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Abstract: Sensorless adaptive optics (SAO) has been widely used across diverse fields such
as astronomy, microscopy, and ophthalmology. Recent advances have proved the feasibility of
using the deep deterministic policy gradient (DDPG) for image metric-based SAO, achieving fast
correction speeds compared to the coordinate search Zernike mode hill climbing (ZMHC) method.
In this work, we present a multi-observation single-step DDPG (MOSS-DDPG) optimization
framework for SAO on a confocal scanning laser ophthalmoscope (SLO) system with particular
consideration for applications in preclinical retinal imaging. MOSS-DDPG optimizes N target
Zernike coefficients in a single-step manner based on 2N + 1 observations of the image sharpness
metric values. Through in silico simulations, MOSS-DDPG has demonstrated the capability to
quickly achieve diffraction-limited resolution performance with long short-term memory (LSTM)
network implementation. In situ tests suggest that knowledge learned through simulation adapts
swiftly to imperfections in the real system by transfer learning, exhibiting comparable in situ
performance to the ZMHC method with a greater than tenfold reduction in the required number
of iterations.
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1. Introduction

Optical aberrations detrimentally affect image quality by reducing contrast and resolution.
Although careful design and alignment of an optical system can minimize system aberrations, for
applications such as ocular imaging and deep tissue microscopy, the sample itself is a source of
aberrations. Adaptive optics (AO) offers a dynamic solution for reducing aberrations by detecting
and correcting wavefront phase errors. Commonly, ophthalmic applications of AO employ
Shack-Hartmann wavefront sensors (SH-WFS) to directly quantify wavefront errors [1–3]. These
measurements guide the adjustment of deformable mirrors (DMs) or spatial light modulators
(SLMs) to correct system aberrations [4,5]. However, the incorporation and calibration of
SH-WFS can be complex. Furthermore, the efficacy of SH-WFS can be diminished in samples
featuring multi-layered structures [4].

Sensorless adaptive optics (SAO) is an alternative to WFS-based AO that predicts wavefront
aberrations based on the images directly. These image-based SAO methods could offer improve-
ments to compactness, accessibility, and even the performance of AO systems [6]. The wavefront
error can be reduced by maximizing the image sharpness, which can be represented by various
pre-defined image metrics. The optimum-seeking scenario of SAO has been demonstrated
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using approaches such as stochastic parallel gradient descent (SPGD) [7], genetic algorithms
[8], and simulated annealing [9]. While being accurate and suitable for SAO, these methods
require lengthy optimization times and numerous iterations. Based on the orthogonality of
Zernike modes and the assumption of their independent effects on the image metrics, a coordinate
search method, such as Zernike mode hill climbing (ZMHC), iterates through the Zernike
coefficient space to find the optimum image quality metric and correct the wavefront error
[10–12]. Model-based approaches estimate the metric-coefficient curve, such as the Data-based
Online Nonlinear Extremum-seeker (DONE) algorithm which addresses the wavefront error with
fewer iterations than ZMHC and offers continuous coefficient predictions. DONE also tempers
the impact of historical measurements and allows newer data to have a stronger influence on
the model, offering a feature particularly beneficial in target movement or blinking scenarios
[13–15]. Challenges remain despite these advancements, particularly regarding the time required
for the iterative processes. Non-iterative approaches have also been reported. By exploiting the
physical relationship between the mean square of the aberration gradient and the second moment
of far-field intensity distribution, model-based methods reconstruct the aberrated wavefront by
introducing perturbations on the DM under different modes [16,17]. Based on the understanding
of the impact of the aberrated wavefront on pre-defined image quality metrics, model-based
methods can estimate the wavefront error by applying bias disturbance signals to the wavefront
control devices through a fixed number of steps [18–21]. The image data from OCT systems
can be utilized for direct wavefront aberration extraction through digital or computational AO
techniques [22–24]. While not iterative, DAO methods usually necessitate either a stationary
sample or rapid OCT data collection to maintain phase stability.

Deep learning has emerged as a transformative force in SAO control, introducing novel
approaches to wavefront estimation and correction. Most deep learning methods for SAO use
aberrated images as the input and a Zernike coefficient decomposition of the wavefront as
the output to form a direct mapping, without iterations to approach the optimal image quality.
Innovative wavefront sensing techniques using convolutional neural networks (CNNs) have
been demonstrated, effectively estimating Zernike coefficients from a single intensity image,
marking a significant advancement in image-based wavefront sensing [25]. Deep neural networks
(DNNs) have also been demonstrated to detect the wavefront distortion from varying atmospheric
turbulence conditions directly from the intensity images, thereby avoiding time-consuming
iterative processes [26]. A conformal convolutional neural network (CCNN) has been developed
to boost performance by pre-processing circular features into rectangular ones through conformal
mapping, reducing the number of convolutional filters and enabling more efficient feature
recognition of PSF images [27]. ResNet has also been used as a control algorithm to replace
the traditional control algorithm, enhancing the real-time performance of a free space optical
communication (FSOC) system [28]. An EfficientNet-B0 CNN has been used for SAO, providing
higher speed and accuracy under different turbulence intensities than the ordinary CNN and
ResNet networks [29]. An extreme learning machine (ELM) has also been applied to SAO,
demonstrating faster training speed than CNN while achieving a similar 87% accuracy [30].
Deep reinforcement learning algorithms have also been applied for SAO control. DDPG has
been demonstrated in simulation with point spread function (PSF) images as the input for the
actor-network, running 9 times faster than the SPGD algorithm [31]. An object-independent
image-based wavefront sensing approach forms an innovative mapping between wavefront phase
functions and object-independent data formed by the ratio between two images acquired with
different amounts of defocus, achieving very high Zernike coefficient prediction accuracy at the
level of 10−4 of the wavelength [32].

In this report, we focus on sensorless wavefront correction using a custom-developed confocal
scanning laser ophthalmoscope (SLO) for preclinical (small animal) imaging and a metric input
method. Although this method requires more image acquisitions than one-shot image-input DNNs,
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the metric-input method simplifies the complex image pattern changes caused by aberrations
and attenuates the effects of noise and artifacts, offering a sample-independent and robust
decision-making SAO process for live ocular imaging. The remaining challenge is to reduce the
lengthy correction time associated with the iterative metric-based SAO methods.

Our previous work in a metric-input DDPG control for SAO demonstrated the feasibility of
deep deterministic policy gradient (DDPG) for SAO with 6-7 times fewer input images than the
ZMHC method in a multi-modal ocular imaging system [33]. The method in [33] required 2N + 1
initial observations plus subsequent dynamic observations to determine the system aberration
gradually. Furthermore, a significant limitation of the initial work was the number of modes (only
five were demonstrated) that could be corrected due to training time and network complexity.

Here we present a Multi-Observation Single-Step DDPG (MOSS-DDPG) framework that
requires only 2N + 1 initial observations to predict the system aberration. The observation
structure of MOSS-DDPG inherits the pipeline from model based methods, using positive and
negative bias amplitudes of Zernike coefficients to disturb the wavefront and estimate the global
maxima of image quality metric [18,20]. A potential obstacle for model based methods is the
crosstalk between different modes’ effects on the image quality metric domain, which can confuse
the decision-making process of the models. With an experience-based self-learning strategy,
MOSS-DDPG learns from experiences of interactions with the environment to form an optimal
policy that maps the bias observations to an optimal Zernike coefficient estimation. Here the
model that governs the coefficient estimation is learned by MOSS-DDPG instead of a physical
model based on the understanding of the relationship between image metric and modal coefficients.
The self-learning process allows MOSS-DDPG to identify and accommodate potential modal
crosstalk and system imperfections in its predictions, with a clear goal of maximizing the image
quality metric during training. Long short-term memory (LSTM) networks were integrated into
MOSS-DDPG’s actor-network and critic-network and significantly simplified the hyperparameter
tuning process and expedited the training. Based on the single-step structure, an exploration-
enhancing technique that generates multiple observation-action-reward pairs at each episode
is used to increase the amount of training data, stabilizing and expediting the overall training
process.

Based on in silico results, MOSS-DDPG enables a wavefront error prediction for the first
five radial orders (N = 12 Zernike modes, excluding piston, tip, and tilt). Furthermore, after a
brief transfer learning process on the real system to adapt to the exact in situ metric-coefficient
space, MOSS-DDPG exhibits comparable in situ performance as the ZMHC method with the
acquisition of only 2 × 12 + 1 = 25 images, making it more than 10 times faster. A model based
parabolic maximization method using 2N + 1 steps has been implemented and compared to
MOSS-DDPG [20]. The results show that MOSS-DDPG can potentially address modal crosstalk
and heterogeneous imperfections across optical systems.

2. Methods

2.1. Imaging system overview

The optical design of the system used to develop and test MOSS-DDPG is multi-modal,
incorporating Optical Coherence Tomography (OCT), OCT-based Angiography (OCT-A),
confocal Scanning Laser Ophthalmoscopy (SLO), and fluorescence detection [34]. SAO
corrections are only performed on the SLO branch of the OCT-SLO system with a λ = 488 nm
laser. The schematic of the optical layout of the SLO branch is presented in Fig. 1. The imaging
beams were relayed to the continuous membrane DM (DM69, Alpao, France) with a 10.5 mm
aperture, and then to a mounted pair of Galvanometer-scanning Mirrors (GM, 6210H, Cambridge
Technology Inc., MA, USA) with a clear aperture of 3.0 mm. Finally, the light was reduced to a
beam diameter of 1.0 mm at the sample lens via the final optical relay.
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Fig. 1. Optical layout of the SLO system. The blue represents the beam path of 488 nm
light, the green represents the beam path of the fluorescence emission, and the red represents
the beam path of the SLD light. The pink represents the co-aligned beam of the 488 nm
and fluorescence light. Abbreviations: fiber coupler (FC), polarization beam splitter (PBS),
dichroic mirror (DC), emission fiber (EF), cold mirror (CM), variable focus lens (VL),
deformable mirror (DM), galvanometer-scanning mirrors (GM), quarter wave plate (QWP),
photomultiplier tube (PMT), polarization controller (PC), objective lens (OL). Ln represents
lenses. Achromatic doublet lenses: L1=50 mm, L2=150 mm, L3=300 mm, L4=75 mm,
L5=2x125 mm, L6=2x50 mm, OL=2.5 mm. Modified from [34].

The wavefront phase error of the system can be expressed by the superposition of a series of
Zernike polynomials Zi(x, y) with corresponding Zernike coefficients ci:

W(x, y) =
∑︂

i
ciZi(x, y), (1)

where x and y are the coordinates of the wavefront plane and i is in the Noll index [35,36]. In the
simulation, the Zernike coefficients are normalized to match the physical size of the coefficients
in µm of the DM in the SLO system. The generalized pupil function P of the system is given by

P(x, y) = A(x, y) exp{−jW(x, y)}, (2)

where A is the amplitude transmission function of the pupil, e.g. 1 inside the pupil, 0 outside
the pupil. The intensity point spread function (PSF) h is given by the magnitude squared of the
Fourier transform of the pupil function:

h = |F {P(x, y)}|2. (3)

The double-pass and confocal nature of the system indicates a multiplication of both the
illumination and collection PSFs. The incident light propagates through the system and arrives
at the sample. Light from the sample is transmitted through the system in reverse and detected
by the PMT. If the PSF of the illumination path is h1 and the PSF of the detection path is h2,
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the effective PSF of the system hs is given by the multiplication of h1 and h2, assuming a point
detector [37]:

hs = h1h2. (4)

However, a multi-mode fiber is used to receive the optical signal, which has a diameter of
multiple times the Airy Disk diameter (ADD) and is therefore not point-like. To better emulate
the real system’s intensity response to Zernike coefficients in simulation, we also considered the
fiber’s effect on image formation. The effective PSF hs of the system considering the optical
fiber’s propagation field f is the multiplication between h1 and the fiber function f convolved
with h2 [38]:

hs = h1(f ⊛ h2). (5)

To simplify the simulation while emulating the system’s behaviors, we use a unit circle with
uniform values as the fiber’s intensity response and an adjustable diameter as the fiber’s size.
Increasing the complexity of the simulation with complex fiber functions has diminishing returns
because the network weights trained in silico can be easily modified to fit the real system using
transfer learning.

With the definition of effective PSF, the fluorescence intensity signal received by the PMT is
the convolution between the effective PSF and the sample’s fluorescence intensity profile rf [37]:

I = hs ⊛ rf . (6)

To evaluate the image quality, we use a sharpness-based image metric m :

m =
∑︂

p
I2
p (7)

which sums every pixel’s intensity squared in the image [39,40]. This metric effectively evaluates
the image quality guiding the DDPG agent to find the Zernike coefficient solution to achieve the
best image quality. Based on our successful in silico and in situ validation tests, the intensity-
based metric effectively captures the influence of aberrations on the intensity of images and is
image-independent for the specific settings of the SLO system.

2.2. MOSS-DDPG architecture

A Deep Reinforcement Learning (DRL) approach was used for the SAO Zernike mode control.
DRL combines conventional RL and Deep Neural Networks (DNNs), where DNNs act as the
RL agent. The Deep Deterministic Policy Gradient (DDPG) algorithm is an extension of the
Deep Q Network (DQN) method [41] using an Actor-Critic structure. DDPG is compatible
with continuous domains of the SAO environment, where the states are the observation matrices
of image metric values, and the actions are the Zernike coefficients. Figure 2 is a detailed
MOSS-DDPG structure that inherits the traditional DDPG structure [42] and is tailored for the
multi-observation single-step sensorless adaptive optics scenario.

Similar to the human response to stimuli, the DDPG agent observes the state of the environment
and executes an action through the actor-network. In the context of SAO, the process involves
acquiring an observation matrix from the aberrated system and predicting the Zernike coefficients
that correct the wavefront error. It also has a user-defined reward strategy and a critic-network to
evaluate the quality of the actions. During training, the actor-network keeps updating the policy
toward improved accuracy in predicting wavefront errors based on the policy gradient.

The “reset” function is called at the start of the DDPG training episode. At this stage, the DDPG
agent is given an artificial wavefront error formed by random Zernike coefficients. Subsequently,
the agent constructs the observation matrix by introducing to the wavefront a series of coefficient
combinations. These combinations include each mode’s coefficients set to both negative and
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Fig. 2. MOSS-DDPG structure for SAO. The red blocks and arrows represent the iteration of
DDPG training episodes. The green blocks are the actor and critic DNNs. Light blue boxes
represent the criteria for updating the actor and critic DNNs. Target networks are omitted as
each episode consists of a single step without future rewards. The purple region surrounded
by the dashed purple line represents the action evaluation process, where multiple noise
profiles can be generated and added to the network prediction in one episode to enhance the
model’s exploration of the environment.

positive values, along with a zero-offset setting for each mode. This approach generates 2N + 1
different combinations and associated image metric values, where N represents the number of
target modes.

The details of the observation matrix are shown in Fig. 3. The right 12 columns are the set of
2 × 12 + 1 = 25 observation types, and the leftmost column is the corresponding image metric
values. To maintain a uniform value level for both the metric values and the coefficients in the
observation matrix, the elements in the first column are normalized within the range of [0, 1] as
the portion of the largest image metric value:

Mn =
mn

max{m0, m1, . . . , m24} . (8)

For the right 12 columns, a set of signed numbers {−1, 0, 1} is used to represent the status of
the observations. “0” represents the unobserved mode in the observation. "-1" and "1" represent
the negative and positive observations of the mode, respectively.

The choice of observation values is flexible and can be an adjustable parameter for different
system configurations. Although models trained in silico demonstrate similar effectiveness across
various observation value settings, it is advisable to tune the value for in situ applications. Using
a larger observation value moves the measurement further from the peak of the Gaussian-like
metric-coefficient function curve, enhancing resilience to potential distortions caused by system
imperfections. However, an excessively large observation value might significantly reduce image
brightness, yielding image metric values that are markedly low and difficult to distinguish. In
this study, we uniformly apply an observation value of 0.5 µm across all modes.

After reset, the actor-network takes the observation matrix and outputs a series of predicted
Zernike coefficients based on the current network weights. A zero-mean Gaussian exploration
noise is added to the actor’s output, enhancing the exploration of the metric-coefficient space.
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Fig. 3. Observation Matrix for DDPG Actor-network.

During training, the standard deviation (SD) of the noise is gradually reduced (annealed) as the
actor-network’s prediction accuracy improves.

The “step” function then examines the quality of the actor-network’s prediction by applying
the predicted coefficients to the DM, acquiring the image, and calculating its metric value. The
reward is calculated by dividing the current metric value by the maximum metric value, the latter
determined when all Zernike coefficients are set to zero. This reward mechanism guides the
agent in optimizing the Zernike coefficients to effectively cancel out the system’s aberrations.
Under in situ scenarios where the maximum metric value is not precisely known, a baseline
image metric value acquired from a wavefront close to flatness will be used. Besides the reward,
the “step” function generates a Boolean reset command, which is always “True” since the agent
only performs one-step prediction before the environment reset.

The single-step structure of MOSS-DDPG maps each observation and action directly to an
immediate reward. This design feature allows for the generation of multiple noise profiles within
each episode, each of which can be individually added to the actor network’s predictions. These
actions, each with a different noise addition, are processed by the ’step’ function to generate the
corresponding rewards, tailoring the training to diverse scenarios. This strategy significantly
enhances the agent’s exploration of the metric-coefficient space. The bottleneck for shortening
MOSS-DDPG training time is the amount of convolutions between the target image and the PSFs.
Each episode’s observation matrix inherently requires 25 convolutions. Introducing additional
single convolutions per episode will marginally extend the training time, yet substantially increase
the volume of training data. With enhanced exploration, the model achieves more efficient
training and requires fewer episodes to reach proficiency.

Observations, actions, and rewards from each episode are stored as transition pairs in the
memory. Before initiating the next episode, the agent samples a user-defined number of transition
pairs from the memory. These pairs are then used to update the actor and critic networks, as
depicted in Fig. 2. Conventional DDPG employs target networks for both the actor and the critic
to provide a stable target during the learning updates. Since each episode of MOSS-DDPG has
an immediate reward based on the action, the concept of future rewards, which target networks
help to stabilize by providing a moving target, is not applicable in this scenario.
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2.3. LSTM for DDPG DNN

Our previous work realized a 5-mode DDPG SAO model with a fully connected actor-network
[33]. However, the dense networks are susceptible to hyperparameter tuning and converge slowly.
Experimentally training the networks was prone to failure because of the inadequate choices of
hyperparameters.

The observation matrix of MOSS-DDPG is characterized by sequential sets of Zernike
coefficients alongside their corresponding image metric values. Long Short-Term Memory
(LSTM) networks are particularly well-suited for learning from these samples, leveraging their
capability to process data with sequential dependencies effectively [43]. LSTM networks can
potentially minimize the ’invalid’ interactions that may arise in fully connected networks, which
often occur due to the treatment of observation matrix elements as independent, unrelated inputs.

3. Results

3.1. Model training

3.1.1. Zernike coefficient correction limit & random aberration generation

Before training, it is crucial to establish an effective Zernike coefficient correction limit that will
generate a sufficient range of random aberrations for comprehensive training and validation. The
confocal SLO system’s image metric response to Zernike coefficients is sensitive. Consequently,
a correction limit that is too large results in weak image signals from which effective information
cannot be observed, particularly when many of the 12 coefficients are near this limit. Therefore,
we set an initial limit for Zernike coefficients to 0.15 µm for all 12 modes during training. Each
coefficient is uniformly distributed within the range of [−0.15, 0.15] µm. Considering the shorter
laser wavelength λ = 0.488 µm and the smaller beam width of 1 mm at the mouse eye in our
SLO system compared to the settings used in measuring mouse eye aberrations [44], the limit
of 0.15 µm is sufficiently large. This ensures robust coverage of the mouse eye aberration
spectrum, providing ample room for accurate analysis and interpretation. Furthermore, we have
demonstrated that the model can extrapolate effectively to Zernike coefficients with a larger limit
of 0.2 µm using the learned policy, thereby broadening the model’s effective prediction range.

To emulate the real application scenarios where residual higher-order Zernike mode components
are present, random wavefront distortions formed by Zernike modes in the 6th and 7th radial
order are also applied to the simulated wavefront. As the mouse eye aberration consists of
mostly lower-order mode components [44], the higher-order mode components are simulated
as noise with small amplitudes. For simplicity, the Zernike coefficient for all modes in the
6th and 7th order follows the Gaussian distribution with a standard deviation of 0.01 µm. A
limit of [−0.025, 0.025] µm is also applied. The higher-order mode noise helps emulate in situ
imaging sessions and can contribute to a smoother in situ transfer learning process with increased
robustness.

3.1.2. Simulation environment & DNN architectures

The MOSS-DDPG training and testing is conducted within a Python-based simulation environ-
ment, utilizing OpenAI Gym to build the DRL environment structure, PyTorch for the network
architectures, and CuPy to accelerate the convolutions. The details of the DNN structures and
MOSS-DDPG training hyperparameters are exhibited in the Supplement 1.

3.1.3. Training process

In each training episode, 15 random noise profiles are added to the action to acquire corresponding
rewards. This exploration-enhancing technique significantly increases the total volume of training
data by 15 times, while only requiring 40% more time for image convolutions. In contrast to
previous work, where 200,000 episodes were used to train a 5-mode model [33], MOSS-DDPG

https://doi.org/10.6084/m9.figshare.26252324
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requires only 40,000 episodes to effectively learn an optimal policy for correcting 12 modes.
The exploration noise is a zero-mean Gaussian noise with an annealing SD as the training
progresses. We have applied a warm-up phase to the training process. During this phase, the
networks remain static, exploring the environment solely through the introduction of random
noise. The warm-up phase accumulates sufficient data to stabilize the training process before
network updates commence. Figure 4 is a scatter plot exhibiting the trend of the average reward
in each training episode.
network updates commence. Fig. 4 is a scatter plot exhibiting the trend of the average reward in
each training episode.
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Fig. 4. MOSS-DDPG training record. Each green dot represents the average reward
achieved by 15 actions added with random noise profiles in each episode. The entire
training process took 3 hours on a desktop computer with an Intel i5-13600K CPU and
an Nvidia RTX 4080 GPU.

Each green dot in Fig. 4 represents the average reward of the corresponding training episode.
Notably, the reward increases sharply upon completion of the warm-up phase. With the
exploration-enhancing technique, 4, 000 × 15 = 60, 000 training samples have already been
generated at the end of the warm-up phase. Therefore, with a large volume of data, the actor-
network and critic-network are able to update both swiftly and steadily. In the early stages of
training, the agent explores the Zernike coefficient space using a high SD for the noise. The
rewards are small in value and sparse in their distribution, resulting from both the immature
policy and the large noise SD. As the noise SD decreases, MOSS-DDPG gradually updates the
network weights based on past experiences, enhancing its predictions and leading to the optimal
policy by the end of training when the noise SD reaches zero.

3.2. In-silico performance evaluation

The effectiveness of MOSS-DDPG in correcting wavefront errors can be quantitatively assessed
through various metrics, such as the root-mean-square (RMS) residual error of the wavefront,
image metric relative to the image metric acquired without aberrations, and the amplitude of the
Zernike coefficient error. Given that the aberrations in our simulations are synthetically generated
and precisely known, we employ a comparative analysis of Zernike coefficients between the
model’s predictions and the actual aberrations as our primary metric for performance evaluation.
This comparison yields the residual errors in Zernike coefficients, which form the RMS wavefront
error RMSWFE, defined by:

RMSWFE =

√√√ 15∑︁
𝑖=4

(𝑐𝑖𝑒)2 (9)

where 𝑐𝑖𝑒 represents the coefficient prediction error for the i-th mode of the Noll index. To
statistically evaluate the performance of MOSS-DDPG’s prediction errors, we will average the

Fig. 4. MOSS-DDPG training record. Each green dot represents the average reward
achieved by 15 actions added with random noise profiles in each episode. The entire training
process took 3 hours on a desktop computer with an Intel i5-13600K CPU and an Nvidia
RTX 4080 GPU.

Each green dot in Fig. 4 represents the average reward of the corresponding training episode.
Notably, the reward increases sharply upon completion of the warm-up phase. With the
exploration-enhancing technique, 4, 000 × 15 = 60, 000 training samples have already been
generated at the end of the warm-up phase. Therefore, with a large volume of data, the actor-
network and critic-network are able to update both swiftly and steadily. In the early stages of
training, the agent explores the Zernike coefficient space using a high SD for the noise. The
rewards are small in value and sparse in their distribution, resulting from both the immature
policy and the large noise SD. As the noise SD decreases, MOSS-DDPG gradually updates the
network weights based on past experiences, enhancing its predictions and leading to the optimal
policy by the end of training when the noise SD reaches zero.

3.2. In-silico performance evaluation

The effectiveness of MOSS-DDPG in correcting wavefront errors can be quantitatively assessed
through various metrics, such as the root-mean-square (RMS) residual error of the wavefront,
image metric relative to the image metric acquired without aberrations, and the amplitude of the
Zernike coefficient error. Given that the aberrations in our simulations are synthetically generated
and precisely known, we employ a comparative analysis of Zernike coefficients between the
model’s predictions and the actual aberrations as our primary metric for performance evaluation.
This comparison yields the residual errors in Zernike coefficients, which form the RMS wavefront
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error RMSWFE, defined by:

RMSWFE =

⌜⃓⎷ 15∑︂
i=4

(ci
e)2 (9)

where ci
e represents the coefficient prediction error for the i-th mode of the Noll index. To

statistically evaluate the performance of MOSS-DDPG’s prediction errors, we will average the
RMSWFE across test samples. To clarify, since MOSS-DDPG corrects for only the first 12
Zernike modes (excluding piston, tip, and tilt), the performance evaluation metric RMSWFE is
only evaluating the accuracy for the first 12 modes. The contribution of residual higher-order
mode noise on the wavefront error is not considered, as opposed to the conventional RMS
wavefront error definition. The overall RMS wavefront error considering higher order mode
noise will be higher than the results presented below.

To make a comparison to the model based methods that also use observation biases for each
mode to estimate the modal coefficients, a parabolic maximization method based using the same
2N + 1 observations as MOSS-DDPG has also been tested. The coefficients ccorr

n are determined
through parabolic maximization as [45]:

ccorr
n =

b(M+n −M−
n )

2M+n −4M0 + 2M−
n

(10)

where n is the Zernike mode index, b is the observation bias value, M0 is the image metric
acquired without applying observation bias, and M+n and M−

n values represent the observed image
metric values for the n-th mode with positive and negative observation biases, respectively. Based
on experimental tests, the observation bias value has a large impact on the performance of the
parabolic maximization method. A 0.2 µm observation bias value is used for all modes to achieve
the best performance.

The training environment using uniformly distributed random coefficients for the wavefront
error is initially designed for the model to experience a broad range of aberrations. This uniform
distribution may result in scenarios where several mode coefficients approach the limit of 0.15 µm,
potentially decreasing image intensity and prediction accuracy. However, these extreme cases
occur infrequently in practical scenarios. To mitigate cases where many coefficients approach the
limit, we adopted a Gaussian distribution with an SD set at 0.4 times the limit. This distribution
ensures that approximately 80% of the coefficients remain within half the limit, and 98.76%
do not exceed the limit. With the Gaussian distribution, it is less likely that random Zernike
coefficients of different modes will simultaneously reach the limit, though the possibility remains
for individual coefficients.

We present three distribution configurations to statistically examine the performance of
MOSS-DDPG:

A: Uniformly distributed random Zernike coefficients within the [−0.15, 0.15] µm limit,
representing the random wavefront error that MOSS-DDPG experienced during training.

B: Zero-mean Gaussian-distributed random Zernike coefficients with a standard deviation of
0.06 µm, constrained within the [−0.15, 0.15] µm limit. This configuration minimizes the
likelihood of multiple coefficients reaching the limit simultaneously.

C: The 12 Zernike modes were categorized into three groups based on their radial order, with
decreasing limits for each group; the details are provided in Table 1. Zernike coefficients
typically decrease as the mode index increases and most aberrations predominantly originate
from lower-order modes, especially in scenarios involving mouse eye aberrations [44].
This configuration also allows us to assess the model’s extrapolation ability on unseen
wavefront errors by setting the coefficient limits to [−0.2, 0.2] µm.
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Table 1. Configuration C: Gaussian-distributed random Zernike
coefficients with decreasing standard deviations

Radial Order Zernike Modes Limits Gaussian Distribution SD

3rd 4,5,6 [-0.2,0.2] µm 0.08 µm

4th 7,8,9,10 [-0.2,0.2] µm 0.06 µm

5th 11,12,13,14,15 [-0.2,0.2] µm 0.04 µm

We have conducted 1,000 tests to examine the performances of MOSS-DDPG and the parabolic
maximization method under each of the three configurations. MOSS-DDPG and the parabolic
maximization method experience the same random aberrations, and the prediction results of
both are recorded for fair comparisons. Figure 5 presents the average RMSWFE values after the
correction of MOSS-DDPG and parabolic maximization.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Average RMSWFE

C

B

A

Diffraction-limited
MOSS-DDPG
Parabolic Maximization

Fig. 5. Average RMS wavefront errors after corrections of aberrations from MOSS-
DDPG and parabolic maximization under different random Zernike coefficient distribution
configurations. Configuration A: 0.15 µm-limit uniform distribution. Configuration B:
0.15 µm-limit Gaussian distribution with 0.06 µm standard deviation. Configuration C: 0.2
µm-limit Gaussian distribution with decreasing standard deviation as in Table 1. Orange
bars: parabolic maximization correction results. Blue bars: MOSS-DDPG correction results.
Average RMSWFE values: 0.098 (A, orange), 0.029 (A, blue), 0.045 (B, orange), 0.023 (B,
blue), 0.039 (C, orange), 0.023 (C, blue). The T bars represent the standard deviation values
of RMSWFE of 1000 tests: 0.035 (A, orange), 0.009 (A, blue), 0.019(B, orange), 0.006 (B,
blue), 0.017 (C, orange), 0.006 (C, blue). The red dashed line represents the the Maréchal
criterion λ/14 = 0.0349 µm for diffraction-limited RMSWFE.

From the results of 1000 tests, MOSS-DDPG exhibits better performance in predicting random
aberrations under all three configurations. The parabolic maximization method performance
drops drastically under configuration A when the aberrations are uniformly distributed across
0.15 µm. Compared to the Gaussian-distributed random aberration, configuration A generates
larger modal crosstalk when many of the random coefficients reach the limit. For configuration B
and configuration C, parabolic maximization performs reasonably but does not reach the same
level of accuracy as MOSS-DDPG.

For MOSS-DDPG:

1. The average RMSWFE of 0.029 µm of configuration A (upper blue bar) is the largest among
the three configurations since it has a higher possibility of generating large wavefront errors
with multiple coefficients simultaneously approaching the 0.15 µm limit. Nevertheless, the
average RMSWFE remains below the Maréchal criterion after correction. This outcome
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demonstrates that MOSS-DDPG has effectively explored the environment and learned an
optimal policy to optimize image quality.

2. The middle blue bar in Fig. 5 represents the average RMSWFE of 0.023 µm after MOSS-
DDPG’s corrections with random coefficients generated from configuration B. Compared
to A, MOSS-DDPG performs better under B with a smaller average RMSWFE and a
smaller SD. This is due to the reduced possibility of multiple coefficients simultaneously
approaching the limit.

3. The lower blue bar in Fig. 5 represents configuration C, which emulates the mouse eye
aberrations. The average RMSWFE value of 0.023 µm is also below the Maréchal criterion.
The small SD of 0.006 µm positions the Maréchal criterion at about 2 SD above the average,
indicating that 97.7% of the MOSS-DDPG correction results under configuration C meets
the Maréchal criterion, assuming the RMSWFE has a Gaussian distribution. Additionally,
the success of MOSS-DDPG in predicting extrapolated coefficients to 0.2 µm proves that
MOSS-DDPG captures the nature of the metric-coefficient space instead of just forming a
look-up table between observed metrics and coefficients.

We have also tested the independence of MOSS-DDPG from the image contents by using a
wide variety of images: images of ganglion cells that show detailed neural structures and lens
tissue images with both wide and thin fibrous lines acquired in real systems. The accuracy and
stability of MOSS-DDPG and the parabolic maximization method we observed were consistent
across all these different types of images. This demonstrates that the sharpness-based image
metric captures the image quality metric response of a confocal microscope, does not depend on
the details of the images, and can be applied effectively for various samples.

3.3. In situ validation

The in situ validation utilized artificial wavefront aberrations formed by randomly generated
Zernike coefficients. These aberration patterns were translated into actuator controls and applied
to the deformable mirror (DM). Unlike the perfect image formation environment in simulation,
challenges exist for the implementation and evaluation of MOSS-DDPG in real systems. Rather
than directly comparing MOSS-DDPG’s predicted coefficients with the unknown ground truth, we
compared the image metrics after aberration correction from MOSS-DDPG to a benchmark that
is close to the optimum that we established by employing the ZMHC coordinate search method.
While the DONE method demonstrates faster convergence and potentially better accuracy than
ZMHC, we opted for the simplicity of implementation and reliability of ZMHC. Post-correction
image metric values by MOSS-DDPG were then compared to this benchmark. In each ZMHC
round, 11 uniformly distributed coefficient values, spanning from the negative to the positive
limit, were applied to the DM to identify optimal coefficients. The coefficient limit decreases
across rounds: ±0.2 µm in the first, ±0.1 µm in the second, and ±0.05 µm in the final round. The
resolution of ZMHC for each coefficient is 0.01 µm, determined by the step size of the last round.
This specific strategy of coordinate search requires 132 images per round and 396 images in total.

3.3.1. Transfer learning

In our specific application scenario (SAO), while the real system exhibits a metric-coefficient
response similar to the simulation, minor alignment imperfections in the real system and
approximations in the simulation can degrade the performance of a directly implemented in-silico
MOSS-DDPG. We have demonstrated that a very brief transfer learning process on the real
system with pre-learned weights in simulation can vastly improve the in situ performance of
MOSS-DDPG.

By definition, transfer learning aims at improving the performance of the model on target
domains by transferring the knowledge contained in different but related source domains [46]. In
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Fig. 6. Transfer learning process of MOSS-DDPG. The transfer learning takes 1,000
episodes. Green dots represent the image metric of MOSS-DDPG’s prediction relative to
the ZMHC. The entire training process took 45 minutes on a desktop computer with an Intel
i9-10900X CPU and an Nvidia RTX 3060 GPU with 12 GB memory.

this section, we first present a brief transfer learning process to better fit the MOSS-DDPG trained
in-silico to the real system. We subsequently evaluate the performance of both the directly applied
and the transfer learning-enhanced versions of MOSS-DDPG, by comparing the corrected image
metrics to the benchmark image metrics established by ZMHC. Finally, we present and compare
the decision-making processes of MOSS-DDPG and the ZMHC method.

Before training, the transfer learning model inherits the weights from both the actor-network
and the critic-network of the in-silico MOSS-DDPG. The generation of random aberrations
follows the decreasing-limit strategy outlined in Table 1. The reward for training is defined as
the relative image metric, which is compared to the benchmark image metric established by the
ZMHC method.

Figure 6 exhibits a transfer learning session. The transfer learning involves 1,000 episodes,
which constitutes only 2.5% of the episodes used in the simulation. 7 actions with random
noise are generated at each training episode for enhanced exploration. At the start, exploration
noise is added to MOSS-DDPG’s predictions to help it explore the real system environment. As
training progresses, MOSS-DDPG’s image metric gradually converges to the ZMHC benchmark.
Occasionally, the image metric values following MOSS-DDPG’s predictions exceed the ZMHC
benchmark, indicating potential fluctuations in detected intensity between the two processes
or superior solutions identified by MOSS-DDPG. Given that ZMHC has limited resolution
and does not accommodate potential mode interactions resulting from system imperfections,
MOSS-DDPG can indeed identify more effective solutions through its continuous predictions of
Zernike coefficients.

3.3.2. In situ performance evaluation

To examine the in situ performances of MOSS-DDPG both before and after transfer learning
and compare its performance with parabolic maximization, we have generated 100 random
aberrations that follow the limit strategy in Table 1. Figure 7 displays the test results of image
metrics (relative to ZMHC) following wavefront error corrections by MOSS-DDPG and parabolic
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Fig. 7. Violin plot comparing relative image metrics to ZMHC across different correction
techniques, including No Correction, No Transfer Learning MOSS-DDPG, Parabolic
Maximization with 0.5 µm and 0.2 µm Bias, and Transfer Learning MOSS-DDPG. The
blue bars indicate the maximum, minimum, and median values for each group. “Transfer
Learning MOSS-DDPG” shows the highest and most consistent performance, while “No
Correction” is the least as it represents the image metrics from the aberrated wavefront
patterns before correction.

maximization, both before and after transfer learning. Two observation bias values have been
tested for parabolic maximization: 0.2 µm and 0.5 µm; based on the experiments, the 0.2 µm
observation bias value performs better for the specific optical system and amount of aberration.
The best performance was recorded using MOSS-DDPG with transfer learning.

With the image metric values reduced to approximately a median of 61% of the benchmark due
to random aberrations, the direct application of in silico MOSS-DDPG demonstrates a significant
improvement, reaching a median of 78% of the benchmark. After transfer learning, the refined
MOSS-DDPG model further improves the metric values of aberrated images to a median of 99%
of the benchmark. MOSS-DDPG enhanced by transfer learning not only achieves performance
comparable to that of ZMHC but also demonstrates a marked improvement in the stability and
accuracy of its predictions over the directly implemented in silico MOSS-DDPG.

Two parabolic maximization tests with different bias values exhibit distinct performances. 0.5
µm bias parabolic maximization achieves a median of 75% of the benchmark metric while 0.2
µm bias parabolic maximization improves the median to 91%.

All tested models exhibit the ability to improve the image quality metrics by predicting the
Zernike coefficients that form the random aberration patterns. The MOSS-DDPG model after
transfer learning stands out for its high and consistent performance. Parabolic maximization with
0.2 µm bias also demonstrates high-level accuracy, however, the distribution of image metrics
after corrections is not as narrow, indicating some variability in performance, which can be
caused by modal crosstalk.

Due to the non-uniform flatness of the sample, variations in focal planes and aberrations are
present throughout the entire field of view. To assess the model’s robustness to the artifacts and
its adaptability to images with diverse spatial frequency distributions, the sample underwent both
vertical and horizontal shifts. Under each movement, MOSS-DDPG resets its predictions and
corrects various aberrations with different image contents. The images corrected by MOSS-DDPG
consistently achieve over 95% of the image metric attained by ZMHC on average, indicating
their sharpness is comparable to ZMHC results with only minor further refinements.
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3.3.3. Decision-making process visualization

The sample being imaged is a part of a lens tissue covered by fluorescent ink. The decision-making
process of MOSS-DDPG is compared to the ZMHC method of three rounds of correction. The
prediction process for both the MOSS-DDPG model and the ZMHC model is shown in Fig. 8.

Steps25

132

Aberrated

264 396

…

4994.46

3920.17 4341.93 5235.20

2306.70

MOSS-DDPG

ZMHC

Fig. 8. In situ correction process comparison between MOSS-DDPG & ZMHC. The x-axis
is the number of image acquisitions (steps) experienced by the two models. The upper half
with a yellow background is MOSS-DDPG and the lower half with a blue background is the
ZMHC. The images’ metrics associated with correction steps are noted in red color.

Before the aberration correction process, the aberrated image has an initial metric value of
2,307. After the acquisition of 25 images, MOSS-DDPG predicts Zernike coefficients for 12
modes to correct the system aberration, improving the image quality metric by 117%. Being
exhaustive and slow with coordinate search, the ZMHC takes 132 steps in the first round to make
its first prediction, effectively addressing the major aberrations but lacking the finer adjustments.
In its second iteration, ZMHC achieves a reward comparable to that of MOSS-DDPG but takes
264 steps, 10 times more than that of MOSS-DDPG. After the fine-tuning of Zernike coefficients
in the last round, ZMHC reaches the highest image metric value among all and outperforms
MOSS-DDPG by 4.8%.

Figure 9 is an example of the decision-making process of MOSS-DDPG in correcting a
randomly generated aberration with a different location of the lens tissue and a larger field of
view (FOV) than Fig. 8. The aberrated image before correction has a metric value of 3,004 and is
blurry. The corrected image exhibits much more details than the aberrated image with a metric
value of 6,110, improving the metric by over 100%.
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Fig. 9. Decision-making progress of MOSS-DDPG. The black numbers are the sequence
of the image metric value acquisition to form the observation matrix. The red numbers are
the image metric values for each image. The corrected image improves the image metric by
over 100%.
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4. Discussion

By using the Deep Deterministic Policy Gradient with a single-step setting, we have realized a
fast and accurate optimization of N Zernike coefficients with an observation matrix of 2N + 1
image quality metric values, within a Zernike coefficient range of [-0.2, 0.2] µm. Using an
exploration-enhancing technique that generates multiple noise profiles for each training episode
significantly increases the overall training speed. Integrating Long Short-term Memory networks
also stabilizes the training process and improves the training speed, making possible a 12-mode
wavefront error correction within an efficient Zernike coefficient limit that effectively covers the
Zernike coefficient range of mouse eye aberration. MOSS-DDPG can be trained completely
in silico and applied to in situ scenarios with a brief transfer learning process. This ensures
fast model training sessions with modest computational power and broad adaptability to in situ
imperfections like non-common path aberrations [47].

The demonstration of MOSS-DDPG’s potential of addressing the modal crosstalk and system
imperfections involves comparisons with a 2N + 1 model based parabolic maximization method.
We recognize that there are other model based methods with higher complexity and better
performance [21]. Optimum modal construction instead of the more widely used Zernike modes
can be developed to improve the robustness of model based correction methods [40,45]. In
addition, only uniform bias values across modes were tested for the parabolic maximization
method, and non-uniform bias values can be explored to achieve better parabolic maximization
performance. The simple implementation of a 2N + 1 parabolic maximization method might
overclaim the performance of MOSS-DDPG. Nevertheless, from the correction results, the higher
instability and lower accuracy of the parabolic maximization method compared to MOSS-DDPG
demonstrates modal crosstalk and potential system imperfections that hamper the parabolic
property of the metric-coefficient curve. With a learning-based strategy, MOSS-DDPG has the
potential to overcome these obstacles.

Direct application of the in silico trained MOSS-DDPG does not produce the most desirable
output on a real system but can be improved by brief transfer learning processes. A reason for
the difference in performance is that approximations were made in simulating the fiber function
as a simple unit circle, and the circle diameter was experimentally determined in the simulation.
This approximation might form a slightly different relationship between image metric values
and Zernike coefficients in the simulation versus the real system. Other system imperfections,
including the DM actuator accuracy, laser power stability, non-common path aberrations, and the
galvanometer scanners can also affect the in situ metric-coefficient relationship that is challenging
to simulate. These problems are commonly encountered for SAO models that are trained in
silico and applied to in situ scenarios. An advantage of MOSS-DDPG is that it can quickly
adapt to a new environment with transfer learning. Nevertheless, it is suggested that careful
alignment and reduction of non-common path aberrations in the system are performed before
applying MOSS-DDPG to ensure smooth and swift transfer learning processes and robust model
predictions.

Although MOSS-DDPG’s policy self-learning process is iterative, once trained, it makes
predictions in practical applications with a fixed number of image acquisitions without further
iterations, supported by in situ experimental validations. Focusing more on the speed while
maintaining reasonable accuracy, MOSS-DDPG distinguishes itself from fast iterative model
based methods, such as DONE, which generally require a larger number of iterative steps (60-250)
even for a modest number of modes (3-7) for every new aberration scenario [13,15]. Nevertheless,
the iterative methods may eventually achieve better results after a large number of iterations.
While MOSS-DDPG exhibits comparable performance to ZMHC with a single-shot prediction,
it can also run iteratively to acquire multiple observation matrices, where each of the observation
matrices is based on the previous corrected wavefront, further improving the prediction accuracy
while maintaining the speed advantage.
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MOSS-DDPG exhibits a high speed of operation, which significantly mitigates the impact of
potential perturbations such as the movement or blinking of the sample during the optimization
process. Its rapid processing capability ensures that even in the face of such disturbances, the
likelihood of their affecting the optimization outcome is greatly reduced. Notably, even SAO
methods capable of continuous update and optimization cannot bypass the theoretical limit of
steps required when facing new aberrations. A straightforward reset of MOSS-DDPG in instances
where aberrations change during live imaging maintains fast and high-quality optimization in
dynamic aberration imaging environments.

MOSS-DDPG’s ability to make wavefront error predictions for 12 Zernike modes in only 25
steps makes it highly effective for live aberration correction. Future work can further improve the
model’s prediction accuracy, training efficiency, coefficient range, Zernike mode range, and the
stability of correction. More modes can be implemented for MOSS-DDPG as a trade-off between
correction speed and correction accuracy. With more modes for correction, the negative influence
of uncorrectable higher-order mode noise will be further mitigated. Other image quality metrics
(such as the Strehl ratio [48] or encircled energy [49]) that provide a differentiable objective
function for MOSS-DDPG to optimize can be explored. Expanding the use of alternative metrics
beyond image sharpness would enhance the applicability of MOSS-DDPG to a broader range
of adaptive optics scenarios. Applications of the MOSS-DDPG framework to other imaging
systems with different image formation physics are also interesting areas of exploration.

5. Conclusion

This work demonstrated that the implementation of a multi-observation single-step deep deter-
ministic policy gradient framework with LSTM actor and critic networks on a confocal scanning
laser ophthalmoscope can effectively correct aberrations of 12 Zernike modes (the first 5 radial
orders excluding piston, tip, and tilt). The correction process requires only 2× 12+ 1 = 25 image
acquisitions, representing the fewest steps possible for image metric-based SAO optimizations.
The model can be trained in silico at first and then applied to in situ scenarios with brief transfer
learning processes, significantly accelerating the overall training process compared to purely
in situ training. With over 10 times faster speed than the coordinate search ZMHC method,
MOSS-DDPG exhibits comparable performances for in situ wavefront error correction tests.
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(EP/S021930/1); Moorfields Eye Charity (GR001424); National Institute for Health Research Biomedical Research
Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology.

Disclosures. The authors declare no conflicts of interest.

Data availability. The source code for MOSS-DDPG construction and performance evaluation is openly accessible
at GitHub [50].

Supplemental document. See Supplement 1 for supporting content.

References
1. B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5),

S573–S577 (2001).
2. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive

optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
3. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A

14(11), 2873–2883 (1997).
4. Y. Geng, L. A. Schery, and R. Sharma, “Optical properties of the mouse eye,” Biomed. Opt. Express 2(4), 717–738

(2011).
5. Y. Geng, A. Dubra, and L. Yin, “Adaptive optics retinal imaging in the living mouse eye,” Biomed. Opt. Express

3(4), 715–734 (2012).
6. D. J. Wahl, P. Zhang, and J. Mocci, “Adaptive optics in the mouse eye: wavefront sensing based vs. image-guided

aberration correction,” Biomed. Opt. Express 10(9), 4757–4774 (2019).
7. P. Jiang, Y. Liang, J. Xu, et al., “A new performance metric on sensorless adaptive optics imaging system,” Optik

127(1), 222–226 (2016).

https://doi.org/10.6084/m9.figshare.26252324
https://doi.org/10.3928/1081-597X-20010901-13
https://doi.org/10.1364/JOSAA.14.002884
https://doi.org/10.1364/JOSAA.14.002873
https://doi.org/10.1364/BOE.2.000717
https://doi.org/10.1364/BOE.3.000715
https://doi.org/10.1364/BOE.10.004757
https://doi.org/10.1016/j.ijleo.2015.10.051


Research Article Vol. 15, No. 8 / 1 Aug 2024 / Biomedical Optics Express 4813

8. K. F. Tehrani, J. Xu, and Y. Zhang, “Adaptive optics stochastic optical reconstruction microscopy (AO-STORM)
using a genetic algorithm,” Opt. Express 23(10), 13677–13692 (2015).

9. S. Zommer, E. N. Ribak, S. G. Lipson, et al., “Simulated annealing in ocular adaptive optics,” Opt. Lett. 31(7),
939–941 (2006).

10. Y. Liu, J. Ma, B. Li, et al., “Hill-climbing algorithm based on Zernike modes for wavefront sensorless adaptive
optics,” Opt. Eng. 52(1), 016601 (2013).

11. A. Camino, P. Zang, and A. Athwal, “Sensorless adaptive-optics optical coherence tomographic angiography,”
Biomed. Opt. Express 11(7), 3952–3967 (2020).

12. D. J. Wahl, Y. Jian, and S. Bonora, “Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo
retinal imaging in mice,” Biomed. Opt. Express 7(1), 1–12 (2016).

13. H. R. G. W. Verstraete, M. Heisler, and M. J. Ju, “Wavefront sensorless adaptive optics OCT with the DONE
algorithm for in vivo human retinal imaging [Invited],” Biomed. Opt. Express 8(4), 2261–2275 (2017).

14. A. Camino, R. Ng, and J. Huang, “Depth-resolved optimization of a real-time sensorless adaptive optics optical
coherence tomography,” Opt. Lett. 45(9), 2612–2615 (2020).

15. H. R. G. W. Verstraete, S. Wahls, J. Kalkman, et al., “Model-based sensor-less wavefront aberration correction in
optical coherence tomography,” Opt. Lett. 40(24), 5722–5725 (2015).

16. W. Lianghua, P. Yang, and Y. Kangjian, “Synchronous model-based approach for wavefront sensorless adaptive
optics system,” Opt. Express 25(17), 20584–20597 (2017).

17. H. Ren and B. Dong, “Self-calibrated general model-based wavefront sensorless adaptive optics for both point-like
and extended objects,” Opt. Express 30(6), 9562–9577 (2022).

18. M. J. Booth, M. A. A. Neil, R. Juškaitis, et al., “Adaptive aberration correction in a confocal microscope,” Proc. Natl.
Acad. Sci. U. S. A. 99(9), 5788–5792 (2002).

19. H. Song, R. Fraanje, and G. Schitter, “Model-based aberration correction in a closed-loop wavefront-sensor-less
adaptive optics system,” Opt. Express 18(23), 24070–24084 (2010).

20. A. Facomprez, E. Beaurepaire, and D. Débarre, “Accuracy of correction in modal sensorless adaptive optics,” Opt.
Express 20(3), 2598–2612 (2012).

21. H. Ren and B. Dong, “Improved model-based wavefront sensorless adaptive optics for extended objects using n+2
images,” Opt. Express 28(10), 14414–14427 (2020).

22. A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical
coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).

23. N. D. Shemonski, F. A. South, and Y.-Z. Liu, “Computational high-resolution optical imaging of the living human
retina,” Nat. Photonics 9(7), 440–443 (2015).

24. R. R. Iyer, Y.-Z. Liu, and S. A. Boppart, “Automated sensorless single-shot closed-loop adaptive optics microscopy
with feedback from computational adaptive optics,” Opt. Express 27(9), 12998–13014 (2019).

25. Y. Nishizaki, M. Valdivia, and R. Horisaki, “Deep learning wavefront sensing,” Opt. Express 27(1), 240–251 (2019).
26. Q. Tian, C. Lu, and B. Liu, “DNN-based aberration correction in a wavefront sensorless adaptive optics system,” Opt.

Express 27(8), 10765–10776 (2019).
27. Y. Zhang, T. Zhou, and L. Fang, “Conformal convolutional neural network (CCNN) for single-shot sensorless

wavefront sensing,” Opt. Express 28(13), 19218–19228 (2020).
28. W. Liu, X. Ma, and D. Jin, “Residual network-based aberration correction in a sensor-less adaptive optics system,”

Opt. Commun. 545, 129707 (2023).
29. Y. Li, D. Yue, and Y. He, “Prediction of wavefront distortion for wavefront sensorless adaptive optics based on deep

learning,” Appl. Opt. 61(14), 4168–4176 (2022).
30. Y. Jin, Z. Cheng, Z. Chen, et al., “A Sensorless Adaptive Optics Control System for Microscopy Based on Extreme

Learning Machine,” in 2020 IEEE 6th International Conference on Control Science and Systems Engineering
(ICCSSE), (2020), pp. 195–200.

31. H. Ke, B. Xu, and Z. Xu, “Self-learning control for wavefront sensorless adaptive optics system through deep
reinforcement learning,” Optik 178, 785–793 (2019).

32. Q. Xin, G. Ju, C. Zhang, et al., “Object-independent image-based wavefront sensing approach using phase diversity
images and deep learning,” Opt. Express 27(18), 26102–26119 (2019).

33. E. Durech, W. Newberry, J. Franke, et al., “Wavefront sensor-less adaptive optics using deep reinforcement learning,”
Biomed. Opt. Express 12(9), 5423–5438 (2021).

34. D. J. Wahl, R. Ng, and M. J. Ju, “Sensorless adaptive optics multimodal en-face small animal retinal imaging,”
Biomed. Opt. Express 10(1), 252–267 (2019).

35. V. F. Zernike, “Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode,”
Physica 1(7-12), 689–704 (1934).

36. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66(3), 207–211 (1976).
37. T. Wilson and C. J. R. Sheppard, “Theory and practice of scanning optical microscopy,” J. Opt. Soc. Am. A 4(3),

551–560 (1987).
38. M. Gu, C. J. R. Sheppard, and X. Gan, “Image formation in a fiber-optical confocal scanning microscope,” J. Opt.

Soc. Am. A 8(11), 1755–1761 (1991).
39. R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image

sharpening,” J. Opt. Soc. Am. 64(9), 1200–1210 (1974).

https://doi.org/10.1364/OE.23.013677
https://doi.org/10.1364/OL.31.000939
https://doi.org/10.1117/1.OE.52.1.016601
https://doi.org/10.1364/BOE.396829
https://doi.org/10.1364/BOE.7.000001
https://doi.org/10.1364/BOE.8.002261
https://doi.org/10.1364/OL.390134
https://doi.org/10.1364/OL.40.005722
https://doi.org/10.1364/OE.25.020584
https://doi.org/10.1364/OE.454901
https://doi.org/10.1073/pnas.082544799
https://doi.org/10.1073/pnas.082544799
https://doi.org/10.1364/OE.18.024070
https://doi.org/10.1364/OE.20.002598
https://doi.org/10.1364/OE.20.002598
https://doi.org/10.1364/OE.387913
https://doi.org/10.1364/OE.21.010850
https://doi.org/10.1038/nphoton.2015.102
https://doi.org/10.1364/OE.27.012998
https://doi.org/10.1364/OE.27.000240
https://doi.org/10.1364/OE.27.010765
https://doi.org/10.1364/OE.27.010765
https://doi.org/10.1364/OE.390878
https://doi.org/10.1016/j.optcom.2023.129707
https://doi.org/10.1364/AO.455953
https://doi.org/10.1016/j.ijleo.2018.09.160
https://doi.org/10.1364/OE.27.026102
https://doi.org/10.1364/BOE.427970
https://doi.org/10.1364/BOE.10.000252
https://doi.org/10.1016/S0031-8914(34)80259-5
https://doi.org/10.1364/JOSA.66.000207
https://doi.org/10.1364/JOSAA.4.000551
https://doi.org/10.1364/JOSAA.8.001755
https://doi.org/10.1364/JOSAA.8.001755
https://doi.org/10.1364/JOSA.64.001200


Research Article Vol. 15, No. 8 / 1 Aug 2024 / Biomedical Optics Express 4814

40. D. Débarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,”
Opt. Express 15(13), 8176–8190 (2007).

41. V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Playing atari with deep reinforcement learning,” (2013).
42. T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al., “Continuous control with deep reinforcement learning,” (2019).
43. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput. 9(8), 1735–1780 (1997).
44. P. Zhang, J. Mocci, and D. J. Wahl, “Effect of a contact lens on mouse retinal in vivo imaging: Effective focal length

changes and monochromatic aberrations,” Exp. Eye Res. 172, 86–93 (2018).
45. B. Wang and M. J. Booth, “Optimum deformable mirror modes for sensorless adaptive optics,” Opt. Commun.

282(23), 4467–4474 (2009).
46. F. Zhuang, Z. Qi, and K. Duan, “A comprehensive survey on transfer learning,” Proc. IEEE 109(1), 43–76 (2021).
47. Y. N. Sulai and A. Dubra, “Non-common path aberration correction in an adaptive optics scanning ophthalmoscope,”

Biomed. Opt. Express 5(9), 3059–3073 (2014).
48. V. N. Mahajan, “Strehl ratio for primary aberrations in terms of their aberration variance,” J. Opt. Soc. Am. 73(6),

860–861 (1983).
49. G. Karam, Z. Abood, Q. Khaled, et al., “Calculation of encircled energy as optical quality assessment parameter for

image system,” J. Phys.: Conf. Ser. 1818(1), 012115 (2021).
50. G. Xu, T. Smart, E. Durech, et al., “Image metric-based multi-observation single-step deep deterministic policy

gradient for sensorless adaptive optics: code,” Github, 2024.https://github.com/xgz0921/MOSS-DDPG.git

https://doi.org/10.1364/OE.15.008176
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.exer.2018.03.027
https://doi.org/10.1016/j.optcom.2009.08.010
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1364/BOE.5.003059
https://doi.org/10.1364/JOSA.73.000860
https://doi.org/10.1088/1742-6596/1818/1/012115
https://github.com/xgz0921/MOSS-DDPG.git

