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Abstract: The key to successful statistical analysis of bivariate extreme
events lies in flexible modelling of the tail dependence relationship between
the two variables. In the extreme value theory literature, various tech-
niques are available to model separate aspects of tail dependence, based
on different asymptotic limits. Results from Balkema and Nolde [1] and
Nolde [31] highlight the importance of studying the limiting shape of an
appropriately-scaled sample cloud when characterising the whole joint tail.
We now develop the first statistical inference for this limit set, which has
considerable practical importance for a unified inference framework across
different aspects of the joint tail. Moreover, Nolde and Wadsworth [32] link
this limit set to various existing extremal dependence frameworks. Hence,
a by-product of our new limit set inference is the first set of self-consistent
estimators for several extremal dependence measures, avoiding the current
possibility of contradictory conclusions. In simulations, our limit set esti-
mator is successful across a range of distributions, and the corresponding
extremal dependence estimators provide a major joint improvement and
small marginal improvements over existing techniques. We consider an ap-
plication to sea wave heights, where our estimates successfully capture the
expected weakening extremal dependence as the distance between locations
increases.

Keywords and phrases: Bivariate extremes, coefficient of asymptotic
independence, conditional extremes, extremal dependence structure, gauge
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1. Introduction

Multivariate extreme value problems are important across a range of subject
domains, such as sea level [10], air pollution [22], rainfall [12] and river flow [18].
The typical formulation is to have n independent and identically distributed
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observations, (x1, . . . ,xn), from a d-dimensional random vector X ∈ Rd with
unknown joint distribution FX . Generally, the aim is to estimate FX(x) and
Pr(X ∈ A) for some A ⊂ Rd, where x and all the elements in A are large in at
least one component of X. Our focus here is slightly different; we instead aim to
estimate the boundary of a set that in the limit as n → ∞ contains all sample
values from X after some appropriate scaling. The purpose of this is two-fold:
(i) to identify potentially ‘risky’ combinations of variables in finite samples and
(ii) to provide improved inference for existing extremal dependence measures.

The usual approach to inference in multivariate extremes is to estimate the
marginal distributions and dependence structure (copula) with a focus on their
behaviour in the tail region. Univariate extreme value methods are well estab-
lished [7, 13], with dependence modelling being the key challenge. A standard
framework is to transform the margins of X to a common distribution based on
univariate extreme value models fitted to the individual components. In extreme
value analysis, common marginal selections include Fréchet, Gumbel, Exponen-
tial and Laplace distributions, with choices made based on theoretical results
and/or to highlight particular tail dependence features. Here, our focus is on
Exponential marginals, although we discuss possible extensions to other choices
in Section 7, and we take d = 2 for ease of exposition. That is, we consider
variables (X1, X2) with Pr(Xj < x) = 1 − exp(−x), for x ≥ 0 and j = 1, 2.

Even with common margins, multivariate extremes are often difficult to model
due to the lack of a natural ordering [3]. As such, there have been several differ-
ent asymptotically-motivated modelling approaches and assumptions proposed
in the literature, e.g., multivariate regular variation [36], hidden regular vari-
ation [26, 37], conditional extremes [22, 21], powered joint tails [47, 14], and
mixture structures [19, 41]. The asymptotic arguments differ in each of these
cases, covering situations where the growth rates of the margins are the same
or different across all variables, and where they can vary with the direction of
the extreme region of interest.

Results from [1] on the limiting shape, and associated boundary G, of an
appropriately-scaled sample cloud offer a new, more unified, asymptotic ap-
proach. Here, the focus is on the scaled sample cloud, corresponding to n inde-
pendent samples from the joint distribution of (X1, X2), denoted by

Cn = {(X1,i/ logn,X2,i/ logn); i = 1, . . . , n}. (1)

We note that the log-scaling is appropriate here due to X having Exponential
margins; we comment on this further in Section 2.1. As n → ∞, the sample Cn

converges onto a compact limit set with upper boundary

G = {(x1, x2) ∈ [0, 1]2 : g(x1, x2) = 1}, (2)

for a function g termed the gauge function, which will also be defined in Sec-
tion 2.1. Given that X has Exponential margins, the shape of G is fully deter-
mined by the extremal dependence of the variables. Here, G provides a charac-
terisation of the full joint tail, irrespective of the nature of extremal dependence,
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whereas the previously mentioned methods offer a separate treatment for differ-
ent forms of extremal dependence. Balkema and Nolde [2] discuss, at a purely
probabilistic level, how this limit set can be used for risk evaluation and tail
inference for linear combinations of X.

Although G is a limit set boundary, we propose that it can also be used to
provide valuable information about the likely boundary set for finite samples.
Specifically, the boundary set

Gm := {(x1, x2) ∈ R2
+ : g(x1/ logm,x2/ logm) = 1} (3)

for m ∈ N, is not exceeded by any pair in the sample {(X1,i, X2,i) : i = 1, . . . ,m}
with probability tending to 1 as m → ∞, and with no other curve satisfying this
property if it has on it any (x1, x2) that is below Gm. Hence, for large m, this
boundary set can be used to identify the most risky combinations of variables
for a sample size of m, and when m > n, extrapolation for the purposes of risk
assessment is possible.

The statistical exploitation of this limit theory through inference for G, which
is the aim of this paper, has not been explored but has two key benefits. First,
there is considerable practical advantage in the estimator Ĝm of Gm, obtained
via estimation of (2), using the sample of size n for extrapolation purposes.
Secondly, as [32] have shown, different parts of the boundary set G provide
valuable geometric interpretations for a number of existing extremal dependence
measures, discussed in Section 3.1, which play key roles in inference for the
multivariate extremes methods listed above. An additional benefit of estimating
G is that it provides new estimators of these dependence measures through
exploitation of these theoretical results. It is therefore of interest to compare how
each of the resulting estimators, based on a unifying estimate Ĝ of G, performs
individually, relative to existing techniques. Critically, though, we see most value
in using Ĝ to ensure self-consistency over the estimated dependence measures.
The previous estimators do not guarantee such self-consistent information, since
they are estimated separately using different asymptotic theories.

To illustrate the issue of having a lack of self-consistency in the estimation of
extremal dependence features, we consider the most common starting point for
a bivariate extreme value analysis: identifying whether (X1, X2) are asymptot-
ically dependent or asymptotically independent [8]. For our Exponentially dis-
tributed variables, this can be formalised through the coefficient of asymptotic
dependence χ, with

χ = lim
x→∞

Pr (X2 > x | X1 > x) = lim
x→∞

Pr (X1 > x,X2 > x)
exp(−x) . (4)

A value of χ > 0 (χ = 0) corresponds to asymptotic dependence (asymptotic
independence) between X1 and X2, respectively. From limit (4), it can be seen
that asymptotic dependence occurs when the most extreme values can happen
simultaneously in the two variables, and asymptotic independence is when such
joint extremes are not possible. Since many asymptotic results for bivariate ex-
tremes, and their associated statistical models, are only suitable in one of these
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situations, distinguishing between them can play a crucial role in selecting a
modelling approach. With the existing estimators it is possible that, for ex-
ample, the coefficient of asymptotic independence of [25] indicates asymptotic
dependence (χ > 0) while the normalising functions in the conditional extremes
approach of [22] point towards asymptotic independence (χ = 0). With our pro-
posed estimators, unhelpful contradictions such as this are avoided; we return
to this point in Section 5.5.

Finally, of course, there is much more to understanding bivariate extremes
than simply distinguishing between χ > 0 and χ = 0, with inference for G
helping here as well. For example, irrespective of whether the variables are
asymptotically dependent or asymptotically independent, it is possible that one
variable could take its largest values while the other is smaller order; a scenario of
importance when studying the nature of multivariate extreme events [19, 41]. In
such cases, models that are able to capture a mixture structure in the extremal
dependence features are required, with [44] giving a first approach. Inference
for G provides key diagnostics for identifying this possibility in a way that is
self-consistent with respect to χ and other extremal dependence features.

We continue the paper by providing further detail and examples on the
asymptotic scaled sample cloud in Section 2, while definitions of various ex-
tremal dependence measures and their links to G are covered in Section 3. We
introduce our procedure for estimating G in Section 4 and explain how this can
be exploited to obtain self-consistent estimators of the considered extremal de-
pendence properties in Section 5. The performance of our estimation procedure
is demonstrated through a simulation study and application to sea wave heights
in Section 6. We conclude with a discussion in Section 7.

2. The limiting shape of a scaled sample cloud

2.1. General theory

A sample cloud corresponds to n independent replicates from the joint distri-
bution of (X1, X2); we denote this by C∗

n = {(X1,i, X2,i); i = 1, . . . , n}. The
limiting convex hull of C∗

n, as n → ∞, has been previously studied; see for ex-
ample [16, 5, 11]. Following [32], our focus is on a scaled version of C∗

n, which we
denote Cn, as defined in expression (1). We assume that we have standard Ex-
ponential marginal distributions, and that the joint density f(x1, x2) exists and
is non-zero everywhere in R2

+. The logn scaling is chosen due to the marginal
distributions of X1 and X2, as it ensures that maxi=1,...,n (Xj,i/ logn) p−→ 1, as
n → ∞, for j = 1, 2; [31] shows that other light-tailed margins could also be
used here and would result in different scaling functions being required, as well
as affecting the shape of G.

Interest lies in studying the asymptotic shape of Cn, as n → ∞. A useful tool
in this task is the gauge function g(x1, x2), defined via the relationship

− log f(tx1, tx2) ∼ tg(x1, x2), t → ∞, x1, x2 ≥ 0; (5)
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Fig 1. The boundary set G for Gaussian, inverted logistic, logistic and asymmetric logistic
(left to right) dependence models with Exponential margins. The Gaussian correlation and
the (inverted/asymmetric) logistic dependence parameters are set to ρ = γ = 0.5.

see [31, 32]. As n → ∞, Cn converges onto the compact limit set

GS = {(x1, x2) ⊆ [0, 1]2 : g(x1, x2) ≤ 1}.

The set GS is star-shaped, meaning that for any (x1, x2) ∈ GS , (vx1, vx2) ∈ GS

for all v ∈ (0, 1). In the following, we assume that the limit set GS exists.
The boundary of GS , defined by the set G in (2), is of particular interest.

Some important properties of G are as follows: (i) due to the log-scaling, G must
touch the lines x1 = 1 and x2 = 1 at least once; (ii) if f is non-zero everywhere, G
must be a continuous function; and (iii) by limit (5), the gauge function must be
homogeneous of order 1, so that, for example, taking r = x1 +x2 and w = x1/r,
with (x1, x2) ∈ G, we have g(rw, r(1−w)) = rg(w, 1−w). These properties will
be crucial in the development of our inferential approach, presented in Section 4.

2.2. Theoretical examples

The shapes of the limit set GS and its boundary G are determined by the depen-
dence between the variables. We illustrate these sets through four well-known
copula families (see Figure 1) which show that the general properties of GS

and G stated in Section 2.1 hold, as well as providing an indication of the vari-
ety of different shapes that G can take. We use these distributions as examples
throughout the paper. Given their known extremal dependence properties, these
four examples provide insight into how G captures these features, with further
details on this link presented in Section 3.2.

The first example is a bivariate Gaussian copula with correlation parameter
ρ ∈ [0, 1]. Nolde [31] shows that the gauge function in this case has the form

g(x1, x2) = (1 − ρ2)−1
(
x1 + x2 − 2ρx1/2

1 x
1/2
2

)
, x1, x2 ≥ 0.

In the case of independence between the variables, i.e., when ρ = 0, the gauge
function is simply g(x1, x2) = x1 + x2. For details on the calculation of the
remaining three gauge functions discussed below, see [42]. First, consider an
inverted bivariate extreme value copula with logistic model and dependence pa-
rameter γ ∈ (0, 1] [see 26], with γ = 1 corresponding to complete independence,
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which has a gauge function of the form

g(x1, x2) =
(
x

1/γ
1 + x

1/γ
2

)γ
, x1, x2 ≥ 0,

and a bivariate extreme value copula with logistic model [20], again with de-
pendence parameter γ ∈ (0, 1], having the gauge function

g(x1, x2) =
{

1
γ max(x1, x2) −

(
1
γ − 1

)
min(x1, x2), x1, x2 ≥ 0, γ < 1,

x1 + x2, x1, x2 ≥ 0, γ = 1.

There is a discontinuity here between γ = 1 and γ → 1, which is linked to find-
ings about the logistic model in [25]; since γ = 1 corresponds to independence,
which is already covered by the Gaussian copula with ρ = 0, we restrict to the
γ < 1 case in the remainder of the paper.

The first two examples in Figure 1 are widely known to correspond to asymp-
totically independent models, while the third exhibits asymptotic dependence if
γ < 1 [8]. An important link between the bivariate gauge function and extremal
dependence comes from the value of g(1, 1) [31]. If g(1, 1) > 1, this corresponds
to the case of asymptotic independence with χ = 0, while under asymptotic
dependence, with χ > 0, we have g(1, 1) = 1. This is clearly satisfied by the
three examples above. However, it is also possible to have g(1, 1) = 1 and χ = 0,
so care with interpretation is needed.

Finally, we consider a bivariate extreme value copula with asymmetric logistic
model [43], where a mixture of extremal dependence features is possible, arising
from logistic and independence components. That is, both variables can be
simultaneously extreme, putting this model in the asymptotic dependence class,
but each of the variables can also be individually large while the other is of
smaller order. We provide details on the form of this dependence model in the
supplementary material [39, Section I]. Following the discussion of discontinuity
in the logistic model above, we again restrict the dependence parameter to γ ∈
(0, 1). Moreover, setting the additional model parameters to θ1 = θ2 = 0 yields
a logistic model, while setting θ1 = θ2 = 1 recovers the setting of independence;
we therefore focus on θ1, θ2 ∈ (0, 1) in the following. Figure 1 (right panel) also
shows the gauge function of this copula, which is of the form

g(x1, x2) = min
{

(x1 + x2);
1
γ

max(x1, x2) −
(

1
γ
− 1

)
min(x1, x2)

}
, x1, x2 ≥ 0.

(6)
Here, we once again have χ > 0 and it is clear that g(1, 1) = 1. Interestingly, the
gauge function does not depend on the parameters θ1 and θ2 when θ1, θ2 ∈ (0, 1).

3. Links between the sample cloud boundary and extremal
dependence measures

3.1. Bivariate extremal dependence features

We now introduce the tail dependence features that we aim to estimate in a
self-consistent way by ultimately exploiting properties of G. In Section 3.2, we
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explain how each of these dependence features is linked to the set G, using
results from [32]. We begin with the coefficient of asymptotic independence, η,
of [25], or equivalently χ̄ = 2η − 1 [8]. Recall that we assume the variables X1
and X2 have standard Exponential marginal distributions. Then, η ∈ (0, 1] is
defined by considering the behaviour of the joint survivor function

Pr(X1 > x,X2 > x) ∼ L(ex)e−x/η,

as x → ∞, where the function L is slowly varying at infinity. Considering the
definition of χ in (4), when η = 1, this yields χ = limx→∞ L(ex), whereas if
η < 1, we obtain χ = limx→∞ L(ex)e−(1/η−1)x = 0. Hence, for η = 1 and
L(x) 
→ 0 as x → ∞, we have χ > 0, and therefore asymptotic dependence. If
η < 1, or η = 1 and L(x) → 0 as x → ∞, we have χ = 0 and the variables
are asymptotically independent. Estimation of the coefficient η can contribute
towards the classification of tail dependence behaviour in practice, and in turn
enable the selection of an appropriate model for the joint extremes.

Wadsworth and Tawn [47] extend the approach of Ledford and Tawn [25] by
allowing for different scalings. They consider limiting probabilities of the form

Pr {X1 > ωx,X2 > (1 − ω)x} ∼ Lω(ex)e−xλ(ω),

as x → ∞, for ω ∈ [0, 1], λ(ω) ∈ (0, 1] and some Lω that is slowly varying at
infinity. The case where ω = 1/2 is linked to the coefficient η by the relation
η−1 = 2λ(1/2). Therefore, under asymptotic dependence λ(1/2) = 1/2, and
more generally, for ω ∈ [0, 1], we have λ(ω) = max(ω, 1−ω) in this case. Under
complete independence, λ(ω) = 1 for all ω ∈ [0, 1].

Motivated by the possibility of mixture structures in the extremal dependence
features, Simpson et al. [41] introduced a further set of indices related to η.
They consider a separate measure for each subset of variables, which describes
whether they can be simultaneously large while the other variables are of smaller
order. In the bivariate case, there are two measures of interest, denoted by
τ1(δ), τ2(δ) ∈ (0, 1], for δ ∈ [0, 1]. The measure τ1(δ) is based on a hidden
regular variation assumption, see [41] and [32], and in Exponential margins is
defined by the relation

Pr(X1 > x,X2 ≤ δx) ∼ Lδ(ex)e−x/τ1(δ), (7)

as x → ∞, for δ ∈ [0, 1] and some slowly varying function Lδ. The function
τ1(δ) is monotonically increasing with δ, and has τ1(1) = 1. If there exists any
δ∗ < 1 such that τ1(δ∗) = 1, the variable X1 can take its largest values while
X2 is of smaller order, otherwise X1 can only take its largest values when X2 is
also large. The measure τ2(δ) can be defined analogously through the limiting
behaviour of Pr(X1 ≤ δx,X2 > x), as x → ∞.

Finally, we consider the conditional extremes modelling approach of Hef-
fernan and Tawn [22]. Conditional extremes models capture both asymptotic
dependence and asymptotic independence, so are widely applicable. The condi-
tional extremes framework requires that the marginal distributions have Expo-
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Table 1

Values of {η, λ(ω), τ1(δ), τ2(δ), α1, α2, β1, β2} for a Gaussian model with correlation
parameter ρ ∈ [0, 1] and (inverted) logistic models with dependence parameter γ ∈ (0, 1).

Here, tω = min(ω, 1 − ω)/max(ω, 1 − ω).
Dependence model η λ(ω) τ1(δ) = τ2(δ) α1 = α2 β1 = β2

Gaussian (1 + ρ)/2
{

1−2ρ{ω(1−ω)}1/2

1−ρ2 , if tω ≥ ρ2

max(ω, 1 − ω), if tω < ρ2

{
1, if δ ≥ ρ2

1−ρ2

1+δ−2ρδ1/2 , if δ < ρ2 ρ2 1/2

Inverted logistic 2−γ
{
ω1/γ + (1 − ω)1/γ

}γ 1 0 1 − γ
Logistic 1 max(ω, 1 − ω) γ/(1 + γδ − δ) 1 0
Asymmetric logistic 1 max(ω, 1 − ω) 1 1 0

nential upper tails, which is clearly satisfied when (X1, X2) have standard Ex-
ponential margins. Selecting X1 as the conditioning variable, we assume there
exist functions a1(·) and b1(·) > 0 such that{

X2 − a1(X1)
b1(X1)

, X1 − u

} ∣∣∣∣X1 > u → (Z,E), as u → ∞, (8)

where E ∼ Exp(1) is independent of Z, and Z represents some non-degenerate
residual distribution that places no mass on {+∞} [22, 24]. Under this condi-
tioning, a suitably normalised version of X2 and exceedances of X1 above the
threshold u become independent as u → ∞. Heffernan and Tawn [22] propose
setting a1(x) = α1x and b1(x) = xβ1 , for α1 ∈ [0, 1] and β1 ∈ [0, 1), and demon-
strate that this is a reasonable choice for a range of non-negatively dependent
distributions. The case where α1 = 1 and β1 = 0 corresponds to asymptotic de-
pendence, while α1 < 1 corresponds to asymptotic independence, with complete
independence achieved when α1 = 0, β1 = 0 and Z ∼ Exp(1). An analogous
result holds if X2 is selected as the conditioning variable, with normalising func-
tions a2(x) = α2x and β2(x) = xβ2 for α2 ∈ [0, 1] and β2 ∈ [0, 1).

The values of η, λ(ω), τ1(δ), τ2(δ), α1, α2, β1 and β2 for the copulas considered
in Figure 1 are given in Table 1. For the Gaussian distribution, the τi(δ) (i = 1, 2)
result for δ < ρ2 was derived by [32]. For each of the first three copula models,
the exchangeability of the variables means that τ1(δ) = τ2(δ), α1 = α2 and
β1 = β2. Table 1 also shows this property holds in the asymmetric logistic case
when the variables are not exchangeable, i.e., when θ1 
= θ2. More generally, in
Section 3.2, we will see that these equivalences also arise when G is symmetric
about the line x1 = x2, even if the distribution itself is not exchangeable.

3.2. Boundary set interpretation of bivariate extremal dependence
features

This section provides a summary of key information from the important theo-
retical work of Nolde and Wadsworth [32], which established links between G
and the extremal dependence features from Section 3.1. Balkema and Nolde [1]
were the first to provide results linking the asymptotic shape of a scaled sam-
ple cloud to asymptotic independence. Nolde [31] extended this work to show
that the coefficient of asymptotic independence, η, is linked to the set G defined
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in (2) via the relationship

η = min
{
s ∈ (0, 1] : [s,∞]2 ∩G = ∅

}
. (9)

We can think of this as moving the set [1,∞]2 along the line x2 = x1 towards the
origin, until it intersects the set G (although this intersection does not have to
occur on the diagonal). A pictorial demonstration of this result, and those that
follow in this section, is provided in the supplementary material [39, Section A].
A higher dimensional version of (9) was previously used in [42] to study the
extremal dependence structure of vine copulas.

To calculate the value of λ(ω), [32] consider sets of the form

Sω = {(x1, x2) : x1 ≥ ω/max(ω, 1 − ω), x2 ≥ (1 − ω)/max(ω, 1 − ω)} ,

for any fixed ω ∈ [0, 1]. They prove that

λ(ω) = max(ω, 1 − ω)
sω

, with sω = min {s ∈ [0, 1] : sSω ∩G = ∅} . (10)

The set S1/2 is equivalent to [1,∞]2, so that the value of s1/2 is η, as we expect
since λ(1/2) = 1/(2η), as discussed in Section 3.1. Nolde and Wadsworth [32]
link the set G to τ1(δ) and τ2(δ) by considering sets

S1,δ = {(x1, x2) : x1 ∈ (1,∞], x2 ∈ [0, δ]} ,
S2,δ = {(x1, x2) : x1 ∈ [0, δ], x2 ∈ (1,∞]} ,

for δ ∈ [0, 1], and showing that, for i = 1, 2,

τi(δ) = min {s ∈ (0, 1] : sSi,δ ∩G = ∅} . (11)

Finally, in the conditional extremes framework, [32] show that

α1 = max {α̃1 ∈ [0, 1] : g(1, α̃1) = 1} . (12)

It is possible to have more than one such α̃1, but the largest value is needed to
avoid Z in (8) placing mass on {+∞}. This means we should find the largest
value of x2 where G intersects the line x1 = 1. Considering an analogous defi-
nition of α2, alongside result (9), it is clear that η ≥ max(α1, α2). If there are
ν separate values of α̃1 in (12), this indicates a ν-component mixture structure
in the extremal dependence conditioning on X1 large, following the represen-
tation of [44]. Moreover, the smallest value of δ such that τ1(δ) = 1 is given
by δ∗ = min {α̃1 ∈ [0, 1] : g(1, α̃1) = 1}. If ν = 1 with only one value of α̃1
satisfying g(1, α̃1) = 1, we have δ∗ = α1; this is the case for the first three
examples in Figure 1. The asymmetric logistic example in Figure 1 has ν = 2
and α̃1 ∈ {0, 1}, yielding α1 = 1 and δ∗ = 0. Overall, the set of measures
{η,maxδ<1 τ1(δ),maxδ<1 τ2(δ)} can describe whether the variables (X1, X2) can
be simultaneously large, whether one variable is large while the other is of
smaller order, or whether we have a combination of these cases, but considering
the α̃1 values from (12) can provide additional insight.
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Nolde and Wadsworth [32] also present results on the parameter β1 in the
conditional extremes model. They show that

g(1, α1 + u) = 1 + O
{
u1/(1−β)

}
, as u → 0. (13)

The results for α2 and β2 are analogous to those presented here.
As well as considering how the extremal dependence features described above

can be obtained from the set G, we examine how much information these features
can give us about G. The indices λ(ω), τ1(δ) and τ2(δ) (ω, δ ∈ [0, 1]) are the
most interesting from this perspective, as collectively they can sometimes fully
describe G. In the logistic case, only τ1(δ) and τ2(δ) are needed; the opposite
is true for the inverted logistic case; whereas for the Gaussian case, they are all
required. However, for the asymmetric logistic model, the extremal dependence
mixture structure means that collectively, λ(ω) and τi(δ) (i = 1, 2) do not
provide sufficient information to deduce the shape of G. Hence, there is value in
developing an approach to estimate G directly, to enhance our understanding of
the nature of the extremal dependence and to deduce self-consistent estimates
of currently studied extremal dependence features. The remainder of the paper
is dedicated to this goal.

4. Estimation of the limit set G

4.1. Framework for modelling the boundary set G

For inference, we require the variables (X1, X2) to have Exponential margins,
which can be achieved in practice by applying rank and probability integral
transforms to each variable. Suppose we have n observations of the random
variables Yi, i = 1, 2, denoted by yi,1, . . . , yi,n. The approximate transformation
to observations of Xi with Exponential margins is given by

xi,j = − log
{

1 − rank(yi,j)
n + 1

}
, (14)

for i = 1, 2 and j = 1, . . . , n. An alternative version of this transformation with a
parametric form for the tail is detailed in [9]; this ultimately allows for marginal
extrapolation on the original scale of the data, but where such extrapolation
is not required (such as in our setting), the rank transform can lead to more
robust estimates. Applying transformation (14) as a preliminary step allows us
to focus on estimating the extremal dependence features.

We consider (X1, X2) in terms of the pseudo-polar coordinates (R,W ), with

R = X1 + X2 > 0, W = X1/R ∈ [0, 1], (15)

which we refer to as radial and angular components, respectively. Due to our
choice of marginal distribution, these are not the same as the radial and angular
components on Fréchet or Pareto scale used by [36] or [9], for instance, but are
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akin to those in [47]. This polar coordinate formulation lends itself to estimating
G since the star-shaped nature of the set GS means that any ray emanating from
the origin, i.e., corresponding to a fixed angle w ∈ [0, 1], must intersect the set
G exactly once. We are therefore interested in the largest possible radial value
associated with each angle w, after the logn scaling of (X1, X2), which also
induces logn scaling of R. In practice, having a finite amount of data means
that observations of (X1, X2)/ logn are not restricted to the set [0, 1]2, unlike
the set G that we aim to estimate, and the distribution of the observed radial
variable need not have a finite upper endpoint. We propose to estimate G by
estimating high quantiles of the distribution of R | W = w for all w ∈ [0, 1],
then transforming these estimates to the original coordinates (X1, X2) via the
relations X1 = RW , X2 = R(1 −W ) and finally scaling them onto [0, 1]2.

A natural candidate for modelling the tail of R | W = w is the generalised
Pareto distribution (GPD) [13]. That is, for w ∈ [0, 1] and a suitable threshold
uw, we have

Pr (R < r | R > uw,W = w) = 1 −
[
1 + ξ(w)

{
r − uw

σ(w)

}]−1/ξ(w)

+
, (16)

for r > uw, x+ = max{x, 0}, scale parameter σ(w) > 0 and shape parameter
ξ(w) ∈ R. We consider rq(w), a high quantile of the distribution of R | W = w,
for all w ∈ [0, 1], where

Pr{R < rq(w) | W = w} = q,

with rq(w) > uw. For ξ(w) 
= 0 and ζu(w) = Pr(R > uw | W = w), this is

rq(w) = uw + σ(w)
ξ(w)

[{
ζu(w)
1 − q

}ξ(w)

− 1
]
. (17)

We aim to estimate the set {(rq(w), w) : w ∈ [0, 1]} for q close to 1.

4.2. Overview of our inference procedure

In Sections 4.3 and 4.4, we propose a method to estimate the set G, by exploiting
the framework detailed in Section 4.1. In Section 4.3, a local estimation proce-
dure is proposed, where estimates of the radial quantiles in (17) are obtained for
a fixed set of angles by considering radial observations within some appropriate
neighbourhood. We can induce an estimate of G from these radial quantiles by
applying an appropriate scaling onto the region [0, 1]2; this scaling procedure is
discussed in Section 4.3. To achieve a smooth estimate of the set G, we then
propose to exploit the generalised additive models (GAMs) framework for the
GPD parameters in (16), with the degree of the corresponding splines informed
by the results from the local quantile estimates. This is discussed in Section 4.4
and provides our final estimate of G. An algorithmic representation of the full
method is provided in the supplementary material [39, Section L].
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4.3. Estimation of G: a local approach

Suppose we have n observations of the radial-angular components (R,W ), de-
noted by (r1, w1), . . . , (rn, wn). If (X1, X2) have a joint density, we will not
observe repeated observations of the angular component in a finite sample, so
for any given w ∈ [0, 1], we will not have sufficient observations1 to fit distribu-
tion (16) directly. We propose a two-step approach to address this issue. First,
we obtain local estimates of the model parameters σ(w) and ξ(w) and corre-
sponding radial quantiles rq(w) for fixed values of w. From these, we construct
a local estimate of the set G, which we denote ĜL. The theoretical examples in
Figure 1 showed that the set G may generally be smooth, but can have points
of non-differentiability. Motivated by this observation, our second step, detailed
in Section 4.4, exploits the GAMs framework to provide smooth estimates of
the GPD threshold and scale parameter, and hence of rq(w), for w ∈ [0, 1].
In Section 4.4, we explain how we use ĜL to inform the choice of spline basis
functions in the GAMs framework and yield an estimate Ĝ of G.

In the local estimation procedure, we use observed radial values corresponding
to the angular components in some neighbourhood of w, defined as

Rw = {ri : |wi − w| ≤ εw, i ∈ {1, . . . , n}} , (18)

for some εw > 0, to be equivalent to the event W = w, i.e., this requires
the GPD parameters to be approximately constant over Rw. Using standard
maximum likelihood estimation techniques with observations from Rw, it is
straightforward to estimate the parameters σ(w), ξ(w) in (16) and (17), and we
suggest setting ζu(w) = qu ∈ [0, q] identically for all w with the corresponding
threshold uw estimated empirically. We propose to carry out this estimation at
a range of angular values, denoted by w∗

1 , . . . , w
∗
k, and use these to estimate the

radial quantiles in (17), denoting these quantile estimates by r̂q(w∗
j ), j ∈ Jk :=

{1, . . . , k}. The w∗
j values are not required to belong to the set of observed W

values and may be selected so that the associated Rw∗
j

sets overlap. As well
as k and the values w∗

j (j ∈ Jk), other tuning parameters to be selected here
are the quantile levels (qu, q) and the neighbourhood sizes εw∗

j
. We discuss our

approach to choosing these quantities in the supplementary material [39, Section
B], where we propose choosing εw∗

j
separately for each j to ensure |Rw∗

j
| = m.

Our default tuning parameter suggestions are k = 199, m = 100, qu = 0.5 and
q = 0.999.

To obtain an estimate of G, denoted ĜL for the local approach, we first trans-
form the local radial quantile estimates back to the original (X1, X2) coordinates
by setting

x̃1,j = r̂q(w∗
j ) · w∗

j , x̃2,j = r̂q(w∗
j ) · (1 − w∗

j ), j ∈ Jk.

To ensure G ⊂ [0, 1]2, a naive approach would be to simply divide each compo-
nent by its largest value, i.e., by updating to x̃′

i,j = x̃i,j/maxj∈Jk
x̃i,j , i = 1, 2.

1The rank transformation given in (14) means that a small number of repetitions are
possible.
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However, this is strongly influenced by the largest estimates, and does not work
well in practice. Instead, we suggest a two-step scaling/truncation approach,
initially informed by an existing estimator of η and then corrected to take into
account known features of G. We begin by scaling all (x̃1,j , x̃2,j) values to ob-
tain a preliminary local limit set estimate ĜL

η =
{

(x̂Gη

1,j , x̂
Gη

2,j ) : j ∈ Jk

}
, with the

scaling factor chosen so that an estimate of η from the resulting set would match
the Hill estimator η̂H , see (24), i.e., so that ĜL

η and [η̂H ,∞]2 just intersect. The
scaling factor that achieves this is

x∗ = η̂H

[
max
j∈Jk

{min(x̃1,j , x̃2,j)}
]−1

,

i.e., we set x̂
Gη

i,j = x∗x̃i,j for i = 1, 2, j ∈ Jk. The resulting estimate ĜL
η is not

guaranteed to lie within [0, 1]2, nor to intersect the lines x1 = 1 and x2 = 1;
the second step corrects for these possibilities, taking each of the arguments
separately. In step 2a, for i = 1, 2, if maxj∈Jk

x̂
Gη

i,j ≥ 1, we truncate by defining
x̂G
i,j = min

{
1, x̂Gη

i,j

}
, j ∈ Jk. Alternatively, in step 2b, if maxj∈Jk

x̂
Gη

i,j < 1,
we ensure that our estimate of G intersects the line xi = 1 at least once by
dividing the component by its maximum value, setting x̂G

i,j = x̂
Gη

i,j /max

∈Jk

x̂
Gη

i,
 .

The scaling in step 2b means that an estimate of η obtained from ĜL (as will
be discussed in Section 5.2) may not be exactly equal to η̂H , but our approach
actually improves the estimates of this coefficient when η̂H has a tendency to
underestimate, such as under asymptotic dependence in the logistic model; see
Section 6.1. The full scaling/truncation approach is demonstrated pictorially in
the supplementary material [39, Section C]. This scaling procedure relies on us
choosing an appropriate threshold uH for η̂H ; we set this to the 0.95 quantile
of the structure variable M in (24), which is also the level used throughout the
simulation studies in Section 6.1, comparing different estimators of η.

4.4. Estimation of G: a smoothed approach

There is no guarantee of smoothness in the estimated set ĜL, whatever the
choice of tuning parameters. As we have already identified, it may be desir-
able to impose that our estimator of G is smooth, at least for some subsets of
w ∈ [0, 1]. To achieve this, we use ĜL to inform a ‘smoothing’ method for the
GPD parameters in the second step of our procedure. In particular, we follow
the approach of [48] by first carrying out quantile regression to estimate the
thresholds uw at the same quantile level qu ∈ [0, q] as in Section 4.3 by exploit-
ing the asymmetric Laplace distribution [50]. The parameters of the asymmet-
ric Laplace distribution are modelled using GAMs. We find that applying this
quantile regression approach to R | (W = w) often gives impossible negative
estimates near the largest and smallest observed angles. We overcome this issue
by working with logR | (W = w) in this step, and then back-transform to ob-
tain the required radial threshold estimates. For exceedances above uw, we also
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Fig 2. Left: logistic data scaled by logn, with the true set G (purple) and ĜL (black points).
Left-centre: the estimated sets ĜS1 (orange), ĜS2 (light blue) and ĜS3 (dark blue), taking
k = 199, m = 100, qu = 0.5, q = 0.9 and κ = 7. Right-centre and right: equivalent plots for
inverted logistic data.

assume that the parameter values in the GPD vary smoothly with the value of
w ∈ [0, 1]. Again, following the approach of [48], we adopt a GAMs form for
the log-scale parameter. Both parts of this approach are implemented in the R
package evgam [49]. The shape parameter could analogously be allowed to vary
smoothly, but this is notoriously difficult to estimate and we found that in tests,
anything other than assuming a constant value resulted in increased variance
without reducing the bias of our estimates.

We allow the GAMs form for the model parameters to be linear, quadratic
or cubic B-splines, with κ knots; for simplicity, the same spline degree and
knot positions are chosen for uw and log σ(w), and corresponding estimates of
the quantiles in (17). Once we have estimates of the high radial quantiles, the
procedure to obtain an estimate of G is via transformation and scaling/trun-
cation, equivalent to that for ĜL. Although, theoretically, this approach allows
for estimates of G across the full range w ∈ [0, 1], outside the observed angles
these can be unreliable, and we restrict our estimates to the observed range,
w ∈ (wm, wM ). The resulting estimates of G are denoted by ĜS1 , ĜS2 and ĜS3

for the linear, quadratic and cubic splines, respectively.
Considering different spline degrees here is useful, as it enables us to capture

different shapes of G. To choose between the estimators ĜS1 , ĜS2 and ĜS3 , we
select the spline degree where the estimated radial quantiles at the angles w∗

j

(j ∈ Jk) are closest to those from the local procedure, when compared using
the mean absolute error. This selection criterion is a reasonable choice, since
by forcing an equal number of points in each set Rw∗

j
, we have ensured there

will be approximately the same uncertainty in each radial estimate. The selected
estimator Ĝ (from ĜS1 , ĜS2 or ĜS3) becomes our preferred option for modelling
G. That is, letting r̂Lq (w∗

j ), j ∈ Jk, denote the local radial quantile estimates
and r̂Sd

q (w∗
j ), d = 1, 2, 3, denote the corresponding estimates of rq(w∗

j ) for ĜSd ,
we have

Ĝ =

⎧⎨
⎩ĜSd : d = arg min

d∗∈{1,2,3}

∑
j∈Jk

∣∣r̂Lq (w∗
j ) − r̂Sd∗

q (w∗
j )
∣∣
⎫⎬
⎭ . (19)

Figure 2 gives a demonstration of the full approach for 10,000 simulated
values from a bivariate extreme value model with a logistic model and parameter
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γ = 1/2, and its inverted counterpart, with comparison to the true sets G. The
tuning parameters here are chosen for illustrative purposes. It is clear that ĜL

is not smooth and tends to underestimate G, whereas ĜS1 , ĜS2 and ĜS3 offer
varying levels of improvement. The linear spline performs the best in the logistic
case where G has a pointed shape, with the mean absolute errors evaluated
in (19) being 55.23, 67.37 and 57.64 for ĜS1 , ĜS2 and ĜS3 , respectively, so
Ĝ = ĜS1 . The errors in the inverted logistic case are 61.95, 61.50 and 61.29, i.e.,
the cubic spline is slightly preferred as G is smooth, so Ĝ = ĜS3 .

The smoothing method requires the introduction of further tuning parame-
ters, in the choice of κ and the position of the knots. Tuning parameter selection
is discussed in detail in the supplementary material [39, Section B], where a de-
fault choice of κ = 7 is proposed, in addition to the suggested tuning parameters
for ĜL in Section 4.3. Knot-placement; the positions of w∗

j (j ∈ Jk); and sen-
sitivity to the extrapolation quantile q are also discussed in the supplementary
material [39, Sections B and E], and we show limited sensitivity to κ for an
asymmetric logistic copula [39, Section I].

5. Estimation of extremal dependence properties

5.1. Overview

Further exploiting the new procedure to estimate G, in Section 5.2, we obtain
estimates of η, λ(ω), τ1(δ), τ2(δ), α1 and α2 in a unified way. Due to the subtlety
of result (13) for the conditional extremes parameters β1 and β2, we choose not
to estimate this as part of our self-consistent approach. Instead, we fix the
corresponding αi parameter to its estimated value, and then carry out inference
for βi; this is discussed in Section 5.3. In Section 5.4, we detail some techniques
that are currently available to separately estimate the extremal dependence
features that we consider. In Section 5.5, we highlight some desirable properties
of our estimators, including (but not limited to) the self-consistency that has
been previously mentioned. We compare the performance of these methods to
that of our estimation approach in Section 6 and the supplementary material
[39, Sections F-H].

5.2. Exploiting the estimate Ĝ for parameter estimation

For the estimation of the dependence properties, we consider Ĝ in (19) at
a finite number of angles, for ease of implementation. We choose these as
identical to the w∗

j , j ∈ Jk, used in the local estimate ĜL, now denoting
Ĝ =

{
(x̂G

1,j , x̂
G
2,j) : j ∈ Jk

}
. To estimate η using Ĝ, we first note that result (9)

from [31] can be written as

η = min
{
s ∈ (0, 1] : G ∩ [s,∞]2 = ∅

}
= max

{
s ∈ (0, 1] : G ∩ [s,∞]2 
= ∅

}
.

(20)
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Considering each point in our set Ĝ to be a candidate for the intersection of G
and [η,∞]2 required in (20), we can examine a corresponding set [s∗j ,∞]2 for
each such points by setting s∗j = min(x̂G

1,j , x̂
G
2,j). Then the resulting estimate of

η is given by max(s∗1, . . . , s∗k), i.e.,

η̂G = max
j∈Jk

{
min

(
x̂G

1,j , x̂
G
2,j
)}

. (21)

We estimate λ(ω), ω ∈ [0, 1], via estimation of sω in (10). We have

sω = min {s ∈ [0, 1] : sSω ∩G = ∅} = max {s ∈ [0, 1] : sSω ∩G 
= ∅} ,

with Sω = {(x1, x2) : x1 ≥ ω/max(ω, 1 − ω), x2 ≥ (1 − ω)/max(ω, 1 − ω)}.
Analogously to η̂G, we obtain candidate values

s∗ω,j = max(ω, 1 − ω) · min
{
x̂G

1,j/ω, x̂
G
2,j/(1 − ω)

}
for j ∈ Jk, with the resulting estimator

λ̂G(ω) =
[
max
j∈Jk

{
min

(
x̂G

1,j

ω
,
x̂G

2,j

1 − ω

)}]−1

, w ∈ [0, 1].

For the dependence measure τ1(δ), result (11) gives that for δ ∈ [0, 1],

τ1(δ) = min {s ∈ [0, 1] : [s,∞] × [0, δs] ∩G = ∅}
= max {s ∈ [0, 1] : [s,∞] × [0, δs] ∩G 
= ∅} .

Our candidate points for the intersection of the sets G and (τ1(δ),∞]×[0, δτ1(δ)]
are all our estimated points on G where x̂G

2 ≤ δx̂G
1 . Our estimate of τ1(δ)

corresponds to the largest such value of x̂G
1 . That is,

τ̂G,1(δ) = max
(
x̂G

1,j : x̂G
2,j ≤ δx̂G

1,j , j ∈ {1, . . . , k}
)
.

Finally, for the conditional extremes parameter α1,

α̂G,1 = max
(
x̂G

2,j : x̂G
1,j = 1, j ∈ {1, . . . , k}

)
. (22)

Due to our method of scaling onto [0, 1]2, in practice there may only be ex-
actly one value of x̂G

1,j that is equal to one. The estimators of τ̂G,2(δ) and α̂G,2
are defined analogously. Our approach ensures self-consistency across the con-
ditioning variables in the conditional extremes approach, since α̂G,1 = 1 if and
only if α̂G,2 = 1; this issue is also discussed in [27]. Moreover, estimating the
αi (i = 1, 2) parameters in this way avoids the need to place a distributional
assumption on the random variable Z in (8); this benefit over other approaches
is discussed further in Section 5.5. A pictorial illustration of the estimation of
η, λ(ω), τ1(δ) and α1 is given in the supplementary material [39, Section C].
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5.3. Estimation of the conditional scaling parameter βi

As discussed in Section 3.2, the parameter βi, i = 1, 2, in the conditional ex-
tremes framework is also linked to the asymptotic shape of a scaled sample
cloud. However, the required feature of the set G is very subtle, and reliably
estimating βi using our estimate Ĝ is not really feasible. Instead, we estimate
βi with αi fixed to its estimated value, α̂G,i of expression (22). Illustrating this
for β1, limit (8) is taken as an equality for some finite, but large, threshold u.
Then, for X1 = x > u and with a1(x) = α̂G,1x and b1(x) = xβ1 , this implies

X2|(X1 = x) = α̂G,1x + xβ1Z, x > u,

where Z is a non-degenerate random variable that is independent of X1. It is
common to take Z ∼ N (μ, σ2) as a working assumption, for μ ∈ R, σ > 0 (e.g.,
[24]), although other approaches have been considered (e.g., [28]), which implies

X2|(X1 = x) ∼ N
{
(α̂G,1x + xβ1μ), (xβ1σ)2

}
, x > u. (23)

From this, it is straightforward to obtain maximum likelihood estimates for the
parameters, with β̂G,1 denoting the corresponding estimate for β1.

5.4. Existing estimation techniques

In this section, we briefly present some existing estimators for the extremal
dependence properties discussed in Section 3.1. We use these for comparison to
our proposed estimators in Section 6. More detail on these estimators is provided
in the supplementary material [39, Section D].

For η, we consider three options. The first is a Hill-type estimator [23] on the
structure variable M = min(X1, X2). Assuming we have nu,H observations of
M above some high threshold uH , denoted m∗

1, . . . ,m
∗
nu,H

, the estimator is

η̂H = min
{

1
nu,H

nu,H∑
i=1

(m∗
i − uH) , 1

}
. (24)

Alternatively, suppose we have n pairs of observations (x1,1, x1,2), . . . , (xn,1, xn,2),
and denote by x

(j)
i the jth largest value of component i ∈ {1, 2}, i.e., x(n)

i ≤
x

(n−1)
i ≤ · · · ≤ x

(1)
i . Then for each j ∈ {1, . . . , n}, define the quantity sn(j) =∑n


=1 1
{
x
,1 ≥ x

(j)
1 , x
,2 ≥ x

(j)
2

}
. Two non-parametric estimators, η̂P of [34] and

η̂D of [15], are

η̂P= min
[

log 2
log {sn(2c)} − log {sn(c)} , 1

]
, η̂D = min

{ ∑c
j=1 sn(j)

csn(c) −
∑c

j=1 sn(j)
, 1
}
,

where the forms of these estimators are as presented in [4, p.352], but we have
added the truncation at one. The tuning parameter c relates to the number of
exceedances above a high threshold.
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Hill-type estimators are also available for λ(ω) and τ1(δ). For the former,
set Mω = min {X1/ω,X2/(1 − ω)}, for ω ∈ [0, 1], and assume there are nu,ω

observations of Mω above a high threshold uω, denoted m∗
ω,1, . . . ,m

∗
ω,nu,ω

. The
corresponding estimator is

λ̂H(ω) = min

⎡
⎣
{

1
nu,ω

nu,ω∑
i=1

(
m∗

ω,i − uω

)}−1

, 1

⎤
⎦ .

For τ1(δ), δ ∈ (0, 1], let Mδ = {X1 > 0 : X2 ≤ δX1} and suppose we have
nδ ≤ n observations of X1 where X2 ≤ δX1, and that nu,δ of these, denoted
m∗

δ,1, . . . ,m
∗
δ,nu,δ

, are above some high threshold uδ. Then the estimator is

τ̂H,1(δ) = min
{

1
nu,δ

nu,δ∑
i=1

(
m∗

δ,i − uδ

)
, 1
}
.

5.5. Properties of our estimators

The main advantage of our approach over estimating each of the extremal de-
pendence features separately, is that by linking each of the estimators to a
single estimate of G, we automatically achieve self-consistency across the dif-
ferent dependence features. One way to think about this is in terms of whether
the parameter estimates indicate asymptotic dependence or asymptotic inde-
pendence, since separate estimation could lead to contradictions. Returning to
our example from Section 1, we consider the case of asymptotic dependence,
where we know that η = 1 and α1 = α2 = 1. In our approach, we obtain η̂G = 1
and α̂G,1 = α̂G,2 = 1 exactly when our estimate of the set G contains (1, 1).
This means that η̂G = 1 if and only if α̂G,1 = α̂G,2 = 1, which is not guaranteed
when carrying out inference separately for these dependence features.

We mentioned in Section 3.1 that the set of measures {η, τ1(δ), τ2(δ)} can be
used to describe the extremal dependence structure of the variables. In partic-
ular, if X1 can be large while X2 is small, there must be some value of δ∗ < 1
such that τ1(δ∗) = 1, and a similar result holds for τ2(δ). Moreover, if both
variables can take their largest values simultaneously, then η = 1. Simpson et
al. [41] point out that

max {η, τ1(δ) : δ ∈ [0, 1)} = max {η, τ2(δ) : δ ∈ [0, 1)} = 1. (25)

This is not guaranteed by η̂H , τ̂H,1(δ) and τ̂H,2(δ) (although a possible way to
enforce this is discussed in [38]), but is naturally satisfied by our new estimation
procedure, since the scaling/truncation steps ensure Ĝ intersects both the lines
x1 = 1 and x2 = 1 at least once. Further, we are guaranteed to have monotonic-
ity in our estimates of τi(δ) (i = 1, 2) as δ increases; this theoretical property is
not achieved through application of the Hill estimator at separate values of δ.

Finally, maximum likelihood estimation for conditional extremes models in-
volves placing a distributional assumption on Z. This often gives reasonable
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Fig 3. Estimates Ĝ for the Gaussian (left), inverted logistic (centre) and logistic (right)
models, with the ρ or γ parameters set to 0.5. The sample size in each case is n = 10, 000
and 1000 estimates are shown for each model (grey). The true sets G are shown in purple.

performance, but mis-specifying the distribution has the potential to affect the
resulting estimates of αi and βi. Our new approach has the benefit that we
do not need to place a distributional assumption on Z for estimation of αi,
although we do for subsequent estimation of βi.

6. Results - simulation study and data example

6.1. Simulation study

We now demonstrate the performance of our proposed estimation procedure
via a simulation study. Our primary interest lies in estimating the whole of G,
which is the focus of Section 6.1.1. However, no other estimators of G exist, but
there are estimators available for certain parts of G if we exploit the links to the
extremal dependence measures discussed in Sections 3 and 5. In order to judge
our performance against these competitors, we provide additional simulation
results for individual dependence measures in Section 6.1.2. Our estimation
procedure provides point estimates for G and each of the individual dependence
measures; to assess uncertainty, we propose that a non-parametric bootstrapping
procedure could be used, and show in the supplementary material [39, Section
K] that this approach can provide reasonable coverage.

6.1.1. Estimation of G

We begin by considering estimation of the complete set G for the first three
copulas from Figure 1, with ρ, γ = 0.5. For each copula, with Exponential mar-
gins, we take a sample of size 10, 000 and use the estimator Ĝ of (19). This is
repeated 1000 times for each model, with the resulting estimates Ĝ shown in
Figure 3, alongside the true G. To obtain these results, we select the tuning
parameters as stated in Section 4.4. In the supplementary material [39, Section
J], we demonstrate the performance of our Ĝ for samples of size n = 100, 000
taken from the same three copula models; these results demonstrate that the
tuning parameter choices are also reasonable for larger samples.
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Table 2

The number of times each spline degree is chosen for the sets Ĝ shown in Figure 3.
Spline degree Gaussian Inverted logistic Logistic

1 392 355 798
2 482 250 32
3 126 395 170

There is reasonable agreement between Ĝ and G in Figure 3 for all three
copulas. In the inverted logistic simulations, the shape of G is generally well
represented by Ĝ. Some small bias occurs in the Gaussian case; this is investi-
gated further in the supplementary material [39, Section J], where we discuss
known issues with slow convergence for this copula. For the logistic case, there
are some estimates where the pointed shape of G has not been captured, but
the estimates are reasonably successful overall.

The degree of the spline chosen to model the log-scale parameter and thresh-
old in the GPD plays an important role in determining the shape of Ĝ; in Table 2,
we summarise the selected spline degrees over the 1000 replicated datasets for
each copula. Since G is smooth for both the Gaussian and inverted logistic cop-
ulas, we would expect to see the procedure favouring quadratic or cubic splines.
For both these copulas, there is no overwhelming favourite in terms of the spline
degrees chosen, but the non-linear options are selected around 60-65% of the
time. On the other hand, the pointed shape of G for the logistic copula suggests
that linear splines should be preferred here, with this being achieved in almost
80% of cases, and (1, 1) 
∈ Ĝ corresponding to the selection of quadratic or cubic
splines.

6.1.2. Estimation of the dependence measures

As discussed in Section 5.2, once we have Ĝ, we can use this to induce estimates
of various extremal dependence properties. For estimating η, we compare our
η̂G given in (21), with the existing estimators η̂H , η̂P and η̂D described in
Section 5.4. We fix the threshold uH used in the estimator η̂H to coincide with
c for the estimators η̂P and η̂D, such that all estimators use 500 data points.
As with the tuning parameters in our approach, we have not optimised these
choices, but have selected values that we found to work reasonably well across a
range of examples. We take the set-up of our study as the same as for the results
in Figure 3, but now take ρ, γ ∈ {0.25, 0.5, 0.75}; summaries of the η estimates
are shown in Figure 4.

For the Gaussian copula, the existing approaches underestimate the true
value of η, while our approach tends to overestimate by a similar magnitude,
although our 95% sampling distribution interval does contain the truth in each
case and is generally the narrowest. For the inverted logistic copula, both η̂G
and η̂H perform consistently well across the different values of γ; all estimators
appear to be unbiased but η̂P and η̂D suffer from increasing variability. The
similarity of η̂G and η̂H is due to the fact that for this copula, step 2b of our
scaling/truncation procedure is generally not required. Where η̂G is particularly
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Fig 4. Estimates of η for data simulated from Gaussian (left), inverted logistic (centre) and
logistic (right) copulas with their corresponding parameters taken as 0.25, 0.5 and 0.75. We
show the mean estimates of η (circles) and 0.025 to 0.975 quantile range from 1000 replicates
for η̂G (orange), η̂H (light blue), η̂P (purple), η̂D (dark blue), each based on a data sample
of 10,000. The true η values, summarised in Table 1, are shown in grey.

successful is in the logistic case, with asymptotic dependence and η = 1. Across
all values of γ, we outperform the existing estimators, with clear success in Fig-
ure 4 for γ ∈ {0.25, 0.5}, where the dependence is stronger. For γ = 0.75, the
picture is less clear, so we find the root mean square error for each of the esti-
mators in this case; these are 0.044, 0.103, 0.113 and 0.080 for η̂G, η̂H , η̂P and
η̂D, respectively, confirming that η̂G provides improvement over previous ap-
proaches. In terms of self-consistency for the logistic copula, while our approach
satisfies the required property that η ≥ max(α1, α2) in all cases, this is only true
for 45%, 46% and 66% of the η̂H , η̂P and η̂D estimates in Figure 4, respectively,
when compared to the maximum likelihood estimator for αi, i = 1, 2 (results
for which are given in the supplementary material [39, Section H]). The existing
estimators are almost always self-consistent in our study for the Gaussian and
inverted logistic copulas, where η is much larger than α1 = α2, but our approach
still has the benefit that this coherence is guaranteed.

In Figure 5, we present estimates of τ1(δ), comparing our procedure to τ̂H,1(δ),
described in Section 5.4. Following [41], we fix the threshold uδ for τ̂H,1(δ) to the
observed 0.85 quantile of the variable Mδ. Since we restrict Ĝ to values within
the range of observed angular values, there are some values of δ for which we
cannot compute τ̂G,1(δ). To ensure a fair comparison, we present the estimates
τ̂H,1(δ) over the same range of δ. In terms of bias, the two procedures are
relatively similar, but there are two features to highlight in our estimates. First,
only 18.8% of the τ̂H,1(δ) estimates in Figure 5 (measured over 0.01 increments
of δ) satisfy the required monotonicity property of τ1(δ), while our approach
guarantees this aspect of self-consistency across different δ values in 100% of
cases. Second, for small values of δ, τ̂H,1(δ) has much greater variability than
τ̂G,1(δ) for all three copulas with ρ, γ = 0.5. This arises as τ̂G,1(δ) ‘borrows’
more information from nearby values of δ than τ̂H,1(δ), and therefore suffers
less from the lack of data associated with estimates for small δ values.

In the supplementary material [39, Section F], we give further results for
τ1(δ) for the copulas used in Figure 5 with ρ, γ ∈ {0.25, 0.75}; we see similar
improvements in the logistic case with γ = 0.25. We also provide results for
estimation of the features λ(ω), α1 and β1. Both λ̂G(ω) and λ̂H(ω) provide
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Fig 5. Estimates of τ1(δ), δ ∈ [0, 1], for data simulated from Gaussian (left), inverted logistic
(centre) and logistic (right) models with their corresponding parameters set as 0.5. Each
grey line represents an estimate obtained using τ̂G,1(δ) (top) or τ̂H,1(δ) (bottom) over 1000
simulations. The solid and lower/upper dotted lines show the pointwise bootstrapped means
and 0.025 and 0.975 quantiles, respectively, for τ̂G,1(δ) (orange) and τ̂H,1(δ) (purple). The
true τ1(δ) values, summarised in Table 1, are shown in red.

successful estimates for the inverted logistic model across a range of dependence
parameters γ, with λ̂G(ω) providing smoother estimates; our approach exhibits
less bias than λ̂H(ω) in Gaussian cases; and we see less variability in λ̂G(ω) than
λ̂H(ω) in results for the logistic model. Our estimates of (α1, β1) are reasonably
similar to those obtained by using maximum likelihood estimation for both
parameters α1 and β1 simultaneously, i.e., replacing α̂G,1 in (23) with α1 to
be estimated. We also provide additional simulation results for the asymmetric
logistic model.

We acknowledge that, considering estimates of each of the dependence mea-
sures separately, our new approach has some relatively small improvements over
existing methods. However, we emphasise again the important point that our
estimates are jointly self-consistent, which is not generally the case with the
other approaches.

6.2. Application to sea wave height data

We now apply our approach to hindcast values of significant wave heights for
locations in the North Sea. These are a subset of the data studied by [46] and,
as in their paper, we consider only data from the winter months of December to
February to limit issues with non-stationarity. We take data from four locations
lying on a transect from the north-west to the south-east. The data cover 31
years, with eight observations for each day in our months of interest, resulting
in a total of 22,376 observations per location. The transformation (14) is applied
to each variable to ensure standard Exponential marginal distributions.

Figure 6 shows Ĝ at three pairs of locations with varying distances between
them, with the tuning parameters as in Sections 4.4 and 6.1. Uncertainty is
presented by implementing the stationary bootstrap scheme of [35] over 1000
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Fig 6. Estimates of G for significant wave heights at three pairs of locations in the North
Sea (black dashed lines) with 1000 bootstrapped estimates shown by the orange, turquoise and
purple lines for locations at distances of approximately 40km, 130km, 300km, respectively.
The variable X1 represents the transformed and scaled significant wave heights at a location
in the north-west of our study region; Xi (i = 2, 3, 4) corresponds to significant wave heights
at the other locations.

iterations with the mean block-length set to 16 observations, i.e., two days. The
most noticeable feature in these results is the weakening dependence in the sig-
nificant wave height data as the distance between the locations increases, as is
expected in environmental settings. The uncertainty in our estimates increases
with the distance between the locations. While previous methods could have
captured the weakening dependence for single parameter values, we can now
see this change over the whole shape of Ĝ, highlighting the value added by our
approach. In terms of risk, these results can be interpreted based on whether
pairs of locations may see extreme events simultaneously, compounding the po-
tential impact. For the closest pair of locations, there is a clear risk that the
largest wave heights can occur together. However, as the distance between lo-
cations increases, the largest wave heights at one location are associated with
increasingly smaller events at the other location, and there becomes less risk of
a severe impact at these two sites simultaneously.

For the closest pair of locations, we estimate the coefficient of tail dependence
as η̂G = 0.997 with a 95% confidence interval of [0.994, 1.000]; for comparison,
we estimate η̂H = 0.979 [0.962, 0.997]. Our η̂G suggests selecting a model that
can capture asymptotic dependence would be most appropriate here, whereas
using η̂H the choice is more ambiguous due to a wider confidence interval that
does not contain one. For the remaining two pairs of locations, the estimates
are η̂G = 0.974 [0.964, 0.983] and η̂G = 0.897 [0.811, 0.932], respectively, with
corresponding estimates η̂H = 0.918 [0.879, 0.954] and η̂H = 0.801 [0.748, 0.855].
The η̂G results both indicate that a model for asymptotic independence would
be reasonable, although one may prefer the conservative approach of choosing
an asymptotically dependent model for the former since the confidence interval
is quite close to one. For all three pairs of locations, η̂G > η̂H , with narrower
confidence intervals obtained for η̂G.
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7. Discussion

7.1. Summary of our contributions

The aim of this paper was to develop a new inferential technique for bivariate
extremes, providing estimation for a limit set and, as a by-product, yielding self-
consistent estimation across a range of extremal dependence features. This was
motivated by theoretical developments from [31] and [32], who showed that these
features can all be linked to the asymptotic shape of a suitably-scaled sample
cloud. We have demonstrated that our approach provides estimators which,
when considered marginally, are competitive compared to currently available
techniques, and provide particularly good improvement for the important case
of asymptotic dependence. But critically, in terms of self-consistency, our results
are highly superior, as highlighted in Section 5.5, and our method provides
additional information about joint extreme events which is not captured by
any existing extremal dependence measure, as most clearly illustrated in the
discussion of Figure 7 in Section 7.3.

7.2. Links to other approaches

The boundary function may appear at first sight to be essentially like a contour
of equal joint density, however, they are different quantities, which is highlighted
by the examples in Section 2.2. Also, the existing estimators of density contours
in the tail of the joint distribution have major restrictions for practical use,
which are not an issue in our consideration of G. Specifically, [6, 17] assume
that a multivariate regular variation limit forms hold, which imposes that the
marginal distributions must be heavy tailed, and that the variables are either
asymptotically dependent or completely independent, meaning that more gen-
eral forms of asymptotic independence are excluded. Furthermore, they impose
conditions such that the spectral measure of the regular variation is non-zero
across all interior directional rays.

While our paper has been in the review process, the draft version with work-
ing title “Estimating the limiting shape of bivariate scaled sample clouds for
self-consistent inference of extremal dependence properties” that was uploaded
to arXiv has been referenced in several subsequent papers also aiming to esti-
mate the limit set, highlighting the value in developing such estimators; see for
example [29, 30, 33]. As part of their paper, Murphy-Barltrop et al. [30] carry
out an in-depth simulation study comparing estimators of λ(ω). One of their
main messages is that “global estimators” such as ours, where simultaneous es-
timation of λ(ω) is carried out across all values of ω ∈ [0, 1], far out-perform
local estimates, and the approach we have proposed in particular is shown to
perform very well. Moreover, Wadsworth and Campbell [45] have independently
developed what they term a “geometric approach” to estimating the probability
of multivariate extreme events, with links to the framework we have presented
here, and showing benefits over existing methods for multivariate extremes. Part
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of their inference involves estimation of the gauge function, which they restrict
to a class of parametric forms; there is the potential for our proposed method
for estimating G to be combined with their approach for enhanced flexibility in
this aspect. Overall, statistical inference with the limit set and gauge functions
appears to be a promising avenue for future research.

An intermediate step of our estimation procedure considers radial quantiles
at high (but non-limiting) levels. Considering these radial quantiles across the
range of angles gives a contour that no longer represents a limit set, but which is
still a potentially interesting extreme set in its own right. In particular, this can
be linked to the idea of environmental contours, often used in engineering ap-
plications, and the methodology presented in this paper has now been extended
to such a setting [40].

7.3. Potential issues and extensions

We have assumed that our variables have standard Exponential margins. This
restricts us to cases where there is independence or positive dependence between
the variables, i.e., we cannot handle negatively dependent variables. For condi-
tional extremes modelling, Keef et al. [24] capture this feature by instead using
Laplace margins; this possibility is also briefly discussed by [32]. In practice, one
could first test for negative dependence between the variables, and proceed with
our approach only if it is not present in the data. It would also be possible to
extend the methodology presented here for data initially transformed to Laplace
margins, with different forms for the (pseudo-)polar coordinates chosen to allow
the angular variable to cover all four quadrants, i.e., W ∈ [−π, π); this approach
is taken for the environmental contours in [40].

As discussed in Section 1, the limit set G could be linked to likely boundary
sets for large finite samples, which would take the form Gm in (3) on Exponential
margins. However, there may also be cases where a boundary set is required for
finite samples on the original scale of the data. Taking the original variables as
(Y1, Y2) with marginal distributions FYi(y) (i = 1, 2), one could achieve this by
considering

GY
m := {(y1, y2) ∈ R2 : g(T1(y1)/ logm,T2(y2)/ logm) = 1},

where Ti(y) = − log{1−F̂Yi(y)} and F̂Yi(y) is an estimate of FYi(y), making use
of the probability integral transform. This allows for greater flexibility in the
possible marginal distributions, including the possibility of non-equal margins.

We have discussed the possibility of having mixture structures in the extremal
dependence, and there are different ways that this could arise. The framework of
[41] identifies mixture structures where X1 and X2 can be simultaneously large
but with the possibility of having each variable large while the other is of smaller
order. Such a structure is indicated by η = maxδ<1 τ1(δ) = maxδ<1 τ2(δ) =
1; examples of sets G with this feature are given in Figure 7 (left) and the
asymmetric logistic copula in Figure 1. The framework of [44] also allows for a
mixture structure in the extremal dependence but with the possibility of η < 1;
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Fig 7. Examples of mixture structures in the set G. Left: mixture structure with asymptotic
dependence, but the possibility of X1 and X2 both being large while the other is of smaller
order. Centre: mixture structure with asymptotic independence, but the largest values of X1
associated with more than one smaller order value of X2 (and vice versa). Right: mixture
structure with a sub-asymptotic component.

this arises if G intersects at least one of the lines x1 = 1 and x2 = 1 at more
than one separate location, as in Figure 7 (central). Our estimator Ĝ can capture
such non-convex shapes in the asymmetric logistic case, and therefore has the
potential to be further exploited to test for mixture structures. To do this,
the scaling/truncation step may need to be altered to ensure that Ĝ intersects
x1 = 1 and x2 = 1 an appropriately many times, perhaps by first testing for
convexity of the radial quantile estimates over w. A further interesting mixture
possibility considered by [44] is that of sub-asymptotic mixture components, as
in Figure 7 (right), where for large X1, e.g., when x1 = 0.7, there is a mixture
of two possible ranges of X2 values. Here, the largest mixture component has
a ‘point’ at (0.8, 0.6) that does not reach the line x1 = 1; this should also be
taken into account if extending our approach as mentioned above.

The approach could be adapted to handle higher dimensional problems. An
equivalent set G can be defined in higher dimensions; [31] presents theoreti-
cal results on the coefficient of asymptotic independence in any dimension; [32]
provides a result equivalent to (11) for calculating the indices of [41] in higher
dimensions; and in the conditional approach of [22], pairwise results can deter-
mine the relevant normalising functions. Our approach involves transforming
to pseudo-polar coordinates, with only a one-dimensional angular component
in the bivariate case. In a d-dimensional setting, the angular component would
have dimension d−1; this raises questions about how to select the angles used for
local estimation to ensure reliability without a high computational cost. More-
over, the selection of the spline functions for Ĝ comes with added complexity
in higher dimensions, as different choices may be needed for different subsets
of the variables. Future work that extends our approach to higher dimensions,
should involve developing a strategy for selecting estimation points and spline
functions in order to achieve scalable but reliable inference.

A further issue related to higher dimensional problems involves ensuring con-
sistency across different dimensions. Suppose we have variables X = (Xi : i ∈
D), for D = {1, . . . , d}. Using results on projections of sample clouds, [32] makes
links between gauge functions of lower dimensional subsets (for instance, vari-
ables indexed by C ⊂ D) to the gauge function associated with the full vector X.
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If our method were to be extended to higher dimensions, estimates of extremal
dependence features for the variables XC = (Xi : i ∈ C) could be obtained by
estimating the asymptotic boundary of the scaled sample cloud for any set of
variables indexed by C∗ with C ⊆ C∗ ⊆ D. Ideally, we would ensure consistent
estimation from these different boundary estimates.
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