained encoder can be used to train a second ResNet.

Part (a) of the diagram shows how a ResNet-50 is trained using the autoregressive

(AR) network along with the InfoNCE loss function. Parts (b)(i) and (b)(ii) show

how the CPC encoder can be used for the training of a ResNet. Figure 4.1 addi-

tionally shows how the labelled data is fed directly to the ResNet for training the

baseline models

Encoder Training: Every image is split into a 7x7 grid of overlapping patches,

each of which are randomly augmented using channel dropout, rotation, shear, elas-

tic transform, colour, and jitter. These patches are then projected to an embedding

using a ResNet-50 [7] with the final layers removed after the flatten layer, resulting

in a 1024 vector as the embedding for each patch. A sequence of these patches
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Figure 4.1: Visual representation of the CPC encoder training, along with how this

embedding is used in the supervised phase of the method. This image shows not only

the CPC encoder training, but also how the encoder can be utilised for classification.

Adapted from [6].

.

(length ∈ {1,2,3}) is fed to an autoregressive model (GRU [103]) used to predict

the three ‘future’ embeddings of the sequence. The loss function then contrasts

these predictions with embeddings taken randomly from the full dataset using the

InfoNCE loss function, optimising the encoder to learn low-frequency features. The

CPC encoder is trained for 60k iterations 1, with a batch size of 16, and optimised

using the ADAM optimiser [104] and a learning rate of 2e-4. This training is one

epoch of 60k images. While this was smaller than was found in [6], this was multiple

days of training time. Throughout this thesis, trade offs had to be made due to the

computational cost of training these unsupervised methods. This is discussed in the

limitations section of chapter 8. To train the encoder, the unlabelled images from

the HyperKvasir dataset [10] are used.

Classifier Training: After training the encoder, all sections are discarded except

the ResNet encoder. For each image in the labelled training set, the image is split

into 7x7 grid of patches and embedded using the pre-trained encoder, resulting in a

7x7x1024 tensor for each image. A ResNet-11 (with reduced pooling size due to the

small input) is then trained to classify the images based on the embeddings. The

ADAM optimiser [104] is used with a learning rate of 5e-4, and early stopping [37]

1“Iterations” refer to the number of batches of data that the model is trained for. This is used

consistently throughout the thesis.
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with a patience of 50, up to a maximum of 1000 epochs.

Implementation: All implementation is in Keras [105] 2.2.4 , with the autore-

gressive section of the network forked and adapted from [106]. Albumentations is

used [107] for augmentation. All datasets are open source and do not require ethical

approval.

4.2.1 Statistical Tests

H0: The two distributions have the same mean.

H1: The distributions have different means.

A statistical test is needed to examine whether CPC performs better than ResNet,

given a set amount of data. Multiple networks are trained and evaluated on either

CPC embeddings or on the pure pixels. This gives a distribution of accuracies for

each level of data, however, a way to compare these distributions is needed. There

are a number of possible statistical tests that could be used, these are examined

below:

T-test: One standard way of comparing two distributions is the t-test. The t-test

is a statistic to estimate whether there is a difference in the means between two

sample distributions. It assumes that the data is normality distributed. Due to this

assumption, the t-test has not been chosen for statistical analysis for this chapter.

Wilcoxon signed-rank test: An alternative method would be to use a Wilcoxon

signed-rank test. The Wilcoxon signed-rank test is a non-parametric replacement

for the t-test in cases when the data samples do not approximate normality. How-

ever, the problem with this method is that it can only tell you whether the ranks of

the differences are statistically significantly different, rather than the means of the

two groups as would be the case if performing a t-test. For this reason, a choice was

made to also use the bootstrap hypothesis testing method, described below, to test

whether the means of the groups are statistically significantly different.
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Bootstrap Hypothesis Testing: The goal of this experiment is to test whether

the mean accuracy of the ResNet and the mean accuracy of the CPC ResNet is

significantly different. To perform a statistical test, an assumption is made that the

results come from the same underlying distribution, this will be the null hypothesis.

A probability density function is then created for the difference in means, assuming

that both sets of data come from the same underlying distribution. From this, the

P-value for the actual sample can be calculated.

The algorithm is set out in pseudo-code below:

Data: x = distribution 1; y = distribution 2; z = x
⋃

y

1 for i < 1000000 do

2 set i = randomly sample from z, len(x) times

3 set j = randomly sample from z, len(y) times

4 difference in means = mean(set i ) - mean(set j)

5 store(difference in means)

6 i++

7 end

8 PDF = the stored distribution of means

4.3 Experiments and Results

Three experiments are conducted to evaluate the CPC embedding mechanism: firstly,

a study into whether the results found in [2] can be replicated on a medical imag-

ing task. The endcoder is then evaluated to examine how robust these embeddings

are to perturbation. Finally, examination of how well the embeddings translate to

domain shifted image datasets under a data efficient transfer learning paradigm.
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4.3.1 Learning from CPC embeddings

This section examines whether a ResNet trained on CPC embeddings will perform

statistically significantly differently than a ResNet trained on pure pixels. The per-

formance of a ResNet trained on CPC embeddings is compared to the same set of

ResNets 2 trained on pure pixels for direct comparability.

Dataset: The first dataset used consists of 2000 colonoscopy images split into two

classes from the HyperKvasir [10] dataset, collected as routine scans at a Norwegian

hospital. Images containing either a polyp or no detected abnormality are used.

Some images contain a green box in the bottom left hand corner which is used by

the radiographer to assist with the procedure, however, they are not in all images.

To ensure that this does not have an impact on performance of the network, this

area is blanked over in all images.

Experimental Design: This experiment examines whether CPC can be used to

improve predictive performance of a ResNet for polyp detection, when given limited

labelled data (see figure 4.1). It compares the CPC framework to a ResNet trained

on pure pixels. Two sizes of ResNet are used: ResNet-11 and ResNet-50. Examina-

tion is conducted on different subsets of the full training data to assess whether the

learned CPC embeddings lead to performance improvement. The dataset is divided

using a 80:20 train:test split; the training set is then randomly sampled 20 times to

create 20 separate training and validation permutations. From these permutations

an undersampled dataset is used for training. Samples of sizes 1%, 2%, 5%, 10%

20%, 50%, 100% of the training set are used. Classifier models are trained using

the protocol set out in 4.2. For each subset, a test is conducted to examine whether

using the CPC embeddings leads to any change in predictive performance.

2An argument can be made that this would not be a fair comparison as the models that

have been pre-trained have benefited from additional training (the pre-training itself). While I

acknowledge this argument, in this thesis I have followed the principal models should be held

constant in their downstream training length and size, with the point of comparison being the

initialisation weights.
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Figure 4.2: Mean classification accuracy of a ResNet trained on the pure pixels

(shown in black) and a ResNet trained on the learned CPC embeddings (shown

in red). Left shows a ResNet-11 and right shows a ResNet-50. A baseline with

standard hyperparameters is shown in grey in both images.

Results: Figure 4.2 shows the performance of ResNets trained on pure pixels and

CPC embeddings at different amounts of labelled data. There is statistically sig-

nificant performance gains from the CPC embedding at: 1%, 2%, and 5% of the

training data. As the amount of labelled data increases, the incremental gain di-

minishes until there is no difference between training with the CPC embeddings and

pure pixels. This finding is consistent between both ResNet11 and ResNet50.

4.3.2 Robustness to Perturbation

Deep neural networks are susceptible to minor additions of noise massively changing

the output [108]; good models should be robust to such challenges. In this section, a

study on how these ‘attacks’ affect the performance of ResNet trained on either pure

pixels or on CPC embeddings is conducted. In addition to investigating how these

attacks impact downstream classification performance, this section also provides a

technically novel mitigation strategy that helps reduce the impact of these attacks.

Perturbation Dataset: Three different augmentations are used that I conjecture

will have an impact on the detection of a polyp, based upon work completed by [109]

and using default augmentation ranges from [107]:
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• Brightness: The brightness of the image will be randomly varied. This will

have a limit of 0.2.

• Noise: Random Gaussian noise will be added. This will have a random

variance between 10.0 and 50.0.

• Blur: The image will be blurred using a randomly sized filter up to a size of

7 pixels.

All images were generated ex ante, ensuring that all networks are tested on exactly

the same test images. Ten derivative images are created for each image in the test

set, giving a total of 4000 images for each ‘adversarial’ test set.

Experimental Design: The effect of these ‘attacks’ is examined on three sets of

networks taken from the previous experiment (using the ResNet11s): one set of

models trained on 1% of the training data; one set at 5% of the data; and one set

at 100% of the data. For each of the perturbations, for each of the image amounts,

for each of the types of ResNet, the performance of the network for polyp detection

is evaluated on an augmented test set. Note, that no further training has been con-

ducted. These results are given in table 4.1. A second experiment is then conducted

with a technically novel mitigation is included. The same experimental setup is then

repeated, however using an second encoder is trained using the protocol set out in

4.2, however, includes the perturbations in its training protocol to help mitigate its

impact.
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Table 4.1: Mean accuracy of ResNets either trained on CPC embeddings (Embs) or

pure pixels when given test set with random perturbations (shown under “Normal

Augmentation”). The second set of experimental results, showing the results from

the technically novel mitigation being applied, is shown under “With Mitigation”.

Bold indicates significance.

Normal Augmentation With Mitigation

Augmentation
Pure

Pixels

CPC

Embs

1

P-value 1

CPC

Embs

2

P-value 2

1%

Brightness 0.7123 0.6718 0.0305 0.8579 <1e-4

Noise 0.6045 0.5181 0.0163 0.5217 1.75e-2

Blur 0.8361 0.7173 2.34e-3 0.8044 0.113

5%

Brightness 0.7795 0.7256 6.85e-3 0.935 <1e-4

Noise 0.5679 0.5513 0.310 0.54975 0.292

Blur 0.9356 0.773 <1e-4 0.84 3.30e-4

100%

Brightness 0.9068 0.7429 <1e-4 0.9288 0.146

Noise 0.7745 0.5676 3.21e-3 0.5731 3.56e-3

Blur 0.9709 0.7854 <1e-4 0.8704 <1e-4



4.3. EXPERIMENTS AND RESULTS 105

Results: Table 4.1 shows the mean performance of the selection of ResNets when

undergoing ‘attack’ from various image perturbations. It can clearly be seen that

in the case of all three ‘attacks’ that the ResNets trained on the CPC embeddings

are more susceptible. In the second experiment, when the proposed, technically

novel mitigation is included in the training protocol of CPC, this increases mean

performance in 8/9 cases, however, in 4/9 cases, the ResNet trained on pure pixels

still attains higher performance.

4.3.3 Domain Adaptation

Domain adaptation is an open challenge for machine learning [110], and one that is

particularly relevant for medical imaging. The images captured by different scan-

ners can vastly differ based on scanner parameters and brand, and the pathology

may look completely different depending on population. This section evaluates how

networks trained using CPC or pixels respond to this domain shift.

Datasets: This section tests the models on two datasets not used for training. The

datasets are detailed in table 4.2.

Experimental Design: The models trained in section 4.3.1 are finetuned , then

evaluated on datasets not included in the HyperKVASIR datasets to test ability

of both sets of ResNets to adapt to a new domain. This includes data taken on

different scanners and on different populations. For this set of tests, a subset of two

Table 4.2: Data description of the test sets used in section 4.3.3.

Dataset
Number of Images

(polyps/non-polyps)
Notes

Child (a) [111] 200/800

Images of polyps in children, uses the same

scanner brand as the training set

———

Child (b) [111] 100/300
Images of polyps in children and taken on a

different scanner to the training set.
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models are selected: the set of 20 models trained on 1% and 100%, and for com-

parison ResNets trained from scratch (i.e a new model trained on CPC embeddings

of the new training set). Two model subsets were chosen, one at either extreme

of dataset sizes to show that the results hold for different dataset sizes, while bal-

ancing against the increase in train time of finetuning all models across the subsets

used in 4.3.1. The same training protocol described in section 4.3.1 is used. Their

performance is then evaluated on the test sets of these datasets. For each of the

models, eight images of both polyp and non-polyp images are randomly sampled

from the relevant training set for finetuning 3. In this experiment AUC was used

as the evaluation metric rather than accuracy used in the rest of the chapter. The

Child (a) and (b) datasets have unbalanced test sets and therefore reporting the

accuracy figure could be misleading to the reader. For this reason, the evaluation

criteria has been changed to AUC, a metric that is less susceptible to class imbalance.

Results: In 5/6 cases found in table 4.3, learning from Contrastive Predictive Cod-

ing embeddings results in statistically significantly higher performance than learning

directly from the pixels. It should be noted that the pure pixel models trained on

100% of the data could not relearn the domain shifted features and achieved an AUC

of approx 0.5. This outlier result has not been explored to understand why using the

model trained on the pure pixels on 100% of the data failed to learn. One possible

reason for this could be dead neurons: the process in which neurons with a ReLU

activation layer stop contributing to the output of a model, therefore limiting its

ability to learn. As this has not been studied any further, this is purely speculation.

3Throughout this thesis, finetuning refers to initialising a network with previously learned

weights and training from this starting point.
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Table 4.3: Classification AUC of ResNets trained on pure pixels or on CPC embed-

dings when tested on various testing sets when under domain shift. Bold indicates

significance.

From Scratch 1% 100%

Dataset
Pure

Pixels

CPC

Embs.

P-val
Pure

Pixels

CPC

Embs.

P-val
Pure

Pixels

CPC

Embs.

P-val

Child (a) [111] 0.7549 0.7747 1.67e-3 0.7253 0.7720 5.52e-3 0.4990 0.7506 <1e-4

Child (b) [111] 0.7895 0.7868 0.141 0.6870 0.7652 0.0378 0.5333 0.7762 <1e-4

4.4 Extension to Other Datasets

On the basis of the encouraging results results found in the previous section, the ap-

plication of CPC to medical imaging tasks has been extended to three more datasets.

In this section, the performance of CPC on an extended colonoscopy dataset, OCT

and dermatology images are explored. Initially, the ability of the networks to learn

useful embeddings is examined. The experiment described in 4.3.1 is repeated on

these extended datasets.

4.4.1 Datasets

This section uses three medical imaging datasets across a range of imaging modali-

ties and pathologies, to ensure its general applicability. With all datasets, a random

subset of the relevant datasets is chosen which is then split into training and testing

sets. The training set is further split into a training and validation set, the latter

being used for early stopping [37] a technique to prevent overfitting on training data.

It works by monitoring a validation set that is not part of the training set, and stops

training when the validation loss does not decrease for a set number of epochs, the

value of which is called the “patience”.

Colonoscopy: A dataset of 3000 colonoscopy images from the HyperKvasir [10]

dataset is split into three classes. Images are used containing: a polyp; no detected

abnormality; and one class combining the different grades of colitis into a single
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class. The HyperKVASIR dataset also contains an unlabelled dataset of gastro in-

testinal tract endoscopy images which were used for training the CPC encoder. This

dataset is an extended version of the one used in the previous experiment, with the

addition of images containing colitis.

Optical Coherence Tomography: Retinal Optical Coherence Tomography (OCT)

is an imaging modality used to take three dimensional scans of the retina. These

scans can then be interpreted by an physician to identify a number of retinal patholo-

gies such as macular degeneration and diabetic macular oedema. In the UK, OCT

scans may be interpreted by non-physicians [112], therefore automatic interpretation

could help with reducing missed diagnoses. A subset of [11] dataset is used. The

subset consists of four classes of images: choroidal neovascularization (“abnormal

blood vessels grow[ing] into the retina and leak fluid” [113]); diabetes-related macu-

lar edema (“a complication of diabetes caused by fluid accumulation in the macula

that can affect the fovea” [114]); drusen (“deposits of cellular debris that accumulate

under the retina” [115]); and images where no pathology is present. 8000 randomly

selected images split between four classes are used for supervised training and the

full dataset is used for encoder training.

Dermatology: Skin cancer is an increasingly common form of cancer that affects

between 2 and 3 million people worldwide each year [116]. Diagnosis relies on

interpretation of photographic images of the lesion. A subset of the HAM10000 [12]

dataset is used utilising 3000 images split into three classes: Benign lesions of the

keratosis (a non cancerous lesion); Melanoma; and Melanocytic nevi (pigmented

moles [117]). The full dataset is used for unsupervised training.

4.4.2 Learning Useful Features

The CPC encoder is not explicitly trained to produce useful encodings for any one

task, and therefore, there is no guarantee that the features learned will be any more

useful than a random projection. An evaluation is conducted into whether the CPC

encoder has learned useful features for a medical imaging classification task across
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three datasets.

Experimental Design: Two sets of linear layers are trained on each dataset: one

set starting from frozen CPC embeddings; and one starting from the frozen embed-

dings produced by a randomly initialised encoder. Note that while the networks are

frozen, the linear layers are not, allowing them to learn if the features are useful for

the downstream task. The layers are trained on a randomly selected 1% subset of

the full datasets. The layers are trained for a maximum of 1000 epochs, using early

stopping with a patience of 50 to prevent overfitting. The ADAM optimiser with a

learning rate of 5e-4 is used.

Statistical Analysis: 20 experimental repeats are conducted, with seeded ran-

domisation for reproducibility, comparing the distribution of the mean estimated

using the bootstrap statistical test [118]. 1000000 samples with replacement are

used to estimate the probability distribution.

Results: Table 4.4 outlines the mean performance of both sets of linear layers. In

all cases, the linear layers trained on CPC embeddings have a statistically signifi-

cant improvement over training on a random projection. This result indicates that

the CPC pre-training can learn features that are useful for classification without

any explicit training for this task. Note: random chance is 33.3% for the colon and

dermatology dataset, and 25% for the OCT dataset. While statistically significant,

the results for OCT is poor.



110 CHAPTER 4. CPC FOR MEDICAL IMAGE ANALYSIS

Table 4.4: Linear layers trained on either CPC embeddings or on embeddings pro-

duced by a randomly initialised encoder. Networks are trained using a randomly

selected subset of the full dataset, consisting of 1% of the images. Bold indicates

significant result.

Dataset
CPC Mean

Accuracy

Random Mean

Accuracy
P-value

Colon 0.7681 0.3348 <1e-4

OCT 0.2726 0.2496 1.87e-4

Dermatology 0.6355 0.3384 <1e-4

4.4.3 Classification from CPC embeddings

In this section, an investigation is presented into whether training a ResNet on CPC

embeddings will achieve a statistically significantly different performance than a

ResNet trained directly on the image pixels. The experiment is conducted on the

three datasets outlined in section 4.4.1.

Experimental Design: The performance of ResNet-11s trained directly on the

images is compared to the performance of ResNet-11s trained on CPC embeddings

of those images. This follows the same model training design set out in section 4.2

for both encoder training and classifier training. A pooling size of two is used within

the second ResNet for learning from CPC embeddings (compared with eight for the

pure pixels) due to its smaller input size. For each dataset, the performance is

evaluated in {1%, 2%, 5%, 10%, 20%, 50%, 100%} sized subsets of the full dataset.

As with the previous experiment: the networks are trained for a maximum of 1000

epochs, using early stopping with a patience of 50 and the ADAM optimiser with a

learning rate of 5e-4.

Statistical Analysis: 20 repeats are conducted with the same randomised seeds

as in the previous experiment, reporting the mean and 95% confidence intervals.
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Figure 4.3: ResNets trained on either the pure pixels or on the CPC embeddings.

Showing: Colonoscopy, OCT, Dermatology. Non-overlapping bars indicate signifi-

cance.

Results: Figure 4.3 compares the performance of two sets of ResNets across three

datasets. There are marginal performance gains from learning from CPC embed-

dings on two of the datasets, colonoscopy and dermatology particularly when trained

on limited data. However, the ResNet trained on pure pixels of the OCT dataset

outperforms the ResNet trained on CPC embeddings. Hence, learning from CPC

embeddings may result in higher performance than learning directly from the pixels.

However, it is likely that it does not work for all limited labelled data tasks.
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4.5 Discussion

This Chapter has presented evidence for the application of Contrastive Predictive

Coding to improving the performance of medical image classification when given

limited labelled training data. Experiment 1 (section 4.3.1) showed that learning

from CPC embeddings can increase accuracy of polyp detection by 11.2% when given

limited labels example. Despite this, experiment 2 (section 4.3.2) found that models

trained on CPC embeddings are less robust to perturbation than models trained di-

rectly on the images. Experiment 3 (section 4.3.3) showed that, despite the results

of experiment 2 (section 4.3.2), the models trained on CPC embeddings achieved

higher AUC on a transfer learning task than the model trained on the pixels directly.

Based on the positive results of section 4.3, further experimentation was conducted

to examine whether these positive results would extend to further datasets (section

4.4). This section found that while CPC improved performance on colonoscopy and

dermatology images, it failed to increase performance for classification of OCT scans.

Different imaging modalities have varying levels of suitability for use with Con-

trastive Predictive Coding (and semi-supervised learning more generally): Colonoscopy

produce a large number of images that can be used as an unlabelled dataset, with

each procedure producing between 30 and 45 minutes of video from which, each

frame can be extracted to produce an unlabelled training set. This differentiates

colonoscopy from other medical imaging tasks, in which, one patient usually pro-

duces one image: such as in the case of chest x-ray. This could be one explanation for

why there has been limited work exploring CPC on medical imaging tasks, and those

that exist focus on limited modalities such as histopathology images [92] [119] [120]

(Histopathology images are usually very high resolution images, which are able to

be split into many sub images to create the unlabelled dataset). Despite these the-

oretical arguments, CPC performed poorly on OCT scans and well on dermatology

photographs, therefore, the suitability of a dataset for use with CPC is dictated by

far more than just dataset availability. Based on this result, chapter 7 investigates

how the dataset affects performance of a semi-supervised method.
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Ensuring the safety and reliability of AI systems is of paramount importance, partic-

ularly for safety critical applications such as those in the medical field. It is impera-

tive that we study the robustness of these systems to factors that may dramatically

affect their performance. This chapter has shown that, despite the networks trained

on CPC embeddings performing better in accuracy when given limited data, they

are far less robust to perturbation than the networks trained directly on the pix-

els. This finding could have a large impact on the utility of this method for safety

critical applications. In experiment 2 (section 4.3.2), a basic mitigation strategy

is proposed to help increase the robustness of the model to perturbation, however,

this fails to increase the performance to that of the model trained directly on the

pixels. While beyond the scope of this work, further investigation is invited into

possible mitigation methods that could increase the model performance to equal to,

or greater than, that achieved by learning from pure pixels. A second limitation of

this experiment is that synthetic corruption has been used, which does not take into

account the likelihood of these appearing in a natural setting. This may go some

way to explaining the difference in result between experiments 2 (section 4.3.2) and

3 (section 4.3.3).

Experiment 3 (section 4.3.3) found that learning from CPC embeddings produced

models that were more robust to domain shift than learning directly from the pix-

els. This suggests that the representations learned by the CPC encoder training are

more generalisable than those learned directly from the pixels under a supervised

training regime. If this can be shown to be true across a larger number of datasets,

this paper, along with these other, would show that the assertions from [6] that

CPC learns higher level features to be true. Section 7.11 details an experiment in

which the generalisability of CPC investigated, finding that the features learned by

CPC are general features.

This chapter gives two principles for when CPC embeddings may be most appro-

priate for increasing performance: Experiment 1 (section 4.3.1) of the work shows

that as the amount of data increases, the performance of the two network types

converge, showing that any benefit of CPC is only felt at extremely low data sizes.
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Experiment 2 (section 4.3.2) shows that CPC is less robust to perturbations of the

test data. Based on the proposed mitigation, further work should be undertaken to

study the effects of the chosen set of augmentations on the downstream performance.

Limitations: Despite the contributions of this work, there are a number of limi-

tations that should be highlighted to the reader. Firstly, due to the computational

complexity of training semi-supervised models, the CPC models used throughout

this chapter have been trained for 60k iterations which was equivalent to 1 epoch of

training. This likely lead to a sub-optimally trained model. Additionally, with the

exception of the work in 4.3.1, the downstream ResNet in all other experiments was

a ResNet-11, much smaller than the ResNet-50 used in [2]. In chapter 8, I hypoth-

esise on how these changes may impact on interpretation of the results, however,

this is just speculation. Care must be taken with these results as it is possible that

these results do not extend to larger network sizes and training lengths.

In addition to the limitations outlined above, section 4.3.2 has outlined that ResNet-

11s trained on CPC embeddings are more susceptible to perturbation that ResNets

trained on pure pixels. This goes against the conventional narrative that they are

less likely to overfit. Despite this counter intuitive finding, no attempt has been

made to qualify why this has happened.

4.6 Conclusion

Contributions: Most AI studies of colonoscopy reported in literature [121] [122]

[123] [124] demonstrate that where extensive training datasets are available, net-

works can achieve remarkable performance. However, accessing high-quality, la-

belled datasets remains challenging. This chapter provides evidence for how a self-

supervised framework can be leveraged to enhance supervised performance on small

labelled datasets. The contributions of this chapter can be summarised as follows:

• Evidence is presented that using the proposed framework with CPC pre-

training, prediction performance can be increased by over 10 percentage points
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on unseen datasets when trained with limited labelled data.

• Prior work shows that deep learning can be very susceptible to adversarial

attacks [108]. This work demonstrates that ResNets trained with CPC are

more susceptible to perturbation than ResNets trained directly on pixel data.

• This work shows that ResNets trained on CPC embeddings perform better,

or no worse than, ResNets trained on the pure pixels under a data-limited

transfer learning scenario for the task of polyp detection.

• Finally, this work is extended to three other medical imaging datasets, showing

mixed results: confirming that CPC works on some, but not all, datasets.

This chapter has shown that ResNets trained on CPC embeddings can achieve higher

polyp classification performance than ResNets trained directly on the images. De-

spite this, this work also identifies a possible weakness of the CPC method and

proposes a mitigation for this. Additionally, it shows that learning from CPC em-

beddings performs statistically significantly better than learning from pure pixels

under domain shift. Based on these encouraging results, the final section of this

work extends the evaluation to three additional datasets, finding that learning from

CPC embeddings improves performance on the extended colonoscopy and derma-

tology datasets, but not the OCT dataset, leading to the conclusion that CPC is

not a universal method for improving performance on small datasets.
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Link to the aims: This thesis aims to investigate semi-supervised learning

and to understand how best to apply this set of methods to obtain the high-

est performance. This chapter has shown that, under very low labelled data

regimes, Contrastive Predictive Coding (CPC) can achieve higher classifica-

tion accuracy on a medical imaging task. It most importantly shows that,

as the amount of labelled data increases, the relative advantage of the semi-

supervised method diminishes. This shows the set of circumstances in which

semi-supervised learning is likely to be the most useful: in situations where

the cost of acquisition of extra labelled data is extremely cost prohibitive, such

as in the case of rare diseases. It also shows that it is likely to have less utility

in the case where the cost of acquisition of more labelled data is relatively

cheap, such as when labelled data can be collected from non-specialists, eg

AWS’s Mechanical Turk [40].



Chapter 5

SimCLR Background

In addition to Contrastive Predictive Coding, there are numerous other contrastive

learning protocols for unsupervised representation learning. SimCLR [1] is one such

method. As with CPC, the SimCLR protocol trains an encoder in an unsupervised

fashion which can then be used to perform a supervised task, hopefully reducing

the number of labelled examples one needs to achieve an acceptable performance.

SimCLR uses a contrastive loss to maximise the agreement between the latent en-

codings of two observations of the same image with different augmentations. This

forces the network to produce augmentation invariant embeddings; with the idea

that this will produce better semi-supervised performance. SimCLR is a conceptu-

ally simple framework for contrastive learning compared to related methods such as

MoCo and CPC. Despite its simplistic nature, SimCLR has been shown to produce

high performing results on multiple datasets [1] [3].

5.1 Network Description

SimCLR is a contrastive method (see chapter 2) which attempts to learn features

that are invariant to a number of random augmentations. It does this through max-

imising the agreement between different ‘views’ of the same image in the encoder

latent space. A diagram is presented in Figure 5.1: here, an image is transformed by

two random transformations, with each then projected into a latent space using an

encoder (in this work, a ResNet). This representation is then further transformed

117
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Figure 5.1: A diagrammatic representation of the SimCLR network. x is the input

image, x̄i is the transformed image, f(.) is the encoder network, g(.) is the projection

head network, zi is the final representation.

using a non-linear projection head.

For each image, x, in the dataset; two sets of of transforms t and t′ are applied

separately to the image. This produces two randomly transformed versions of x:

producing x̃i and x̃j. Each of these transformed images are projected from image

space to latent space using an encoder, f(.) (after training is complete, this is the

representation that will be used in the downstream task). A non-linear projection

head, g(.) is applied to these representations, forming zi and zj. A contrastive loss

is then applied to the set of projected representations, maximising the agreement

between the two z vectors.

SimCLR is a concatenation of a number of proposed components of other semi-

supervised techniques, distilled down into a simple to implement framework which

does not require specialised architectures (unlike CPC) nor a memory bank (unlike

MoCo). The authors note that “almost all individual components of [their] frame-

work have appeared in previous work, [...] the superiority of [their] framework is not

explained by a single design choice, but by their composition”. These components
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are detailed below:

• Data Augmentation: Data augmentation takes a large role within the Sim-

CLR framework. As with a large number of contrastive approaches, SimCLR

attempts to minimise the distance in latent space between two ‘views’ of the

same image: here taking the form of two stochastic augmentations of the same

image. This differs from Ye et al [125] in that both views are augmented, rather

than in Ye’s case which are minimising the distance between an unaugmented

and augmented version of an image. In SimCLR, the authors claim that the

use of random crop and colour distortion is “crucial to achieve good perfor-

mance”, however, this assertion is likely to only hold for object centric image

tasks, such as ImageNet.

• Encoder: Ultimately, the goal of SimCLR is to learn useful representations

that may then be used in some ‘downstream task’. Under this and related

frameworks, the representations take the form of latent ‘codes’, i.e a vector

representing the image. To produce this code, a mechanism to project the

image from image space to embedding space is needed. SimCLR trains a

ResNet encoder to act as this encoder, however, there is no principled reason

that this cannot be any arbitrary neural network.

• Projection Head: Rather than applying the contrastive loss function di-

rectly to the output of the embedding, Chen et al find that using a non-linear

projection head increases performance by 10% over no head, and by 3% over

using a linear projection head. This approach has been taken by prior work [6],

but the basis for doing so is just empirical. Chen et al hypothesise that this is

due to the head allowing the encoder to keep some features that are not useful

for solving the contrastive task, but are useful for the downstream task.

• Contrastive Loss Function: SimCLR optimises a contrastive loss function

which seeks to maximise the agreement between the two embeddings of two

views of the same image and maximises the disagreement between all other

examples in the batch. This loss is termed NT-Xent and is studied in further

detail in the section below.
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5.2 Loss Function

SimCLR uses a contrastive loss function similar to the InfoNCE loss function intro-

duced in the Contrastive Predictive Coding chapters, chapters 3 and 4. This loss

function minimises the difference between embeddings of similar pieces of data (in

this case, similar is defined as being two different transforms of the same image), and

maximise the difference between dissimilar pieces of data (dissimilar being defined

as any pair of images that are not stochastic transforms of each other).

li,j = −log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i]exp(sim(zi, zk)/τ)
(5.1)

In this equation, the objective is to ‘identify’ the pair of images that correspond to

the same image transformed with the two separate transforms. This loss function is

a simple contrastive loss function, similar to the loss function found in Contrastive

Predictive Coding (chapters 3 and 4), however, with 2 main changes: 1) a tempera-

ture scaling parameter; 2) the similarity metric is changed to be the cosine similarity.

The temperature scaling parameter has been introduced as a performance enhancing

change, this has also been found in numerous other works [71] [126] [16]. Rather

than using the dot product (zTi zj) of two vectors as the similarity metric - seen in

CPC - SimCLR opts to normalise this vector and use the cosine similarity metric

(sim(zi, zj) = zTi zj/|zi||zj|). This is despite Noise Contrastive Estimation explicitly

not requiring the vector to be normalised, and instead requiring the encoder to learn

an embedding function that produces normalised vectors [90].

5.3 Improving Network Performance

In [1], Chen et al make a number of conjectures of how to set up SimCLR to gain

the best performance out of the framework. They state the following:

• Use large batches: Using larger batch sizes was consistently shown to in-

crease the performance of the network, with the largest jump in performance

when the network is trained for fewer epochs. Because SimCLR does not use a
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memory bank, its batch sizes are much smaller than can be found in other work

such as MoCo [68]. This, however, does seem to have a limit. Further study

showed that the increase in performance peaked at approximately a batch size

of 8192. Additional study is needed to ensure this holds for other network sizes

and datasets. This direct sampling of the negative examples leads to higher

memory requirements than would be needed with a memory bank.

• Use a non-linear projection head: Applying the contrastive loss on a non-

linear projection head rather than directly on the encoder output is shown to

improve performance. Both SimCLR and Contrastive Predictive Coding apply

the contrastive loss to a projection of the embeddings rather than the embed-

dings directly. Three possibilities were investigated, applying the contrastive

loss directly to the representations, applying it to a linear projection of the

representations, or applying to a non-linear projection of the representations.

A non-linear projection was empirically found to give the best representations.

• Choice of transforms matter: A number of different transforms were tested

in the SimCLR paper. No single augmentation was found to be good enough

to learn high quality representations, however, augmentations could be com-

posed together to make a more difficult task, which would then lead to better

representations. The authors found that random-crop composed with colour-

distortion and random blur produced the best results, however, I hypothesise

that this will be dataset specific, particularly in the case of non general imaging

datasets.

• Size of network matters: Increases in both depth and width were found to

lead to higher performance. This is also consistent with what was found with

Contrastive Predictive Coding. While the same finding is true of supervised

learning, the authors found that the gap between supervised and linear layer

on unsupervised network narrowed as the size of the network grew. They claim

that this indicates that SimCLR benefits more from the increase in size than

in the supervised approach.
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5.4 Use in Literature

Unlike with Contrastive Predictive Coding (CPC) in chapters 3 and 4, SimCLR has

been well utilised in a number of areas. In this section, the literature is examined

to explore how, and to what problems, SimCLR has been applied. A large number

of works use SimCLR as a powerful baseline to their proposed model rather than

directly evaluating the method:

A large study [127] was conducted examining SimCLR on both chest x-rays and

dermatology images. A number of investigations were undertaken: Azizi et al con-

curred with [128] that training the unsupervised model on ImageNet, then training

the model again on an unlabelled domain specific dataset before finally training on

a labelled dataset, produces the best results. In Azizi et al’s testing of SimCLR,

they claimed that SimCLR lead to higher performance than their ResNet baseline

for both the dermatology dataset and the chest x-ray dataset however, the level

of improvement seen on the chest x-ray dataset is very small, with a 0.0046 in-

crease in AUC when just using an ImageNet unsupervised dataset and a 0.0104

increase in AUC when using the transfer learning approach outlined before. While

not directly comparable because of differing metrics, this is a far smaller relative

improvement than was apparent with the dermatology dataset, indicating that the

SimCLR method has differing efficacy with different datasets, as was found with

CPC in chapter 4. [129] also found that SimCLR worked well on dermatology data,

but found that other contrastive methods like MoCo performed even better.

[130] found that SimCLR did not perform as well as either a supervised baseline

nor supervised contrastive learning when evaluated on CIFAR 10 and 100 datasets.

This result was consistent when evaluated on brain MRI images: SimCLR per-

formed worse than their proposed method and also a supervised baseline. It is not

clear whether the authors finetuned the model or these are the results of a linear

evaluation layer. [131] also explored SimCLR as a baseline on MRI images, find-

ing that SimCLR outperformed MoCo [68] in most cases. In contrast, [132] found

that SimCLR only performed slightly better than a much simpler rotation predic-
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tion pre-training task. [133] also found that SimCLR performed only on par with

other methods tested. [134] showed SimCLR outperforming even their own proposed

model (without a time based component).

A number of papers that have evaluated methods have found that other contrastive

methods have performed better that SimCLR, most notably: MoCo [68]. As stated

previously, [129] found that MoCo worked better on dermatology images. In [135]

SimCLR performed almost 15 percentage points worse than MoCo on a histology

dataset and worse than the supervised baseline that MoCo was able to either match

or beat. In [97] SimCLR performed very poorly when evaluated using a frozen net-

work and linear layer, but comparatively well when finetuned, this was one paper

which showed an higher performance for CPC than for SimCLR.

Some papers have attempted to analyse the impact of testing the network on a dif-

ferent domain to the dataset originally trained on. This kind of analysis is important

when wanting to apply a method to a medical imaging task, due to the vastly differ-

ent appearances of images when changing parameters such as MRI scanner settings.

In addition, the acquisition of medical images is far harder and costlier than general

images, leading to much more varied datasets being used. In [136], the authors

found that a transfer approach, where a network trained on ImageNet, then on the

domain dataset worked better than training solely on just the domain dataset. [137]

also examined various methods, including SimCLR on transfer learning from a gen-

eral imaging task to a medical imaging task. They agree with [136] that ImageNet

to domain specific produces the best results, possibly due to the network creating

more robust features from the larger, but undrelated, dataset.

SimCLR has also been adapted to be used on other types of problems outside of

image classification: [138] adapted SimCLR to embed electronic health records,

marginally improving critical care outcome prediction; [139] adapted SimCLR to

detect out of distribution skin lesions, reducing the need for even labelled data.
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5.5 Comparison to Related Methods

As was covered in section 5.1, SimCLR did not introduce any new ideas: its con-

tribution to the literature was the composition of these ideas together to produce a

method that was greater than the sum of its parts. As such, SimCLR takes heavily

from previous methods which have been analysed here.

Contrastive Predictive Coding: The contrastive Predictive Coding protocol was

developed to force an encoder to learn high-level features while discarding high fre-

quency information such as noise and texture. It does this by optimising an encoder

to produce embeddings that are predictive of other patches in the same image, while

ensuring that they are far apart from any other image in the dataset. Fundamen-

tally, the idea is that features that are consistent across pieces of an image will be

high level features which will be useful for prediction. In contrast, SimCLR also

hopes to learn high level features, however, their approach relies on the belief that

high level features will be consistent across transforms.

Due to their similar philosophy, SimCLR and CPC do share similar loss functions

with the SimCLR loss being based upon the loss from CPC. One of the major

differences with the loss function is the normalisation of the feature vectors found

in the SimCLR loss. Normalisation of the feature vectors is not required, and is

specifically excluded from Noise Contrastive Estimation (from which the InfoNCE

loss is based), however, there is empirical evidence that higher performance can be

achieved through normalisation [1].

CPC and SimCLR also have different ‘views’ of the image. CPC embeds an image,

through embedding overlapping patches into a latent space, thus producing a 2D

array of vectors for each image. This means that each feature vector can only en-

code smaller features than could be available across the full image. SimCLR embeds

the full image down to a latent space, thus being able to embed any sized feature

that could be invarient to the transforms. This is one possible reason for the better

performance found in the literature, as a large number of imaging datasets consist



5.6. AREAS OF INVESTIGATION 125

of ‘object centric’ data, with a single object in the image with a background (i.e

similar to ImageNet). However, medical imaging datasets may not conform to this

paradigm and, therefore, performance may not be higher on these datasets.

Momentum Contrast: Both MoCo and SimCLR work upon similar principles:

they contrast a set of negative examples with a singular positive example thus learn-

ing an embedding which places similar data together in the latent space. However,

how these negative examples (the “noise” data found in InfoNCE) are sampled dif-

fers between the two methods. SimCLR directly samples negative examples, whereas

MoCo uses a memory bank of previously used negative examples. This memory bank

technique can also be found in PIRL [16] and InstDisc [140]. By directly sampling

the negative examples, it allows the network to learn from negative examples using

the current encoder, rather than an out of date one as would be found with MoCo.

This comes at the expense of increased computational complexity.

As was covered in chapter 2, MoCo-v2 introduced a number of the proposed im-

provements from SimCLR: using a non-linear projection head and using stronger

augmentations. As with SimCLR, it was found empirically that both of these ad-

ditions increased the power of the network, leading to greater performance. As

discussed in chapter 3, “stronger augmentations” in the form of patch-based aug-

mentation was also found to increase performance of contrastive predictive coding.

It is certainly possible that these could be universal improvements to the contrastive

approach.

5.6 Areas of investigation

[1] introduced SimCLR, a collection of non-novel components bundled into a novel

package, partially building on the work introduced by Contrastive Predictive Coding

(chapters 3 and 4). Both methods rely on the embedding of similar images together

in the latent space and dissimilar images apart, however, there are differences in

the networks’ architecture, which affects how each of the networks ‘see’ the image.
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In addition, there is a difference between what each method classes as similar or

dissimilar images. In the CPC method, similar patches are classed as patches that

come from the same image, while in SimCLR, similar images are seen as the differ-

ent transforms of the same image. This may go some way to explaining differences

in the application of the two methods, with SimCLR being replicated a far greater

number of times.

While there was some mixed results found in the literature, generally the SimCLR

method performed favourably to related methods. In addition, unlike CPC, there

has been a large number of pieces of work applying SimCLR. These two factors are

likely related. Due to the large number of replications of the SimCLR method, it is

not necessary to perform the same type of experiment conduced in chapter 4: testing

whether SimCLR can boost the performance over the performance of some baseline,

since this would not contribute much to the general discussion surrounding SimCLR.

Instead, the next two chapters (chapters 6 and 7) have conducted studies examining

how certain aspects of design choices affects the performance of SimCLR. In chapter

4, experimentation was conduced to examine how the size of the labelled dataset

affects the downstream classification performance in addition to experiments on do-

main shift and adversarial attack using augmentation. In chapter 6, the network

builds on the work of Hénaff, evaluating how the addition of patch-based augmen-

tation affects downstream classification performance. From this starting point, the

impact of augmentation on downstream performance is evaluated. In chapter 7, the

work on dataset analysis (chapter 4) is continued: evaluating how the characteristics

of the unlabelled dataset affect downstream classification performance.



Chapter 6

Understanding Data

Augmentation for Contrastive

Models

Abstract

SimCLR is a method that relies heavily on the augmentations used during un-

supervised training. In this chapter, a number of related experiments are conducted

to explore the impact that the choice of augmentation protocol has on the down-

stream task performance of contrastive methods using ResNet-11s. Initially, the

type and magnitude of augmentation are investigated. This initial section finds

that the performance of the network with various augmentations will depend on the

exact task, therefore, hyperparameter tuning should be undertaken for each task and

new dataset. This chapter then investigates the claim that stronger augmentation

leads to greater performance: finding that this conjecture holds for colour based

augmentations. However, it also finds that performance of the crop augmentation

stays steady, before rapidly dropping off, therefore heavy augmentation actually

harms performance. Further study finds that heavy additive noise does not increase

performance above limited noise; and more rotation does not increase performance.

In addition, this chapter evaluates the claim that SimCLR produces representations

that are invariant to augmentation. Under the experimental design in section 6.6,

127
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SimCLR produces representations that are more invariant than a supervised training

protocol. This experiment is then extended to conclude that augmentation during

the supervised downstream task is still necessary to achieve the best performance.

6.1 Introduction

SimCLR has been shown to produce state of the art results when applied to datasets

with relatively large unlabelled datasets along with small labelled datasets. This

method is heavily reliant on the composition of multiple, randomly applied augmen-

tations, forcing the encoder to learn representations that are invariant/predictive of

other augmented copies of the same image. Current work has suggested that a lim-

ited sample of total possible augmentations is all that is needed to produce good

results, however, it is likely that this not to be true for all tasks; particularly non

object-centric datasets such as medical imaging.

In this chapter, a number of experiments are conducted to investigate how the

choice of augmentation strategy impacts the downstream performance of the Sim-

CLR protocol. Initially, the work of chapter 4 is built on: investigating whether the

suggestion of [2], to introduce patch-based augmentation to Contrastive Predictive

Coding in order to increase performance, transfers to medical images. Secondly, the

augmentation strategy proposed by SimCLR is investigated, specifically, evaluating

the choice of data augmentation composition on medical imaging tasks. Then, an-

other claim of SimCLR is evaluated: do high levels of augmentation always produce

increased performance across different augmentations? Finally, the conjecture that

SimCLR learns representations that are invariant to augmentation is assessed.

6.2 Background

Data augmentation is an important part of the current deep learning orthodoxy.

Supervised learning has utilised augmentation for increasing the generalisability of

deep neural networks. As the size of deep learning models has grown from 6.8 million

parameters in GoogLeNet [141] to modern works such as the 174.6 billion parame-
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ter GPT-3 [75], the ability of these networks to overfit on even very large datasets

has increased. By applying random - but realistic - augmentations to input data,

the network becomes more robust to variation within unseen data, and produces a

model that is less likely to have overfit on the input dataset.

In addition to supervised methods, the contrastive methods found in chapter 2 also

utilise augmentation extensively. [1] showed the importance of choice of augmenta-

tion: Chen et al found that no single augmentation produced good representations,

however, multiple augmentations composed together did produce good representa-

tions. [142] improved the performance of the Momentum Contrast method [68] by

increasing the power of the augmentations used during training. [143] investigated

a subset of data augmentations including {cropping, rotation, colour distortion,

grey scaling} finding that including all four augmentations together produced the

greatest result for diabetic retinopathy detection. Colour distortion and greyscaling

was found to have the largest singular effect, showing that creating colour invariant

feature representations are just as important as in general imaging (i.e ImageNet)

tasks. This is likely not to be the case in all medical imaging tasks. For example,

dermatology image diagnosis can rely on colour. Despite this theoretical limita-

tion, [127] used colour augmentation for medical imaging and found good results.

No clear advice on which augmentations should work well on medical imaging tasks

has been produced: therefore further work is needed.

6.3 Impact of Patch-based Augmentation for Con-

trastive Predictive Coding

Chapter 4 showed how Contrastive Predictive Coding could be used to improve the

performance of a ResNet when learning from limited labels. As part of CPCv2,

patch-based augmentation was introduced as a method to improve the downstream

classification performance of the protocol, with [2] showing that it improved perfor-

mance by 4.5% on an arbitrary dataset. In this section, this work is extended to a
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medical imaging setting. The effect of this design choice may have a different im-

pact upon medical imaging than more object-centric datasets. In medical datasets,

features such as colour may have a far more important role in classification than in

datasets such as ImageNet. This limitation of the patch-based augmentation was

alluded to in [2], but no study was conducted.

6.3.1 Experimental Design

This experiment takes a similar form as the experiments found in chapter 4: for

each of the datasets under study (section 4.4.1), two encoder networks are trained,

one with, and one without patch-based augmentations. The training protocol from

section 4.2 is followed with the only change being the addition of patch based aug-

mentation. These encoders are trained for 60k iterations on each dataset. From these

learned embeddings, ResNets are trained for image classification. The ResNet’s abil-

ity to learn from each type of encoding is evaluated in {1%, 2%, 5%, 10%, 20%, 50%,

100%} sized subsets of the full dataset. For each encoder, 20 ResNets are trained on

the embeddings produced by the respective CPC encoder. The ResNet networks are

trained for a maximum of 1000 epochs, using early stopping with a patience of 50

and the ADAM optimiser with a learning rate of 5e-4. The mean value is reported

with 95% confidence intervals.

6.3.2 Results

Figure 6.1 shows the impact of introducing patch-based augmentation across three

medical imaging datasets (colonoscopy images, Optical Coherence Tomography (OCT)

scans, and dermatology photographs) at varying sized subsets of the labelled dataset.

[2] states that introducing patch-based augmentation increases performance. The re-

sults of this section contradict this: they show that introducing patch-based augmen-

tation reduces performance across all subsets in the OCT and dermatology datasets,

and decreases performance on the colonoscopy dataset in the larger sized subsets

(but does increase performance at the 1% subset). It is possible that the set of aug-

mentations that produced the greatest effect for a dataset such as ImageNet, are not
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the same augmentations that will produce the greatest effect in every task. Based on

these results, the next section examines the composition of various augmentations

using SimCLR on medical datasets.

Figure 6.1: Impact of introducing patch-based augmentation to the CPC training

protocol across three medical imaging tasks: Colonoscopy, OCT, Dermatology. Non

overlapping bars show significance.

6.4 Composition of Augmentations for SimCLR

on Medical Images

Chen et al [1] report that the optimal set of augmentations for use with the SimCLR

protocol are: random crop, colour distortions, and random Gaussian blur. Medical

images are likely to have a different set of requirements for augmentation than object-

centric datasets such as ImageNet. In this experiment, an evaluation of possible
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augmentation compositions is conducted, based on [1]. This section extends the

work completed in [143].

6.4.1 Experimental Design

In this experiment, an evaluation of the augmentation strategy used in the SimCLR

protocol is presented. Across two medical datasets, the combined performance of

various augmentations is investigated, the augmentations chosen are: {random crop,

colour distortion, noise, rotation }. For each pair of augmentations five SimCLR

encoders (ResNet-11s) are trained, then the utility of this encoder is evaluated by

adding a linear layer and freezing the encoder, the classification from this set up will

be known as the linear predictive accuracy. This linear layer is then optimised using

a labelled dataset outlined in the dataset section below. The SimCLR networks are

trained for 100 epochs using a learning rate of 0.001, a temperature parameter of

0.1 and a batch size of 128. Due to the GPU memory requirements of having large

batch sizes, this is less than was used in [1]. This change is discussed at length in the

limitations of compute section in chapter 8. The network is implemented in Tensor-

flow [144] and trained on a single GPU. Fine-tuning of the model is not undertaken,

to ensure that any result is purely the product of the SimCLR methodology.

Datasets: The first dataset used in this experiment is the HAM10000 dataset [12]

first seen in chapter 4. The full dataset of 10k images is used to train the SimCLR

encoder. For the labelled dataset, the same random subset used in chapter 4 is used,

re-sampled to give a 50:50 training:testing split. In addition to the dermatology

dataset, the OCT dataset also used in chapter 4 is also reused here. To train the

SimCLR encoder, 10k images are randomly selected from the full OCT dataset. A

different random selection is used for each of the five repeats of this experiment. As

with the dermatology dataset, the same labelled subset is reused from chapter 4,

re-sampled to a 50:50 training:testing split. No additional insight would be gained

from the addition of the third medical imaging datasets found in chapter 4, and

therefore to save on compute, this has not been included.
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Rotation Translation Colour Noise Average

Rotation 0.7947 0.8503 0.7523 0.8028 0.8

Translation 0.8504 0.8512 0.7563 0.8533 0.8278

Colour 0.7687 0.7525 0.7519 0.7512 0.7561

Noise 0.8056 0.8507 0.7584 0.7795 0.7985

Table 6.1: Linear predictive accuracy on the dermatology dataset of various com-

positions of augmentations.

6.4.2 Results

Tables 6.1 and 6.2 show the mean performance of a linear layer trained on encoders

with various combinations of augmentations on dermatology and OCT data respec-

tively. Contrary to the work of Chen [1], colour distortion was not found to lead

to the greatest performance. On the dermatology dataset, it actually lead to a de-

crease in performance when applied with another augmentation, compared with just

applying the other augmentation by itself.

However, the most noteworthy point is how the augmentations together are not

consistent between datasets. For example, on the dermatology dataset, the per-

formance Translation + Rotation performs on par with both Translation + Noise,

and Translation by itself. However, on the OCT dataset Translation + Rotation

performs subpar compared to the other Translation combinations, actually harming

performance.
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Rotation Translation Colour Noise Average

Rotation 0.6818 0.7008 0.6807 0.6792 0.6856

Translation 0.7008 0.7840 0.7886 0.7800 0.7633

Colour 0.6718 0.7726 0.5922 0.5461 0.6457

Noise 0.6927 0.7733 0.5556 0.6053 0.6567

Table 6.2: Linear predictive accuracy on the OCT dataset of various compositions

of augmentations.

6.5 Limits of Augmentation

[1] claims that stronger augmentation leads to greater performance, however, they

only provide empirical results for colour augmentations. This claim is hard to be-

lieve, as the stronger an augmentation is, the further from the distribution it is

hoping to emulate it will become (for example in the case of noise, as the amount

of noise increases to an unreasonable level, an image will just appear as noise, not

representing a realistic depiction of what the image is meant to depict). If this

augmentation strategy becomes too extreme, the performance of the network will

degrade. However, the inverse is also true, adding augmentation when training gen-

erally improves performance. Therefore, if there is insufficient augmentation, the

performance is likely to be non-optimal. In this experiment, the claims made by [1]

are evaluated across the four sets of augmentation strategies used in 6.4. In this

and the subsequent experiments from this chapter, non medical datasets were used.

This was done for consistency between this chapter and chapter 7 and also for more

broad appeal outside of the medical imaging community. This choice is discussed in

more length in the limitations section of chapter 8.

6.5.1 Experimental Design

This section empirically evaluates the claims made by [1] that stronger augmenta-

tion leads to greater performance. For each of the augmentation strategies under

evaluation (random crop, colour distortion, rotation, and additive noise), five en-

coders are trained at various augmentation magnitudes. The same training protocol
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as section 6.4 is followed, with the only change being the selection and magnitude

of augmentation. The magnitude of augmentation is varied between:

• Random Crop: Varied between a maximum of 90% and 10% of full image

size in 10% increments.

• Colour distortion: 0.1 and 0.9 in 0.1 increments.

• Rotation: 0.2 and 1 * π radians maximum rotation angle in 0.2 increments.

• Additive noise: Additive Gaussian noise with a standard deviation of be-

tween 0.01 and 0.09 in increments of 0.01.

Dataset: The STL-10 dataset [145] is used due to its common usage within the semi-

supervised literature, thus allowing easy comparison. For the unlabelled dataset,

multiple random subsets of the ImageNet dataset are used to increase the general-

isabilty of this results.

Model Training: These models are trained using the same training protocol as

6.4. The SimCLR networks are trained for 100 epochs (100 epochs is the default

training time from [1]) using a learning rate of 0.001, a temperature parameter of 0.1

and a batch size of 128. During supervised training, the models are also trained for

100 epochs, a learning rate of 0.001 and a batch size of 128. As with most training

in this thesis, this has been limited by the computational requirements of SimCLR;

this is discussed in depth in the limitations section in chapter 8.

6.5.2 Results

Figure 6.2 shows the results of varying the augmentation across multiple values and

multiple augmentations. The results found here concur with the work of Chen [1]

for colour distortion, showing that stronger colour augmentation leads to higher

downstream performance. Despite this, there is no increase in performance for either

additive noise or for random rotation. And, most notably, the inverse is true for

random crop: initially there is no change in performance as the augmentation level

is increased, however, towards the higher levels of augmentation, the downstream
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Figure 6.2: Network performance against augmentation amount for the four aug-

mentations investigated in experiment 1, from left-to-right, top-to-bottom: Random

Crop, Colour Distortion, Additive Noise, Random Rotation

performance drops off substantially. In addition to the result shown in figure 6.2 for

the additive noise, a testing regime with much higher levels of noise can be found

in appendix 1. This result also showed no increase in performance with greater

augmentation.

6.6 Creating Invariant Representations

Some of the literature suggests that SimCLR produces good results by creating

representations that are invariant to image augmentation [1]. This is only somewhat

true, due to the inclusion of a non linear projection layer rather than applying the

contrastive loss directly to the output of the encoder. A level of invariance could

also be found in a network trained on a supervised task, due to the inclusion of

augmentations. In this experiment, the exact level of invariance to augmentation is
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quantified and compared to the ‘invariance’ found when using a traditional classifier.

6.6.1 Experimental Design

In this experiment, the invariance of the output of a SimCLR encoder (i.e a ResNet)

is compared with the same encoder portion trained in a supervised manner using

the same set of augmentations as the SimCLR protocol. To compare the ‘invari-

ance’ of the two networks the following experiment is conducted: for each image

in the dataset, 100 randomly augmented versions will be created in addition to the

unaugmented version. The cosine similarity between the latent representations of

the unaugmented image and each of the augmented images is calculated, thus pro-

ducing a set of invariance scores for each image. The mean value of this set is stored

for each image. This gives a distribution of mean invariance scores, for both the

SimCLR encoder and the supervised encoder, which can then be compared.

Network Training: For both the SimCLR and supervised encoder, a ResNet-11 is

used. Both sets of networks are trained on the training split of the STL-10 dataset,

to ensure direct comparability. Both sets of networks are trained for 100 epochs

with a batch size of 128. For the SimCLR training, a learning rate of 0.001, and a

temperature parameter of 0.1 is used. For the supervised network, a learning rate

of 0.001 is used. Both networks are implemented in Tensorflow [144] and trained on

a single GPU. The same selection of augmentations are used during both training

protocols which consist of {Random flip, random translation, random zoom, and

colour distortions}.

6.6.2 Results

Figure 6.3 shows the two distributions of mean invariance to augmentation. Sim-

CLR reports a higher invariance to augmentation than the supervised protocol with

a mean invariance of 0.8170 compared with a mean invariance of 0.7430 (P ≤ 1e-4).

This result validates the claim made by [1] that SimCLR produces invariance to

augmentation. Despite this, a higher invariance does not necessarily lead to better
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Figure 6.3: Invariance to augmentation, distribution of results from the experiment.

Dark pink indicates overlapping distributions. SimCLR is more invariant to trans-

form than the supervised baseline.

performance. In the next section, this result is further explored by examining the

impact of this invariance on the use of augmentation during downstream classifica-

tion.

6.7 Is supervised augmentation needed with Sim-

CLR?

As stated previously, it is often said that SimCLR encodes information by learning

to encode a dataset such that the embeddings of a datum is invariant to image aug-

mentation. Under this assumption, data augmentation during supervised training

would have limited or negligible impact on downstream classification performance.

In this section, the work of the section 6.6 is expanded upon and given practical

implications: is supervised augmentation during the downstream task needed to

achieve good results?
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6.7.1 Experimental Design

Ten SimCLR encoders are trained on subsets of the ImageNet dataset, using the

same protocol described in section 6.4. Initially, these networks are frozen, a linear

layer is added and, this linear layer is trained (for 100 epochs with the ADAM op-

timiser and using a learning rate of 0.001) with and without data augmentation in

the supervised portion. This experimental setup is repeated, but with the networks

not being frozen. This repeat was conducted due to the latter being a more realistic

scenario for any implementer, therefore giving them more useful information. The

results from the networks, both with and without the supervised augmentation are

then statistically analysed to confirm whether there is a difference between the two

sets of results. As with previous experiments, the STL-10 dataset is used for the

supervised section and randomly chosen subsets of the ImageNet dataset for the

unsupervised training section.

Statistical Tests: A t-test is performed between the two sets of linear layers to

evaluate whether the two distributions are distinct. Because two measurements are

made (frozen and non-frozen encoders), a Bonferroni corrected p-value of 0.05
2

=

0.025 is used.

6.7.2 Results

For the networks with the frozen encoder, the network trained with augmentation

achieved a mean accuracy of 0.6874 compared with a performance of 0.6722 for the

network trained without augmentation ( P < 1e-4). For the networks where fine

tuning was used, the network performance with augmentation was 0.7141 compared

with a mean network performance of 0.6173 (P = 0.01375). Based upon these results,

the conclusion can be made that augmentation during supervised training is not

needed if using a frozen encoder network as there is no increase in performance from

doing so, this is likely due to the encoded invariance to augmentation. However,

when finetuning the network (as would be the case if this method was put into

practice), augmentation of the supervised section increases performance. It is worth

noting that it is likely that the non-frozen network without augmentation likely
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overfit on the training dataset causing the low performance.

6.8 Discussion

This chapter has studied the impact of augmentation within the contrastive learn-

ing framework, investigating across two distinct methods, and through both the

upstream and downstream tasks. Based on this work, the following novel results are

presented:

• Patch-based augmentation was not found to increase performance on all three

of the medical datasets studied in section 6.3. This disagrees with the work

found in CPCv2 [2]. Hyperparameter tuning of the augmentation should be

applied to achieve the greatest performance.

• The augmentations that gave the largest improvement on a medical imaging

task (section 6.4), did not align with those proposed by [1]. In addition, there

was differences in performance between datasets.

• In contrast to the work of Chen [1], section 6.5 finds that stronger augmenta-

tion does not always lead to higher performance, and in some cases, such as

random crop, actually leads to lower performance.

• Section 6.6 examined the invariance to augmentation of SimCLR, finding that

SimCLR was more invariant than a supervised network of the same type.

Selection and amount of augmentation: Sections 6.3 - 6.5 examined claims

made about the type and amount of augmentation that is necessary to achieve good

performance on a contrastive task. Initially starting with the claim that patch-based

augmentation increased the downstream performance of the CPC protocol, section

6.3 finds that the performance is actually degraded by the inclusion of patch-based

augmentation under that experimental set up. It should be noted that the aug-

mentations used were not tuned. Based on this result, the augmentations used in

SimCLR (a method that is far more reliant on augmentation than CPC) are eval-

uated. Section 6.4 finds that the the augmentations that had the greatest level

of performance is inconsistent between the literature on ImageNet and the results
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found on a medical imaging task. In addition, the performance between medical

imaging tasks differed. To achieve the greatest possible performance, hyperparame-

ter tuning of the augmentations should be conducted. It is beyond the scope of this

chapter to examine why each dataset performed differently to different augmenta-

tions. However, one does not need to know why the network performs differently to

be able to mitigate its effects through hyperparameter turning.

In addition to the type of augmentation, the amount of augmentation was also

investigated (section 6.5); exploring a claim made by [1] and [142] that stronger

augmentation produced greater downstream classification performance. I dispute

this finding, with the work of section 6.5 showing that stronger augmentation did

not in fact produce better results, and in one case actually harmed performance.

Similar to the examination of augmentation types in Section 6.4, the significance of

this work lies in its potential to be mitigated. The work suggests that the amount of

augmentation should be hyperparameter tuned, thus increasing the chance of gain-

ing the best possible performance.

Invariant Representations: Chen et al [1] also claimed that the network learns

embeddings that are invariant to augmentation, and to do so, the network must

learn high level features. Section 6.6 examines the level of invariance, finding that

SimCLR produces more invariant embeddings than a supervised baseline. Section

6.7 extends this to examine whether this invariance leads to a network that does not

require augmentation during the downstream task, finding that augmentation of the

input data does not increase the linear separability of the embeddings. However,

using augmentation during finetuning of the model does increase performance. This

finding builds on the work of [1] by quantitatively validating the claim of embedding

invariance, but showing that this invariance is not absolute: further gains can still

be achieved from augmentation during supervised training.

Limitations: As with the work in chapter 4, this work is limited by the tradeoffs

that were made to combat the computational cost of training contrastive networks.

Throughout this chapter, a ResNet-11 was used as the network being trained for
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SimCLR, rather than the ResNet-50 found in [1]. In addition, tradeoffs were made

regarding image size and batch size: this chapter uses an image size of 96x96 com-

pared to a typical 256x256 and a batch size of 128 compared to the baseline batch

size of 256. It is likely that these changes had an impact on the results of this chap-

ter and care must be taken when interpreting them. In chapter 8, I speculate on

how these changes impact the results of this chapter and also give greater context

on why these changes were made.

6.9 Conclusion

This chapter has investigated the effect of augmentation on the performance of con-

trastive learning methodologies, giving two overarching recommendations for gaining

the best performance. 1) Hyperparameter tuning should be conducted on the aug-

mentations used for training the encoder. This should be conducted on not only the

type of augmentation, but also its magnitude. 2) SimCLR does produce more invari-

ant embeddings to augmentation than a supervised baseline. Despite this, to gain

the best performance, augmentation during the downstream task is still necessary.
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Link to the aims: This thesis aims to investigate semi-supervised learn-

ing and to understand how best to apply this set of methods to obtain the

highest performance. A large component of many contrastive learning ap-

proaches is their inclusion of heavy augmentation; this is especially true with

SimCLR where the network learns to match embeddings of stochastic trans-

forms of a single image. This chapter has investigated the impact of the type

and amount of augmentation on the downstream performance of the SimCLR

protocol. The chapter finds that there are no general rules for either the size

or amount of augmentation, despite the suggestion of Chen et al [1]. I there-

fore suggest that the approach to get the best performance from SimCLR is

to treat the type and magnitude of augmentation as a hyperparameter to be

tuned. Additionally, this chapter investigates the encoder’s invariance to aug-

mentation and its impact on performance. Importantly, this section finds that

data augmentation during supervised finetuning still increases performance,

and therefore is a vital step in the full deployment process.
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Chapter 7

Understanding Datasets for

Contrastive Learning

Abstract

Dataset design can have a large impact on network performance, however, there

have been limited efforts to quantify this. This chapter attempts to close this gap

in the literature by examining a number of dataset characteristics which should

have an impact on downstream classification performance and assess the effect of

changing them in a resource constrained setting. This is accomplished through two

related sections: firstly, an examination of how dataset size impacts the downstream

performance of a network; secondly, an examination into how dataset composition

affects downstream performance. Initially, this work shows that increasing the num-

ber of images in a dataset while keeping the number of epochs constant size leads

to greater performance. An ablation study is performed that finds that most of the

performance increase comes from the increase in the number of iterations rather than

increasing the number of unique images. This section also shows that when training

on large datasets, it is likely that previous work has underfit, however, this issue can

be mitigated through the addition of an early stopping mechanism. The usage of

early stopping within unsupervised pre-training is a technically novel contribution

of this thesis. In the second section, a number of experiments are conducted that

find that there is no statistically significant correlation between the ‘overlap’ of the

145
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labelled and unlabelled dataset and the downstream performance. This is consistent

across metrics and experiments.

7.1 Introduction

Design choice for a machine learning solution makes the difference between a sys-

tem that cannot learn and a system that produces state of the art results. The vast

majority of the literature focuses on design of the network, however, this overlooks

a very important feature to optimise: the training dataset. When starting to solve

a problem, resources are not unlimited, therefore, one has to choose how best to

allocate these resources to produce the optimal result. This chapter contains two

separate, but related, questions which will study how one can optimise the dataset

used in a deep learning problem to increase the chance of gaining a high performing

network.

Sections 7.3 - 7.6 of this chapter examines the impact of dataset size and how this

affects downstream classification performance. In sections 7.8 - 7.11 two hypotheses

of dataset latent variables that may affect the performance of a model are tested:

the semantic variation of a dataset and the distribution overlap between a self-

supervised task and the downstream task. This work is intended to guide design

choice for the creation of new datasets: most freely available datasets cannot be

used for commercial purposes and thus, new datasets must be created. This work

informs the cost-benefit trade off of collecting more unlabelled data to train on.

7.2 Background

Study of the impact of datasets on network performance is often overlooked with

research often simply examining whether the features learned on one dataset will

transfer well over to a new dataset, for example, my own work in chapter 4. This

often takes the form of: “will ImageNet features transfer to another dataset?”. In

this chapter, a more in-depth study is conducted across two macro features that are
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believed to have an impact on downstream performance: dataset size and dataset

content.

Dataset Size: [3] studied the use of extremely large, uncurated datasets for un-

supervised pre-training of very large models. Their applicable findings were that:

despite being uncurated, and therefore having no guarantee of distribution overlap

between the downstream task and pre-training task, the authors showed that the

network could perform just as well as pre-training on ImageNet. They also showed

that when keeping the number of iterations the same and increasing the number

of unique images, the model performance plateaued after a certain amount, and

that any increase in the number of unique images did not lead to an increase in

performance. This second finding is consistent with the findings of [4], in which

a higher resolution study was conducted, finding that there is no improvement in

downstream performance when using more than 5% of ImageNet for pretraining and

limited improvement when using more than 1%. However, there are also studies that

refute this finding: [5] found that downstream performance kept increasing as the

dataset size increased, this continued up to their maximum size of ≈100M images.

This inconsistency highlights that further study is needed to be able to understand

the variable that affects the downstream performance of a network when trained on

an unlabelled dataset.

Dataset Content: A number of possible latent characteristics of the dataset used

for pre-training of the encoder network have been suggested as being important for

downstream performance, most notably that the distribution of the pretext dataset

should match the distribution for the downstream task. [146] reports that “the SSL

techniques [they] studied all suffered when the unlabelled data came from differ-

ent classes than the labelled data”. However, [97] argues that SSL features are

much more resilient to class imbalance than supervised learning because the fea-

tures learned by the network are not biased by class label. In situations where there

is a large batch size, there is limited incentive for learning features that will be ben-

eficial for both common (and uncommon) classes. The authors posit that SSL does

not have this issue, and instead features that are common between classes are highly



148 CHAPTER 7. DATASETS FOR CONTRASTIVE LEARNING

prized. As with the literature on dataset size, consensus has not been reached and

should be further examined.

7.3 Does changing the size of the unlabelled dataset

alter linear classification accuracy of SimCLR?

Some prior work, e.g [3], has suggested that increasing the size of the unlabelled

dataset used in semi-supervised learning increases performance. In this section, these

claims are externally validated on new datasets and the semi-supervised method used

in this section.

7.3.1 Experimental Design

This experiment aims to validate the claims that increasing the size of the unla-

belled dataset will increase linear classification performance. To do this, a number

of SimCLR encoders (ResNet-11s) are trained on varying sized datasets and their

linear classification performance is reported. Five repeats are conducted.

Datasets: There are two datasets types needed to explore this problem: a size

varying unlabelled dataset; and a static labelled dataset. To generate the unla-

belled datasets, random subsets of the ImageNet-1M dataset are used of size X

where X ∈ {100, 200, 500, 1k, 2k, 5k, 10k, 20k, 50k, 100k }. The images are centre

cropped and downsampled to be 96x96 pixels to ensure they are the same size as

the labelled dataset. For the static labelled dataset,the STL-10 dataset is used. The

STL-10 dataset was specifically designed for unsupervised learning and consists of

13000 images across 10 classes, split into a 5k:8k train:test split. The full dataset is

used for evaluation.

Training the networks: The SimCLR networks are trained for 100 epochs on

each of the variously sized datasets outlined above. A learning rate of 0.001, a

temperature parameter of 0.1 and a batch size of 128 is used. The network is

implemented in Tensorflow [144] and trained on a single GPU. To evaluate the
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performance of the SimCLR embeddings, a linear layer is added to the output of

the network. The linear layer is then trained for 100 epochs on the frozen SimCLR

embeddings. A learning rate of 0.001 is used. As with the work in the previous

chapter, fine-tuning of the model is not undertaken, to ensure that any result is

purely the product of the SimCLR encoder training methodology.

7.3.2 Results

The linear classification performance of an encoder trained on varying sized subsets

of the dataset can be found in figure 7.1. As the number of training images increases,

so does the performance. This result concurs with the result of [5]. This result is

further studied in an ablation study in section 7.4.

Figure 7.1: Size of unlabelled dataset used for encoder pre-training vs the linear

classification performance of the STL-10 dataset using that encoder. The x-axis is

approximately logarithmically spaced between 100 and 100000 images.
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7.4 Ablation of increasing dataset size

When increasing the size of the unlabelled dataset as in the prior section, two metrics

are increased: (a) the number of unique images are increased, and (b) the number of

iterations are increased, where iterations is the total number of training batches the

network has. Here, the experimental setup of [3] is followed to distinguish between

the two effects.

7.4.1 Experimental Design

In this section, two experiments are conducted; in each one, changing only one of

the two latent metrics. In experiment one, the number of images will be kept static,

while the number of iterations changed; and in experiment two, the number of iter-

ations will remain static, while the number of unique images will be varied.

Training the network: The same training protocol found in section 7.3 is followed

with the following modifications: for our sub-experiment one, the number of images

will be kept static at 1k with the number of iterations varying approximately loga-

rithmically spaced. The runs equivalent to 100, 200, 500 images are excluded from

this experiment due to the number of iterations being less than the number of total

images. For sub-experiment two, the number of iterations is kept static at 100K.

This is equivalent to 1k epochs at 100 unique images and 1 epoch at 100k images.

The dataset descriptions can be found in 7.3.1.

7.4.2 Results

Figure 7.2 displays the results from this section. The image on the left, shows

that as the number of iterations increases, the linear classification performance also

increases. In the image on the right, an unexpected result can be seen: if the number

of iterations are kept constant at 100k, the performance of the network stays static

at approximately 63.5%.
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Figure 7.2: (Left) Number of iterations for encoder pre-training vs the linear classi-

fication performance of the STL-10 dataset using that encoder keeping the number

of images static at 1k. (Right) Unique images in the unlabelled dataset used for

encoder pre-training vs the linear classification performance of the STL-10 dataset

using that encoder

7.5 Further Exploration of Number of Unique Im-

ages

Section 7.4, showed that when the number of iterations was kept constant, the

performance of the network remained static. Since this result was unexpected based

on the literature, in this section, further exploration of this result is conducted. In

the previous section, the number of training iterations is kept constant at 100k. To

ensure that this result is more robust, this experiment is repeated across a number

of different amounts of constant iterations.

7.5.1 Experimental Design

The same experimental design as section 7.4 is followed, keeping the number of

iterations constant. A set of networks are trained using N images for X iterations

where N ∈ {100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000} and

X ∈ {100k, 200k, 500k}. The networks are trained using the same training protocol

as 7.4, just varying the total number of iterations. The results are then plotted,

separating the number of iterations by colour. The dataset descriptions can be

found in 7.3.1.
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7.5.2 Results

Figure 7.3 shows that the network has underfit to the larger number of unique images

in the previous experiment. As the number of iterations the network is trained for

is increased, the network is able to achieve higher performance before plateauing.

While the very low end of images are starting to show signs of overfitting (100 images

achieves lower average performance when increasing above 100k iterations, and 200

images has started to show a drop in performance when above 500k iterations), no

signs of overfitting for≥ 500 images can be seen. I postulate that higher performance

can be achieved for all subsets greater than or equal to 500 images by increasing the

number of iterations trained for. This result further reinforces the result found in

the previous section: increasing the number of unique images in a dataset does not

inherently increase the performance of the network, it must be accompanied with

an increase in the number of iterations.
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Figure 7.3: Impact of increasing the number of unique samples in the unlabelled

dataset while keeping the number of iterations constant at 100k (black), 200k (red),

and 500k (yellow).
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7.6 Overfitting and Underfitting

Overfitting of a model to a set of data is seen as a major problem within deep

learning. Recent advances in GPU technology in addition to Application-specific

integrated circuits for AI (such as Google’s TPU [147] and NVIDIAs Tensor Core

[148]) has led to models that can reach over half a trillion parameters [149], thus

exacerbating the issue. Despite this, section 7.5 shows that model underfitting

can remain an issue and suggests that models should be trained for longer. When

training models for a period of time, there are three possible outcomes: 1) the model

has underfit, performance could be gained by increasing the number of epochs; 2)

the model has overfit, performance could be gained through decreasing the number

of epochs; and 3) the model has plateaued, an insufficiently powerful model has been

used and therefore, performance could be gained through increasing the size of the

model. In this experimental section, the work of 7.4 (Left) is extended to examine

how the network’s performance changes as the number of iterations is increased

beyond the level seen in that work.

7.6.1 Experimental Design

A number of models are trained on unlabelled datasets consisting of {100, 1k, 10k}

unique images. The networks are trained using various numbers of iterations in

{1k, 2k, 5k, 10k, 20k, 50k, 100k, 200k, 500k, 1m, 2m, 5m, 10m }. The same

implementation details as the previous experiments are followed, merely changing

training length. Definitions of training protocol and datasets can be found in 7.3.1.

7.6.2 Results

Figure 7.4 shows that as the amount of unique images in the dataset increases, the

number of iterations needed to reach peak fitting increases too. For the ResNet11,

the peak performance occurs at {50k, 1M, 2M} iterations for {100, 1k, and 10k}

unique images respectively.
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Figure 7.4: Examination of under-fitting vs over-fitting. How performance varies

with number of iterations across two model capacities and across three amounts

of unique images: (top-left) 100 unique images; (top-right) 1000 unique images;

(bottom) 10000 unique images.
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7.7 Mitigating the impact of non-optimal fitting

Section 7.6 has shown that choosing an arbitrary number of iterations will most likely

lead to a non-optimal result, either due to under-fitting (section 7.5) or over-fitting

(section 7.6). In this section, a common method for combating this found in the

supervised literature is evaluated: early stopping [37]. The stopping criteria “stop

on training convergence”1 is evaluated in this section. This differs from the early

stopping used in chapter 4 as no validation set is used, training is stopped when the

training loss stops decreasing. While the usage of early stopping to stop overfitting is

common within supervised learning environments, to the best of my knowledge, this

is the first time that this has been applied to unsupervised learning. This therefore

provides a technically novel solution to the issues raised in the previous sections.

7.7.1 Experimental Design

A set of models are trained using various amounts of unique images, however, rather

than using a static number of iterations, an early stopping paradigm is used with a

maximum number of iterations set at a computational budget of 10M with a patience

of 50 epochs. As with the previous experiments, five sets of models are trained for

each unique image amount. This is likely too few at the low end, and too great a

number at the high number of unique images, but for comparability, this is kept

constant. All models are trained using the protocol as the previous experiments: a

batch size of 128 and a learning rate of 0.001 for both unsupervised and supervised

training. Unlike the previous experiments, training length is controlled by early

stopping during the unsupervised training. Supervised training is for 100 epochs.

7.7.2 Results

Figure 7.5 shows the performance of a network trained on varyingly sized datasets,

using the early stopping paradigm proposed. This performance is compared to the

estimated peak performance using the results in section 7.6. Using the early stopping

paradigm closely matches the estimated peak performance, albeit, slightly below.

1The training is stopped when the training loss does not decrease for a set patience.
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Figure 7.5: Linear classification performance using encoders trained using early

stopping on various amounts of unlabelled data. Red: uses training convergence

as the stopping parameter; (Blue:) the estimated peak performance with optimal

stopping.

At the larger data amounts, the performance starts to diverge, this is due to the

model running out of computational budget. Also, at the lower end, the model

underfit, but for a different reason than at the high end: here, the constant number

of patience equates to a low number of iterations compared to the higher amounts,

thus performance could have been gained by training for longer. Due to the low

number of training examples, the training results are more noisy than the larger

sized sets. The model is able to achieve this approximate peak performance for the

following reason: underfitting is prevented by training until the model would likely

overfit, but this is prevented from happening by early stopping.
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7.8 Does increasing the semantic variation within

the general imaging dataset produce more use-

ful features for a downstream task?

Increasing the size of an unlabelled dataset used for semi-supervised learning im-

proves accuracy [150] (when also increasing the number of iterations, see section

7.5). When dataset size is increased, this increases both number of instances, but

also the variability of the dataset. [146] suggests that performance degrades when

the distributions differ between the labelled and unlabelled dataset. The hypothe-

sis of this section is that increasing the variability of the dataset will increase the

chance that a feature that is useful for the secondary task will be learned. To the

best of my knowledge there has been no work examining this. When new unlabelled

datasets are created, this work will inform how much emphasis (if any at all) should

be placed on variability, over purely size.

7.8.1 Experimental Design

This section evaluates the effect that dataset variation of an unlabelled dataset used

with an unsupervised model has on the classification performance of a downstream

task. Broadly, this section will take the form of: training multiple encoders (ResNet-

11s) at varying amounts of ‘variability’ of the dataset, ensuring that dataset size is

kept constant. The performance of these networks will then be evaluated on a down-

stream task. Statistical analysis will evaluate whether there is a correlation between

the ‘variability’ and downstream performance. This experiment is repeated with 1k

and 10k images used for training.

Proxy of dataset variability: Calculating the variability of a dataset is com-

plex. For this section, a proxy of dataset variability will be used, based upon the

semantic information in a dataset. The ImageNet dataset [23] is a large, natural

image dataset consisting of over 14 million images [151], however, most commonly

the term is used to refer to a subset of this dataset consisting of approximately

1 million images across 1000 non overlapping classes, for the ILSVRC 2012 com-
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petition. This section proposes using an increasing number of classes as a proxy

of increasing the variability of the dataset. Specifically, unsupervised models are

trained on subsets of the ImageNet dataset, X, which contain C number of classes

where, C ∈ {20, 30, 40, 50, 60, ..., 880, 890} and size(X) ≈ 10000. The classes to

form the subsets are chosen randomly. This assumption is corroborated with [152].

Training the SimCLR network: The SimCLR networks are trained for 100

epochs on each of the proxy datasets outlined. The SimCLR network learns from

approx2 10k 96x96 images. A learning rate of 0.001, a temperature parameter of

0.1 and a batch size of 128 is used. The network is implemented in Tensorflow [144]

and trained on a single GPU. This experiment is then repeated using 1k images.

Downstream task evaluation: The STL-10 [145] dataset is used as the imaging

evaluation dataset. A linear layer with no fine-tuning will be used when evaluating

the performance on a supervised dataset, to ensure that only the embeddings learned

from the SimCLR method are evaluated. The linear layer is then trained for 100

epochs.

Statistical Tests

H0: There is no correlation between the variables.

H1: There is a correlation between the variables.

A statistical test is needed to evaluate whether there is a correlation between the

amount of variation in a dataset and the classification performance of a SimCLR

network trained on that dataset. There are a number of statistical tests that could

be used to evaluate this:

• Pearson correlation coefficient: A common method for measuring the cor-

relation of two variables, however, it can only be used for linear relationships.

As there is no expected relationship between the two variables, this method

would not be appropriate.

2The number of images used for the unlabelled dataset is equal to round( 10000
NumberOfClasses ) ∗

NumberOfClasses then oversampled to ensure that 10000 images are used.



160 CHAPTER 7. DATASETS FOR CONTRASTIVE LEARNING

• Spearman’s rank correlation coefficient: This method is able to be used

for non linear relationships due to calculating the rank correlation.

• Distance correlation: The distance correlation can be used as a metric for

calculating the probability of dependence in a similar way to the bootstrapping

method outlined in chapter two. In this, the distance metric is calculated on

the data, the data is then shuffled and the value recalculated a number of

times. The first value is then compared to this distribution to find whether

the level of significance has been reached. This metric does work with non-

linear dependencies, but is a relatively uncommon approach.

For the statistical test in this section, Spearman’s rank has been chosen due to its

common usage and ability to be used on non-linear relationships.

7.8.2 Results

In this experiment, 88 SimCLR models were trained on datasets with varying num-

ber of classes included in them as a proxy for dataset variability; a linear layer was

then trained on the learned embeddings. In figure 7.6 the accuracy is plotted vs

the number of classes included in the dataset. There is no clear trend between the

two variables: A Spearman’s rank test is performed as set out in the statistical

test section, with a calculated p-value of 0.3964, leading to acceptance of the null

hypothesis that there is no correlation between the number of semantic classes used

in the unlabelled dataset and the downstream classification performance. The re-

peated result using 1k images shows the same lack of correlation.
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Figure 7.6: A plot of the performance of a SimCLR network trained on different

amounts of ‘variation’ in the unlabelled dataset. The number of semantic classes is

varied between 20 and 890 classes, in increments of 10 classes. (Left) Shows the

variation in performance when using unlabelled 1k training images; (Right) shows

the variation when using 10k images.

7.9 Does Increasing the Overlap of Semantic Classes

Between Labelled and Unlabelled Datasets In-

crease Performance?

Based on the results of section 7.8, it could be hypothesised that the semantic

content does not have an impact on the quality of the representations learned.

This hypothesis would contradict previous argument that the distribution of the

unlabelled and labelled images should be similar: under the assumption that the

same semantic class will have a more similar distribution than a dissimilar semantic

class. This experiment compares the performance of networks trained on varying

levels of semantic overlap between the unlabelled and labelled dataset.

7.9.1 Experimental Design

Using the same training protocol as the previous experiments, 100 SimCLR encoders

are trained using unlabelled datasets consisting of varying amounts of semantic over-

lap between the unlabelled dataset and labelled dataset. For each of the 10 possible

amounts of overlap, 10 repeats are conducted. The encoders are then evaluated by
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optimising a linear layer on the output of the encoder, reporting the linear separa-

bility of the test dataset after 100 epochs. The same training protocol as 7.8 is used.

Dataset Generation: 10 sets of datasets are generated with varying amount of

semantic overlap between the labelled and unlabelled datasets [153]. The amount

of overlap is varied between 10% (i.e the unlabelled dataset contains only one se-

mantic class) and 100% (i.e the unlabelled dataset consists of all of the semantic

classes). The labelled dataset used is the STL-10 dataset which consists of images

of aeroplanes, birds, cars, cats, deer, dogs, horses, monkeys, ships and trucks. To

generate these unlabelled datasets, the ImageNet dataset is used, combining mul-

tiple ImageNet classes to form the same semantic classes as would be found in the

STL-10 dataset. Images are randomly selected from the total population of possible

images to generate an unlabelled training set of 1000 images.

7.9.2 Results

Figure 7.7 shows the effect of increasing the amount of semantic overlap between

the unlabelled and labelled dataset on the downstream classification performance.

There is no trend in the data: performance is static across the amount of overlap.

This result is surprising, and disagrees with some conjectures made in the literature,

however, this result agrees with the work of [97] that argues that self supervised

models optimise for more generic features than class specific features.
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Figure 7.7: Impact of increasing the amount of semantic overlap between the unla-

belled dataset and labelled datasets. Varied linearly between 10% and 100%. Red

line indicates an untrained encoder.
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7.10 Does SimCLR Learn General or Data Spe-

cific Features?

In this section, an evaluation is conducted to examine whether the features learned

by the SimCLR mechanism are specific to the unlabelled dataset trained on, or they

are general image features that have utility for any task. This work is especially

useful for areas in which is it often very hard to collect domain specific datasets. If

it were to be shown that SimCLR learns general features, very large models could

be trained on extremely large general imaging models and these features could then

be used for arbitrary tasks, reducing the cost burden of applying deep learning even

further. Based on the results of section 7.9, it is expected for there to be no difference

between the two sets of networks. This experiment extends 7.9 from synthetic tests

to real data tests.

7.10.1 Experimental Design

This section examines whether general or specific features are learned by the Sim-

CLR method. Based on the assumption described below, an experiment is designed

to test this.

Assumption: This section works under the assumption that if a network learns

dataset specific features, then the network pre-trained on the same dataset as used

for supervised training will perform better than the network pre-trained on an ar-

bitrary dataset. This assumption underpins this section.

Datasets: In this experiment there are two datasets: the test dataset consisting

of a medical imaging task, and an arbitrary dataset consisting of images that do

not overlap with the test dataset. For both sets of data, the images are centre

cropped and re-sampled to be 96x96 pixels. For the test dataset, a subset of the

HAM10000 [12] is used, utilising 3000 images split into 3 classes: Benign lesions of

the keratosis (a non cancerous lesion); Melanoma; and Melanocytic nevi (pigmented

moles [117]). To train the encoder networks, the full HAM10000 dataset is used
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which consists of ≈ 10k images of various skin lesions. For the arbitrary dataset,

10 sets of 10k image randomly sampled subsets of the full ImageNet are used. Im-

ageNet was chosen due to its large size, ubiquitous usage, and lack of distribution

overlap between itself and the test dataset. This experiment is then repeated using

1k sized subsets of the HAM10000 and ImageNet datasets.

Network Training: Firstly, a SimCLR encoder (ResNet-11) is trained on one of

the unlabelled datasets following the implementation details set out in 7.8. The

encoder is frozen, and add a linear layer is added as before, optimising the weights

to linearly separate the three classes from the test dataset.

Statistical Analysis: For each dataset, 10 SimCLR encoders are trained, and eval-

uated on the dataset described above. A t-test is then applied to test for significance.

As two repeats are conducted, the Bonferroni corrected p-value is 0.025.

7.10.2 Results

When tested on the 10k full dataset size, the SimCLR networks trained on the der-

matology datasets achieved a mean classification performance of 89.2% compared

with a mean classification performance of 87.5% for the networks trained on Im-

ageNet (p=0.04184, non-significant). When trained on the 1k sized subset of the

full dataset, the network trained on the dermatology images achieved a mean clas-

sification performance of 78.6% compared with 84.5% for the networks trained on

ImageNet (p<1e-4). In neither case did the networks trained on the dermatology

dataset achieved statistically significantly greater performance than the network

trained on a general imaging task. This result holds great importance for the utility

of SimCLR and is discussed further in the discussion.
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7.11 Does CPC Learn General or Data Specific

Features?

Semi-supervised models hope to decrease the cost of applying deep learning by using

cheaper, unlabelled data to learn features that can be used to increase performance

of some related task. While cheaper than labelled data, unlabelled data still has

some cost of acquisition, this is in addition to the training cost of the model itself.

If it can be shown that the features learned by semi-supervised methods are generic

features and transfer over to multiple tasks, a large general model could be trained

and reused for multiple tasks. This would help the uptake of these methods by

reducing a barrier to entry.

Experimental Design: This section uses the same model training protocol as

chapter 4. Encoders are trained on the four unlabelled datasets: {Colonoscopy,

Chest x-ray, OCT, dermatology}. Then the following experimental design is fol-

lowed:

• Select one of the labelled datasets, eg colonoscopy.

• Using the encoder that was trained on the unlabelled datasets that matches

the labelled dataset: train a set of ResNets with that encoder, employing the

same methodology as chapter 4. This set of results will be will be termed the

“matching results for dataset x”.

• Using one of the encoders trained on unlabelled datasets that do not match the

labelled dataset. Train a set of ResNets using the same methodology as above.

This result is be termed “non matching results 1 for dataset x”. Repeat for

“non matching results 2 for dataset x” and “non matching results 3 for dataset

x”

• Compare the results for the matching and non-matching datasets.

• Repeat for the other three datasets.
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Datasets: In addition to the datasets used in chapter 4, this experiment also uses

the ChestX-ray8 dataset [154]. 11,400 x-rays are randomly sampled from three

classes of images consisting of: Atelectasis (collapsed lung); Infiltration (an abnor-

mal substance that accumulates gradually within cells or body tissues [155]). Plus

a set of images with no pathology detected. The full ChestX-ray8 dataset is used

for CPC encoder training.

Network Training: This section uses the same CPC training protocol as chapter

4. The CPC encoder (ResNet-50) is trained for 60k iterations, with a batch size of

16, and optimised using the ADAM optimiser [104] and a learning rate of 2e-4. The

encoder training is always 60k iterations: in all datasets except the dermatology

dataset, this corresponds to a single pass through the data. As the dermatology

dataset is only 10k images, this corresponds to 6 epochs of the dataset. As with

the work in chapter 4, the classifier (ResNet-11) are trained using the ADAM opti-

miser [104] with a learning rate of 5e-4, and early stopping [37] with a patience of

50, up to a maximum of 1000 epochs.

Results: The set of four images in Figure 7.8 contains a graphical representation

of 1280 models trained on CPC embeddings. The orange lines represent the the

networks trained on embeddings learned on the data these models are trained on

(i.e the encoder would be trained on CXR images then a linear layer would be

trained to predict CXR pathologies). The networks trained on the embeddings of

the specific dataset appears to offer no benefit over using a network trained on a

completely different dataset. This concurs with the work of [97] that the features

learned by semi-supervised learning are more general than the class specific feaures

that can be found in supervised learning.
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Figure 7.8: Here, exploration of whether the CPC encoder learns dataset specific

features or general image features. The green lines show performance when the

encoder is trained on a different dataset to the labelled dataset, and the orange line

is when it is the same. If CPC learned specific features the expectation would be to

see the orange line on top for all datasets. The graphs show colon, CXR, OCT and

dermatology left-to-right, top-to-bottom respectively.

7.12 Discussion

This chapter is composed of two macro sections: firstly, sections 7.3 - 7.7 examines

the impact of unlabelled dataset size on downstream classification performance;

secondly sections 7.8 - 7.11 examine how the content of the dataset (specifically

the semantic variability and distribution overlap) affects downstream performance.

Overall, the following recommendations are made that contribute to the literature:

• With a fixed computational budget, increasing the number of unique image

instances will not increase performance, as long as the dataset is sufficiently

large to overcome the initial increase in performance.
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• Both under-fitting and over-fitting are problems in contrastive learning, which

need to be accounted for in unsupervised training. The technically novel sug-

gestion of early stopping of the unsupervised section is shown to be a mitigation

for this. The early stopping does not stop underfitting, it provides a stop point

so that an implementer can train for longer without overfitting.

• There is no correlation between the semantic variability of the unlabelled

dataset and the downstream linear classification performance of the embed-

dings. It is therefore unnecessary to spend effort to optimise for this.

• There is no trend between the amount of semantic overlap between the labelled

and unlabelled datasets. In addition, no statistically significant correlation

between any of the metrics for measuring distribution overlap between the un-

labelled and labelled datasets and the downstream classification accuracy was

found. Therefore, increasing the overlap between the unlabelled and labelled

classes is not necessary for semi-supervised learning.

• SimCLR trained on a dataset taken from the same distribution as the labelled

dataset did not produce better results than a dataset trained on ImageNet,

leading me to conclude that the features learned by SimCLR are general and

are not dataset specific.

Dataset Size: The first macro section of this work examines how dataset size im-

pacts the downstream classification performance of semi-supervised networks. The

work complements and extends existing research, however, disagrees with the con-

clusions made with the prior work. Figure 7.9 shows results given in [4] which show

the performance of a network trained using a static number of iterations but vary-

ing amounts of data. The authors claim the plateau is evidence that after a certain

amount of data, no performance gains are seen. This work extends this, presenting

evidence that this plateau is due to underfitting at the larger data ranges, rather

than that no performance is gained from larger datasets.

The finding that for a given computational budget, performance is not gained from

larger datasets is surprising. I posit that this will have real world impact where
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Figure 7.9: ImageNet top-1 performance when training with differently sized unla-

belled datasets, taken from [4]

collection of additional data is not cost free. In a setting in which one is collecting

their own data, rather than relying on open datasets (ImageNet cannot be used

for commercial purposes: the ImageNet project does not own any of the copyright

for the images that are within the dataset, therefore, the images cannot be used

outside of Fair Use), collecting data has some cost to it. This cost is not uniform,

for example the cost to scrape unlabelled images from the web is relatively cheap

which leads to very large datasets being able to be collected. On the other hand,

collecting images such as medical data can be far more expensive due to ethical and

legal restrictions. If the implementer has a fixed computational budget and the cost

of generating more data is costly, it may make no difference to use additional unique

images. While beyond the scope of this work, it would be interesting to examine at

what point this plateau happens. However, it is possible that such an examination

is intractable due to the large number of factors that can affect such an outcome,

eg: model capacity, augmentation strategy, number of unique images, image size, etc.
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The work in section 7.6 shows that as the number of unique images increases, the

number of iterations needed to learn from it also increases. Therefore, if an imple-

menter is attempting to increase performance by increasing the size of the unlabelled

dataset, it is imperative that they have sufficient computational budget to be able

to not underfit the dataset.

Dataset Composition: The second macro section of this chapter examines how

the composition of the unlabelled dataset affects downstream performance of a net-

work. This is studied through three dimensions: 1) semantic variation; 2) distri-

bution overlap between the unlabelled dataset and labelled dataset; 3) whether the

features learned or general or domain specific.

The hypothesis for the semantic variation experiment (section 7.8) is that as the

number of semantic classes used in the unlabelled dataset increases, the chance

that a feature useful for the downstream task is learned increases, thus leading to

higher downstream performance. This was found not to be the case, and there

was no significant correlation between the number of semantic classes used and the

downstream classification performance. This is contrary to the work of [152], which

showed that, under a supervised transfer learning paradigm, increasing the number

of semantic classes in the pretext task increases performance in the downstream task.

Another surprising result is the work in section 7.9. No statistically significant cor-

relation was found between the distribution overlap between the unlabelled dataset

and the labelled dataset, and the downstream performance. Based on this result,

the performance of a SimCLR trained on a dataset taken from the same distribution

as the labelled training set was compared to a network trained on ImageNet and

found that there was no increase in performance from the networks trained with

distribution overlap. As argued in section 7.9.2, this agrees with the work of [97]

that says that self supervised methods learn more general features than supervised

learning tasks, and therefore do not need as much overlap as supervised tasks. Ad-

ditionally, the work of section 7.11 concurs with this work, in that experiment, the

importance of distribution overlap between the unlabelled and labelled datasets on
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downstream performance was evaluated. As with the work of this chapter, it found

no link between the overlap and absolute classification performance. This adds to

the argument that distribution overlap between the two datasets is far less important

than would be for supervised learning. Additionally, this result is extremely impor-

tant for the utility of SimCLR. By showing that no performance gain is achieved

from retraining the SimCLR encoder for each specific task: encoders are able to

be reused between tasks. This saves cost on two fronts: the cost of acquiring the

labelled dataset, and the cost of training the encoder.

Limitations: Consistent with the work throughout this thesis, this chapter has

made tradeoffs due to the computational cost of training contrastive models. This

chapter has made the same tradeoffs as chapter 6 with regards to the the smaller

image size and batch size than [1]. These choices are discussed at length in the

limitations section of chapter 8.

7.13 Conclusion

This chapter has conducted a number of experiments examining how the size and

content of the unlabelled dataset used for unsupervised pre-training impacts the

SimCLR methodology. This chapter finds that increasing the size of an unlabelled

dataset does not inherently increase performance. Additionally, underfitting remains

a problem, and this chapter argues that improvements on the state of the art could

be achieved through longer training. This chapter also provides a technically novel

solution for how an implementor should conduct unsupervised training. The second

macro section evaluates how the content of the images affect the downstream classifi-

cation performance: no correlation between semantic variation and performance was

seen. The degree of semantic overlap between the labelled and unlabelled dataset

was not found to affect downstream performance. Evidence is also presented to

argue that the distribution overlap between the unlabelled and labelled datasets is

less important than under a supervised paradigm.
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Link to the aims: This thesis aims to investigate semi-supervised learning

and to understand how best to apply this set of methods to obtain the high-

est performance. Chapter 4 investigated how the size of the labelled dataset

impacts the downstream classification performance, however, this only inves-

tigates a tiny proportion of the total amount of data used: the unlabelled

dataset makes up a much larger proportion of the total training data. Chap-

ter 7 investigates how design choices about the unlabelled dataset affect the

downstream performance of a SimCLR model. This chapter presents a novel

result in which increasing the quantity of unlabelled images used by a semi-

supervised model does not result in greater downstream performance, unless

that increase in data is also given an increase in compute power (in the form of

additional iterations). This important result improves the current literature,

which did not provide enough compute capacity for the large datasets these

papers used. This chapter also presents work that shows that the contents of

the images used is less important than the quantity of them. This provides

meaningful guidance to practitioners when designing their own datasets for

use with a semi-supervised model.
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Chapter 8

Discussion

The acquisition of labelled data is extremely challenging in some fields, such as

medical imaging, with even the most simple of labelling tasks costing vast sums

of money to create the ImageNet sized datasets that are needed to apply some of

the state of the art approaches that are found in the literature. This high cost of

acquisition means that some of the state of the art methods that can be found in

the literature are difficult to apply well to these fields. In chapter 1, I presented

the problem case and discussed how it is often easier to acquire unlabelled data

than it is to acquire labelled data. This cost differential can be many orders of

magnitudes. This causes some unlabelled datasets to be hundreds of millions of

images in size, whereas labelled datasets are often in the thousands range. This cost

differential can be felt more acutely in fields such as medical imaging, where the peo-

ple tasked with labelling the data are highly skilled, and therefore costly, physicians.

Contrastive learning (introduced in chapter 2) has been found as one example of a

method that could possibly leverage the power of cheap, unlabelled datasets to in-

crease the performance of a network on a downstream task. Chapter 3 introduced

Contrastive Predictive Coding (CPC) as a possible such method. Chapter 4 showed

that CPC could possibly increase the performance of a ResNet in an extremely data

limited scenario across two different datasets. However, it also highlighted that this

training protocol is not a panacea: the training protocol used does not work equally

well across datasets and sometimes cannot beat training directly from the pixels.

175
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From these promising results, chapter 5 introduced SimCLR. This method has been

extensively studied in the literature, therefore, no evaluation of the performance of

the method has been conducted as, unlike for Contrastive Predictive Coding, no

value would have been gained from this study. Instead, gaps in the literature were

identified, focusing on design choices of the training protocol. These were evaluated

to examine how to achieve the greatest performance: 1) chapter 6 investigated

how the augmentation protocol affects the downstream classification performance

2) chapter 7 investigated how the unlabelled dataset affects downstream classifi-

cation performance.

Chapter 6 found that hyperparameter tuning is necessary to achieve the greatest

performance across datasets, and that the conclusions made regarding the perfor-

mance on ImageNet may not transfer over to alternative datasets. It also validated

claims that SimCLR representations are invariant to augmentation, however, finding

that augmentation during supervised training is still necessary to achieve the best

performance. Chapter 7 then concluded that SimCLR implementations found in

the literature use a training period that is not long enough, this leads to the conclu-

sion that these networks have underfit on the unlabelled dataset. In addition to the

experiments on the length of training, chapter 7 also examined how the content

of the unlabelled dataset affects performance. It concluded that the distribution

overlap between the unlabelled and labelled datasets are less important than in su-

pervised approaches.

Finally, chapter 8 looks at how this work fits within the scientific literature and

gives suggestions on possible further directions of research.

8.1 Limitations

This thesis presents a number of results based on experimentation into whether

contrastive learning can be used for improving the performance of machine learning

models when given large amounts of unlabelled data but small amounts of labelled
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data. Despite the importance of the results presented throughout this thesis, a

number of limitations of the work exist and are summarised here for the reader.

8.1.1 Limitations of Compute

This work has been limited by the computational cost of training contrastive mod-

els. Semi supervised methods use extremely large amounts of compute to train these

models, for example [3] used 512 GPUs concurrently. This is far greater than the

computational capacity available to a PhD student: For reference, I had a computa-

tional budget of approximately £1000 for 3 years of the PhD (this is approximately

13 hours of use of a GPU server with just 8 top of the line graphics cards [156]).

Due to this limitation on computational capacity, a number of trade offs were made

to reduce the computational demand of running the experiments in this thesis.

Chapters 6 and 7 used a ResNet-11 as their backbone model: This model is much

smaller than the ResNet-50 used in the SimCLR paper [1], which has approximately

an order of magnitude more parameters than the ResNet-11. Reducing the number

of parameters in the model reduced the absolute power of the network, [2] found

that larger networks performed better than smaller networks with their experimen-

tal set up. Despite this limitation, reducing the number of parameters in each

model, it allows for a larger number of experiments to be run, increasing the quality

of the work in this thesis. Firstly, this reduction in training time allowed for re-

peat training of models to be conducted, increasing the reproducibility of this work.

Prior work [2] [1] report the results from a single training run allowing for possible

erroneous or statistically unlikely results to be taken as final results. By conduct-

ing repeat runs, with different random initialisations and different random subsets

of the dataset, the chance that the results reported in this thesis are a statistical

anomaly are greatly reduced. In addition to the increase in repeats in training of

these results, the reduction in number of parameters meant that the model could be

trained for longer. An example of this limit can be seen in section 7.6 where a sub-

set of unlabelled dataset sizes were used for calculating the peak training amount

(100, 1000 and 10000 images). If more computational capacity was available, an
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estimated peak value could have been calculated for each unlabelled dataset size.

Despite this, I believe that the work presented here is a fair compromise given these

limitations. For example, while a subset of unlabelled datasets was studied in 7.6, I

believe that it is unlikely that increasing the number of subsets would have changed

the conclusion that I came to and therefore is not a large limitation. Similarly,

while purely conjecture, I believe that while the absolute levels of performance may

differ between network sizes, the trends found in this work would still be relevant

for larger network sizes.

In addition to the limits on the amount of compute I had available, there was a

limit on the amount of GPU memory available. Larger input images, larger model

sizes, and larger batch sizes all contribute to higher memory usage. ResNet-11s were

chosen due to the computational cost of increasing model size, therefore a trade-off

is left between image size and batch size. As the size of the images increased, fewer

images could be used within a single batch during training due to an increase in

GPU memory usage. This meant that both for the work on Contrastive Predic-

tive Coding and SimCLR, the experiments in this thesis used smaller batch sizes

than presented in the original papers. [1] shows that increasing the batch size of

a contrastive learning task leads to greater performance (increasing the batch size

increases the number of negative examples, which makes the pretext task harder.

By making the task harder, the network has to learn better features). Based on

this result, it is likely that higher absolute performance could have been obtained

by increasing the batch sizes for both network types. In addition to the batch size,

I also reduced the size of the images (in chapters 6 and 7) from a typical 256x256 to

96x96. 96x96 was chosen as this was the size of the images in the STL dataset cho-

sen for the supervised dataset of some of the experiments. Chapter 4 uses an image

size of 256x256, a similar image size to the one used in the Contrastive Predictive

Coding paper, so this limitation does not apply here. I believe that I used a fair

compromise between image size and batch size. Additionally, I believe that while

the absolute performance numbers would change with a larger batch size and image

size, it is likely that the trends given in this thesis would hold. This is, however,

purely speculation as I could not complete the necessary experimentation to confirm
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this.

Finally, in addition to the size of the models being a limitation, this thesis also only

examined a ResNet backbone in both the work on Contrastive Predictive Coding

and SimCLR. A ResNet backbone was used in this work to follow the same model

design as the SimCLR and CPC papers, however, there is no intrinsic reason for why

they must be used. Both CPC and SimCLR can both use any model backbone that

can project an image (or patches) down to a latent embedding space. More recent

work has used transformer models as their backbone. While it is worth mentioning

in the limitations that this was not studied, I believe that the results in this PhD

would be relevant for any neural backbone.

While I highlight these as limitations of this thesis and areas for possible further

study, I have no reason to believe that the results presented in this work would

not be relevant to an implementor working with more standard sized images. All

these changes were made to increase the value of the work in spite of the resource

constrained environment that I operated, for example to allow repeat measurements

to be conducted. While I do not believe that these results would change for larger

batch sizes, images, and networks, this is just speculation. Further work is needed

to confirm this speculation.

8.1.2 Use of Non-Medical Datasets

While chapters 6 and 7 do include some work conduced on medical datasets (sec-

tions 6.3, 6.4 and 7.10), the majority of this work is conducted on general imaging

datasets (STL-10 and ImageNet subsets). These general imaging datasets were cho-

sen to increase the appeal of this work to readers outside of the medical imaging

domain, however, this comes at the expense of a loss of applicability to the medical

imaging community. Without replication of the results in this thesis to medical

imaging datasets, I cannot say with certainty whether these results will translate.

This was a conscious choice, as I felt that, while my PhD was on medical imag-

ing, these results would be more applicable to people working on general imaging
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datasets.

This choice helped facilitate the work of experiment 7.8. Experiment 7.8 investi-

gated whether increasing the semantic variability of the unlabelled dataset would

increase the downstream classification performance of a network. The hypothesis of

this experiment was that the larger the semantic variability, the increase the chance

that the network would learn a feature that is relevant to the downstream classifica-

tion task. To test this hypothesis, a dataset was needed that had a large number of

classes, each of which could vary quite dramatically. For this reason, subsets of the

ImageNet dataset were chosen. Firstly, the ImageNet dataset has a large number of

distinct classes (1000 classes), this number of classes in a single dataset is uncommon

in medical imaging dataset, especially with a large number of images per class (1400

images per class on average, however, this does vary). Secondly, the variability of

the images found in the ImageNet dataset is larger than would be found in many

medical imaging datasets. Consider the semantic difference (and under the hypoth-

esis, the features that this would create) between an image of a dog and an image

of a car, compared with the image difference between 2 x-rays, one with TB and

one with cancer. Finally, ImageNet is a much more common dataset (the de facto

standard for computer vision), and given this was a novel hypothesis, I believe that

this increased the usefulness of the experiment.

While one could be critical of this decision within a PhD in medical imaging, I believe

that this was the correct choice and increased the value of the work presented here.

Despite this, I cannot conclusively say that the results presented in this thesis will

transfer over to a medical imaging task.

8.1.3 Unanswered Question

There exists an open question within the machine learning community as to whether

we should focus on models that can be applied to any scenario or whether applica-

tion specific models are needed to achieve the highest level of performance.
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On the one hand, there is the advent of foundational models (introduced in chapter

2). The high-level idea behind these models is that very large (multibillion param-

eter) models are trained on extremely large, internet scale, datasets to produce a

model that can give good levels of performance across any task. On the other hand,

these models are still not perfect, performance can be surpassed on some tasks by

fine-tuning these models on more specific datasets and/or more specific tasks. Across

the commercial sector, it is common to finetune foundational models such as llama-3

7B. This is done for two main reasons: 1) in a number of cases, finetuned smaller

models can outperform untuned larger models; 2) even in cases where these models

cannot outperform their larger counterparts, the increase in performance gained by

finetuning them reduces the gap enough that the reduction in cost is worth this

slight reduction in performance.

This thesis has not settled the debate on whether task specific, fine-tuned mod-

els should be produced, or work should be conducted to produce large, generalist

models. However, a number of relevant questions were addressed in this work:

• The work in section 7.10 and section 7.11 attempted to answer whether train-

ing contrastive methods on datasets that closely align with the downstream

tasks produce better results than training on another arbitrary dataset. The

literature in this area has not found a definitive answer which is why this was

studied. The results from 7.10 and 7.11 say that the performance on models

trained on a dataset that aligns with the downstream task do not perform

significantly better than models trained on datasets that do not align with

the downstream task. This work aligns with the theory behind foundational

models. Despite this, this work will obviously not answer this question fully,

merely add to the body of evidence. Further work needs to be conducted

on more datasets and across a larger variety of semi-supervised methods. It

would be interesting to repeat the studies conducted in this thesis on some of

the auxiliary task methods presented in chapter 2.

• The work in section 6.4 and 6.5 highlight that hyperparameter tuning to a

specific dataset can increase the performance of SimCLR, at least in a resource
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constrained environment. This could be argued that this presents the opposite

conclusion from the work above: that dataset or task specific networks perform

best. As above, this only provides some evidence and further work would be

needed on a larger variety of datasets and tasks.

This work currently presents a mixed message: the results from chapter 6 argue

that there are improvements to be gained by conducting hyperparameter tuning

the augmentations used in simCLR training to each specific task or dataset. This

can be argued to be the complete opposite argument given in chapter 7: that an

implementor should be spending resources to create a single, task agnostic, generalist

model using as much data and training resources as possible. Further work will be

required to untangle these contradictory results. Section 8.2 provides a discussion of

this mixed message and possible experiments that could be conducted to disentangle

this message.

8.2 Disentangling the Mixed Message

In the limitations section “Unanswered Questions”, I highlight that there is currently

a mixed message between advising to train task specific networks (i.e optimising

the augmentations for a specific dataset), and training generalist networks (training

models for longer on a large, general dataset). There is currently an interdependence

between the results of the two sections that can provide possibly contradictory re-

sults. In this section, I highlight these results, provide possible interpretation, but

most importantly, give a set of possible future experiments that could be conducted

to help untangle the contradiction.

Chapter 6 provides evidence to suggest that the optimal set of augmentations will

change depending on the dataset, and that the chosen augmentations can substan-

tially change the performance (an over 20 percentage point difference in performance

between the highest performing and lowest performing augmentation on the OCT

dataset). The experiments in chapter 7 do not follow this recommendation and

instead use the set of augmentations used in [1]. One can say that this is a flaw
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in the experimental set up, and possibly led to sub-optimal results. However, this

choice more positively means that the results found in this section are more compa-

rable to the literature. Unfortunately, this choice has meant that, without further

experimentation that has not been conducted in this thesis, there are contradictory

results that are unable to be untangled.

Similarly, the work in the first half of chapter 7 has given evidence to suggest that

a large portion of the literature has underfit on the datasets used during their un-

supervised training. This has likely led to sub-optimal results. This result has an

impact on the interpretation of the results found in chapter 6. When training Sim-

CLR models for investigation of the impact of augmentation, chapter 6 followed the

training regime of [1] in which the encoder model was trained for 100 epochs on the

unsupervised task. This again has both the pros and cons of the previous paragraph:

it provides a more comparable result to the literature, however, could have resulted

in sub-optimal results.

8.2.1 Possible Further Experiments

An initial set of experiments that should be conducted would be repetition of the

experiments using the larger batch size, model size and network size that were used

in the original SimCLR paper. This set of experiments were not possible due to

the resource constraints of the PhD discussed in the limitations section, however,

an implementor with a larger resource budget could train these models. This would

help exclude the possibility that the contradictory results seen in chapters 6 and 7

are due to training models in resource constrained environments. Throughout this

discussion I have conjectured that these deviations in model sizes from [1] would

not have had an impact on the trends seen in this thesis, merely changing the abso-

lute performance numbers. I also conjecture that this will also be the case for this

investigation. If, as I believe, training in a resource constrained environment did

not explain these contradictory results, further experimentation would need to be

conducted to untangle this.
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A possible experiment that could be conducted to help give insight on the contra-

dictory result would be an investigation into how the deviation of augmentation

strategies changes as you increase the training amount. In this experiment, an im-

plementor would, for different training amounts (i.e the number of training batches)

train a selection of models on different augmentation strategies (i.e different selec-

tions of augmentations used during unsupervised pre-training). After training these

models, the standard deviation of model performance between augmentation strate-

gies could be calculated. The implementor could then see whether the standard

deviation of performances across different augmentation strategies narrows as you

increase the size of the datasets (and compute budget). If there was a narrowing

in standard deviation, then this would invalidate the recommendation that hyper-

parameter optimisation should be conducted for finding the optimal augmentation

strategy, and any future implementor should just focus on increased training time on

a single augmentation strategy. Alternatively, if there was no narrowing in standard

deviation, this would add to the argument presented in this work that augmentation

should be optimised.

One underlying cause that could cause the large variance in performance between

the different augmentation types could be that an (or multiple) augmentation fun-

damentally performs badly when used with SimCLR. To investigate this, one would

need to replicate the experiments from section 6.4 (investigation of composition of

augmentations) across a large number of datasets across many domains and compare

whether one (or multiple) augmentation type(s) perform substantially worse than

the others. This investigation would be a large investigation in itself. However, this

could explain why there was a variance in performance of different augmentations.

Finally, it is important to note that the results of this thesis may not actually be

contradictory. It is possible that both sets of results hold: 1) given a static set of

augmentations, the way to get the best results is to train for longer. 2) given a set

number of iterations that you can train a model for, hyperparameter tuning of the

model should be conducted. Unfortunately, the body of this thesis does not contain

enough experimentation to conclusively say one way or another. It is hoped that
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conducting these experiments will help future investigators clarify the contradictory

results found in this thesis.

8.3 Decreasing the Cost of Deep Learning

I started this thesis by asking the question of why : “why do we wish to use AI any-

way?”. A number of reasons were presented, including scarcity of healthcare workers

and reducing the number of medical mistakes. Fundamentally though, these reasons

come down to cost: why is there scarcity of healthcare workers? Because it costs a

lot of money to train and employ doctors and other healthcare workers. Why are

medical mistakes made? Because healthcare professionals are overworked to save

money and it is uneconomical to have all the work checked by multiple people. AI

is seen as a nostrum for this problem: an AI has a static cost, it cost roughly the

same amount of money to create an AI to see one patient, or 1 million patients. AI

can work in unison with both other AI, and human doctors, reducing the chance of

a single person being able to make a catastrophic mistake. This does not mean that

mistakes will not happen, AI is not infallible, but the chance of a mistake happening

through negligence could be greatly reduced.

While possibly morally uncomfortable, we as a society have allocated specific value

to human life. Healthcare economists assign a value to possible treatments on offer

within a healthcare system to work out if they ‘save enough life’ to offset the financial

cost to these treatments. In the UK, a common metric used for this is pounds per

quality-adjusted life year [157] (£/QALY), that is, the cost of every additional year

in perfect health that an intervention is likely to achieve. In the UK, this is typi-

cally less than £30,000/QALY [158] for a treatment to be considered economical, and

therefore likely to be approved, it should be below this level. It is therefore neces-

sary that any AI approach would need to be as cost effective as any other treatment.

As a whole, this thesis investigates reducing the cost of using state of the art deep

learning methods to produce good results and thereby allowing us to use the re-

sources we do have most efficiently. While it could be thought that these cost
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limitations only apply to the smallest entities in the deep learning space, such as

early stage start-ups and university researchers; even the largest companies in the

deep learning field are resource constrained. For example, GPT-4 [159] - the state

of the art natural language processing model - reportedly cost over $100 million to

train [160], and therefore training could only happen once. This is due to the ex-

traordinary cost of training these large, foundational models. This thesis has found

the same to be the case in the imaging field, with chapter 7 hypothesising that the

work of Chen for SimCLR has actually underfit on their dataset.

The cost of creating an AI comes from many aspects, not just the cost to train these

models: in addition this work has examined the impact of the size of datasets, both

labelled and unlabelled. Chapter 4 presented work examining CPC as a method to

improve performance when one has very limited labelled data. This chapter could

be considered to be an investigation into the case where the cost of creating labelled

data is vastly more than the cost of unlabelled data.

Chapter 7 examined whether it is necessary to spend extra money to acquire ad-

ditional unlabelled data: while usually cheaper than labelled data, it still has some

cost. This cost will be application dependant, for example, web scraping images will

be far cheaper than commissioning someone to take images for you. The chapter

presents evidence that, unless you have the computational budget to fully train the

network, more data is probably not necessary. In addition, chapter 7 analysed the

semantic content of the images themselves, finding that images from an unrelated

source perform no worse than images from a related source. This can be considered

an investigation into a situation where the cost of acquiring data from an unrelated

dataset is far cheaper than acquiring data from a related source, thus showing an

additional way in which the cost can be reduced. Chapter 7 showed that there

was no correlation in performance on the downstream task and the level of ‘over-

lap’ between the labelled and unlabelled dataset based on any of my metrics. In a

real application, this would further reduce the cost burden of applying these deep

learning approaches: because the features that are learned are non-specific, it al-

lows us to train on a dataset that is the cheapest, rather than having to train on a
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potentially costly unlabelled dataset. In addition, this problem could be treated as

a foundational model, such as the large language models that have found success in

the natural language space [159], [75], [78], in which a very large model is trained

(usually in a semi-supervised way) to produce a generic model. This generic model

can be used for its zero shot performance directly, or cheaply fine-tuned on a down-

stream task.

Finally, Chapter 6 can be thought of as taking an alternative assumption about

the cost of various aspects of the training process. It finds that performance can

be further improved from the suggestions of Chen et al [1] by performing hyperpa-

rameter tuning of both the type and magnitude of the augmentations used during

training. Under this assumption, it imagines how an implementer would want to

increase performance when the cost of training a network is negligible compared to

the cost of any data. Even in scenarios where the cost of training is not negligible,

this advantage of hyperparameter tuning will likely remain.

Consistently throughout findings of this thesis, the most cost effective solution will

depend on the exact cost differential between all components of the training protocol.

8.4 Future Work

Rather than highlighting what should be studied in the future, I start this section

with what shouldn’t be studied. Chapter 4 outlined how, given extremely lim-

ited labelled data and large amounts of unlabelled data, learning from Contrastive

Predictive Coding embeddings could improve the the performance of a ResNet com-

pared with training directly on the pixels. However, it was found that this did not

work on all datasets, even with the same experimental setup. In addition, the level

of data that the network was found to be successful on is unrealistically small. At

the low end of the data scale, the labelled datasets could consist of just six images

per class. Outside of some infrequent situations, such as for rare disease detection,

it is unlikely that this would be very useful. This conjecture is reinforced by the

lack of literature that has come in the years since I started this project: initially,
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I believed that this was a failure of the community to investigate this properly. I

now, however, believe that the lack of literature is more to do with the positive

publication bias that exists today [161].

Contrary to the lack of work found replicating CPC, SimCLR has been extensively

studied. While not always replicating the high levels of performance found in [1], it

often is found as a powerful baseline result (chapter 5) that matches the perfor-

mance of other related methods. Based upon the results in chapter 6 and chapter

7, I do not believe that we have reached the limits of what is possible to be accom-

plished with the SimCLR method. Some of the improvements that can be made

to the contrastive methods are not necessarily improvements to the methods them-

selves, they are improvements to engineering practices to allow us to train these

larger and larger networks. For example, the work conducted in chapter 6 con-

cludes that improvement and further utility of SimCLR can be obtained through

hyperparameter tuning. This would be extremely cost intensive, and unlikely to be

conducted until optimisations in the training time are created. However, if it were

possible to run this search cheaply, then this could increase the number of modalities

where these methods could be used. The same is also true for the work in chapter

7, which concludes that even with the size of dataset that researchers have at the

moment, it is unlikely that they have trained the network for long enough to achieve

peak performance. This again is more of a cost and engineering challenge than a

scientific challenge 1. I believe that if further resources are made available to train

these models to a higher level, with longer training times, using bigger models and

bigger batch sizes, trained using the extremely large datasets highlighted in chapter

7, then gains can be made with almost no change to the current method. While this

is not a long term solution, and in the future more efficient models will come along,

1Since the body of this thesis was conducted, foundational models (section 2.7) have become

prevalent. These models follow this principal, merely scaling the size of the models and sizes of

the datasets they are trained. The main driving force behind this is the innovation in engineering

practice that allows for training of these larger models. Examples of this could include increases in

the size of GPU memory or software innovations that allow for hardware failure without training

run failure [162].
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we are at a stage at the moment where the ability of a network to learn features

is not decided by the sophistication of the method, but by the economic ability of

the designer to bear the cost of training these models. This approach has worked in

the past: for example, Convolutional Neural Networks have been around since the

80s [163], however, it was not until it became economically realistic to train these

models that deep learning began to take off. One of the main contributions of the

Alexnet paper [41] was its use of GPU powered neural networks, taking advantage

of the relative cost advantage of training on general purpose GPUs. Recent devel-

opments will also possibly lead to increased cost efficiency for network training, for

example TPUs [147] and other ASICs [148]. This suggestion has not been explored

in this thesis due to the large training cost of these models, this is discussed further

in the limitations section.

In addition to these major areas for study, I highlight the following areas for further

investigation. (1) Increasing the number of augmentations. Chapter 6 examined

the combination of two augmentations composed together, and Chen et al [1] ex-

plored using three augmentations combined together, with one being kept static as

random crop. It is certainly possible that increasing the number of randomly ap-

plied augmentations above this level could improve performance, such as in the case

of [143]. This, however, would require a large amount of compute power to explore

and as highlighted before, is unlikely to be economical to study at this time. (2)

In addition to extra augmentation, extra network backbones could be studied. For

all methods under study in this thesis, a ResNet backbone has been used across

all chapters. There is no intrinsic reason for this, any other neural backbone (for

example vision transformers [164]) could have been chosen instead. However, as

with the augmentation search, this grid-search would be computationally intensive

to conduct.
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Commentary on Foundation Models: Since the body of this work has

been completed, there has been a surge in interest in so called foundational

models (chapter 2). These models have followed principles set out in chapter

7, namely that previous models did not train for long enough and that gener-

alist models can perform well across a number of tasks. Foundational models

use orders of magnitude more compute than previous models. I highlight in

chapter 2 that llama-3.1 used over 16000 top of the line GPUs concurrently,

significantly more than was used for either CPC or SimCLR. One of the most

influential papers within the foundational model domain is the “chinchilla

scaling law” paper [165]. This paper proposed the same conclusions as I did

in chapter 7, that state of the art model’s performance could be increased

scaling the amount of data. I believe this trend will continue for as long as

more data is able to be collected and for as long as capital budgets allow for

training these models.

8.5 Opinion on the Future

The appeal of semi-supervised learning as a method to improve deep learning’s

success remains. While semi-supervised learning has not, to date, surpassed the Im-

ageNet accuracy of supervised learning, the fundamental reasons for interest have

not changed since its inception: the cost of unlabelled data is substantially cheaper

than labelled data. Just as a human learns from limited examples and leverages what

it has seen previously despite no labels, I believe that the future of deep learning

research will be semi-supervised. Processing power increases exponentially. Neural

network model size is increasing rapidly. The amount of unlabelled, unstructured

data is rapidly increasing as more people become connected to networks. However,

labelled data will always remain expensive since it cannot be created without hu-

man input. I, therefore, believe that given further research into semi-supervised

approaches, we are likely to see methods appear that outperform supervised perfor-

mance across a more wide range of tasks.
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Reinforcement learning is another area in which researchers are not limited by the

labelled data. Under such a scenario, an agent (an AI) interacts with a world to

optimise some kind of ‘reward signal’, thus, there is no constraint on the amount

of data that the network can use. Larger constraints are the amount of processing

power an implementer has available, and the efficiency of the network. This has

been shown to produce superhuman results: [166], [167], [168]. I believe that semi-

supervised learning is much the same. While there is technically a constraint on the

amount of data that you have available. I do not believe that we have hit that level

yet.

Another area for exploration is contrastive methods between multi-modal data. The

current state of the art method for ImageNet performance is based on contrasting

between images and their textual descriptions [169]. This method is similar to how

humans handle multi-modal data, with the brain attempting to link multi-sensory

inputs to the same underlying representation [170]. There is possibility that this will

increase the sources of data that can be used for learning. While not contrastive, re-

cent advances in Large Language Models such as Google Deepmind’s Gemini [171]

are inherently multi-modal. This allows them to take advantage of much larger

sources of information than could be possible with just images alone.

One area where I think that the contrastive work could be problematic is the ‘all

vs one’ paradigm taken in the contrastive loss. Under this paradigm, each image

is contrasted with respect to all others, thus, in the case of a task such as super-

vised classification, the images of, for example, dogs, the embeddings of all dogs are

pushed apart as much as the images of, for example, cats. Admittedly, this could

be advantageous: such as in the case that we do not know what the downstream

task is, or, when the dataset that we are conducting the downstream task on differs

significantly from the unlabelled dataset. As discussed in chapter 7, this could be

used to the advantage of the system designer: it becomes less necessary to collect an

unlabelled dataset that matches the labelled dataset. By extension, this means that

it becomes less necessary to retrain the encoder for every task, once again further

reducing the cost of applying deep learning methods. However, my personal opinion
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is that this will lead to inefficient training in the case where we do know what the

downstream task is. I believe that it will be possible to in some way combine the

upstream and downstream learning objectives in such a way to more efficiently learn

a useful embedding. Ultimately, the measure of usefulness is defined by how well

it works on whatever downstream task we decide. A universal encoder (that is one

that works well on any task) may be useful, or it may not, it will entirely depend

on what use case the network has.

I believe think that one further area for exploration relates to the efficiency of semi-

supervised networks to learn from these large datasets. While earlier in the chapter

(section 8.2) I was advocating for using additional resources to learn from these large

datasets, a far better approach would rely on more efficient learning. A large number

of the current state of the art models rely on huge numbers of GPUs and training

time for learning the embeddings from, with [3] using 512 GPUs for training. This

is an unreasonable cost for most practitioners in the field. For these networks to

have more acceptance within the community, a research focus must be placed on

the computational complexity of these high performing models.

8.6 Recommendations for the Future

This thesis has investigated how semi-supervised learning, specifically Contrastive

Predictive Coding (CPC) and SimCLR, is able to be utilised for use with medical

imaging. In this section, I present a set of recommendations for how best to apply

semi-supervised learning. It is hoped that these recommendations, summarising the

learnings of this thesis, can help an implementer push the boundaries of the state

of the art.

8.6.1 Recommendation 1: Labelled data size

Semi-supervised learning achieves the greatest level of improvement over supervised

learning when the number of images per class is low. Section 4.3.1 as well as section
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4.4.3 have shown that there is a significant increase in performance when using just

1% of the dataset (20-30 images per class), however, when the number of images per

class increases to 100% of the dataset (2-3k images per class) there is no increase

in performance seen. This trend concurs with the work of Henaff [2] who showed

that when using 1% (roughly 10 images per class), achieved a large increase in

performance, but when using the full dataset, achieved a more modest increase.

This result is despite the ImageNet dataset having much more images total, with

1% of the dataset corresponding to ≈ 14k total images. Implementors should be

cognisant of this result: If images per class grows too large, it is unlikely that the

benefit of semi-supervised learning will be felt.

8.6.2 Recommendation 2: Transfer Learning

Across this thesis, semi-supervised learning has shown to be extremely suitable

for transfer learning. Initially, section 4.3.3 showed that the features learned by

transfered well over to new domain. Additionally, the work of 7.10 and section

7.11 show that the features learned by both SimCLR and Contrastive Predictive

Coding are general features, and it therefore unnecessary to produce task specific

unlabelled datasets, vastly reducing the cost to apply SSL to new tasks. Based

upon these results, I recommend that an implementer produces one, larger, more-

powerful model, that could be reused across a number of domains. This is especially

important due to the very large cost of training these models to saturation.

8.6.3 Recommendation 3: Computational Budget

Multiple experiments in this thesis have shown that to achieve the greatest level of

performance with semi-supervised learning, an implementor needs to have sufficient

levels of computational budget available. Most notably, chapter 7 argues that for

SimCLR to sufficiently saturate a networks capability, a large computational budget

is needed, much larger than is typically provided in the literature [3] [4]. This large

computational budget, along with techniques for preventing overfitting (section 7.7)

was able to fully saturate the network to approximately peak performance. Addi-

tionally, the work of chapter 6 hints at improved performance through the use of
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additional computational power: by utilising this capability to perform an exten-

sive hyperparameter sweep of possible sets of augmentations a significant increase in

performance can be gained. Section 6.4 found that there was an increase in perfor-

mance of 10.21% between the lowest and the highest performing augmentation set

for dermatology and 22.3% for OCT. This increase in performance is well worth the

increase in computational cost. Given these results, an implementer must ensure

that the computational capacity that they have access to is large.

——————————————–

While this work includes other recommendations for how to increase performance

for utilising semi-supervised learning for medical imaging, by following these three

recommendations, I believe that the largest gain in performance can be achieved.

8.7 Concluding Remarks

This thesis explored contrastive learning as a method for semi-supervised learning

across a number of novel dimensions. It explored the impact of both the unlabelled

and labelled datasets on downstream performance, and the impact of augmentation,

across two different popular, contrastive methods. This thesis asserts that increases

in a model’s performance can be achieved under certain conditions using contrastive

learning. However, whether this is useful for an implementer is contingent: What is

the cost to acquire labelled data? What is the cost of labelled data in comparison to

unlabelled data? What is the cost to train a network to convergence? All of these

questions have been shown to impact whether contrastive learning is a good choice

for certain applications under the constrained environment of this thesis. This work

concludes by giving specific, actionable advice on how an implementer can apply

these semi-supervised methods to achieve the greatest level of performance.
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Appendix A

Additional Experimental Results

This appendix includes findings from my PhD research that, while not directly

contributing to the main narrative, were still conducted and are included for com-

pleteness. These results are referred to throughout the main body of the work.

Experiments A.1 and A.2 investigate changes to the CPC training protocol and

experiment A.3 investigates whether CPC learns features specific to a dataset or

more general features.

A.1 Change in CPC Protocol

[2] suggests a number of changes to the CPC training protocol of CPCv1 intended

to increase the performance of the protocol (see section 3.3). This experiment ex-

amines whether changing the learning mechanism from a linear layer to a ResNet

improves performance on a set of medical imaging datasets.

Experimental Design: In this experiment, the performance of the CPC protocol

is compared when using either a linear layer or ResNet as the downstream learning

mechanism. For dataset subsets in {1%, 2%, 5%, 10%, 20%, 50%, 100%} of the full

dataset, a ResNet and Linear layer is trained and evaluated on its classification per-

formance for the three datasets under study. Twenty repeats are conducted for each

of the data amounts, model types and datasets. This experimental design broadly
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follows the design of section 4.4.

Datasets: The same medical imaging datasets used in chapter 4 have been used in

this experiment.

Training Details: Following the experimental design of chapter 4: the networks

are trained for a maximum of 1000 epochs, using early stopping with a patience

of 50 and The ADAM optimiser with a learning rate of 5e-4. Twenty repeats are

conducted, reporting the mean value with 95% confidence intervals.

Results: Figure A.1 shows the performances of both the ResNets and linear layers

trained on the same CPC embeddings. The ResNet learning mechanism has a

consistently higher mean performance, albeit not always a statistically significant

difference. Interestingly, the linear layer trained on OCT data peaks at below 50%

accuracy, whereas the ResNet does not peak. This result concurs with the work of

Henaff et al [2]: the change from a linear layer either increases performance or does

not harm performance. Based on the results of this section, it is recommended that,

to achieve the best results from Contrastive Predictive Coding, ResNets should be

used as the learning mechanism in the downstream task.
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Figure A.1: Impact of changing secondary learning mechanism, comparing: a lin-

ear layer and a ResNet across the three datasets (colonoscopy, OCT, Dermatology),

using variously sized subsets of the full dataset. None overlapping bars show signif-

icance.

A.2 Magnitude of Augmentation: Additional Re-

sult

Additional result from section 6.5, the full experimental details can be found there.

Section 6.5 investigates whether the level of augmentation affects downstream per-

formance for classification. This additional result contains a far greater amount

of noise than in section 6.5 (10x), however, the same conclusion is reached: The

amount of additive noise does not affect performance of the network.
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Figure A.2: Network performance against augmentation amount for additive noise.

A.3 Investigating metrics for distribution overlap

Prior work has suggested that as the distribution of the unlabelled dataset deviates

from the training dataset, the performance gained by the semi-supervised approach

diminishes [146]. In this section, metrics are examined which could be used to test

how well the distributions overlap. If a metric could be found that could partially

predict how well SimCLR could learn the data, more informative unlabelled datasets

could be produced.

A.3.1 Metrics

In the section 7.8, a proxy measure of ‘variability’ was used: the number of semantic

classes in the unsupervised dataset. This proxy would obviously not work in a real

setting, as if one had access to the labels, one could just train a supervised model and

get the high levels of performance that supervised networks enjoy over even state-

of-the-art semi-supervised models. In this section, a number of candidate metrics

are examined, ones that do not rely on semantic label:
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Structural Similarity

Structural Similarity (SSIM) [172] is a metric for testing the similarity between two

images. In this section, a distribution is generated by repeatedly taking two random

images: one from the unsupervised dataset and one from the labelled dataset and

calculating the SSIM between the two images. The standard deviation is then

calculated on this distribution. This works as a proxy to the ‘variability’ of the

dataset, a proxy that does not require labels unlike the proxy given in section 7.8.

It is, therefore, able to be used on an unlabelled dataset.

Mean Squared Error

The Mean Squared Error (MSE) metric is conducted in a similar way to the SSIM

metric. In this metric, two random images are selected: one image from the train-

ing dataset; and one from the proposed unsupervised dataset. The mean squared

difference of the two images is taken and stored, this is repeated 10000 times. The

sum of these metrics over the 10000 repeats is calculated and reported as the single

dataset metric.

Kolmogorov-Smirnov Test

If two images are similar, they should have similar greyscale distributions. For

this test, a similar methodology as the previous two metrics is followed, in that

two images are randomly selected: one from the training dataset, and one from

the unlabelled dataset. Each of the images are converted to greyscale and their

distributions compared using the Kolmogorov-Smirnov (KS) Test. This is then

repeated 10000 times, and the average value for this test is plotted across all datasets

used in the experiment from section 7.8.

A.3.2 Experimental Design

This section is attempting to find a metric that can be used to examine a unlabelled

dataset to predict whether it will perform well at the downstream prediction task.

Three metrics are proposed as possible metrics to predict this performance: SSIM;

Mean Squared Error; and the Kolmogorov-Smirnov Test. The 88 networks and
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Figure A.3: Proposed metric vs downstream accuracy across all 88 unsupervised

datasets. From left-to-right there is: Structural Similarity; Mean Squared Error;

and KS.

datasets used for section 7.8 are reused for this section. The metrics are calculated

for each of the datasets used, and plotted vs the accuracy of the downstream super-

vised task. Statistical analysis is then conducted to find the most suitable metric

for dataset description analysis.

Statistical Tests: As with the test in the previous section, this section explores

whether there is a correlation between the proposed metrics (listed above) and the

performance of a network found in the previous section. For this reason, Spearman’s

rank has also been chosen for this section. Bonferroni correction is used due to

having multiple metrics being tested. Following the equation set out in chapter 2,

the Bonferroni corrected significance value will be 0.05
3

= 0.0167.

A.3.3 Results

Figure 7.8 shows three plots of the three metrics given, plotted against their down-

stream classification performance. There was no statistically significant correlation

found between the SSIM overlap metric and the performance of the network for

downstream classification performance (P = 0.6324). There was also no statistically

significant correlation found between the Mean Squared Error metric and the per-

formance of the network for downstream classification performance (P = 0.9481).

There was no statistically significant correlation between the K-S metric and the

downstream classification performance (P = 0.4162).



Appendix B

Understanding Noise Contrastive

Estimator

B.1 Introduction

This appendix summarises and explains the evolution of the loss function widely used

in contrastive learning. It covers how Noise Contrastive Estimators evolves through

a number of changes to become NT-Xent. Broadly, all the methods covered in this

section have the the same goal: to train an encoder such that similar information is

together in the latent space, and dissimilar information is far apart. This appendix

does not introduce any new information, merely provides a convenient summary for

the reader. This appendix start by introducing the Noise Contrastive Estimator, a

method for learning the underlying distribution of a dataset. This model is then

computationally simplified using the Simplified Scalable log-bilinear models set out

in B.3. The method is then changed to take the form of a multi-class problem, while

at the same time giving a possible solution for how the noise should be generated.

Finally, this chapter explores NT-Xent, and look at the performance increasing

features introduced.
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B.2 Noise Contrastive Estimation

Noise Contrastive Estimation (NCE) [90] is a estimation principle to model the un-

derlying distribution of a set of data. This modelling is accomplished through distin-

guishing between the data within the set and from some kind of artificial noise. This

loss function is conceptualised as a supervised learning problem: training a network

to complete a binary classification problem, classifying real data from noise. Given

a set of real data: {X1, X2, X3, X4, ...XN} and a set of noise {Y1, Y2, Y3, Y4, ...YN},

the following objective function is optimised:

JT (θ) =
1

2T

∑
t

ln[h(xt; θ)]− ln[1− h(yt; θ)] (B.1)

Where:

h(u; θ) =
1

1 + exp(−G(u; θ))
(B.2)

G(u; θ) = lnpm(u; θ)− lnpn(u) (B.3)

That is, the objective is to maximise the difference between a positive item and

noise, and minimise the distance between noise and noise. h(u; θ) is the sigmoid

function (eq B.2) of the difference between the probability that the datum comes

from and the noise distribution (eq B.3).

The authors note that the closer the noise distribution is to the data distribution,

the better the model will be. It is important to point out that the representations

produced by the NCE are not normalised: the model must learn to produce nor-

malised vectors by itself. Optimisation of the objective will result in a statistical

model of the data which can then be used in a further task.

In contrast to a lot of previous unsupervised methods such as PCA [91], the Noise

Contrastive Estimator method conceptualises the unsupervised task as a supervised

learning problem.
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B.3 Simplified Scalable log-bilinear models

To use the previous method, the probability pm(u; θ) and pn(u) must first be cal-

culated. An approach taken is Scalable log-bilinear models which are derived from

Neural Probabilistic Language Models (NPLM). These Scalable log-bilinear models

are trained to give a probability for a given word in a given context. Due to the very

large vocabularies found in natural language processing tasks, computational effi-

ciency is paramount. [173] proposed the following scoring function as a simplification

of their main proposed method:

S(wi, w) = r⊤wqwi + bwi (B.4)

That is, that the similarity of two words (specified as vectors) can be found by

taking the dot product with some context vector, and accounting for the context

independent frequency with a bias term (bwi).

B.4 InstDisc

InstDisc [140] present a novel framework for semi-supervised learning in which they

consider each instance in a unlabelled dataset to be a class by themselves. This

work was conducted in parallel to the work below.

B.5 InfoNCE

The InfoNCE loss function is a loss based on the work outlined in the previous three

sections (B.2-B.4), introduced in [6]. The InfoNCE objective function combines

the NCE principal of learning to distinguish between noise and real data, with the

computational efficiency of the similarity metric found in the previous section. In

addition to this, they add two changes to the methodologies:

Change 1: Rather than being analogous to a binary classification problem, Oord

et al define the problem as a multi-class classification problem. In this change, the

network is ‘shown’ a large batch of latent representations and it must ‘decide’ which
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of the representations are from the data distribution, and which are from the noise

distribution, given a context representation.

Change 2: As noted in the Noise Contrastive Estimator section: a noise model is

needed that is close to the true data distribution. To create a a noise model that is

similar, but distinct, from the non-noise, samples are taken from a large set of data.

In the InfoNCE task, the large set of data consists of data taken from the dataset

that is not currently being used in the batch.

This leads to the following loss function:

LCPC = −
∑
i,j,k

log
exp(ẑTi+k,jzi+k,j)

exp(ẑTi+k,jzi+k,j) +
∑

l exp(ẑ
T
i+k,jzl)

(B.5)

This loss function calculates the probability of a specific latent embedding being

next in the sequence using the categorical cross-entropy of the softmax across the

dot products of the latent representations of the noise and the context. The term

within the exp of the numerator refers to the dot product (used as a similarity score,

B.3) Using the softmax ensures that the probabilities sum to 1 across the batch.

B.6 NT-Xent

The NT-Xent loss function is a further evolution of the contrastive loss function

found in many contrastive methods papers: CMC; MoCo; PIRL; and SimCLR.

This loss function adds a temperature scaling parameter and, in contrast to the

NCE and InfoNCE loss functions, normalises the vector. The equation can be found

below:

li,j = −log
exp(sim(zi, zj)/τ)∑2N

k=1⊮[k ̸=i]exp(sim(zi, zk)/τ)
(B.6)

This loss function introduces two changes from the InfoNCE loss function:

Change 1: Normalisation of the vectors while measuring similarity. It has been

found that normalising these vectors leads to higher performance, this is despite the
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NCE loss function explicitly not requiring normalisation.

Change 2: Temperature scaling of the feature spaces has been included that were

first proposed in [174]. This has been found to increase performance.


