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Purpose of review

Last year marked the development of the first foundation model in ophthalmology, RETFound, setting the
stage for generalizable medical artificial intelligence (GMAI) that can adapt to novel tasks. Additionally,
rapid advancements in large language model (LLM) technology, including models such as GPT-4 and
Gemini, have been tailored for medical specialization and evaluated on clinical scenarios with promising
results. This review explores the opportunities and challenges for further advancements in these
technologies.

Recent findings

RETFound outperforms traditional deep learning models in specific tasks, even when only fine-tuned on
small datasets. Additionally, LMMs like Med-Gemini and Medprompt GPT-4 perform better than out-of-the-
box models for ophthalmology tasks. However, there is still a significant deficiency in ophthalmology-
specific multimodal models. This gap is primarily due to the substantial computational resources required to
train these models and the limitations of high-quality ophthalmology datasets.

Summary

Overall, foundation models in ophthalmology present promising opportunities but face challenges,
particularly the need for high-quality, standardized datasets for training and specialization. Although
development has primarily focused on large language and vision models, the greatest opportunities lie in
advancing large multimodal models, which can more closely mimic the capabilities of clinicians.
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The advancement of artificial intelligence in oph-
thalmology has been significantly propelled by deep
learning techniques, which analyse eye images to
detect patterns and anomalies, thereby significantly
enhancing diagnostic and prognostic capabilities
[1]. Despite their effectiveness, a main constraint
for such artificial intelligence models is that they
typically require vast amounts of labelled data for
model training, often not obtainable.

More recently, the widespread use of foundation
models in healthcare has marked a significant step
towards general medical artificial intelligence
(GMAI). Coined by researchers at Stanford, ‘founda-
tion model’ refers to deep learning models that
provide a versatile base of knowledge adaptable
for various specific purposes, unlike traditional arti-
ficial intelligence systems designed for specific tasks
(Fig. 1) [2,3]. Enabled by innovative approaches such
as self-supervised learning (SSL) and vision trans-
formers (ViTs), foundation models are trained on
with smaller labelled datasets for specific medical
use cases. This approach allows foundation models
to achieve the same accuracy as traditional models
but with fewer labelled examples [4].

In this review, we examine the current status
and opportunities of foundation models in
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KEY POINTS

� Large language models are useful in education and
research, but for clinical use, they need better domain-
specific knowledge, fewer confabulations, and
rigorous evaluation.

� Large vision models can revolutionize global
ophthalmology with their advanced diagnostic and
prognostic capabilities, addressing health data
inequality without the need for retraining.

� Open-source foundation models like RETFound enable
researchers to utilize small labelled datasets to discover
novel applications, driving innovation
in ophthalmology.

� Federated learning has the potential to support
collaborative training of foundation models without
exchanging sensitive data, enhancing model robustness
and generalizability whilst sharing
computational resources.

� Large multimodal models are akin to clinicians in how
they integrate multimodal data to achieve the most
accurate clinical understanding. Although they hold
great potential for utility, they currently lack the
necessary datasets for full implementation.
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ophthalmology, including large language models
(LLMs), large vision models (LVMs) and large multi-
modal models (LMMs). Notably, we discuss
RETFound, the first LVM for ophthalmology and
FIGURE 1. Schematic representation of training traditional dee
between training traditional deep learning (DL) models and found
typically require labelled datasets and are trained for specific task
unlabelled data and subsequently fine-tuned for a variety of tasks
object detection. CFP, colour fundus photo; DN, diabetic retinopa
tomography; UWF, ultra-wide field. Adapted from [4], licensed un
BY 4.0) Licence.
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its current use cases and future opportunities. We
also explore the key next challenges to advance
foundation models in ophthalmology.
LARGE LANGUAGE MODELS

Among the most well known types of foundation
models are LLMs, known for their capacity to under-
stand and generate human-like text [5,6]. Training
these LLMs involves processing extensive text data
from diverse sources, often encompassing billions of
words, which enables them to grasp nuanced and
complex language patterns [5].

Toenhance thesemodels, newer iterations require
larger andmoreup-to-date text corpora for training, in
addition to vast amounts of computational power [7].
Within ophthalmology, we often lack the resources
and data to train a domain-specific LLM from scratch.
Instead, it is more beneficial to specialize existing
LLMs using methods such as fine-tuning, prompt
engineering, and retrieval-augmented generation
(RAG) as seen in Fig. 2 [8–11].

Fine-tuning involves updating the internal
parameters of the LLM using small labelled datasets,
to equip themodel with specific domain knowledge.
Within the context of ophthalmology, an LLM can
be fine-tuned using validated question and answer
(QnA) pairs. This process can involve providing
accurate responses to clinical management ques-
tions, such as the treatment protocols, for example,
acute angle-closure glaucoma [12]. When updating
p learning models and foundation models. The differences
ation models (FM) are highlighted. Traditional DL models
s. In contrast, foundation models are usually trained once on
and modalities, such as segmentation, classification, and
thy; MA, microaneurysm; OCT, optical coherence
der a Creative Commons Attribution 4.0 International (CC
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FIGURE 2. Methods of specializing large language models. The various techniques used to tailor LLMs for specific
applications, including fine-tuning, prompt engineering, and retrieval-augmented generation (RAG) are illustrated. Fine-tuning
involves adjusting the internal model parameters to improve performance on a specific task, while prompt engineering and
RAG do not alter the model parameters but instead enhance the model’s output through different approaches.

Special commentary
the internal parameters, fine-tuning can be
approached in two main ways, with a frozen or
unfrozen backbone. Fine-tuning with a frozen back-
bone means that the core parameters of the model
remain unchanged or ‘frozen’, and only the top
parameters, known as the head, are updated [13].
This approach is computationally efficient and
reduces the risk of overfitting, which is when an
artificial intelligence model replicates the training
data without learning the underlying patterns.
However, with a frozen backbone, the ability to
adapt to highly specialized tasks is limited because
the core parameters cannot be modified. Con-
versely, fine-tuning with an unfrozen backbone
involves updating the entire model, including the
core parameters. This allows for greater adaptability
and often results in higher accuracy on domain-
specific tasks, as the model can fine-tune all its
parameters end-to-end. The trade-off is that this
approach requires more computational resources,
takes longer to train, and has a higher risk of
92 www.co-ophthalmology.com
overfitting because of the extensive parameter
updates [13]. Both of these approaches typically
require technical coding skills, however, recent
advancements on platforms such as Google’s Vertex
AI allow for fine-tuning LLMs without the need for
coding knowledge [10].

Other methods of specialization focus on opti-
mizing the outputs of the LLM rather than altering
its parameters. These approaches enable the model
to act as an agent, capable of retrieving domain-
specific information [14]. Given the propensity for
LLMs to confabulate information or provide out-
dated knowledge with opaque reasoning processes,
RAG has emerged as a promising solution that
allows LLMs to pull from external databases when
generating a response [11]. Such external databases
could include peer-reviewed articles, clinical trials,
guidelines, and electronic health records (EHR). This
approach enhances the accuracy and credibility of
LLM outputs, especially for knowledge-intensive
tasks seen in healthcare, by allowing continuous
Volume 36 � Number 1 � January 2025
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updates and integration of domain-specific infor-
mation. For example, practical use cases of LLMs
with RAG include creating virtual teachers that
generate Q&A from clinical guidelines, and summa-
rize research articles [15

&

]. Platforms like OpenAI
allow users to create their own custom GPT models.
Thesemodels can use RAG to incorporate additional
documents and perform web searches for more
accurate and comprehensive responses [16].

Similar to RAG, another approach to LLM spe-
cialization is prompt engineering. This technique
steers the model’s responses by designing and
structuring input prompts to guide the model
towards producingmore accurate and relevant out-
puts [17]. By providing specific contexts or framing
questions in particular ways, prompt engineering
helps the model leverage its existing know-
ledge more effectively, ensuring that generated
responses align closely with the desired domain-
specific information [14,18]. For prompt engineer-
ing, there are several different prompting strategies
that can be applied, depending on what is required
[17,19]. For example, the simplest approach is zero-
shot or direct prompting is when the prompt used
to interactwith the LLMdoes not contain examples
or demonstrations, for example, ‘Give me a list of
causes of red eye’, Another type of prompt engi-
neering is role prompting, which involves assign-
ing the LLM a specific role, for instance ‘You are a
clinical triage assistant, please explain to the
patient the causes of red eye’. In this way, the
prompt provides the LLM with situational context
and a better understanding of what style of lan-
guage it should use for its audience [17]. Through
methods like one-shot or few-shot prompting, an
LLM is provided with the ideal output response
structure, to help guide its responses if they are
required to be in a specific format such as a clinical
letter or report. Finally, chain-of-thought (CoT)
prompting encourages the LLM to explain its rea-
soning step-by-step, which is particularly impor-
tant in healthcare to understand the reasoning
behind the model’s clinical responses [17]. For
instance, ‘Explain your thought process for diag-
nosing the cause of red eye in a patient presenting
with these symptoms’.

Before specializing a foundation model, such as
an LLM, it is common to first use a linear probe to
evaluate the quality of the patterns and features
learned by the foundation model. A linear probe
involves training a simple classifier, such as logistic
regression, on top of the pretrained foundation
model to perform a specific task. This method helps
determine how well the pretrained features can
support the task with minimal additional learning.
If a linear probe performs well, it suggests that the
1040-8738 Copyright © 2024 The Author(s). Published by Wolters Kluwe
model’s pretrained knowledge is robust and effec-
tive for the given task.

These specialized LLMs often outperform tradi-
tional machine learning models, even when using
very small labelled datasets, making for a more
effective use of the limited data available in hospi-
tals [4]. Many popular LLMs such as Gemini and
GPT-4, have undergone general medical specializa-
tion using these techniques, exemplified by GPT-4
Medprompt and Med-Gemini. These achieve med-
ical specialization through a combination of self-
training via web search, fine-tuning with custom-
ised encoders and prompt engineering using CoT
prompting [18,20

&&

].
Initially, most evaluations of LLMs in ophthal-

mology have focused on assessing the performance
of out-of-the-box models through a variety of spe-
cific tasks, without medical specialization [21].
These tasks include answering patient queries, draft-
ing operative notes, triaging clinical cases, analysing
imaging reports, and responding to clinical exami-
nation questions [22–27,28

&

]. More recent research
has begun to outline and explore the benefits of
specializing LLMs specifically to ophthalmology
encompassing use-cases in medical education,
workflow improvement and clinical assistance
[12,29,30]. LLMs for medical education could sum-
marize clinical guidelines and academic articles, as
well as acting as a virtual patient to which questions
can be asked to aid learning [15

&

,16]. Meanwhile,
report generation and streamlining EHR documen-
tation are ways in which LLMs could improve work-
flow management [29,31].

For clinicians, LLMs could also aid in summa-
rizing clinical content, assist with making referrals
and provide suggestions based on the medical his-
tory. As reliance on tertiary-level eye care services
increases, these types of LLMs are likely to be
increasingly useful [32]. For example, they may
be integrated into face-to-face clinical encounters
or into virtual clinic services, complementing
tele-ophthalmology efforts with the potential
to transform patient care in underserved areas
[33]. In low-income and middle-income countries
(LMICs), there is a significant shortage of
clinicians, which exacerbates the challenges of
providing adequate eye care [34]. Therefore, imple-
menting LLMs in these regions could yield substan-
tial benefits by augmenting the limited human
resources, improving access to eye care, and
enhancing the overall quality of patient care
[29,35]. Depending on their use cases, such as a
patient-facing application for diagnosing diseases,
LLMs could be considered as medical devices. In
these cases, the deployment of such LLMs would
require regulatory approval, necessitating rigorous
r Health, Inc. www.co-ophthalmology.com 93



Special commentary
testing and validation to ensure their safety and
efficacy in clinical settings [36].
LARGE VISION MODELS

In addition to language processing, foundation
models can be trained to have vision capabilities,
which can be useful for analysing and interpreting
medical images. These models, known as LVMs, are
especially valuable in ophthalmology, a field heav-
ily reliant on imaging. However, while imaging data
is routinely collected in ophthalmology, it is often
unlabelled as it is not typically accompanied by
formal reports, as seen in radiology. By employing
techniques such as SSL, we can harness this exten-
sive amount of unlabelled image data to train LVMs
effectively [37

&&

].
Developed by researchers at Moorfields Eye Hos-

pital and UCL, RETFound serves as the first LVM for
ophthalmology. It was trained separately on colour
fundus photography (CFP) and optical coherence
tomography (OCT), resulting in two versions of the
model. When fine-tuned for specific downstream
tasks, using small labelled datasets, RETFound was
employed for diagnosis and prognosis of ocular
diseases and the prediction of systemic diseases,
where it outperformed other supervised and self-
supervised models. As an open-source model,
RETFound is accessible for other groups to explore
and fine-tune for new tasks, such as image segmen-
tation [38].

One potential research avenue in ophthalmol-
ogy is the development of LVMs trained on 3D
images, a technique being explored in othermedical
specialties [39

&&

]. At present, LVMs like RETFound
tend to only utilize a select number of 2D B-scans
from an OCT volume during training, such as the
central B-scan [40

&&

]. Therefore, creating a model
that utilizes the entire OCT volume has the poten-
tial to provide greater spatial information and thus
more accurate diagnosis. However, within ophthal-
mology, there is a notable lack of pretrained 3D
models to test this hypothesis [41].

Similarly, research is being conducted to better
understand the benefits of training LVMs on multi-
ple imaging modalities, with VisionFM and Eye-
Found as being notable examples [30,42]. Both
models were trained on large datasets, including
modalities such as OCT, CFP, fundus fluorescein
angiography, in addition to B-ultrasound, external
eye photos and slit lamp photos. Incorporating
these modalities is valuable as it covers a broad
spectrum of ophthalmic conditions across multiple
sub-specialties. However, whilst these models report
high accuracy in diagnosing ocular diseases showing
promising results, it is important to note that these
94 www.co-ophthalmology.com
models are currently detailed in preprint, and fur-
ther development and rigorous validation are nec-
essary to fully confirm their capabilities.
LARGE MULTIMODAL MODELS

Despite the promise of LLMs and LVMs, to truly
assist clinicians, it is essential to developmodels that
can integrate various types of data, such as text and
images. Developing such LMMs marks a step
towards GMAI, mirroring how clinicians combine
multiple data modalities for a comprehensive
understanding. Consequently, more recent founda-
tion model research has emphasized developing
LMMs with multimodal capabilities.

One such model is Google’s Med-Gemini, an
LMM adapted from Gemini on diverse medical text
and imaging data from various medical specialties,
including CFP images from a EyePACS diabetic ret-
inopathy dataset. Using these capabilities, Med-
Gemini was developed to support a range of differ-
ent clinical tasks including disease classification,
image report generation, and polygenic risk predic-
tion [20

&&

,39
&&

]. Med-Gemini also performs visual
question answering (VQA), where the model
responds to visual prompts such as fundus photos
and engages in dialogue with the user regarding the
management of conditions. For instance, in oph-
thalmology, the LMM can diagnose a condition
based on the medical history provided through text
and clinical images as demonstrated in Fig. 3 [43].

During evaluation on ophthalmology tasks,
Med-Gemini was shown to outperform the out-of-
the-boxGemini Ultra in several experiments, but for
the task of diabetic retinopathy lesion detection, it
did not surpass the accuracy of the supervised learn-
ing model. Similar projects have looked to evaluate
out-of-the-box LMMs like Google’s Gemini Pro, on
tasks such as on interpreting OCT B-scans, however,
these models have similarly failed to reach high
accuracy compared with supervised models [44].

Another LMM with ophthalmology capabilities
is OphGLM, fine-tuned from ChatGLM using fun-
dus image–text pairs generated from medical–
patient conversations [45]. This model was utilized
for a variety of downstream tasks, including gener-
ating image descriptions, explaining causes and
symptoms, and guiding diagnosis and examination
procedures for multiple ocular diseases. Despite
showing promise, no formal metrics for the model’s
full pipeline performance were provided; only
examples of output dialogues were shared. There-
fore, further clinical evaluation is required to deter-
mine its potential value within ophthalmology.

Moreover, it is notable that neither Med-Gemini
norOphGLMwere initially trainedonophthalmology
Volume 36 � Number 1 � January 2025



FIGURE 3. Visual question and answer example scenario involving an ophthalmologist using a large multimodal language
model for treating wet age-related macular degeneration. The LMM interprets OCT (optical coherence tomography) images of
a patient with wet age-related macular degeneration, offering guidance on treatment adjustment. The model also responds to
follow-up questions. Images are from [43] licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0)
Licence. LMM, large multimodal models.
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data, and only later fine-tuned. Consequently, at their
core, these foundation models are not specifically
designed as ophthalmology-focused LMMs. We,
therefore, speculate that better results could be
achieved if LMMs were trained on, at least partially,
ophthalmology-specific image–text pairs, duringboth
initial training and fine-tuning. This approach, how-
ever, would require large, high-quality, ophthalmol-
ogy-specific datasets, which are currently lacking in
the field, as noted by the authors from the OphGLM
paper [45].
CHALLENGES

Despite these promising steps, the development of
foundation models in ophthalmology are con-
fronted with significant constraints. One of the
main challenges is the availability of vast ophthal-
mology-specific datasets needed for foundation
model training, as collecting and maintaining
1040-8738 Copyright © 2024 The Author(s). Published by Wolters Kluwe
high-quality data is costly and time-consuming
[21]. This often leads researchers to rely on existing
foundation models, such as Gemini, which are
trained on general information but can be fine-
tuned with ophthalmology-specific data [39

&&

].
Models like RETFound, however, incorporate oph-
thalmic data during both the training and fine-
tuning phases with promising results, which dem-
onstrates the substantial advantages of having oph-
thalmology-specific data integrated throughout the
training process [40

&&

].
Another significant challenge in developing

foundation models for ophthalmology is the
immense computational resources required. Build-
ing foundation models from scratch requires expen-
sive GPUs, and with each new version, the costs rise
because of the increased computational demands
[46]. This often makes foundation model training
feasible only for large institutions and companies
that can afford the necessary infrastructure and
r Health, Inc. www.co-ophthalmology.com 95
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resources, again leading researchers to rely on exist-
ing pretrained general purpose foundation models,
like Gemini and GPT-4.

Given these challenges, it is important to pro-
mote the development and use of open-source oph-
thalmology foundation models, such as RETFound,
which can be fine-tuned by other researchers and
hospitals using their owndatasets. This approachnot
only democratizes access to advanced artificial intel-
ligence tools but also allows researchers to leverage
their limited amounts of labelled data to tailor mod-
els to local populations, enhancing their effective-
ness and relevance in diverse clinical settings [47].

Another promising solution to overcome these
challenges is federated learning, which enables col-
laborators to share data and resources, thereby mit-
igating high costs and computational demands [48].
By distributing computational tasks among research
collaborators, federated learning helps to alleviate
major computational constraints. Additionally, fed-
erated learning supports the use of datasets from
hospitals to train models without directly sharing
data, thereby expanding the pool of available train-
ing data without encountering information gover-
nance issues. Although this technique has been
successfully used to train deep learning models in
ophthalmology, using data from multiple centres,
there is currently a lack of research around the plau-
sibilityof training foundationmodelsusing federated
learning. Therefore, the next challenge could be to
leverage federated learning to build ophthalmology
foundationmodels [49

&

]. We can also consider using
platforms such as FedEYE and Bitfount to provide
user-friendly federated learning environments,
allowing centres without technical expertise to con-
tribute their data for model training [50,51].

A final hurdle to developing foundation models
for ophthalmology is that of regulation. However,
recommendations for artificial intelligence as a
medical device (AIaMD) are less clear compared
with medical devices and drugs [52]. AIaMD is
already used in ophthalmology, with research
underway to explore its applications in ophthalmic
imaging [52]. As we move forward, we need to
consider different regulatory requirements for foun-
dation models, especially for integrating language
models and vision models [53,54]. Copyright
infringement is currently a heated topic in the
media [55]. Ensuring the provenance of the data
used to train clinical LLMs and establishing clear
regulations will be crucial [56].
CONCLUSION

In summary, foundation models in ophthalmology
present an array of promising opportunities and
96 www.co-ophthalmology.com
notable challenges. The advancements in LLMs
are particularly exciting because of their ability to
mimic human-like conversation and provide valua-
ble insights despite current constraints in specific
domains such as ophthalmology. The ongoing
efforts to improve these models by training on
broader medical data and employing fine-tuning
methods are encouraging, as they aim to reduce
confabulations and enhance model reliability.

Similarly, the potential of vision models in
ophthalmology is immense. These models offer
advanced diagnostic and prognostic capabilities,
and their adaptability to various tasks without the
need for retraining is poised to revolutionize global
ophthalmology. This is especially crucial in address-
ing health data inequality. The advent of open-
source models like RETFound allows researchers
worldwide to experiment and discover novel appli-
cations, further driving innovation in the field.
Moreover, federated learning offers a promising sol-
ution for researchers to train foundation model
models collaboratively without exchanging sensi-
tive data, helping to build larger, more diverse
foundation models. This collaborative approach
not only expands the pool of training data but also
enhances the robustness and generalizability of the
models, while reducing the computational burden
on a single institution.

Lastly, LMMs hold significant promise by inte-
grating various modalities in a manner akin to a
clinician’s approach, moving closer to achieving
GMAI. This capability could fundamentally trans-
form healthcare delivery and the interaction
between patients, healthcare professionals, and arti-
ficial intelligence systems. However, to make this
progress, there is a pressing need for high-quality,
standardized datasets specifically for model training
and medical specialization. As these technologies
continue to evolve, they are likely to play a pivotal
role in shaping the future of ophthalmology and
healthcare at large, offeringmore precise, accessible,
and efficient care for patients globally.
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